WO2016017092A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2016017092A1
WO2016017092A1 PCT/JP2015/003549 JP2015003549W WO2016017092A1 WO 2016017092 A1 WO2016017092 A1 WO 2016017092A1 JP 2015003549 W JP2015003549 W JP 2015003549W WO 2016017092 A1 WO2016017092 A1 WO 2016017092A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
composite oxide
transition metal
metal composite
battery
Prior art date
Application number
PCT/JP2015/003549
Other languages
English (en)
French (fr)
Inventor
翔 浦田
かおる 長田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2016537734A priority Critical patent/JP6565916B2/ja
Publication of WO2016017092A1 publication Critical patent/WO2016017092A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery that performs charging / discharging by moving lithium ions between the positive and negative electrodes along with charging / discharging has a high energy density and high capacity. Widely used as a power source.
  • non-aqueous electrolyte secondary batteries are attracting attention as power sources for electric vehicles and the like, and further expansion of applications is expected. In such applications, further improvements are desired for increasing the capacity of the battery so that it can be used for a long time, extending the life of the battery when charging and discharging are repeated, and reducing the cost of the battery.
  • Patent Document 1 describes that the ratio of the cyclic carbonate is less than 10% by volume, the ratio of the chain carbonate is increased, and the viscosity of the electrolytic solution is lowered to improve the high-temperature storage characteristics.
  • Patent Document 2 discloses that tungsten is dissolved in a positive electrode active material containing Ni, the tungsten concentration in the vicinity of the surface is increased, and further, lithium difluorophosphate is added to the electrolytic solution to improve output characteristics. Is described.
  • Patent Document 1 when the technique disclosed in Patent Document 1 is used for the Ni-based positive electrode active material, the chain carbonate is easily decomposed and a large amount of gas is generated, which may cause the above-described malfunction of CID. . Moreover, when the cyclic carbonate ratio is reduced to less than 10%, the dissociation degree of the Li salt decreases and the reaction resistance increases, so that the positive electrode utilization rate decreases and the battery capacity cannot be improved.
  • Patent Document 2 when the technique disclosed in Patent Document 2 is used for the Ni-based positive electrode active material, the amount of gas generated increases. This is presumably because the activity of Ni increased due to the interaction with solid solution tungsten, and the electrolyte was easily decomposed.
  • lithium difluorophosphate When lithium difluorophosphate is added here, lithium difluorophosphate is decomposed on the positive electrode active material, and the amount of gas generation is further increased. Therefore, there has been a problem that the battery capacity cannot be substantially improved from the viewpoint of the malfunction of the CID.
  • a positive electrode including a lithium transition metal composite oxide, a negative electrode including a carbon material capable of inserting and releasing lithium ions, and a nonaqueous electrolytic solution are provided.
  • the lithium transition metal composite oxide contains Ni
  • the lithium transition metal composite oxide is composed of secondary particles formed by agglomeration of primary particles
  • the Ni in the lithium transition metal composite oxide Is a major component in terms of moles in all metal elements excluding lithium in the lithium transition metal composite oxide
  • the tungsten compound adheres to the surface of at least one of the primary particles and the secondary particles
  • the non-aqueous electrolyte is a cyclic carbonate.
  • the volume ratio of the chain carbonate to the cyclic carbonate (chain carbonate / cyclic carbonate) is 3 or more and less than 9.
  • the present invention it is possible to reduce the amount of gas generation while improving the positive electrode utilization rate by using an electrolytic solution having a high chain carbonate ratio, and to malfunction the CID while increasing the filling amount of the active material in the battery.
  • the non-aqueous electrolyte secondary battery that achieves both high capacity and high reliability can be provided.
  • FIG. 1 is a schematic plan view of a nonaqueous electrolyte secondary battery which is an example of an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along the line II-II in FIG. 1.
  • 1 is a schematic cross-sectional view showing a negative electrode that is an example of an embodiment of the present invention.
