WO2010100910A1 - 非水電解質二次電池用正極活物質、その製造方法、および非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質、その製造方法、および非水電解質二次電池 Download PDF

Info

Publication number
WO2010100910A1
WO2010100910A1 PCT/JP2010/001445 JP2010001445W WO2010100910A1 WO 2010100910 A1 WO2010100910 A1 WO 2010100910A1 JP 2010001445 W JP2010001445 W JP 2010001445W WO 2010100910 A1 WO2010100910 A1 WO 2010100910A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
secondary battery
electrolyte secondary
Prior art date
Application number
PCT/JP2010/001445
Other languages
English (en)
French (fr)
Inventor
細川尚士
岡田行広
藤田秀明
有元真司
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP10748509A priority Critical patent/EP2264815A1/en
Priority to CN2010800018861A priority patent/CN102077397A/zh
Priority to US12/937,667 priority patent/US20110033750A1/en
Publication of WO2010100910A1 publication Critical patent/WO2010100910A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery using the same, and more specifically, a positive electrode active material used for a non-aqueous electrolyte secondary battery. It relates to the improvement of substances.
  • Non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries have been put to practical use as driving power sources for various portable electronic devices such as mobile phones, notebook personal computers and video camcorders because of their high operating voltage and energy density. ing. Nonaqueous electrolyte secondary batteries are also deployed as motor drive power sources for hybrid electric vehicles (HEV) and the like.
  • HEV hybrid electric vehicles
  • the motor drive power supply must have high output characteristics. Specifically, in order to improve the acceleration performance, climbing performance, and fuel consumption of HEV, a large current of 20 to 40 C is required at a time rate although it is a short time. Such a large current is several tens of times the current required for a driving power source for a general portable electronic device.
  • plug-in hybrid electric vehicles which have been put into practical use for the purpose of reducing greenhouse gas emissions in recent years, run on electric power alone without using an engine. Can do. Furthermore, the motor drive power source mounted on the PHEV can be charged with a home power source.
  • the state of charge (SOC) of the motor driving power source is greatly reduced according to the travel distance of PHEV.
  • a battery used as a PHEV motor drive power source needs to maintain a long PHEV travel distance. Therefore, the SOC is used in a wide range, specifically, in the range of 30 to 90%.
  • nonaqueous electrolyte secondary batteries for HEV depend on the HEV control system, they are generally used in a relatively narrow range of SOC, specifically, in a range of about 60% ⁇ 10%. ing.
  • the PHEV motor drive power supply is used in a wide range of SOC as described above, for example, if the discharge capacity is reduced by repeated charge and discharge, the travel distance cannot be maintained long. For this reason, a battery used as a PHEV motor driving power source is required to exhibit excellent cycle characteristics even when the SOC is used in a wide range.
  • the non-aqueous electrolyte secondary battery tends to have a large increase in internal resistance when exposed to a high temperature environment for a long time. This is because a coating derived from the non-aqueous electrolyte is formed on the surface of the positive electrode active material in a high temperature environment. Further, the increase in internal resistance becomes a factor that decreases the cycle characteristics of the battery. For this reason, in particular, when a non-aqueous electrolyte secondary battery is used as a PHEV motor drive power source, the formation of a coating derived from the non-aqueous electrolyte on the surface of the positive electrode active material is suppressed. It is necessary to suppress an increase in the internal resistance of the battery and to suppress a decrease in storage characteristics.
  • the positive electrode active material 1 of a non-aqueous electrolyte secondary battery is generally used in a state of secondary particles 2 formed by agglomerating a plurality of primary particles 3 as shown in FIG.
  • the electrode material for a non-aqueous secondary battery described in Patent Document 1 has at least a part of the surface of the active material made of aluminum in order to further improve safety while maintaining discharge capacity and cycle characteristics. And a compound containing oxygen.
  • the powder particles of the lithium transition metal composite oxide are aggregated as a positive electrode active material. Those that do not form and exist almost alone are used.
  • the positive electrode active material of the non-aqueous electrolyte secondary battery repeatedly expands and contracts with the insertion and extraction of lithium during charge and discharge, and stress is generated at the grain boundaries of the primary particles, so that the secondary particles collapse.
  • Cheap for this reason, in the electrode material for non-aqueous secondary batteries described in Patent Document 1, the active material collapses due to repeated charge and discharge, and this causes the battery storage characteristics to deteriorate.
  • the positive electrode active material for a lithium secondary battery described in Patent Document 2 it is possible to suppress the problem of particle collapse due to repeated charge and discharge.
  • a coating film derived from an electrolytic solution or an electrolyte is formed on the surface of the active material, and thus gas is easily generated.
  • the reactivity of the active material surface decreases, the internal resistance of the battery increases, and the storage characteristics of the battery tend to decrease.
  • a motor driving power source such as PHEV is strongly required to maintain a high output over a long period of time in a high temperature environment, the positive electrode active material for a lithium secondary battery described in Patent Document 2 is used for such applications. Insufficient to use.
  • One aspect of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery that is excellent in cycle characteristics and storage characteristics and is suitable for use in a wide range of charged states and in a high-temperature environment, and a non-aqueous electrolyte using the same A secondary battery is provided.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention includes lithium, nickel, and an element M, and includes the composite oxide particles in which the element M is at least one of aluminum and cobalt.
  • the particles include primary particles in which the content ratio of the element M in the surface layer is larger than the content ratio of the element M in the inside, and the ratio of the primary particles in the entire composite oxide particle is 80 to 100% by weight. It is characterized by.
  • the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention comprises a nickel-containing hydroxide particle having a primary particle ratio of 80 to 100% by weight, an acidic solution containing the element M, and a basic solution.
  • the active material precursor and a lithium-containing compound are mixed and fired to produce composite oxide particles containing primary particles in which the content ratio of the element M in the surface layer portion is larger than the content ratio of the element M in the inside. And a step of causing.
  • the nonaqueous electrolyte secondary battery of the present invention comprises a positive electrode, a negative electrode, a separator that separates the positive electrode and the negative electrode, and a nonaqueous electrolyte, and the positive electrode is for the nonaqueous electrolyte secondary battery of the present invention. It is characterized by containing a positive electrode active material.
  • the present invention it is possible to suppress an increase in the internal resistance of the battery particularly when stored at a high temperature or when charging and discharging are repeated.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention includes composite oxide particles containing lithium, nickel, and element M (M represents at least one of aluminum and cobalt).
  • the composite oxide particles may contain other elements such as metal elements, metalloid elements, non-metal elements, etc. in addition to lithium, nickel, element M and oxygen. From the viewpoint of preventing increase in the internal resistance of the battery during storage (especially during storage in a high temperature environment) by preventing a decrease in the capacity of the positive electrode active material, the ratio of the element M in the composite oxide particles is determined. May be.
  • the ratio of the element M to the total amount of metal elements other than lithium is, for example, 1 to 50 mol%, preferably 2 to 40 mol%, more preferably 3 to 35 mol%. It may be a degree.
  • x represents an atomic ratio of lithium (Li), and is, for example, 0.9 to 1.3, preferably 1 to 1.2, and more preferably 1 to 1.1. .
  • the value of x varies depending on the degree of charge / discharge.
  • Y represents the atomic ratio of nickel (Ni), and is, for example, 0.3 to 1.1, preferably 0.4 to 1, and more preferably 0.45 to 0.9.
  • M represents at least one element of aluminum (Al) and cobalt (Co).
  • z represents the atomic ratio of M.
  • the atomic ratio z of the element M is, for example, 0.01 to 0.5, preferably 0.02 to 0.25, and more preferably 0.03 to 0.2.
  • Me represents an element different from Li, Ni, M, and oxygen (O), specifically, a metal element such as Mn, Mg, Zn, Fe, Cu, Mo, and Zr, and a metalloid element such as B Non-metallic elements such as (semimetal), P, and S.
  • a metal element such as Mn, Mg, Zn, Fe, Cu, Mo, and Zr
  • a metalloid element such as B
  • Non-metallic elements such as (semimetal), P, and S.
  • One of these elements may be contained, or two or more thereof may be contained.
  • represents oxygen deficiency or oxygen excess.
  • the oxygen deficiency or oxygen excess is usually ⁇ 1% of the stoichiometric composition. That is, the value represented by ⁇ is ⁇ 0.01 or more and +0.01 or less.
  • the amount of each element contained in the positive electrode active material can be measured by a conventional measurement method, for example, inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • the composite oxide particles usually include primary particles and secondary particles in which the primary particles are aggregated.
  • the primary particle refers to a particle composed of a single crystallite (crystal grain). Therefore, there are no crystal grain boundaries in the primary particles.
  • the secondary particles are particles formed by aggregation of a plurality of primary particles.
  • the composite oxide particles include primary particles in which the content ratio of the element M is larger in the surface layer portion than in the interior.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery does not form a coating of aluminum or cobalt on the surface of the secondary particles of the composite oxide for the purpose of improving various characteristics, but rather the individual primary particles.
  • the particle surface layer portion is set so that the content ratio of the element M is larger than the inside of the particle.
  • the content ratio Rs (mol%) of the element M with respect to the entire metal element other than lithium in the surface layer portion, and the content ratio Ri (mol of the element M with respect to the entire metal element other than lithium in the interior thereof %) May be a positive value, but is preferably 2 or more (for example, 3 to 20), and more preferably 5 to 15.
  • the surface layer portion of the primary particles contained in the composite oxide particles refers to a region where the depth from the particle surface is 20% or less of the minimum diameter of the particles.
  • the inside of the primary particles contained in the composite oxide particles specifically refers to a region where the depth from the particle surface exceeds 20% of the minimum diameter of the particles.
  • the effect of the element M contained in the primary particles may not be sufficiently obtained.
  • the internal resistance of the battery during storage can be increased more effectively while maintaining the capacity of the positive electrode active material. You may fully exhibit the inhibitory effect.
  • the primary particles can be selected such that the content ratio Rs of the element M in the surface layer portion thereof is, for example, in the range of about 1 to 55 mol%, preferably 5 to 50 mol% with respect to the entire metal elements other than lithium. (For example, 7 to 40 mol%), more preferably 10 to 30 mol%.
  • the content ratio Rs of the element M in the particle surface layer portion is set in the above range, it is possible to more effectively suppress the formation of a coating derived from the nonaqueous electrolyte on the surface of the positive electrode active material.
  • the effect which suppresses formation of the film derived from a nonaqueous electrolyte in the positive electrode active material surface may fall.
  • the content ratio of the element M in the surface layer portion is too large, the nickel content ratio is relatively decreased, which may cause a decrease in the capacity of the positive electrode active material.
  • the primary particles can be selected from a range in which the content ratio Ri of the element M in the interior thereof is, for example, 40 mol% or less (0 to 40 mol%) with respect to the entire metal elements other than lithium, preferably 0 .1 to 35 mol%, and more preferably 0.5 to 15 mol% (for example, 3 to 8 mol%).
  • the content ratio Ri of the element M inside the particle When the content ratio Ri of the element M inside the particle is set within the above range, the increase in the internal resistance of the battery during storage can be more effectively suppressed while maintaining the capacity of the positive electrode active material. If the content ratio of the element M inside is too large, it becomes impossible to provide a sufficient difference (concentration gradient) in the content ratio of the element M between the surface layer portion and the inside, or the primary content of the composite oxide In some cases, the content ratio of the element M in the particles increases, and the capacity of the positive electrode active material decreases.
  • the composite oxide particles contain many primary particles in which the content ratio of the element M in the surface layer portion is larger than the content ratio of the element M in the inside.
  • the ratio of the primary particles is 80% by weight or more (for example, 80 to 100% by weight), preferably 90% by weight or more (for example, 90 to 99% by weight), more preferably, based on the entire composite oxide particles. 95% by weight or more (for example, 95 to 98% by weight).
  • the content ratio of the primary particles may be in the range of 80 to 95% by weight (for example, 81 to 90% by weight) with respect to the entire composite oxide particle.
  • the morphology of the composite oxide particles can be observed, for example, with a scanning electron microscope (SEM), a scanning ion microscope (SIM), or the like.
  • SEM scanning electron microscope
  • SIM scanning ion microscope
  • region is observed by SEM about the cross section of complex oxide particle or an electrode plate using this, and a primary particle or a secondary particle can be discriminated by the presence or absence of a crystal grain boundary and aggregation.
  • the area ratio of a primary particle and a secondary particle can be calculated, and the weight ratio of the primary particle in complex oxide particle can be calculated based on this area ratio.
  • the concentration distribution of elements in the composite oxide particles can be measured by conventional measurement means such as EPMA (Electron Probe Micro Analyzer). More specifically, elemental analysis of a region of about ⁇ 1 ⁇ m can be performed by EPMA on the cross section of the primary particles. In the EPMA analysis, point analysis is performed for each of several points on the surface layer portion and inside of the particle, an average value is calculated, and the content ratio of elements in the surface layer portion and inside is obtained as the average value.
  • EPMA Electrode Micro Analyzer
  • the sample for measuring the cross section is, for example, a sample in which particles are solidified with a resin or an electrode plate using the particles, and a known cross section forming method, for example, polishing, ion etching (ion etching using an argon laser, etc.), etc. Can be prepared.
  • the volume average particle size of the primary particles is, for example, 1 to 10 ⁇ m, preferably 1.2 to 8 ⁇ m, from the viewpoint of the packing density of the positive electrode active material, and more.
  • the thickness is preferably 1.5 to 7 ⁇ m (for example, 2 to 5 ⁇ m).
  • the volume average particle size of the primary particles is too small, even if a positive electrode for a non-aqueous electrolyte secondary battery is formed using the composite oxide particles, the density of the positive electrode active material is lowered, resulting in the capacity of the battery. The density may decrease.
