WO2007064043A1 - 非水電解質電池及びその製造方法 - Google Patents

非水電解質電池及びその製造方法 Download PDF

Info

Publication number
WO2007064043A1
WO2007064043A1 PCT/JP2006/324496 JP2006324496W WO2007064043A1 WO 2007064043 A1 WO2007064043 A1 WO 2007064043A1 JP 2006324496 W JP2006324496 W JP 2006324496W WO 2007064043 A1 WO2007064043 A1 WO 2007064043A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
potential
lithium
active material
electrolyte battery
Prior art date
Application number
PCT/JP2006/324496
Other languages
English (en)
French (fr)
Inventor
Suguru Kozono
Ichiro Tanaka
Shigeki Yamate
Naohiro Tsumura
Yoshihiro Katayama
Toshiyuki Nukuda
Original Assignee
Gs Yuasa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gs Yuasa Corporation filed Critical Gs Yuasa Corporation
Priority to JP2007548043A priority Critical patent/JP5338073B2/ja
Priority to US12/085,934 priority patent/US8163423B2/en
Priority to CN2006800503146A priority patent/CN101351909B/zh
Publication of WO2007064043A1 publication Critical patent/WO2007064043A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a non-aqueous electrolyte battery that suppresses gas generation and has a small volume change.
  • nonaqueous electrolyte batteries represented by lithium ion secondary batteries have been put to practical use as electrochemical devices with high energy density.
  • a typical lithium ion secondary battery uses a positive electrode using a transition metal oxide as a positive electrode active material, a negative electrode using carbon as a negative electrode active material, and a lithium salt such as Li PF as an electrolyte salt.
  • the aqueous solvent an organic solvent such as carbonate is used.
  • most lithium ion insertions and desorptions occur mainly in carbon materials at a lower potential than the reductive decomposition potential of nonaqueous solvents. As a result, energy density is high, but there are problems in life and high temperature characteristics.
  • Patent Document 1 Japanese Patent No. 3 5 0 2 1 1 8
  • Non-Patent Document 1 Journal of Power Sources 146 (2005) 6367639
  • these non-aqueous electrolyte batteries using lithium titanate as a negative electrode active material have a problem of causing gas generation. These are points that are unlikely to be a problem for coin batteries and cylindrical batteries with extremely strong battery case cans.
  • the battery swells. As a problem.
  • gas generation can be suppressed by optimizing the carbonaceous material as a conductive agent (see Patent Document 2).
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 5- 1 0 0 7 70
  • Patent Document 3 Patent 3 2 6 9 3 9 6 Publication ....> Further> Improvement of cycle characteristics of lithium-ion battery using lithium-titanium titanate as a negative electrode active material, amorphous power as a negative active material for negative electrode There is also a proposal to mix one bon (see Patent Document 4).
  • 'Patent Document 4 Japanese Patent Application Laid-Open No. 2000-0 1 2 6 7 2 7
  • titanic acid is used as a secondary auxiliary material of the negative electrode.
  • Patent Document 5 proposes a proposal to mix lithium (see Patent Document 5).
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2000-0 6 3 3 94 Further, “Exterior Material, Non-aqueous Electrolyte Contained in the Exterior Material and Containing Chain Sulfur Eyes, and In the Exterior Material”
  • a non-aqueous electrolyte secondary comprising: a positive electrode that is housed and capable of occluding and releasing Li; and a negative electrode that is housed in the outer packaging material and includes a conductive agent containing a carbonaceous material and lithium titanate.
  • the invention of “battery” is known (see Patent Document 6).
  • Patent Document 7 states that "When a non-aqueous electrolyte secondary battery using lithium titanate as a negative electrode active material is used as a main power source of a portable device" Although there is no particular problem, there was a problem that the battery characteristics deteriorated when this non-aqueous electrolyte secondary battery was used as a memory backup power source with an operating voltage of around 3.0 V. When a non-aqueous electrolyte secondary battery as described above is used as the main power source of a portable device, the negative electrode is charged to near 0.1 V with respect to the lithium metal during charging, so that the surface of the negative electrode has ionic conductivity.
  • Non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte, wherein the conductive agent used for the negative electrode has a lattice constant C in the stacking direction determined by X-ray diffraction of 6.7 A or more and 6.8 A or less.
  • Non-aqueous electrolyte secondary battery characterized in that it is a graphitized vapor-grown carbon fiber. ”(Claim 1),“ 3.
  • Non-aqueous electrolyte secondary batteries with negative electrodes containing lithium titanate and other secondary active materials up to about 0.1 V on the basis of lithium metal It is not intended to suggest that the electricity.
  • Patent Document 7 Japanese Patent Laid-Open No. 2 005-3 1 7 5 09 Disclosure of Invention
  • the present invention uses a simple means for gas generation in a non-aqueous electrolyte battery having a negative electrode active material in which lithium ions are inserted and desorbed at a potential of 1.2 V or more with respect to a lithium potential as a negative electrode. It is a problem to suppress. Means for solving the problem
  • the present invention employs the following means in order to solve the above problems.
  • a non-aqueous electrolyte including an electrolyte salt and a non-aqueous solvent, and a non-aqueous electrolyte battery including a positive electrode and a negative electrode.
  • the main active material of the negative electrode is lithium ion at a potential of 1.2 V or more with respect to the lithium potential.
  • An active material that is inserted and desorbed, and the secondary active material of the negative electrode is an active material into which at least lithium ions are inserted at a potential lower than 1.2 V with respect to the lithium potential, and the main active material of the negative electrode
  • This is a non-aqueous electrolyte battery characterized in that the material contains lithium having a spin-lattice relaxation time ( ⁇ ,) of 1 second or longer, determined by solid-state Li-i NMR measurement.
  • the secondary active material of the negative electrode is based on the X-ray wide angle diffraction method. (002) The plane spacing is 0.34 nm or more and the crystallite size L c is 100 nm or less.
  • B ET The nonaqueous electrolyte battery according to any one of the above (1) to (3), characterized in that is a low-temperature calcined carbon material of 30 m 2 Z-g or less. '
  • the negative electrode potential should be lowered to 0.8 V or less with respect to the lithium potential at least once, so that the main active material of the negative electrode.
  • the battery is characterized in that the positive electrode potential is 4.5 V or less with respect to the lithium potential when the negative electrode potential is about 8 V or less with respect to the lithium potential.
  • Non-aqueous electrolyte battery is characterized in that the positive electrode potential is 4.5 V or less with respect to the lithium potential when the negative electrode potential is about 8 V or less with respect to the lithium potential.
  • a nonaqueous electrolyte battery equipped with a positive electrode and a negative electrode.
  • the secondary active material of the negative electrode is obtained by X-ray wide angle diffraction method with a (002) plane spacing of 0.34 nm or more, a crystallite size L c of 100 nm or less, and a BET specific surface area of 30 m 2
  • the lithium ion insertion / desorption reaction is performed with an electrochemical capacity of at least 10 OmAh / g or more per unit weight of the active material.
  • an active material in which at least lithium ions are inserted at a potential lower than 1.2 V with respect to the lithium potential means that the “lithium insertion” desorption reaction is 1.2 V or more. This is an active material that rarely occurs at a potential but is exclusively at a potential lower than 1.2 V with respect to the lithium potential. This is an active material in which the insertion / extraction reaction of lithium ions at a potential lower than 2 V is performed with an electrochemical capacity of at least l O OmAhZg or more per unit weight of the active material.
  • the negative electrode active material is obtained by solid Li i N MR measurement.
  • the spin-lattice relaxation time (T is not more than 1 second of lithium, but the non-aqueous electrolyte battery of the present invention has an electrochemical, chemical, physical formulation, etc. as described in (1) above.
  • the main active material of the negative electrode is characterized by the presence of lithium that is solid and has a spin-lattice relaxation time ( ⁇ ,) determined by i-NMR measurement of 1 second or more.
  • the low-temperature fired carbon material exhibits a gas absorption function once lithium ions are inserted, gas generation can be suppressed by selecting a low-temperature fired material as a secondary active material as described in (4) above.
  • the swelling of the nonaqueous electrolyte battery can be suppressed.
  • the gas-absorbing ability of the by-active material tends to be superior when the irreversibility of lithium ion insertion / desorption is high. Has been empirically recognized.
  • the “initial cycle” refers to charging / discharging performed during the manufacturing process of the non-aqueous electrolyte battery, and includes charging / discharging performed after sealing the non-aqueous electrolyte battery.
  • the non-aqueous electrolyte battery of the present invention uses an active material in which lithium ions are inserted and desorbed at a potential of 1.2 V or more with respect to the lithium potential as the main active material of the negative electrode.
  • an active material in which at least lithium ions are inserted at a potential lower than 1.2 V with respect to the lithium potential is used, and lithium clusters or lithium ions exist in advance on the secondary active material or the surface thereof.
  • ⁇ Adsorption makes it possible to have excellent life and high temperature characteristics, and to suppress gas bulging.
  • FIG. 1 is a diagram showing a measurement spectrum of the spin-lattice relaxation time ( ⁇ ,) of the negative electrode active material used in Example Battery 5.
  • FIG. 2 is a diagram showing the analysis result of the spin-lattice relaxation time ( ⁇ ,) of the negative electrode active material used in Example Battery 5 (assuming that Li having one relaxation time exists).
  • Fig. 3 is a diagram showing the analysis result of the spin-lattice relaxation time ( ⁇ ,) of the negative electrode active material used in Example Battery 5 (assuming that Li having two different relaxation times exists). .
  • the positive electrode active material is not limited in any way, but includes various oxides and sulfides.
  • manganese dioxide ⁇ 2
  • iron oxide ⁇ 2
  • copper oxide nickel oxide
  • lithium manganese composite oxide eg Li 2 0 4 or teeth 1, Mn_ ⁇ 2
  • lithium nickel complex ⁇ eg L i:., N i monument 2
  • lithium cobalt composite oxide '(L i x C O_ ⁇ ) lithium nickel cobalt complex Oxides (for example, i N i,.
  • lithium transition metal complex oxides eg, L i N i x C o y Mn, -y- , 0 2
  • spinel type lithium manganese nickel complex oxidation things Li i, Mn 2 - y N i y O
  • lithium phosphorus' oxide having an olivine structure Li i, F e P_ ⁇ 4, L i, F e, -. y Mn y PO L i x C o PO 4
  • iron sulfate Fe 2 (SO 4 ).
  • Vanadium oxide for example, V o 5
  • conductive polymer materials such as polyaurine and polypyrrole, disulfide. Polymer materials, organic materials such as carbon dioxide, carbon fluoride, and inorganic materials.
  • Examples of the conductive agent for the positive electrode include acetylene black, carbon black, and black lead.
  • Examples of the binder include polytetrafluoroethylene (PTFE), 'polyvinylidene fluoride (PVdF), and fluorine-based rubber.
  • the current collector of the positive electrode for example, aluminum or an aluminum alloy can be listed.
  • the main component negative electrode active material include those in which lithium ions are inserted and desorbed at a potential of 1.2 V or more with respect to the lithium potential.
  • molybdenum oxide, iron sulfide, titanium sulfide, lithium titanate, or the like can be used.
  • chemistry Lithium titanate represented by the formula L i, T i O (0 ⁇ x ⁇ 3) and having a spinel structure is preferred.
  • Examples of the conductive agent for the negative electrode include acetylene black, Rikiichi Bon black, black lead and the like.
  • Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluorine rubber. ⁇
  • the negative electrode current collector aluminum is alloyed with lithium at a potential of 0.4 V or less, and therefore, it is preferable to select a metal that does not alloy with lithium or an alloy thereof.
  • the metal or alloy include copper, nickel, and alloys thereof.
  • a material in which lithium ions can be inserted at a potential lower than 1.2 V with respect to the lithium potential can be cited.
  • a carbon material F e 2 0 3, L i F e 5 ⁇ s, like S I_ ⁇ 2, S nO.
  • a carbon material is preferable because it can be used as a conductive agent.
  • Carbon material is X-ray wide angle diffraction method. (002) plane spacing is 0.34 nm or more, crystallite size L c is 100. nm or less, B ET specific surface area is 30 m 2 ng or less The low-temperature fired carbon material is more preferable. ,.
  • the ratio of by-active materials is better when judging from the energy density. On the other hand, it is better to have more when judging from the gas absorption capacity. Therefore, the mass ratio of lithium titanate to the secondary active material is 95: 5 to 60:40, girls or 90:10 to 70:30, depending on the type and usage of the secondary active material. It is.
  • the main active material of the negative electrode in order to prevent swelling of the nonaqueous electrolyte battery due to gas generation, the main active material of the negative electrode is solid and the spin-lattice relaxation time ( ⁇ ,) determined by i-NMR measurement is 1 second or more. It is important that lithium is present. In this case, as described above, it is presumed that lithium clusters or lithium ions are present and adsorbed on the secondary active material of the negative electrode or on the surface thereof.
  • the treatment of the main active material and the secondary active material of the negative electrode can be achieved by electrochemical prescription as shown in the following examples, but chemical, physical prescription, etc. May be formed.
  • the present invention can be applied regardless of the type of the positive electrode active material.
  • the main active material of the electrode is made to have lithium whose spin-lattice relaxation time ( ⁇ ,) determined by solid-state Li-i NMR measurement is 1 second or more, and the negative or polar side active material or
  • the negative electrode potential should be set to 0.8 V at least once relative to the lithium potential before using the nonaqueous electrolyte battery (during the initial cycle). The method of lowering can be adopted.
  • the positive electrode contains a positive electrode active material containing lithium
  • the lithium source is supplied from the positive electrode. Therefore, after forming the electrode group including the positive electrode and the negative electrode, the negative electrode potential is By charging the lithium potential to 0.8 V or less with respect to the lithium potential, the main active material of the negative electrode has a spin lattice relaxation time ( ⁇ ,) determined by solid-state Li NMR measurement of 1 second or more.