  • a nonaqueous electrolyte secondary battery as an example of this embodiment includes a positive electrode including a lithium transition metal composite oxide, a negative electrode including a carbon material capable of inserting and removing lithium ions, and a nonaqueous electrolyte solution.
  • the lithium transition metal composite oxide contains Ni
  • the lithium transition metal composite oxide is composed of secondary particles formed by aggregation of primary particles
  • the Ni in the lithium transition metal composite oxide is ,
  • the non-aqueous electrolyte is a cyclic carbonate and It consists of a chain carbonate, and the volume ratio (chain carbonate / cyclic carbonate) between the chain carbonate and the cyclic carbonate is 3 or more and less than 9.
  • the Ni-based positive electrode while allowing Li ions to permeate by attaching a tungsten compound to the surface of at least one of the primary particles and secondary particles of the high-capacity Ni-based positive electrode material.
  • Contact between the material and the non-aqueous electrolyte can be prevented.
  • the effect of reducing the amount of gas generation is effective only with a Ni-based positive electrode material to which a tungsten compound is attached, and is effective with a Ni-based positive electrode material in which tungsten is dissolved as described in Patent Document 2. In contrast, the amount of gas generated increases.
  • non-aqueous electrolyte secondary battery is a structure in which an electrode body in which a positive electrode and a negative electrode are wound via a separator and a non-aqueous electrolyte are housed in an exterior body.
  • a specific configuration of the nonaqueous electrolyte secondary battery will be described in detail with reference to FIGS. 1 and 2.
  • the nonaqueous electrolyte secondary battery 10 includes a laminate outer body 11 covering the outer periphery, a flat wound electrode body 12, a nonaqueous electrolyte solution as a nonaqueous electrolyte, It has.
  • the wound electrode body 12 has a structure in which the positive electrode 13 and the negative electrode 14 are wound in a flat shape with the separator 15 being insulated from each other.
  • a positive electrode current collecting tab 16 is connected to the positive electrode 13 of the wound electrode body 12, and a negative electrode current collecting tab 17 is connected to the negative electrode 14.
  • the wound electrode body 12 is enclosed with a nonaqueous electrolyte inside a laminate outer body 11 covering the outer periphery, and the outer peripheral edge of the laminate outer body 11 is sealed by a heat seal portion 18.
  • the extending portion 19 is a spare chamber for minimizing the influence of gas generated by the decomposition of the electrolytic solution or the like on the charge / discharge when the battery is precharged.
  • the laminate outer package 11 is sealed by heat sealing with an AA line, and then the extending portion 19 is cut.
  • the structure of the electrode body and the exterior body are not limited to this.
  • the structure of the electrode body may be, for example, a stacked type in which positive electrodes and negative electrodes are alternately stacked via separators.
  • the exterior body may be, for example, a metal square battery can.
  • the negative electrode 14 includes a negative electrode current collector 14a and a negative electrode mixture layer 14b formed on the negative electrode current collector 14a.
  • the negative electrode current collector 14a for example, a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the negative electrode such as copper, or a film having a metal surface layer such as copper is used.
  • the negative electrode mixture layer preferably contains a thickener and a binder in addition to the negative electrode active material.
  • the thickener carboxymethyl cellulose, carboxyalkyl cellulose, hydroxyalkyl cellulose, alkoxy cellulose, or the like is preferably used.
  • the binder styrene-butadiene rubber (SBR), polyimide, or the like is preferably used.
  • a negative electrode active material 14c which is a carbon material capable of inserting and removing lithium ions is used.
  • the carbon material is preferably particles containing graphite.
  • the negative electrode active material preferably includes a negative electrode active material 14c that is a carbon material and a negative electrode active material 14d that is silicon or / and a silicon compound.
  • the silicon compound is preferably silicon oxide particles represented by SiO x (preferably 0.5 ⁇ x ⁇ 1.5). Further, the negative electrode active material 14d is more preferably coated on the surface with a material containing carbon.
  • the carbon coating is mainly composed of amorphous carbon.
