WO2017094238A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2017094238A1
WO2017094238A1 PCT/JP2016/004934 JP2016004934W WO2017094238A1 WO 2017094238 A1 WO2017094238 A1 WO 2017094238A1 JP 2016004934 W JP2016004934 W JP 2016004934W WO 2017094238 A1 WO2017094238 A1 WO 2017094238A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
negative electrode
tungsten
positive electrode
secondary battery
Prior art date
Application number
PCT/JP2016/004934
Other languages
English (en)
French (fr)
Inventor
なつみ 後藤
仁徳 杉森
康平 続木
柳田 勝功
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017553616A priority Critical patent/JP6799813B2/ja
Priority to US15/770,581 priority patent/US10553856B2/en
Priority to CN201680063424.XA priority patent/CN108352562B/zh
Publication of WO2017094238A1 publication Critical patent/WO2017094238A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to the technology of a non-aqueous electrolyte secondary battery.
  • non-aqueous electrolyte secondary batteries are used for power sources such as power tools, electric vehicles (EV), and hybrid electric vehicles (HEV, PHEV) in addition to consumer applications such as mobile information terminals such as mobile phones, notebook computers, and smartphones. It is also attracting attention as a power source, and further expansion of applications is expected.
  • a power source is required to have a high capacity capable of being used for a long time, an improvement in output characteristics when a large current charge / discharge is repeated in a relatively short time, and the like.
  • Non-aqueous electrolyte secondary batteries using lithium-titanium composite oxide as a negative electrode active material have high potential stability, and thus are expected for new applications.
  • lithium-titanium composite oxide When lithium-titanium composite oxide is used for the negative electrode active material, the irreversible capacity of the negative electrode is reduced. Therefore, when a lithium-containing transition metal oxide is combined with the positive electrode used for the positive electrode active material, the irreversible capacity of the positive electrode is generally reduced. It becomes larger than the irreversible capacity of the negative electrode, and the end of discharge becomes positive electrode regulation at the end of discharge. In particular, when a lithium-containing transition metal oxide having a layered structure is used as a positive electrode active material, if the end of discharge becomes positive electrode regulation at the end of discharge, the positive electrode active material is easily overdischarged. Degradation may be caused.
  • Patent Documents 1 and 2 disclose that the negative electrode contains other active material such as a carbon material in addition to the lithium titanium composite oxide.
  • the irreversible capacity of the negative electrode tends to increase as compared with a negative electrode made of a lithium titanium composite oxide. Therefore, by combining a negative electrode having a lithium titanium composite oxide and a carbon material and a positive electrode having a lithium-containing transition metal oxide, the irreversible capacity of the negative electrode is made larger than the irreversible capacity of the positive electrode, and the discharge is terminated at the end of discharge. Is considered to be a negative electrode regulation.
  • the negative electrode and the positive electrode are combined, there is a problem that the IV resistance of the battery, in particular, the IV resistance of the battery due to high-temperature storage (for example, 80 ° C. or more) increases, and as a result, the output characteristics of the battery deteriorate There is.
  • high-temperature storage for example, 80 ° C. or more
  • An object of the present disclosure is to provide a nonaqueous electrolyte secondary capable of suppressing an increase in IV resistance of a battery in a combination of a negative electrode having a lithium titanium composite oxide and a carbon material and a positive electrode having a lithium-containing transition metal oxide. To provide a battery.
  • One embodiment of the present disclosure is a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte, wherein the positive electrode is a metal excluding Li
  • the lithium-containing transition metal oxide whose ratio of Ni with respect to the total amount of elements is 30 mol% or more, and tungsten element.
  • the negative electrode includes a lithium titanium composite oxide and a carbon material
  • the non-aqueous electrolyte includes a substance that is reduced on the negative electrode at a potential of 0.5 to 1.5 V (vs. Li / Li + ). It is a non-aqueous electrolyte secondary battery.
  • a nonaqueous electrolyte secondary battery which is one embodiment of the present disclosure is a nonaqueous electrolyte secondary battery including a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
  • the positive electrode includes a lithium-containing transition metal oxide in which the ratio of Ni to the total molar amount of metal elements excluding Li is 30 mol% or more, and a tungsten element.
  • the negative electrode includes a lithium titanium composite oxide and a carbon material, and the non-aqueous electrolyte is reduced on the negative electrode at a potential of 0.5 to 1.5 V (vs. Li / Li + ). Contains substances. And according to the nonaqueous electrolyte secondary battery which is 1 aspect of this indication, it becomes possible to suppress the increase in IV resistance of a battery, especially the increase in IV resistance of a battery by high temperature storage (for example, 80 degreeC or more). .
  • Tungsten in the positive electrode is eluted from the positive electrode and deposited on the negative electrode due to charge / discharge of the battery, and at that time, it is considered that tungsten is taken into a film formed by reducing the electrolyte on the negative electrode. And it is thought that a specifically high negative electrode resistance raise inhibitory effect is acquired by forming the film containing tungsten on a negative electrode. As a result, it is considered that an increase in the IV resistance of the battery is suppressed, and as a result, a decrease in the output characteristics of the battery is suppressed.
  • a part of the tungsten element contained in the positive electrode is present in a state of solid solution in the lithium-containing transition metal oxide, and the tungsten element contained in the positive electrode The other part exists as a tungsten compound attached to the surface of the lithium-containing transition metal oxide.
  • the tungsten element of the tungsten compound existing in a state of adhering to the surface of the lithium-containing transition metal oxide contains Li in the lithium-containing transition metal oxide. It is contained in an amount of 0.01 to 3.0 mol% with respect to the total molar amount of metal elements excluding. Thereby, compared with the case where the tungsten element of the said tungsten compound is outside the said range, it becomes possible to suppress the increase in IV resistance of a battery.
  • a tungsten element present in a solid solution state in a lithium-containing transition metal oxide is a molarity of metal elements excluding Li in the lithium-containing transition metal oxide. It is contained in an amount of 0.01 to 3.0 mol% with respect to the total amount. Thereby, compared with the case where the said tungsten element is outside the said range, it becomes possible to suppress the increase in IV resistance of a battery.
  • a nonaqueous electrolyte secondary battery that is one embodiment of the present disclosure includes a negative electrode, a positive electrode, a separator disposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
  • other types of electrode bodies such as a stacked electrode body in which a positive electrode and a negative electrode are stacked via a separator may be applied.
  • the nonaqueous electrolyte secondary battery may have any form such as a cylindrical type, a square type, a coin type, a button type, and a laminate type.
  • the negative electrode is preferably composed of a negative electrode current collector made of, for example, a metal foil, and a negative electrode mixture layer formed on the current collector.
  • a negative electrode current collector a metal foil that is stable within the potential range of the negative electrode, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the negative electrode mixture layer preferably contains a binder and the like in addition to the negative electrode active material.
  • the negative electrode active material includes a lithium titanium composite oxide and a carbon material. According to the said structure, it becomes possible to enlarge the irreversible capacity
  • the lithium titanium composite oxide is preferably lithium titanate from the viewpoints of output and safety during charging and discharging.
  • lithium titanate lithium titanate having a spinel crystal structure is preferable.
  • Examples of lithium titanate having a spinel crystal structure include Li 4 + X Ti 5 O 12 (0 ⁇ X ⁇ 3).
  • Lithium titanate having a spinel crystal structure is small in expansion and contraction due to insertion and extraction of lithium and hardly deteriorates, so that a battery having excellent durability can be obtained. Having a spinel structure can be easily confirmed by X-ray diffraction or the like.
  • the specific surface area of the lithium titanium composite oxide is, for example, 2 m 2 / g or more, preferably 3 m 2 / g or more, more preferably 4 m 2 / g or more as measured by the BET method.
  • the specific surface area is less than 2 m 2 / g, the input / output characteristics may deteriorate.
  • crystallinity will fall and durability may be impaired when the specific surface area of lithium titanium complex oxide is too large, it is preferable that it is 8 m ⁇ 2 > / g or less.
  • a part of Ti element in the lithium titanium composite oxide may be substituted with one or more elements different from Ti.
  • the irreversible capacity ratio is larger than that of the lithium-titanium composite oxide, and the non-aqueous electrolyte secondary regulated by the negative electrode Realization of a battery becomes easy.
  • elements different from Ti include manganese (Mn), iron (Fe), vanadium (V), boron (B), and niobium (Nb).
  • the average primary particle diameter of the lithium titanium composite oxide is preferably 0.1 ⁇ m to 10 ⁇ m, for example, and more preferably 0.3 to 1.0 ⁇ m.
  • the average primary particle size is less than 0.1 ⁇ m, the primary particle interface becomes too large, and particle cracking may easily occur due to expansion and contraction in the charge / discharge cycle.
  • the average particle diameter exceeds 10 ⁇ m, the amount of the primary particle interface becomes too small, and the output characteristics may be deteriorated.
  • Examples of the carbon material include graphite material, hard carbon, and soft carbon. Among these, graphite materials are preferable because the electrolyte can be reduced at a relatively high potential.
  • the content of the lithium titanium composite oxide with respect to the total amount of the lithium titanium composite oxide and the carbon material is preferably 50% by mass to 99% by mass, and more preferably 90% by mass to 99% by mass.
  • the negative electrode current collector it is preferable to use a conductive thin film, a metal foil or alloy foil that is stable in the negative electrode potential range, a film having a metal surface layer, or the like.
  • a conductive thin film a metal foil or alloy foil that is stable in the negative electrode potential range, a film having a metal surface layer, or the like.
  • an aluminum foil is preferable.
  • a copper foil, a nickel foil, or a stainless steel foil may be used.
  • binder examples include fluorine resin, PAN, polyimide resin, acrylic resin, polyolefin resin, and the like.
  • PVdF polyvinylidene fluoride
  • nonaqueous electrolyte secondary battery of one embodiment of the present disclosure it is preferable to charge at least once after the battery is assembled until the negative electrode potential becomes 1.5 V or less, and charge until the negative electrode potential becomes 0.5 V or less. More preferred. As a result, it is possible to promote the occlusion of lithium into the carbon material in the negative electrode, and the effect of increasing the irreversible capacity is increased (negative electrode irreversible capacity> positive electrode irreversible capacity). Easy to do.
  • the non-aqueous electrolyte contains a substance that is reduced on the negative electrode (mainly on the carbon material) at a potential of 0.5 to 1.5 V (vs. Li / Li + ).
  • a coating can be efficiently formed on the negative electrode containing the lithium-titanium composite oxide and the carbon material, and the irreversible capacity of the negative electrode can be increased compared to a general electrolyte solution that does not include the reducing substance. It becomes possible to do.
  • the reducing substance is not particularly limited as long as it is a substance that can be reduced on the negative electrode (mainly on the carbon material) at a potential of 0.5 to 1.5 V (vs. Li / Li + ).
  • examples thereof include propylene carbonate and phosphoric acid triester.
  • the phosphoric acid triester include triethyl phosphate and trimethyl phosphate, and trimethyl phosphate is preferable in terms of viscosity and the like.
  • propylene carbonate when a graphite material is contained in the negative electrode, it is preferable to use propylene carbonate. Since propylene carbonate causes a co-insertion reaction with the graphite material, the irreversible capacity of the negative electrode can be increased.
  • the non-aqueous electrolyte may contain a non-aqueous solvent such as cyclic carbonates such as ethylene carbonate, butylene carbonate, vinylene carbonate, and chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate in addition to the above reducing substances. good.