  • the volume average particle size of the primary particles is too small, the specific surface area becomes large, so that there is a problem that the amount of the binder in producing the electrode must be increased.
  • the volume average particle size of the primary particles is too large, a sufficient output may not be obtained when a non-aqueous electrolyte secondary battery is produced using the composite oxide particles.
  • the volume average particle diameter of the composite oxide particles can be measured by a laser diffraction scattering method using, for example, a laser diffraction particle size distribution meter.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is, for example, Nickel-containing hydroxide particles having a primary particle ratio of 80 to 100% by weight, an acidic solution containing the element M, and a basic solution are mixed, and the hydroxide containing the element M becomes the nickel-containing hydroxide.
  • the active material precursor and a lithium-containing compound are mixed and fired to generate composite oxide particles including primary particles in which the content ratio of the element M in the surface layer portion is larger than the content ratio of the element M in the inside. It can manufacture by passing through a process.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention can be produced efficiently. Moreover, in the primary particles of the composite oxide containing lithium, nickel, and the element M, the metal M can be effectively distributed at a high content ratio in the surface layer portion.
  • nickel-containing hydroxide particles used as a raw material in the precursor generation step those obtained by adjusting the proportion of primary particles by releasing aggregation of primary particles contained in the hydroxide by a conventional method can be used.
  • the nickel-containing hydroxide prior to the precursor generation step, the nickel-containing hydroxide is crushed, and the proportion of primary particles in the total particles of the nickel-containing hydroxide is 80 to 100% by weight. You may include the crushing process adjusted to.
  • Crushing can be performed by applying mechanical stress to the nickel-containing hydroxide and crushing. After pulverization, the proportion of primary particles may be further adjusted by classification. In this way, the ratio of the primary particles to the entire nickel-containing hydroxide particles is adjusted to be 80% or more on the weight basis.
  • the mechanical stress can be applied using a conventional means such as a dry or wet ball mill, vibration mill, jet mill or the like.
  • a conventional means such as a dry or wet ball mill, vibration mill, jet mill or the like.
  • the nickel-containing hydroxide may be pulverized by a planetary ball mill in the presence of a medium such as zirconia beads.
  • nickel-containing hydroxide used as a raw material for this pulverization (process) those in which primary particles grow relatively large are usually used in many cases.
  • Examples of the raw material nickel-containing hydroxide include, but are not limited to, nickel cobalt composite hydroxide, nickel manganese composite hydroxide, nickel aluminum composite hydroxide, nickel manganese cobalt composite hydroxide, nickel cobalt aluminum. A composite hydroxide etc. are mentioned.
  • elements other than nickel, manganese, aluminum and cobalt contained in the nickel-containing hydroxide are appropriately selected depending on the type of the target positive electrode active material.
  • examples of such elements include magnesium, zinc, iron, copper, molybdenum, zirconium, phosphorus, boron, and sulfur.
  • the hydroxide containing the element M is added to the surface of the nickel-containing hydroxide particles. It adheres and an active material precursor can be obtained. Moreover, you may mix a nickel containing hydroxide particle and the said acidic solution, and may add a basic solution to the obtained mixture. Note that the obtained solid (active material precursor) may be further washed with water, dried, and used for the next step.
  • the acidic solution containing element M is not particularly limited, and an acidic solution of a compound of element M, for example, an aqueous solution containing an inorganic acid salt of element M can be used.
  • an acidic solution of a compound of element M for example, an aqueous solution containing an inorganic acid salt of element M
  • a sulfate aqueous solution of element M for example, an aluminum sulfate aqueous solution, a cobalt sulfate aqueous solution, a mixed aqueous solution of aluminum sulfate and cobalt sulfate, or the like is often used.
  • the concentration of the compound containing element M in the acidic solution is about 0.1 to 5 mol / L, preferably about 0.5 to 3 mol / L, more preferably about 0.7 to 2 mol / L in terms of element M. Also good.
  • the amount of the acidic solution used for the nickel-containing hydroxide particles can be appropriately selected according to the element ratio in the obtained composite oxide.
  • a solution such as an aqueous solution
  • an inorganic base such as sodium hydroxide or potassium hydroxide
  • concentration of the basic solution may be about 0.1 to 5 mol / L, preferably about 0.5 to 3 mol / L, more preferably about 0.7 to 2 mol / L.
  • the usage-amount of a basic solution can be suitably selected in the range which does not prevent the hydroxide containing the element M adhering to the surface of nickel containing hydroxide particle.
  • a mixture of the active material precursor and the lithium-containing compound is heat treated.
  • the temperature and time of the heat treatment are appropriately selected from the viewpoint of the concentration distribution of the element M in the primary particles and / or the fixability of the element M to the primary particles (and thus the fixability of the element M to the positive electrode active material, the resistance of the battery). it can.
  • the temperature of the heat treatment can be selected, for example, from a range of about 700 to 1100 ° C., preferably 740 to 1050 ° C., and more preferably 750 to 1000 ° C. (for example, 750 to 900 ° C.).
  • the heat treatment time is, for example, 5 to 24 hours, preferably 8 to 20 hours, and more preferably 10 to 18 hours.
  • Examples of the compound containing lithium include inorganic compounds such as oxides, hydroxides, and inorganic acid salts (such as carbonates and sulfates).
  • Specific examples of the lithium-containing inorganic compound include lithium hydroxide, lithium carbonate, lithium oxide, lithium oxyhydroxide, and lithium sulfate.
  • composite oxide particles containing lithium, nickel, and the element M By passing through the composite oxide generation step, composite oxide particles containing lithium, nickel, and the element M, wherein the content ratio of the element M in the surface layer portion is higher than the content ratio of the element M in the inside. Large primary particles can be obtained.
  • the crushing step may be performed again after the complex oxide generation step.
  • the mixing ratio of the active material precursor and the compound containing lithium is the molar ratio of the elements other than oxygen and hydrogen in the active material precursor to lithium in the compound containing lithium.
  • it can be selected from the range of about 1: 0.9 to 1: 2, preferably 1: 0.95 to 1: 1.5, more preferably 1: 1 to 1: 1.2. It is.
  • the amount of the element M contained in the composite oxide particles can be appropriately adjusted in the precursor generation step by the blending ratio of the transition metal hydroxide and the acidic solution containing the element M.
  • the nonaqueous electrolyte secondary battery of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator disposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
  • the positive electrode active material includes composite oxide particles containing lithium, nickel, and the element M, and the composite oxide particles have a content ratio of the element M in the surface layer portion. Contains larger primary particles.
  • the positive electrode active material only needs to contain the primary particles in a proportion of 80 to 100% by weight.
  • the primary particles may aggregate to form secondary particles (aggregates).
  • the non-aqueous electrolyte secondary battery it is possible to suppress a decrease in the occlusion and release properties of lithium ions in the positive electrode, particularly in a high temperature environment, and as a result, it is possible to suppress an increase in the internal resistance of the battery during storage.
  • the storage characteristics of the battery can be improved. Furthermore, it is possible to suppress problems such as an increase in internal resistance of the battery and a decrease in cycle characteristics due to repeated charge / discharge. Therefore, according to the present invention, a nonaqueous electrolyte secondary battery excellent in cycle characteristics and storage characteristics can be provided.
  • the nonaqueous electrolyte secondary battery of the present invention can be used for various secondary battery applications. For example, it can be particularly suitably used as a power source for a plug-in hybrid electric vehicle.
  • the capacity of the non-aqueous electrolyte secondary battery may be, for example, about 5 Ah to 40 Ah, but is usually preferably 10 Ah to 30 Ah.
  • the non-aqueous electrolyte secondary battery of the present invention has excellent cycle characteristics and storage characteristics as described above, for example, a power source for driving a motor for a hybrid electric vehicle, a power source for driving various portable electronic devices for consumer use. It can be used as such.
  • the capacity of the non-aqueous electrolyte secondary battery may be, for example, about 2 Ah to 10 Ah, but is usually preferably 3 Ah to 8 Ah.
  • the capacity of the nonaqueous electrolyte secondary battery may be, for example, about 1 Ah to 10 Ah, but is usually preferably 2 Ah to 4 Ah.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer supported thereon.
  • the positive electrode active material layer can include the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, and, if necessary, a conductive agent and a binder.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer supported thereon.
  • the negative electrode active material layer can contain a negative electrode active material and, if necessary, a binder and a conductive agent.
  • Examples of the material constituting the positive electrode current collector include various materials known in the field of the present invention. Specific examples include stainless steel, aluminum, and titanium.
  • Examples of the material constituting the negative electrode current collector include various materials known in the field of the present invention. Specifically, copper, nickel, stainless steel, or the like can be used.
  • Examples of the negative electrode active material include graphite such as natural graphite (such as flake graphite) and artificial graphite, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black, and carbon fiber. , Metal fibers, alloys, lithium metals, tin compounds, silicon compounds, and the like. These materials may be used alone or in combination of two or more.
  • binder used for the positive electrode and the negative electrode examples include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and vinylidene fluoride.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • vinylidene fluoride tetrafluoroethylene-hexafluoropropylene copolymer
  • Examples of the conductive agent used for the positive electrode and the negative electrode include graphites such as natural graphite (eg, scaly graphite), artificial graphite, and expanded graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black.
  • graphites such as natural graphite (eg, scaly graphite), artificial graphite, and expanded graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black.
  • Carbon blacks such as carbon fibers, conductive fibers such as carbon fibers and metal fibers, metal powders such as copper and nickel, and organic conductive materials such as polyphenylene derivatives. These may be used alone or in combination of two or more.
  • the thickness of the positive electrode current collector and the negative electrode current collector is not particularly limited, but is generally 1 to 500 ⁇ m, preferably 2 to 300 ⁇ m, and more preferably 3 to 200 ⁇ m.
  • nonaqueous electrolyte for example, a nonaqueous solvent and a solute dissolved therein can be included.
  • the non-aqueous solvent include, but are not limited to, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and the like. These nonaqueous solvents may be used alone or in combination of two or more.
  • solute examples include LiPF 6 , LiBF 4 , LiCl 4 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 2 SO 2 ) 2 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiB 10 Cl 10 , and imides. These may be used alone or in combination of two or more.
  • materials known in the art can be used as the material constituting the separator.
  • examples of such a material include polyethylene, polypropylene, a mixture of polyethylene and polypropylene, or a copolymer of ethylene and propylene.
  • Example 1 (1) Production of positive electrode First, a positive electrode active material was produced as follows. Nickel-cobalt composite hydroxide (Ni 0.85 Co 0.15 (OH) 2 ) and N-methyl-2-pyrrolidone (NMP) are mixed so that the weight ratio of the nickel-cobalt composite hydroxide and NMP is 1: 2. Mixed. Then, it was put into a planetary ball mill together with zirconia beads having a diameter of 2 mm, and pulverized and classified to be primary particles (pulverization step).
  • Nickel-cobalt composite hydroxide Ni 0.85 Co 0.15 (OH) 2
  • NMP N-methyl-2-pyrrolidone
  • the nickel-cobalt composite hydroxide particles obtained in this crushing step had a volume average particle size of 2 ⁇ m as measured with a laser diffraction particle size distribution meter. Further, as a result of observation by SEM, 80% by weight or more of the particles were primary particles.
  • an aqueous aluminum sulfate solution (concentration 1 mol / L) and an aqueous sodium hydroxide solution (concentration 1 mol / L) were added dropwise while stirring the crushed nickel-cobalt composite hydroxide in water. Then, solid matter was separated from the obtained mixture, washed with water, and dried to obtain a nickel cobalt composite hydroxide (active material precursor) whose surface was covered with aluminum hydroxide (precursor generation). Process).
  • the active material precursor particles obtained in this precursor generation step the molar ratio of the total amount of nickel and cobalt to aluminum was 93: 7.
  • the active material precursor obtained in the precursor generation step is mixed with lithium hydroxide (LiOH), and in the mixture thus obtained, the metal elements contained in the active material precursor (oxygen and oxygen in the active material precursor)
  • LiOH lithium hydroxide
  • the molar ratio between the total amount of elements other than hydrogen and lithium contained in lithium hydroxide was 1: 1.05.
  • the mixture thus obtained was fired at 760 ° C. for 12 hours in an oxygen atmosphere (firing step) to obtain a composite oxide (positive electrode active material No. 1).
  • Positive electrode active material No. The composition of 1 was Li (Ni 0.85 Co 0.15 ) 0.93 Al 0.07 O 2 .
  • Positive electrode active material No. As a result of analyzing the concentration distribution of aluminum (element M) in the cross section of the obtained primary particle by EPMA, the aluminum content ratio Rs in the particle surface layer is 13 mol%, and the aluminum content ratio in the particle interior Ri was 1 mol%. That is, the aluminum content in the particle surface layer was higher than the aluminum content in the particles. The difference “Rs ⁇ Ri” between Rs and Ri was 12.
  • this positive electrode active material No. As a result of SEM observation of No. 1, 85% by weight of the particles were primary particles. Positive electrode active material No. The particle size of 1 (primary particles) was 2 ⁇ m as a volume average particle size measured with a laser diffraction particle size distribution analyzer.
  • the positive electrode active material No. 1 was used to produce a positive electrode as follows. 85 parts by weight of the positive electrode active material 1, 10 parts by weight of carbon powder as a conductive agent, and N-methyl-2-pyrrolidone (hereinafter referred to as NMP) of polyvinylidene fluoride (hereinafter abbreviated as PVDF) as a binder.
  • NMP N-methyl-2-pyrrolidone
  • PVDF polyvinylidene fluoride
  • the positive electrode mixture paste was obtained by mixing the solution. The amount of PVDF added was 5 parts by weight.
  • the obtained positive electrode mixture paste was applied to an aluminum foil (positive electrode current collector) having a thickness of 15 ⁇ m, dried and rolled to produce a positive electrode having a thickness of 100 ⁇ m.
  • a negative electrode was produced as follows. 95 parts by weight of artificial graphite powder as a negative electrode active material and an NMP solution of PVDF as a binder were mixed to obtain a negative electrode mixture paste. The amount of PVDF added was 5 parts by weight.