  • amorphous carbon it is possible to form a good and uniform film on the surface of the silicon compound, and it is possible to further promote the diffusion of lithium ions into the silicon compound.
  • the mass ratio of the negative electrode active material 14c and the negative electrode active material 14d is preferably 99: 1 to 70:30, and more preferably 97: 3 to 90:10. This is because if the mass ratio is within the range, the effect of improving the output characteristics is increased. This is because when the mass ratio of the negative electrode active material 14d becomes too large, the discharge voltage of the battery is lowered and the output characteristics are also lowered.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
  • a positive electrode current collector for example, a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the positive electrode such as aluminum, or a film having a metal surface layer such as aluminum is used.
  • the positive electrode active material layer preferably contains a conductive material and a binder in addition to the positive electrode active material.
  • the positive electrode active material is a lithium transition metal composite oxide containing lithium and a metal element M, and the metal element M is at least one selected from the group containing nickel, cobalt, manganese, and the like, and the metal element In M, nickel is contained as a main component.
  • the main component being nickel means that the ratio of nickel (molar conversion) is the largest among the metal elements M excluding lithium.
  • the lithium-containing transition metal composite oxide may contain non-transition metal elements such as Mg and Al. Specific examples include lithium-containing transition metal composite oxides such as Ni—Co—Mn, Ni—Mn—Al, and Ni—Co—Al.
  • These positive electrode active materials may be used alone or in combination of two or more.
  • Ni—Co—Mn-based lithium-containing transition metal composite oxides are preferable because they have excellent regenerative characteristics in addition to output characteristics.
  • Ni—Co—Al lithium-containing transition metal composite oxides are preferred. It is more suitable because of its excellent capacity and output characteristics.
  • Ni—Co—Al-based lithium-containing transition metal composite oxide and the Ni—Co—Mn-based lithium-containing transition metal composite oxide have a general formula of Li a Ni x M 1-x O 2 (0.95 ⁇ a ⁇ 1.2, 0.45 ⁇ x ⁇ 1, and M is preferably an oxide represented by at least one element selected from Co, Mn, and Al.
  • composition ratio a of Li satisfying the condition of 0.95 ⁇ a ⁇ 1.2 is that when the condition of 0.95 ⁇ a ⁇ 1.2 is satisfied, the cation mixing of Ni ions entering the Li site occurs. This is because it is less likely to occur and the output characteristics are improved.
  • the Ni composition ratio x satisfying the condition of 0.45 ⁇ x ⁇ 1 satisfies the condition of 0.45 ⁇ x, and lithium among the metal elements contained in the lithium-containing transition metal composite oxide This is because, when the ratio of nickel (in terms of mole) is the largest among the metal elements excluding, Ni that can contribute to the charge / discharge reaction increases, resulting in a high capacity.
  • Co having a composition ratio y satisfying the condition of 0 ⁇ y ⁇ 0.2 is used when the condition of y ⁇ 0.2 is satisfied. This is because the phase transition can be suppressed.
  • the reason why the Al composition ratio z satisfies the condition of 0 ⁇ z ⁇ 0.05 is that the thermal stability of the positive electrode is improved when the condition of 0 ⁇ z ⁇ 0.05 is satisfied. On the other hand, when 0.05> z, the output characteristics deteriorate.
  • a tungsten compound is attached to the surface of at least one of the primary particles and the secondary particles of the lithium-containing transition metal composite oxide, and it is attached to the surfaces of both the primary particles and the secondary particles. preferable.
  • the tungsten compound is attached to the surface of the lithium-containing transition metal composite oxide, it is considered that the contact between the non-aqueous electrolyte and the Ni-based positive electrode active material is prevented, and gas generation due to side reactions is suppressed.
  • the tungsten compound attached to the surface of the lithium-containing transition metal composite oxide is preferably at least one selected from tungsten oxide and tungsten lithium composite oxide, and in particular, WO 3 , Li 2 WO 4 , WO 2 or the like is preferable.