  • a non-aqueous solvent such as cyclic carbonates such as ethylene carbonate, butylene carbonate, vinylene carbonate, and chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate in addition to the above reducing substances.
  • halogen substituted body which substituted some or all of hydrogen of these non-aqueous solvents with halogen atoms, such as a fluorine.
  • the nonaqueous electrolyte preferably contains a cyclic carbonate in terms of suppressing gas generation.
  • the non-aqueous electrolyte preferably contains a mixed solvent of a cyclic carbonate and a chain carbonate in terms of low viscosity, low melting point, and high lithium ion conductivity.
  • the volume ratio of the cyclic carbonate to the chain carbonate in the mixed solvent is preferably regulated to a range of, for example, 2: 8 to 5: 5.
  • the non-aqueous electrolyte may contain a compound containing an ester such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, or ⁇ -butyrolactone.
  • compounds containing sulfone groups such as propane sultone, ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,3-dioxane, 1,4-dioxane, 2-methyltetrahydrofuran are included. It may contain a compound or the like.
  • nitriles such as butyronitrile, valeronitrile, n-heptanenitrile, succinonitrile, glutaronitrile, adiponitrile, pimeonitrile, 1,2,3-propanetricarbonitrile, 1,3,5-pentanetricarbonitrile, etc.
  • a compound, a compound containing an amide such as dimethylformamide, and the like may be included.
  • the solvent etc. by which some hydrogen atoms of these compounds are substituted by the fluorine atom may be included.
  • solute (electrolyte salt) of the nonaqueous electrolyte for example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 and the like.
  • a lithium salt other than the fluorine-containing lithium salt [a lithium salt containing one or more elements among P, B, O, S, N, and Cl (for example, LiClO 4 , LiPO 2 F 2, etc.) )] May be used.
  • an electrolyte salt containing an F element in the structural formula is used, corrosion of the positive electrode active material and metal elution due to HF are suppressed.
  • a positive electrode is comprised by positive electrode collectors, such as metal foil, and the positive mix layer formed on the positive electrode collector, for example.
  • positive electrode collectors such as metal foil
  • the positive electrode current collector a metal foil that is stable in the potential range of the positive electrode such as aluminum, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the positive electrode mixture layer preferably contains a positive electrode active material, and additionally contains a conductive agent and a binder.
  • the positive electrode active material includes a lithium-containing transition metal oxide in which the ratio of Ni to the total molar amount of metal elements excluding Li is 30 mol% or more, and a tungsten element.
  • the electrode is formed more or more uniformly, and the increase in negative electrode resistance can be suppressed more effectively. As a result, it is possible to further suppress the deterioration of the output characteristics of the battery.
  • the tungsten element may be present in any form in the positive electrode active material, for example, in a solid solution state in the lithium-containing transition metal oxide (that is, in the form of a lithium-containing transition metal oxide containing tungsten element). Or may exist as a tungsten compound in a state of adhering to the particle surface of the lithium-containing metal oxide (a non-solid solution state that is not in solid solution with the lithium-containing transition metal oxide). However, both states may coexist.
  • a part of the tungsten element contained in the positive electrode exists in a solid solution state in the lithium-containing transition metal oxide in terms of further suppressing the deterioration of the output characteristics of the battery, and the tungsten element contained in the positive electrode is present.
  • the other part is preferably present as a tungsten compound in a state of adhering to the particle surface of the lithium-containing metal oxide.
  • the ratio of the tungsten element of the tungsten compound adhering to the particle surface of the lithium-containing metal oxide is 0.01 to 3.0 mol% with respect to the total amount of the transition metal excluding lithium in the lithium-containing transition metal oxide. It is preferably 0.03 to 2.0 mol%, more preferably 0.05 to 1.0 mol%.
  • the ratio of the tungsten element of the tungsten compound is less than 0.01 mol%, the formation of a film containing tungsten becomes insufficient, and the IV resistance of the battery may increase as compared with the case where the above range is satisfied. As a result, the output characteristics of the battery may deteriorate.
  • the ratio of the tungsten element of the tungsten compound exceeds 3.0 mol%, the amount of tungsten contained in the coating film is excessively increased, and the ionic conductivity of the coating film is lowered, compared with the case where the above range is satisfied. Battery capacity may be reduced.
  • the tungsten compound is preferably tungsten oxide.
  • tungsten oxide is scattered and attached to the surface of the lithium transition metal oxide, and more preferably, the surface is uniformly scattered and attached to the surface.
  • Specific examples of tungsten oxide include WO 3 , WO 2 , and W 2 O 3 .
  • WO 3 is more preferable in that it has a large valence, a small amount, and a film having a high resistance increase suppressing effect is easily formed.
  • the proportion of the tungsten element dissolved in the lithium-containing transition metal oxide is preferably 0.01 to 3.0 mol% with respect to the total molar amount of the transition metal excluding lithium in the lithium-containing transition metal oxide. It is more preferably from 03 to 2.0 mol%, particularly preferably from 0.05 to 1.0 mol%.
  • the ratio of the solid solution tungsten element is less than 0.01 mol%, the formation of a film containing tungsten becomes insufficient, and the IV resistance of the battery may increase as compared with the case where the above range is satisfied. The output characteristics of the battery may deteriorate.
  • tungsten is dissolved in the lithium-containing transition metal oxide when the tungsten element is replaced with a part of the transition metal such as nickel or cobalt in the lithium-containing transition metal oxide active material. It is a state that exists inside the metal oxide (in the crystal).
  • the following methods may be used to measure that the tungsten is dissolved in the lithium-containing transition metal oxide and the amount of the solid solution.
  • AES Auger electron spectroscopy
  • SIMS secondary ion mass spectrometry
  • TEM Transmission Electron Microscope
  • EDX Electron Probe Microanalyser
  • EPMA Electron Probe Microanalyser
  • the total amount of tungsten solid-solved and adhered to the lithium-containing metal oxide can be measured, for example, by washing the lithium-containing transition metal oxide powder with an acid solution for 20 minutes, and using the inductively coupled plasma for the amount of tungsten eluted in the acid solution It is determined by measuring by ionization (ICP) emission spectrometry. From the measurement results of the solid solution amount and the total amount described above, it is possible to calculate the tungsten adhesion amount not dissolved in the lithium-containing metal oxide.
  • ICP ionization
  • the lithium-containing transition metal oxide is not particularly limited as long as it is a lithium-containing transition metal oxide in which the ratio of Ni to the total molar amount of metal elements excluding Li is 30 mol% or more.
  • nickel (Ni) nickel
  • other transition metals such as manganese (Mn) and cobalt (Co) may be contained.
  • the lithium-containing transition metal oxide may contain a non-transition metal such as aluminum (Al) or magnesium (Mg).
  • Specific examples include lithium transition metal oxides such as Ni—Co—Mn, Ni—Co—Al, and Ni—Mn—Al. These may be used alone or in combination.
  • Ni—Co—Mn lithium transition metal oxides are preferable in terms of output characteristics and regeneration characteristics.
  • the Ni—Co—Mn lithium transition metal oxide include a molar ratio of Ni, Co, and Mn of 1: 1: 1, 5: 2: 3, 4: 4: 2, 5 : 3: 2, 6: 2: 2, 55:25:20, 7: 2: 1, 7: 1: 2, 8: 1: 1, and the like.
  • the difference in the molar ratio of Ni and Mn to the sum of the moles of Ni, Co and Mn is 0.04. % Or more is preferable.
  • Ni—Co—Al-based lithium-containing transition metal oxide examples include molar ratios of Ni, Co, and Al of 82: 15: 3, 82: 12: 6, 80:10:10, 80: 15: 5, 87: 9: 4, 90: 5: 5, 95: 3: 2, and the like can be used.
  • the lithium-containing transition metal oxide is not limited to the above-exemplified elements, and may contain other additive elements.
  • additive elements include boron, magnesium, aluminum, titanium, vanadium, iron, copper, zinc, niobium, zirconium, tin, tantalum, sodium, potassium, barium, strontium, calcium, and the like.
  • the average particle size of the lithium-containing transition metal oxide is preferably 2 to 30 ⁇ m, for example.
  • the lithium-containing transition metal oxide particles may be in the form of secondary particles in which primary particles of, for example, 100 nm to 10 ⁇ m are bound.
  • an average particle diameter can be measured with a scattering type particle size distribution measuring apparatus (made by HORIBA), for example.
  • the average particle diameter of the tungsten compound adhering to the particle surface of the lithium transition metal oxide is preferably smaller than the average particle diameter of the lithium-containing transition metal oxide, and particularly preferably smaller than 1 ⁇ 4. If the tungsten compound is larger than the lithium-containing transition metal composite oxide, the contact area with the lithium-containing transition metal oxide becomes small, and the effect of suppressing the increase in resistance of the negative electrode may not be sufficiently exhibited.
  • a method for dissolving tungsten in a lithium-containing transition metal oxide a transition metal oxide containing nickel as a raw material, a lithium compound such as lithium hydroxide or lithium carbonate, and a tungsten compound such as tungsten oxide are mixed
  • Examples include a method of firing at a predetermined temperature.
  • the firing temperature is preferably from 650 ° C. to 1000 ° C., particularly preferably from 700 ° C. to 950 ° C. If the temperature is lower than 650 ° C, the decomposition reaction of the lithium compound such as lithium hydroxide is not sufficient and the reaction does not proceed easily. If the temperature is higher than 1000 ° C, cation mixing becomes active and the diffusion of Li + is inhibited. In some cases, the load characteristics or load characteristics may deteriorate.
  • a conductive agent and a binder are kneaded in addition to a method in which lithium-containing transition metal oxide and tungsten oxide are mechanically mixed and attached in advance.
  • a method of adding tungsten oxide in the process can be given.
  • the lithium-containing transition metal oxide is not limited to the above-described lithium-containing transition metal oxide containing 30 mol% or more of Ni alone, and may be used in combination with other positive electrode active materials.
  • Other positive electrode active materials are not particularly limited as long as they are compounds that can reversibly insert and desorb lithium ions, for example, lithium ions can be inserted and desorbed while maintaining a stable crystal structure.
  • Those having a layered structure such as a certain lithium cobaltate, those having a spinel structure such as lithium manganese oxide, and those having an olivine structure can be used.
  • the positive electrode preferably contains a phosphoric acid compound.
  • a coating made of a decomposition product of the electrolytic solution is formed on the positive electrode active material during charge and discharge at the initial use of the battery, and corrosion of the positive electrode active material and metal elution by HF are suppressed. Is done. Thus, further reaction of the corrosion portion of the positive electrode active material and the electrolyte solution is suppressed, H 2 gas, that CO gas and CO 2 gas or the like is generated is suppressed.
  • the phosphoric acid compound in the positive electrode is preferably lithium phosphate.
  • the lithium phosphate is preferably Li 3 PO 4 .
  • binder examples include fluorine-based polymers and rubber-based polymers.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • examples include coalescence. These may be used alone or in combination of two or more.
  • the binder may be used in combination with a thickener such as carboxymethyl cellulose (CMC) or polyethylene oxide (PEO).
  • Examples of the conductive agent include carbon materials such as carbon black, acetylene black, ketjen black, graphite, vapor grown carbon (VGCF), carbon nanotube, and carbon nanofiber. These may be used alone or in combination of two or more.
  • carbon materials such as carbon black, acetylene black, ketjen black, graphite, vapor grown carbon (VGCF), carbon nanotube, and carbon nanofiber. These may be used alone or in combination of two or more.
  • separator examples include polypropylene separators and polyethylene separators, polypropylene-polyethylene multilayer separators, separators whose surfaces are coated with a resin such as an aramid resin, and separators containing cellulose.
  • separator a separator containing polypropylene is preferably used.
  • a layer made of an inorganic filler may be disposed at the interface between the positive electrode and the separator or at the interface between the negative electrode and the separator.
  • the filler include oxides and phosphate compounds using one or more of titanium, aluminum, silicon, magnesium, and the like, and those whose surface is treated with hydroxide or the like.