  • the presence of lithium and the presence or adsorption of lithium clusters or lithium ions on the surface of the negative active material or on the surface of the negative electrode can be prevented.
  • the gas absorption function is obtained by inserting lithium ions into the main active material and the sub-active material of the negative electrode at least once, the initial cycle is changed to a non-aqueous electrolyte. This can be done after the battery is sealed.
  • the non-aqueous electrolyte battery of the present invention is preferably used in a region of a negative electrode potential nobler than 0.8 V with respect to the lithium potential, but by increasing the charging voltage in the initial cycle than in use, the negative electrode The potential can be lowered below 0.8 V with respect to the lithium potential.
  • the main active material and the secondary active material of the negative electrode are simultaneously at a potential of 0.8 V or less, and if the solvent of the nonaqueous electrolyte contains a nonaqueous solvent having a carbonate structure, a carbonate structure is formed on the surface of the negative electrode.
  • a cell with a lithium-containing electrode as a counter electrode is prepared separately, and the negative electrode potential is set to 0.8 V or less with respect to the lithium potential, so that the main active material of the negative electrode is solidified.
  • a method of taking out the negative electrode and assembling it into a non-aqueous electrolyte battery can also be adopted.
  • the separator examples include a porous film containing polyethylene, polypropylene, cellulose, or polyvinylidene fluoride (PVd F), and a synthetic resin nonwoven fabric.
  • the electrolyte salt for example, lithium perchlorate (L i C l monument 4), lithium hexafluorophosphate (L i PF 6), lithium tetrafluoroborate (L i BF, lithium hexafluoroarsenate ( Li A s F 6 ), Lithium trifluorometasulfonate (L i CF, SO 3 ), Lithium trifluoromethylsulfonylimilithium [L i N (CFSO 2 ) 2 ]
  • non-aqueous solvents include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC), dimethyl carbonate (DMC), and methyl ethyl carbonate.
  • Chain carbonates such as sulfonate (ME C) and jetyl carbonate (DEC), cyclic ethers such as tetrahydrofuran (THF) and 2-methyltetrahydrofuran (2Me THF), dimethoxetane (D ME) and other chain ethers, ⁇ 'butyrolacton
  • Example 1 Acetonitrile ( ⁇ ), sulfolane (SL) and the like can be mentioned.
  • SL sulfolane
  • nonaqueous electrolyte a room temperature molten salt containing lithium ions can also be used.
  • the following comparative batteries 1 to 4 and example batteries 1 to 4 were produced as nonaqueous electrolyte batteries.
  • Lithium transition metal composite oxide as the positive electrode active material (L i N i, «C o, / ⁇ , « ⁇ 2) powder 9'0 mass 0/0, acetylene black 5 wt% of polyvinylidene fluoride (PVd F) 5 Mass 0 /. Is added to N-Methylolpyrrolidone (NMP) to form a slurry, and this slurry is applied to both sides of a current collector made of 20 ⁇ m aluminum foil with an electrode density of 26 mg / cm 2 (current collector not included) After coating, the positive electrode was prepared by drying and pressing. .
  • NMP N-Methylolpyrrolidone
  • Negative electrode active material as the spinel type titanate lithium ⁇ (L i. T i 5 O 12) powder 85 mass 0/0, acetylene black 7 weight 0 /. , Polyvinylidene mold isopropylidene (PVd F) 8 Weight 0/0.
  • N-Mechinorepirori Don added to and mixed with (NMP) as a slurry, both surfaces of a current collector made of the slurries of copper foil of 10 ⁇ ⁇
  • the negative electrode was prepared by applying the electrode density to 27 mg / cm 2 (not including the current collector), drying and pressing.
  • the non-aqueous electrolyte use those propylene carbonate Natick Bok and Jefferies chill carbonate were dissolved lithium hexafluorophosphate in a mixed solvent obtained by mixing at the same integral product ratio (L i PF 6) at a concentration of 1 mol liters It was.
  • the positive electrode, the polyethylene porous separator, and the negative electrode were wound into a flat shape to form an electrode group.
  • the pole group was housed in an aluminum battery case having a height of 49.3 mm, a width of 33.7 mm, and a thickness of 5.17 mm. After 3.5 g of the non-aqueous electrolyte was vacuum-injected, the battery case was sealed and Comparative Battery 1 was produced. After standing overnight at 25 ° C, “Initial cycle” was carried out.
  • Comparative Example Battery 2 was prepared in the same manner as Comparative Example Battery 1 except that the negative electrode coating amount was changed to 21 mgZc (not including the current collector). Except for changing the charging voltage to 4. IV, the initial cycle was carried out in the same manner as in Comparative Example Battery 1, and the discharge capacity (battery capacity) at the third cycle was confirmed.
  • the positive electrode potential at the end of the 4.1 V charge of this battery was about 4.3 V and the negative electrode potential was about 0.0.2 V relative to the lithium potential.
  • Comparative battery 3 Comparative battery 3 was prepared in the same manner as Comparative battery 2, and the initial cycle was performed. Except that the charging voltage was set to 2.5 V at the 4th cidal, one cycle of charge / discharge was performed under the same conditions as the initial cycle, and the discharge capacity (battery capacity) was confirmed.
  • the positive electrode potential at the end of 2.5V charge of this battery was about 4.0V with respect to the lithium potential, and the negative electrode potential was about 1.5V.
  • the negative active material of lithium spinel titanate (L i T i O powder 70 wt%, the hard carbon powder 1 5 wt% of acetylene black 7 wt% of polyvinylidene fluoride (PVd F) 8 Weight 0/0, the coating weight Comparative Example Battery 4 was prepared in the same manner as Comparative Example Battery 1 except that the current was changed to 33 mg Zcm 2 (not including the current collector)
  • the hard carbon had a face spacing (d 002 ) of 0.380. nm, L c force S 1. l nm, BET ratio table
  • the area is 6.0m2Zg, and it functions as a secondary active material.
  • about 4.0V negative electrode potential is about 1. 5 V.
  • the initial cycle was performed in the same manner as in Comparative Example Battery 1, and the discharge capacity (battery capacity) in the third cycle was confirmed.
  • Example Battery 1 was prepared in the same manner as Comparative Example Battery 4 except that the negative electrode coating amount was changed to 2 SmgZcm 2 (not including the current collector). Except for changing the charging voltage to 4. IV, the initial cycle was carried out in the same manner as Comparative Battery 4, and the discharge capacity (battery capacity) at the third cycle was confirmed.
  • the positive electrode potential at the end of the 4.1 V charge of this battery was about 4.3 V and the negative electrode potential was about 0.2 V with respect to the lithium potential.
  • Example battery 2 was produced in the same manner as Example battery 1, and an initial cycle was performed. Charge and discharge for one cycle under the same conditions as the initial cycle, except that the charging voltage is set to 2.5 V in the fourth cycle, visually check the discharge capacity, and check the discharge capacity (battery capacity) did.
  • the positive electrode potential at the end of 2.5 V charge of this battery was about 4.0 vs. lithium potential, and the negative electrode potential was about 1.5 V.
  • Example battery 3 was produced in the same manner as Example battery 2 except that hard carbon was changed to soft carbon.
  • Soft carbon has a surface spacing (d. 2 ) of 0.349 ⁇ m Lc force Si 1.8 nm BET specific surface area of 11.5 m 2 Zg and functions as a secondary active material. Further, the discharge capacity (battery capacity) was confirmed in the same manner as in Example Battery 2.
  • Example battery 4 was prepared in the same manner as Example battery 2, except that the carbon was changed to graphite.
  • Graphite has an interplanar spacing (d. 2 ) of 0.335 nm L c of l OO nm or more and an 8-spin specific surface area of 0.1 Sn ⁇ Zg, and functions as a secondary active material. Further, the discharge capacity (battery capacity) was confirmed in the same manner as in Example Battery 2.
  • the charging voltage (V) at the time of charging performed immediately before the discharge capacity measurement, and the positive / negative potential at this voltage vs.
  • Example battery 2 Example battery 1 is lower than Comparative battery 3 ⁇ Example battery 2 with a lower battery voltage. It differs in terms of gas expansion after being left at high temperature. Therefore, in order to prevent gas bulging due to high temperature exposure, as in Example Battery 2, the battery voltage is lowered and the negative electrode potential is set to a potential no higher than 0.8 V relative to the lithium potential (about 1 5 V) is preferred. In addition, the battery of Example 4 showed a slight difference in gas expansion as compared with Examples 2 and 3. This is presumably due to the difference in the irreversible capacity between hard carbon and soft carbon.
  • the battery characteristics of the example batteries 1 to 4 in which gas expansion was suppressed are as excellent as the comparative batteries 1, 3, and 4.
  • the negative electrode was 1.5 V relative to the lithium potential, and the negative electrode surface of the battery at 0.2 V was observed with an X-ray photoelectron spectrometer (XP S).
  • XP S X-ray photoelectron spectrometer
  • a very thin film of about 5 nm was observed on the negative electrode surface of the battery at 1.5 V, whereas at least a carbonate structure was observed on the negative electrode surface of the 0.2 V battery. It was confirmed that a film with a thickness of 20 nm or more containing a component having a surface was present over the entire surface, and that there was no lithium titanate having no surface film.
  • Example battery 5 As the nonaqueous electrolyte battery, the following Example battery 5 and Comparative batteries 5 and 6 were produced. (Example battery 5)
  • Example battery 5 was produced in the same manner as Example battery 1, and the “initial cycle” was performed. After that, we measured solid and Li as follows, and calculated spin-lattice relaxation time (T).
  • the battery in the state of discharge was disassembled in an argon box, the negative electrode was taken out, the negative electrode mixture was peeled off from the negative electrode current collector, and subjected to solid high-resolution 7 Li i NMR measurement.
  • the solid high-resolution 7 Li-NMR measurement was performed by the MAS (Magnic Ang 1 e Sp i n i n g) method using Cema-g e t i cs CMX-300. Inf i n i t y (7.05 Tesla).
  • the measurement conditions were a sample tube diameter of 4 mm, room temperature (approximately 2.5 ° C), dry nitrogen gas atmosphere, resonance frequency 1 1 6. 1 996 480 MHz, sample rotation speed 13 kHz .
  • the inversion recovery method was used to measure the spin-lattice relaxation time ( ⁇ ,).
  • spin-lattice relaxation time
  • a 1 80 ° pulse is applied to reverse the ⁇ component of the magnetization, an appropriate waiting time is set, and the relaxation of the ⁇ component of the magnetization recovering toward equilibrium is observed.
  • a spectrum corresponding to the waiting time can be obtained.
  • the above-mentioned waiting time is changed in FIG.
  • An example of the spectrum obtained by the conversion is shown.
  • the observed peak top peak intensity is plotted against the waiting time, a relaxation curve is obtained, but the sample subjected to observation has ⁇ phases with various spin-lattice relaxation times ( ⁇ ,).
  • the relaxation curve is given by
  • ⁇ X U > j peak intensity of the spectrum in the j-th data
  • n number of components
  • a i 'peak intensity of the i-th component
  • .t waiting time
  • T i: i-th
  • the spin-lattice relaxation time of the component is used.
  • Comparative Example Battery 5 was produced in the same manner as Comparative Example Battery 1, and the “initial cycle” was performed. Thereafter, in the same manner as in Example Battery 5, solid Li-NMR measurement was performed to determine the spin-lattice relaxation time ( ⁇ ,).
  • Comparative Example Battery 6 was produced in the same manner as Comparative Example Battery 2, and the “initial cycle” was performed. Thereafter, in the same manner as in Example Battery 5, solid Li_NMR measurement was performed to determine the spin-lattice relaxation time ( ⁇ ,). (Comparative battery 7)
  • Example Battery 1 Comparative Example Battery 7 Except that the negative electrode active material was changed to 90% by weight of hard carbon powder, 10% by weight of polyvinylidene fluoride, and the coating amount to 20 mgZcm 2 (not including the current collector), the same as Example Battery 1 Comparative Example Battery 7 was produced.
  • the positive potential at the end of 4. IV charging of this battery was about 4.3 V with respect to the lithium potential, and the negative potential was about 0.2 V.
  • This battery was charged with a constant current and constant voltage of 4.1 V at 25 ° C and 100 mA for 20 hours. After standing for 30 minutes, it was terminated at a current of 10 OmA. A constant current discharge with a voltage of 2.5 V was performed. This charge / discharge cycle was performed three times in total.
  • Example Battery 5 (0.8 V or less), the peak position is 1 to 2 p pm and the spin-lattice relaxation time ( ⁇ ,) is 4.1 2 seconds (1 second or more).
  • the spin-lattice relaxation time (could be 7.68 8 seconds, 1.08 seconds (1 second or longer)
  • charging during the initial cycle was confirmed.
  • the spin-lattice relaxation time ( ⁇ ,) is 0.46 seconds and 0.26 seconds, which is less than 1.00 seconds.
  • Comparative Example Battery 7 using only hard carbon as the negative electrode active material the presence of i was confirmed. Even when the negative electrode potential at the end of charging at the initial cycle was 0.2 V with respect to the lithium potential, the presence of Li having a large spin-lattice relaxation time (T,) was not confirmed.
  • the spin-lattice relaxation time (T.,) is shorter than that of the comparative example battery 6 due to the effect of mixing with hard carbon, but 4 seconds Obviously, the above spin-lattice relaxation time ( ⁇ ⁇ ,) is observed, which clearly distinguishes it from Comparative Battery 7. In this way, L with a large spin-lattice relaxation time ( ⁇ ,) i can be considered to capture a part of Li existing in lithium titanate.
  • the large spin-lattice relaxation time ( ⁇ ,) of L i means that the mobility of L i is inferior, so that the negative electrode potential at the end of charging in the initial cycle is 0.2 V relative to the lithium potential.
  • ⁇ , The large spin-lattice relaxation time ( ⁇ ,) of L i means that the mobility of L i is inferior, so that the negative electrode potential at the end of charging in the initial cycle is 0.2 V relative to the lithium potential.
  • the negative electrode potential at the end of the charge in the initial cycle is set to 0.8 V or less with respect to the lithium potential.
  • a negative electrode potential at the end of charging of a non-aqueous electrolyte battery using a negative electrode active material in which lithium ions are inserted and desorbed at a potential of 1.2 V or higher, such as lithium titanate, is compared to the lithium potential. Since the presence of lithium (L i) is different from the case of 0.8 V or less as described above, the two can be clearly distinguished.
  • lithium titanate has an overwhelming advantage in terms of life and high temperature characteristics because lithium ions are inserted and desorbed in a relatively noble region. ..
  • the nonaqueous electrolyte battery of the present invention suppresses gas generation and suppresses an increase in battery thickness, it can be used as a flat battery, a battery using a metal resin laminate film as an exterior body, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