  • the obtained negative electrode mixture paste was applied to a copper foil (negative electrode current collector) having a thickness of 10 ⁇ m, dried and rolled to produce a negative electrode having a thickness of 110 ⁇ m.
  • non-aqueous electrolyte is prepared by adding 6 fluorine to a mixed solvent containing ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate (DMC: boiling point 97 ° C.) at a volume ratio of 1: 1: 8.
  • a mixed solvent containing ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate (DMC: boiling point 97 ° C.) at a volume ratio of 1: 1: 8.
  • LiPF 6 lithium phosphate
  • a cylindrical sealed secondary battery as shown in FIG. 2 was produced.
  • a separator 13 having a thickness of 25 ⁇ m was disposed between the positive electrode 11 and the negative electrode 12 to obtain a laminate.
  • the obtained laminate was wound in a spiral shape to produce a cylindrical 25.0 mm ⁇ electrode plate group.
  • the obtained electrode plate group was housed in a nickel-plated iron battery case 18 having an inner diameter of 25.5 mm ⁇ and a thickness of 0.25 mm together with 15 mL of the nonaqueous electrolyte.
  • one end of the positive electrode lead 14 made of aluminum was connected to the back surface of the sealing plate 19 conducted to the positive electrode terminal 20.
  • One end of the copper negative electrode lead 15 was connected to the bottom of the battery case 18.
  • An upper insulating plate 16 is provided above the electrode plate group, and a lower insulating plate 17 is provided below the electrode plate group.
  • the battery case 18 was caulked to the sealing plate 19 at the opening end thereof, and the battery case 18 was sealed to obtain a nonaqueous electrolyte secondary battery.
  • the design capacity of the sealed secondary battery was 2000 mAh.
  • Nickel cobalt aluminum composite hydroxide (Ni 0.85 Co 0.15 ) 0.93 Al 0.07 (OH) 2 ) and NMP were mixed so that the weight ratio of the nickel cobalt aluminum composite hydroxide and NMP was 1: 2. . Then, it was put into a planetary ball mill together with zirconia beads having a diameter of 2 mm, and pulverized and classified to be primary particles (pulverization step).
  • the nickel cobalt aluminum composite hydroxide particles obtained in this crushing step had a volume average particle diameter of 2 ⁇ m as measured by a laser diffraction particle size distribution meter. As a result of observation by SEM, 80% by weight or more of the particles were primary particles.
  • the nickel cobalt aluminum composite hydroxide after pulverization and lithium hydroxide were mixed.
  • the molar ratio between the total amount of Ni, Co and Al in the composite hydroxide and lithium was set to 1: 1.05.
  • the resulting mixture was baked at 760 ° C. for 12 hours in an oxygen atmosphere to obtain a composite oxide (positive electrode active material No. 2).
  • Positive electrode active material No. The composition of 2 was Li (Ni 0.85 Co 0.15 ) 0.93 Al 0.07 O 2 .
  • this positive electrode active material No. As a result of SEM observation of No. 2, 83% by weight of the particles were primary particles. Positive electrode active material No. The particle size of 2 was 2 ⁇ m as a volume average particle size measured with a laser diffraction particle size distribution meter.
  • the positive electrode active material No. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that 2 was used.
  • Comparative Example 2 In the crushing step of Comparative Example 1, the raw material and the conditions of pulverization and classification were adjusted to obtain nickel cobalt aluminum composite hydroxide ((Ni 0.85 Co 0.15 ) 0.93 Al 0.07 (OH) 2 made of secondary particles. ) Was produced. And the obtained nickel cobalt aluminum composite hydroxide and lithium hydroxide were mixed. At that time, the molar ratio between the total amount of Ni, Co and Al contained in the nickel cobalt aluminum composite hydroxide and lithium was 1: 1.05.
  • the mixture thus obtained was fired at 760 ° C. for 12 hours in an oxygen atmosphere to obtain a composite oxide (positive electrode active material No. 3).
  • Positive electrode active material No. 3 The composition of No. 3 was Li (Ni 0.85 Co 0.15 ) 0.93 Al 0.07 O 2 .
  • Positive electrode active material No. 3 the element concentration distribution in the cross section of the particle was analyzed by EPMA. As a result, the aluminum content ratio Rs in the particle surface layer portion and the aluminum content ratio Ri in the particle surface were almost the same. The solid solution was uniformly dissolved inside.
  • this positive electrode active material No. As a result of observation by SEM on No. 3, 98% by weight of the particles were secondary particles.
  • Positive electrode active material No. The particle size of 3 was 2 ⁇ m as a volume average particle size measured with a laser diffraction particle size distribution analyzer.
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that 3 was used.
  • Each battery was charged at 25 ° C. with a constant current of 2000 mA until the battery voltage reached 4.2 V, and then charged with a constant voltage of 4.2 V until the current value reached 100 mA. After charging, the internal resistance (initial internal resistance) of the battery was measured.
  • the increase rate of the internal resistance R [ ⁇ ] after storage relative to the initial internal resistance R 0 [ ⁇ ] was defined as the internal resistance increase rate.
  • the results are shown in Table 2.
  • the method for measuring the internal resistance R [ ⁇ ] is shown below. Each battery was charged at a current of 2000 mA (2 A) at 25 ° C., and the charging was terminated when the battery was charged to 1000 mAh. The battery after charging was left for 1 hour, and the voltage V 0 [V] of the battery after 1 hour was measured. After that, the battery was discharged at 25 ° C. with a current of 2000 mA. The voltage V 1 [V] of the battery 10 seconds after the start of discharge was measured.
  • positive electrode active material No. 1 in which the positive electrode active material is primary particles and the aluminum content in the particle surface layer is larger than the aluminum content in the particles.
  • the nonaqueous electrolyte secondary battery of Example 1 using 1 (primary particles) had good cycle characteristics and storage characteristics.
  • the positive electrode active material No. 1 of Example 1 was used.
  • No. 1 has a higher aluminum content in the surface layer than in the primary particles.
  • a film derived from the non-aqueous electrolyte is formed on the surface of the positive electrode active material even when stored in a high temperature environment. Can be suppressed. For this reason, it is thought that the increase in the internal resistance of the battery during high temperature storage was suppressed, and the storage characteristics of the battery were improved.
  • the positive electrode active material is composed of primary particles
  • the positive electrode active material No. 1 of Comparative Example 1 in which aluminum atoms are uniformly dissolved in the primary particles.
  • the internal resistance after high-temperature storage was greatly increased. This is because when the positive electrode active material No. It is considered that a film derived from the non-aqueous electrolyte was formed on the surface of No. 2, and as a result, the occlusion and release properties of lithium ions were lowered and the internal resistance of the battery was increased.
  • the battery was greatly deteriorated both after the charge / discharge cycle and after storage at high temperature.
  • Example 2 (1) Production of positive electrode plate First, a positive electrode active material was produced as follows. Nickel manganese composite hydroxide (Ni 0.5 Mn 0.5 ) (OH) 2 and NMP were mixed so that the weight ratio of the nickel manganese composite hydroxide and NMP was 1: 2. Then, it was put into a planetary ball mill together with zirconia beads having a diameter of 2 mm, and pulverized and classified to be primary particles (pulverization step).
  • Nickel manganese composite hydroxide (Ni 0.5 Mn 0.5 ) (OH) 2 and NMP were mixed so that the weight ratio of the nickel manganese composite hydroxide and NMP was 1: 2. Then, it was put into a planetary ball mill together with zirconia beads having a diameter of 2 mm, and pulverized and classified to be primary particles (pulverization step).
  • the particles of nickel manganese composite hydroxide obtained in this crushing step had a volume average particle size of 2 ⁇ m as measured with a laser diffraction particle size distribution meter. Further, as a result of observation by SEM, 80% by weight or more of the particles were primary particles.
  • an aqueous cobalt sulfate solution (concentration 1 mol / L) and an aqueous sodium hydroxide solution (concentration 1 mol / L) were dropped while stirring the pulverized nickel manganese composite hydroxide in water.
  • Solid manganese was separated from the obtained mixture, washed with water, and dried to obtain a nickel manganese composite hydroxide (active material precursor) whose surface was covered with cobalt hydroxide (precursor generation step).
  • the active material precursor particles obtained in this precursor generation step had a molar ratio of the total amount of nickel and manganese to cobalt of 93: 7.
  • the active material precursor obtained in the precursor generation step is mixed with lithium carbonate (Li 2 CO 3 ).
  • the metal element contained in the active material precursor in the active material precursor
  • the molar ratio of the total amount of elements other than oxygen and hydrogen to lithium contained in lithium carbonate was 1: 1.05.
  • the mixture thus obtained was fired at 900 ° C. for 10 hours in an air atmosphere (firing step) to obtain a composite oxide (positive electrode active material No. 4).
  • Positive electrode active material No. The composition of 4 was Li (Ni 0.5 Mn 0.5 ) 0.93 Co 0.07 O 2 .
  • Positive electrode active material No. 4 the concentration distribution of cobalt (element M) in the cross section of the particle was analyzed by EPMA. As a result, the content ratio Rs of cobalt in the particle surface layer portion was 12 mol%, and the content ratio Ri of cobalt inside the particle was 2 Mol%. That is, the cobalt content in the particle surface layer was higher than the cobalt content in the particles. Further, the difference “Rs ⁇ Ri” between Rs and Ri was 10.
  • this positive electrode active material No. As a result of SEM observation of No. 4, 83% by weight of particles were primary particles.
  • positive electrode active material No. The amount of cobalt contained in 4 was 7 mol% of the total amount of metal elements contained in the positive electrode active material.
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that 4 was used.
  • Nickel cobalt manganese composite hydroxide ((Ni 0.5 Mn 0.5 ) 0.93 Co 0.07 ) (OH) 2 and NMP were mixed so that the weight ratio of the nickel manganese composite hydroxide and NMP was 1: 2. . Then, it was put into a planetary ball mill together with zirconia beads having a diameter of 2 mm, and pulverized and classified to be primary particles (pulverization step).
  • the particles of the nickel cobalt manganese composite hydroxide obtained in this crushing step were 2 ⁇ m as the volume average particle size measured with a laser diffraction particle size distribution meter. As a result of observation by SEM, 80% by weight or more of the particles were primary particles.
  • the pulverized nickel cobalt manganese composite hydroxide and lithium carbonate were mixed.
  • the molar ratio between the total amount of Ni, Mn and Co in the composite hydroxide and lithium was set to 1: 1.05.
  • the resulting mixture was baked at 900 ° C. for 10 hours in an oxygen atmosphere to obtain a composite oxide (positive electrode active material No. 5).
  • Positive electrode active material No. 5 The composition of No. 5 was Li (Ni 0.5 Mn 0.5 ) 0.93 Co 0.07 O 2 . Positive electrode active material No. 5, the element concentration distribution in the cross section of the particle was analyzed by EPMA. As a result, the content ratio Rs of cobalt (element M) in the particle surface layer and the content ratio Ri of cobalt in the particle were almost the same. The solution was uniformly dissolved inside the particles.
  • this positive electrode active material No. As a result of SEM observation of No. 5, 84% by weight of the particles were primary particles.
  • Positive electrode active material No. The particle size of 5 was 2 ⁇ m as a volume average particle size measured with a laser diffraction particle size distribution analyzer.
  • Example 1 A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 1 except that 5 was used.
  • Comparative Example 4 In the crushing process of Comparative Example 3, the raw material and the conditions for pulverization and classification were adjusted to form nickel cobalt manganese composite hydroxide ((Ni 0.5 Mn 0.5 ) 0.93 Co 0.07 ) (OH) consisting of secondary particles. 2 was produced. And the obtained nickel cobalt manganese composite hydroxide and lithium carbonate were mixed. At that time, the molar ratio between the total amount of Ni, Mn and Co contained in the nickel cobalt manganese composite hydroxide and lithium was 1: 1.05.
  • the mixture thus obtained was fired at 900 ° C. for 10 hours in an oxygen atmosphere to obtain a composite oxide (positive electrode active material No. 6).
  • Positive electrode active material No. The composition of 6 was Li (Ni 0.5 Mn 0.5 ) 0.93 Co 0.07 O 2 .
  • this positive electrode active material No. As a result of SEM observation of No. 6, 99% by weight of the particles were secondary particles. Positive electrode active material No. The particle size of 6 was 2 ⁇ m as a volume average particle size measured with a laser diffraction particle size distribution meter.
  • the positive electrode active material No. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that 6 was used.
  • the positive electrode active material is primary particles, and the content ratio of cobalt in the particle surface layer is larger than the content ratio of cobalt in the particle interior.
  • Positive electrode active material No. The nonaqueous electrolyte secondary battery of Example 2 using 4 (primary particles) had good cycle characteristics and storage characteristics.
  • the positive electrode active material No. In No. 4 since the positive electrode active material is composed of primary particles, the influence of the volume change of the positive electrode active material can be reduced even when the positive electrode active material expands and contracts with the charge / discharge cycle. As a result, it is considered that the capacity retention rate after the charge / discharge cycle was increased.
  • the positive electrode active material No. No. 4 has a higher cobalt content in the surface layer than in the primary particles.
  • a coating derived from a non-aqueous electrolyte is formed on the surface of the positive electrode active material even when stored in a high temperature environment. Can be suppressed. For this reason, it is thought that the increase in the internal resistance of the battery during high-temperature storage was suppressed, and the storage characteristics of the battery were improved.
  • the positive electrode active material is composed of primary particles
  • the positive electrode active material No. 1 of Comparative Example 3 in which cobalt atoms are uniformly dissolved in the primary particles.
  • the internal resistance after high temperature storage was greatly increased. This is because when the positive electrode active material No. It is considered that a film derived from the non-aqueous electrolyte was formed on the surface of No. 5, and as a result, the occlusion and release properties of lithium ions were lowered and the internal resistance of the battery was increased.
  • the battery was greatly deteriorated both after the charge / discharge cycle and after the storage at high temperature.
  • examples of the lithium composite metal oxide containing nickel include a lithium composite metal oxide containing nickel, cobalt, and aluminum, and a lithium composite metal oxide containing nickel, manganese, and cobalt.
  • the present invention is not limited to these, and the lithium composite metal oxide may have elements other than those described above.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery using the same according to the present invention include, for example, a power source for driving a motor in a hybrid electric vehicle (particularly for a plug-in hybrid vehicle), a mobile phone, It can be used for applications such as a driving power source in various portable electronic devices such as a notebook personal computer and a video camcorder, and a large power source in a household power storage device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明の非水電解質二次電池用正極活物質は、リチウムと、ニッケルと、元素Mとを含み、前記元素Mがアルミニウムおよびコバルトの少なくとも一方である複合酸化物粒子を含む正極活物質であって、前記複合酸化物粒子は、表層部における前記元素Mの含有割合が内部における前記元素Mの含有割合より大きい一次粒子を含み、前記複合酸化物粒子全体に占める前記一次粒子の割合が80~100重量%である。本発明により、サイクル特性および保存特性に優れ、幅広い充電状態での使用や高温環境下での使用に好適な非水電解質二次電池用正極活物質と、それを用いた非水電解質二次電池が得られる。