  • Example 1 [Preparation of positive electrode active material] A hydroxide represented by [Ni 0.51 Co 0.23 Mn 0.26 ] (OH) 2 obtained by coprecipitation was baked at 500 ° C. to obtain a nickel cobalt manganese composite oxide. Next, lithium carbonate, the nickel cobalt manganese composite oxide obtained above, tungsten oxide (WO 3 ), lithium, the total amount of nickel, cobalt and manganese, and the molar ratio of tungsten to 1.20: The mixture was mixed in a Ishikawa type mortar so as to be 1: 0.005. Thereafter, this mixture was pulverized after heat treatment at 900 ° C.
  • a hydroxide represented by [Ni 0.51 Co 0.23 Mn 0.26 ] (OH) 2 obtained by coprecipitation was baked at 500 ° C. to obtain a nickel cobalt manganese composite oxide.
  • the total amount of nickel, cobalt, and manganese and tungsten dissolved in a molar ratio was 1: 0.005.
  • the positive electrode active material A1, acetylene black as a conductive agent and polyvinylidene fluoride as a binder were weighed so that the mass ratio was 91: 7: 2, and N-methyl-2-pyrrolidone as a dispersion medium was measured. In addition, these were kneaded to prepare a positive electrode mixture slurry. Next, the positive electrode mixture slurry is applied to both surfaces of a positive electrode current collector made of an aluminum foil, dried, and then rolled with a rolling roller, and a current collector tab made of aluminum is further attached. A positive electrode plate having a positive electrode mixture layer formed on both sides of the electric body was produced.
  • LiOH ⁇ H 2 O and TiO 2 raw material powders which are commercially available reagents, were weighed so that the Li / Ti molar mixing ratio was slightly more Li than the stoichiometric ratio, and these were mixed in a mortar.
  • the raw material TiO 2 one having an anatase type crystal structure was used.
  • the mixed raw material powder was put in an Al 2 O 3 crucible and heat-treated at 850 ° C. for 12 hours in an air atmosphere to obtain Li 4 Ti 5 O 12 .
  • the heat-treated material was taken out from the crucible and pulverized in a mortar to obtain a coarse powder of Li 4 Ti 5 O 12 .
  • a coarse powder of Li 4 Ti 5 O 12 was measured by powder X-ray diffraction (manufactured by Rigaku), a single-phase diffraction pattern consisting of a spinel structure with the space group belonging to Fd-3m was obtained. It was.
  • the obtained Li 4 Ti 5 O 12 coarse powder was used for jet mill pulverization and classification. It was confirmed that the obtained powder was pulverized into single particles having a particle size of about 0.7 ⁇ m from observation with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the positive electrode and the negative electrode thus obtained were wound so as to face each other through a separator composed of three layers of PP (polypropylene) / PE (polyethylene) / PP, and a wound body was produced. After vacuum-drying under the above conditions, a battery was fabricated by enclosing the wound body in an outer body made of an aluminum laminate sheet together with the non-aqueous electrolyte in a glove box under an argon atmosphere. The design capacity of the battery was 12 mAh.
  • Example 2 A hydroxide represented by [Ni 0.51 Co 0.23 Mn 0.26 ] (OH) 2 obtained by coprecipitation was baked at 500 ° C. to obtain a nickel cobalt manganese composite oxide. Next, the lithium carbonate and the nickel-cobalt-manganese composite oxide obtained above are mixed with a Ishikawa type mortar so that the molar ratio of lithium to the total amount of nickel, cobalt and manganese is 1.20: 1. And mixed. Thereafter, the mixture was pulverized after heat treatment at 900 ° C. for 20 hours in an air atmosphere, whereby lithium nickel manganese cobalt represented by Li 1.07 [Ni 0.51 Co 0.23 Mn 0.26 ] O 2. A composite oxide (lithium nickel manganese cobalt composite oxide in which tungsten is not dissolved) was obtained.
  • Li 1.07 [Ni 0.51 Co 0.23 Mn 0.26 ] O 2 and tungsten oxide (WO 3 ) were mixed using a hibis disperse mix (manufactured by Primics), and a positive electrode active material was made.
  • the molar ratio of the total amount of nickel, cobalt and manganese in Li 1.07 [Ni 0.465 Co 0.275 Mn 0.26 ] O 2 to tungsten in tungsten oxide (WO 3 ) is 1 : Mixed so that the ratio was 0.005. This was designated as a positive electrode active material A2.
  • the total amount of nickel, cobalt and manganese and tungsten contained as tungsten oxide were 1: 0.005 in molar ratio. Further, when the produced positive electrode plate was observed with a scanning electron microscope (SEM), tungsten oxide particles having an average particle diameter of 150 nm were attached to the surface of the lithium nickel manganese cobalt composite oxide particles.
  • Example 2 a battery was fabricated under the same conditions as in Example 1 except that the positive electrode active material A2 was used.
  • Example 3 A hydroxide represented by [Ni 0.465 Co 0.275 Mn 0.26 ] (OH) 2 obtained by coprecipitation was fired at 500 ° C. to obtain a nickel cobalt manganese composite oxide. Next, lithium carbonate, the nickel cobalt manganese composite oxide obtained above, tungsten oxide (WO 3 ), lithium, the total amount of nickel, cobalt and manganese, and the molar ratio of tungsten to 1.20: The mixture was mixed in a Ishikawa type mortar so as to be 1: 0.005. Thereafter, this mixture was pulverized after heat treatment at 900 ° C.
  • Li 1.07 [Ni 0.465 Co 0.275 Mn 0.26 ] O 2 and tungsten oxide (WO 3 ) were mixed using a Hibis Disper mix (manufactured by Primix), and a positive electrode active material was made.
  • the molar ratio of the total amount of nickel, cobalt and manganese in Li 1.07 [Ni 0.465 Co 0.275 Mn 0.26 ] O 2 to tungsten in tungsten oxide (WO 3 ) is 1 : Mixed so that the ratio was 0.005. This was designated as a positive electrode active material A3.
  • the total amount of nickel, cobalt and manganese, tungsten in solid solution, and tungsten contained as tungsten oxide were 1: 0.005: 0.005 in molar ratio. . Further, when the produced positive electrode plate was observed with a scanning electron microscope (SEM), tungsten oxide particles having an average particle diameter of 150 nm were attached to the surface of the lithium nickel manganese cobalt composite oxide particles.
  • Example 3 a battery was fabricated under the same conditions as in Example 1 except that the positive electrode active material A3 was used.
  • Example 4 To a mixed solvent obtained by mixing EC (ethylene carbonate), EMC (ethyl methyl carbonate), and DMC (dimethyl carbonate) in a volume ratio of 30:40:40, 3 vol% trimethyl phosphate was added to form LiPF 6 as a solute.
  • a battery was fabricated under the same conditions as in Example 3, except that a nonaqueous electrolyte in which was dissolved at a rate of 1.2 mol / liter was used.
  • Example 5 To a mixed solvent obtained by mixing PC (propylene carbonate), EMC (ethyl methyl carbonate), and DMC (dimethyl carbonate) at a volume ratio of 25:35:40, 3 vol% trimethyl phosphate was added to form LiPF 6 as a solute.
  • a battery was fabricated under the same conditions as in Example 3, except that a nonaqueous electrolyte in which was dissolved at a rate of 1.2 mol / liter was used.
  • Example 6 To a mixed solvent in which PC (propylene carbonate), EMC (ethyl methyl carbonate) and DMC (dimethyl carbonate) were mixed at a volume ratio of 25:35:40, 0.1 vol% trimethyl phosphate was added, A battery was fabricated under the same conditions as in Example 3 except that a nonaqueous electrolyte in which LiPF 6 was dissolved at a rate of 1.2 mol / liter was used.
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • Example 7 To a mixed solvent in which PC (propylene carbonate), EMC (ethyl methyl carbonate), and DMC (dimethyl carbonate) were mixed at a volume ratio of 25:35:40, 0.5 vol% trimethyl phosphate was added to obtain a solute as a solute.
  • a battery was fabricated under the same conditions as in Example 3 except that a nonaqueous electrolyte in which LiPF 6 was dissolved at a rate of 1.2 mol / liter was used.
  • Example 8 To a mixed solvent in which PC (propylene carbonate), EMC (ethyl methyl carbonate) and DMC (dimethyl carbonate) are mixed at a volume ratio of 25:35:40, 1 vol% trimethyl phosphate is added, and LiPF6 as a solute is added.
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • Example 9 To a mixed solvent in which PC (propylene carbonate), EMC (ethyl methyl carbonate) and DMC (dimethyl carbonate) are mixed at a volume ratio of 25:35:40, 5 vol% trimethyl phosphate is added, and LiPF6 as a solute is added.
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • Comparative Example 1 a battery was produced under the same conditions as in Example 1 except that the positive electrode active material B1 was used and no graphite material was used in the production of the negative electrode plate.
  • Comparative Example 2 a battery was produced under the same conditions as in Example 1 except that no graphite material was used in the production of the negative electrode plate.
  • Comparative Example 3 a battery was fabricated under the same conditions as in Example 1 except that the positive electrode active material B1 was used.
  • Comparative Example 4 1.2 mol of LiPF 6 as a solute was mixed in a mixed solvent in which EC (ethylene carbonate), EMC (ethyl methyl carbonate), and DMC (dimethyl carbonate) were mixed at a volume ratio of 30:40:40.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • Charging / discharging conditions for 2nd cycle to 5th cycle Under a temperature condition of 25 ° C., the battery voltage is constant current charged to 2.65V with a charging current of 12 mA, and further the battery voltage is 2.65V constant The battery was charged at a constant voltage until the current reached 2.4 mA. Next, a constant current was discharged to 1.5 V with a discharge current of 12 mA. The pause interval between the charge and discharge was 10 minutes.
  • the discharge capacity at the fifth cycle was defined as the rated capacity.
  • Table 1 summarizes the results of the IV resistance of the batteries of Examples 1 to 3 and Comparative Examples 1 to 3, and the resistance increase rates of Examples 3 to 5 and Comparative Example 4.
  • Example 1 shows lower IV resistance after initial charge / discharge, and the addition of tungsten into the positive electrode assumed from the comparison between Comparative Example 1 and Comparative Example 2 It exceeded the effect.
  • graphite and PC react to form a film by reducing the electrolyte solution on the negative electrode.
  • the tungsten contained in the positive electrode not only suppresses the increase in resistance of the positive electrode but also specifically suppresses the increase in resistance of the negative electrode by incorporating tungsten dissolved from the positive electrode into the coating on the negative electrode. It is considered that the effect was obtained and the increase in the IV resistance after the initial charge / discharge was suppressed.
  • a battery that does not contain a graphite material in the negative electrode as in Comparative Example 1 and Comparative Example 2 since the coating as in Example 1 cannot be formed on the negative electrode, the effect of suppressing the increase in resistance of the negative electrode is obtained. It is thought that the increase in IV resistance was remarkable after the initial charge / discharge.
  • Example 1 has lower IV resistance after initial charge / discharge than Example 2, and Example 3 has the lowest IV resistance after initial charge / discharge.
  • Example 3 has the lowest IV resistance after initial charge / discharge.
  • tungsten is more easily eluted in the case where it is solid-solved in the lithium transition metal oxide than in the case where tungsten is attached to the surface of the lithium transition metal oxide as WO 3.
  • the resistance increase suppressing effect of the slag increased further.
  • tungsten is dissolved in the lithium transition metal oxide and adheres to the surface of the lithium transition metal oxide as WO 3 , tungsten is more likely to be eluted, and the resistance increase suppressing effect of the negative electrode is reduced. It is thought that it will increase more.
  • Example 3 and Example 4 have a lower resistance increase rate before and after storage than Comparative Example 4, and Example 5 is the most.
  • the resistance increase rate before and after storage was low, resulting in a result.
  • This is a substance that is reduced on the negative electrode (mainly on the carbon material) at a potential of 0.5 to 1.5 V, such as PC or trimethyl phosphate, even if the negative electrode contains graphite. If it does not contain, it is difficult to form a film on the negative electrode, and it is considered that the specific resistance increase suppressing effect of the negative electrode caused by the tungsten dissolved from the positive electrode being taken into the film on the negative electrode was not obtained. It is done. Moreover, it is thought that the resistance increase inhibitory effect of a negative electrode increases more by containing both PC and trimethyl phosphate.
  • trimethyl phosphate has a certain degree of negative electrode resistance increase suppressing effect even when contained in a small amount of 0.1 Vol%.
  • the trimethyl phosphate is contained in a large amount up to 5 Vol%, it is difficult to obtain the resistance increase suppressing effect. It is considered that since the trimethyl phosphate content increased, a thick film was formed on the negative electrode.
  • the present invention can be used for a non-aqueous electrolyte secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の目的は、リチウムチタン複合酸化物及び炭素材料を有する負極とリチウム含有遷移金属酸化物を有する正極との組み合わせにおいて、電池のIV抵抗の増加を抑制することが可能な非水電解質二次電池を提供することにある。本発明の非水電解質二次電池は、正極と、負極と、正極と負極との間に配置されたセパレータと、非水電解質と、を備える。正極は、Liを除く金属元素のモル総量に対するNiの割合が30モル%以上であるリチウム含有遷移金属酸化物と、タングステン元素と、を含み、負極は、リチウムチタン複合酸化物と、炭素材料と、を含む。非水電解質は、0.5~1.5V(vs.Li/Li)の電位で、負極上で還元される物質を含む。