  • the amount of the tungsten compound attached to the surface of the lithium-containing transition metal composite oxide is 0.1 mol% or more and 1.5 mol relative to the total molar amount of the metal elements excluding Li in the lithium-containing transition metal composite oxide. % Or less is preferable.
  • the adhesion amount is less than 0.1 mol%, the tungsten compound adhering to the surface of the lithium-containing transition metal composite oxide decreases, and the effects of the present invention cannot be obtained sufficiently.
  • the adhesion amount exceeds 1.5 mol%, the specific capacity of the positive electrode active material decreases, and the capacity cannot be increased substantially.
  • Examples of the method of attaching the tungsten compound to the surface of the lithium-containing transition metal composite oxide include, for example, a method of mixing the lithium-containing transition metal composite oxide and the tungsten compound when preparing the positive electrode mixture slurry, and a lithium-containing transition after firing. Examples thereof include a method in which a tungsten compound is mixed with the metal composite oxide and then heat-treated.
  • tungsten-containing transition metal composite oxide after firing is mixed with a tungsten compound and then heat-treated, tungsten is formed on the surfaces of both the primary and secondary particles of the lithium-containing transition metal composite oxide. More preferred is the ability to attach compounds.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the nonaqueous electrolyte is not limited to a liquid electrolyte (nonaqueous electrolyte solution), and may be a solid electrolyte using a gel polymer or the like.
  • non-aqueous solvent for example, a chain carbonate or a cyclic carbonate is used.
  • chain carbonates include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC).
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • cyclic carbonate examples include propylene carbonate (PC), ethylene carbonate (EC), and vinylene carbonate (VC).
  • PC propylene carbonate
  • EC ethylene carbonate
  • VC vinylene carbonate
  • the ratio of the mixed solvent is preferably such that the volume ratio of the chain carbonate to the cyclic carbonate (chain carbonate / cyclic carbonate) is 3 or more and less than 9.
  • a compound containing an ester such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, or ⁇ -butyrolactone can be added to the above solvent.
  • compounds containing a sulfone group such as propane sultone for the purpose of improving cycleability; 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,3-dioxane, 1,4-dioxane, 2-methyl
  • a compound containing an ether such as tetrahydrofuran can be added to the solvent.
  • nitriles such as butyronitrile, valeronitrile, n-heptanenitrile, succinonitrile, glutaronitrile, adiponitrile, pimeonitrile, 1,2,3-propanetricarbonitrile, 1,3,5-pentanetricarbonitrile, etc.
  • Compound A compound containing an amide such as dimethylformamide can be added to the solvent.
  • the non-aqueous electrolyte preferably contains lithium difluorophosphate (LiPO 2 F 2 ) and / or lithium monofluorophosphate (Li 2 PO 2 F).
  • the non-aqueous electrolyte If these are contained in the non-aqueous electrolyte, it decomposes on the tungsten compound and forms a film on the surface of the positive electrode active material. This is because this coating can suppress the dissolution of the tungsten compound during charge / discharge and storage at high temperature, and can enhance the gas suppression effect.
  • a lithium salt for example, a lithium salt can be used, and as the lithium salt, a lithium salt containing one or more elements selected from the group consisting of P, B, F, O, S, N, and Cl is used. be able to. Specific examples include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, LiCl, LiBr Lii, chloroborane lithium, borates, imide salts and the like can be used.
  • LiPF 6 is preferably used from the viewpoints of ion conductivity and electrochemical stability.
  • electrolyte salt one type may be used alone, or two or more types may be used in combination. These electrolyte salts are preferably contained in a proportion of 0.8 to 1.5 mol with respect to 1 L of the nonaqueous electrolyte.
  • a porous sheet having ion permeability and insulating properties is used for the separator.
  • the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • the base material constituting the separator for example, polyolefin such as polyethylene and polypropylene is suitable.
  • a heat-resistant layer containing a heat-resistant material is formed on the surface of the separator facing the positive electrode.