Description

非水電解質二次電池用正極活物質、その製造方法、および非水電解質二次電池
 本発明は、非水電解質二次電池用正極活物質と、その製造方法と、それを用いた非水電解質二次電池とに関し、具体的には、非水電解質二次電池に用いられる正極活物質の改良に関する。
 リチウムイオン二次電池などの非水電解質二次電池は、作動電圧とエネルギー密度が高いことから、携帯電話、ノート型パーソナルコンピュータ、ビデオカムコーダなどの各種携帯型電子機器の駆動用電源として実用化されている。非水電解質二次電池は、ハイブリッド電気自動車(HEV)などのモータ駆動用電源としても展開されている。
 モータ駆動用電源は、高い出力特性が必要である。具体的に、HEVの加速性能、登坂性能、および燃費を向上させるためには、短時間ではあるものの、時間率で20~40Cもの大電流が必要になる。このように大きな電流は、一般的な携帯型電子機器の駆動用電源に要求される電流の数十倍である。
 近年、温室効果ガスの排出量低減を目的として実用化が進められている、プラグインハイブリッド電気自動車(PHEV)は、従来のHEVとは異なり、エンジンを使用せずに、電力のみで走行することができる。さらに、PHEVに搭載されるモータ駆動用電源は、家庭用電源で充電することができる。
 PHEVが、モータ駆動用電源からの電力のみで走行する場合、そのモータ駆動用電源の充電状態(SOC)は、PHEVの走行距離に応じて大きく低下する。PHEVのモータ駆動用電源として用いられる電池は、PHEVの走行距離を長く維持する必要がある。そのため、SOCが広い範囲で、具体的には、SOCが30~90%の範囲で使用される。
 なお、HEV用の非水電解質二次電池は、HEVの制御システムに依存するものの、一般に、SOCが比較的狭い範囲で、具体的には、SOCがおよそ60%±10%の範囲で使用されている。
 PHEVのモータ駆動用電源は、上記のとおり、SOCが広い範囲で使用されるため、例えば、充放電を繰り返すことによって放電容量が低下すると、走行距離を長く維持することができなくなる。このため、PHEVのモータ駆動用電源として用いられる電池には、SOCが広い範囲で使用される場合であっても、優れたサイクル特性を示すことが必要とされる。
 さらに、非水電解質二次電池は、高温環境下に長時間曝されることで、内部抵抗が大きく上昇する傾向がある。これは、高温環境下において、正極活物質の表面に、非水電解質に由来する被膜が形成されるからである。また、内部抵抗の上昇は、電池のサイクル特性を低下させる要因となる。このため、特に、非水電解質二次電池をPHEVのモータ駆動用電源として用いる場合には、正極活物質表面での非水電解質に由来する被膜形成を抑制し、これにより、非水電解質二次電池の内部抵抗の上昇を抑え、保存特性の低下を抑制する必要がある。
 ところで、非水電解質二次電池の正極活物質1は、一般に、図1に示すように、複数の一次粒子3が凝集して形成された二次粒子2の状態で使用されている。
 また、特許文献1に記載の非水二次電池用電極材料は、放電容量やサイクル特性を維持したうえで、安全性をより高めるために、活物質の表面の一部または全部が、少なくともアルミニウムと酸素を含む化合物で被覆されている。
 一方、特許文献2に記載のリチウム二次電池用正極活物質材料では、リチウム二次電池のサイクル特性を向上させるために、正極活物質として、リチウム遷移金属複合酸化物の粉末粒子が凝集塊を形成せず、ほとんど単独で存在しているものが用いられている。
特開2003-257427号公報 特開2003-68300号公報
 しかしながら、非水電解質二次電池の正極活物質は、充放電時のリチウムの吸蔵および放出に伴って膨張と収縮を繰り返し、一次粒子の粒界で応力が生じることから、二次粒子が崩壊しやすい。このため、特許文献1に記載の非水二次電池用電極材料では、充放電の繰返しによって活物質が崩壊し、このことに起因して電池の保存特性が低下する。
 一方、特許文献2に記載のリチウム二次電池用正極活物質材料では、充放電の繰返しに伴う粒子の崩壊という不具合を抑制できる。しかし、高温環境下に長時間曝されたときに、活物質表面に電解液又は電解質由来の被膜が生成し、これによりガスが発生しやすい。そのため、活物質表面の反応性が低下するとともに、電池の内部抵抗が上昇し、電池の保存特性が低下する傾向がある。特に、PHEVなどのモータ駆動用電源は、高温環境下で長期にわたって高出力を維持することが強く求められるため、特許文献2に記載のリチウム二次電池用正極活物質材料は、このような用途への使用に不十分である。
 本発明の一局面は、サイクル特性および保存特性に優れ、幅広い充電状態での使用や高温環境下での使用に好適な非水電解質二次電池用正極活物質と、それを用いた非水電解質二次電池を提供する。
 本発明の非水電解質二次電池用正極活物質は、リチウムと、ニッケルと、元素Mとを含み、前記元素Mがアルミニウムおよびコバルトの少なくとも一方である複合酸化物粒子を含み、上記複合酸化物粒子は、表層部における上記元素Mの含有割合が内部における上記元素Mの含有割合より大きい一次粒子を含み、上記複合酸化物粒子全体に占める上記一次粒子の割合が80~100重量%であることを特徴としている。
 本発明の非水電解質二次電池用正極活物質の製造方法は、一次粒子の割合が80~100重量%のニッケル含有水酸化物粒子と、元素Mを含む酸性溶液と、塩基性溶液とを混合して、上記元素Mを含む水酸化物が前記ニッケル含有水酸化物粒子の表面に付着している活物質前駆体を生成させ、前記元素Mは、アルミニウムおよびコバルトの少なくとも一方である工程と、前記活物質前駆体と、リチウムを含む化合物とを混合して焼成し、表層部における上記元素Mの含有割合が内部における上記元素Mの含有割合より大きい一次粒子を含む複合酸化物粒子を生成させる工程と、を含んでいる。
 本発明の非水電解質二次電池は、正極と、負極と、これら正極と負極とを隔離するセパレータと、非水電解質と、を備え、上記正極が、本発明の非水電解質二次電池用正極活物質を含んでいることを特徴としている。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
 本発明によれば、特に高温での保存時や、充放電を繰り返したときの電池の内部抵抗の増加を抑制することができる。
従来の非水電解質二次電池に含まれる正極活物質1を概略的に示す縦断面図である。 本発明の非水電解質二次電池の一例を示す縦断面図である。
 本発明の非水電解質二次電池用正極活物質は、リチウムと、ニッケルと、元素M(Mは、アルミニウムおよびコバルトの少なくとも一方を示す。)と、を含む複合酸化物粒子を含んでいる。
 上記複合酸化物粒子は、リチウム、ニッケル、元素M及び酸素以外に、他の元素、例えば、金属元素、半金属元素、非金属元素などを含有していてもよい。正極活物質の容量の低下を防止して、保存時(特に、高温環境下での保存時)における電池の内部抵抗の増加を抑制する観点から、複合酸化物粒子における元素Mの割合を決定してもよい。複合酸化物粒子おいて、リチウム以外の金属元素の合計量に占める元素Mの割合は、例えば、1~50モル%であり、好ましくは2~40モル%、さらに好ましくは、3~35モル%程度であってもよい。
 上記複合酸化物としては、例えば、下記一般式(1)で表される化合物が挙げられる。
  LixNiyzMe1-(y+z)2+δ   (1)
 上記一般式(1)において、xは、リチウム(Li)の原子割合を示し、例えば、0.9~1.3、好ましくは、1~1.2、さらに好ましくは1~1.1である。xの値は、充放電の程度に応じて変化する。
 yは、ニッケル(Ni)の原子割合を示し、例えば、0.3~1.1、好ましくは、0.4~1、さらに好ましくは、0.45~0.9である。
 Mは、アルミニウム(Al)およびコバルト(Co)の少なくとも一方の元素を示す。zは、Mの原子割合を示す。
 また、元素Mの原子割合zは、例えば、0.01~0.5、好ましくは0.02~0.25、さらに好ましくは0.03~0.2である。
 Meは、Li、Ni、M、および酸素(O)とは異なる元素を示し、具体的には、Mn、Mg、Zn、Fe、Cu、Mo、Zrなどの金属元素、Bなどの半金属元素(semimetal)、P、Sなどの非金属元素が挙げられる。これらの元素は、1種が含有されていてもよく、2種以上が含有されていてもよい。
 δは、酸素欠陥分または酸素過剰分を示す。酸素欠陥分または酸素過剰分は、通常、化学量論的組成の±1%である。すなわち、δで示される値として、-0.01以上、+0.01以下である。
 正極活物質に含まれる各元素の量は、慣用の測定方法、例えば、誘導結合プラズマ(ICP)発光分析法によって測定することができる。
 上記複合酸化物粒子は、通常、一次粒子と、一次粒子が凝集した二次粒子とを含んでいる。なお、本明細書において、一次粒子とは、単一の結晶子(結晶粒)で構成されている粒子をいう。それゆえ、一次粒子内には結晶粒界が存在しない。また、二次粒子とは、複数個の一次粒子が凝集して形成された粒子をいう。
 本発明の非水電解質二次電池用正極活物質では、前記複合酸化物粒子は、元素Mの含有割合が、内部に比べて表層部において大きい一次粒子を含んでいる。このため、この正極活物質を用いて非水電解質二次電池の正極を形成した場合には、容量を維持しつつ、正極を高温環境下で保存する場合であっても、正極活物質表面において非水電解質由来の被膜の形成を顕著に抑制することができる。それゆえ、上記正極を備える非水電解質二次電池は、高温環境下でのリチウムイオンの吸蔵および放出性の低下を抑制することができ、その結果、保存時における電池の内部抵抗の増加を抑制して、電池の保存特性を向上させることができる。
 また、上記非水電解質二次電池用正極活物質は、その諸特性を向上させる目的で、複合酸化物の二次粒子の表面にアルミニウムやコバルトの被覆を形成するのではなく、個々の一次粒子について、粒子表層部の方が粒子内部より上記元素Mの含有割合が大きくなるように設定されている。これにより、高温環境下での保存に起因する非水電解質由来の被膜形成を抑制する効果は、上記正極活物質の個々の一次粒子によって発揮される。
 このような一次粒子において、その表層部におけるリチウム以外の金属元素全体に対する上記元素Mの含有割合Rs(モル%)と、その内部におけるリチウム以外の金属元素全体に対する上記元素Mの含有割合Ri(モル%)との差Rs-Riは、正の値であればよいが、好ましくは、2以上(例えば、3~20)であり、さらに好ましくは、5~15である。
 なお、本明細書において、複合酸化物粒子に含まれる一次粒子の表層部とは、粒子表面からの深さが、その粒子の最小径の20%以下である領域をいう。一方、複合酸化物粒子に含まれる一次粒子の内部とは、具体的には、粒子表面からの深さが、その粒子の最小径の20%を上回る領域をいう。
 上記差Rs-Riが小さすぎると、一次粒子に含まれる元素Mの効果を十分に得ることができなくなる場合がある。一次粒子の表層部と内部とでの上記元素Mの含有割合の差を適宜設定することにより、正極活物質の容量を維持しつつ、より効果的に、保存時における電池の内部抵抗の増加を抑制する効果を十分に発揮させてもよい。
 上記一次粒子は、その表層部における上記元素Mの含有割合Rsが、リチウム以外の金属元素全体に対して、例えば、1~55モル%程度の範囲から選択でき、好ましくは、5~50モル%(例えば、7~40モル%)であり、さらに好ましくは、10~30モル%である。
 粒子表層部における元素Mの含有割合Rsを上記範囲に設定すると、正極活物質の表面に非水電解質に由来する被膜が形成されることをより効果的に抑制できる。表層部での上記元素Mの含有割合が少なすぎると、正極活物質表面において非水電解質由来の被膜の形成を抑制する効果が低下する場合がある。逆に、表層部での上記元素Mの含有割合が大きすぎると、ニッケルの含有割合が相対的に低下し、正極活物質の容量低下を招く場合がある。
 上記一次粒子は、その内部における上記元素Mの含有割合Riが、リチウム以外の金属元素全体に対して、例えば、40モル%以下(0~40モル%)の範囲から選択でき、好ましくは、0.1~35モル%であり、さらに好ましくは、0.5~15モル%(例えば、3~8モル%)である。
 粒子内部における元素Mの含有割合Riを上記範囲に設定すると、正極活物質の容量を維持しつつ、保存時における電池の内部抵抗の増加をより効果的に抑制することができる。内部での上記元素Mの含有割合が大きすぎると、表層部と内部とで上記元素Mの含有割合に十分な差(濃度勾配)を設けることができなくなるか、あるいは、上記複合酸化物の一次粒子内での上記元素Mの含有割合が高くなって、正極活物質の容量が低下する場合がある。
