JP2019003798A - 蓄電素子及び蓄電素子の製造方法 - Google Patents

蓄電素子及び蓄電素子の製造方法 Download PDF

Info

Publication number
JP2019003798A
JP2019003798A JP2017116720A JP2017116720A JP2019003798A JP 2019003798 A JP2019003798 A JP 2019003798A JP 2017116720 A JP2017116720 A JP 2017116720A JP 2017116720 A JP2017116720 A JP 2017116720A JP 2019003798 A JP2019003798 A JP 2019003798A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
active material
storage element
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017116720A
Other languages
English (en)
Inventor
佐々木 丈
Jo Sasaki
丈 佐々木
太郎 山福
Taro Yamafuku
太郎 山福
真規 増田
Masanori Masuda
真規 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2017116720A priority Critical patent/JP2019003798A/ja
Publication of JP2019003798A publication Critical patent/JP2019003798A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】高Ni含有リチウム遷移金属酸化物を正極の活物質として採用した場合でも、負極における充電深度のばらつきを比較的短い時間で小さくすることができる蓄電素子を提供する。【解決手段】チタン酸リチウムを含有する負極を備え、正極と負極とを作製することにおいて、正極の不可逆容量を負極の不可逆容量よりも小さくし、蓄電素子の開回路電圧が0Vのときに、負極の開回路電位は、対リチウム電位で2V以上である蓄電素子とする。【選択図】なし