  • the heat resistant material polyamide resins such as aliphatic polyamide and aromatic polyamide (aramid); polyimide resins such as polyamideimide and polyimide are more preferable.
  • NMP N— A positive electrode mixture slurry was prepared by adding an appropriate amount of (methyl-2-pyrrolidone).
  • the positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 ⁇ m and dried. This was cut into a predetermined electrode size and rolled using a roller so that the mixture density was 3.64 g / cc. Then, the positive electrode current collection tab was attached to the positive electrode current collector, and the positive electrode by which the positive mix layer was formed on the positive electrode current collector was produced.
  • the mixture is mixed so that 100 parts by mass of graphite powder as a negative electrode active material, 1 part by mass of carboxymethyl cellulose (CMC) as a thickener, and 1 part by mass of styrene butadiene rubber (SBR) as a binder are further mixed.
  • CMC carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • the negative electrode mixture slurry was applied to both surfaces of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m and dried. This was cut into a predetermined electrode size and rolled using a roller. Then, the negative electrode current collection tab was attached to the negative electrode current collector, and the negative electrode by which the negative electrode mixture layer was formed on the negative electrode current collector was produced.
  • the flat wound electrode body For the production of the flat wound electrode body, one positive electrode, one negative electrode, and one separator made of a polyethylene microporous film were used. First, the positive electrode and the negative electrode were opposed to each other with a separator interposed therebetween. Next, it was wound in a spiral shape using a cylindrical winding core. At this time, the positive electrode current collecting tab and the negative electrode current collecting tab were both arranged so as to be located on the outermost peripheral side in the electrode. Thereafter, the wound core was pulled out to produce a wound electrode body, and then crushed to obtain a flat wound electrode body.
  • This flat wound electrode body has a structure in which a positive electrode and a negative electrode are laminated via a separator.
  • Ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 20:60:20. Furthermore, lithium hexafluorophosphate (LiPF 6 ) as an electrolyte was dissolved in the mixed solvent so as to have a concentration of 1.3 mol / liter, thereby preparing a nonaqueous electrolytic solution.
  • LiPF 6 lithium hexafluorophosphate
  • the non-aqueous electrolyte prepared in this way and the flat wound electrode body are inserted into an aluminum laminate outer body in a glove box under an argon atmosphere, and shown in FIGS. 1 and 2.
  • a nonaqueous electrolyte secondary battery 10 having a structure was produced.
  • the outer peripheral edge of the laminate outer package 11 was sealed with a heat seal part 18.
  • the extending portion 19 is a spare chamber for minimizing the influence of gas generated by the decomposition of the electrolytic solution or the like on the charge / discharge when the battery is precharged.
  • the laminate outer body 11 may be sealed by heat sealing with an AA line, and then the extension 19 may be cut.
  • the extension is used to evaluate the amount of gas generated. The test was conducted leaving
  • the non-aqueous electrolyte secondary battery was charged until the battery voltage reached 4.2V, and then discharged to 2.5V, the design capacity of the battery was 814 mAh.
  • battery A1 The battery thus produced is hereinafter referred to as battery A1.
  • Example 2 The nonaqueous electrolyte secondary battery is the same as Experimental Example 1 except that a lithium nickel cobalt aluminum composite oxide represented by LiNi 0.82 Co 0.15 Al 0.03 O 2 is used as the positive electrode active material. Was made.
  • battery Z1 The battery thus produced is hereinafter referred to as battery Z1.
  • Example 3 When preparing the negative electrode mixture slurry, 96 parts by mass of graphite powder as the negative electrode active material, 4 parts by mass of SiO having a carbon coating layer as the negative electrode active material, and carboxymethyl cellulose (CMC) as the thickener A nonaqueous electrolyte secondary battery was produced in the same manner as in Experimental Example 1 except that 1 part by mass and 1 part by mass of styrene butadiene rubber (SBR) as a binder were mixed.
  • SBR styrene butadiene rubber
  • battery A2 The battery thus produced is hereinafter referred to as battery A2.