 上記複合酸化物粒子は、表層部における元素Mの含有割合が内部における元素Mの含有割合より大きい一次粒子を、多く含んでいる。
 上記一次粒子の割合は、複合酸化物粒子全体に対して、80重量%以上(例えば、80~100重量%)、好ましくは、90重量%以上(例えば、90~99重量%)、さらに好ましくは、95重量%以上(例えば、95~98重量%)である。また、上記一次粒子の含有割合は、複合酸化物粒子全体に対して、80~95重量%(例えば、81~90重量%)の範囲であってもよい。
 複合酸化物粒子全体における上記一次粒子の含有割合が少なすぎると、二次粒子の相対的割合が大きくなり、非水電解質二次電池において、充放電に伴い二次粒子が崩壊して、一次粒子の表層部に含まれる元素Mの割合が相対的に小さくなる。そのため、正極活物質の表面に非水電解質由来の被膜が形成されるのを効果的に防止することができず、保存時における電池の内部抵抗の増加や、充放電の繰返しに伴う電池の内部抵抗の増加、およびサイクル特性の低下といった不具合を生じる場合がある。
 上記複合酸化物粒子の形態(一次粒子、二次粒子など)は、例えば、走査型電子顕微鏡(SEM)、走査イオン顕微鏡(SIM)などにより観察することができる。例えば、SEMを用いる場合、複合酸化物粒子、又はこれを用いた極板の断面について、所定領域をSEMにより観察し、結晶粒界及び凝集の有無により一次粒子又は二次粒子を判別できる。そして、一次粒子及び二次粒子の面積率を算出し、この面積率に基づいて、複合酸化物粒子中の一次粒子の重量割合を算出することができる。
 複合酸化物粒子内(粒子断面など)の元素の濃度分布は、慣用の測定手段、例えば、EPMA(Electron Probe Micro Analyzer)などにより測定することができる。より詳細には、一次粒子の断面について、EPMAによりφ1μm程度の領域の元素分析を行うことができる。EPMA分析では、粒子の表層部及び内部のそれぞれの数点について点分析を行い、平均値が算出され、表層部及び内部での元素の含有割合が平均値として得られる。 なお、断面測定用のサンプルは、例えば、粒子を樹脂で固化したサンプル又は粒子を用いた極板を、公知の断面形成方法、例えば、研磨、イオンエッチング(アルゴンレーザーを用いたイオンエッチングなど)などに供することにより調製できる。
 上記非水電解質二次電池用正極活物質において、上記一次粒子の体積平均粒径は、正極活物質の充填密度などの観点より、例えば、1~10μm、好ましくは、1.2~8μm、さらに好ましくは、1.5~7μm(例えば、2~5μm)である。
 一次粒子の体積平均粒径が小さすぎると、上記複合酸化物粒子を用いて非水電解質二次電池用の正極を形成しても、正極活物質の密度が低くなり、その結果、電池の容量密度が低下する場合がある。また、一次粒子の体積平均粒径が小さすぎると、比表面積が大きくなるため、電極を作製する際の結着剤の量を増やさなければならないといった不具合もある。逆に、一次粒子の体積平均粒径が大きすぎると、上記複合酸化物粒子を用いて非水電解質二次電池を作製した場合に、十分な出力が得られなくなる場合もある。
 上記複合酸化物粒子の体積平均粒径は、例えば、レーザ回折式粒度分布計を用いて、レーザ回折散乱法によって測定することができる。
 本発明の非水電解質二次電池用正極活物質は、例えば、
 一次粒子の割合が80~100重量%のニッケル含有水酸化物粒子と、元素Mを含む酸性溶液と、塩基性溶液とを混合して、上記元素Mを含む水酸化物が上記ニッケル含有水酸化物粒子の表面に付着している活物質前駆体を生成させ、前記元素Mは、アルミニウムおよびコバルトの少なくとも一方である工程と、
 前記活物質前駆体と、リチウムを含む化合物とを混合して焼成し、表層部における上記元素Mの含有割合が内部における上記元素Mの含有割合より大きい一次粒子を含む複合酸化物粒子を生成させる工程と、を経ることによって製造することができる。
 上記製造方法によれば、本発明の非水電解質二次電池用正極活物質を効率よく製造することができる。また、リチウムとニッケルと元素Mとを含む複合酸化物の一次粒子において、表層部に高い含有割合で金属Mを効果的に分布させることができる。
 前駆体生成工程で原料として使用するニッケル含有水酸化物粒子としては、慣用の方法により、水酸化物に含まれる一次粒子の凝集を開放して一次粒子の割合を調整したものなどが利用できる。例えば、ニッケル含有水酸化物を解砕(deagglomeration)することにより、粒子全体に占める一次粒子の割合が80重量%以上(80~100重量%)となるように調整した原料を前駆体生成工程で用いてもよい。
 また、本発明の製造方法は、さらに、前駆体生成工程に先立って、ニッケル含有水酸化物を解砕し、このニッケル含有水酸化物の粒子全体に占める一次粒子の割合が80~100重量%に調整する解砕工程を包含してもよい。
 解砕は、ニッケル含有水酸化物に対し、機械的応力を負荷して粉砕することにより行うことができる。粉砕した後に、通常、分級することにより、さらに一次粒子の割合を調整してもよい。こうして、ニッケル含有水酸化物の粒子全体に占める一次粒子の割合を、重量基準で80%以上となるように調整する。
 機械的応力の付加は、慣用の手段、例えば、乾式または湿式のボールミル、振動ミル、ジェットミルなどを用いて行うことができる。具体的には、例えば、ジルコニアビーズなどの媒体の存在下、遊星型ボールミルでニッケル含有水酸化物を粉砕すればよい。
 この解砕(工程)に原料として用いられる、ニッケル含有水酸化物としては、通常、一次粒子が比較的大きく成長したものが使用される場合が多い。
 原料のニッケル含有水酸化物としては、これに限定されないが、例えば、ニッケルコバルト複合水酸化物、ニッケルマンガン複合水酸化物、ニッケルアルミニウム複合水酸化物、ニッケルマンガンコバルト複合水酸化物、ニッケルコバルトアルミニウム複合水酸化物などが挙げられる。
 また、ニッケル含有水酸化物に含まれるニッケル、マンガン、アルミニウムおよびコバルト以外の元素としては、目的とする正極活物質の種類によって適宜選択される。このような元素としては、例えば、マグネシウム、亜鉛、鉄、銅、モリブデン、ジルコニウム、リン、ホウ素、硫黄などが挙げられる。
 前駆体生成工程では、ニッケル含有水酸化物粒子と、元素Mを含む酸性溶液と、塩基性溶液とを混合することにより、元素Mを含む水酸化物が、ニッケル含有水酸化物粒子の表面に付着し、活物質前駆体を得ることができる。また、ニッケル含有水酸化物粒子と、上記酸性溶液とを混合し、得られた混合物に塩基性溶液を添加してもよい。
 なお、得られた固形物(活物質前駆体)を、さらに水洗し、乾燥して、次工程に供してもよい。
 前駆体生成工程において、元素Mを含む酸性溶液としては、特に制限されず、元素Mの化合物の酸性溶液、例えば、元素Mの無機酸塩を含む水溶液などが使用できる。このような水溶液のうち、工業的には、元素Mの硫酸塩水溶液、例えば、硫酸アルミニウム水溶液、硫酸コバルト水溶液、硫酸アルミニウムと硫酸コバルトの混合水溶液などが使用される場合が多い。
 酸性溶液中の元素Mを含む化合物の濃度は、元素M換算で、0.1~5mol/L、好ましくは0.5~3mol/L、さらに好ましくは0.7~2mol/L程度であってもよい。ニッケル含有水酸化物粒子に対する酸性溶液の使用量は、得られる複合酸化物中の元素比などに応じて適宜選択できる。
 塩基性溶液としては、例えば、水酸化ナトリウム、水酸化カリウムなどの無機塩基の溶液(水溶液など)が使用できる。
 塩基性溶液の濃度は、0.1~5mol/L、好ましくは0.5~3mol/L、さらに好ましくは0.7~2mol/L程度であってもよい。塩基性溶液の使用量は、元素Mを含む水酸化物が、ニッケル含有水酸化物粒子の表面に付着するのを妨げない範囲で、適宜選択できる。
 複合酸化物生成工程では、活物質前駆体と、リチウムを含む化合物との混合物が熱処理される。
 熱処理の温度及び時間は、一次粒子における元素Mの濃度分布及び/又は元素Mの一次粒子への定着性(ひいては、正極活物質への元素Mの定着性、電池の抵抗)の観点から適宜選択できる。熱処理の温度は、例えば、700~1100℃程度の範囲から選択でき、好ましくは、740~1050℃であり、さらに好ましくは、750~1000℃(例えば、750~900℃)である。また、熱処理の時間は、例えば、5~24時間であり、好ましくは、8~20時間、さらに好ましくは、10~18時間である。
 リチウムを含む化合物としては、例えば、酸化物、水酸化物、無機酸塩(炭酸塩、硫酸塩など)の無機化合物が例示できる。リチウム含有無機化合物の具体例としては、例えば、水酸化リチウム、炭酸リチウム、酸化リチウム、オキシ水酸化リチウム、硫酸リチウムなどが挙げられる。
 上記複合酸化物生成工程を経ることによって、リチウムと、ニッケルと、上記元素Mとを含む複合酸化物粒子であって、表層部における上記元素Mの含有割合が内部における上記元素Mの含有割合より大きい一次粒子を得ることができる。
 なお、上記複合酸化物生成工程において、熱処理温度および時間が最適化できている場合には、概ね、凝集が生じず、活物質前駆体の粒径が維持された状態で、正極活物質を得ることができる。一方、熱処理によって凝集が生じる場合には、複合酸化物生成工程後において、再度、解砕工程を行えばよい。
 複合酸化物生成工程において、上記活物質前駆体と、リチウムを含む化合物との混合割合は、上記活物質前駆体における酸素および水素以外の元素と、上記リチウムを含む化合物におけるリチウムとのモル比として、例えば、1:0.9~1:2程度の範囲から選択することができ、好ましくは、1:0.95~1:1.5、さらに好ましくは、1:1~1:1.2である。
 上記複合酸化物粒子に含まれる元素Mの量は、上記前駆体生成工程において、上記遷移金属水酸化物と、上記元素Mを含む酸性溶液との配合割合などによって、適宜調節することができる。
 本発明の非水電解質二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、前記正極と負極との間に配置されたセパレータと、非水電解質とを含んでいる。
 上記正極活物質は、リチウムと、ニッケルと、上記元素Mとを含む複合酸化物粒子を含み、この複合酸化物粒子は、表層部における上記元素Mの含有割合が内部における上記元素Mの含有割合より大きい一次粒子を含んでいる。
 なお、上記正極活物質は、上記一次粒子が80~100重量%の割合で含有されていればよい。正極中において、一次粒子は、凝集して二次粒子(凝集体)となっていてもよい。
 上記非水電解質二次電池によれば、特に高温環境下において、正極におけるリチウムイオンの吸蔵および放出性の低下を抑制することができ、その結果、保存時における電池の内部抵抗の増加を抑制し、電池の保存特性を向上させることができる。さらに、充放電の繰返しに伴う電池の内部抵抗の増加や、サイクル特性の低下といった不具合を抑制することができる。それゆえ、本発明によれば、サイクル特性および保存特性に優れた非水電解質二次電池を提供することができる。
 本発明の非水電解質二次電池は、種々の二次電池用途に使用することができる。例えば、プラグインハイブリッド電気自動車用の電源として特に好適に用いることができる。この用途に用いる場合、非水電解質二次電池の容量は、例えば、5Ah~40Ah程度であってもよいが、通常、10Ah~30Ahであることが好ましい。
 また、本発明の非水電解質二次電池は、上記のようにサイクル特性および保存特性が優れるため、例えば、ハイブリッド電気自動車などのモータ駆動用電源、民生用の各種携帯型電子機器の駆動用電源などとして用いることができる。モータ駆動用電源として用いる場合において、非水電解質二次電池の容量は、例えば、2Ah~10Ah程度であってもよいが、通常、3Ah~8Ahであることが好ましい。また、各種携帯型電子機器の駆動用電源として用いる場合において、非水電解質二次電池の容量は、例えば、1Ah~10Ah程度であってもよいが、通常、2Ah~4Ahであることが好ましい。
 以下に、本発明の非水電解質二次電池の正極活物質以外の構成要素について説明する。
 正極は、正極集電体とその上に支持された正極活物質層とを含んでいる。正極活物質層は、本発明の非水電解質二次電池用正極活物質と、必要に応じて、導電剤と、結着剤とを含むことができる。