Description

非水電解質二次電池
 本発明は、非水電解質二次電池の技術に関する。
 現在、非水電解質二次電池は、携帯電話、ノートパソコン、スマートフォン等の移動情報端末といったコンシュマー用途に加えて、電動工具、電気自動車(EV)、ハイブリッド電気自動車(HEV、PHEV)等の動力用電源としても注目されており、さらなる用途拡大が見込まれている。こうした動力用電源では、長時間の使用が可能となるような高容量化や、比較的短時間に大電流充放電を繰り返す場合の出力特性の向上等が求められる。
 リチウムチタン複合酸化物を負極活物質に用いた非水電解質二次電池は、高い電位による安定性を有するため、新たな用途への期待が高まっている。
 リチウムチタン複合酸化物を負極活物質に用いると、負極の不可逆容量が小さくなるため、リチウム含有遷移金属酸化物を正極活物質に用いた正極と組み合わせた場合、一般的に、正極の不可逆容量が負極の不可逆容量よりも大きくなり、放電終止が放電末期に正極規制となる。特に、層状構造を有するリチウム含有遷移金属酸化物を正極活物質に用いた場合、放電末期に放電終止が正極規制となると、正極活物質が過放電されやすいため、充放電サイクルにおける正極活物質の劣化が引き起こされる場合がある。
 特許文献1、2には、負極中にリチウムチタン複合酸化物に加えて炭素材料等の他の活物質を含有させることが開示されている。
特開平10-69922号公報 国際公開第2007/064043号
 一般的に、リチウムチタン複合酸化物と炭素材料とを有する負極を用いた場合、リチウムチタン複合酸化物からなる負極と比較して、負極の不可逆容量は増大する傾向にある。そこで、リチウムチタン複合酸化物と炭素材料とを有する負極と、リチウム含有遷移金属酸化物を有する正極とを組み合わせることで、負極の不可逆容量を正極の不可逆容量より大きくして、放電末期に放電終止を負極規制とすることが考えられる。
 しかし、上記負極と正極を組み合わせた場合、電池のIV抵抗、特に高温保存(例えば、80℃以上)による電池のIV抵抗が増加するという問題があり、その結果、電池の出力特性が低下する場合がある。
 本開示の目的は、リチウムチタン複合酸化物及び炭素材料を有する負極とリチウム含有遷移金属酸化物を有する正極との組み合わせにおいて、電池のIV抵抗の増加を抑制することが可能な非水電解質二次電池を提供することにある。
 本開示の一態様は、正極と、負極と、正極と負極との間に配置されたセパレータと、非水電解質と、を備える非水電解質二次電池であって、正極は、Liを除く金属元素のモル総量に対するNiの割合が30モル%以上であるリチウム含有遷移金属酸化物と、タングステン元素と、を含む。負極は、リチウムチタン複合酸化物と、炭素材料と、を含み、非水電解質は、0.5~1.5V(vs.Li/Li)の電位で、負極上で還元される物質を含む非水電解質二次電池である。
 本開示の一態様によれば、電池のIV抵抗の増加を抑制することが可能となる。
 (本開示の基礎となった知見)
 リチウムチタン複合酸化物及び炭素材料を含む負極と、リチウム含有遷移金属酸化物を有する正極とを組み合わせることで、放電末期に負極規制とすることが可能となる一方で、電池のIV抵抗、特に高温保存(例えば、80℃以上)による電池のIV抵抗が増加するという問題があり、電池の出力特性の低下に繋がり易い。本発明者らは、鋭意検討した結果、リチウムチタン複合酸化物及び炭素材料を含む負極と、一般的なリチウム含有遷移金属酸化物を有する正極との組み合わせでは、過充電等により負極電位が下がり、電解液が負極上で還元されると、負極の抵抗上昇につながる被膜が負極上に形成されるため、電池のIV抵抗が増加することを見出した。本発明者らは、上記知見に基づき、以下に説明する各態様の発明を想到するに至った。
 本開示の一態様である非水電解質二次電池は、正極と、負極と、正極と負極との間に配置されたセパレータと、非水電解質と、を備える非水電解質二次電池であって、前記正極は、Liを除く金属元素のモル総量に対するNiの割合が30モル%以上であるリチウム含有遷移金属酸化物と、タングステン元素と、を含む。前記負極は、リチウムチタン複合酸化物と、炭素材料と、を含み、前記非水電解質は、0.5~1.5V(vs.Li/Li)の電位で、前記負極上で還元される物質を含む。そして、本開示の一態様である非水電解質二次電池によれば、電池のIV抵抗の増加、特に高温保存(例えば80℃以上)による電池のIV抵抗の増加を抑制することが可能となる。
 このメカニズムは十分に明らかになっていないが、以下のことが考えられる。正極中のタングステンは、電池の充放電によって、正極から溶出して負極上で析出するが、その際、負極上に電解液が還元されてできる被膜に取り込まれると考えられる。そして、タングステンを含む被膜を負極上に形成することで、特異的に高い負極抵抗上昇抑制効果が得られると考えられる。その結果、電池のIV抵抗の増加が抑制され、ひいては電池の出力特性の低下が抑制されると考えられる。
 本開示の別の態様である非水電解質二次電池は、正極中に含まれるタングステン元素の一部は、リチウム含有遷移金属酸化物に固溶した状態で存在し、正極中に含まれるタングステン元素の他の一部は、タングステン化合物として前記リチウム含有遷移金属酸化物の表面に付着した状態で存在している。これにより、単にタングステン元素が固溶したリチウム含有遷移金属酸化物を正極とした場合や、単にタングステン化合物とリチウム含有遷移金属酸化物との混合物を正極とした場合と比較して、電池のIV抵抗の増加を抑制することが可能となる。
 本開示の別の態様である非水電解質二次電池は、リチウム含有遷移金属酸化物の表面に付着した状態で存在しているタングステン化合物のタングステン元素が、前記リチウム含有遷移金属酸化物中のLiを除く金属元素のモル総量に対して、0.01~3.0モル%含まれている。これにより、当該タングステン化合物のタングステン元素が上記範囲外の場合と比較して、電池のIV抵抗の増加を抑制することが可能となる。
 本開示の別の態様である非水電解質二次電池は、リチウム含有遷移金属酸化物に固溶した状態で存在するタングステン元素が、前記リチウム含有遷移金属酸化物中のLiを除く金属元素のモル総量に対して、0.01~3.0モル%含まれている。これにより、当該タングステン元素が上記範囲外の場合と比較して、電池のIV抵抗の増加を抑制することが可能となる。
 以下に、本開示の一態様である非水電解質二次電池の一例について説明する。
 本開示の一態様である非水電解質二次電池は、負極と、正極と、正極と負極との間に配置されたセパレータと、非水電解質とを備える。非水電解質二次電池の構造の一例としては、正極及び負極がセパレータを介して巻回されてなる電極体と、非水電解質とが外装体に収容された構造が挙げられる。或いは、巻回型の電極体の代わりに、正極及び負極がセパレータを介して積層されてなる積層型の電極体など、他の形態の電極体が適用されてもよい。非水電解質二次電池は、例えば円筒型、角型、コイン型、ボタン型、ラミネート型など、いずれの形態であってもよい。
 <負極>
 負極は、例えば金属箔等からなる負極集電体と、当該集電体上に形成された負極合剤層とで構成されることが好適である。負極集電体には、負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合剤層は、負極活物質の他に、結着剤等を含むことが好適である。
 上記負極活物質は、リチウムチタン複合酸化物と炭素材料を含む。上記構成によれば、リチウムチタン複合酸化物からなる負極に比べて、負極の不可逆容量を大きくすることが可能となる。
 リチウムチタン複合酸化物は、出力および充放電時の安全性等の点から、チタン酸リチウムが好ましい。チタン酸リチウムとしては、スピネル型結晶構造を有するチタン酸リチウムが好ましい。スピネル型結晶構造を有するチタン酸リチウムとしては、Li4+XTi12(0≦X≦3)が例示される。スピネル型結晶構造を有するチタン酸リチウムは、リチウムの挿入脱離に伴う膨張収縮が小さく、劣化しにくいため、耐久性に優れた電池が得られる。スピネル構造を有することは、X線回折などにより容易に確認することができる。
 リチウムチタン複合酸化物の比表面積は、BET法による測定で、例えば2m/g以上であり、好ましくは3m/g以上であり、より好ましくは4m/g以上である。比表面積が2m/g未満になると、入出力特性が低下する場合がある。また、リチウムチタン複合酸化物の比表面積が大きすぎると、結晶性が低下し、耐久性を損なう場合があることから、8m/g以下であることが好ましい。
 リチウムチタン複合酸化物中のTi元素の一部はTiとは異なる1種以上の元素で置換されていてもよい。リチウムチタン複合酸化物のTi元素の一部をTiとは異なる1種以上の元素で置換することにより、リチウムチタン複合酸化物よりも大きな不可逆容量率を有し、負極規制の非水電解質二次電池の実現が容易となる。Tiと異なる元素としては、例えば、マンガン(Mn)、鉄(Fe)、バナジウム(V)、ホウ素(B)、及びニオブ(Nb)等が挙げられる。
 リチウムチタン複合酸化物の平均一次粒子径は、例えば0.1μm~10μmであることが好ましく、0.3~1.0μmであることがより好ましい。平均一次粒子径が0.1μm未満になると、一次粒子界面が多くなりすぎて、充放電サイクルにおける膨張収縮により、粒子の割れが発生しやすくなる場合がある。一方、平均粒子径が10μmを超えると、一次粒子界面の量が少なくなりすぎて、特に出力特性が低下する場合がある。
 炭素材料は、例えば黒鉛材料、ハードカーボン、ソフトカーボンなどが挙げられる。中でも、比較的高い電位で電解液を還元することができる点等から、黒鉛材料が好ましい。
 リチウムチタン複合酸化物及び炭素材料の総量に対するリチウムチタン複合酸化物の含有量は、50質量%~99質量%であることが好ましく、90質量%~99質量%であることがより好ましい。
 負極集電体には、導電性を有する薄膜体、負極の電位範囲で安定な金属箔や合金箔、金属表層を有するフィルム等を用いることが好適である。リチウムチタン複合酸化物を用いる場合、アルミニウム箔が好ましいが、例えば、銅箔、ニッケル箔、またはステンレス箔などを用いてもよい。
 結着剤としては、フッ素系樹脂、PAN、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等が挙げられる。有機系溶媒を用いて負極合剤スラリーを調製する場合は、ポリフッ化ビニリデン(PVdF)等を用いることが好ましい。
 本開示の一態様の非水電解質二次電池では、電池組み立て後、少なくとも1回以上、負極電位が1.5V以下になるまで充電することが好ましく、0.5V以下になるまで充電することがより好ましい。これにより、負極中の炭素材料へのリチウム吸蔵を促進することができ、また、不可逆容量増大の効果が大きくなり(負極の不可逆容量>正極の不可逆容量)、放電末期に放電終止を負極規制とすることが容易となる。