  • Example 4 When preparing the non-aqueous electrolyte, the same as in Experimental Example 1 except that 1.0% by mass of lithium difluorophosphate was further dissolved in the non-aqueous electrolytic solution of Experimental Example 1 in the mixed solvent. Thus, a nonaqueous electrolyte secondary battery was produced.
  • the battery thus produced is hereinafter referred to as battery A3.
  • Example 5 When preparing the non-aqueous electrolyte, the same as in Experimental Example 3 except that 1.0% by mass of lithium difluorophosphate was further dissolved in the non-aqueous electrolytic solution of Experimental Example 3 in the mixed solvent. Thus, a nonaqueous electrolyte secondary battery was produced.
  • battery A4 The battery thus produced is hereinafter referred to as battery A4.
  • the nonaqueous electrolyte secondary battery is the same as Experimental Example 1 except that tungsten oxide is added when the lithium transition metal composite oxide is fired, and tungsten is dissolved in the lithium transition metal composite oxide. Was made.
  • battery Z2 The battery thus produced is hereinafter referred to as battery Z2.
  • Example 7 The nonaqueous electrolyte secondary battery is the same as Experimental Example 4 except that tungsten oxide is added when the lithium transition metal composite oxide is fired, and tungsten is dissolved in the lithium transition metal composite oxide. Was made.
  • battery Z3 The battery thus produced is hereinafter referred to as battery Z3.
  • the battery A1 has a reduced thickness of the extending portion of the laminate outer package compared to the battery Z1 in which tungsten is not attached to the surface of the positive electrode active material, and the gas generation amount is reduced.
  • the amount of gas generated increased in Z2 in which tungsten was dissolved.
  • the surface of the positive electrode active material is covered with a tungsten compound that is not active with respect to the electrolytic solution, the reaction between the positive electrode active material in the active state and the electrolytic solution is inhibited, and the generation of gas is suppressed.
  • the amount of gas generated is reduced by adding lithium difluorophosphate to the electrolytic solution compared to the battery Z1 to which lithium difluorophosphate is not added.
  • the reason why such a result was obtained is not clear, but is presumed to be due to the following explanation.
  • the battery produced in this way is designated A5.
  • Example 9 When preparing the non-aqueous electrolyte, the same as in Experimental Example 1 except that 0.5% by mass of lithium difluorophosphate was further dissolved in the non-aqueous electrolytic solution of Experimental Example 1 in the mixed solvent. Thus, a nonaqueous electrolyte secondary battery was produced.
  • the battery thus produced is designated as A6.
  • Example 10 When preparing the non-aqueous electrolyte, the same as in Experimental Example 1 except that 2.0% by mass of lithium difluorophosphate was further dissolved in the non-aqueous electrolytic solution of Experimental Example 1 in the mixed solvent. Thus, a nonaqueous electrolyte secondary battery was produced.
  • the battery produced in this way is designated as Z4.
  • lithium difluorophosphate was added in the batteries A5, A6, and A3 in which the amount of lithium difluorophosphate added was 0.1% by mass or more and less than 2.0% by mass.
  • the amount of gas generation is reduced compared to the battery Z1 that does not.
  • the battery Z4 to which the addition amount of lithium difluorophosphate is added by 2.0% by mass the amount of gas generation is increased compared to the battery Z1 to which lithium difluorophosphate is not added.
  • This effect is achieved by increasing the amount of lithium difluorophosphate added, resulting in improved coverage with the lithium difluorophosphate-derived coating, which also improves the tungsten compound dissolution suppression effect, resulting in improved gas generation reaction inhibition effect. It is thought that.
  • the battery thus produced is designated as A7.
  • Example 12 The nonaqueous electrolyte secondary battery is the same as Experimental Example 11 except that a lithium nickel cobalt aluminum composite oxide represented by LiNi 0.91 Co 0.06 Al 0.03 O 2 is used as the positive electrode active material. Was made.