 負極は、負極集電体と、その上に支持された負極活物質層とを含む。負極活物質層は、負極活物質と、必要に応じて結着剤および導電剤を含むことができる。
 正極集電体を構成する材料としては、本発明の分野で公知の各種材料が挙げられる。具体的には、ステンレス鋼、アルミニウム、チタンなどが挙げられる。
 負極集電体を構成する材料としては、本発明の分野で公知の各種材料が挙げられる。具体的には、銅、ニッケル、ステンレス鋼などを用いることができる。
 負極活物質としては、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類、炭素繊維、金属繊維、合金、リチウム金属、スズ化合物、ケイ素化合物などが挙げられる。これらの材料は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 正極および負極に用いられる結着剤には、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体などが用いられる。
 正極および負極に用いられる導電剤としては、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維、金属繊維などの導電性繊維類、銅、ニッケル等の金属粉末類、ならびにポリフェニレン誘導体などの有機導電性材料が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 正極集電体および負極集電体の厚さは、特に限定されないが、一般に1~500μm、好ましくは2~300μm、さらに好ましくは3~200μmである。
 非水電解質としては、例えば、非水溶媒およびそれに溶解した溶質を含むことができる。非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどを用いることができるが、これらに限定されない。これらの非水溶媒は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 溶質としては、例えば、LiPF6、LiBF4、LiCl4、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3SO3、LiCF3CO2、Li(CF2SO22、LiAsF6、LiN(CF3SO22、LiB10Cl10、およびイミド類が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 セパレータを構成する材料としては、当該分野で公知の材料を用いることができる。このような材料としては、ポリエチレン、ポリプロピレン、あるいはポリエチレンとポリプロピレンの混合物、またはエチレンとプロピレンとの共重合体が挙げられる。
 以下、本発明を、実施例を参照しながら説明する。ただし、本発明は、以下の実施例に限定されるものではない。
  実施例1
(1)正極の作製
 まず、正極活物質を以下のように作製した。ニッケルコバルト複合水酸化物(Ni0.85Co0.15(OH)2)とN-メチル-2-ピロリドン(NMP)とを、上記ニッケルコバルト複合水酸化物とNMPとの重量比が1:2となるように混合した。そして、直径2mmのジルコニアビーズとともに遊星型ボールミルに投入し、粉砕および分級することによって、一次粒子化した(解砕工程)。
 この解砕工程で得られたニッケルコバルト複合水酸化物の粒子は、レーザ回折式粒度分布計で測定した体積平均粒径が、2μmであった。また、SEMによる観察の結果、80重量%以上の粒子が一次粒子であった。
 次に、解砕後のニッケルコバルト複合水酸化物を水中で撹拌しながら、硫酸アルミニウム水溶液(濃度1mol/L)と、水酸化ナトリウム水溶液(濃度1mol/L)とを滴下した。そして、得られた混合物から、固形物を分離して水洗し、乾燥することにより、表面が水酸化アルミニウムによって覆われたニッケルコバルト複合水酸化物(活物質前駆体)を得た(前駆体生成工程)。この前駆体生成工程で得られた活物質前駆体の粒子は、ニッケルとコバルトの合計量と、アルミニウムとのモル比が、93:7であった。
 さらに、前駆体生成工程で得られた活物質前駆体を、水酸化リチウム(LiOH)と混合し、こうして得られた混合物において、活物質前駆体に含まれる金属元素(活物質前駆体における酸素および水素以外の元素)の合計量と、水酸化リチウムに含まれるリチウムとのモル比を、1:1.05とした。
 こうして得られた混合物を、酸素雰囲気中、760℃で12時間焼成することにより(焼成工程)、複合酸化物(正極活物質No.1)を得た。
 正極活物質No.1の組成は、Li(Ni0.85Co0.150.93Al0.072であった。
 正極活物質No.1について、得られた一次粒子の断面におけるアルミニウム(元素M)の濃度分布をEPMAで分析した結果、粒子表層部におけるアルミニウムの含有割合Rsは、13モル%であり、粒子内部におけるアルミニウムの含有割合Riは、1モル%であった。すなわち、粒子表層部におけるアルミニウムの含有割合は、粒子内部におけるアルミニウムの含有割合に比べて高くなっていた。また、RsとRiとの差「Rs-Ri」は、12であった。
 また、この正極活物質No.1についてSEMによる観察の結果、85重量%の粒子が一次粒子であった。正極活物質No.1(一次粒子)の粒径は、レーザ回折式粒度分布計で測定した体積平均粒径として、2μmであった。
 また、正極活物質No.1に含まれるアルミニウムの量は、正極活物質に含まれる金属元素の合計量の7モル%であった。
 次に、正極活物質No.1を用いて、正極を以下のようにして作製した。
 正極活物質1を85重量部と、導電剤である炭素粉末を10重量部と、結着剤であるポリフッ化ビニリデン(以下、PVDFと略す)のN-メチル-2-ピロリドン(以下、NMPと略す)溶液とを混合して、正極合剤ペーストを得た。PVDFの添加量は、5重量部とした。
 得られた正極合剤ペーストを、厚み15μmのアルミニウム箔(正極集電体)に塗布し、乾燥し、圧延して、厚み100μmの正極を作製した。
(2)負極の作製
 負極を、以下のようにして作製した。
 負極活物質である人造黒鉛粉末を95重量部と、結着剤であるPVDFのNMP溶液とを混合して、負極合剤ペーストを得た。PVDFの添加量は、5重量部とした。
 得られた負極合剤ペーストを、厚み10μmの銅箔(負極集電体)に塗布し、乾燥し、圧延して、厚み110μmの負極を作製した。
(3)非水電解質の調製
 非水電解質は、エチレンカーボネートと、エチルメチルカーボネートと、ジメチルカーボネート(DMC:沸点97℃)とを、1:1:8の体積比で含む混合溶媒に、六フッ化リン酸リチウム(LiPF6)を1.5mol/Lの濃度で溶解させて調製した。
(4)密閉型二次電池の作製
 図2に示すような円筒形の密閉型二次電池を作製した。
 上記正極11と、上記負極12との間に、厚み25μmのセパレータ13を配置し、積層体を得た。得られた積層体を渦巻状に捲回して、円柱状の25.0mmφの極板群を作製した。そして、得られた極板群を、上記非水電解質15mLとともに、内径25.5mmφ、厚さ0.25mmのニッケルメッキされた鉄製の電池ケース18内に収容した。
 次に、アルミニウム製の正極リード14の一端を、正極端子20に導通された封口板19の裏面に接続した。また、銅製の負極リード15の一端を、電池ケース18の底部に接続した。極板群の上部には上部絶縁板16を、下部には下部絶縁板17をそれぞれ設けた。さらに、電池ケース18の開口端部に封口板19にかしめつけて、電池ケース18を密封して、非水電解質二次電池を得た。密閉型二次電池の設計容量は、2000mAhとした。
  比較例1
 ニッケルコバルトアルミニウム複合水酸化物((Ni0.85Co0.150.93Al0.07(OH)2)とNMPとを、上記ニッケルコバルトアルミニウム複合水酸化物とNMPとの重量比が1:2となるよう混合した。そして、直径2mmのジルコニアビーズとともに遊星型ボールミルに投入し、粉砕および分級することによって、一次粒子化した(解砕工程)。
 この解砕工程で得られたニッケルコバルトアルミニウム複合水酸化物の粒子は、レーザ回折式粒度分布計で測定した体積平均粒径として、2μmであった。またSEMによる観察の結果、80重量%以上の粒子が一次粒子であった。
 次に、解砕後のニッケルコバルトアルミニウム複合水酸化物と、水酸化リチウムとを混合した。その際、上記複合水酸化物におけるNi、CoおよびAlの合計量と、リチウムとのモル比を、1:1.05とした。
 こうして得られた混合物を、酸素雰囲気中、760℃で12時間焼成することにより、複合酸化物(正極活物質No.2)を得た。
 正極活物質No.2の組成は、Li(Ni0.85Co0.150.93Al0.072であった。
 正極活物質No.2について、粒子の断面における元素の濃度分布を、EPMAで分析した結果、粒子表層部におけるアルミニウム(元素M)の含有割合Rsは、7モル%であり、粒子内部におけるアルミニウムの含有割合Riは、7モル%であった。すなわち、粒子表層部におけるアルミニウムの含有割合と、粒子内部におけるアルミニウムの含有割合とはほとんど同じであって(Rs-Ri=0)、アルミニウムが粒子の内部で均一に固溶していた。
 また、この正極活物質No.2についてSEMによる観察の結果、83重量%の粒子が一次粒子であった。正極活物質No.2の粒径は、レーザ回折式粒度分布計で測定した体積平均粒径として、2μmであった。
 次いで、上記正極活物質No.2を用いたこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
  比較例2
 比較例1の解砕工程において、原料と、粉砕および分級の条件と、を調整して、二次粒子からなるニッケルコバルトアルミニウム複合水酸化物((Ni0.85Co0.150.93Al0.07(OH)2)を作製した。そして、得られたニッケルコバルトアルミニウム複合水酸化物と、水酸化リチウムとを混合した。その際、上記ニッケルコバルトアルミニウム複合水酸化物に含まれるNi、CoおよびAlの合計量と、リチウムとのモル比を、1:1.05とした。
 こうして得られた混合物を、酸素雰囲気中、760℃で12時間焼成することにより、複合酸化物(正極活物質No.3)を得た。
 正極活物質No.3の組成は、Li(Ni0.85Co0.150.93Al0.072であった。
 正極活物質No.3について、粒子の断面における元素の濃度分布をEPMAで分析した結果、粒子表層部におけるアルミニウム(元素M)の含有割合Rs及び粒子内部におけるアルミニウムの含有割合Riは、ほとんど同じであり、アルミニウムが粒子の内部で均一に固溶していた。
 また、この正極活物質No.3についてSEMによる観察の結果、98重量%の粒子が二次粒子であった。正極活物質No.3の粒径は、レーザ回折式粒度分布計で測定した体積平均粒径として、2μmであった。
 次いで、上記正極活物質No.3を用いたこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
  [評価]
(1)サイクル特性
 実施例1および比較例1~2で得られた非水電解質二次電池のサイクル特性を以下のようにして評価した。
 各電池を、25℃で、2000mAの定電流で、電池電圧が4.2Vになるまで充電した。次いで、4.2Vの定電圧で、電流値が100mAとなるまで充電した。充電後の電池を、2000mAの電流で、電池電圧が2.5Vに低下するまで放電した。この充放電サイクルを繰り返し行い、1サイクル目の放電容量に対する500サイクル目の放電容量の割合を容量維持率[%]とした。その結果を表1に示す。
(2)保存特性
 実施例1および比較例1~2で得られた非水電解質二次電池の高温保存特性を以下のようにして評価した。
 各電池を、25℃で、2000mAの定電流で、電池電圧が4.2Vになるまで充電し、次いで、4.2Vの定電圧で、電流値が100mAとなるまで充電した。充電後、電池の内部抵抗(初期内部抵抗)を測定した。
 さらに、各実施例および比較例について、別の電池を、上記と同様にして充電した。充電後の各電池を、60℃の環境下で、20日間保存した。保存後に、各電池の内部抵抗(保存後の内部抵抗)を、上記と同様にして測定した。
 初期内部抵抗R0[Ω]に対する保存後の内部抵抗R[Ω]の増加率を、内部抵抗増加率とした。結果を表2に示す。内部抵抗増加率ΔR[%]は、下記式を用いて求めた。