Description

本発明は、リチウムイオン二次電池などの蓄電素子、及びその製造方法に関する。
従来、正極と、負極と、非水電解質と、を備えたリチウムイオン二次電池が知られている(例えば、特許文献1)。
特許文献1に記載の電池では、負極は、リチウムイオン吸蔵電位が互いに異なる複数種類の負極活物質を含む。
特開2015−088286号公報
特許文献1に記載の電池では、充電及び放電が繰り返されると、負極において充電深度がばらつく場合がある。充電深度がばらついた状態を放置したとしても、充電深度の差が駆動力となり、充電深度のばらつきは、徐々に小さくなり得るが、短い時間では小さくならない。そこで、負極における充電深度のばらつきを比較的短い時間で小さくすることができる蓄電素子が要望されている。
本実施形態は、負極における充電深度のばらつきを比較的短い時間で小さくすることができる蓄電素子を提供することを課題とする。
本実施形態の蓄電素子は、チタン酸リチウムを含有する負極を備え、開回路電圧が0Vのときに、負極の開回路電位は、対リチウム電位で2V以上である。
本実施形態の蓄電素子の製造方法は、活物質を含む正極と、チタン酸リチウムを活物質として含む負極と、を作製することを備え、
正極と負極とを作製することにおいて、正極の不可逆容量を負極の不可逆容量よりも小さくし、
蓄電素子の開回路電圧が0Vのときに負極の開回路電位が対リチウム電位で2V以上である蓄電素子を製造する。
本実施形態によれば、負極における充電深度のばらつきを比較的短い時間で小さくすることができる蓄電素子を提供できる。
図1は、本実施形態に係る蓄電素子の斜視図である。 図2は、図1のII−II線位置の断面図である。 図3は、本実施形態の蓄電素子における、容量に対する正極及び負極の各電位を模式的に表すグラフである。 図4は、従来の蓄電素子における、容量に対する正極及び負極の各電位を模式的に表すグラフである。
以下、本発明に係る蓄電素子の一実施形態について、図1および図2を参照しつつ説明する。蓄電素子には、二次電池、キャパシタ等がある。本実施形態では、蓄電素子の一例として、充放電可能な二次電池について説明する。尚、本実施形態の各構成部材(各構成要素)の名称は、本実施形態におけるものであり、背景技術における各構成部材(各構成要素)の名称と異なる場合がある。
本実施形態の蓄電素子1は、非水電解質二次電池である。より詳しくは、蓄電素子1は、リチウムイオンの移動に伴って生じる電子移動を利用したリチウムイオン二次電池である。この種の蓄電素子1は、電気エネルギーを供給する。蓄電素子1は、単一又は複数で使用される。具体的に、蓄電素子1は、要求される出力及び要求される電圧が小さいときには、単一で使用される。一方、蓄電素子1は、要求される出力及び要求される電圧の少なくとも一方が大きいときには、他の蓄電素子1と組み合わされて蓄電装置に用いられる。前記蓄電装置では、該蓄電装置に用いられる蓄電素子1が電気エネルギーを供給する。
蓄電素子1は、図1および図2に示すように、正極と負極とを含む電極体2と、電極体2を収容するケース3と、ケース3の外側に配置される外部端子7であって電極体2と導通する外部端子7と、を備える。また、蓄電素子1は、電極体2、ケース3、及び外部端子7の他に、電極体2と外部端子7とを導通させる集電部材5等を有する。
電極体2は、正極と負極とがセパレータによって互いに絶縁された状態で積層された積層体22が巻回されることによって形成される。
正極は、金属箔(集電体)と、金属箔の表面に重ねられ且つ活物質粒子を含む活物質層と、を有する。本実施形態では、活物質層は、金属箔の両面にそれぞれ重なる。
金属箔は帯状である。本実施形態の正極の金属箔は、例えば、アルミニウム箔である。正極は、帯形状の短手方向である幅方向の一方の端縁部に、正極活物質層の非被覆部(正極活物質層が形成されていない部位)を有する。
正極の活物質は、リチウムイオンを吸蔵放出可能な化合物である。正極の活物質は、例えば、リチウム遷移金属酸化物を少なくとも含有する。具体的に、正極の活物質は、α−NaFeO型(層状岩塩型構造)のリチウム遷移金属酸化物を含有する。
上記のリチウム遷移金属酸化物は、Li1+x1−x(0<x<0.3)の化学組成で表される。ここで、Mは、少なくともNiを含む遷移金属であり、Niの量は、前記遷移金属の総量に対してモル比で0.3倍以上である。本実施形態では、正極の活物質は、上記のLiMOで表されるリチウム遷移金属酸化物(以下、単に高Ni含有リチウム遷移金属酸化物ともいう)である。正極の活物質が、高Ni含有リチウム遷移金属酸化物を含有することにより、蓄電素子1の容量をより大きくすることができる。
本実施形態では、正極の活物質は、LiNiMnCoの化学組成で表されるリチウム遷移金属酸化物(ただし、0<p≦1.3であり、q+r+s=1であり、0.3≦q≦1であり、0≦r≦1であり、0≦s≦1であり、1.7≦t≦2.3である)である。なお、0.3<q<1であり、0<r<1であり、0<s<1であることが好ましい。0.5<q<1であることがより好ましい。正極の活物質は、α−NaFeO型(層状岩塩型構造)であり且つ上記の化学組成で表されるリチウム遷移金属酸化物を含有することがより好ましい。
上記のごときLiNiMnCoの化学組成で表されるリチウム遷移金属酸化物は、例えば、LiNi1/3Co1/3Mn1/3、LiNiOなどである。
正極活物質層に用いられるバインダは、例えば、ポリフッ化ビニリデン(PVdF)、エチレンとビニルアルコールとの共重合体、ポリメタクリル酸メチル、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、スチレンブタジエンゴム(SBR)である。本実施形態のバインダは、ポリフッ化ビニリデンである。