負極として、リチウム電位に対して1.2V以上の電位にてリチウムイオンが挿入・脱離する負極活物質を有する非水電解質電池のガス発生を抑制する。 電解質塩と非水溶媒を含む非水電解質、正極及び負極を備えた非水電解質電池において、前記負極の主たる活物質はリチウム電位に対して1.2V以上の電位にてリチウムイオンが挿入・脱離する活物質であり、前記負極の副活物質はリチウム電位に対して1.2Vより卑な電位にてリチウムイオンが少なくとも挿入される活物質であり、前記負極の主たる活物質に、固体Li−NMR測定により求めたスピン−格子緩和時間(T1)が1秒以上のリチウムが存在することを特徴とする。また、同様の非水電解質、正極及び負極(負極の主たる活物質及び副活物質)を備えた非水電解質電池の製造方法において、初期サイクル時に、少なくとも1回は負極電位をリチウム電位に対して0.8V以下に下げたことを特徴とする。

Description

明細書
非水電解質電池及びその製造方法 技術分野
本発明は、 ガス発生を抑制し、 体積変化の少ない非水電解質電池に関するもの である。 背景技術
近年、 エネルギー密度の高い電気化学デバイスとして、 リチウムイオン二次電 池に代表される非水電解質電池が実用化されている。 一般的なリチウムイオン二 次電池は、 正極活物質として遷移金属酸化物を用いた正極と、 負極活物質として 炭素を用いた負極、 電解質塩としては L i P F 等のリチウム塩が用いられ、 非 水溶媒としてはカーボネート系等の有機溶媒などが用いられている。 しかしなが ら、 炭素材料は非水溶媒の還元分解電位より卑.な電位にてほと.んどのリチウムィ オンの挿入 '脱離が主に起こる。 そのため、 エネルギー密度が高くなる反面、 寿 命、 高温特性などに課題が存在する。 上記課題の解決策として、 リチウムイオンの挿入 ·脱離が非水溶媒の還元分解 電位より貴な電位にて起こる負極活物質の提案がある。 これらは、 負極活物質と してリチウムイオンの挿入 ·脱離が 1: 5 V付近にて起こるチタン酸リチウムを 使用した.ものである (特許文献 1参照)。 これら負極を用いたリチウムイオン電 池は、 非常に優れた寿命、 高温特性などを有し、 数多くの論文 ·学会発表 (非特 許文献 1参照)、 製品化 (コイン型リチウムイオン二次電池(SONY)など) も行 なわれている。 また近年、 信頼性に優れるキャパシタにおいて、 エネルギー密度 向上のための負極材料としてのチタン酸リチウムも検討されている。
特許文献 1 :特許 3 5 0 2 1 1 8号公報
非特許文献 1 : Journal of Power Sources 146 (2005) 6367639 しかしながら、 これらチタン酸リチウムを負極活物質として用いた非水電解質 電池は、 ガス発生を起こす問題点が存在する。 これらは、 電槽缶が非常に強固で あるコイン電池や円筒型電池では問題になりにくい点であるが、 偏平型電池や、 外装体に金属樹脂ラミネートフイルムを用いた電池等においては、 電池膨れとし て問題となりやすい。 この解決策としては、 導電剤である炭素質物を最適化する ことでガス発生を抑制できるとの提案がある (特許文献 2参照)。
特許文献 2 :特開 2 0 0 5— 1 0 0 7 7 0号公報
' また、 チタン酸リチウムを負極活物質として用いたリチウムイオン電池の耐過 放電 ·耐過充電対策として、 負極の副活物質としてチタン酸リチウムより卑な電 位にてリチウムイオンを吸蔵する活物質を混合する提案もある (特許文献 3参 照)。
特許文献 3 :特許 3 2 6 9 3 9 6号公報 .. . さらに > チタン酸リ-チウムを負極活物質として用いたリチウムイオン電池のサ ィクル特性の改善として、 負極の副活物質としてアモルファス力一ボンを混合す る提案もある (特許文献 4参照)。 ' 特許文献 4 :特開 2 0 0 1 - 1 2 6 7 2 7号公報 また、 炭素材料を負極活物質として用いたリチウムイオン電池の過放電対策と して、 負極の副洁物質としてチタン酸リチウムを混合する提案もある (特許文献 5参照)。
特許文献 5 :特開 2 0 0 4 - 6 3 3 9 4号公報 さらに、 「外装材と、 前記外装材内に収容され、 鎖状サルフアイ 卜を含有する 非水電解質と、 前記外装材内に収納され、 L iを吸蔵放出可能な正極と、 前記外 装材内に収納され、 炭素質物を含有する導電剤とチタン酸リチウムとを含む負極 を具備することを特徴とする非水電解質二次電池。」 の発明が公知である (特 許文献 6参照) この特許文献 6には、 「この添加剤は、 負極電位約 1. 3 Vにて負極表面に緻 密かつ安定な皮膜を形成し、 その後、 非水電解質二次電池の通常電圧範囲では安 定に存在する」 こと、 「表 ffi分析により確認したところ、 この皮膜は、 L i 2 S O を主体とし、 L i Fなどが混在する無機皮膜と、 ROsO 2 L i と、 ROCO 2 L i、 R = CH (CH) CH 2あるいは R = CH — CH などから成る有機皮 膜で構成されていた」 ことが記載され (段落 003 1、 0033、 01 1 4、 0 1 23)、 「導電性を高め、 集電体との接触抵抗を抑えるための導電剤として、 炭素質物を用いる。 本発明で使用する添加剤は、 炭素質物表面に緻密で安定な皮 膜を形成することができる。 この皮膜は、炭素質物と非水電解質の反応を阻害し、 ガス発生抑制効果が高く、 高温サイクル特性に優れる。」 と記載されているが、
「炭素質物」 は導電剤であり、 活物質ではないから、 後述する実施例 (比較例電 池 2、 3) に示すように、 ガス発生抑制効果は十分ではなく、 しかも、 「L i SO 「L i F」 などのリチウムイオンを有する皮膜を形成するためには、 「鎖 状サルフアイ ト」 という特定の添加剤を含有する非水電解質を使用しなければな らないも であった。 - 特許文献 6 :特開 2005 _ 3 1 7508号公報 また、 特許文献 7には、 「チタン酸リチウムを負極活物質に用いた非水電解質 二次電池を携帯機器の主電源として用いる場合には特に問題がないが、 この非水 電解質二次電池を、 作動電圧が 3. 0V前後のメモリーバックアップ用の電源と して使用した場合に電池特性が低下するという問題があった。 この理由は、 上記 のような非水電解質二次電池を携帯機器の主電源として用いる場合、 充電時には 上記の負極がリチウム金属基準で 0. 1 V付近まで充電されるため、 この負極の 表面にイオン伝導性が良好な被膜が形成され、 この被膜により負極と非水電解液 とが反応するのが抑制され、 非水電解液が分解したり、 負極の構造が破壊された りするのが防止される。 これに対して、この非水電解質二次電池を作動電圧が 3. 0V前後のメモリーバックアップ用の電源として使用する場合、 3. 0V前後の 定電圧状態を長期間維持しながら 1〜 5 Α程度の微小電流で充電が行われ、 上 記の負極がリチウム金属基準で 0. 8 V付近までしか充電されないため、 負極の 表面に上記のような被膜が形成されず、 負極と非水電解液とが反応して、 非水電 解液が分解したり、 負極の構造が破壊されたりするためであると考えられる。」
(段落 0 0 0 6〜0 0 0 7 照) と記載されているが、'特許文献 7に記載の発明 は、 「正極と、 チタン酸リチウムからなる負極活物質と導電剤とを含む負極,と、 非水電解質とを備えた非水電解質二次電池において、 負極に用いる前記の導電剤 が、 X線回折で求められる積層方向の格子定数 C 。が 6 . 7 A以上 6 . 8 A以下 になった黒鉛化された気相成長炭素繊維であることを特徴とする非水電解質二次 電池。」' (請求項 1 ) であり、 「3 . O V前後の定電圧状態を長期間維持しながら 1〜5 A程度の微小電流で充電」 (段落 0 0 0 8 ) .を行うことを前提に、 チタ ン酸リチウムを活物質とする負極の 「導電剤」 を改良するものであるから、 チタ ン酸リチウムと他の副活物質を含有する負極を備えた非水電解質二次電池をリチ ゥム金属基準で 0 . 1 V付近まで充電することを示唆するものではない。
特許文献 7 :特開 2 0 0 5— 3 1 7 5 0 9号公報 発明の開示
発明が解決しょうとする課題
しかしながら、 後述する実施例にも示すように、 導電剤を最適化してもガス発 生を抑制することは不十分であり、 特に高温領域にてガス発生が顕著となる。 負 極活物質としてチタン酸リチウムを用いた場合のリチウムイオン二次電池のガス 発生は、 少なくともチタン酸リチウムと関係して起こっていると推察され、 チタ ン酸リチウム負極を改善しないことには、 十分な抑制はできないものと考えられ る。 .
また、 チタン酸リチウムの副活物質とじて炭素材料などを昆合する提案も数多 くなされている力 これらの混合によりガス膨れが加速される場合も少なくなレ、。 本発明は、 負極として、 リチウム電位に対して 1 . 2 V以上の電位にてリチウ ムイオンが挿入 ·脱離する負極活物質を有する非水電解質電池のガス発生を、 簡 便な手段を用いて抑制することを課題とする。 課題を解決するための手段
本発明は、 上記の課題を解決するために、 以下の手段を採用する。
(1) 電解質塩と非水溶媒を含む非水電解質、 正極及び負極を備えた非水電解質 電池において、 前記負極の主たる活物質はリチウム電位に対して 1. 2V以上の 電位にてリチウムイオンが挿入 ·脱離する活物質であり、 前記負極の副活物質は リチウム電位に対して 1. 2 Vより卑な電位にてリチウムイオンが少なくとも挿 入される活物質であり、 前記負極の主たる活物質に、 固体 L i一 NMR測定によ り求め'たスピン一格子緩和時間 (Τ,) が 1秒以上のリチウムが存在することを 特徴とする非水電解質電池である。
(2) 前記負極表面にカーボネート構造を有する被膜が存在することを特徴とす る前記 (1) の非水電解質電池である。
(3) 前記負極の主たる活物質がスピネル型チタン酸リチウムであることを特徴 とする前記 (1) 又は (2) の非水電解質電池である。
(4) 前記負極の副活物質は、 X線広角回折法に'よる (002) 面の面間隔が 0. 34 nm以上で結晶子サイズ L cが 1 00 nm以下.、 B ET.比表面積が 30 m2Z—g以下の低温焼成炭素材料であることを特徴とする前記 (1) 〜 (3) のいず れか一項の非水電解質電池である。 '
.(5) 非水電解質電池を使用する前に、 少なぐとも 1回は負極電位をリチウム電 位に対して 0. 8 V以下に下げて、 前記負極の主たる活物質に、 固体 L i— NM R測定により求めたスピン一格子緩和時間 (Τ,) が 1秒以上のリチウムを存在 させたことを特^とする前記 (1) 〜 (4) のいずれか一項の非水電解質電池で ある。 ·
(6) 負極電位がリチウム電位に対してひ. 8 V以下になったときに正極電位は リチウム電位に対して 4. 5 V以下となる電池設計になっていることを特徴とす る前記 (5) の非水電解質電池である。
(7) 前記負極の集電体が銅、 ニッケル又はそれらの合金であることを特徴とす る前記 (1) 〜 (6) のいずれか一項の非水電解質電池である。
(8) 非水電解質電池を、 リチウム電位に対して 0. 8 Vより貴な負極電位の領 域にて使用することを特徴とする前記 (1) 〜 (7) のいずれか一項の非水電解 質電池である。