 <非水電解質>
 非水電解質は、0.5~1.5V(vs.Li/Li)の電位で、負極上(主に炭素材料上)で還元される物質を含む。上記構成により、上記還元物質を含まない一般的な電解液に比べて、リチウムチタン複合酸化物と炭素材料を含む負極上に効率的に被膜を生成することができ、当該負極の不可逆容量を大きくすることが可能となる。
 上記還元物質は、0.5~1.5V(vs.Li/Li)の電位で、負極上(主に炭素材料上)で還元される物質であれば特に制限されるものではないが、例えば、プロピレンカーボネートやリン酸トリエステルなどが挙げられる。リン酸トリエステルは、リン酸トリエチル、リン酸トリメチル等が挙げられるが、粘度等の点で、リン酸トリメチルが好ましい。また、負極中に黒鉛材料を含有する場合、プロピレンカーボネートを用いることが好ましい。プロピレンカーボネートは黒鉛材料と共挿入反応を起こすため、負極の不可逆容量を大きくすることが可能となる。
 非水電解質は、上記還元物質の他に、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネートや、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート等の非水溶媒を含んでいても良い。また、これらの非水溶媒の水素の一部または全部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
 非水電解質は、ガス発生を抑制する等の点で、環状カーボネートを含むことが好ましい。また、非水電解質は、低粘度、低融点で、高いリチウムイオン伝導度を示す等の点で、環状カーボネートと鎖状カーボネートとの混合溶媒を含むことが好ましい。この混合溶媒における環状カーボネートと鎖状カーボネートとの体積比は、例えば2:8~5:5の範囲に規制することが好ましい。
 非水電解質は、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステルを含む化合物等を含んでいても良い。また、プロパンスルトン等のスルホン基を含む化合物、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,3-ジオキサン、1,4-ジオキサン、2-メチルテトラヒドロフラン等のエーテルを含む化合物等を含んでいても良い。また、ブチロニトリル、バレロニトリル、n-ヘプタンニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル等のニトリルを含む化合物、ジメチルホルムアミド等のアミドを含む化合物等を含んでいても良い。また、これらの化合物の水素原子の一部がフッ素原子により置換されている溶媒等を含んでいても良い。
 非水電解質の溶質(電解質塩)としては、例えば、LiPF、LiBF、LiCFSO、LiN(FSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CSO、及びLiAsFなどが挙げられる。更にフッ素含有リチウム塩に、フッ素含有リチウム塩以外のリチウム塩〔P、B、O、S、N、Clの中の一種類以上の元素を含むリチウム塩(例えば、LiClO、LiPO等)〕を加えたものを用いても良い。特に、構造式にF元素を含む電解質塩を用いると、HFによる正極活物質の腐食及び金属溶出等が抑制される。
 <正極>
 正極は、例えば金属箔等の正極集電体と、正極集電体上に形成された正極合剤層とで構成される。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合剤層は、正極活物質を含み、その他に、導電剤及び結着剤を含むことが好適である。
 正極活物質は、Liを除く金属元素のモル総量に対するNiの割合が30モル%以上であるリチウム含有遷移金属酸化物と、タングステン元素とを含む。上記構成により、正極の抵抗上昇を抑制することができる。また、前述したように、電池の充放電によって、正極から溶出したタングステンが負極上で析出する際、負極上に電解液が還元されてできる被膜にタングステンが取り込まれることで、特異的に高い負極抵抗上昇抑制効果が得られると考えられる。特に、好ましくは負極電位が1.5V以下になるまで1回以上充電すること、より好ましくは0.5V以下になるまで1回以上充電することで、負極上にタングステンが取り込まれた被膜がより多く或いはより均一に形成されると考えられ、負極抵抗の上昇をより効果的に抑制することが可能となる。その結果、電池の出力特性の低下をより抑制することが可能となる。
 タングステン元素は、正極活物質中にどのような形態で存在していてもよく、例えば、リチウム含有遷移金属酸化物に固溶した状態(すなわち、タングステン元素を含むリチウム含有遷移金属酸化物の形態)で存在していてもよいし、タングステン化合物として、リチウム含有金属酸化物の粒子表面に付着した状態(リチウム含有遷移金属酸化物と固溶していない非固溶状態)で存在していてもよいし、両方の状態が共存していてもよい。電池の出力特性の低下をより抑制する等の点で、正極中に含まれるタングステン元素の一部は、リチウム含有遷移金属酸化物に固溶した状態で存在し、正極中に含まれるタングステン元素の他の一部は、タングステン化合物として、リチウム含有金属酸化物の粒子表面に付着した状態で存在していることが好ましい。
 リチウム含有金属酸化物の粒子表面に付着したタングステン化合物のタングステン元素の割合は、リチウム含有遷移金属酸化物中のリチウムを除く遷移金属のモル総量に対し、0.01~3.0モル%であることが好ましく、0.03~2.0モル%であることがより好ましく、特に0.05~1.0モル%であることがより好ましい。上記タングステン化合物のタングステン元素の割合が0.01モル%未満であると、タングステンを含む被膜形成が不十分となり、上記範囲を満たす場合と比較して、電池のIV抵抗が増加する場合があり、ひいては電池の出力特性が低下する場合がある。また、上記タングステン化合物のタングステン元素の割合が3.0モル%を超えると、被膜に含まれるタングステン量が多くなり過ぎて、被膜のイオン伝導性が低下し、上記範囲を満たす場合と比較して、電池容量が低下する場合がある。
 タングステン化合物は酸化タングステンであることが好ましい。その場合、リチウム遷移金属酸化物の表面には、酸化タングステンが点在して付着していることが好ましく、表面に均一に点在して付着していることがより好ましい。酸化タングステンとしては、具体的には、WO、WO、Wが挙げられる。これらの中では、価数が大きく、少量で、抵抗上昇抑制効果の高い被膜が形成されやすい等の点で、WOがより好ましい。
 リチウム含有遷移金属酸化物に固溶したタングステン元素の割合は、リチウム含有遷移金属酸化物中のリチウムを除く遷移金属のモル総量に対して、0.01~3.0モル%が好ましく、0.03~2.0モル%がより好ましく、特に0.05~1.0モル%であることがより好ましい。固溶したタングステン元素の割合が0.01モル%未満であると、タングステンを含む被膜形成が不十分となり、上記範囲を満たす場合と比較して、電池のIV抵抗が増加する場合があり、ひいては電池の出力特性が低下する場合がある。また、固溶したタングステン元素の割合が3.0モル%を超えると、被膜に含まれるタングステン量が多くなり過ぎて、被膜のイオン伝導性が低下し、上記範囲を満たす場合と比較して、電池容量が低下する場合がある。なお、リチウム含有遷移金属酸化物にタングステンが固溶しているとは、タングステン元素が、リチウム含有遷移金属酸化物活物質中のニッケルやコバルト等の遷移金属の一部と置換され、リチウム含有遷移金属酸化物の内部(結晶中)に存在している状態のことである。
 リチウム含有遷移金属酸化物にタングステンが固溶していることや、固溶量の測定は、以下の方法が挙げられる。例えば、リチウム含有遷移金属酸化物の粉末を切断もしくは表面を削るなどして、一次粒子内部をオージェ電子分光法(Auger electron spectroscopy;AES)、二次イオン質量分析法(Secondary Ion Mass Spectrometry;SIMS)、透過型電子顕微鏡(Transmission Electron Microscope; TEM)-エネルギー分散型X線分析(Energy dispersive X-ray spectrometry;EDX)、電子線マイクロアナライザ(Electron Probe MicroAnalyser;EPMA)などを用いてタングステンの定性、定量分析を行うことで、リチウム含有遷移金属酸化物にタングステンが固溶していることを確認することができ、また固溶量を測定することができる。
 また、リチウム含有金属酸化物に固溶および付着したタングステン総量の測定は、例えば、リチウム含有遷移金属酸化物の粉末を酸溶液で20分間洗浄し、酸溶液中に溶出したタングステン量を誘導結合プラズマイオン化(ICP)発光分析法により測定することにより求められる。前述の固溶量と総量の測定結果より、リチウム含有金属酸化物に固溶していないタングステン付着量を算出することができる。
 リチウム含有遷移金属酸化物は、Liを除く金属元素のモル総量に対するNiの割合が30モル%以上であるリチウム含有遷移金属酸化物あれば特に制限されるものではないが、例えば、ニッケル(Ni)以外に、マンガン(Mn)、コバルト(Co)等の他の遷移金属を少なくとも1種を含有するものでもよい。また、リチウム含有遷移金属酸化物は、アルミニウム(Al)、マグネシウム(Mg)等の非遷移金属を含有していてもよい。具体例としては、Ni-Co-Mn系、Ni-Co-Al系、Ni-Mn-Al系等のリチウム遷移金属酸化物等が挙げられる。また、これらを単独で用いてもよいし、混合して用いてもよい。
 上記の中では、出力特性及び回生特性等の点で、Ni-Co-Mn系のリチウム遷移金属酸化物が好ましい。Ni-Co-Mn系のリチウム遷移金属酸化物の例としては、NiとCoとMnとのモル比が、1:1:1であったり、5:2:3、4:4:2、5:3:2、6:2:2、55:25:20、7:2:1、7:1:2、8:1:1である等を用いることができる。特に、正極容量を増大させる点で、NiやCoの割合がMnより多いものを用いることが好ましく、特にNiとCoとMnのモルの総和に対するNiとMnのモル率の差が、0.04%以上のものであることが好ましい。
 上記Ni-Co-Al系のリチウム含有遷移金属酸化物の例としては、NiとCoとAlとのモル比が、82:15:3、82:12:6、80:10:10、80:15:5、87:9:4、90:5:5、95:3:2である等を用いることができる。
