WO2017056449A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2017056449A1
WO2017056449A1 PCT/JP2016/004273 JP2016004273W WO2017056449A1 WO 2017056449 A1 WO2017056449 A1 WO 2017056449A1 JP 2016004273 W JP2016004273 W JP 2016004273W WO 2017056449 A1 WO2017056449 A1 WO 2017056449A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
positive electrode
lithium
secondary battery
transition metal
Prior art date
Application number
PCT/JP2016/004273
Other languages
English (en)
French (fr)
Inventor
暁彦 高田
史治 新名
柳田 勝功
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/743,395 priority Critical patent/US20180212269A1/en
Priority to JP2017542727A priority patent/JP6820517B2/ja
Priority to CN201680044090.1A priority patent/CN107925129B/zh
Publication of WO2017056449A1 publication Critical patent/WO2017056449A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This disclosure relates to a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries that charge and discharge by moving lithium ions between positive and negative electrodes have high energy density and high capacity, and are therefore widely used as drive power sources for mobile information terminals.
  • non-aqueous electrolyte secondary batteries have attracted attention as power sources for power tools, electric vehicles (EV), hybrid electric vehicles (HEV, PHEV), etc., and further expansion of applications is expected.
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • PHEV PHEV
  • Patent Document 1 describes that the use of 1,2-dimethoxyethane as an electrolytic solution improves the low-temperature characteristics, improves the electrical conductivity of the electrolytic solution, and provides a large discharge capacity in an electrochemical cell. Has been.
  • Patent Document 2 by using an electrode containing inorganic particles (such as Li 3 PO 4 ) having lithium ion transfer capability, the reaction between the electrode active material and the electrolytic solution on the electrode surface is suppressed, and overcharge occurs. It is described that safety can be improved.
  • an electrode containing inorganic particles such as Li 3 PO 4
  • An object of the present disclosure is to provide a non-aqueous electrolyte secondary battery with improved normal temperature regeneration.
  • the present disclosure is a non-aqueous electrolyte secondary battery including an electrode body having a structure in which a positive electrode plate and a negative electrode plate are laminated via a separator, and a non-aqueous electrolyte, wherein the positive electrode plate is a lithium-containing transition metal oxide A material, an element belonging to Group 5 or Group 6 of the periodic table, and a phosphate compound.
  • the non-aqueous electrolyte is characterized by containing 1,2-dimethoxyethane.
  • group 5 / group 6 element means “element belonging to group 5 or 6 of the periodic table”.
  • the positive electrode plate contains a lithium-containing transition metal oxide, a Group 5 / Group 6 element, a phosphate compound, and the nonaqueous electrolyte is 1,2-
  • the resistance of the negative electrode surface is reduced by the Group 5 / Group 6 element eluted from the positive electrode plate and the mobile decomposition product generated by oxidative decomposition of 1,2-dimethoxyethane on the positive electrode surface. It was found that the room temperature regeneration of the nonaqueous electrolyte secondary battery was greatly improved.
  • the basic configuration of the nonaqueous electrolyte secondary battery of the present embodiment is the same as that of the prior art, and includes a wound electrode body in which a positive electrode plate and a negative electrode plate are stacked and wound via a separator, and a nonaqueous electrolyte.
  • the outermost peripheral surface of the wound electrode body is covered with a separator.
  • the nonaqueous electrolyte secondary battery of the present embodiment is not limited to the above configuration as long as it includes an electrode body having a structure in which a positive electrode plate and a negative electrode plate are laminated via a separator, and a nonaqueous electrolyte.
  • a positive electrode plate (hereinafter, also simply referred to as “positive electrode”) includes a positive electrode core body and a positive electrode mixture layer formed on both surfaces of the positive electrode core body.
  • the positive electrode mixture layer is formed such that a positive electrode core exposed portion in which the positive electrode core body is exposed in a strip shape along the longitudinal direction is formed on both surfaces of the positive electrode core body at an end portion on at least one side in the width direction. Yes.
  • the negative electrode plate (hereinafter also simply referred to as “negative electrode”) includes a negative electrode core and a negative electrode mixture layer formed on both surfaces of the negative electrode core.
  • the negative electrode mixture layer is formed so that a negative electrode core exposed portion in which the negative electrode core is exposed in a strip shape along the longitudinal direction is formed on both surfaces of the negative electrode core at an end on at least one side in the width direction. Yes.
  • positive electrode plate and negative electrode plate are wound through a separator and formed into, for example, a flat shape or a cylindrical shape to produce a flat or cylindrical wound electrode body. At this time, a positive electrode core exposed portion wound around one end of the wound electrode body is formed, and a negative electrode core exposed portion wound around the other end is formed.
  • the wound positive electrode core exposed portion is electrically connected to the positive electrode terminal via the positive electrode current collector.
  • the wound negative electrode core exposed portion is electrically connected to the negative electrode terminal via the negative electrode current collector.
  • the positive terminal is fixed to the sealing body via an insulating member, and the negative terminal is also fixed to the sealing body via an insulating member.
  • the wound electrode body is housed in, for example, a rectangular or cylindrical exterior body in a state covered with a resin insulating sheet.
  • the sealing body is brought into contact with the opening of the metal exterior body, and the contact portion between the sealing body and the exterior body is laser-welded.
  • the sealing body has a non-aqueous electrolyte injection port, the non-aqueous electrolyte is injected from the non-aqueous electrolyte injection port, and then the non-aqueous electrolyte injection port is sealed with a blind rivet or the like.
  • a non-aqueous electrolyte secondary battery is an example, and other configurations, for example, a non-aqueous electrolyte secondary battery in which a non-aqueous electrolyte and a wound electrode body are inserted into a laminate outer package may be used.
  • a positive electrode plate is comprised with positive electrode core bodies, such as metal foil, for example, and the positive mix layer formed on the positive electrode core body.
  • positive electrode core a metal foil that is stable in the positive electrode potential range, a film in which the metal is disposed on the surface layer, and the like can be used.
  • the metal used for the positive electrode core is preferably aluminum or an aluminum alloy.
  • the positive electrode current collector and the positive electrode terminal are also preferably made of aluminum or an aluminum alloy.
  • the positive electrode mixture layer includes a lithium-containing transition metal oxide that is a positive electrode active material, a Group 5 / Group 6 element, and a phosphate compound.
  • the positive electrode mixture layer preferably further includes a conductive material and a binder.
  • the positive electrode plate is formed by, for example, applying a positive electrode mixture slurry containing a positive electrode active material, a binder, etc. to a positive electrode core body, drying the coating film, and rolling the positive electrode mixture layer on both surfaces of the positive electrode core body. It can be manufactured by forming.
  • the Group 5 / Group 6 element is included in any form as long as it is present in the vicinity of the lithium-containing transition metal oxide in the positive electrode mixture layer. It may be.
  • a Group 5 / Group 6 element compound may be attached to the surface of the lithium-containing transition metal oxide particles, and a Group 5 / Group 6 element is contained in the lithium-containing transition metal oxide. It may be contained in.
  • the case where the Group 5 / Group 6 element is contained in the lithium-containing transition metal oxide is particularly preferable. This is due to the elution of the Group 5 / Group 6 element and the film formed by the decomposition product derived from DME. This is because the ratio of being taken in is optimal, and it is easy to form a low-resistance film.
  • the lithium-containing transition metal oxide contained in the positive electrode as a positive electrode active material is a metal oxide containing at least lithium (Li) and a transition metal element.
  • the lithium-containing transition metal oxide may contain an additive element other than lithium (Li) and the transition metal element.
  • the lithium-containing transition metal oxide can be represented, for example, by the general formula Li x Me y O 2 .
  • Me is one or more transition metal elements including at least one selected from the group consisting of nickel (Ni), cobalt (Co), and manganese (Mn).
  • x is, for example, not less than 0.8 and not more than 1.2.
  • y varies depending on the type of Me and the oxidation number, but is, for example, 0.7 or more and 1.3 or less.
  • nickel cobalt lithium manganate containing Ni, Co and Mn as transition metals is particularly preferable.
  • Examples of the additive element that may be contained in the lithium-containing transition metal oxide include, for example, alkali metal elements other than lithium, transition metal elements other than Mn, Ni, and Co, alkaline earth metal elements, Group 12 elements, Examples include Group 13 elements and Group 14 elements.
  • Specific examples of transition metal elements and additive elements other than Ni, Co, Mn, and Group 5 / Group 6 elements that may be contained in the lithium-containing transition metal oxide include, for example, zirconium (Zr), boron ( B), magnesium (Mg), aluminum (Al), titanium (Ti), iron (Fe), copper (Cu), zinc (Zn), tin (Sn), sodium (Na), potassium (K), barium ( Ba), strontium (Sr), calcium (Ca) and the like.
  • the lithium-containing transition metal oxide preferably contains Zr as a transition metal. This is because the amount of decomposition of 1,2-dimethoxyethane (DME) contained in the nonaqueous electrolyte changes by containing Zr, and the amount of decomposition products can be adjusted.
  • the content of Zr in the lithium-containing transition metal oxide is preferably 0.05 mol% or more and 10 mol% or less, more preferably 0.1 mol% or more and 5 mol% or less, and more preferably 0.2 mol% with respect to the total amount of metals excluding Li. Above 3 mol% is particularly preferable.
  • the particle size of the lithium-containing transition metal oxide is not particularly limited, but is preferably 2 ⁇ m or more and 30 ⁇ m or less.
  • the lithium-containing transition metal oxide particles are secondary particles formed by agglomeration of primary particles, the secondary particles preferably have the above-mentioned particle diameter, and the primary particles are, for example, 50 nm or more and 10 ⁇ m or less.
  • the particle diameter of the lithium-containing transition metal oxide is, for example, a random extraction of 100 lithium-containing transition metal oxide particles observed with a scanning electron microscope (SEM), and the length of the major axis and the minor axis of each particle.
  • the BET specific surface area of the lithium-containing transition metal oxide is not particularly limited, but is preferably 0.1 m 2 / g or more and 6 m 2 / g or less.
  • the BET specific surface area of a lithium containing transition metal oxide can be measured with a well-known BET type powder specific surface area measuring apparatus.
  • the nonaqueous electrolyte secondary battery of this embodiment includes a Group 5 / Group 6 element in the positive electrode mixture layer of the positive electrode plate.
  • Elements belonging to Group 5 of the periodic table are vanadium (V), niobium (Nb), tantalum (Ta) and dobnium (Db), and elements belonging to Group 6 of the periodic table are chromium (Cr). Molybdenum (Mo), tungsten (W), and seaborgium (Sg).
  • the Group 5 / Group 6 element is contained in the positive electrode mixture layer of the positive electrode plate at the time of production, but it elutes into the non-aqueous electrolyte when charging the non-aqueous electrolyte secondary battery and migrates to the negative electrode.
  • a film is formed on the surface of the negative electrode and a decomposition product of 1,2-dimethoxyethane (DME) which is oxidatively decomposed on the surface of the positive electrode.
  • DME 1,2-dimethoxyethane
  • the Group 5 / Group 6 element Since the Group 5 / Group 6 element has a common property of being eluted at the time of charging / discharging and being taken into the film by the decomposition product derived from DME to form a low resistance film, the Group 5 / Group 6 element is used. Any of the group elements is considered to form a low-resistance film on the negative electrode surface under the condition that the phosphoric acid compound is present in the positive electrode mixture layer.
  • the Group 5 / Group 6 element contained in the positive electrode plate of the nonaqueous electrolyte secondary battery of this embodiment W, Nb, Ta, Cr and Mo are preferable, and tungsten is particularly preferable. This is because tungsten is optimal in elution and the ratio of being taken into the film by the decomposition product derived from DME, and has the property of easily forming a low-resistance film.
  • Examples of the Group 5 / Group 6 element compound when the Group 5 / Group 6 element compound adheres to the surface of the lithium-containing transition metal oxide particles include WO 3 and W 2 O 5. And tungsten oxide salts such as lithium tungstate. Of the tungsten oxides, WO 3 is preferable because the oxidation number is the most stable hexavalent.
  • the compound of Group 5 / Group 6 element can be mechanically mixed with the positive electrode active material, for example, and adhered to the surface of the active material particles.
  • a group 5 / group 6 element compound may be added and mixed with these positive electrode mixture layers.
  • a Group 5 / Group 6 element compound is added to the positive electrode mixture layer.
  • the group 5 / group 6 element compound can be efficiently present in the vicinity of the surface of the active material particles.
  • the content of the Group 5 / Group 6 element in the positive electrode plate in the case of adhering to the lithium-containing transition metal oxide is such that the total amount of the Group 5 or Group 6 element is a metal excluding Li of the lithium-containing transition metal oxide. That is, the amount is preferably 0.05 mol% or more and 10 mol% or less, more preferably 0.1 mol% or more and 5 mol% or less, relative to the total amount of (the transition metal and the additive element). 2 mol% or more and 3 mol% or less are particularly preferable.
  • the content of the Group 5 / Group 6 element is within this range, the formation of a low-resistance film with the decomposition product of 1,2-dimethoxyethane on the negative electrode surface is further promoted.
  • the particle size of the Group 5 / Group 6 element attached to the lithium-containing transition metal oxide is preferably smaller than the particle size of the lithium-containing transition metal oxide, and is 25% or less of the particle size of the oxide. It is particularly preferred.
  • the particle size of the Group 5 / Group 6 element is, for example, 50 nm to 10 ⁇ m. If the particle diameter is within the above range, it is considered that a good dispersion state of the Group 5 / Group 6 element in the positive electrode mixture layer is maintained, and the elution from the positive electrode plate is suitably performed.
  • the group 5 / group 6 particle size was randomly extracted from 100 group 5 / group 6 elements observed with a scanning electron microscope (SEM), similar to the lithium-containing transition metal oxide.
  • SEM scanning electron microscope
  • the average value of the diameters of 100 particles is defined as the average value of the lengths of the major axis and the minor axis of each particle.
  • the particle size of the Group 5 / Group 6 element is the particle size of the smallest unit particle (primary particle) that forms the aggregate.
  • the Group 5 / Group 6 element may be contained in the lithium-containing transition metal oxide.
  • Lithium-containing transition metal oxides containing Group 5 / Group 6 elements have the common property of eluting at the time of charge and discharge, and being taken into the film by decomposition products derived from DME to form a low resistance film. In order to provide, it is preferable.
  • the lithium-containing transition metal oxide containing a Group 5 / Group 6 element includes, for example, a composite oxide containing Ni, Co, Mn, or the like, a lithium compound such as lithium hydroxide, and a Group 5 / Group 6 It can synthesize
  • the lithium-containing transition metal oxide is added to at least one selected from the group consisting of nickel (Ni), cobalt (Co) and manganese (Mn) in the above general formula Li x Me y O 2 .
  • Ni nickel
  • Co cobalt
  • Mn manganese
  • the lithium-containing transition metal oxide contains a Group 5 / Group 6 element
  • the lithium-containing transition metal oxide and the Group 5 / Group 6 element are in solid solution.
  • a part of the Group 5 / Group 6 element may be deposited on the interface of the primary particles of the positive electrode active material or the surface of the secondary particles.
  • the lithium-containing transition metal oxide containing a Group 5 / Group 6 element a lithium-containing transition metal oxide containing Ni, Co, Mn and W as transition metals is particularly preferable.
  • the content of the Group 5 / Group 6 element is a metal other than Li in the lithium-containing transition metal oxide (ie, the transition metal and
  • the total amount of Group 5 / Group 6 elements is preferably 0.05 mol% to 10 mol% with respect to the total amount of the above additive elements), preferably 0.1 mol% to 5 mol% It is more preferable that it is contained in such an amount.
  • the content of the Group 5 / Group 6 element is within this range, the formation of a low-resistance film with the decomposition product of 1,2-dimethoxyethane on the negative electrode surface is further promoted.
  • the nonaqueous electrolyte secondary battery of this embodiment contains a phosphoric acid compound in the positive electrode mixture layer of the positive electrode plate.
  • the phosphoric acid compound contained in the positive electrode mixture layer is not particularly limited, and examples thereof include phosphoric acid and phosphate. Examples thereof include lithium phosphate, lithium dihydrogen phosphate, cobalt phosphate, nickel phosphate, and phosphoric acid. Mention may be made of manganese, potassium phosphate and ammonium dihydrogen phosphate. Among these, lithium phosphate is particularly preferable.
  • the Group 5 / Group 6 element eluted from the positive electrode mixture layer during charging, and the decomposition product of DME that is also oxidatively decomposed on the positive electrode surface during charging.
  • a film is formed by mixing the Group 5 / Group 6 element and the decomposition product derived from DME.
  • the elution behavior of the Group 5 / Group 6 element at the positive electrode and the decomposition reaction rate of DME change due to the catalytic action of the phosphoric acid compound. .
  • the composition of the film formed on the negative electrode changes, so that a film having a lower resistance is formed and the room temperature regeneration is greatly improved as compared with the case where no phosphate compound is present in the positive electrode mixture layer. It is considered to be done.
  • the content of the phosphoric acid compound in the positive electrode mixture layer is preferably 0.03% by mass or more and 10% by mass or less, and more preferably 0.1% by mass or more with respect to the total amount of the lithium-containing transition metal oxide as the positive electrode active material 8 mass% or less is more preferable.
  • the content is preferably 0.01% by mass or more and 3% by mass or less, and more preferably 0.03% by mass or more and 2% by mass or less with respect to the total amount of the lithium-containing transition metal oxide. If the phosphate compound content is too small, a low-resistance film may not be sufficiently formed on the negative electrode surface. If the phosphate compound content is too high, efficient electron transfer in the positive electrode active material is inhibited. There is a risk.
  • the particle size of the phosphoric acid compound is preferably smaller than the particle size of the lithium-containing transition metal oxide, and particularly preferably 25% or less of the particle size of the oxide.
  • the particle size of the phosphoric acid compound is, for example, 50 nm to 10 ⁇ m. When the particle size is within the range, a good dispersion state of the phosphoric acid compound in the positive electrode mixture layer is maintained.
  • the particle size of the phosphoric acid compound as in the case of the lithium-containing transition metal oxide, 100 particles of the phosphoric acid compound observed with a scanning electron microscope (SEM) were randomly extracted. The average value of the lengths of the diameters is taken as the particle size of each particle, and the average particle size of 100 particles.
  • the particle size of the phosphate compound is the particle size of the smallest unit particle (primary particle) that forms the aggregate.
  • the phosphoric acid compound can be adhered to the surface of the active material particles by mechanically mixing with, for example, the positive electrode active material.
  • the positive electrode mixture layer may be mixed by adding a phosphoric acid compound.
  • the phosphoric acid compound is added to the positive electrode mixture layer using the former method. Thereby, the phosphoric acid compound can be efficiently present in the vicinity of the surface of the active material particles.
  • the conductive material is used to increase the electrical conductivity of the positive electrode mixture layer.
  • Examples of the conductive material include carbon materials such as carbon black, acetylene black, ketjen black, and graphite. These may be used alone or in combination of two or more.
  • the binder is used in the positive electrode mixture layer to maintain a good contact state between the positive electrode active material and the conductive material and to increase the binding property of the positive electrode active material and the like to the surface of the positive electrode core.
  • the binder include fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and polyolefin resins. It is done.
  • these resins, carboxymethyl cellulose (CMC) or a salt thereof (CMC-Na, CMC-K, CMC-NH 4 etc., may be a partially neutralized salt), polyethylene oxide (PEO), etc. May be used in combination. These may be used alone or in combination of two or more.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent, and the non-aqueous solvent includes at least 1,2-dimethoxyethane (DME).
  • DME 1,2-dimethoxyethane
  • the decomposition product derived from DME decomposed at the positive electrode and the Group 5 / Group 6 element eluted from the positive electrode form a low-resistance film on the surface of the negative electrode. It is done.
  • the nonaqueous electrolyte may contain a nonaqueous solvent other than DME.
  • a nonaqueous solvent other than DME for example, esters, ethers, nitriles, amides such as dimethylformamide, a mixed solvent of two or more of these, and the like can be used.
  • a halogen-substituted product in which at least a part is substituted with a halogen atom such as fluorine can also be used.
  • the content of DME contained in the non-aqueous electrolyte is preferably 3% by volume or more and 20% by volume or less with respect to the total amount of the solvent contained in the non-aqueous electrolyte. This is because if the DME content is too small, the film forming effect may not be sufficiently exhibited, and if the DME content is too large, it may be co-inserted into the negative electrode side and the battery characteristics may deteriorate.
  • esters contained in the nonaqueous electrolyte include cyclic carbonates, chain carbonates, and carboxylic acid esters.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, vinylene carbonate; dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), methyl propyl carbonate Chain carbonates such as ethyl propyl carbonate and methyl isopropyl carbonate; chain carboxylic acid esters such as methyl propionate (MP), ethyl propionate, methyl acetate, ethyl acetate and propyl acetate; and ⁇ -butyrolactone (GBL) And cyclic carboxylic acid esters such as ⁇ -valerolactone (GVL). and cyclic carboxylic acid esters such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • ethers contained in the nonaqueous electrolyte include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, Cyclic ethers such as 1,4-dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether; diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, Ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl
  • nitriles contained in the non-aqueous electrolyte include acetonitrile, propionitrile, butyronitrile, valeronitrile, n-heptanenitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, 1,2,3-propanetricarboro. Nitriles, 1,3,5-pentanetricarbonitrile and the like can be mentioned.
  • halogen-substituted substances contained in the nonaqueous electrolyte include fluorinated cyclic carbonates such as 4-fluoroethylene carbonate (FEC), fluorinated chain carbonates, methyl 3,3,3-trifluoropropionate (FMP). ) And the like.
  • fluorinated cyclic carbonates such as 4-fluoroethylene carbonate (FEC), fluorinated chain carbonates, methyl 3,3,3-trifluoropropionate (FMP).
  • the nonaqueous electrolyte secondary battery of this embodiment preferably contains a mixed solvent of DME and the above esters, and DME, cyclic carbonates, chain carbonates, and chain carboxylates. It is more preferable to contain a mixed solvent.
  • the mixed solvent particularly contains cyclic carbonates, chain carbonates, chain carboxylic esters and DME in a volume ratio of 10 to 50:10 to 80: 1 to 20: 3 to 20. preferable.
  • the electrolyte salt used for the non-aqueous electrolyte is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiC (C 2 F 5 SO 2), LiCF 3 CO 2, Li (P (C 2 O 4 ) F 4 ), Li (P (C 2 O 4 ) F 2 ), LiPF 6-x (C n F 2n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, chloroborane lithium, lower aliphatic lithium carboxylate, Li 2 B 4 O 7 , Li (B (C 2 O 4 ) 2 ) [lithium-bisoxalate borate (LiBOB)], li (B (C 2 O 4 ) F 2) boric acid salts such as, LiN (FSO 2) 2, LiN (C 1 F 2l +
  • lithium salts may be used alone or in combination of two or more.
  • at least a fluorine-containing lithium salt from the viewpoints of ion conductivity, electrochemical stability, and the like, and for example, LiPF 6 is preferably used.
  • a lithium salt having a fluorine-containing lithium salt and an oxalato complex as an anion for example, LiBOB
  • concentration of the lithium salt is preferably 0.8 to 1.8 mol per liter of nonaqueous solvent.
  • a known negative electrode plate can be used as the negative electrode plate.
  • the negative electrode plate After a negative electrode active material and a binder are dispersed in water or a suitable dispersion medium to prepare a negative electrode mixture slurry, the negative electrode mixture slurry is applied to the negative electrode current collector, and the coating film is dried
  • the negative electrode plate can be produced by rolling and forming the negative electrode mixture layer on both surfaces of the negative electrode core.
  • the negative electrode core it is preferable to use a conductive thin film, in particular, a metal foil that is stable in the potential range of the negative electrode, a film in which the metal is disposed on the surface layer, and the like.
  • the metal used for the negative electrode core is preferably copper or a copper alloy, and the negative electrode current collector and the negative electrode terminal are also preferably made of copper or a copper alloy.
  • the negative electrode active material is not particularly limited as long as it can reversibly occlude and release lithium ions.
  • carbon materials such as natural graphite and artificial graphite, metals such as Si and Sn, and alloys that form an alloy with lithium A material, a metal composite oxide, or the like can be used. These may be used alone or in combination of two or more.
  • a carbon material obtained by coating a graphite material with low crystalline carbon it is preferable to use a carbon material obtained by coating a graphite material with low crystalline carbon.
  • binder a known binder can be used, and as in the case of the positive electrode, fluorine resin such as PTFE, PAN, polyimide resin, acrylic resin, and polyolefin resin can be used. it can.
  • fluorine resin such as PTFE, PAN, polyimide resin, acrylic resin, and polyolefin resin
  • SBR styrene-butadiene rubber
  • PAA polyacrylic acid
  • PVA polyvinyl alcohol
  • the binder used for producing the negative electrode plate it is particularly preferable to use CMC or a salt thereof in combination with a styrene-butadiene copolymer (SBR) or a modified body thereof.
  • a porous sheet having ion permeability and insulating properties is used.
  • the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • olefinic resins such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
  • the multilayer separator containing a polyethylene layer and a polypropylene layer may be sufficient, and what applied resin, such as an aramid resin, to the surface of a separator can also be used.
  • lithium transition metal oxide positive electrode active material
  • the molar ratio of each element of Ni, Co, Mn, W, and Zr to the entire transition metal was 46.7, 26. 7, 25.6, 0.5 and 0.5.
  • lithium transition metal oxide 0.5 mol% of WO 3 with respect to the total amount of metal elements (transition metals) excluding Li of the oxide, and 5 mass with respect to the total amount of the oxide % Lithium phosphate (Li 3 PO 4 ) was mixed to obtain a positive electrode active material in which WO 3 and Li 3 PO 4 were adhered to the particle surface.
  • the positive electrode active material, carbon black, and polyvinylidene fluoride (PVDF) were mixed at a mass ratio of 91: 7: 2.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode mixture slurry was applied onto the aluminum foil as the positive electrode core, and the coating film was dried to form a positive electrode mixture layer on the aluminum foil.
  • the positive electrode core body in which the positive electrode compound material layer was formed was cut out to a predetermined size, rolled, attached with an aluminum tab, and used as a positive electrode.
  • the positive electrode obtained as described above was observed with a scanning electron microscope (SEM). As a result, tungsten oxide particles having an average particle diameter of 150 nm and lithium phosphate particles having an average particle diameter of 100 nm were obtained. It was confirmed that it adhered to the surface of the lithium-containing transition metal composite oxide. However, some of tungsten oxide and lithium phosphate may be peeled off from the surface of the positive electrode active material in the step of mixing the conductive agent and the binder. In some cases, part of tungsten oxide and / or lithium phosphate is contained. Moreover, it was confirmed by observation by SEM that lithium phosphate is attached to tungsten oxide or exists in the vicinity of tungsten oxide.
  • LiPF 6 is dissolved in the mixed solvent so as to have a concentration of 1.2 mol / L.
  • vinylene carbonate is dissolved in a concentration of 0.3% by mass with respect to the LiPF 6- containing mixed solvent.
  • LiBOB Li (B (C 2 O 4 ) 2 ) was dissolved in the LiPF 6 -containing mixed solvent so as to have a concentration of 0.05 mol / L.
  • An aluminum lead is attached to the positive electrode, a nickel lead is attached to the negative electrode, a microporous membrane made of polyethylene is used as a separator, and the positive electrode and the negative electrode are wound spirally through the separator to form a wound electrode body.
  • the electrode body is housed in a bottomed cylindrical battery case body, the nonaqueous electrolyte is injected, the opening of the battery case body is sealed with a gasket and a sealing body, and a cylindrical nonaqueous electrolyte secondary battery (Battery A1) was produced.
  • Type non-aqueous electrolyte secondary battery (battery A3) was produced.
  • Type non-aqueous electrolyte secondary battery (battery A4) was produced.
  • Example 7 A cylindrical nonaqueous electrolyte secondary battery (battery A7) was produced in the same manner as in Experimental Example 2, except that tungsten oxide was not mixed with the lithium-containing transition metal oxide in the step of producing the positive electrode active material. .
  • Example 9 A cylindrical nonaqueous electrolyte secondary battery (battery A9) was produced in the same manner as in Experimental Example 6, except that lithium phosphate was not mixed with the lithium-containing transition metal oxide in the production process of the positive electrode active material. did.
  • Example 12 A cylindrical nonaqueous electrolyte secondary battery (battery A12) was produced in the same manner as in Experimental Example 1, except that lithium phosphate was not mixed with the lithium-containing transition metal oxide in the production process of the positive electrode active material. did.
  • the normal temperature regeneration value at the charging depth (SOC) 50% of each secondary battery is obtained from the following formula from the maximum current value that can be charged for 10 seconds when the end-of-charge voltage is 4.3V. It was.
  • batteries A1 to A7 which are positive electrode active materials containing a lithium nickel cobalt manganese composite oxide containing a Group 5 / Group 6 element and lithium phosphate, and a nonaqueous electrolyte containing DME, Compared with batteries A8 to A13, normal temperature regeneration was remarkably superior.
  • DME generates a mobile decomposition product by oxidative decomposition at the time of charging on the positive electrode surface. Further, when a Group 5 / Group 6 element is present in the positive electrode, the Group 5 / Group 6 element is eluted into the non-aqueous electrolyte. Then, a film formed by mixing the decomposition product of DME and the Group 5 / Group 6 element is formed on the negative electrode surface. At this time, if both the Group 5 / Group 6 element and the phosphoric acid compound are present in the positive electrode, the elution and deposition form of the Group 5 / Group 6 element changes, and a low resistance film is formed on the surface of the negative electrode. Therefore, it is thought that room temperature regeneration can be greatly improved.
  • FIG. 1 is a reaction schematic diagram of a positive electrode and a negative electrode in the nonaqueous electrolyte secondary battery of the present disclosure. It is considered that DME is decomposed on the positive electrode surface to generate a mobile decomposition product, and this decomposition product and the Group 5 / Group 6 element eluted from the positive electrode form a low-resistance negative electrode film on the negative electrode surface. .
  • FIG. 2 is a reaction schematic diagram of the positive electrode and the negative electrode in the prior art in which no phosphoric acid compound is present on the positive electrode.
  • the phosphoric acid compound is not present in the positive electrode, the elution of the Group 5 / Group 6 element is not adjusted by the phosphoric acid compound. Therefore, even if DME is contained in the nonaqueous electrolyte, a low resistance negative electrode film is not formed. Therefore, even when DME is contained as a nonaqueous electrolyte, the normal temperature regeneration is reduced or hardly changed as compared with the case where DME is not present (battery A9 to battery A12).
  • the phosphoric acid compound causes the group 5 / Although the elution of the Group 6 element is promoted, since a decomposition product derived from DME is not formed, a low-resistance film is not formed on the surface of the negative electrode, and improvement in normal temperature regeneration cannot be obtained.
  • the elements of Group 5 / Group 6 are dissolved in the lithium transition metal oxide, and the Group 5 / Group 5 element is formed on the surface of the lithium transition metal oxide.
  • a positive electrode active material to which a Group 6 element is attached is used, it is possible to greatly improve normal temperature regeneration. This is presumably because a lower resistance film was formed on the negative electrode.
  • any of the batteries A1 to A7 of the present disclosure can improve the normal temperature regeneration, and further, the batteries A1 to A5 having a DME content of 5% by volume or more and 20% by volume or less with respect to the total amount of the solvent contained in the nonaqueous electrolyte.
  • the improvement effect of normal temperature regeneration was more remarkable. It is considered that when the content of DME is in the above range, co-insertion of DME into the negative electrode can be suppressed and battery characteristics can be improved.
  • the positive electrode plate contains a lithium-containing transition metal oxide, a Group 5 / Group 6 element, and a phosphoric acid compound, and the nonaqueous electrolyte contains 1,2-dimethoxyethane. It was confirmed that normal temperature regeneration of the electrolyte secondary battery can be improved.
  • This disclosure can be used for non-aqueous electrolyte secondary batteries.

Abstract

本発明は、常温回生が改善された非水電解質二次電池を提供することを目的とする。 本発明は、正極板及び負極板がセパレータを介して積層された構造を有する電極体と非水電解質とを備える非水電解質二次電池であって、正極板はリチウム含有遷移金属酸化物と周期表の第5族又は第6族に属する元素とリン酸化合物とを含み、非水電解質は1,2-ジメトキシエタンを含む。

Description

非水電解質二次電池
 本開示は非水電解質二次電池に関する。
 近年、携帯電話、ノートパソコン、スマートフォン等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての二次電池にはさらなる高容量化が要求されている。リチウムイオンが正負極間を移動することにより充放電を行う非水電解質二次電池は、高いエネルギー密度を有し、高容量であるので、移動情報端末の駆動電源として広く利用されている。
 さらに最近では、非水電解質二次電池は、電動工具、電気自動車(EV)、ハイブリッド電気自動車(HEV、PHEV)等の動力用電源としても注目されており、さらなる用途拡大が見込まれている。
 こうした動力用電源では、長時間の使用が可能となるような高容量化や、比較的短時間に大電流充放電を繰り返す場合の出力特性の向上が求められており、大電流充放電での出力特性を維持しつつ高容量化を達成することが必須となっている。
 特許文献1には、電解液に1,2-ジメトキシエタンを用いることにより、電気化学セルにおいて、低温特性が向上し、電解液の電気伝導性が向上し、大きな放電容量が得られることが記載されている。
 特許文献2には、リチウムイオン伝達能力を有する無機物粒子(LiPO等)を含有する電極を用いることにより、電極表面における電極活物質と電解液との反応を抑制し、過充電時の安全性を高められることが記載されている。
特開2015-26531号公報 国際公開第2006/016245号
 しかしながら、上記の従来技術では、常温回生が不十分となる場合があった。
 本開示の目的は、常温回生が改善された非水電解質二次電池を提供することにある。
 本開示は、正極板及び負極板がセパレータを介して積層された構造を有する電極体と、非水電解質と、を備える非水電解質二次電池であって、正極板は、リチウム含有遷移金属酸化物と、周期表の第5族又は第6族に属する元素と、リン酸化合物とを含む。非水電解質は1,2-ジメトキシエタンを含むことを特徴とする。なお、本明細書において「第5族/第6族元素」と記載した場合、「周期表の第5族又は第6族に属する元素」を意味する。
 本開示によれば、常温回生特性が改善された非水電解質二次電池を提供することができる。
本実施形態の一例を示す模式的説明図である。 従来技術を示す模式的説明図である。
 本願発明者等は、鋭意検討した結果、正極板が、リチウム含有遷移金属酸化物と、第5族/第6族元素と、リン酸化合物とを含み、且つ、非水電解質が1,2-ジメトキシエタンを含む場合、正極板から溶出した第5族/第6族元素と、正極表面における1,2-ジメトキシエタンの酸化分解により生じた移動性の分解生成物とによって、負極表面に低抵抗の被膜を形成し、非水電解質二次電池の常温回生を大きく改善することを見出した。
 本開示の実施形態について以下に説明する。但し、本実施形態は一例であって、本開示は以下の実施形態に限定されるものではない。
 <非水電解質二次電池の構成>
 本実施形態の非水電解質二次電池の基本的な構成は従来と同様であり、正極板及び負極板がセパレータを介して積層されて巻回された巻回電極体と、非水電解質とを有しており、巻回電極体の最外周面は、セパレータにより覆われている。本実施形態の非水電解質二次電池は、正極板及び負極板がセパレータを介して積層された構造を有する電極体と、非水電解質とを備える限り、上記構成に限定されない。
 正極板(以下単に「正極」ともいう。)は、正極芯体と、正極芯体の両表面に形成されている正極合材層とを備える。正極合材層は、幅方向の少なくとも一方側の端部に長手方向に沿って正極芯体が帯状に露出した正極芯体露出部が正極芯体の両面に形成されるように、形成されている。
 負極板(以下単に「負極」ともいう。)は、負極芯体と、負極芯体の両表面に形成されている負極合材層とを備える。負極合材層は、幅方向の少なくとも一方側の端部に長手方向に沿って負極芯体が帯状に露出した負極芯体露出部が負極芯体の両面に形成されるように、形成されている。
 これらの正極板及び負極板をセパレータを介して巻回し、例えば扁平状又は円筒型に成形することにより扁平状又は円筒型の巻回電極体が作製される。このとき、巻回電極体の一方の端部に巻回された正極芯体露出部が形成され、他方の端部に巻回された負極芯体露出部が形成される。
 巻回された正極芯体露出部は、正極集電体を介して正極端子に電気的に接続される。他方、巻回された負極芯体露出部は、負極集電体を介して負極端子に電気的に接続される。正極端子は、絶縁部材を介して封口体に固定され、負極端子も絶縁部材を介して封口体に固定される。
 巻回電極体は、樹脂製の絶縁シートにより覆われた状態で、例えば角形又は円筒形の外装体内に収納される。封口体は、金属製の外装体の開口部に当接され、封口体と外装体との当接部がレーザ溶接される。
 封口体は非水電解質注液口を有し、この非水電解質注液口から非水電解質が注液され、その後ブラインドリベット等により非水電解質注液口が封止される。勿論、このような非水電解質二次電池は一例であり、他の構成、例えば非水電解質及び巻回電極体をラミネート外装体に挿入してなるラミネート型非水電解質二次電池としてもよい。
 次に、本実施形態の非水電解質二次電池における正極板、非水電解質、負極板及びセパレータ等について説明する。
 <正極板>
 正極板は、例えば金属箔等の正極芯体と、正極芯体上に形成された正極合材層とで構成される。正極芯体としては、正極の電位範囲で安定な金属の箔、及び、当該金属を表層に配置されているフィルム等を用いることができる。正極芯体に用いられる金属としては、アルミニウム又はアルミニウム合金が好ましい。正極集電体及び正極端子もアルミニウム又はアルミニウム合金製であることが好ましい。
 正極合材層は、正極活物質であるリチウム含有遷移金属酸化物と、第5族/第6族元素と、リン酸化合物とを含む。正極合材層は、導電材及び結着剤を更に含むことが好適である。正極板は、例えば、正極活物質、結着剤等を含む正極合材スラリーを正極芯体に塗布し、塗膜を乾燥した後、圧延して、正極合材層を正極芯体の両面に形成することにより、作製できる。
 本実施形態の非水電解質二次電池において、第5族/第6族元素は、正極合材層にあってリチウム含有遷移金属酸化物の近傍に存在している限り、いずれの形態で含まれていてもよい。例えば、第5族/第6族元素の化合物がリチウム含有遷移金属酸化物の粒子の表面に付着していてもよいし、また、第5族/第6族元素がリチウム含有遷移金属酸化物中に含有されていてもよい。第5族/第6族元素がリチウム含有遷移金属酸化物中に含有されている場合が特に好ましく、これは第5族/第6族元素の溶出しやすさと、DME由来の分解生成物による皮膜に取り込まれる割合とが最適であり、低抵抗な皮膜を形成しやすいという性質を備えるためである。
 [リチウム含有遷移金属酸化物]
 正極に正極活物質として含有されているリチウム含有遷移金属酸化物は、リチウム(Li)及び遷移金属元素を少なくとも含む金属の酸化物である。リチウム含有遷移金属酸化物は、リチウム(Li)及び遷移金属元素以外の添加元素を含有していてもよい。
 リチウム含有遷移金属酸化物は、例えば、一般式LiMeで表すことができる。上記一般式中、Meはニッケル(Ni)、コバルト(Co)及びマンガン(Mn)からなる群より選択される少なくとも1種を含む、1種以上の遷移金属元素である。xは例えば0.8以上1.2以下である。yはMeの種類及び酸化数によって異なるが、例えば0.7以上1.3以下である。リチウム含有遷移金属酸化物としては、遷移金属としてNi、Co及びMnを含有するニッケルコバルトマンガン酸リチウムが特に好ましい。
 リチウム含有遷移金属酸化物に含有されていてもよい添加元素としては、例えば、リチウム以外のアルカリ金属元素、Mn、Ni及びCo以外の遷移金属元素、アルカリ土類金属元素、第12族元素、第13族元素及び第14族元素が挙げられる。リチウム含有遷移金属酸化物に含有されていてもよいNi、Co、Mn及び第5族/第6族元素以外の遷移金属元素並びに添加元素の具体例としては、例えば、ジルコニウム(Zr)、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、チタン(Ti)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、錫(Sn)、ナトリウム(Na)、カリウム(K)、バリウム(Ba)、ストロンチウム(Sr)及びカルシウム(Ca)等が挙げられる。
 リチウム含有遷移金属酸化物は、遷移金属としてZrを含有することが好適である。これはZrを含有することで非水電解質に含まれる1,2-ジメトキシエタン(DME)の分解量が変化し、分解生成物の量を調整することができるためである。リチウム含有遷移金属酸化物におけるZrの含有量は、Liを除く金属の総量に対して、0.05mol%以上10mol%以下が好ましく、0.1mol%以上5mol%以下がより好ましく、0.2mol%以上3mol%以下が特に好ましい。上記含有量でZrを含有することにより、DMEの分解量を調整するのみならず、リチウム含有遷移金属酸化物の結晶構造が安定化され、正極合材層の高温での耐久性、及び、サイクル性が向上すると考えられている。
 本実施形態の非水電解質二次電池において、リチウム含有遷移金属酸化物の粒径は、特に限定されないが、2μm以上30μm以下であることが好ましい。リチウム含有遷移金属酸化物の粒子が、一次粒子が凝集して形成された二次粒子である場合、当該二次粒子が上記の粒径を有することが好ましく、当該一次粒子は例えば50nm以上10μm以下の粒径を有する。リチウム含有遷移金属酸化物の粒径は、例えば、走査型電子顕微鏡(SEM)により観察したリチウム含有遷移金属酸化物の粒子を無作為に100個抽出し、各粒子の長径及び短径の長さの平均値を各粒子の粒径として、100個の粒子の粒径を平均した値とすることができる。リチウム含有遷移金属酸化物のBET比表面積は、特に限定されないが、好ましくは0.1m/g以上6m/g以下である。なお、リチウム含有遷移金属酸化物のBET比表面積は、公知のBET式粉体比表面積測定装置によって測定できる。
 [第5族/第6族元素]
 本実施形態の非水電解質二次電池は、正極板の正極合材層に第5族/第6族元素を含む。周期表の第5族に属する元素とは、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)及びドブニウム(Db)であり、周期表の第6族に属する元素とは、クロム(Cr)、モリブデン(Mo)、タングステン(W)及びシーボーギウム(Sg)である。
 第5族/第6族元素は、製造時には正極板の正極合材層に含有されているが、非水電解質二次電池の充電時に非水電解質に溶出して負極に泳動し、同じく充電時に正極表面において酸化分解された1,2-ジメトキシエタン(DME)の分解生成物と、負極表面において被膜を形成する。ここで、正極合材層にリン酸化合物が含まれていることにより、第5族/第6族元素とDME由来の分解生成物とで低抵抗の被膜が形成される。第5族/第6族元素は、充放電時に溶出し、またDME由来の分解生成物による皮膜に取り込まれて低抵抗な皮膜を形成するという共通する性質を備えるため、第5族/第6族元素はいずれも、正極合材層にリン酸化合物が存在する条件下、負極表面において低抵抗の被膜を形成すると考えられる。
 本実施形態の非水電解質二次電池の正極板に含まれる第5族/第6族元素としては、W、Nb、Ta、Cr及びMoが好ましく、タングステンが特に好ましい。タングステンは溶出しやすさと、DME由来の分解生成物による皮膜に取り込まれる割合とが最適であり、低抵抗な皮膜を形成しやすいという性質を備えるためである。第5族/第6族元素の化合物がリチウム含有遷移金属酸化物の粒子の表面に付着している場合の第5族/第6族元素の化合物としては、例えば、WO及びW等の酸化タングステン、並びに、タングステン酸リチウム等の酸化タングステンの塩等が挙げられる。酸化タングステンの中では、酸化数が最も安定な6価となるWOが好ましい。
 第5族/第6族元素の化合物は、例えば正極活物質と機械的に混合して、活物質粒子の表面に付着させることができる。或いは、導電材及び結着材を混練して正極合材スラリーを作製する工程において、第5族/第6族元素の化合物を添加することにより、これらの正極合材層に混合してもよい。好ましくは、前者の方法を用いて、第5族/第6族元素の化合物を正極合材層に添加する。これにより、活物質粒子の表面近傍に効率良く第5族/第6族元素の化合物を存在させることができる。
 リチウム含有遷移金属酸化物に付着させる場合の正極板における第5族/第6族元素の含有量は、第5族又は第6族元素の総量が、リチウム含有遷移金属酸化物のLiを除く金属(即ち、遷移金属及び上記添加元素)の総量に対して、0.05mol%以上10mol%以下となる量であることが好ましく、0.1mol%以上5mol%以下となる量がより好ましく、0.2mol%以上3mol%以下が特に好ましい。第5族/第6族元素の含有量が当該範囲内であれば、負極表面における1,2-ジメトキシエタンの分解生成物との低抵抗の被膜の形成が一層促進される。
 リチウム含有遷移金属酸化物に付着させる第5族/第6族元素の粒径は、リチウム含有遷移金属酸化物の粒径よりも小さいことが好ましく、当該酸化物の粒径の25%以下であることが特に好ましい。第5族/第6族元素の粒径は、例えば、50nm~10μmである。粒径が当該範囲内であれば、正極合材層中における第5族/第6族元素の良好な分散状態が維持され、正極板からの溶出が好適に行われると考えられる。
 第5族/第6族元素の粒径は、リチウム含有遷移金属酸化物と同様、走査型電子顕微鏡(SEM)により観察した第5族/第6族元素の粒子を無作為に100個抽出し、各粒子の長径及び短径の長さの平均値を各粒子の粒径として、100個の粒子の粒径を平均した値である。第5族/第6族元素が凝集体として存在する場合、第5族/第6族元素の粒径は、凝集体を形成する最小単位の粒子(一次粒子)の粒径である。
 他方、第5族/第6族元素はリチウム含有遷移金属酸化物中に含有されていてもよい。第5族/第6族元素を含有するリチウム含有遷移金属酸化物は、充放電時に溶出し、またDME由来の分解生成物による皮膜に取り込まれて低抵抗な皮膜を形成するという共通する性質を備えるため、好ましい。第5族/第6族元素を含有するリチウム含有遷移金属酸化物は、例えば、Ni、Co又はMn等を含有する複合酸化物と、水酸化リチウム等のリチウム化合物と、第5族/第6族元素の酸化物とを混合し、得られた混合物を焼成することにより、合成することができる。このときのリチウム含有遷移金属酸化物は、上記一般式LiMeにおいて、Meがニッケル(Ni)、コバルト(Co)及びマンガン(Mn)からなる群より選択される少なくとも1種に加えて、第5族/第6族元素を含むものに相当する。
 リチウム含有遷移金属酸化物が第5族/第6族元素を含有する場合、リチウム含有遷移金属酸化物と第5族/第6族元素とが固溶していることが好ましい。また、第5族/第6族元素は、その一部が正極活物質の一次粒子の界面又は二次粒子の表面に析出していてもよい。第5族/第6族元素を含有するリチウム含有遷移金属酸化物としては、遷移金属としてNi、Co、Mn及びWを含有してなるリチウム含有遷移金属酸化物が特に好ましい。
 リチウム含有遷移金属酸化物が第5族/第6族元素を含有する場合の第5族/第6族元素の含有量は、リチウム含有遷移金属酸化物のLiを除く金属(即ち、遷移金属及び上記添加元素)の総量に対して、第5族/第6族元素の総量が、0.05mol%以上10mol%以下となる量で含有されていることが好ましく、0.1mol%以上5mol%以下となる量で含有されていることがより好ましい。第5族/第6族元素の含有量が当該範囲内であれば、負極表面における1,2-ジメトキシエタンの分解生成物との低抵抗の被膜の形成が一層促進される。
 [リン酸化合物]
 本実施形態の非水電解質二次電池は、正極板の正極合材層にリン酸化合物を含む。正極合材層に含まれるリン酸化合物は、特に限定されないが、リン酸及びリン酸塩等が挙げられ、例えば、リン酸リチウム、リン酸二水素リチウム、リン酸コバルト、リン酸ニッケル、リン酸マンガン、リン酸カリウム及びリン酸二水素アンモニウムが挙げられる。これらの中でも、特にリン酸リチウムが好ましい。
 本実施形態の非水電解質二次電池においては、その充電時に正極合材層から溶出した第5族/第6族元素と、同じく充電時に正極表面で酸化分解されたDMEの分解生成物とが、負極表面に移動して還元されることにより、第5族/第6族元素及びDME由来の分解生成物が混合されてなる被膜を形成する。ここで、正極合材層にリン酸化合物が含有されていると、リン酸化合物の触媒作用によって正極での第5族/第6族元素の溶出挙動、及び、DMEの分解反応速度が変化する。その結果、負極において形成される被膜の組成が変化することにより、正極合材層にリン酸化合物が存在しない場合と比較して、より一層低い抵抗を有する被膜が形成され、常温回生が大きく改善されるものと考えられる。
 正極合材層中のリン酸化合物の含有量は、正極活物質であるリチウム含有遷移金属酸化物の総量に対して、0.03質量%以上10質量%以下が好ましく、0.1質量%以上8質量%以下がより好ましい。リン(P)元素換算では、リチウム含有遷移金属酸化物の総量に対して、0.01質量%以上3質量%以下が好ましく、0.03質量%以上2質量%以下がより好ましい。リン酸化合物の含有量が少なすぎると、負極表面において低抵抗の被膜が十分に形成されないおそれがあり、リン酸化合物の含有量が多すぎると、正極活物質における効率的な電子の授受を阻害するおそれがある。
 リン酸化合物の粒径は、リチウム含有遷移金属酸化物の粒径よりも小さいことが好ましく、酸化物の粒径の25%以下であることが特に好ましい。リン酸化合物の粒径は、例えば50nm~10μmである。粒径が当該範囲内であれば、正極合材層中におけるリン酸化合物の良好な分散状態が維持される。ここで、リン酸化合物の粒径は、リチウム含有遷移金属酸化物と同様、走査型電子顕微鏡(SEM)により観察したリン酸化合物の粒子を無作為に100個抽出し、各粒子の長径及び短径の長さの平均値を各粒子の粒径として、100個の粒子の粒径を平均した値である。リン酸化合物が凝集体として存在する場合、リン酸化合物の粒径は、凝集体を形成する最小単位の粒子(一次粒子)の粒径である。
 リン酸化合物は、例えば正極活物質と機械的に混合して、活物質粒子の表面に付着させることができる。或いは、導電材及び結着材を混練して正極合材スラリーを作製する工程において、リン酸化合物を添加することにより、これらの正極合材層に混合してもよい。好ましくは、前者の方法を用いて、リン酸化合物を正極合材層に添加する。これにより、活物質粒子の表面近傍に効率良くリン酸化合物を存在させることができる。
 [導電材]
 導電材は、正極合材層の電気伝導性を高めるために用いられる。導電材の例としては、カーボンブラック、アセチレンブラック、ケッチェンブラック及び黒鉛等の炭素材料等が挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 [結着剤]
 結着剤は、正極合材層において、正極活物質及び導電材間の良好な接触状態を維持し、且つ、正極芯体表面に対する正極活物質等の結着性を高めるために用いられる。結着剤の例としては、ポリテトラフルオロエチレン(PTFE)及びポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、並びに、ポリオレフィン系樹脂等が挙げられる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩(CMC-Na、CMC-K、CMC-NH等、また部分中和型の塩であってもよい)、ポリエチレンオキシド(PEO)等が併用されてもよい。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 <非水電解質>
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含み、非水溶媒は1,2-ジメトキシエタン(DME)を少なくとも含む。非水電解質二次電池において、非水電解質がDMEを含有すると、正極がリン酸化合物及び第5族/第6族元素を含有することを条件として、非水電解質二次電池の常温回生特性を改善することができる。本実施形態の非水電解質二次電池では、正極で分解したDME由来の分解生成物と正極から溶出した第5族/第6族元素とが負極表面で低抵抗の被膜を形成するためと考えられる。
 非水電解質は、DME以外の非水溶媒を含有していてもよい。DME以外の非水溶媒としては、例えば、エステル類、エーテル類、ニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができ、また、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を用いることもできる。
 非水電解質に含まれるDMEの含有量は、非水電解質に含まれる溶媒の総量に対して3体積%以上20体積%以下が好ましい。DMEの含有量が少なすぎると被膜形成効果が十分に発揮されない場合があり、DMEの含有量が多すぎると負極側に共挿入されてしまい、電池特性が低下する場合があるためである。
 非水電解質に含まれるエステル類としては、環状カーボネート類、鎖状カーボネート類、カルボン酸エステル類が例示できる。具体的には、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート類;ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状カーボネート類;プロピオン酸メチル(MP)、プロピオン酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル等の鎖状カルボン酸エステル;及び、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル等が挙げられる。γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステルが挙げられる。
 非水電解質に含まれるエーテル類としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル;ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチル等の鎖状エーテル類等が挙げられる。
 非水電解質に含まれるニトリル類の例としては、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、n-ヘプタンニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル等が挙げられる。
 非水電解質に含まれるハロゲン置換体の例としては、4-フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、メチル3,3,3-トリフルオロプロピオネート(FMP)等のフッ素化鎖状カルボン酸エステル等が挙げられる。
 本実施形態の非水電解質二次電池では、非水電解質が、DMEと上記エステル類との混合溶媒を含有することが好ましく、DMEと環状カーボネート類と鎖状カーボネート類と鎖状カルボン酸エステル類との混合溶媒を含有することがより好ましい。当該混合溶媒は、環状カーボネート類、鎖状カーボネート類、鎖状カルボン酸エステル類及びDMEを、10~50:10~80:1~20:3~20の体積比で含有していることが特に好ましい。
 非水電解質に用いる電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiC(CSO)、LiCFCO、Li(P(C)F)、Li(P(C)F)、LiPF6-x(C2n+1(1≦x≦6、nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C))[リチウム-ビスオキサレートボレート(LiBOB)]、Li(B(C)F)等のホウ酸塩類、LiN(FSO、LiN(C2l+1SO)(C2m+1SO){l、mは1以上の整数}等のイミド塩類等が挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、少なくともフッ素含有リチウム塩を用いることが好ましく、例えばLiPFを用いることが好ましい。特に高温環境下においても負極の表面に安定な被膜を形成し、DMEの分解生成物による過剰な皮膜形成を抑制するため、フッ素含有リチウム塩とオキサラト錯体をアニオンとするリチウム塩(例えばLiBOB)とを併用することが好適である。リチウム塩の濃度は、1リットルの非水溶媒当たり0.8~1.8molとすることが好ましい。
 <負極板>
 負極板としては、公知の負極板を用いることができる。例えば、負極活物質と、結着剤とを水あるいは適当な分散媒に分散させて負極合材スラリーを調製し、当該負極合材スラリーを負極集電体に塗布し、塗膜を乾燥した後、圧延して、負極合材層を負極芯体の両面に形成することにより、負極板を作製できる。負極芯体には、導電性を有する薄膜体、特に、負極の電位範囲で安定な金属の箔、及び当該金属が表層に配置されているフィルム等を用いることが好適である。負極芯体に用いられる当該金属は銅又は銅合金が好ましく、負極集電体及び負極端子も銅又は銅合金製であることが好ましい。
 負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば、天然黒鉛、人造黒鉛等の炭素材料、SiやSn等のリチウムと合金化する金属、合金材料又は金属複合酸化物等を用いることができる。また、これらは単独でも2種以上を混合して用いてもよい。特に、負極表面で低抵抗な被膜が形成されやすいため、黒鉛材料を低結晶性炭素で被覆した炭素材料を用いることが好ましい。
 [結着剤]
 結着剤としては、公知の結着剤を用いることができ、正極の場合と同様、PTFE等のフッ素系樹脂、PAN、ポリイミド系樹脂、アクリル系樹脂、並びに、ポリオレフィン系樹脂等を用いることができる。また、水系溶媒を用いて負極合材スラリーを調製する場合は、CMC又はその塩、スチレン-ブタジエンゴム(SBR)、ポリアクリル酸(PAA)又はその塩(PAA-Na、PAA-K等、また部分中和型の塩であってもよい)、ポリビニルアルコール(PVA)等を用いることが好ましい。負極板の作製に用いる結着剤としては、CMC又はその塩と、スチレンーブタジエン共重合体(SBR)又はこの変性体とを併用することが特に好ましい。
 <セパレータ>
 セパレータには、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロース等が好適である。セパレータは、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータの表面にアラミド系樹脂等の樹脂が塗布されたものを用いることもできる。
 以下、実施例及び比較例を挙げ、本開示をより具体的に詳細に説明するが、本開示は、以下の実施例に限定されるものではない。
 <実験例1>
 [正極活物質の作製]
 NiSO、CoSO及びMnSOを水溶液中で混合して共沈させることで得たニッケルコバルトマンガン複合水酸化物を焼成して、ニッケルコバルトマンガン複合酸化物を作製した。次に、当該複合酸化物と、炭酸リチウムと、酸化タングステン(WO)と、酸化ジルコニウム(ZrO)とをらいかい乳鉢を用いて混合した。この混合物における、リチウムと、遷移金属であるニッケルコバルトマンガンと、タングステンと、ジルコニウムとの混合比(モル比)は1.15:1.0:0.005:0.005であった。この混合物を空気中で900℃で10時間焼成した後、粉砕することにより、W及びZrをその中に含有するリチウム遷移金属酸化物(正極活物質)を得た。そして、得られたリチウム遷移金属酸化物の元素分析をICP発光分析法により行ったところ、遷移金属全体に対するNi、Co、Mn、W及びZrの各元素のモル比はそれぞれ46.7、26.7、25.6、0.5及び0.5であった。
 次に、得られたリチウム遷移金属酸化物に、当該酸化物のLiを除く金属元素(遷移金属)の総量に対して0.5mol%のWO、及び当該酸化物の総量に対して5質量%のリン酸リチウム(LiPO)を混合して、WO及びLiPOが粒子表面に付着した正極活物質を得た。
 [正極の作製]
 上記正極活物質と、カーボンブラックと、ポリフッ化ビニリデン(PVDF)とを、91:7:2の質量比で混合した。当該混合物に分散媒としてN-メチル-2-ピロリドン(NMP)を添加して混練し、正極合材スラリーを調製した。次に、正極芯体であるアルミニウム箔上に正極合材スラリーを塗布し、塗膜を乾燥させて、アルミニウム箔に正極合材層を形成した。このように正極合材層を形成した正極芯体を所定のサイズに切り出し、圧延して、アルミニウムタブを取り付け、正極とした。
 上記のようにして得られた正極について、走査型電子顕微鏡(SEM)にて観察したところ、平均粒径が150nmの酸化タングステンの粒子、及び、平均粒径が100nmのリン酸リチウムの粒子が、リチウム含有遷移金属複合酸化物の表面に付着していることが確認された。但し、酸化タングステン及びリン酸リチウムは、その一部が導電剤と結着剤を混合する工程において正極活物質の表面から剥がれる場合があるので、正極活物質粒子に付着することなく、正極内に酸化タングステン及び/又はリン酸リチウムの一部が含まれている場合もある。また、SEMでの観察により、リン酸リチウムは、酸化タングステンに付着しているか、或いは、酸化タングステンの近傍に存在していることが確認された。
 [負極の作製]
 黒鉛粉末と、カルボキシメチルセルロース(CMC)と、スチレン-ブタジエンゴム(SBR)とを、98:1:1の質量比で混合し、水を添加した。これを混合機(プライミクス製、T.K.ハイビスミックス)を用いて攪拌し、負極合材スラリーを調製した。次に、負極芯体である銅箔上に負極合材スラリーを塗布し、塗膜を乾燥させた後、圧延ローラにより圧延した。こうして、銅箔の両面に負極合材層が形成された負極を作製した。
 [非水電解質の調製]
 エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)と、プロピオン酸メチル(MP)と、1,2-ジメトキシエタン(DME)を、30:15:40:5:10の体積比で混合した。当該混合溶媒に、LiPFを1.2mol/Lの濃度となるように溶解させ、さらに、ビニレンカーボネートを当該LiPF含有混合溶媒に対して0.3質量%の濃度となるように、また、LiBOB(Li(B(C))を当該LiPF含有混合溶媒に対して0.05mol/Lの濃度となるように、それぞれ溶解させた。
 [電池の作製]
 上記正極にアルミニウムリードを、上記負極にニッケルリードをそれぞれ取り付け、ポリエチレン製の微多孔膜をセパレータとして用い、セパレータを介して正極及び負極を渦巻き状に巻回することにより巻回型の電極体を作製した。この電極体を有底円筒形状の電池ケース本体に収容し、上記非水電解質を注入した後、ガスケット及び封口体により電池ケース本体の開口部を封口して、円筒型の非水電解質二次電池(電池A1)を作製した。
 <実験例2>
 正極活物質の作製工程において、リチウム含有遷移金属酸化物に混合するリン酸リチウムの量を当該酸化物の総量に対して2質量%としたこと、並びに、非水電解質の調製工程において、体積比がEC:MEC:DMC:MP:DME=30:20:40:5:5である混合溶媒を調製したこと以外は、実験例1と同様にして、円筒型の非水電解質二次電池(電池A2)を作製した。
 <実験例3>
 非水電解質の調製工程において、体積比がEC:MEC:DMC:MP:DME=30:10:40:5:15である混合溶媒を調製したこと以外は、実験例2と同様にして、円筒型の非水電解質二次電池(電池A3)を作製した。
 <実験例4>
 非水電解質の調製工程において、体積比がEC:MEC:DMC:MP:DME=30:5:40:5:20である混合溶媒を調製したこと以外は、実験例2と同様にして、円筒型の非水電解質二次電池(電池A4)を作製した。
 <実験例5>
 非水電解質の調製工程において、体積比がEC:DMC:MP:DME=30:35:5:30である混合溶媒を調製したこと以外は、実験例2と同様にして、円筒型の非水電解質二次電池(電池A5)を作製した。
 <実験例6>
 正極活物質の作製工程において、ニッケルコバルトマンガン複合酸化物、炭酸リチウム及び酸化ジルコニウムのみをらいかい乳鉢を用いて混合したこと以外は、実験例2と同様にして、円筒型の非水電解質二次電池(電池A6)を作製した。
 <実験例7>
 正極活物質の作製工程において、酸化タングステンをリチウム含有遷移金属酸化物に混合しなかったこと以外は、実験例2と同様にして、円筒型の非水電解質二次電池(電池A7)を作製した。
 <実験例8>
 正極活物質の作製工程において、ニッケルコバルトマンガン複合酸化物、炭酸リチウム及び酸化ジルコニウムのみをらいかい乳鉢を用いて混合し、タングステンをその中に含有しないリチウム含有遷移金属酸化物を作製したこと、並びに、非水電解質の調製工程において、体積比がEC:MEC:DMC:MP=30:25:40:5である混合溶媒を調製したこと以外は、実験例2と同様にして、円筒型の非水電解質二次電池(電池A8)を作製した。
 <実験例9>
 正極活物質の作製工程において、リン酸リチウムをリチウム含有遷移金属酸化物に混合しなかったこと以外は、実験例6と同様にして、円筒型の非水電解質二次電池(電池A9)を作製した。
 <実験例10>
 正極活物質の作製工程において、ニッケルコバルトマンガン複合酸化物、炭酸リチウム及び酸化ジルコニウムのみをらいかい乳鉢を用いて混合し、タングステンをその中に含有しないリチウム含有遷移金属酸化物を作製したこと、並びに、リン酸リチウムをリチウム含有遷移金属酸化物に混合しなかったこと以外は、実験例1と同様にして、円筒型の非水電解質二次電池(電池A10)を作製した。
 <実験例11>
 正極活物質の作製工程において、リン酸リチウムをリチウム含有遷移金属酸化物に混合しなかったこと、並びに、非水電解質の調製工程において、体積比がEC:MEC:DMC:MP=30:25:40:5である混合溶媒を調製したこと以外は、実験例1と同様にして、円筒型の非水電解質二次電池(電池A11)を作製した。
 <実験例12>
 正極活物質の作製工程において、リン酸リチウムをリチウム含有遷移金属酸化物に混合しなかったこと以外は、実験例1と同様にして、円筒型の非水電解質二次電池(電池A12)を作製した。
 <実験例13>
 正極活物質の作製工程において、リチウム含有遷移金属酸化物に混合するリン酸リチウムの量を当該酸化物の総量に対して2質量%としたこと、並びに、非水電解質の調製工程において、体積比がEC:MEC:DMC:MP=30:25:40:5である混合溶媒を調製したこと以外は、実験例1と同様にして、円筒型の非水電解質二次電池(電池A13)を作製した。
 [出力特性試験]
 上記で作製した電池A1~A13をそれぞれ用いて、25℃の温度条件下、電流値800mAで4.1Vになるまで定電流充電を行い、次いで、4.1Vで電流値が0.1mAになるまで定電圧充電を行った。その後、800mAで2.5Vになるまで定電流放電を行った。この定電流放電を行ったときの放電容量を、各二次電池の定格容量とした。
 次に、電池温度25℃において800mAで2.5Vになるまで定電流放電を行い、再度、定格容量の50%になるまで充電した。その後、充電終止電圧を4.3Vとしたときに10秒間の充電を行うことが可能な最大電流値から、各二次電池の充電深度(SOC)50%における常温回生値を以下の式より求めた。
 常温回生値(SOC50%)=(測定された最大電流値)×充電終止電圧(4.3V)
 実験例7の電池A9の回生特性結果を基準として、電池A1~A13の常温回生特性の比率を算出した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、リチウムニッケルコバルトマンガン複合酸化物に第5族/第6族元素及びリン酸リチウムを含む正極活物質であり、非水電解質がDMEを含む電池A1~A7は、電池A8~A13に比べ、常温回生が顕著に優れていた。
 これは、次のように説明できる。DMEは正極表面での充電時の酸化分解により移動性の分解生成物を生じる。また、正極に第5族/第6族元素が存在すると、当該第5族/第6族元素が非水電解質に溶出する。そして負極表面でDMEの分解生成物及び第5族/第6族元素が混合してなる被膜を形成する。このとき正極に第5族/第6族元素及びリン酸化合物の両方が存在すると、第5族/第6族元素の溶出及び析出形態が変化し、負極表面で低抵抗の被膜を形成することで、常温回生を大きく改善することが可能になると考えられる。
 図1は、本開示の非水電解質二次電池における正極及び負極の反応模式図である。正極表面でDMEが分解されて移動性の分解生成物を生じ、この分解生成物と、正極から溶出した第5族/第6族元素とが負極表面で低抵抗な負極被膜を形成すると考えられる。
 図2は、正極にリン酸化合物が存在しない従来技術における正極及び負極の反応模式図である。正極にリン酸化合物が存在しない場合、リン酸化合物によって、第5族/第6族元素の溶出が調整されないため、非水電解質にDMEを含有しても、低抵抗な負極被膜が形成されない。よって、非水電解質としてDMEを含有させても、DMEが無い場合と比べて常温回生が低下するか、または、ほとんど変化しないという結果となる(電池A9~電池A12)。
 また、正極に第5族/第6族の元素とリン酸化合物の両方が存在しても、非水電解質にDMEを含有しない場合(電池A8、電池A13)、リン酸化合物によって、第5族/第6族元素の溶出が助長されるものの、DME由来の分解生成物が形成されないため、負極表面には、低抵抗な被膜は形成されず、常温回生の改善は得られない。
 電池A2と電池A6~A7の比較から明らかなように、リチウム遷移金属酸化物に第5族/第6族の元素が固溶し、かつ、リチウム遷移金属酸化物の表面に第5族/第6族の元素が付着している正極活物質を用いると、常温回生を大きく改善することが可能である。これは、より低抵抗な被膜が負極上に形成されたためと考えられる。
 一方、本開示の電池A1~A7はいずれも常温回生を改善でき、さらに、DMEの含有量が非水電解質に含まれる溶媒の総量に対して5体積%以上20体積%以下である電池A1~A4では、常温回生の改善効果がより顕著であることが確認できた。DMEの含有量が上記の範囲にある場合、DMEの負極への共挿入を抑制し、電池特性を改善することができるためと考えられる。
 このように、正極板が、リチウム含有遷移金属酸化物と、第5族/第6族元素と、リン酸化合物とを含み、非水電解質が1,2-ジメトキシエタンを含むことで、非水電解質二次電池の常温回生を改善できることが確認された。
 以上、本開示の実施形態について説明したが、本開示はこれに限定されず、その技術思想の範囲内で種々の変形が可能である。
 本開示は、非水電解質二次電池に利用できる。

Claims (8)

  1.  正極板及び負極板がセパレータを介して積層された構造を有する電極体と、非水電解質と、を備える非水電解質二次電池であって、
     前記正極板は、リチウム含有遷移金属酸化物と、周期表の第5族又は第6族に属する元素と、リン酸化合物とを含み、
     前記非水電解質は1,2-ジメトキシエタンを含む
    非水電解質二次電池。
  2.  前記周期表の第5族又は第6族に属する元素が、前記リチウム含有遷移金属酸化物に遷移金属として含有されている、請求項1に記載の非水電解質二次電池。
  3.  前記リチウム含有遷移金属酸化物と前記周期表の第5族/第6族元素に属する元素が固溶し、かつ、前記周期表の第5族/第6族に属する元素は、前記リチウム含有遷移金属酸化物の表面に付着している、請求項1又は2に記載の非水電解質二次電池。
  4.  前記周期表の第5族又は第6族に属する元素がタングステンである、請求項1~3のいずれかに記載の非水電解質二次電池。
  5.  前記リン酸化合物がリン酸リチウムである請求項1~4のいずれか一項に記載の非水電解質二次電池。
  6.  前記1,2-ジメトキシエタンの含有量が、前記非水電解質に含まれる溶媒の総量に対して3体積%以上20体積%以下である、請求項1~5のいずれか一項に記載の非水電解質二次電池。
  7.  前記リチウム含有遷移金属酸化物がジルコニウムを含む、請求項1~6のいずれか一項に記載の非水電解質二次電池。
  8.  前記非水電解質にLi(B(C)を含む、請求項1~7のいずれか一項に記載の非水電解質二次電池。
PCT/JP2016/004273 2015-09-29 2016-09-20 非水電解質二次電池 WO2017056449A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/743,395 US20180212269A1 (en) 2015-09-29 2016-09-20 Nonaqueous electrolyte secondary battery
JP2017542727A JP6820517B2 (ja) 2015-09-29 2016-09-20 非水電解質二次電池
CN201680044090.1A CN107925129B (zh) 2015-09-29 2016-09-20 非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015191444 2015-09-29
JP2015-191444 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017056449A1 true WO2017056449A1 (ja) 2017-04-06

Family

ID=58423039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004273 WO2017056449A1 (ja) 2015-09-29 2016-09-20 非水電解質二次電池

Country Status (4)

Country Link
US (1) US20180212269A1 (ja)
JP (1) JP6820517B2 (ja)
CN (1) CN107925129B (ja)
WO (1) WO2017056449A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113186A (ja) * 2017-01-12 2018-07-19 トヨタ自動車株式会社 リチウムイオン二次電池用電解液
JP2018198193A (ja) * 2017-05-24 2018-12-13 住友金属鉱山株式会社 非水系電解質二次電池用正極電極、これに用いられる正極活物質、およびこれを利用した非水系電解質二次電池
JP2019079745A (ja) * 2017-10-26 2019-05-23 トヨタ自動車株式会社 リチウム二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023123028A1 (zh) * 2021-12-29 2023-07-06 宁德新能源科技有限公司 电化学装置和电子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302794A (ja) * 1997-04-30 1998-11-13 Matsushita Electric Ind Co Ltd リチウム二次電池
WO2010147236A1 (ja) * 2009-06-17 2010-12-23 ソニー株式会社 非水電解質電池、非電解質電池用正極、非水電解質電池用負極、非電解質電池用セパレータ、非水電解質用電解質および非電解質電池用セパレータの製造方法
JP2011003354A (ja) * 2009-06-17 2011-01-06 Sony Corp 正極活物質、正極活物質の製造方法および非水電解質電池
JP2011204666A (ja) * 2010-03-02 2011-10-13 Sony Corp 非水電解質電池および非水電解質
JP2013222693A (ja) * 2012-04-19 2013-10-28 Toyota Motor Corp 密閉型リチウム二次電池
WO2015098022A1 (ja) * 2013-12-27 2015-07-02 三洋電機株式会社 非水電解質二次電池

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070789A (ja) * 2008-09-26 2011-04-07 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011150873A (ja) * 2010-01-21 2011-08-04 Sanyo Electric Co Ltd 非水電解質二次電池
WO2012144021A1 (ja) * 2011-04-19 2012-10-26 トヨタ自動車株式会社 リチウム二次電池
JP5797993B2 (ja) * 2011-09-30 2015-10-21 富士重工業株式会社 非水電解質二次電池
JP5854279B2 (ja) * 2012-09-07 2016-02-09 トヨタ自動車株式会社 非水電解液二次電池の製造方法
JP6187168B2 (ja) * 2012-12-05 2017-08-30 日本ゼオン株式会社 電気化学素子の正極用複合粒子、電気化学素子、及び、電気化学素子の正極用複合粒子の製造方法
KR101601917B1 (ko) * 2014-02-11 2016-03-09 울산과학기술원 리튬 이차전지용 양극 활물질, 이들의 제조방법, 및 이를 포함하는 리튬 이차전지
KR102201317B1 (ko) * 2014-02-24 2021-01-11 삼성전자주식회사 이차전지용 음극 및 이를 포함하는 이차전지
JP6394418B2 (ja) * 2014-03-24 2018-09-26 日亜化学工業株式会社 非水系二次電池用正極活物質及びその製造方法
WO2016084346A1 (ja) * 2014-11-28 2016-06-02 三洋電機株式会社 非水電解質二次電池用正極及び非水電解質二次電池
US10388945B2 (en) * 2014-11-28 2019-08-20 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
WO2016103657A1 (ja) * 2014-12-26 2016-06-30 三洋電機株式会社 非水電解質二次電池
US10340525B2 (en) * 2015-01-30 2019-07-02 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
JP6567647B2 (ja) * 2015-02-25 2019-08-28 三洋電機株式会社 非水電解質二次電池
JPWO2016136212A1 (ja) * 2015-02-27 2017-12-07 三洋電機株式会社 非水電解質二次電池
CN107408722B (zh) * 2015-04-22 2019-09-27 松下知识产权经营株式会社 非水电解质二次电池
JP6284040B2 (ja) * 2015-08-07 2018-02-28 トヨタ自動車株式会社 リチウム二次電池用正極材料及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302794A (ja) * 1997-04-30 1998-11-13 Matsushita Electric Ind Co Ltd リチウム二次電池
WO2010147236A1 (ja) * 2009-06-17 2010-12-23 ソニー株式会社 非水電解質電池、非電解質電池用正極、非水電解質電池用負極、非電解質電池用セパレータ、非水電解質用電解質および非電解質電池用セパレータの製造方法
JP2011003354A (ja) * 2009-06-17 2011-01-06 Sony Corp 正極活物質、正極活物質の製造方法および非水電解質電池
JP2011204666A (ja) * 2010-03-02 2011-10-13 Sony Corp 非水電解質電池および非水電解質
JP2013222693A (ja) * 2012-04-19 2013-10-28 Toyota Motor Corp 密閉型リチウム二次電池
WO2015098022A1 (ja) * 2013-12-27 2015-07-02 三洋電機株式会社 非水電解質二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113186A (ja) * 2017-01-12 2018-07-19 トヨタ自動車株式会社 リチウムイオン二次電池用電解液
JP2018198193A (ja) * 2017-05-24 2018-12-13 住友金属鉱山株式会社 非水系電解質二次電池用正極電極、これに用いられる正極活物質、およびこれを利用した非水系電解質二次電池
JP7067037B2 (ja) 2017-05-24 2022-05-16 住友金属鉱山株式会社 非水系電解質二次電池用正極電極、これに用いられる正極活物質、およびこれを利用した非水系電解質二次電池
JP2019079745A (ja) * 2017-10-26 2019-05-23 トヨタ自動車株式会社 リチウム二次電池

Also Published As

Publication number Publication date
JP6820517B2 (ja) 2021-01-27
CN107925129A (zh) 2018-04-17
JPWO2017056449A1 (ja) 2018-08-16
US20180212269A1 (en) 2018-07-26
CN107925129B (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
JP6567647B2 (ja) 非水電解質二次電池
JPWO2018179885A1 (ja) 二次電池
JP6545702B2 (ja) 非水電解質二次電池
JP6811404B2 (ja) 非水電解質二次電池
US20170256801A1 (en) Nonaqueous electrolyte secondary battery
CN110088970B (zh) 非水电解质二次电池
JP6820517B2 (ja) 非水電解質二次電池
JP6851236B2 (ja) 非水電解質二次電池
US10553856B2 (en) Nonaqueous electrolyte secondary battery
JP6865398B2 (ja) 非水電解質二次電池
JP6920639B2 (ja) 非水電解質二次電池用正極
JP6799827B2 (ja) 非水電解質二次電池
JP6796815B2 (ja) 非水電解質二次電池
JP6728135B2 (ja) 非水電解質二次電池
US10868299B2 (en) Non-aqueous electrolyte secondary battery
WO2019044204A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542727

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15743395

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850629

Country of ref document: EP

Kind code of ref document: A1