(9) 電解質塩と非水溶媒を含む非水電解質、 正極及び負極を備えた非水電解質 電池の製造方法において、 前記負極の主たる活物質として、 リチウム電位に対し て 1. 2 V以上の電位にてリチウムイオンが挿入 ·脱離する活物質を用い、 前記 負極の副活物質として、 リチウム電位に対して 1. 2 Vより卑な電位にてリチウ ムイオンが少なくとも挿入される活物質を用い、 初期サイクル時に、 少なくとも 1回ば負極電位をリチウム電位に対して 0. 8 V以下に下げたことを特徴とする 非水電解質電池の製造方法である。
(1 0) 初期サイクル時に、 少なくとも 1回は負極電位をリチウム電位に対して 0. 8 V以下に下げて、 前記負極の主たる活物質に、 固体 L i NMR測定によ り求めたスピン一格子緩和時間 (Τ,) が 1秒以上のリチウムを存在させたこと を特徴とする前記 (9) の非水電解質電池の製造方法である。 '
(1 1) 初期サイクル時に、 少なくとも 1回は負極電位をリチウム電位に対して 0. 8 V以下に下げて'、 前記負極表面にカーボネート構造を有する被膜を存在ざ せたことを特徴とする前記 (9) 又は (10) 'の非水電解質 ¾池の製造方法であ る。 · '
(1 2)前記負極の主たる活物質がスピネル型チタン酸リチウムである前記( 9 ) 〜 (1 1) のいずれか一項の非水電解質電池の製造方法である。
(1 3) 前記負極の副活物質は、 X線広角回折法による (002) 面の面間隔が 0. 34 nm以上で結晶子サイズ L cが 1 00 nm以下、 BET比表面積が 30 m2Zg以下の低温焼成炭素材料であることを特徴とする前記 (9) 〜 (1 2) のいずれか一項の非水電解質電池の製造方法である。
(14) 初期サイクル時に充電電圧を使用時よりも高くすることにより、 負極電 位をリチウム電位に対して 0. 8 V以下に下げたことを特徴とする前記 (9) 〜
(1 3) のいずれか一項の非水電解質電池の製造方法である。
(1 5) 負極電位がリチウム電位に対して 0. 8 V以下となったときに正極電位 はリチウム電位に対して 4. 5 V以下となることを特徴とする前記 (14) の非 水電解質電池の製造方法である。 本発明において、 「リチウム電位に対して 1. 2 V以上の電位にてリチウムィ オンが挿入 '脱離する活物質」 とは、 「リチウムイオンの挿入 '脱離反応が、 1. 2 Vより卑な電位ではほとんど起こらず、 リチウム電位に対して 1. 2V以上の 電位にて専らなされる活物質」 のことであり、 より具体的には、 「リチウム電位 に対して 1. 2 V以上の電位においてリチウムイオンの挿入 ·脱離反応が活物質 の単位重量当たり少なくとも 10 OmAh/g以上の電気化学的容量を伴ってな される活物質」 のことである。 また、 「リチウム電位に対して 1. 2Vより卑な 電位に'てリチウムイオンが少なく とも挿入される活物質」 とは、 「リチウムィォ ンの揷入 '脱離反応が、 1. 2 V以上の電位ではほとんど起こらず、 リチウム電 位に対して 1. 2 Vより卑な電位にて専らなされる活物質」 のことであり、 より 具体的には、 .「リ'チウム電位に対して 1. 2 Vより卑な電位においてリチウムィ オンの挿入 ·脱離反応が活物質の単位重量当たり少なくとも l O OmAhZg以 上の電気化学的容量を伴ってなされる活物質」 のことである。
1. 2 V以上の電位にてリチウムイオンが挿入 ·脱離する負極活物質を用いて いる従来 非水電解質電池では、 後述するように、 負極活物質に、 固体 L i一 N MR測定により求めたスピン一格子緩和時間 (T が 1秒以上のリチウムが存 在していないが、 本発明の非水電解質電池は、 前記 (1) のように、 電気化学的、 化学的、 物理的処方などにより、 負極の主たる活物質に、 固体し i一 NMR測定 により求めたスピン一格子緩和時間 (Τ,) が 1秒以上のリチウムを存在させた ことを特徴とする。 また、 負極には、 主たる活物質と副活物質が存在するが、 主 たる活物質と副活物質の両方を含有する負極を作製すれば、 該負極に対する電気 化学的、 化学的、 物理的処方などの影響は、 必然的に負極の副活物質に'も及ぶか ら、 負極の主たる活物質におけるリチウムの存在状態を規定することにより、 非 水電解質電池の特徴を規定したものである。
低温焼成炭素材料は一度リチウムイオンが挿入されることによってガス吸収機 能が発現するため、 前記 (4) に記載したように、 副活物質として低温焼成材料 を選択することにより、 ガス発生を抑制し、 非水電解質電池の膨れを抑制するこ とができる。 また、 本発明者の知見によれば、 副活物質のガス吸収能は、 リチウ ムイオンの揷入 ·脱離に関する不可逆性が高いものの方が優れる傾向のあること が経験的に認められている。
前記 (5 )、 (6 )、 (9 )、 ( 1 0 )、 (1 3 )、 (1 4 ) に記載したように、 負極 電位を 0 . 8 V以下に下げることにより、電気化学的に、負極の主たる活物質に、 固体 L i 一 N M R測定により求めたスピン一格子緩和時間 (Τ , ) が 1秒以上の リチウムを存在させることができる。 この場合、 リチウム源は正極活物質から供 給され、 電気化学的処方の影響は、 負極の副活物質にも及ぶから、 副活物質ある いはその表面にリチウムクラスター又はリチウムイオンが存在 ·吸着しているこ とが推定される。 このとき、 負極の主たる活物質.及び副活物質は、 同時に 0 . 8 V以下の電位となり、 これにより、 負極表面にカーボネート構造を有する被膜が 形成される。
なお、 「初期サイクル」 とは、 非水電解質電池の製造工程中に行う充放電をい うが、 非水電解質電池の封口後に行う充放電を含む。 発明の効果
本発明の非水電解質電池は、 負極の主たる活物質として、 電位がリチウム電位 に対して 1 . 2 V以上の電位にてリチウムイオンが挿入 ' ·脱離する活物質を用レ、、 負極の副活物質として、 電位がリチウム電位に対して 1 . 2 Vより卑な電位にて リチウムイオンが少なくとも挿入される活物質を用い、 予め副活物質あるいはそ の表面にリチウムクラスター又はリチウムイオンが存在 ·吸着しているので、 優 れた寿命、' 高温特性などを有するとともに、 ガス膨れが抑制されるという効果を 奏する。 図面の簡単な説明
図 1は、 実施例電池 5に用いた負極活物質のスピン一格子緩和時間 (Τ , ) の 測定スぺク トルを示す図である。
図 2は、 実施例電池 5に用いた負極活物質のスピン一格子緩和時間 (Τ , ) の 解析結果を示す図 (一つの緩和時間を有する L iが存在すると仮定した場合) で ある。 図 3は、 実施例電池 5に用いた負極活物質のスピン一格子緩和時間 (Τ ,) の 解析結果を示す図 (二つの異なる緩和時間を有する L iが存在すると仮定した場 合) である。 発明を実施するための最良の形態
以下、 正極、 負極、 セパレータ、 非水電解質について説明する。
まず、 正極活物質としては、 何ら限定されるものではないが、 種々の酸化物、 硫化物などが挙げられる。 例えば、 二酸化マンガン (Μη〇2)、·酸化鉄、 酸化銅、 酸化ニッケル、 リチウムマンガン複合酸化物 (例えば L i
Figure imgf000011_0001
204又はし1 、 Mn〇 2)、 .リチウムニッケル複合獰化物 (例えば L i :、 N iひ 2)、 リチウムコバ ルト複合酸化物 '(L i x C o〇 )、 リチウムニッケルコバルト複合酸化物 (例え ば i N i ,.y C o y O )、 リチウム遷移金属複合酸化物 (例えば L i N i XC o y Mn ,-y-,0 2)、 スピネル型リチウムマンガンニッケル複合酸化物 (L i , Mn 2-y N i y O 、 オリビン構造を有するリチウムリン'酸化物 ( L i .、 F e P〇 4、 L i , F e ,-y Mn y PO L i x C o P O 4など)、 硫酸鉄 ( F e 2 ( S O 4). 、 バナ ジゥム酸化物 (ί歹 ijえば V o 5) などが挙げられる。 また、 ポリアユリンゃポリ ピロールなどの導電性ポリマー材料、ジスルフィ ド系ポリマー材料、'ィォゥ '(s)、 フッ化カーボンなどの有機材料及び無機材料も挙げられる。
正極の導電剤としては、 例えば、 アセチレンブラック、 カーボンブラック、 黒 鉛等を挙げることができる。 結着剤としては、 例えばポリテトラフルォロェチレ ン (P T F E)、 'ポリフッ化ビニリデン (PV d F)、 フッ素系ゴムなどが挙げ られる。
正極の集電体としては、 例えば、 アルミニウムあるいはアルミニウム合金を挙 げることができる。 主成分の負極活物質としては、 リチウム電位に対して 1. 2 V以上の電位にて リチウムイオンが挿入 ·脱離するものが挙げられる。 例えば、 酸化モリブデン、 硫化鉄、 硫化チタン、 チタン酸リチウムなどを用いることができる。 特に、 化学 式 L i 、 T i O (0≤ x≤ 3) で表され、 スピネル型構造を有するチタン酸 リチウムが好ましい。
負極の導電剤と.しては、 例えば、 アセチレンブラック、 力一ボンブラック、 黒 鉛等を挙げることができる。 結着剤としては、 例えば、 ポリテトラフルォロェチ レン (PTF E)、 ポリフッ化ビ-リデン (PV d F)、 フッ素系ゴムなどが挙 げられる。 ·
負極の集電体としては、 アルミニウムは 0. 4 V以下の電位においてリチウム' と合金'化するため、 リチウムと合金化しない金属又はその金属との合金を選択す ることが好ましく、 このような金属又は合金として銅、 ニッケル又はそれらの合 金を挙げることができる。
副成分の負極活物質としては、 リチウム電位に対して 1. 2 Vより卑な電位に てリチウムイオンが挿入可能なものが挙げられる。 たとえば、 炭素材料、 F e 2 03、 L i F e 5s、 S i〇2、 S nOなどが挙げられる。 特に、 炭素材料は導電 剤としても使用可能であることから好ましい。,炭素材料としては、 X線広角回折 法による.( 002 ) 面の面間隔が 0. 34 n m以上で結晶子サイズ L cが 1 00. nm以下、 B ET比表面積が 30 m 2ノ g以下の低温焼成炭素材料がより好まし い。 . , . 副活物質 割合は、 エネルギー密度の面から判断すると少ないほうがよい。 一 方、 ガス吸収能から判断すると多いほうがよい。 したがって、 副活物質材料の種 類や使用状況などにもよるがチタン酸リチウムと副活物質の質量比は、 95 : 5 〜60 : 40、 女子ましくは 90 : 1 0〜70 : 30程度である。 本発明においては、 ガス発生による非水電解質電池の膨れを防止するために、 負極の主たる活物質に、 固体し i一 NMR測定により求めたスピン一格子緩和時 間 (Τ,) が 1秒以上のリチウムが存在していることが重要である。 この場合、 上記のように負極の副活物質あるいはその表面にはリチウムクラスター又はリチ ゥムイオンが存在♦吸着していると推定される。
このような負極の主たる活物質及び副活物質の処理は、 以下の実施例に示すと おり、 電気化学的処方により達成することができるが、 化学的、 物理的処方など によって形成してもよい。 本発明は、 正極活物質の種類によらず適用することが できる。
電気化学的処方により、 食極の主たる活物質に、 固体 L i 一 N M R測定により 求めたスピン一格子緩和時間 (Τ , ) が 1秒以上のリチウムを存在させ、 負,極の 副活物質あるいはその表面にリチウムクラスター又はリチウムイオンを存在 ·吸 着させるためには、 非水電解質電池を使用する前 (初期サイクル時) に、 少なく とも 1回は負極電位をリチウム電位に対して 0 . 8 V以下に下げるという方法が' 採用できる。
負極の副活物質あるいはその表面にリチウムクラスター又はリチウムイオンを 充分に存在 '吸着させるためには、 0 . 3 V以下に下げることがより好ましい。 非水電解質電池においては、 正極がリチウムを含有する正極活物質を含んでい れば、 リチウム源は正極から供給されるので、 正極及び負極を含む極群を形成し た後で、 負極電位がリチウム電位に対して 0 . 8 V以下に下がるような充電を行 うことにより、 負極の主たる活物質に、 固体 L i NMR測定により求めたスピ ンー格子緩和時間 (Τ , ) が 1秒以上のリチウムを存在させ、 負極の副活物質あ る-いはその表面にリチウムクラスター又はリチウムイオンを存在 ·吸着させるこ とがでぎる。 ■ . ' · しかも、 本発明においては、 負極の主たる活物質及び副活物質に少なくとも 1 回のリチウムイオンの挿入を行うことにより、 ガス吸収機能が発 ¾するから、 初 期サイクルを非水電解質電池の封口後に行うことができる。
本発明の非水電解質電池は、 リチウム電位に対して 0 . 8 Vより貴な負極電位 の領域にて使用することが好ましいが、 初期サイクル時に充電電圧を使用時より も高くすることにより、 負極電位をリチウム電位に対して 0 . 8 V以下に下げる ことができる。
このとき、 負極の主たる活物質及び副活物質は、 同時に 0 . 8 V以下の電位と なり、 非水電解質の溶媒がカーボネート構造を有する非水溶媒を含んでいれば、 負極表面にカーボネート構造を有する被膜が形成される。
また、 リチウムを含む電極を対極としたセルを別途用意し、 負極電位をリチウ ム電位に対して 0 . 8 V以下とすることにより、 負極の主たる活物質に、 固体し i一 NMR測定により求めたスピン一格子緩和時間 (Τ,) が 1秒を超えるリチ ゥムを存在させ、 負極の副活物質あるいはその表面にリチウムクラスター又はリ チウムイオンを存在 ·吸着させる工程を行い、 その負極を取り出して非水電解質 電池に組み上げる方法も採用できる。 . セパレータとしては、 例えば、 ポリエチレン、 ポリプロピレン、 セルロース、 またはポリフッ化ビニリデン (PVd F) を含む多孔質フィルム、 合成樹脂製不 織布等を挙げることができる。 電解質塩としては、 例えば、 過塩素酸リチウム (L i C lひ 4)、 六フッ化リン 酸リチウム (L i PF 6)、 四フッ化ホウ酸リチウム (L i BF 、 六フッ化砒素 リチウム (L i A s F 6)、 ト.リフルォロメタスルホン酸リチウム (L i CF , S O 3)、ビス トリフルォロメチルスルホニルイミ トリチウム [L i N (C F S O 2)2] などのリチウム塩が挙げられる。 非水溶媒 (有機溶媒) としては、 例えば、 エチレンカーボネート (EC)、 プ ロピレン.カーボネー ト (P C)、 ビニレンカーボネー ト (VC) などの環状カー ネート、 ジメチルカーボネート (DMC)、 メチルェチルカ一ボネート (ME C)、 ジェチルカーボネート (DEC) などの鎖状カーボネート、 テ トラヒ ドロ フラン .(THF)、 2メチルテ トラヒ ドロフラン (2Me THF) などの環状ェ —テル、 ジメ トキシェタン (DME) などの鎖状エーテル、 γ」ブチロラク トン
(BL) ァセトニトリル (ΑΝ)、 スルホラン (S L) 等を挙げることができる。 非水電解質として、リチウムイオンを含有した常温溶融塩も用いることができる。 以下、 実施例及び比較例を挙げて本発明を詳細に説明するが、 これらは本発明 を何ら限定するものではない。 実施例 I
非水電解質電池として、 以下の比較例電池 1〜 4及び実施例電池 1〜 4を作製 した。
(比較例電池 1 )
く正極の作製〉
正極活物質としてリチウム遷移金属複合酸化物(L i N i ,« C o ,/ΒΜΠ ,« Ο 2) 粉末 9'0質量0 /0、 アセチレンブラック 5質量%、 ポリフッ化ビニリデン (PVd F) 5質量0 /。を N—メチノレピロリ ドン (NMP) に加えて混合してスラリーとし、 このスラリ一を 20 μ mのアルミニウム箔からなる集電体の両面に電極密度が 2 6mg/cm2 (集電体含まず) になるように塗布した後、 乾燥しプレスするこ とにより正極を作製した。 .
く負極の作製〉 ' .
負極活物質としてスピネル型チタン酸リチウ厶 (L i . T i 5 O 12) 粉末 85 質量0 /0、 アセチレンブラック 7質量0 /。、 ポリフッ化ビ リデン (PVd F) 8質 量0 /0を. N—メチノレピロリ ドン (NMP) に加えて混合してスラリーとし、 このス ラリーを 10 μ ηιの銅箔からなる集電体の両面に電極密度が 27mg/cm2 (集 電体含まず) になるように塗布した後、 乾燥しプレスすることにより負極を作製 した。
<非水電解質の作製〉 ' .
非水電解質には、 プロピレンカーボネー卜及びジェチルカーボネートを同一体 積比で混合した混合溶媒に六フッ化リン酸リチウム (L i PF 6) を 1モル リ ットルの濃度で溶解したものを用いた。
<電池の作製〉
前記正極、ポリエチレン製の多孔質セパレータ及び前記負極を偏平状に捲回し、 極群とした。 前記極群を、 高さ 49. 3 mm, 幅 33. 7 mm, 厚みが 5. 1 7 mmのアルミニウム製の電槽缶に収納した。 前記非水電解質 3. 5 gを真空注液 した後、電槽缶を封口し、比較例電池 1を作製した。 25 °Cにて一晩放置した後、 「初期サイクル」 を実施した。 即ち、 25°Cにて、 電流値 1 00mA、 電圧 2. 5 Vの定電流定電圧充電を 20時間実施し、 30分の放置後、電流値 10 OmA、 終止電圧 1. 0 Vの定電流放電を実施した。 この電池の 2. 5 V充電末時の正極 電位はリチウム電位に対して約 4. 0V、 負極電位は約 1. 5 Vであった。 上記 充放電を 3サイクル繰り返した際(初期サイクル)の 3サイクル目の放電容量(電 池容量) を確認した。 ·
(比較例電池 2 )
負極塗工量を 2 1 mgZc (集電体含まず) に変更した以外は、 比較例電 池 1 と同様にして比較例電池 2を作製した。 充電電圧を 4. I Vに変更した以外 は、 比較例電池 1と同様にして初期サイクルを実施し、 3サイクル目の放電容量 (電池容量) を確認した。 なお、 この電池の 4. 1 V充電末時の正極電位はリチ ゥム電位に対して約 4. 3V、 負極電位は約.0. .2Vであった。
(比較例電池 3) - 比較例電池 2と同様にして比較例電池 3を作製し、 初期サイクルを実施した。 4サイダル目に充電電圧を 2. 5 Vとしたことを除いて初期サイクルと同 の条 件で 1サイクルの充放電を行い、 放電容量 (電池容量) を確認した。 なお、 この 電池の 2. 5V充電末時の正極電位はリチウム電位に対して約 4. 0V、 負極電 位は約 1. 5 Vであった。
(比較例電池 4) ■ .
負極活物質をスピネル型チタン酸リチウム (L i T i O 粉末 70質量 %、 ハードカーボン粉末 1 5質量%、 アセチレンブラック 7質量%、 ポリフッ化 ビニリデン (PVd F) 8質量0 /0、 塗工量を 33m gZ cm2 (集電体含まず) と変更した以外は、 比較例電池 1と同様にして比較例電池 4を作製した。 ハ一ド カーボンは、 面間隔 (d 002) が 0. 380 nm、 L c力 S 1. l nm、 BET比表 面積が 6. 0m2Zgのものであり、 副活物質として機能する。 この電池の 2. 5 V充電末時の正極電位はリチウム電位に対して約 4. 0V、 負極電位は約 1. 5 Vであった。 比較例電池 1と同様に初期サイクルを実施し、 3サイクル目の放 電容量 (電池容量) を確認した。
(実施例電池 1 ) , 負極塗工量を 2 SmgZcm2 (集電体含まず) に変更した以外は、 比較例電 池 4と同様にして、 実施例電池 1を作製した。 充電電圧を 4. I Vに変更した以 外は、 比較例電池 4と同様にして初期サイクルを実施し、 3サイクル目の放電容 量 (電池容量) を確認した。 なお、 この電池の 4. 1 V充電末時の正極電位はリ チウム電位に対して約 4. 3 V、 負極電位は約 0. 2Vであった。
(実施例電池.2)' .
実施例電池 1と同様にして実施例電池 2を作製し、 初期サイクルを実施した。 4サイクル目に充電電圧を 2. 5 Vとしたことを除いて初期サイクルと同一の条 件で 1サイクルの充放電を行い、 放電容量を視リ定し、 放電容量 (電池容量) を確 認した。 なお、 この電池の 2. 5 V充電末時の正極電位はリチウム電位に対して 約 4. 0 、 負極電位は約1. 5 Vであった。
(実施例電池 3)
ハードカーボンをソフ トカーボンに変更した以外は、 実施例電池 2と同様にし て実施例電池 3を作製した。 ソフトカーボンは、 面間隔 (d 。。2) が 0. 349 η m Lc力 S i . 8 nm BET比表面積が 1 1. 5m2Zgのものであり、 副活 物質として機能する。 また、 実施例電池 2と同様にして放電容量 (電池容量) を 確認した。
(実施例電池 4 )
ドカーボンを黒鉛に変更した以外は、 実施例電池 2と同様にして実施例電 池 4を作製した。 黒鉛は、 面間隔 (d。。2) が 0. 335 n m L cが l O O nm 以上、 8£丁比表面積が0. Sn^Zgのものであり、 副活物質として機能する。 また、 実施例電池 2と同様にして放電容量 (電池容量) を確認した。 比較例電池 1〜 3及び実施例電池 1〜4について、 放電容量測定直前に行った 充電における充電電圧 (V)、 及び、 この電圧のときの正 ·負極電位 (v s . L i ZL i +)、 並びに、 初期サイクル時の充電電圧 (V:)、 及び、 この電圧のとき の正 '負極電位 (v s. L i ZL i +) を表 1にまとめた。 これらの電池を多数個用意し、 20時間の定電流定電圧充電を行うことにより、 充電深度 (SOC) を 100%に調整した。 該定電流定電圧充電において、 温度 は 25'°Cとし、 充電電流は 10 OmAとし、 充電電圧は、 前記放電容量測定直前 に行った充電における充電電圧の値を採用した。 '次に、 全ての電池の中央部厚み を測定してから、 それぞれの電池を 25, 45, 60°Cの各温度の恒温槽に分け て入れ、 2週間放置した。 放置後、 全ての電池を取り出し、 25°Cにて 1 日放置 した後、 再び全ての電池の中央部厚みを測定した。 次いで、 同じく 25°Cにて、 電流 100mA、 終止電圧 1. 0 Vの定電流放電を行うことにより、 残存放電容 量を測定した。表 2に、放置前後の電池中央部厚みの変化量を記号で示す。 また、 放電前の放電容量に対する放置後の残存放電容量の百分率 (%) を示す。 なお、 製造工程中に行った初期サイクルの前後においても電池中央部厚み増加量を測定 したので、 この結果を併せて表 2に示す。 ■ 表 1
Figure imgf000018_0001
表 2
ΟΔ X
Figure imgf000019_0001
+0.05mm以下
+0.05〜+0.2mm
+0.2mm以上 表 1及び表 2から明らかなように、 副活物質としての炭素材料 (ハードカーボ ン、 ソフ トカーボン、 黒鉛) に少なくとも 1回以上リチウムイオンの挿入を行つ た電池 (実施例電池 1〜4 ) のみ、 初期サイクル後の電池厚み変化が大幅に抑制 されていることが分かる。 さらに、 実施例電池 i〜4の初期サイクルにおいて負 極電位が 0 . 2 Vにな'つたものは、 全ての電池において放置期間内のガス膨れが 非常に少ない。 一方、'初期サイクルにおいて負極電位を 0 . 2 Vにしても、 副活 物質としての炭素材料がない比較例電池 2、 3は、 負極電位が 1 . ·5 Vの比較例 電池 1と比較してガス膨れが若干改善されているが、 高温にて放置後すると.ガス 膨れが顕著であった。 また、 電池電圧が高い (負極電位を 0 . 2 Vのままで使用 した) 比較例電池 2 ·実施例電池 1は、 それぞれ電池電圧の低い比較例電池 3 · 実施例電池 2と 較して、 高温にて放置後のガス膨れの点で相違する。 したがつ て、 高温放置に伴 ガス膨れを防止するためには、 実施例電池 2のように、 電池 電圧を低く、 負極電位をリチウム電位に対して 0 . 8 Vより貴な電位 (約 1 . 5 V) にて使用することが好ましい。 また、 実施例電池 4は、 実施例電池 2、 3と 比較するとガス膨れに若干の相違が見られた。 これは、 ハードカーボン ' ソフ ト カーボンと黒鉛の不可逆容量の差に起因するものと推察している。 また、 表 2の 残存容量の比較から明らかなように、 ガス膨れが抑制された実施例電池 1〜4の 電池特性は、 比較例電池 1、 3、 4と同程度に優秀である。 初期サイクルにおいて、 負極を充電末時、 リチウム電位に対して 1. 5Vとし た電池と、 0. 2 Vとした電池の負極表面を X線光電子分光分析装置 (XP S) によって観察した。 1. 5 Vとした電池の負極表面にほ、 一部 5 nm程度の非常 に薄い被膜が観察されたのに対して、 0. 2 Vとした電池の負極表面には、 少な くともカーボネート構造を有する成分を含有する、 20 nm以上の被膜が全面に わたって存在しており、 また表面被膜を有さないチタン酸リチウムは存在しない ことが確認された。
'実施例 Π
非水電解質電池として、以下の実施例電池 5及び比較例電池 5、 6を作製した。 (実施例電池 5 )
実施例電池 1と同様にして、 実施例電池 5.を作製し、 「初期サイクル」 を実施 した。 その後、 以下のように、 固体, L i一 測定を行い、 スピン一格子緩和 時間 (T を求めた。'
く固体 L i— NMR測定〉
アルゴンボックス内にて上記放電末状態の電池を解体して負極を取り出し、 負 極集電体から負極合剤を剥離し、 固体高分解能 7 L i一 NMRの測定に供した。 固体高分解能 7 L i—NMRの測定は、 Ch ema g n e t i c s社 CMX— 300 . I n f i n i t y (7. 05テスラ) を用い、 MAS (Ma g i c An g 1 e S p i n n i n g) 法により行りた。 測定条件は、 試料管径 4 mmプロ ーブを用い、 室温 (約 2.5°C)、 乾燥窒素ガス雰囲気下、 共鳴周波数 1 1 6. 1 996480 MH z、 試料回転数 1 3 k H zとした。
スピン一格子緩和時間 (Τ,) の測定には、 反転回復法を用いた。 本測定では 1 80° パルスを照射して磁化の Ζ成分を反転させ、適当な待ち時間を設定して、 磁化の ζ成分が平衡に向かって回復する緩和を観測する。
上述の待ち時間を何段階か変化させると、 その待ち時間に対応したスぺク トル が得られる。 一例として、 実施例電池 5について、 図 1に、 上述の待ち時間を変 化させて得られたスぺク トルの一例を示す。 観測されたピーク トップのピーク強 度を、 待ち時間に対してプロッ トすると、 緩和曲線が得られるが、 観測に供した 試料が種々のスピン—格子緩和時間 (τ,) を有する η個の相成分から構成され ている多成分系ならば、 緩和曲線は次式で示される。
<Xo > i二 A i xexp (- t/Ti i)
Figure imgf000021_0001
ここで、 〈XU〉 j : j番目のデータにおけるスペク トルのピーク強度、 n : 成分数、 A i : 'i番目の成分のピーク強度、. t :待ち時間、 T, i : i番目の成 分のスピン一格子緩和時間とする。
n、 A i、 丁,、 i'を決定するために、 待ち時間とピーク強度のプロットをシ ンプレックス法による非線型最適化を行った。 数個の成分数を仮定し、 各成分の スピン一格子緩和時間の値とその相対量を変数とする方法 (ヒストグラムによる. 解析) を採用した。 一例として、 実施例電池 5について、 図 2に、 n= lとして 解析した結果、 図 3に、 n = 2として解析した結果を示す。 n = 2.として解析し た場合の方が、 プロッ トと計算結果が良く一致しているため、 n = 2 (二つの異 なる緩和時間を有する L iが存在すると仮定) とした。
(比較例電池 5) .
比較例電池 1と同様にして、 比較例電池 5を作製し、 「初期サイクル」 を実施 した。 その後、'実施例電池 5と同様に、 固体 L i— NMR測定を行い、 スピン一 格子緩和時間 (Τ,) を求めた。
(比較例電池 6)
比較例電池 2と同様にして、 比較例電池 6を作製し、 「初期サイクル」 を実施 した。 その後、 実施例電池 5と同様に、 固体 L i _NMR測定を行い、 スピン一 格子緩和時間 (Τ,) を求めた。 (比較例電池 7 )
負極活物質をハ一ドカーボン粉末 90質量%、 ポリフッ化ビニリデンを 10質 量%、 塗工量を 2 0mgZc m2 (集電体含まず) と変更した以外は、 実施例電 池 1と同様にして、 比較例電池 7を作製した。 この電池の 4. I V充電末時の正 極電位はリチウム電位に対して約 4. 3V、 負極電位は約 0. 2Vであった。 こ の電池を、 25°C、 1 00 mAの電流値にて 4. 1 Vの定電流定電圧充電を 20 時間実施し、 30分の放置後、 電流値 10 OmAの電流値にて、 終止電圧 2. 5 Vの定電流放電を実施した。 この充放電サイクルを計 3サイクル実施した。 その 後、 実施例電池 5と同様に、 固体 L i一 NMR測定を行い、 スピン一格子緩和時 間 (T ,を求めた。 実施例電池 5、 比較例電池 5〜 7について、 スピン一格子緩和時間 (T!) の 測定結果を表 3に示す。
表 3 .
Figure imgf000022_0001
固体 L i _NMR測定の結果、 各試料とも 0 p pm付近にピークが観測され、 チタン酸リチウム及びハ一ドカーボンに含まれている L iイオン成分のピークの 化学シフトは、 ほぼ同じであることが示されたが、 比較例電池 7のハードカーボ ンに含まれる L iイオン成分は、 チタン酸リチウムに含まれる L iイオン成分と 比較して、. ブロードなピーク形状をとるものであった。 スピン一格子緩和時間 (TJ については、 表 3に示されるように、 負極の主 たる活物質としてチタン酸リチウムを用い、 副活物質としてハードカーボンを用 い、 初期サイクル時における充電末の負極電位をリチウム電位に対して 0. 2V
(0. 8V以下) とした実施例電池 5においては、 ピーク位置 1〜2 p pmで、 スピン一格子緩和時間 (Τ,) が 4. 1 2秒 ( 1秒以上) という大きな値の L i の存在が確認され、 また、 負極の活物質としてチタン酸リチウムを用い、 初期サ イクル時における充電末の負極電位をリチウム電位に対して 0. 2V (0. 8 V 以下) "とした比較例電池 6においては、 スピン一格子緩和時間 (丁 が 7. 6 8秒、 1. 08秒 (1秒以上) という大きな値の L iの存在が確認されたのに対 し、 初期サイクル時における充電末の負撣電位がリチウム電位に対して 1. 5V である比較例電池 5においては、 スピン一格子緩和時間 (Τ,) が 0. 46秒、 0. 26秒という 1. 00秒未満の L iの存在しか確認されなかった。 さらに、 負極活物質としてハードカーボンのみを用いた比較例電池 7においては、 初期サ イクル時における充電末の負極電位をリチウ 電位に対して 0. 2 Vとしても、 スピン一格子緩和時間 (T ,) が大きい L iの存在が確認されなかった。 実; ¾例 電池 5においては、 ハードカーボンと混合された影響から力、 'チタン酸リチウム 単体を負極活物質とした比較例電池 6よりも、 スピン一格子緩和時間 (T.,) は 短くなつているが、 4秒以上のスピン一格子緩和時間 (Τ,) が観測されるから、 明らかに、 比較例電池 7とは、 区別されるものである。 このことかち、 スピン一 格子緩和時間 (Τ,) の大きな L iは、 チタン酸リチウム中に存在する L iの一 部を捉えている 考えることができる。
L iのスピン一格子緩和時間 (Τ,) が大きいということは、 L iの運動性が 劣ることを意味するから、 初期サイクル時における充電末の負極電位がリチウム 電位に対して 0. 2 Vという深い充電を行うことにより、 一部の L i原子がチタ ン酸リチウムの結晶の深い場所に入り込んだ結果、 そのし i原子周辺の結晶構造 が微視的に変化してしまレ、、 その L iが取り囲まれて動きにくくなつたものと推 察される。
そして、チタン酸リチウムとハードカ一ボンの両方を含有する負極を作製して、 上記のような深放電を行えば、 その影響は必ずチタン酸リチウムとハードカーボ ンの両方に及ぶから、. チタン酸リチウム中の L iの状態を規定することにより、 上記の負極が特定されているといえる。
また、 非水電解質電池の負極活物質として炭素材料 (カーボン) を用いた場合 にも、 初期サイクル時における充電末の負極電位をリチウム電位に対して 0 . 8 V以下とすることにより、 負極表面に被膜が生成するが、 チタン酸リチウム等の 1 . 2 V以上の電位にてリチウムイオンが挿入 ·脱離する負極活物質を用いる非 水電解質電池の充電末の負極電位をリチウム電位に対して 0 . 8 V以下とした場 合とは、 上記のようにリチウム (L i ) の存在状態が相違するから、 両者は、 明 確に区別し得るものである。
さらに、 炭素材料は非水溶媒の還元電位よりも卑な領域にてリチウムイオンの 挿入 脱離が行われるために、 寿命、 高温特性に限界がある。 一方、 チタン酸リ チウムは比較的貴な領域にてリチウムイオンの挿入 ·脱離が行われるために、 寿 命、 高温特性の面では圧倒的に優位である。 ..
したがって、 ガス発生による電池膨れが抑 された非水電解質電池を提供する には、 チタン酸リチウム負極表面にある厚みを持ったリチウムィオン導電性を有 する被膜を存在させ、 その後、 0 . 8 Vより貴な負極電位の領域にて使用するこ とが重要であると推察している。 しかしながら、この被膜生成時にはガス発生し、 このガス成分を吸収することは不可能である。 対応策として、 ドライ雰囲気での 開放状態での充放電により、 ガスを放出させることなども可能ではあるが、 工業 的には非常に不利である。
一方、 副活物貧に少なくとも 1回のリチウムイオンの挿入を行うことにより、 ガス吸収機能が発現し、 ガス膨れが防止された。 また、 温度を上げた場合におい ても、 顕著な電池厚み変化は観測されなかった。 これは、 副活物質に少なくとも 1回のリチウムイオンの挿入を行うことにより、 チタン酸リチウムのリチウムィ オンの挿入 脱離電位である約 1 . 5 Vにおいても、 副活物質あるいはその表面 には、 不可逆容量の一部であるリチウムクラスターあるいはリチウムイオンが存 在 '吸着し、 これらがガス吸収機能を有しているものと推察している。 この方法 は、 工業的にも非常に有利である。 産業上の利用可能性
本発明の非水電解質電池は、 ガス発生が抑制され、 電池厚み増加が抑制される ので、 偏平型電池や、 外装体に金属樹脂ラミネートフイルムを用いた電池等とし て使用することができる。

Claims

請求の範囲
1. 電解質塩と非水溶媒を含む非水電解質、 正極及び負極を備えた非水電解質電 池において、 前記負極の主たる活物質はリチウム電位に対して 1. 2 V以上の電 位にてリチウムイオンが挿入 ·脱離する活物質であり、 前記負極の副活物質はリ チウム電位に対して 1. 2 Vより卑な電位にてリチウムイオンが少なく とも挿入 される活物質であり、 前記負極の主たる活物質に、 固体 L i一 NMR測定により 求めた'スピン一格子緩和時間 (Τ,) が 1秒以上のリチウムが存在することを特 徴とする非水電解質電池。
2. 前記負樺表面にカーボネー卜構造を有する被膜が存在することを特徴とする 請求の範囲第 1 に記載の非水電解質電池。
3. 前記負極の主たる活物質がスピネル型チタン酸リチウムであることを特徴と する請求の範囲第 1項に記載の非水電解質電池。 '
4. 前記負極の副活物質は、 X線広,角回折法による (002) 面の面間隔が 0.
34 nm以上で結晶子サイズ L。が 1 00 nm以下、 BET比表面積が 3 OmV g以下の低温焼成炭素材料であることを特徴とする請求の範囲第 1項に記載の非 水電解質電池。 '
5. 非水電解質電池を使用する前に、 少なくとも 1回は負極電位をリチウム電位 に対して 0. 8V以下に下げて、 前記負極の主たる活物貧に、 固体 L i一 NMR 測定により求めたスピン—格子緩和時間 (Τ,) が 1秒以上の'リチウムを存在さ せたことを特徴とする請求の範囲箄 1項に記載の非水電解質電池。
6. 負極電位がリチウム電位に対して 0. 8 V以下になったときに正極電位ばリ チウム電位に対して 4. 5 V以下となる電-池設計になっていることを特徴とする 請求の範囲第 5項に記載の非水電解質電池。
7. 前記負極の集電体が銅、 ニッケル又はそれらの合金であることを特徴とする 請求の範囲第 1項に記載の非水電解質電池。
8. 非水電解質電池を、 リチウム電位に対して 0. 8 Vより貴な負極電位の領域 にて使用することを特徴とする請求の範囲第 1項〜第 7項のいずれか一項に記載 の非水電解質電池。 .
9. 電解質塩と非水溶媒を含む非水電解質、 正極及び負極を備えた非水電解質電 池の製造方法において、 前記負極の主たる活物質として、 リチウム電位に対して. 1. 2 V以上の電位にてリチウムイオンが挿入 '脱離する活物質を用い、 前記負 極の副活物質として、 リチウム電位に対して 1. 2 Vより卑な電位にてリチウム イオンが少なくとも挿入される活物質を用い、 初期サイクル時に、 少なくとも 1 回は負極電位をリチウム電位に対して 0. 8 V以下に下げたことを特徴とする非 水電解質電池の製造方法。
10.初期サイクル時に、少なく とも 1回は負極電位をリチウム電位に対して 0. 8 V以下に下げて、 前記負極の主たる活物質に、 固体 L i—NMR測定により求 めたスピン—格子緩和時間 (Τ,) が 1秒以上のリチウムを存在させたことを特 徴とする請求の範囲第 9項に記載の非水電解質電池の製造方法。
1 1.初期サイクル時に、少なくとも 1回は負極電位をリチウム電位に対して 0. 8 V以下に下げて、 前記負極表面にカーボネート構造を有する被膜を存在させた ことを特徴とする請求の範囲第 9項に記載の非水電解質電池の製造方法。
1—2. 前記負極の主たる活物質がスピネル型チタン酸リチウムである請求の範囲 第 9項に記載の非水電解質電池の製造方法。
1 3. 前記負極の副活物質は、 X線広角回折法による (002) 面の面間隔が 0. 34 n m以上で結晶子サイズ Leが 100 n m以下、 BET比表面積が 3 Om2/ g以下の低温焼成炭素材料であることを特徴とする請求の範囲第 9項に記載の非 水電解質電池の製造方法。
14. 初期サイクル時に充電電圧を使用時よりも高くすることにより、 負極電位 をリチウム電位に対して 0. 8 V以下に下げたことを特徴とする請求の範囲第 9 項〜第 1 3項のいずれか一項に記載の非水電解質電池の製造方法。
1 5. 負極電位がリチウム電位に対して 0. 8 V以下となったときに正極電位は リチウム電位に対して 4. 5 V以下となることを特徴とする請求の範囲第 14項 に記載の非水電解質電池の製造方法。
PCT/JP2006/324496 2005-12-02 2006-12-01 非水電解質電池及びその製造方法 WO2007064043A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007548043A JP5338073B2 (ja) 2005-12-02 2006-12-01 非水電解質電池及びその製造方法
US12/085,934 US8163423B2 (en) 2005-12-02 2006-12-01 Non-aqueous electrolyte battery and method of manufacturing the same
CN2006800503146A CN101351909B (zh) 2005-12-02 2006-12-01 非水电解质电池及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005349067 2005-12-02
JP2005-349067 2005-12-02

Publications (1)

Publication Number Publication Date
WO2007064043A1 true WO2007064043A1 (ja) 2007-06-07

Family

ID=38092369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324496 WO2007064043A1 (ja) 2005-12-02 2006-12-01 非水電解質電池及びその製造方法

Country Status (4)

Country Link
US (1) US8163423B2 (ja)
JP (1) JP5338073B2 (ja)
CN (1) CN101351909B (ja)
WO (1) WO2007064043A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096470A (ja) * 2009-10-29 2011-05-12 National Institute Of Advanced Industrial Science & Technology 全固体リチウムイオン二次電池における負極材および全固体リチウムイオン二次電池の製造方法
WO2013084302A1 (ja) * 2011-12-06 2013-06-13 トヨタ自動車株式会社 全固体電池
JP2013159555A (ja) * 2012-02-08 2013-08-19 Samsung Electronics Co Ltd リチウムチタン酸化物、その製造方法、それを含む負極及びそれを採用したリチウム電池
WO2013145721A1 (ja) * 2012-03-30 2013-10-03 パナソニック株式会社 非水電解質二次電池およびその製造方法
JP2014078442A (ja) * 2012-10-11 2014-05-01 Toyota Central R&D Labs Inc リチウムイオン電池及びその使用方法
JP2015037054A (ja) * 2013-08-14 2015-02-23 新神戸電機株式会社 リチウムイオン二次電池
JP2015079742A (ja) * 2013-09-11 2015-04-23 株式会社東芝 非水電解質電池及び非水電解質電池の製造方法
WO2015115243A1 (ja) * 2014-01-31 2015-08-06 日東電工株式会社 非水電解液二次電池
WO2015115242A1 (ja) * 2014-01-31 2015-08-06 日東電工株式会社 非水電解液二次電池
US10553856B2 (en) 2015-11-30 2020-02-04 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510674A (ja) 2006-11-15 2010-04-02 エナジーツー・インコーポレイテッド 電気2重層キャパシタ装置
US9337484B2 (en) * 2009-05-13 2016-05-10 GM Global Technology Operations LLC Electrodes having a state of charge marker for battery systems
EP2448748A4 (en) 2009-07-01 2016-04-06 Basf Se ULTRA-PUR SYNTHETIC CARBON MATERIALS
US8916296B2 (en) 2010-03-12 2014-12-23 Energ2 Technologies, Inc. Mesoporous carbon materials comprising bifunctional catalysts
CN103261090A (zh) 2010-09-30 2013-08-21 艾纳G2技术公司 储能颗粒的增强式装填
US9269502B2 (en) 2010-12-28 2016-02-23 Basf Se Carbon materials comprising enhanced electrochemical properties
CN102170018A (zh) * 2011-03-31 2011-08-31 东莞新能源科技有限公司 锂离子二次电池
US20120262127A1 (en) 2011-04-15 2012-10-18 Energ2 Technologies, Inc. Flow ultracapacitor
WO2012167117A2 (en) 2011-06-03 2012-12-06 Energ2 Technologies, Inc. Carbon-lead blends for use in hybrid energy storage devices
EP2811559B1 (en) * 2012-02-01 2018-10-03 Nissan Motor Co., Ltd Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery cathode, and non-aqueous electrolyte secondary battery
WO2013120011A1 (en) 2012-02-09 2013-08-15 Energ2 Technologies, Inc. Preparation of polymeric resins and carbon materials
WO2014143213A1 (en) 2013-03-14 2014-09-18 Energ2 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
WO2014201275A2 (en) * 2013-06-12 2014-12-18 Energ2 Technologies, Inc. High capacity hard carbon materials comprising efficiency enhancers
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
JP6665121B2 (ja) 2014-03-14 2020-03-13 グループ14・テクノロジーズ・インコーポレイテッドGroup14 Technologies, Inc. 無溶媒中におけるゾル−ゲル重合のための新規方法、及びゾル−ゲル重合由来の可変炭素構造の作製
US20190097222A1 (en) 2015-08-14 2019-03-28 Energ2 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
KR102637617B1 (ko) 2015-08-28 2024-02-19 그룹14 테크놀로지스, 인코포레이티드 극도로 내구성이 우수한 리튬 인터칼레이션을 나타내는 신규 물질 및 그의 제조 방법
KR20230128140A (ko) 2017-03-09 2023-09-01 그룹14 테크놀로지스, 인코포레이티드 다공성 스캐폴드 재료 상의 실리콘 함유 전구체의 분해
EP3859860A4 (en) * 2018-09-27 2022-09-21 Murata Manufacturing Co., Ltd. LITHIUM-ION SECONDARY BATTERY
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290863A (ja) * 1985-05-10 1987-04-25 Asahi Chem Ind Co Ltd 二次電池
JPS63121259A (ja) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd 二次電池
JP2000348725A (ja) * 1999-06-08 2000-12-15 Toyota Motor Corp リチウムイオン2次電池
JP2001216962A (ja) * 2000-02-01 2001-08-10 Toyota Central Res & Dev Lab Inc リチウム二次電池用負極

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3519919B2 (ja) * 1997-08-27 2004-04-19 三洋電機株式会社 リチウム二次電池
JP4159212B2 (ja) * 1999-11-12 2008-10-01 三洋電機株式会社 非水電解質二次電池
KR100378014B1 (ko) * 2000-08-21 2003-03-29 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 리튬 이차 전지
JP4346565B2 (ja) * 2004-03-30 2009-10-21 株式会社東芝 非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290863A (ja) * 1985-05-10 1987-04-25 Asahi Chem Ind Co Ltd 二次電池
JPS63121259A (ja) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd 二次電池
JP2000348725A (ja) * 1999-06-08 2000-12-15 Toyota Motor Corp リチウムイオン2次電池
JP2001216962A (ja) * 2000-02-01 2001-08-10 Toyota Central Res & Dev Lab Inc リチウム二次電池用負極

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096470A (ja) * 2009-10-29 2011-05-12 National Institute Of Advanced Industrial Science & Technology 全固体リチウムイオン二次電池における負極材および全固体リチウムイオン二次電池の製造方法
WO2013084302A1 (ja) * 2011-12-06 2013-06-13 トヨタ自動車株式会社 全固体電池
JP2013159555A (ja) * 2012-02-08 2013-08-19 Samsung Electronics Co Ltd リチウムチタン酸化物、その製造方法、それを含む負極及びそれを採用したリチウム電池
WO2013145721A1 (ja) * 2012-03-30 2013-10-03 パナソニック株式会社 非水電解質二次電池およびその製造方法
JP5512056B2 (ja) * 2012-03-30 2014-06-04 パナソニック株式会社 非水電解質二次電池およびその製造方法
US9899680B2 (en) 2012-03-30 2018-02-20 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2014078442A (ja) * 2012-10-11 2014-05-01 Toyota Central R&D Labs Inc リチウムイオン電池及びその使用方法
JP2015037054A (ja) * 2013-08-14 2015-02-23 新神戸電機株式会社 リチウムイオン二次電池
JP2015079742A (ja) * 2013-09-11 2015-04-23 株式会社東芝 非水電解質電池及び非水電解質電池の製造方法
WO2015115243A1 (ja) * 2014-01-31 2015-08-06 日東電工株式会社 非水電解液二次電池
WO2015115242A1 (ja) * 2014-01-31 2015-08-06 日東電工株式会社 非水電解液二次電池
US10553856B2 (en) 2015-11-30 2020-02-04 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
US20090286160A1 (en) 2009-11-19
US8163423B2 (en) 2012-04-24
JP5338073B2 (ja) 2013-11-13
CN101351909B (zh) 2010-09-15
CN101351909A (zh) 2009-01-21
JPWO2007064043A1 (ja) 2009-05-07

Similar Documents

Publication Publication Date Title
WO2007064043A1 (ja) 非水電解質電池及びその製造方法
JP5243035B2 (ja) リチウム二次電池
CN109216758B (zh) 非水电解质电池以及非水电解质电池的制造方法
JP5094084B2 (ja) 非水電解質二次電池
CN100367561C (zh) 非水电解质二次电池
JP6232070B2 (ja) 非水電解質二次電池及びその製造方法
WO2015033619A1 (ja) 非水電解質二次電池及びその製造方法
CN108376799B (zh) 非水电解液和非水电解液二次电池的制造方法
KR101691744B1 (ko) 비수 전해액 2차 전지와 그 제조 방법 및 비수 전해액
JP2007188861A (ja) 電池
JP2008300180A (ja) 非水電解質二次電池
JP5338074B2 (ja) 非水電解質電池の使用方法
JP2007179956A (ja) 負極およびそれを用いた電池
JP2015076133A (ja) 正極活物質、非水電解質電池及び電池パック
JP5223393B2 (ja) リチウム二次電池用電極及びそれを用いたリチウム二次電池
WO2011118302A1 (ja) 電池用活物質および電池
JP2014022328A (ja) 非水電解液二次電池の製造方法
JP2007052935A (ja) 非水電解質電池
EP3451437B1 (en) Lithium ion secondary cell charging method, lithium ion secondary cell system, and power storage device
JP6889751B2 (ja) デュアルイオン蓄電デバイス
JP2016103325A (ja) チタン酸化物及びそれを活物質として用いた負極並びに非水電解質二次電池
WO2020262102A1 (ja) 二次電池
CN109643828B (zh) 非水电解质蓄电元件
JP5050349B2 (ja) 負極およびそれを用いた電池
JP4715093B2 (ja) 電気化学デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007548043

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12085934

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200680050314.6

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 06834251

Country of ref document: EP

Kind code of ref document: A1