正極活物質層の導電助剤は、炭素質材料である。炭素質材料は、例えば、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等である。本実施形態の正極活物質層は、導電助剤としてアセチレンブラックを有する。
正極活物質層は、導電助剤を1質量%以上10質量%以下含んでもよい。
負極は、金属箔(集電体)と、金属箔の上に形成された負極活物質層と、を有する。本実施形態では、負極活物質層は、金属箔の両面にそれぞれ重ねられる。金属箔は帯状である。本実施形態の負極の金属箔は、アルミニウムを含有する。負極の金属箔は、例えば、アルミニウム箔やアルミニウム合金箔である。負極は、帯形状の短手方向である幅方向の一方の端縁部に、負極活物質層の非被覆部(負極活物質層が形成されていない部位)を有する。
負極活物質層は、粒子状の活物質(活物質粒子)と、バインダと、を含む。負極活物質層は、セパレータを介して正極と向き合うように配置される。負極活物質層の幅は、正極活物質層の幅よりも大きい。
負極の活物質は、チタン酸リチウム(LiTiO、LiTi12、LiTi1120、及びLiTi)を主に含有することが好ましい。負極の活物質は、チタン酸リチウム以外に、グラファイト、非晶質炭素(難黒鉛化炭素、易黒鉛化炭素)などの炭素質材料を含有してもよいが、活物質は、活物質の総量中、チタン酸リチウムを50質量%以上含有することが好ましい。また、負極の活物質は、ケイ素(Si)及び錫(Sn)などリチウムイオンと合金化反応を生じる材料を含有してもよい。本実施形態の負極の活物質は、LiTi12である。
負極の開回路状態における電位の変化は、電位曲線によって表される。斯かる電位曲線は、蓄電素子1の容量(充電率)に対する、開回路状態における負極の電位の変化を表した曲線(開回路電位曲線)である。斯かる電位曲線は、横軸に容量)をとり、縦軸に電位(対リチウム電位)をとったグラフによって表される。斯かる電位曲線は、平坦領域と傾斜領域とを有する。詳しくは、斯かる電位曲線は、平坦領域と、該平坦領域よりも容量の低い側における傾斜領域と、該平坦領域よりも容量の高い側における傾斜領域と、を有する。傾斜領域は、容量に対する電位の傾きの絶対値が3Vg・Ah−1以上の領域である。平坦領域は、容量に対する電位の傾きの絶対値が3Vg・Ah−1未満の領域である。
負極活物質層に用いられるバインダは、正極活物質層に用いられるバインダと同様のものである。本実施形態のバインダは、ポリフッ化ビニリデン(PVdF)である。
負極活物質層では、バインダの割合は、活物質粒子とバインダとの合計質量に対して、1質量%以上10質量%以下であってもよい。
負極活物質層は、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等の導電助剤をさらに有してもよい。本実施形態の負極活物質層は、アセチレンブラックを10%含有している。
本実施形態の電極体2では、以上のように構成される正極と負極とがセパレータによって絶縁された状態で巻回される。即ち、本実施形態の電極体2では、正極、負極、及びセパレータの積層体22が巻回される。セパレータは、絶縁性を有する部材である。セパレータは、正極と負極との間に配置される。これにより、電極体2(詳しくは、積層体22)において、正極と負極とが互いに絶縁される。また、セパレータは、ケース3内において、電解液を保持する。これにより、蓄電素子1の充放電時において、リチウムイオンが、セパレータを挟んで交互に積層される正極と負極との間を移動する。
本実施形態において、負極の開回路電位曲線は、図3に示すように、平坦領域と傾斜領域とを有する。蓄電素子1の開回路電圧が0Vのときに、負極の開回路電位は、傾斜領域に位置し、対リチウム電位で2V以上である。
本実施形態の蓄電素子1では、充電および放電を繰り返すことに伴って、負極活物質層の厚み方向や面方向において充電深度にばらつきが生じる。負極活物質として、非晶質炭素等を主体として用いた従来の蓄電素子においては、負極の開回路電位曲線がほぼ全領域において傾斜を有する。このため、充電深度がばらついた状態を放置したとしても、充電深度の差が駆動力となり、充電深度のばらつきは、徐々に小さくなり得る。
これに対して、本実施形態の蓄電素子1は、負極活物質として、チタン酸リチウムを含有し、このチタン酸リチウムは、開回路電位曲線に平坦な平坦領域を有する。仮に、蓄電素子の開回路電圧を0Vに設定した際に、負極の開回路電位が対リチウム電位で2V未満になるように蓄電素子を設計してしまうと、負極の開回路電位が平坦領域に位置してしまい、蓄電素子に過剰な負荷をかけにくい低充電状態では、充電深度のばらつきが発生した各部分の負極の開回路電位の差が小さくなる。よって、ばらついた電位を均一化させる駆動力が小さいため、充電深度のばらつきは、短い時間では小さくならない。一方、本実施形態のごとく、蓄電素子の開回路電圧を0Vに設定した際に、負極の開回路電位が対リチウム電位で2V以上になるように蓄電素子を設計することによって、低充電状態において、充電量の差に対する電位差(負極の開回路電位曲線の傾きの絶対値)が比較的大きくなる。このため、ばらついた電位を均一化させる駆動力が大きくなる。従って、低充電状態を経由して充電又は放電を行う、または放置を行うことによって、電位曲線の傾斜領域を利用して、負極活物質層における充電深度のばらつきを比較的短い時間で小さくすることができる。