  ΔR=[(R-R0)/R0]×100
 以下に、内部抵抗R[Ω]の測定法を示す。
 各電池を、25℃にて、2000mA(2A)の電流で充電し、1000mAhまで充電した時点で充電を終了した。充電後の電池を1時間放置し、1時間後の電池の電圧V0[V]を測定した。この後、前記電池を、25℃にて、2000mAの電流で放電した。放電開始から10秒後の電池の電圧V1[V]を測定した。内部抵抗R[Ω]は、下記式を用いて求めた。
  R=(V0-V1)/2
 用いた正極活物質とその特徴を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、正極活物質が一次粒子化されており、かつ、粒子表層部におけるアルミニウムの含有割合が、粒子内部におけるアルミニウムの含有割合よりも大きい正極活物質No.1(一次粒子)を用いた実施例1の非水電解質二次電池は、サイクル特性および保存特性がいずれも良好であった。
 また、実施例1の正極活物質No.1は、正極活物質が一次粒子で構成されているため、充放電サイクルに伴い正極活物質が膨張および収縮した場合でも、正極活物質の体積変化の影響を小さくすることができた。その結果、充放電サイクル後の容量維持率が高くなったと考えられる。
 さらに、実施例1の正極活物質No.1は、アルミニウムの含有割合が一次粒子の内部に比べて表層部で高い。このように、アルミニウムの含有割合を、正極活物質の表面側で高くすることにより、高温環境下で保存した場合でも、正極活物質の表面に、非水電解質に由来する被膜が形成されることを抑制することができる。このため、高温保存時の電池の内部抵抗の増加が抑制され、電池の保存特性が向上したと考えられる。
 一方で、正極活物質が一次粒子で構成されているが、アルミニウム原子が一次粒子内に均一に固溶している比較例1の正極活物質No.2を用いた非水電解質二次電池では、高温保存後の内部抵抗が大きく増加していた。これは、高温環境下で保存したときに、正極活物質No.2の表面に、非水電解質に由来する被膜が形成され、その結果、リチウムイオンの吸蔵および放出性が低下し、電池の内部抵抗が増加したと考えられる。
 また、比較例2では、充放電サイクル後、高温保存後ともに電池の劣化が大きかった。比較例2の正極活物質No.3は、正極活物質が二次粒子からなり、かつ、二次粒子内にアルミニウム原子が均一に固溶している。正極活物質No.3は二次粒子で構成されているため、充放電サイクルに伴う正極活物質の膨張収縮によって、一次粒子同士の離間(二次粒子割れ)が生じたことにより、サイクル後に容量維持率が低下したと考えられる。また、保存後の内部抵抗上昇に関しては、比較例1の場合と同様に、正極活物質表面に、非水電解質に由来する被膜が形成され、その結果、リチウムイオンの吸蔵および放出性が低下したことが要因であると考えられる。
  実施例2
(1)正極板の作製
 まず、正極活物質を以下のように作製した。ニッケルマンガン複合水酸化物(Ni0.5Mn0.5)(OH)2とNMPとを、上記ニッケルマンガン複合水酸化物とNMPとの重量比が1:2となるように混合した。そして、直径2mmのジルコニアビーズとともに遊星型ボールミルに投入し、粉砕および分級することによって、一次粒子化した(解砕工程)。
 この解砕工程で得られたニッケルマンガン複合水酸化物の粒子は、レーザ回折式粒度分布計で測定した体積平均粒径が2μmであった。また、SEMによる観察の結果、80重量%以上の粒子が一次粒子であった。
 次に、解砕後のニッケルマンガン複合水酸化物を水中で撹拌しながら、硫酸コバルト水溶液(濃度1mol/L)と、水酸化ナトリウム水溶液(濃度1mol/L)とを滴下した。得られた混合物から、固形物を分離して水洗し、乾燥することにより、表面が水酸化コバルトによって覆われたニッケルマンガン複合水酸化物(活物質前駆体)を得た(前駆体生成工程)。この前駆体生成工程で得られた活物質前駆体の粒子は、ニッケルとマンガンの合計量と、コバルトとのモル比が、93:7であった。
 さらに、前駆体生成工程で得られた活物質前駆体を、炭酸リチウム(Li2CO3)と混合し、こうして得られた混合物において、活物質前駆体に含まれる金属元素(活物質前駆体における酸素および水素以外の元素)の合計量と、炭酸リチウムに含まれるリチウムとのモル比を、1:1.05とした。
 こうして得られた混合物を、大気雰囲気中、900℃で10時間焼成することにより(焼成工程)、複合酸化物(正極活物質No.4)を得た。
 正極活物質No.4の組成は、Li(Ni0.5Mn0.50.93Co0.072であった。
 正極活物質No.4について、粒子の断面におけるコバルト(元素M)の濃度分布をEPMAで分析した結果、粒子表層部におけるコバルトの含有割合Rsは、12モル%であり、粒子内部におけるコバルトの含有割合Riは、2モル%であった。すなわち、粒子表層部におけるコバルトの含有割合は、粒子内部におけるコバルトの含有割合に比べて高くなっていた。また、RsとRiとの差「Rs-Ri」は、10であった。
 また、この正極活物質No.4についてSEMによる観察の結果、83重量%の粒子が一次粒子であった。正極活物質No.4(一次粒子)の粒径は、レーザ回折式粒度分布計で測定した体積平均粒径として、2μmであった。
 また、正極活物質No.4に含まれるコバルトの量は、正極活物質に含まれる金属元素の合計量の7モル%であった。
 そして、正極活物質No.4を用いたこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
  比較例3
 ニッケルコバルトマンガン複合水酸化物((Ni0.5Mn0.50.93Co0.07)(OH)2とNMPとを、上記ニッケルマンガン複合水酸化物とNMPとの重量比が1:2となるように混合した。そして、直径2mmのジルコニアビーズとともに遊星型ボールミルに投入し、粉砕および分級することによって、一次粒子化した(解砕工程)。
 この解砕工程で得られたニッケルコバルトマンガン複合水酸化物の粒子は、レーザ回折式粒度分布計で測定した体積平均粒径として、2μmであった。またSEMによる観察の結果、80重量%以上の粒子が一次粒子であった。
 次に、解砕後のニッケルコバルトマンガン複合水酸化物と、炭酸リチウムとを混合した。その際、上記複合水酸化物におけるNi、MnおよびCoの合計量と、リチウムとのモル比を、1:1.05とした。
 そして、得られた混合物を、酸素雰囲気中、900℃で10時間焼成することにより、複合酸化物(正極活物質No.5)を得た。
 正極活物質No.5の組成は、Li(Ni0.5Mn0.50.93Co0.072であった。
 正極活物質No.5について、粒子の断面における元素の濃度分布をEPMAで分析した結果、粒子表層部におけるコバルト(元素M)の含有割合Rs、及び粒子内部におけるコバルトの含有割合Riは、ほとんど同じであり、コバルトが粒子の内部で均一に固溶していた。
 また、この正極活物質No.5についてSEMによる観察の結果、84重量%の粒子が一次粒子であった。正極活物質No.5の粒径は、レーザ回折式粒度分布計で測定した体積平均粒径として、2μmであった。
 次いで、上記正極活物質No.5を用いたこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
  比較例4
 比較例3の解砕工程において、原料と、粉砕および分級の条件と、を調整して、二次粒子からなるニッケルコバルトマンガン複合水酸化物((Ni0.5Mn0.50.93Co0.07)(OH)2を作製した。そして、得られたニッケルコバルトマンガン複合水酸化物と、炭酸リチウムと混合した。その際、上記ニッケルコバルトマンガン複合水酸化物に含まれるNi、MnおよびCoの合計量と、リチウムとのモル比を、1:1.05とした。
 こうして得られた混合物を、酸素雰囲気中、900℃で10時間焼成することにより、複合酸化物(正極活物質No.6)を得た。
 正極活物質No.6の組成は、Li(Ni0.5Mn0.50.93Co0.072であった。
 正極活物質No.6について、粒子の断面における元素の濃度分布をEPMAで分析した結果、粒子表層部におけるコバルト(元素M)の含有割合Rsは、7モル%であり、粒子内部におけるコバルトの含有割合Riは、7モル%であった。すなわち、粒子表層部におけるコバルトの含有割合と、粒子内部におけるコバルトの含有割合とはほとんど同じであって(Rs-Ri=0)、コバルトが粒子の内部で均一に固溶していた。
 また、この正極活物質No.6についてSEMによる観察の結果、99重量%の粒子が二次粒子であった。正極活物質No.6の粒径は、レーザ回折式粒度分布計で測定した体積平均粒径として、2μmであった。
 次いで、上記正極活物質No.6を用いたこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
  [評価]
 実施例2および比較例3~4で得られた非水電解質二次電池について、実施例1および比較例1~2の場合と同様に、サイクル特性および保存特性の評価を行った。結果を、用いた正極活物質とその特徴とともに、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、実施例1の場合と同様に、正極活物質が一次粒子化されており、かつ、粒子表層部におけるコバルトの含有割合が、粒子内部におけるコバルトの含有割合よりも大きい正極活物質No.4(一次粒子)を用いた実施例2の非水電解質二次電池は、サイクル特性および保存特性がいずれも良好であった。
 また、実施例2の正極活物質No.4は、正極活物質が一次粒子で構成されているため、充放電サイクルに伴い正極活物質が膨張および収縮した場合でも、正極活物質の体積変化の影響を小さくすることができた。その結果、充放電サイクル後の容量維持率が高くなったと考えられる。
 さらに、実施例2の正極活物質No.4は、コバルトの含有割合が一次粒子の内部に比べて表層部で高い。このように、コバルトの含有割合を、正極活物質の表面側で高くすることにより、高温環境下で保存した場合でも、正極活物質の表面に、非水電解質に由来する被膜が形成されることを抑制することができる。このため、高温保存時の電池の内部抵抗の増加が抑制され、電池の保存特性が向上したと考えられる。
 一方で、正極活物質が一次粒子で構成されているが、コバルト原子が一次粒子内に均一に固溶している比較例3の正極活物質No.5を用いた非水電解質二次電池では、高温保存後の内部抵抗が大きく増加していた。これは、高温環境下で保存したときに、正極活物質No.5の表面に、非水電解質に由来する被膜が形成され、その結果、リチウムイオンの吸蔵および放出性が低下し、電池の内部抵抗が増加したと考えられる。
 また、比較例4では、充放電サイクル後、高温保存後ともに電池の劣化が大きかった。比較例4の正極活物質No.6は、正極活物質が二次粒子からなり、かつ、二次粒子内にコバルト原子が均一に固溶している。正極活物質No.6は二次粒子で構成されているため、充放電サイクルに伴う正極活物質の膨張収縮によって、一次粒子同士の離間(二次粒子割れ)が生じたことによりサイクル後に容量維持率が低下したと考えられる。また、保存後の内部抵抗上昇に関しては、比較例1の場合と同様に、正極活物質表面に、非水電解質に由来する被膜が形成され、その結果、リチウムイオンの吸蔵および放出性が低下したことが要因であると考えられる。
 なお、本実施例では、ニッケルを含むリチウム複合金属酸化物として、ニッケル、コバルト、アルミニウムを含むリチウム複合金属酸化物や、ニッケル、マンガン、コバルトを含むリチウム複合金属酸化物を例示した。しかしながら、本発明はこれらに限定されるものではなく、リチウム複合金属酸化物は、上記以外の他の元素を有するものであってもよい。
 本発明の非水電解質二次電池用正極活物質およびこれを用いた非水電解質二次電池は、例えば、ハイブリッド電気自動車(特に、プラグインハイブリッド自動車用)などにおけるモータ駆動用電源、携帯電話、ノート型パーソナルコンピュータ、ビデオカムコーダなどの各種携帯型電子機器における駆動用電源、家庭用電力貯蔵装置における大型電源、などの用途に用いることができる。
1 正極活物質
2 二次粒子
3 一次粒子
11 正極
12 負極
13 セパレータ
14 正極リード
15 負極リード
16 上部絶縁板
17 下部絶縁板
18 電池ケース
19 封口板
20 正極端子