 リチウム含有遷移金属酸化物は、上記例示した元素に制限されるものではなく、他の添加元素を含んでいてもよい。添加元素の例としては、ホウ素、マグネシウム、アルミニウム、チタン、バナジウム、鉄、銅、亜鉛、ニオブ、ジルコニウム、錫、タンタル、ナトリウム、カリウム、バリウム、ストロンチウム、カルシウム等が挙げられる。
 リチウム含有遷移金属酸化物の平均粒径は、例えば2~30μmであることが好ましい。リチウム含有遷移金属酸化物の粒子は、例えば100nm~10μmの一次粒子が結合した二次粒子の形態でもよい。なお、平均粒径は、例えば、散乱式粒度分布測定装置(HORIBA製)で測定することができる。
 リチウム遷移金属酸化物の粒子表面に付着するタングステン化合物の平均粒径は、リチウム含有遷移金属酸化物の平均粒径より小さいことが好ましく、特に、1/4より小さいことが好ましい。タングステン化合物がリチウム含有遷移金属複合酸化物より大きいと、リチウム含有遷移金属酸化物との接触面積が小さくなり、負極の抵抗上昇を抑制する効果が十分に発揮されない場合がある。
 リチウム含有遷移金属酸化物にタングステンを固溶させる方法及び、リチウム含有遷移金属酸化物の表面にタングステン化合物を付着させる方法の一例について説明する。
 まず、リチウム含有遷移金属酸化物にタングステンを固溶させる方法としては、原料となるニッケルを含む遷移金属酸化物、水酸化リチウムや炭酸リチウムなどのリチウム化合物、酸化タングステンなどのタングステン化合物を混合し、所定温度で焼成する方法等が挙げられる。焼成温度として650℃以上1000℃以下であることが好ましく、特に700℃から950℃であることが好ましい。650℃未満では水酸化リチウム等のリチウム化合物の分解反応が十分でなく反応が進行しにくく、1000℃以上になると、カチオンミキシングが活発になり、Li+の拡散を阻害してしまうため比容量が低下したり、負荷特性が低下したりする場合がある。
 リチウム含有遷移金属酸化物の表面に酸化タングステンを付着させる方法としては、リチウム含有遷移金属酸化物と酸化タングステンをあらかじめ機械的に混合して付着させる方法の他、導電剤と結着剤を混練する工程で酸化タングステンを添加する方法が挙げられる。
 リチウム含有遷移金属酸化物は、前述の30モル%以上のNiを含むリチウム含有遷移金属酸化物を単独で用いる場合に限定されず、他の正極活物質と併用してもよい。他の正極活物質としては、例えば、可逆的にリチウムイオンを挿入・脱離可能な化合物であれば特に限定されず、例えば、安定した結晶構造を維持したままリチウムイオンの挿入脱離が可能であるコバルト酸リチウムなどの層状構造を有するものや、リチウムマンガン酸化物などのスピネル構造を有するものや、オリビン構造を有するもの等を用いることができる。
 正極中には、リン酸化合物を含有していることが好ましい。リン酸化合物を含有させることにより、電池の使用初期の充放電時において、正極活物質上に、電解液の分解物からなる被膜が形成して、HFによる正極活物質の腐食及び金属溶出が抑制される。これにより、正極活物質の腐食部分と電解液との更なる反応が抑制され、Hガス、COガス及びCOガス等が発生するのが抑制される。正極中のリン酸化合物は、リン酸リチウムであることが好ましい。前記リン酸リチウムは、LiPOであることが好ましい。
 結着剤は、フッ素系高分子、ゴム系高分子等が挙げられる。例えば、フッ素系高分子としてポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、またはこれらの変性体等、ゴム系高分子としてエチレンープロピレンーイソプレン共重合体、エチレンープロピレンーブタジエン共重合体等が挙げられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。結着剤は、カルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)等の増粘剤と併用されてもよい。
 導電剤としては、例えば、炭素材料としてカーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛、気相成長炭素(VGCF)、カーボンナノチューブ、カーボンナノファイバー等の炭素材料が挙げられる。これらを単独で用いてもよく、2種以上組み合わせて用いてもよい。
 <セパレータ>
 セパレータは、例えば、ポリプロピレン製やポリエチレン製のセパレータ、ポリプロピレン-ポリエチレンの多層セパレータ、表面にアラミド系樹脂等の樹脂が塗布されたセパレータ、セルロースを含むセパレータなどが挙げられる。セパレータとしては、ポリプロピレンを含むセパレータを用いることが好ましい。
 正極とセパレータとの界面、又は、負極とセパレータとの界面には、無機物のフィラーからなる層を配置してもよい。フィラーとしては、チタン、アルミニウム、ケイ素、マグネシウム等を単独もしくは複数用いた酸化物やリン酸化合物、またその表面が水酸化物等で処理されているもの等が挙げられる。
 以下、実施例により本発明をさらに説明するが、本発明はこれらの実施例に限定されるものではない。
 <実施例1>
 [正極活物質の作製]
 共沈により得られた[Ni0.51Co0.23Mn0.26](OH)で表される水酸化物を500℃で焼成して、ニッケルコバルトマンガン複合酸化物を得た。次に、炭酸リチウムと、上記で得たニッケルコバルトマンガン複合酸化物と、酸化タングステン(WO)とを、リチウムと、ニッケル、コバルト及びマンガンの総量と、タングステンとのモル比が1.20:1:0.005になるように、石川式らいかい乳鉢にて混合した。その後、この混合物を空気雰囲気中にて900℃で20時間熱処理後に粉砕することにより、タングステンを固溶させたLi1.07[Ni0.51Co0.23Mn0.26]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を得た。得られた粉末は、走査型電子顕微鏡(SEM)による観察により、酸化タングステン(WO)の未反応物が残っていないことを確認した。これを正極活物質A1とした。
 得られた正極活物質A1中における、ニッケル、コバルト及びマンガンの総量と、固溶しているタングステンは、モル比で1:0.005であった。
 [正極極板の作製]
 正極活物質A1と、導電剤としてのアセチレンブラックと結着剤としてのポリフッ化ビニリデンとを質量比が91:7:2となるように秤量し、分散媒としてのN-メチル-2-ピロリドンを加えて、これらを混練して正極合剤スラリーを調製した。次いで、上記正極合剤スラリーを、アルミニウム箔からなる正極集電体の両面に塗布し、これを乾燥させた後、圧延ローラーにより圧延し、さらにアルミニウム製の集電タブを取り付けることにより、正極集電体の両面に正極合剤層が形成された正極極板を作製した。
 [リチウムチタン複合酸化物の作製]
 市販試薬であるLiOH・HOとTiOの原料粉末を、Li/Tiのモル混合比が化学量論比よりもややLi過剰となるように秤量し、これらを乳鉢で混合した。原料のTiOには、アナターゼ型の結晶構造を有するものを用いた。混合後の原料粉末をAl製のるつぼに入れ、大気雰囲気中で850℃の熱処理を12時間行い、LiTi12を得た。
 熱処理後の材料をるつぼから取り出して乳鉢にて粉砕し、LiTi12の粗粉末を得た。得られたLiTi12粗粉末の粉末X線回折(リガク製)による測定を行ったところ、空間群がFd-3mに帰属されるスピネル型構造からなる単相の回折パターンが得られた。
 得られたLiTi12粗粉末を用いて、ジェットミル粉砕および分級の処理を行った。得られた粉末は、走査型電子顕微鏡(SEM)による観察から、粒径が0.7μm程度の単粒子に粉砕されていることを確認した。分級処理後のLiTi12粉末を、比表面積測定装置(トライスターII 3020、島津製作所製)を用いてBET比表面積を測定したところ、6.8m/gであった。
 [負極極板の作製]
 上記の方法により得られたLiTi12と、黒鉛材料と、導電剤としてのカーボンブラックと、結着剤としてのポリフッ化ビニリデンとを、質量比で、LiTi12:黒鉛:アセチレンブラック:PVdF=90.9:5:6.4:2.7となるように秤量し、分散媒としてのN-メチル-2-ピロリドンを加えて、これらを混練して負極合剤スラリーを調製した。次いで、上記負極合剤スラリーを、アルミニウム箔からなる負極集電体の両面に塗布し、これを乾燥させた後、圧延ローラーにより圧延し、さらにアルミニウム製の集電タブを取り付けることにより、負極集電体の両面に負極合剤層が形成された負極極板を作製した。
 [非水電解質の調製]
 PC(プロピレンカーボネート)とEMC(エチルメチルカーボネート)とDMC(ジメチルカーボネート)とを25:35:40の体積比で混合した混合溶媒に、溶質としてのLiPFを1.2モル/リットルの割合で溶解させた。
 [電池の作製]
 このようにして得た正極および負極を、PP(ポリプロピレン)/PE(ポリエチレン)/PPの三層からなるセパレータを介して対向するように巻取って巻取り体を作製し、105℃、150分の条件で真空乾燥した後、アルゴン雰囲気下のグローブボックス中にて、巻取り体を上記非水電解質とともにアルミニウムラミネートシートからなる外装体に封入することにより、電池を作製した。電池の設計容量は12mAhであった。
 <実施例2>
 共沈により得られた[Ni0.51Co0.23Mn0.26](OH)で表される水酸化物を500℃で焼成して、ニッケルコバルトマンガン複合酸化物を得た。次に、炭酸リチウムと、上記で得たニッケルコバルトマンガン複合酸化物とを、リチウムと、ニッケル、コバルト及びマンガンの総量とのモル比が1.20:1になるように、石川式らいかい乳鉢にて混合した。その後、この混合物を空気雰囲気中にて900℃で20時間熱処理後に粉砕することにより、Li1.07[Ni0.51Co0.23Mn0.26]Oで表されるリチウムニッケルマンガンコバルト複合酸化物(タングステンが固溶していないリチウムニッケルマンガンコバルト複合酸化物)を得た。
 得られたLi1.07[Ni0.51Co0.23Mn0.26]Oと、酸化タングステン(WO)を、ハイビスディスパーミックス(プライミクス社製)を用いて混合し、正極活物質を作製した。この際、Li1.07[Ni0.465Co0.275Mn0.26]O中におけるニッケル、コバルト及びマンガンの総量と、酸化タングステン(WO)中のタングステンとのモル比が、1:0.005の割合となるよう混合した。これを正極活物質A2とした。
 得られた正極活物質A2中における、ニッケル、コバルト及びマンガンの総量と、酸化タングステンとして含まれるタングステンは、モル比で1:0.005であった。また、作製した正極極板を走査型電子顕微鏡(SEM)にて観察したところ、平均粒径が150nmの酸化タングステン粒子が、リチウムニッケルマンガンコバルト複合酸化物粒子の表面に付着していた。
 実施例2では、正極活物質A2を用いたこと以外は、実施例1と同様の条件とし、電池を作製した。
 <実施例3>
 共沈により得られた[Ni0.465Co0.275Mn0.26](OH)で表される水酸化物を500℃で焼成して、ニッケルコバルトマンガン複合酸化物を得た。次に、炭酸リチウムと、上記で得たニッケルコバルトマンガン複合酸化物と、酸化タングステン(WO)とを、リチウムと、ニッケル、コバルト及びマンガンの総量と、タングステンとのモル比が1.20:1:0.005になるように、石川式らいかい乳鉢にて混合した。その後、この混合物を空気雰囲気中にて900℃で20時間熱処理後に粉砕することにより、タングステンを固溶させたLi1.07[Ni0.465Co0.275Mn0.26]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を得た。得られた粉末は、走査型電子顕微鏡(SEM)による観察により、酸化タングステン(WO)の未反応物が残っていないことを確認した。
 得られたLi1.07[Ni0.465Co0.275Mn0.26]Oと、酸化タングステン(WO)を、ハイビスディスパーミックス(プライミクス社製)を用いて混合し、正極活物質を作製した。この際、Li1.07[Ni0.465Co0.275Mn0.26]O中におけるニッケル、コバルト及びマンガンの総量と、酸化タングステン(WO)中のタングステンとのモル比が、1:0.005の割合となるよう混合した。これを正極活物質A3とした。
 得られた正極活物質A3中における、ニッケル、コバルト及びマンガンの総量と、固溶しているタングステンと、酸化タングステンとして含まれるタングステンは、モル比で1:0.005:0.005であった。また、作製した正極極板を走査型電子顕微鏡(SEM)にて観察したところ、平均粒径が150nmの酸化タングステン粒子が、リチウムニッケルマンガンコバルト複合酸化物粒子の表面に付着していた。
 実施例3では、正極活物質A3を用いたこと以外は、実施例1と同様の条件とし、電池を作製した。
 <実施例4>
 EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)とDMC(ジメチルカーボネート)とを30:40:40の体積比で混合した混合溶媒に、3vol%のリン酸トリメチルを添加し、溶質としてのLiPFを1.2モル/リットルの割合で溶解させた非水電解質を用いたこと以外は、実施例3と同様の条件とし、電池を作製した。
 <実施例5>
 PC(プロピレンカーボネート)とEMC(エチルメチルカーボネート)とDMC(ジメチルカーボネート)とを25:35:40の体積比で混合した混合溶媒に、3vol%のリン酸トリメチルを添加し、溶質としてのLiPFを1.2モル/リットルの割合で溶解させた非水電解質を用いたこと以外は、実施例3と同様の条件とし、電池を作製した。
 <実施例6>
 PC(プロピレンカーボネート)とEMC(エチルメチルカーボネート)とDMC(ジメチルカーボネート)とを25:35:40の体積比で混合した混合溶媒に、0.1vol%のリン酸トリメチルを添加し、溶質としてのLiPFを1.2モル/リットルの割合で溶解させた非水電解質を用いたこと以外は、実施例3と同様の条件とし、電池を作製した。
 <実施例7>
 PC(プロピレンカーボネート)とEMC(エチルメチルカーボネート)とDMC(ジメチルカーボネート)とを25:35:40の体積比で混合した混合溶媒に、0.5vol%のリン酸トリメチルを添加し、溶質としてのLiPFを1.2モル/リットルの割合で溶解させた非水電解質を用いたこと以外は、実施例3と同様の条件とし、電池を作製した。
 <実施例8>
 PC(プロピレンカーボネート)とEMC(エチルメチルカーボネート)とDMC(ジメチルカーボネート)とを25:35:40の体積比で混合した混合溶媒に、1vol%のリン酸トリメチルを添加し、溶質としてのLiPF6を1.2モル/リットルの割合で溶解させた非水電解質を用いたこと以外は、実施例3と同様の条件とし、電池を作製した。
 <実施例9>
 PC(プロピレンカーボネート)とEMC(エチルメチルカーボネート)とDMC(ジメチルカーボネート)とを25:35:40の体積比で混合した混合溶媒に、5vol%のリン酸トリメチルを添加し、溶質としてのLiPF6を1.2モル/リットルの割合で溶解させた非水電解質を用いたこと以外は、実施例3と同様の条件とし、電池を作製した。
 <比較例1>
 共沈により得られた[Ni0.51Co0.23Mn0.26](OH)で表される水酸化物を500℃で焼成して、ニッケルコバルトマンガン複合酸化物を得た。次に、炭酸リチウムと、上記で得たニッケルコバルトマンガン複合酸化物とを、リチウムと、ニッケル、コバルト及びマンガンの総量とのモル比が1.20:1になるように、石川式らいかい乳鉢にて混合した。その後、この混合物を空気雰囲気中にて900℃で20時間熱処理後に粉砕することにより、Li1.07[Ni0.51Co0.23Mn0.26]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を得た。これを正極活物質B1とした。
 比較例1では、正極活物質B1を用い、負極極板の作成において黒鉛材料を用いなかったこと以外は、実施例1と同様の条件とし、電池を作製した。
 <比較例2>
 比較例2では、負極極板の作成において黒鉛材料を用いなかったこと以外は、実施例1と同様の条件とし、電池を作製した。
 <比較例3>
 比較例3では、正極活物質B1を用いたこと以外は、実施例1と同様の条件とし、電池を作製した。
 <比較例4>
 比較例4では、EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)とDMC(ジメチルカーボネート)とを30:40:40の体積比で混合した混合溶媒に、溶質としてのLiPFを1.2モル/リットルの割合で溶解させた非水電解質を用いたこと以外は、実施例3と同様の条件とし、電池を作製した。
 実施例1~9及び比較例1~4の各電池について、以下の条件で5サイクル充放電した。
 (初期充放電条件)
 1サイクル目の充放電条件:25℃の温度条件下において、2.4mAの充電電流で負極のチタン酸リチウムの設計容量の1.1倍の容量(約13.2Ah)まで定電流充電を行った。そうすることで、負極電位を0.5V程度まで下げることができる。次に2.4mAの放電電流で1.5Vまで定電流放電した。
 2サイクル目~5サイクル目の充放電条件:25℃の温度条件下において、12mAの充電電流で電池電圧が2.65Vまで定電流充電を行い、更に電池電圧が2.65Vの定電圧で電流が2.4mAになるまでになるまで定電圧充電を行った。次に、12mAの放電電流で1.5Vまで定電流放電した。尚、上記充電と放電との間の休止間隔は10分間とした。
 上記5サイクル目の放電容量を定格容量とした。
 (高温保存試験)
 上記5サイクルの初期充放電後に、25℃の温度条件において、2.65Vまで定電流充電を行い、80℃の温度条件で20時間静置し、その後25℃の温度条件において放電させた。
 (IV抵抗測定条件)
 上記5サイクルの初期充放電後、および上記高温保存試験の後に、25℃の温度条件において、1.5Vまで定電流放電した後、定格容量の50%だけ充電した。その状態から、2mA、10mA、20mA、50mAの各電流値で10秒間放電させ、各電流値に対する10秒放電後電圧値をプロットして直線近似した傾きから、IV抵抗を求めた。
 そして、上記保存試験前後のIV抵抗の変化を、保存前後の抵抗増加率として算出した。表1に、実施例1~3及び比較例1~3の電池のIV抵抗と、実施例3~5及び比較例4の抵抗増加率の結果をまとめた。
Figure JPOXMLDOC01-appb-T000001
 比較例1と比較例2を比較すると、比較例2の電池の方が、低い初期充放電後IV抵抗を示した。また、実施例1と比較例3を比較すると、実施例1の方がより低い初期充放電後IV抵抗を示し、比較例1と比較例2の比較から想定される正極中へのタングステン添加の効果を上回っていた。実施例1のような、負極中に黒鉛を含み、電解液にPCを含む電池では、黒鉛とPCが反応し、負極上に電解液が還元されて被膜ができる。さらに、正極中に含まれるタングステンにより、正極の抵抗上昇が抑制されるだけでなく、正極中から溶け出したタングステンが負極上の被膜に取り込まれることによって、特異的に負極の抵抗上昇を抑制する効果が得られ、初期充放電後IV抵抗の増大が抑制されたものと考えられる。一方、比較例1および比較例2のような負極中に黒鉛材料を含まない電池においては、負極上に実施例1のような被膜ができないことから、負極の抵抗上昇を抑制する効果が得られず、初期充放電後IV抵抗の増大が顕著であったものと考えられる。
 また、実施例1、実施例2、実施例3を比較した場合、実施例2よりも実施例1の方が、初期充放電後IV抵抗が低く、実施例3が最も初期充放電後IV抵抗が低い結果となった。これは、タングステンがWOとして、リチウム遷移金属酸化物の表面に付着している場合より、リチウム遷移金属酸化物中に固溶している場合の方が、タングステンがより溶出し易くなり、負極の抵抗上昇抑制効果がより高まったためであると考えられる。更に、タングステンがリチウム遷移金属酸化物中に固溶しており、かつWOとしてリチウム遷移金属酸化物の表面に付着していると、タングステンがより溶出しやすくなり、負極の抵抗上昇抑制効果がより高まるものと考えられる。
 実施例3、実施例4および実施例5と比較例4を比較すると、比較例4に比べて実施例3および実施例4の方が、保存前後の抵抗増加率が低く、実施例5が最も保存前後の抵抗増加率が低く結果となった。これは、負極中に黒鉛を含んでいても、電解液中にPCもしくはリン酸トリメチルのような0.5~1.5Vの電位で、負極上(主に炭素材料上)で還元される物質を含まない場合には、負極上に被膜ができ難く、正極から溶け出したタングステンが負極上の被膜に取り込まれることにより生じる特異的な負極の抵抗上昇抑制効果が得られなかったためであると考えられる。また、PC及びリン酸トリメチルの両方が含まれていることにより、負極の抵抗上昇抑制効果がより高まるものと考えられる。
 実施例3、および実施例5~9を比較すると、リン酸トリメチルは0.1Vol%の少量の含有でもある程度の負極の抵抗上昇抑制効果を有する。リン酸トリメチルが5Vol%にまで多く含むと、抵抗上昇抑制効果が得られ難くなる。リン酸トリメチルの含有量が増えることで、負極上に厚い被膜ができてしまったため、充放電を阻害する傾向に転じたと考えられる。
 本発明は、非水電解質二次電池に利用できる。