なお、本実施形態の蓄電素子において、負極の開回路電位が上記傾斜領域に位置するように、低充電状態(例えば,蓄電素子の充電率が15%以下)を経由して充放電するか、または、低電位状態で放置すればよいのであって、必ずしも蓄電素子の電圧を0Vにする必要はない。
正極および負極の開回路状態での各電位曲線の測定では、蓄電素子(電池)の一部に穴を開け、電位測定用のリチウム参照極と正極および負極とが液絡するようにしたうえで、正極および負極の各電位を測定する。より詳しくは、不活性雰囲気で、蓄電素子の側面の一部を開放し、電極群の正負極間に、セパレータに包んだリチウム参照極を挿入する。リチウム参照極を挿入した部分を適度に押圧(リチウム参照極の挿入前にかかっていた程度の押圧力)した状態で密閉容器に格納する。
この蓄電素子の正極−負極間(蓄電素子の電圧)、正極−参照極間(正極の電位)および負極−参照極間(負極の電位)を、蓄電素子の電圧を変化させながら測定する。なお、上述の各電圧および電位の測定は、蓄電素子をあらかじめ満充電状態(例えば,4.2V)まで定電流定電圧充電で充電したものを、満充電状態(例えば,4.2Vから0Vまでの範囲となるように所定の電気量を放電した後、1時間休止した際の各電圧および電位を測定することで求める。所定の電気量は蓄電素子の容量や電圧の測定点数により任意に変更することができるが、概ね0.2Cの電流値で放電するものとする。
なお、本実施形態の蓄電素子において開回路電圧が0Vのときとは、上述の放電完了時に蓄電素子の電圧が0Vであるときである。
蓄電素子1の開回路電圧が0Vのときに、負極の開回路電位が対リチウム電位で2V以上であることは、蓄電素子1の電圧推移と、正極および負極の各電位の推移とを比較することによって確認される。
本実施形態の蓄電素子1では、開回路電圧が0Vのときに、負極の開回路電位は、対リチウム電位で2.5V以上であることが好ましく、3V以上であることがより好ましい。負極の開回路電位が対リチウム電位で3V以上であることにより、負極活物質層における充電深度のばらつきをより確実に小さくすることができる。なお、開回路電圧が0Vのときに、負極の開回路電位曲線の傾き(容量に対する電位の傾き)の絶対値は、正極の開回路電位曲線の傾き(容量に対する電位の傾き)の絶対値よりも、大きい。
本実施形態の蓄電素子1では、正極の活物質が、α−NaFeO型(層状岩塩型構造)のリチウム遷移金属酸化物を含み、該リチウム遷移金属酸化物は、上記の高Ni含有リチウム遷移金属酸化物であることが好ましい。α−NaFeO型のリチウム遷移金属酸化物は、蓄電素子1の容量を比較的大きくすることができるものの、正極の活物質の不可逆容量を大きくさせやすい。正極の活物質が、α−NaFeO型のリチウム遷移金属酸化物(上記の高Ni含有リチウム遷移金属酸化物)を含む場合、活物質の不可逆容量が大きくなる。不可逆容量が大きい分、放電末期において開回路電圧が0Vに近づくにつれて正極電位が大きく低下する(図4参照)。よって、正極電位と負極電位とが同じになる電位(開回路電圧が0V)が低くなってしまう。従って、単に、上記の高Ni含有リチウム遷移金属酸化物などを正極の活物質として採用すると、開回路電圧が0Vのときに、負極の開回路電位が2V未満となってしまう。このため、上述したように負極における充電深度のばらつきを小さくすることがより困難である。これに対して、本実施形態の蓄電素子1は、開回路電圧が0Vのときに、負極の開回路電位が2V以上である構成を有することから、正極の活物質が、上記の高Ni含有リチウム遷移金属酸化物であっても、負極における充電深度のばらつきを小さくすることができる。このように、負極の充電深度のばらつきを小さくすることを困難とさせ得る上記の高Ni含有リチウム遷移金属酸化物を正極の活物質として採用した場合でも、本実施形態の蓄電素子1は、負極における充電深度のばらつきを比較的短い時間で小さくすることができる。
本実施形態の蓄電素子1では、負極の金属箔がアルミニウムを含有することが好ましい。負極の金属箔がアルミニウムを含有する場合、負極の電位が放電によって銅の分解電位より高くなっても、金属箔が銅製である場合と異なり、金属箔の損傷が防止される。このように、負極の金属箔がアルミニウムを含有することにより、開回路電圧が0Vのときに、負極の電位が比較的高くなっても、金属箔が損傷することを抑制できる。
本実施形態の蓄電素子1では、容量(充電率)が100%のときに、正極の電位曲線(開回路電位曲線)の傾き(容量に対する電位の傾き)の絶対値は、負極の開回路電位曲線の傾き(容量に対する電位の傾き)の絶対値よりも、大きいことが好ましい。また、充電末期(充電率100%に近いとき)に、正極の開回路電位は、傾斜領域に位置することが好ましい。斯かる構成により、充電率が100%に近いところで充電又は放電を行うことによって、電位曲線の傾斜領域を利用して、正極における充電深度のばらつきを小さくすることができる。
セパレータは、帯状である。セパレータは、多孔質なセパレータ基材を有する。セパレータは、正極及び負極間の短絡を防ぐために正極及び負極の間に配置されている。本実施形態のセパレータは、セパレータ基材のみを有する。
セパレータ基材は、多孔質に構成される。セパレータ基材は、例えば、織物、不織布、又は多孔膜である。セパレータ基材の材質としては、高分子化合物、ガラス、セラミックなどが挙げられる。高分子化合物としては、例えば、ポリアクリロニトリル(PAN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)などのポリエステル、ポリプロピレン(PP)、ポリエチレン(PE)などのポリオレフィン(PO)、及び、セルロースからなる群より選択された少なくとも1種が挙げられる。
セパレータの幅(帯形状の短手方向の寸法)は、負極活物質層の幅より僅かに大きい。セパレータは、正極活物質層及び負極活物質層が重なるように幅方向に位置ずれした状態で重ね合わされた正極と負極との間に配置される。
ケース3は、開口を有するケース本体31と、ケース本体31の開口を塞ぐ(閉じる)蓋板32と、を有する。ケース3は、電極体2及び集電部材5等と共に、電解液を内部空間に収容する。ケース3は、電解液に耐性を有する金属によって形成される。ケース3は、例えば、アルミニウム、又は、アルミニウム合金等のアルミニウム系金属材料によって形成される。ケース3は、ステンレス鋼及びニッケル等の金属材料、又は、アルミニウムにナイロン等の樹脂を接着した複合材料等によって形成されてもよい。
電解液は、非水溶液系電解液である。電解液は、有機溶媒に電解質塩を溶解させることによって得られる。有機溶媒は、例えば、プロピレンカーボネート及びエチレンカーボネートなどの環状炭酸エステル類、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートなどの鎖状カーボネート類である。電解質塩は、LiClO、LiBF、及びLiPF等である。本実施形態の電解液は、プロピレンカーボネート、ジメチルカーボネート、及びエチルメチルカーボネートを所定の割合で混合した混合溶媒に、0.5mol/L以上1.5mol/L以下のLiPFを溶解させたものである。
蓋板32は、ケース3内のガスを外部に排出可能なガス排出弁321を有する。ガス排出弁321は、ケース3の内部圧力が所定の圧力まで上昇したときに、該ケース3内から外部にガスを排出する。ガス排出弁321は、蓋板32の中央部に設けられる。
ケース3には、電解液を注入するための注液孔が設けられる。注液孔は、ケース3の内部と外部とを連通する。注液孔は、蓋板32に設けられる。注液孔は、注液栓326によって密閉される(塞がれる)。注液栓326は、溶接によってケース3(本実施形態の例では蓋板32)に固定される。
外部端子7は、他の蓄電素子1の外部端子7又は外部機器等と電気的に接続される部位である。外部端子7は、導電性を有する部材によって形成される。外部端子7は、バスバ等が溶接可能な面71を有する。面71は、平面である。
集電部材5は、ケース3内に配置され、電極体2と通電可能に直接又は間接に接続される。本実施形態の集電部材5は、導電性を有する部材によって形成される。図2に示すように、集電部材5は、ケース3の内面に沿って配置される。集電部材5は、蓄電素子1の正極と負極とにそれぞれ導通される。
本実施形態の蓄電素子1では、電極体2とケース3とを絶縁する袋状の絶縁カバー6に収容された状態の電極体2(詳しくは、電極体2及び集電部材5)がケース3内に収容される。
次に、上記実施形態の蓄電素子1の製造方法について説明する。
本実施形態の蓄電素子1の製造方法は、活物質を含む正極を作製することと、チタン酸リチウムを活物質として含む負極を作製することとを備える。正極を作製すること及び負極を作製することの少なくともいずれか一方にて、正極の不可逆容量を負極の不可逆容量よりも小さくする。このようにして正極及び負極を作製することによって、蓄電素子1の開回路電圧が0Vのときに、負極の開回路電位が対リチウム電位で2V以上である蓄電素子1(上述した蓄電素子1)を製造する
なお,不可逆容量とは,電極および各材質を充放電した場合における,充電通電量から放電通電量を除した値である。
蓄電素子1の製造方法では、まず、金属箔(集電体)に活物質を含む合剤を塗布して活物質層を形成し、正極及び負極をそれぞれ作製する。次に、正極、セパレータ、及び負極を重ね合わせて電極体2を形成する。続いて、電極体2をケース3に入れ、ケース3に電解液を入れることによって蓄電素子1を組み立てる。
正極の作製では、例えば、正極の不可逆容量を小さくする。これにより、正極の不可逆容量を負極の不可逆容量よりも小さくすることができ、上述した実施形態の蓄電素子1を製造できる。
正極の作製では、例えば、金属箔の両面に、活物質粒子と、バインダと、導電助剤と、溶媒と、を含む合剤をそれぞれ塗布することによって正極活物質層を形成する。正極活物質層を形成するための塗布方法としては、一般的な方法が採用される。塗布された正極活物質層を所定の圧力でロールプレスする。プレス圧を調整することにより、正極活物質層の厚さや密度を調整できる。
負極の作製では、負極の不可逆容量を大きくするため(不可逆容量を増やした活物質を調製するため)に、例えば、蓄電素子の予備充電工程において、1.2V以下まで充電を行うことで活物質のチタン酸リチウムに不可逆容量を発生させる。これにより、電解液の溶媒が還元分解することによって負極の活物質の表面に被膜が形成され、正極の不可逆容量よりも、負極の不可逆容量を大きくできる。例えば、正極の不可逆容量が20mAhであれば、この値よりも大きい不可逆容量を、負極に発生させる。負極の活物質に不可逆容量を発生させたことは、負極表面に被膜が生成していること、及び、当該被膜に含まれるリチウム量を定量することによって確認できる。
また、チタン酸リチウムと上記炭素質材料との混合物に対して深充電を行うことによって、負極の不可逆容量を大きくすることができる。また、チタン酸リチウムに水分を吸着させて水分とリチウムとを反応させることにより不可逆容量を発生させ、負極の不可逆容量を大きくすることができる。
なお、上記のごとき操作を行わずに、製造後に予備充電や化成処理を単に行ったとしても、開回路電圧が0Vのときの負極の開回路電位は、対リチウム電位で2V以上にならない。
負極の作製では、上記の正極の作製と同様にして、例えば、金属箔の両面に負極活物質層を形成する。
電極体2の形成では、正極と負極との間にセパレータを挟み込んだ積層体22を巻回することにより、電極体2を形成する。詳しくは、正極活物質層と負極活物質層とがセパレータを介して互いに向き合うように、正極とセパレータと負極とを重ね合わせ、積層体22を作る。積層体22を巻回して、電極体2を形成する。
蓄電素子1の組み立てでは、ケース3のケース本体31に電極体2を入れ、ケース本体31の開口を蓋板32で塞ぎ、電解液をケース3内に注入する。ケース本体31の開口を蓋板32で塞ぐときには、ケース本体31の内部に電極体2を入れ、正極と一方の外部端子7とを導通させ、且つ、負極と他方の外部端子7とを導通させた状態で、ケース本体31の開口を蓋板32で塞ぐ。電解液をケース3内へ注入するときには、ケース3の蓋板32の注入孔から電解液をケース3内に注入する。
上記のように製造された本実施形態の蓄電素子1では、図3に示すように、開回路電圧が0Vのときに、負極の開回路電位は、対リチウム電位で2V以上である。
これに対して、例えば正極の活物質として上述したリチウム遷移金属酸化物を採用し、負極の活物質としてチタン酸リチウムを採用して、単に蓄電素子を組み立てたとしても、図4に示すように、開回路電圧が0Vのときの負極の開回路電位は、対リチウム電位で2V以上にならない。
一般的に、負極の活物質がチタン酸リチウムである場合、負極の活物質が非晶質炭素等の炭素質材料である場合よりも、負極の電位が高くなることから、負極の電位が低くなることによって負極において電解液の溶媒が分解することが抑制される。斯かる分解が抑制される分、分解による被膜の生成が抑制されると推定されることから、負極の活物質がチタン酸リチウムである場合の方が、負極の活物質の不可逆容量がより小さい。一方、正極の活物質が、α−NaFeO型(層状岩塩型構造)のリチウム遷移金属酸化物(特に、上記の高Ni含有リチウム遷移金属酸化物)である場合、結晶構造が変化することによって、正極の活物質に、比較的大きい不可逆容量が発生する。しかも、発生する不可逆容量が、負極の活物質(チタン酸リチウム)の比較的小さい不可逆容量よりも大きくなってしまう。不可逆容量が大きい分、完全放電に近づくほど、正極の開回路電位曲線が急激に低下すると推測される。このように推測される理由により、正極の活物質として上述したリチウム遷移金属酸化物を単に採用し、負極の活物質としてチタン酸リチウムを単に採用して蓄電素子を製造しても、開回路電圧が0Vのときの負極の開回路電位は、対リチウム電位で2V以上にならない。
続いて、上記実施形態の蓄電素子1の使用方法について説明する。
上記実施形態の蓄電素子1の使用方法は、上記の正極の電位曲線(開回路電位曲線)における傾斜領域を経る充電又は放電を、上記の蓄電素子1に対して行うことを備える。
上記使用方法では、傾斜領域内において充電又は放電を行ってもよい。また、傾斜領域内において、充電及び放電をそれぞれ少なくとも1回ずつ行ってもよい。また、充電及び放電を繰り返してそれぞれ複数回行ってもよい。上記使用方法では、容量に対する電位の傾きの絶対値が3Vg・Ah−1 以上の傾斜領域を経る充電又は放電を行ってもよい。
上記使用方法では、負極の開回路電位曲線の平坦領域よりも電位が高い側の傾斜領域を経て、充電及び放電を行うことが好ましい。即ち、放電末期の傾斜領域を経て充電及び放電を行うことが好ましい。これにより、放電末期の傾斜領域では、正極の電位があまり高くならないため、高い電位によって電解液が分解することを防止できる。
尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。
上記の実施形態では、活物質を含む活物質層が金属箔に直接接した正極について詳しく説明したが、本発明では、正極が、バインダと導電助剤とを含む導電層であって活物質層と金属箔との間に配置された導電層を有してもよい。
上記実施形態では、活物質層が各電極の金属箔の両面側にそれぞれ配置された電極について説明したが、本発明の蓄電素子では、正極又は負極は、活物質層を金属箔の片面側にのみ備えてもよい。
上記実施形態では、積層体22が巻回されてなる電極体2を備えた蓄電素子1について詳しく説明したが、本発明の蓄電素子は、巻回されない積層体22を備えてもよい。詳しくは、それぞれ矩形状に形成された正極、セパレータ、負極、及びセパレータが、この順序で複数回積み重ねられてなる電極体を蓄電素子が備えてもよい。
上記実施形態では、蓄電素子1が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子1の種類や大きさ(容量)は任意である。また、上記実施形態では、蓄電素子1の一例として、リチウムイオン二次電池について説明したが、これに限定されるものではない。例えば、本発明は、種々の二次電池、その他、電気二重層キャパシタ等のキャパシタの蓄電素子にも適用可能である。
蓄電素子1(例えば電池)は、蓄電装置(蓄電素子が電池の場合は電池モジュール)に用いられてもよい。蓄電装置は、上記の蓄電素子1を一以上備える。蓄電装置は、通常、少なくとも二つの蓄電素子1と、蓄電素子1同士を電気的に接続するバスバ部材と、を有する。この場合、本発明の技術が少なくとも一つの蓄電素子に適用されていればよい。
1:蓄電素子(非水電解質二次電池)、
2:電極体、 22:積層体、
3:ケース、 31:ケース本体、 32:蓋板、
5:集電部材、
6:絶縁カバー、
7:外部端子、 71:面。

Claims (4)

  1. チタン酸リチウムを含有する負極を備え、
    蓄電素子の開回路電圧が0Vのときに、前記負極の開回路電位は、対リチウム電位で2V以上である、蓄電素子。
  2. 正極を備え、
    前記正極は、LiMOの化学組成で表されるα−NaFeO型のリチウム遷移金属酸化物(Mは、少なくともNiを含む遷移金属であり、Niの量は、前記遷移金属の総量に対してモル比で0.3倍以上である)を活物質として含有する、請求項1記載の蓄電素子。
  3. 前記負極は、アルミニウムを含有する集電体を有する、請求項1または2記載の蓄電素子。
  4. 活物質を含む正極と、チタン酸リチウムを活物質として含む負極と、を作製することを備え、
    前記正極と前記負極とを作製することにおいて、前記正極の不可逆容量を前記負極の不可逆容量よりも小さくし、
    蓄電素子の開回路電圧が0Vのときに前記負極の開回路電位が対リチウム電位で2V以上である蓄電素子を製造する、蓄電素子の製造方法。
JP2017116720A 2017-06-14 2017-06-14 蓄電素子及び蓄電素子の製造方法 Pending JP2019003798A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017116720A JP2019003798A (ja) 2017-06-14 2017-06-14 蓄電素子及び蓄電素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017116720A JP2019003798A (ja) 2017-06-14 2017-06-14 蓄電素子及び蓄電素子の製造方法