Claims (7)

  1.  リチウムと、ニッケルと、元素Mとを含み、前記元素Mがアルミニウムおよびコバルトの少なくとも一方である複合酸化物粒子を含む正極活物質であって、
     前記複合酸化物粒子は、表層部における前記元素Mの含有割合が内部における前記元素Mの含有割合より大きい一次粒子を含み、
     前記複合酸化物粒子全体に占める前記一次粒子の割合が80~100重量%である、非水電解質二次電池用正極活物質。
  2.  前記表層部が、粒子表面からの深さが、その粒子の最小径の20%以下である領域であり、
     前記内部が、粒子表面からの深さが、その粒子の最小径の20%を上回る領域であり、
     前記表層部におけるリチウム以外の金属元素全体に対する前記元素Mの含有割合Rsモル%と、前記内部におけるリチウム以外の金属元素全体に対する前記元素Mの含有割合Riモル%との差Rs-Riが、2以上である、請求項1に記載の非水電解質二次電池用正極活物質。
  3.  前記表層部において、前記元素Mの含有割合Rsが、5~50モル%である、請求項1に記載の非水電解質二次電池用正極活物質。
  4.  前記内部において、前記元素Mの含有割合Riが、40モル%以下である、請求項1に記載の非水電解質二次電池用正極活物質。
  5.  前記一次粒子は、体積平均粒径が1~10μmである、請求項1に記載の非水電解質二次電池用正極活物質。
  6.  一次粒子の割合が80~100重量%のニッケル含有水酸化物粒子と、元素Mを含む酸性溶液と、塩基性溶液とを混合して、前記元素Mを含む水酸化物が前記ニッケル含有水酸化物粒子の表面に付着している活物質前駆体を生成させ、前記元素Mは、アルミニウムおよびコバルトの少なくとも一方である工程と、
     前記活物質前駆体と、リチウムを含む化合物とを混合して焼成し、表層部における前記元素Mの含有割合が内部における前記元素Mの含有割合より大きい一次粒子を含む複合酸化物粒子を生成させる工程と、を含む、非水電解質二次電池用正極活物質の製造方法。
  7.  正極と、負極と、前記正極と前記負極とを隔離するセパレータと、非水電解質と、を備え、前記正極が、請求項1に記載の非水電解質二次電池用正極活物質を含んでいる、非水電解質二次電池。
PCT/JP2010/001445 2009-03-06 2010-03-03 非水電解質二次電池用正極活物質、その製造方法、および非水電解質二次電池 WO2010100910A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10748509A EP2264815A1 (en) 2009-03-06 2010-03-03 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
CN2010800018861A CN102077397A (zh) 2009-03-06 2010-03-03 非水电解质二次电池用正极活性物质、其制造方法及非水电解质二次电池
US12/937,667 US20110033750A1 (en) 2009-03-06 2010-03-03 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009053357A JP2010211925A (ja) 2009-03-06 2009-03-06 非水電解質二次電池用正極活物質、その製造方法、および非水電解質二次電池
JP2009-053357 2009-03-06

Publications (1)

Publication Number Publication Date
WO2010100910A1 true WO2010100910A1 (ja) 2010-09-10

Family

ID=42709477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001445 WO2010100910A1 (ja) 2009-03-06 2010-03-03 非水電解質二次電池用正極活物質、その製造方法、および非水電解質二次電池

Country Status (6)

Country Link
US (1) US20110033750A1 (ja)
EP (1) EP2264815A1 (ja)
JP (1) JP2010211925A (ja)
KR (1) KR20110025669A (ja)
CN (1) CN102077397A (ja)
WO (1) WO2010100910A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101653334B1 (ko) 2009-09-09 2016-09-01 소니 주식회사 정극 활물질, 정극, 비수 전해질 전지 및 정극 활물질의 제조 방법
JP5644176B2 (ja) * 2009-11-18 2014-12-24 ソニー株式会社 正極活物質、およびリチウムイオン二次電池
JP5892048B2 (ja) * 2012-11-20 2016-03-23 住友金属鉱山株式会社 アルカリ二次電池正極活物質用被覆水酸化ニッケル粉末及びその製造方法
JP6034413B2 (ja) * 2015-01-29 2016-11-30 輔仁大學學校財團法人輔仁大學 リチウムイオン電池の金属勾配ドープ正極材料
US11081694B2 (en) * 2015-11-30 2021-08-03 Lg Chem, Ltd. Positive electrode active material for secondary battery, and secondary battery comprising the same
JP6341312B2 (ja) * 2016-03-31 2018-06-13 日亜化学工業株式会社 非水系電解質二次電池用正極活物質の製造方法
JP6378246B2 (ja) * 2016-05-09 2018-08-22 トヨタ自動車株式会社 正極活物質、及び、当該正極活物質を用いたリチウムイオン二次電池
CN106450155B (zh) * 2016-09-18 2019-11-29 贵州振华新材料股份有限公司 球形或类球形锂离子电池正极材料及制法和应用
CN106532005B (zh) 2016-12-16 2020-06-09 贵州振华新材料有限公司 球形或类球形锂电池正极材料、电池及制法和应用
WO2018221024A1 (ja) * 2017-05-31 2018-12-06 パナソニックIpマネジメント株式会社 二次電池用正極、及び二次電池
CN107437616B (zh) * 2017-07-11 2020-03-10 贵州振华新材料股份有限公司 锂离子电池正极材料及锂离子电池
CN107359334B (zh) * 2017-07-11 2020-06-19 贵州振华新材料有限公司 球形或类球形锂离子电池正极材料及锂离子电池
CN110720152B (zh) * 2017-07-27 2022-11-04 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质、非水电解质二次电池用正极活性物质的制造方法和非水电解质二次电池
US10707478B2 (en) * 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
KR20200070648A (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 고-니켈 양극 활물질, 그 제조 방법, 이를 포함하는 양극 및 리튬이차전지
KR20210105440A (ko) 2019-01-17 2021-08-26 캠엑스 파워 엘엘씨 강화된 결정 입계를 갖는 다결정질 금속 옥사이드
JP7156095B2 (ja) * 2019-03-05 2022-10-19 トヨタ自動車株式会社 正極スラリーの製造方法、正極の製造方法及び全固体電池の製造方法、並びに、正極及び全固体電池
JPWO2020218475A1 (ja) * 2019-04-26 2020-10-29
WO2021190559A1 (zh) * 2020-03-27 2021-09-30 深圳市贝特瑞纳米科技有限公司 正极材料及其制备方法和二次锂电池
WO2022038449A1 (ja) * 2020-08-20 2022-02-24 株式会社半導体エネルギー研究所 二次電池、電子機器および車両
CN114639824B (zh) * 2022-05-19 2022-08-12 瑞浦兰钧能源股份有限公司 一种高安全性的三元正极材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196063A (ja) * 1999-10-26 2001-07-19 Sumitomo Chem Co Ltd 非水二次電池用活物質およびこれを用いた非水二次電池
JP2003017055A (ja) * 2001-07-02 2003-01-17 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびその製造方法
JP2003059489A (ja) * 2001-08-09 2003-02-28 Toyota Motor Corp リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池並びにリチウム二次電池用正極活物質の製造方法
JP2003068300A (ja) 2001-08-24 2003-03-07 Toyota Central Res & Dev Lab Inc リチウム二次電池用正極活物質材料およびそれを用いたリチウム二次電池
JP2003257427A (ja) 2002-02-28 2003-09-12 Sumitomo Chem Co Ltd 非水二次電池用電極材料
WO2007114557A1 (en) * 2006-03-30 2007-10-11 Industry-University Cooperation Foundation Hanyang University Positive active material for lithium battery, method of preparing the same, and lithium battery including the same
JP2008166269A (ja) * 2006-12-06 2008-07-17 Toda Kogyo Corp 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2009259798A (ja) * 2008-03-19 2009-11-05 Panasonic Corp 非水電解質二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196063A (ja) * 1999-10-26 2001-07-19 Sumitomo Chem Co Ltd 非水二次電池用活物質およびこれを用いた非水二次電池
JP2003017055A (ja) * 2001-07-02 2003-01-17 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびその製造方法
JP2003059489A (ja) * 2001-08-09 2003-02-28 Toyota Motor Corp リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池並びにリチウム二次電池用正極活物質の製造方法
JP2003068300A (ja) 2001-08-24 2003-03-07 Toyota Central Res & Dev Lab Inc リチウム二次電池用正極活物質材料およびそれを用いたリチウム二次電池
JP2003257427A (ja) 2002-02-28 2003-09-12 Sumitomo Chem Co Ltd 非水二次電池用電極材料
WO2007114557A1 (en) * 2006-03-30 2007-10-11 Industry-University Cooperation Foundation Hanyang University Positive active material for lithium battery, method of preparing the same, and lithium battery including the same
JP2008166269A (ja) * 2006-12-06 2008-07-17 Toda Kogyo Corp 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2009259798A (ja) * 2008-03-19 2009-11-05 Panasonic Corp 非水電解質二次電池

Also Published As

Publication number Publication date
JP2010211925A (ja) 2010-09-24
KR20110025669A (ko) 2011-03-10
EP2264815A1 (en) 2010-12-22
CN102077397A (zh) 2011-05-25
US20110033750A1 (en) 2011-02-10

Similar Documents

Publication Publication Date Title
WO2010100910A1 (ja) 非水電解質二次電池用正極活物質、その製造方法、および非水電解質二次電池
JP5381024B2 (ja) リチウム二次電池用正極及びリチウム二次電池
JP6635656B2 (ja) 正極活物質、それを採用した正極及びリチウム電池、並びに該正極活物質の製造方法
KR101970909B1 (ko) 리튬 복합 화합물 입자 분말 및 그의 제조 방법, 비수전해질 이차 전지
JP5879761B2 (ja) リチウム複合化合物粒子粉末及びその製造方法、並びに非水電解質二次電池
US20170352885A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
JP5741908B2 (ja) リチウムイオン二次電池用正極活物質
US20170187065A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery including said material
JP5495300B2 (ja) リチウムイオン二次電池
WO2009116284A1 (ja) 非水電解質二次電池
JP5079291B2 (ja) 非水電解質二次電池
CN108352564B (zh) 非水电解质二次电池
JP5114998B2 (ja) 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
JP2016115658A (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
US10411265B2 (en) Lithium ion secondary battery and method of manufacturing same
JP7451728B2 (ja) 二次電池用正極活物質前駆体、正極活物質およびこれを含むリチウム二次電池
JP5997087B2 (ja) リチウム二次電池用正極材料の製造方法
JP5145994B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法
CN108352562B (zh) 非水电解质二次电池
CN112054190A (zh) 锂二次电池的正极材料和使用该正极材料的锂二次电池
JP2024500909A (ja) リチウム二次電池用正極活物質、その製造方法、それを含む正極及びリチウム二次電池
CN109792048B (zh) 非水电解质二次电池用正极
JP5626035B2 (ja) リチウムイオン二次電池の前処理方法及び使用方法
JP7310872B2 (ja) 非水系電解質二次電池用正極活物質、および該正極活物質を用いた非水系電解質二次電池
US20220367869A1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001886.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010748509

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12937667

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107029520

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE