WO2015059778A1 - リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 - Google Patents
リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 Download PDFInfo
- Publication number
- WO2015059778A1 WO2015059778A1 PCT/JP2013/078640 JP2013078640W WO2015059778A1 WO 2015059778 A1 WO2015059778 A1 WO 2015059778A1 JP 2013078640 W JP2013078640 W JP 2013078640W WO 2015059778 A1 WO2015059778 A1 WO 2015059778A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium ion
- ion secondary
- positive electrode
- secondary battery
- active material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/46—Accumulators structurally combined with charging apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a positive electrode active material for a lithium ion secondary battery, and a lithium ion secondary battery including the positive electrode active material.
- Lithium ion secondary batteries have a higher energy density per weight than secondary batteries such as nickel hydrogen batteries and lead batteries. Therefore, the application to an electric vehicle and a power storage system is expected.
- secondary batteries such as nickel hydrogen batteries and lead batteries. Therefore, the application to an electric vehicle and a power storage system is expected.
- the layered solid solution represented by Li 2 MnO 3 -LiMO 2 (M is a transition metal element such as Co or Ni) is a positive electrode active material which can be expected to have a high capacity.
- the layered layered solid solution can also be represented as a composition Li 1 + x M 1-x ′ O 2 enriched with Li of a layered oxide-based positive electrode active material (LiMO 2 ).
- JP 2012-151084 A JP, 2013-503449, A
- an object of the present invention is to provide a lithium ion secondary battery capable of obtaining a high capacity at a high potential and suppressing the hysteresis of the OCV.
- the positive electrode active material according to the present invention is made of a lithium transition metal oxide containing Li and a metal element, containing at least Ni and Mn as the metal element, and having an atomic ratio of Li to the metal element of 1. 15 ⁇ Li / metal element ⁇ 1.5, the atomic ratio of Ni to Mn is 0.334 ⁇ Ni / Mn ⁇ 1, and the atomic ratio of Ni and Mn to the metal element is 0.975 ⁇ (Ni + Mn) / Metal element ⁇ 1.
- ⁇ Positive electrode active material> When using a lithium ion secondary battery for an electric vehicle, it is required that a high energy density be obtained, a long travel distance per charge, and a battery charging state be accurately determined from a voltage.
- the layered solid solution is a lithium transition metal oxide having a rock salt type layered structure, and indicates a material containing an excess of Li relative to the transition metal and having a composition ratio of 50% or more of Mn in the transition metal. .
- Lithium ion batteries detect SOC from voltage.
- the hysteresis in the OCV means that the OCV of the charging process is different from the OCV of the discharging process at the same SOC. That is, there are two SOCs corresponding to the same potential. If the difference between the two SOCs at the same potential is large, a large error will occur when detecting the SOC from the OCV. Therefore, if there is hysteresis in the OCV, it is difficult to accurately detect the SOC from the battery voltage. Therefore, it is necessary to make allowances for the usable battery capacity, and the capacity usable as the battery is reduced. Therefore, in order to increase the usable capacity, it is necessary to suppress the hysteresis of the OCV.
- the layered solid solution is a layered rock salt type structure, and has a structure in which Li is regularly arranged in the transition metal layer.
- the site occupancy rate of Li layer in the charging process and the site content rate of Li layer in the discharging process were calculated by molecular dynamics calculation, and it was found that the site occupancy rate of Li layer was different between the charging process and the discharging process. The If the site occupancy rate of the Li layer is different, it is inferred that hysteresis occurs in the OCV because the energy required for moving Li is different. In addition, not only Li but also Ni moves from the transition metal layer to the Li layer in the charge and discharge process.
- the positive electrode active material is made of a lithium transition metal oxide containing Li and a metal element, and the metal element contains at least Ni and Mn, and the atomic ratio of Li, Ni, and Mn is 1.15 ⁇ It is characterized in that Li / metal element ⁇ 1.5, 0.334 ⁇ Ni / Mn ⁇ 1, 0.975 ⁇ (Ni + Mn) / metal element ⁇ 1.
- the metal element may further contain an additive element M.
- the additive element M is an additive or an impurity added within a range not affecting the present invention, and at least one element selected from Co, V, Mo, W, Zr, Nb, Ti, Cu, Al, Fe It is.
- the atomic ratio of M to the metal element is preferably 0 ⁇ M / metal element ⁇ 0.025.
- Li / Ni + Mn + M Li / Ni + Mn + M
- Li / Ni + Mn + M Li / Ni + Mn + M
- Ni / Mn the atomic ratio of Ni to Mn (Ni / Mn) in the positive electrode active material
- the contribution of oxygen to the charge and discharge capacity is high, and the difference between the OCV on the charge side and the OCV on the discharge side is large.
- Ni / Mn is larger than 1, the valence number of Ni becomes high, the charge / discharge capacity involving Ni is reduced, and a high capacity can not be obtained.
- the capacity can be increased in the high potential (3.5 V or more) region, and the OCV Hysteresis suppression can be compatible.
- the accuracy in detecting the SOC from the battery voltage can be improved, and the usable battery capacity can be increased.
- the positive electrode active material is mainly composed of Li, Ni, and Mn other than the oxygen element, the cost is lower than that of the positive electrode active material containing a large amount of Co. Have.
- the positive electrode activity is achieved by setting the atomic ratio of Li to metal element of the positive electrode active material to 1.15 ⁇ Li / metal element ⁇ 1.5 and the composition ratio of Mn to Ni to 0.334 ⁇ Ni / Mn ⁇ 1.
- the tap density of the primary particles of the substance can be increased.
- the tap density of the primary particles is preferably 0.8 g / cm 3 or more. If the tap density is high, the volumetric energy density can be improved. In general, when the particle size is reduced, the tap density tends to decrease.
- the tap density is not more than 300 nm and the tap density is not less than 0.8 g / cm 3. can do. As a result, it is possible to provide a lithium ion secondary battery with low resistance and improved volumetric energy density.
- the positive electrode active material according to the present invention can be produced by a method generally used in the technical field to which the present invention belongs. For example, it can be produced by mixing and firing compounds containing Li, Ni, and Mn in appropriate proportions. The composition of the positive electrode active material can be appropriately adjusted by changing the ratio of the compound to be mixed.
- Examples of the compound containing Li include lithium acetate, lithium nitrate, lithium carbonate, lithium hydroxide, lithium oxide and the like.
- Examples of the compound containing Ni include nickel acetate, nickel nitrate, nickel carbonate, nickel sulfate, nickel hydroxide and the like.
- As a compound containing Mn, manganese acetate, manganese nitrate, manganese carbonate, manganese sulfate, manganese oxide etc. can be mentioned, for example.
- the metal composition of the positive electrode active material can be determined, for example, by elemental analysis using inductively coupled plasma (ICP) or the like.
- ICP inductively coupled plasma
- the lithium ion secondary battery according to the present invention is characterized by containing the above-mentioned positive electrode active material.
- the above-described positive electrode active material it is possible to provide a lithium ion secondary battery having a large capacity in a high potential (3.5 V or more) region and capable of detecting the charged state of the battery from the voltage with high accuracy. As a result, it is possible to increase the usable battery capacity. Further, by using a positive electrode active material having a high tap density, it is possible to provide a lithium ion secondary battery having a high volume energy density.
- the lithium ion secondary battery according to the present invention can be preferably used, for example, for an electric vehicle.
- the positive electrode active material occludes and releases lithium ions by charge and discharge. Since not all lithium ions released from the positive electrode active material return to the positive electrode, the composition of the positive electrode active material after charge and discharge is expected to be different from that before charge and discharge.
- the composition ratio of Li is about 0.75 in the full discharge state (2.0 V)
- the amount of lithium after charging and discharging of the layered solid solution is also reduced by about 20 to 30% in the fully discharged state compared to before charging and discharging.
- the lithium ion secondary battery is composed of a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode material, a separator, an electrolytic solution, an electrolyte and the like.
- the negative electrode material is not particularly limited as long as it is a substance capable of inserting and extracting lithium ions.
- Materials generally used in lithium ion secondary batteries can be used as the negative electrode material.
- graphite, lithium alloy and the like can be exemplified.
- a separator those generally used in lithium ion secondary batteries can be used.
- a microporous film or non-woven fabric made of polyolefin such as polypropylene, polyethylene, and a copolymer of propylene and ethylene can be exemplified.
- the electrolytic solution and the electrolyte those generally used in lithium ion secondary batteries can be used.
- the electrolytic solution diethyl carbonate, dimethyl carbonate, ethylene carbonate, propylene carbonate, vinylene carbonate, methyl acetate, ethyl methyl carbonate, methyl propyl carbonate, dimethoxyethane and the like can be exemplified.
- the electrolyte LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) can be exemplified 3 or the like.
- the lithium ion secondary battery 14 will be described by using FIG. 3 to describe one embodiment of the structure of the lithium ion secondary battery according to the present invention, the positive electrode 5 having a positive electrode active material coated on both sides of the current collector, It comprises an electrode group having a negative electrode 6 in which a negative electrode material is applied to both sides of the body, and a separator 7.
- the positive electrode 5 and the negative electrode 6 are wound via the separator 7 to form a wound electrode group.
- the wound body is inserted into the battery can 8.
- the negative electrode 6 is electrically connected to the battery can 8 via the negative electrode lead piece 10.
- a sealing lid 11 is attached to the battery can 8 via a packing 12.
- the positive electrode 5 is electrically connected to the sealing lid 11 through the positive electrode lead piece 9.
- the wound body is insulated by the insulating plate 13.
- the electrode group may not be a wound body shown in FIG. 3, and may be a laminate in which the positive electrode 5 and the negative electrode 6 are stacked via the separator 7.
- a battery system is characterized by comprising the above lithium ion secondary battery.
- the lithium ion secondary battery system includes a lithium ion secondary battery, a voltage information acquisition unit that detects a battery voltage, an operation unit that determines a charge state from the voltage, and a battery control unit that controls charge and discharge based on the charge state. And.
- the charge state can be determined from the voltage detected by the voltage information acquisition unit, and charge and discharge can be controlled based on the charge state.
- the accuracy of the SOC estimated from the battery voltage is low, and charge / discharge control based on the SOC is difficult.
- the lithium ion secondary battery system according to the present invention since the lithium secondary battery with high detection accuracy of SOC is used, control based on the SOC of the lithium ion secondary battery becomes possible. As a result, control stability and reliability are improved, and the capacity usable as a battery can be increased.
- the composition of the positive electrode active material used in each example and comparative example is shown in Table 1.
- the tap density of the primary particles of the positive electrode active material was a value obtained by dividing the volume of the active material after 100 counts by mass.
- the composition of the positive electrode active material and the tap density of each positive electrode active material are shown in Table 1.
- the positive electrode active materials of Examples 1 to 10 have a higher tap density as compared with Comparative Example 1. This is because the compositions of the positive electrode active materials of Examples 1 to 10 satisfy 0.334 ⁇ Ni / Mn ⁇ 1. Therefore, it was found that the tap density can be made 0.8 g / cm 3 or more by increasing the content of Ni in the positive electrode active material.
- a positive electrode active material with a high tap density a positive electrode with a high electrode density can be provided, and as a result, the capacity per unit volume can be improved. Therefore, a lithium ion secondary battery with high volumetric energy density can be provided.
- the positive electrode was produced using 15 types of positive electrode active materials produced as mentioned above, and 15 types of trial manufacture batteries were produced.
- the positive electrode active material, the conductive agent, and the binder were uniformly mixed to prepare a positive electrode slurry.
- the positive electrode slurry was applied onto a 20 ⁇ m thick aluminum current collector foil, dried at 120 ° C., and compression molded by a press so that the electrode density was 2.2 g / cm 3 to obtain an electrode plate. Thereafter, the electrode plate was punched into a disk shape having a diameter of 15 mm to produce a positive electrode.
- the negative electrode was produced using metallic lithium.
- a non-aqueous electrolytic solution one in which LiPF 6 was dissolved at a concentration of 1.0 mol / L in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 2 was used.
- charge and discharge tests are performed two cycles of charging at a current of 0.05C and an upper limit voltage of 4.6V, and discharging at a current of 0.05C and a lower limit voltage of 2.5V.
- the discharge capacity was taken as the rated capacity. Thereafter, 10% of the rated capacity was charged at a current of 0.05 C, and a test of waiting for 5 hours was repeated until the rated capacity was reached. After charging to the rated capacity, 10% of the rated capacity was discharged, and the test of waiting for 5 hours was repeated until the fully discharged state. At this time, the voltage after 5 hours was defined as OCV.
- Example 1 is the OCV curve of Example 1
- 2 is the OCV curve of Comparative Example 1
- the vertical axis is OCV (V)
- the horizontal axis is SOC (%).
- SOC SOC
- Example 1 the difference in SOC in the same OCV is less than 20% at any potential, but in Comparative Example 1, in the OCV in the range of 3.5 to 4.0 V, the same OCV. It can be seen that the difference in SOC is 20% or more. From this result, it can be seen that the hysteresis of the OCV is suppressed in Example 1 as compared to Comparative Example 1.
- Example 2 the difference in SOC in the same OCV was less than 20% in the entire potential range. Therefore, the lithium ion secondary batteries using the positive electrode active materials of Examples 1 to 10 can more accurately detect the remaining capacity of the battery from the voltage.
- Example 1 has a higher capacity than Comparative Example 1 in the potential range of 3.5 V or more.
- the capacitance decreases in the region where the potential of 2.5 V to 3.0 V is low. This region is a region which can hardly be used because a sufficient potential can not be obtained because the potential is low and the resistance is high. Therefore, if the capacity is high at high potential (3.5 V or more), the effective capacity, that is, the capacity that can actually be used as a battery increases.
- the discharge capacity is as large as 160 Ah / kg or more, and the difference between the OCV in the charging process and the OCV in the discharging process is as small as 0.2 V or less.
- Comparative Example 1 the discharge capacity was smaller than in Examples 1 to 10, and the difference between the OCV in the charging process and the OCV in the discharging process became large. This is because the composition of the positive electrode active material of Comparative Example 1 is Li / metal element ⁇ 1.5 and Ni / Mn ⁇ 0.334.
- Comparative Example 2 the difference between the OCV in the charging process and the OCV in the discharging process is larger than that in the example. This is considered to be because oxygen mainly contributes to the charge and discharge reaction because Ni / Mn ⁇ 0.334.
- the comparative examples 3, 4 and 5 have smaller discharge capacities as compared with the examples. In Comparative Example 3, since Li / metal element ⁇ 1.15, and the amount of Li that can be involved in charging and discharging was small, it is considered that the discharge capacity decreased. In Comparative Example 4, Li / metal element ⁇ 1.5, and it is considered that the crystal lattice becomes unstable and the discharge capacity is reduced because Li is too much. It is considered that in Comparative Example 5, Ni / Mn> 1, the valence number of Ni is increased, the charge / discharge capacity involving Ni is reduced, and a high capacity can not be obtained.
- the composition of the positive electrode active material satisfies 1.15 ⁇ Li / metal element ⁇ 1.5, 0.334 ⁇ Ni / Mn ⁇ 1, 0.975 ⁇ (Ni + Mn) / metal element ⁇ 1.
- a lithium ion secondary battery can be provided in which the discharge capacity is high at high potential and the difference between the OCV in the charging process and the OCV in the discharging process is small.
- the discharge capacity is large and the OCV difference is small. This is because the composition of the positive electrode active material is in the range of 1.15 ⁇ Li / metal element ⁇ 1.4 and 0.6 ⁇ Ni / Mn ⁇ 1.
- the composition of the positive electrode active material As described above, by adjusting the composition of the positive electrode active material, high discharge capacity can be obtained in the high potential region of 3.5 V or more, and the hysteresis of the OCV can be reduced. As a result, energy density can be improved and usable battery capacity can be increased.
- the electrode density of the positive electrode is 2.2 g / cm 3
- the electrode density can be increased by using a positive electrode active material having a high tap density, and the capacity per unit volume can be improved. You can also.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Materials Engineering (AREA)
- Power Engineering (AREA)
Abstract
Description
また、電位の低い領域では、容量が高くても十分な出力が得られないという課題がある。
リチウムイオン二次電池を電気自動車に採用する場合、高エネルギー密度が得られ、一充電当たりの走行距離が長いこと、および、電圧から電池の充電状態が高精度で求められることが要求される。
また、層状固溶体は、充電初期に遷移金属がレドックスに関与した反応が起こり、充電末期では、酸素が関与したレドックス反応が起こる。一方、放電初期では、遷移金属がレドックスに関与した反応が起こり、放電末期では、酸素が関与したレドックス反応が起こる。遷移金属が関与する反応は、高電位であるが、酸素が関与した反応は低電位であり抵抗が高い。したがって、正極活物質中においてレドックス反応に主に寄与するNiの割合を増加させることで、遷移金属の反応領域を増やすことができ、高電位化が可能となる。
本発明に係るリチウムイオン二次電池は、上記の正極活物質を含むことを特徴とする。上記の正極活物質を使用することにより、高電位(3.5V以上)の領域で容量が大きく、電圧から電池の充電状態を高精度で検知できるリチウムイオン二次電池を提供できる。その結果、使用できる電池容量を増大させることが可能である。また、タップ密度の高い正極活物質を使用することによって、体積エネルギー密度の高いリチウムイオン二次電池を提供できる。本発明に係るリチウムイオン二次電池は、例えば、電気自動車に対して好ましく使用することができる。
本発明に係る電池システムは、上記のリチウムイオン二次電池を備えることを特徴とする。リチウムイオン二次電池システムは、リチウムイオン二次電池と、電池電圧を検知する電圧情報取得部と、電圧から充電状態を判断する演算部と、充電状態に基づき充放電を制御する電池制御手段と、を備える。上記電池システムによれば、電圧情報取得部で検知した電圧から充電状態を判断し、充電状態に基づき充放電を制御できる。
炭酸リチウム、炭酸ニッケル、及び炭酸マンガンをボールミルで混合し、前駆体を得た。得られた前駆体を大気中において500℃で12時間焼成し、リチウム遷移金属酸化物を得た。得られたリチウム遷移金属酸化物をペレット化した後、大気中において850~1050℃で12時間焼成した。焼成したペレットをメノウ乳鉢で粉砕し、45μmのふるいで分級し、組成式LixNiaMnbMcO2で表される正極活物質とした。
上述のように作製した15種類の正極活物質を用いて正極を作製し、15種類の試作電池を作製した。
各実施例及び比較例の正極活物質を用い、上述のように作製した15種類の試作電池に対して、充放電試験を行った。
各実施例及び比較例では、上述のように作製した15種類の試作電池に対して、充電過程におけるOCVと放電過程におけるOCVの差を求めた。
2 比較例1のOCV曲線
3 実施例1の放電曲線
4 比較例1の放電曲線
5 正極
6 負極
7 セパレータ
8 電池缶
9 正極リード片
10 負極リード片
11 密閉蓋
12 パッキン
13 絶縁板
14 リチウムイオン二次電池
Claims (16)
- Liと、金属元素と、を含むリチウム遷移金属酸化物よりなる正極活物質であって、
前記金属元素として少なくともNiと、Mnと、を含み
前記金属元素に対する前記Liの原子比は、1.15<Li/金属元素<1.5であり、
前記Mnに対する前記Niの原子比は、0.334<Ni/Mn≦1であり、
前記金属元素に対する前記Ni及び前記Mnの原子比は、0.975≦(Ni+Mn)/金属元素≦1であることを特徴とするリチウムイオン二次電池用正極活物質。 - 請求項1に記載のリチウムイオン二次電池用正極活物質であって、
前記金属元素として、添加元素Mを含み、
前記Mは、Co、Al、V、Mo、W、Zr、Nb、Ti、Feから選択される少なくともいずれかの元素であることを特徴とするリチウムイオン二次電池用正極活物質。 - 請求項1に記載のリチウムイオン二次電池用正極活物質であって、
前記金属元素に対する前記Liの原子比は、Li/金属元素<1.4であり、
前記Mnに対する前記Niの原子比は、0.6≦Ni/Mn<1であることを特徴とするリチウムイオン二次電池用正極活物質。 - 請求項1に記載のリチウムイオン二次電池用正極活物質であって、
組成式LixNiaMnbMcO2(0.95≦x<1.2、0.2<a≦0.4、0.4≦b<0.6、0≦c≦0.02、a+b+c=0.8)で表されることを特徴とするリチウムイオン二次電池用正極活物質。 - 請求項4に記載のリチウムイオン二次電池用正極活物質であって、
組成式LixNiaMnbMcO2(0.95≦x≦1.1、0.30≦a<0.40、0.40<b≦0.50、0≦c≦0.02、a+b+c=0.8)で表されることを特徴とするリチウムイオン二次電池用正極活物質。 - 請求項1に記載のリチウムイオン二次電池用正極活物質であって、
前記リチウム遷移金属酸化物は一次粒子よりなり、
前記一次粒子のタップ密度は0.8g/cm3以上であることを特徴とするリチウムイオン二次電池用正極活物質。 - 請求項1ないし6のいずれかに記載のリチウムイオン二次電池用正極活物質を含むことを特徴とするリチウムイオン二次電池用正極。
- 正極活物質を含む正極と、負極活物質を含む負極と、を含むリチウムイオン二次電池であって、
前記正極活物質は、Liと、金属元素と、を含むリチウム遷移金属酸化物よりなり、
前記金属元素として少なくともNiと、Mnと、を含み
充放電後の満放電状態において、前記金属元素に対する前記Liの原子比が、0.9<Li/金属元素<1.5であり、前記Mnに対する前記Niの原子比が0.334<Ni/Mn≦1であり、前記金属元素に対する前記Ni及び前記Mnの原子比が0.975≦(Ni+Mn)/金属元素≦1であることを特徴とするリチウムイオン二次電池。 - 請求項8に記載のリチウムイオン二次電池であって、
前記金属元素として、添加元素Mを含み、
前記Mは、Co、Al、V、Mo、W、Zr、Nb、Ti、Feから選択される少なくともいずれかの元素であることを特徴とするリチウムイオン二次電池。 - 請求項8に記載のリチウムイオン二次電池であって、
前記金属元素に対する前記Liの原子比は、Li/金属元素<1.4であり、
前記Mnに対する前記Niの原子比は、0.6≦Ni/Mn<1であることを特徴とするリチウムイオン二次電池。 - 請求項8に記載のリチウムイオン二次電池であって、
充放電後の満放電状態において、前記正極活物質は、組成式LixNiaMnbMcO2(0.75≦x<1.2、0.2<a≦0.4、0.4≦b<0.6、0≦c≦0.02、a+b+c=0.8)で表されることを特徴とするリチウムイオン二次電池。 - 請求項11に記載のリチウムイオン二次電池であって、
充放電後の満放電状態において、前記正極活物質は、組成式LixNiaMnbMcO2(0.75≦x≦1.1、0.30≦a<0.40、0.40<b≦0.50、0≦c≦0.02、a+b+c=0.8)で表されることを特徴とするリチウムイオン二次電池。 - 請求項8ないし12のいずれかに記載のリチウムイオン二次電池であって、
下限電圧3.4V以上で使用されることを特徴とするリチウムイオン二次電池。 - 請求項8ないし12のいずれかに記載のリチウムイオン二次電池であって、
充電過程において定格容量の50%となるときの開回路電圧と、放電過程において定格容量の50%となるときの開回路電圧と、の差が0.2V以下であることを特徴とするリチウムイオン二次電池。 - 請求項8ないし12のいずれかに記載のリチウムイオン二次電池であって、
全電位範囲において、同一電位における充電過程のSOCと放電過程のSOCの差が20%未満であることを特徴とするリチウムイオン二次電池。 - 請求項8ないし12のいずれかに記載のリチウムイオン二次電池と、電池電圧を検知する電圧情報取得部と、前記電池電圧から充電状態を判断する演算部と、前記充電状態に基づき充放電を制御する電池制御手段と、を備えるリチウムイオン電池システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/078640 WO2015059778A1 (ja) | 2013-10-23 | 2013-10-23 | リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 |
JP2015543636A JPWO2015059778A1 (ja) | 2013-10-23 | 2013-10-23 | リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 |
US15/027,623 US20160254542A1 (en) | 2013-10-23 | 2013-10-23 | Cathode Active Material for Lithium Ion Secondary Batteries, and Lithium Ion Secondary Battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/078640 WO2015059778A1 (ja) | 2013-10-23 | 2013-10-23 | リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015059778A1 true WO2015059778A1 (ja) | 2015-04-30 |
Family
ID=52992416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/078640 WO2015059778A1 (ja) | 2013-10-23 | 2013-10-23 | リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20160254542A1 (ja) |
JP (1) | JPWO2015059778A1 (ja) |
WO (1) | WO2015059778A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6406469B1 (ja) * | 2017-06-02 | 2018-10-17 | 株式会社Gsユアサ | 蓄電量推定装置、蓄電モジュール、蓄電量推定方法、及びコンピュータプログラム |
JP2019081703A (ja) * | 2019-02-21 | 2019-05-30 | 住友化学株式会社 | リチウム含有複合酸化物、正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池 |
US10964944B2 (en) | 2015-06-10 | 2021-03-30 | Sumitomo Chemical Co., Ltd. | Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
JP6409208B1 (ja) * | 2017-03-29 | 2018-10-24 | 株式会社Gsユアサ | 蓄電量推定装置、蓄電モジュール、蓄電量推定方法、及びコンピュータプログラム |
JP6406468B1 (ja) * | 2017-03-29 | 2018-10-17 | 株式会社Gsユアサ | 蓄電量推定装置、蓄電モジュール、蓄電量推定方法、及びコンピュータプログラム |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005235628A (ja) * | 2004-02-20 | 2005-09-02 | Nec Corp | リチウム二次電池用正極及びリチウム二次電池 |
JP2006253119A (ja) * | 2005-02-08 | 2006-09-21 | Mitsubishi Chemicals Corp | リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 |
JP2007200865A (ja) * | 2005-12-28 | 2007-08-09 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2007242581A (ja) * | 2006-02-08 | 2007-09-20 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
WO2007116971A1 (ja) * | 2006-04-07 | 2007-10-18 | Mitsubishi Chemical Corporation | リチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造方法、その噴霧乾燥体およびその焼成前駆体、並びに、それを用いたリチウム二次電池用正極およびリチウム二次電池 |
WO2009031619A1 (ja) * | 2007-09-04 | 2009-03-12 | Mitsubishi Chemical Corporation | リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池 |
JP2013161622A (ja) * | 2012-02-03 | 2013-08-19 | Nissan Motor Co Ltd | 固溶体リチウム含有遷移金属酸化物及びリチウムイオン二次電池 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5601337B2 (ja) * | 2012-03-27 | 2014-10-08 | Tdk株式会社 | 活物質及びリチウムイオン二次電池 |
-
2013
- 2013-10-23 WO PCT/JP2013/078640 patent/WO2015059778A1/ja active Application Filing
- 2013-10-23 JP JP2015543636A patent/JPWO2015059778A1/ja active Pending
- 2013-10-23 US US15/027,623 patent/US20160254542A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005235628A (ja) * | 2004-02-20 | 2005-09-02 | Nec Corp | リチウム二次電池用正極及びリチウム二次電池 |
JP2006253119A (ja) * | 2005-02-08 | 2006-09-21 | Mitsubishi Chemicals Corp | リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 |
JP2007200865A (ja) * | 2005-12-28 | 2007-08-09 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2007242581A (ja) * | 2006-02-08 | 2007-09-20 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
WO2007116971A1 (ja) * | 2006-04-07 | 2007-10-18 | Mitsubishi Chemical Corporation | リチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造方法、その噴霧乾燥体およびその焼成前駆体、並びに、それを用いたリチウム二次電池用正極およびリチウム二次電池 |
WO2009031619A1 (ja) * | 2007-09-04 | 2009-03-12 | Mitsubishi Chemical Corporation | リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池 |
JP2013161622A (ja) * | 2012-02-03 | 2013-08-19 | Nissan Motor Co Ltd | 固溶体リチウム含有遷移金属酸化物及びリチウムイオン二次電池 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10964944B2 (en) | 2015-06-10 | 2021-03-30 | Sumitomo Chemical Co., Ltd. | Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP6406469B1 (ja) * | 2017-06-02 | 2018-10-17 | 株式会社Gsユアサ | 蓄電量推定装置、蓄電モジュール、蓄電量推定方法、及びコンピュータプログラム |
WO2018221423A1 (ja) * | 2017-06-02 | 2018-12-06 | 株式会社Gsユアサ | 蓄電量推定装置、蓄電モジュール、蓄電量推定方法、及びコンピュータプログラム |
JP2018206762A (ja) * | 2017-06-02 | 2018-12-27 | 株式会社Gsユアサ | 蓄電量推定装置、蓄電モジュール、蓄電量推定方法、及びコンピュータプログラム |
US10761143B2 (en) | 2017-06-02 | 2020-09-01 | Gs Yuasa International Ltd. | Storage amount estimation device, energy storage module, storage amount estimation method, and computer program |
JP2019081703A (ja) * | 2019-02-21 | 2019-05-30 | 住友化学株式会社 | リチウム含有複合酸化物、正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池 |
Also Published As
Publication number | Publication date |
---|---|
US20160254542A1 (en) | 2016-09-01 |
JPWO2015059778A1 (ja) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5741908B2 (ja) | リチウムイオン二次電池用正極活物質 | |
WO2016136212A1 (ja) | 非水電解質二次電池 | |
WO2015088007A1 (ja) | 正極活物質粉末、該粉末を有する正極及び二次電池 | |
JP2016115658A (ja) | 非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池 | |
JP2010129471A (ja) | 正極活物質および非水電解質電池 | |
WO2015059778A1 (ja) | リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 | |
JP2009016234A (ja) | 非水電池および非水電池の製造方法 | |
JPWO2017094237A1 (ja) | 非水電解質二次電池 | |
CN106716701A (zh) | 非水电解质二次电池 | |
JP2008257992A (ja) | 非水系電解質二次電池用正極活物質およびその製造方法、並びに非水系電解質二次電池 | |
JPWO2017094238A1 (ja) | 非水電解質二次電池 | |
JP2018527281A (ja) | リチウム金属酸化物材料、二次電池の正極での該リチウム金属酸化物材料の使用及びかかるリチウム金属酸化物材料の調製方法 | |
WO2015045254A1 (ja) | リチウムチタン複合酸化物 | |
JP5626035B2 (ja) | リチウムイオン二次電池の前処理方法及び使用方法 | |
JP6400364B2 (ja) | 非水系二次電池用正極活物質及びその製造方法 | |
WO2015132844A1 (ja) | リチウムイオン二次電池用正極材料およびリチウムイオン二次電池 | |
WO2016046868A1 (ja) | リチウムイオン二次電池用正極活物質、正極材料及びリチウムイオン二次電池 | |
WO2015004705A1 (ja) | リチウムイオン二次電池用正極活物質 | |
WO2015019729A1 (ja) | リチウムイオン二次電池用正極材料 | |
WO2013125465A1 (ja) | 正極活物質 | |
WO2015019709A1 (ja) | リチウムイオン二次電池用正極材料およびリチウムイオン二次電池 | |
JP5877898B2 (ja) | リチウムイオン二次電池用正極活物質 | |
WO2015059779A1 (ja) | リチウムイオン二次電池用正極材料およびリチウムイオン二次電池 | |
WO2015079546A1 (ja) | リチウムイオン二次電池用正極およびリチウムイオン二次電池 | |
JP2016058334A (ja) | リチウム二次電池用正極材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13896113 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015543636 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15027623 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13896113 Country of ref document: EP Kind code of ref document: A1 |