Claims (10)

  1.  正極と、負極と、正極と負極との間に配置されたセパレータと、非水電解質と、を備える非水電解質二次電池であって、
     前記正極は、Liを除く金属元素のモル総量に対するNiの割合が30モル%以上であるリチウム含有遷移金属酸化物と、タングステン元素と、を含み、
     前記負極は、リチウムチタン複合酸化物と、炭素材料と、を含み、
     前記非水電解質は、0.5~1.5V(vs.Li/Li)の電位で、前記負極上で還元される物質を含む、非水電解質二次電池。
  2.  前記正極中に含まれる前記タングステン元素の一部は、前記リチウム含有遷移金属酸化物に固溶した状態で存在し、前記正極中に含まれる前記タングステン元素の他の一部は、タングステン化合物として前記リチウム含有遷移金属酸化物の表面に付着した状態で存在している、請求項1に記載の非水電解質二次電池。
  3.  前記タングステン化合物のタングステン元素は、前記リチウム含有遷移金属酸化物中のLiを除く金属元素のモル総量に対して、0.01~3.0モル%含まれている、請求項は2に記載の非水電解質二次電池。
  4.  前記リチウム含有遷移金属酸化物に固溶した状態で存在するタングステン元素は、前記リチウム含有遷移金属酸化物中のLiを除く金属元素のモル総量に対して、0.01~3.0モル%含まれている、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記タングステン化合物は酸化タングステンである、請求項~4のいずれかに記載の非水電解質二次電池。
  6.  前記炭素材料は黒鉛材料である、請求項1~5のいずれか1項に記載の非水電解質二次電池。
  7.  前記負極上で還元される物質は、プロピレンカーボネート及びリン酸トリエステルを含む、請求項1~6のいずれか1項に記載の非水電解質二次電池。
  8. 前記リン酸トリエステルは、非水電解質の溶媒に対して、0.1~5Vol%の割合で混合されている請求項7に記載の非水電解質二次電池。
  9.  前記リン酸トリエステルはリン酸トリメチルである、請求項7又は8に記載の非水電解質二次電池。
  10.  前記酸化タングステンは、WOである、請求項5に記載の非水電解質二次電池。
PCT/JP2016/004934 2015-11-30 2016-11-21 非水電解質二次電池 WO2017094238A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017553616A JP6799813B2 (ja) 2015-11-30 2016-11-21 非水電解質二次電池
US15/770,581 US10553856B2 (en) 2015-11-30 2016-11-21 Nonaqueous electrolyte secondary battery
CN201680063424.XA CN108352562B (zh) 2015-11-30 2016-11-21 非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-233495 2015-11-30
JP2015233495 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017094238A1 true WO2017094238A1 (ja) 2017-06-08

Family

ID=58796653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004934 WO2017094238A1 (ja) 2015-11-30 2016-11-21 非水電解質二次電池

Country Status (4)

Country Link
US (1) US10553856B2 (ja)
JP (1) JP6799813B2 (ja)
CN (1) CN108352562B (ja)
WO (1) WO2017094238A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107658439A (zh) * 2017-08-30 2018-02-02 格林美(无锡)能源材料有限公司 一种钨钛共包覆的锂离子三元正极材料及其制备方法
JP2019003798A (ja) * 2017-06-14 2019-01-10 株式会社Gsユアサ 蓄電素子及び蓄電素子の製造方法
EP3576193A4 (en) * 2017-09-29 2020-06-03 LG Chem, Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL WITH LITHIUM-RICH LITHIUM MANGANOXIDE AND LITHIUM-TUNGSTEN COMPOUND, OR IN ADDITION TO A TUNGSTEN-COMPOUND ON LITHIUM-RICH LITHIUM MANGANIUM OXIDE AND POSITIVE ELECTRODE OF A LITHIUM UMBRANTE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220294017A1 (en) * 2019-08-30 2022-09-15 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069922A (ja) * 1996-08-27 1998-03-10 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池
JP2007299728A (ja) * 2006-05-01 2007-11-15 Lg Chem Ltd 低温出力特性が改善されたリチウム二次電池
JP2013016377A (ja) * 2011-07-05 2013-01-24 Hitachi Ltd リチウム二次電池
JP2013080726A (ja) * 2009-08-25 2013-05-02 Toshiba Corp 正極、非水電解質電池及び電池パック
JP2013131437A (ja) * 2011-12-22 2013-07-04 Nichia Chem Ind Ltd 非水電解液二次電池用正極組成物及び非水電解液二次電池用正極スラリーの製造方法
JP2015060824A (ja) * 2013-09-20 2015-03-30 株式会社東芝 非水電解質電池および電池パック
WO2015129188A1 (ja) * 2014-02-28 2015-09-03 三洋電機株式会社 非水電解質二次電池
JP2015165503A (ja) * 2013-03-26 2015-09-17 株式会社東芝 非水電解質電池および電池パック
WO2016067522A1 (ja) * 2014-10-28 2016-05-06 三洋電機株式会社 非水電解質二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580684A (en) * 1994-07-07 1996-12-03 Mitsui Petrochemical Industries, Ltd. Non-aqueous electrolytic solutions and non-aqueous electrolyte cells comprising the same
US9391325B2 (en) * 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US9012096B2 (en) * 2004-05-28 2015-04-21 Uchicago Argonne, Llc Long life lithium batteries with stabilized electrodes
JP2007234565A (ja) * 2005-03-18 2007-09-13 Sanyo Electric Co Ltd 非水電解質二次電池
WO2007064043A1 (ja) 2005-12-02 2007-06-07 Gs Yuasa Corporation 非水電解質電池及びその製造方法
JP2009146822A (ja) * 2007-12-17 2009-07-02 Panasonic Corp 非水電解質二次電池
JP5341837B2 (ja) 2009-08-25 2013-11-13 株式会社東芝 正極、非水電解質電池及び電池パック
JP5630189B2 (ja) * 2010-10-05 2014-11-26 新神戸電機株式会社 リチウムイオン電池
WO2012086939A2 (ko) * 2010-12-21 2012-06-28 주식회사 엘지화학 음극 활물질 및 이를 이용한 이차전지
KR101288973B1 (ko) * 2011-05-04 2013-07-24 삼성전자주식회사 전극활물질, 그 제조방법 및 이를 채용한 전극 및 리튬전지
JP2013048053A (ja) * 2011-08-29 2013-03-07 Sony Corp 活物質、電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP5813800B2 (ja) * 2013-03-26 2015-11-17 株式会社東芝 非水電解質電池および電池パック

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069922A (ja) * 1996-08-27 1998-03-10 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池
JP2007299728A (ja) * 2006-05-01 2007-11-15 Lg Chem Ltd 低温出力特性が改善されたリチウム二次電池
JP2013080726A (ja) * 2009-08-25 2013-05-02 Toshiba Corp 正極、非水電解質電池及び電池パック
JP2013016377A (ja) * 2011-07-05 2013-01-24 Hitachi Ltd リチウム二次電池
JP2013131437A (ja) * 2011-12-22 2013-07-04 Nichia Chem Ind Ltd 非水電解液二次電池用正極組成物及び非水電解液二次電池用正極スラリーの製造方法
JP2015165503A (ja) * 2013-03-26 2015-09-17 株式会社東芝 非水電解質電池および電池パック
JP2015060824A (ja) * 2013-09-20 2015-03-30 株式会社東芝 非水電解質電池および電池パック
WO2015129188A1 (ja) * 2014-02-28 2015-09-03 三洋電機株式会社 非水電解質二次電池
WO2016067522A1 (ja) * 2014-10-28 2016-05-06 三洋電機株式会社 非水電解質二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019003798A (ja) * 2017-06-14 2019-01-10 株式会社Gsユアサ 蓄電素子及び蓄電素子の製造方法
CN107658439A (zh) * 2017-08-30 2018-02-02 格林美(无锡)能源材料有限公司 一种钨钛共包覆的锂离子三元正极材料及其制备方法
EP3576193A4 (en) * 2017-09-29 2020-06-03 LG Chem, Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL WITH LITHIUM-RICH LITHIUM MANGANOXIDE AND LITHIUM-TUNGSTEN COMPOUND, OR IN ADDITION TO A TUNGSTEN-COMPOUND ON LITHIUM-RICH LITHIUM MANGANIUM OXIDE AND POSITIVE ELECTRODE OF A LITHIUM UMBRANTE
US11289695B2 (en) 2017-09-29 2022-03-29 Lg Energy Solution, Ltd. Positive electrode active material comprising lithium-rich lithium manganese-based oxide and further comprising lithium tungsten compound, or additionally tungsten compound on the lithium-rich lithium manganese-based oxide, and positive electrode for lithium secondary battery comprising the same

Also Published As

Publication number Publication date
CN108352562B (zh) 2021-03-16
JP6799813B2 (ja) 2020-12-16
US20180309116A1 (en) 2018-10-25
US10553856B2 (en) 2020-02-04
JPWO2017094238A1 (ja) 2018-09-20
CN108352562A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
JP6688996B2 (ja) 非水電解質二次電池
WO2016136212A1 (ja) 非水電解質二次電池
JP6793368B2 (ja) 非水電解質二次電池
JP6493409B2 (ja) 非水電解質二次電池
WO2010100910A1 (ja) 非水電解質二次電池用正極活物質、その製造方法、および非水電解質二次電池
WO2015125444A1 (ja) 非水電解質二次電池用正極活物質
US10411265B2 (en) Lithium ion secondary battery and method of manufacturing same
JP6910000B2 (ja) 非水電解質二次電池用負極、及び非水電解質二次電池
WO2020026486A1 (ja) 正極材料および二次電池
JP6614149B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP6627758B2 (ja) 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
JP7233011B2 (ja) 正極活物質および二次電池
US20150064577A1 (en) Lithium ion secondary battery and method for manufacturing the same
JP6799813B2 (ja) 非水電解質二次電池
WO2016031147A1 (ja) 非水電解質二次電池用正極活物質
JP6697377B2 (ja) リチウムイオン二次電池
WO2016067522A1 (ja) 非水電解質二次電池
WO2017056449A1 (ja) 非水電解質二次電池
JP6572882B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2016103591A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2015059779A1 (ja) リチウムイオン二次電池用正極材料およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553616

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15770581

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870180

Country of ref document: EP

Kind code of ref document: A1