Publications (1)

Publication Number Publication Date
JP2019003798A true JP2019003798A (ja) 2019-01-10

Family

ID=65006956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017116720A Pending JP2019003798A (ja) 2017-06-14 2017-06-14 蓄電素子及び蓄電素子の製造方法

Country Status (1)

Country Link
JP (1) JP2019003798A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095496A (ja) * 2005-09-29 2007-04-12 Toshiba Corp 非水電解質電池および電池パック
JP2008243612A (ja) * 2007-03-27 2008-10-09 Toshiba Corp 非水電解質電池、電池パック及び自動車
WO2012144201A1 (ja) * 2011-04-20 2012-10-26 パナソニック株式会社 非水電解質二次電池
JP2012252951A (ja) * 2011-06-06 2012-12-20 Hitachi Maxell Energy Ltd 非水電解質二次電池
WO2013145721A1 (ja) * 2012-03-30 2013-10-03 パナソニック株式会社 非水電解質二次電池およびその製造方法
JP2016081691A (ja) * 2014-10-16 2016-05-16 日立化成株式会社 リチウムイオン二次電池、負極、およびこれらを用いた電池システム
WO2017094238A1 (ja) * 2015-11-30 2017-06-08 パナソニックIpマネジメント株式会社 非水電解質二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095496A (ja) * 2005-09-29 2007-04-12 Toshiba Corp 非水電解質電池および電池パック
JP2008243612A (ja) * 2007-03-27 2008-10-09 Toshiba Corp 非水電解質電池、電池パック及び自動車
WO2012144201A1 (ja) * 2011-04-20 2012-10-26 パナソニック株式会社 非水電解質二次電池
JP2012252951A (ja) * 2011-06-06 2012-12-20 Hitachi Maxell Energy Ltd 非水電解質二次電池
WO2013145721A1 (ja) * 2012-03-30 2013-10-03 パナソニック株式会社 非水電解質二次電池およびその製造方法
JP2016081691A (ja) * 2014-10-16 2016-05-16 日立化成株式会社 リチウムイオン二次電池、負極、およびこれらを用いた電池システム
WO2017094238A1 (ja) * 2015-11-30 2017-06-08 パナソニックIpマネジメント株式会社 非水電解質二次電池

Similar Documents

Publication Publication Date Title
CN112736298B (zh) 电压改变的混合型电化学电池设计
JP5532806B2 (ja) リチウムイオン二次電池の容量回復方法
US20150349308A1 (en) Lithium Secondary Battery
JP6151431B1 (ja) 非水電解質電池および電池パック
US10461314B2 (en) Nonaqueous electrolyte battery and battery pack
WO2014002532A1 (ja) 二次電池
JP2017168255A (ja) 非水電解質二次電池、電池パック及び車両
JP2014120404A (ja) 二次電池
JP2013201097A (ja) 電極、非水電解質電池および電池パック
JP2017191651A (ja) 蓄電素子
JP2014179248A (ja) 非水電解質二次電池
JP2016184508A (ja) 蓄電素子
CN112673503A (zh) 非水电解质蓄电元件和蓄电装置
CN109643828B (zh) 非水电解质蓄电元件
KR20080029480A (ko) 리튬 이차 전지, 및 하이브리드 커패시터
WO2016171276A1 (ja) リチウムイオン電池
JP6038560B2 (ja) 非水電解質電池の保管または搬送方法、電池パックの保管または搬送方法、及び非水電解質電池の充電状態を維持する方法
JP2018147644A (ja) 蓄電素子
JP6100473B2 (ja) 電気化学デバイス
JP5678569B2 (ja) リチウムイオン二次電池およびその製造方法
JP2019003798A (ja) 蓄電素子及び蓄電素子の製造方法
JP2005327516A (ja) 非水電解液二次電池の充電方法
WO2018230519A1 (ja) 蓄電素子、蓄電素子の製造方法、蓄電素子の制御方法、及び蓄電素子を備える蓄電装置
CN106605330B (zh) 非水电解质二次电池的控制方法
JP7249520B2 (ja) 蓄電素子及び蓄電装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210730