  • battery Z5 The battery thus produced is hereinafter referred to as battery Z5.
  • Example 13 When preparing the non-aqueous electrolyte, the same as in Experimental Example 11 except that 1.0% by mass of lithium difluorophosphate was further dissolved in the non-aqueous electrolytic solution of Experimental Example 11 in the mixed solvent. Thus, a nonaqueous electrolyte secondary battery was produced.
  • the battery produced in this way is designated as A8.
  • the battery A7 in which the tungsten compound is attached to the lithium composite oxide surface is more than the battery Z5 in which the tungsten compound is not attached.
  • the amount of gas generated is small and suitable for high capacity.
  • the battery A8 obtained by adding lithium difluorophosphate to the battery A7 has a smaller amount of gas generation than the battery A7 and is suitable for higher capacity.
  • the gas generation suppressing effect in the present invention is such that a tungsten compound is attached to the surface of the nickel-based positive electrode active material, so that the highly active Ni-based positive electrode active material and the electrolytic solution Prevents contact and suppresses gas generation. Therefore, it is considered that the effect of the present invention was obtained even when the Ni ratio was increased. The same applies to the effect of adding lithium difluorophosphate.
  • Example 4 (Experimental example 14) After mixing tungsten oxide (WO 3 ) with lithium nickel cobalt aluminum composite oxide represented by LiNi 0.94 Co 0.03 Al 0.03 O 2 as a lithium-containing transition metal composite oxide, heat treatment at 200 ° C. Thus, a nonaqueous electrolyte secondary battery was produced in the same manner as in Experimental Example 1 except that a positive electrode active material having a tungsten compound adhered to the surface of the lithium nickel cobalt aluminum composite oxide was obtained.
  • tungsten oxide WO 3
  • lithium nickel cobalt aluminum composite oxide represented by LiNi 0.94 Co 0.03 Al 0.03 O 2
  • the battery produced in this way is designated A9.
  • Example 15 The nonaqueous electrolyte secondary battery is the same as Experimental Example 14 except that a lithium nickel cobalt aluminum composite oxide represented by LiNi 0.82 Co 0.15 Al 0.03 O 2 is used as the positive electrode active material. Was made.
  • battery Z6 The battery thus produced is hereinafter referred to as battery Z6.
  • Example 16 When preparing the non-aqueous electrolyte, the same as in Experimental Example 14 except that 1.0% by mass of lithium difluorophosphate was further dissolved in the non-aqueous electrolyte of Experimental Example 14 in the mixed solvent. Thus, a nonaqueous electrolyte secondary battery was produced.
  • the battery thus produced is designated as A10.
  • battery A11 The battery thus produced is hereinafter referred to as battery A11.
  • Example 18 When adjusting the nonaqueous electrolyte in Experimental Example 17, a nonaqueous electrolyte secondary battery was prepared in the same manner as in Experimental Example 17 except that 1.0% by mass of lithium difluorophosphate was dissolved in the mixed solvent. Produced.
  • battery A12 The battery thus produced is hereinafter referred to as battery A12.
  • the battery A12 to which lithium difluorophosphate was added even when the volume ratio of “chain carbonate / cyclic carbonate” was 3 was more than the battery A11 to which lithium zircorophosphate was not added. It can be seen that the amount of gas generation is decreasing and it is suitable for high capacity.
  • the tungsten compound inhibits the decomposition of the chain carbonate on the surface of the highly active Ni-based positive electrode active material. Therefore, even if the volume ratio of “chain carbonate / cyclic carbonate” is 3, the effect of the present invention can be obtained.
  • battery Z8 The battery thus produced is hereinafter referred to as battery Z8.
  • non-aqueous electrolyte was prepared in the same manner as in Experimental Example 1 except that ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 9. A water electrolyte secondary battery was produced.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • battery Z9 The battery thus produced is hereinafter referred to as battery Z9.
  • the battery Z8 having a volume ratio of “chain carbonate / cyclic carbonate” of 2.3 is compared with the battery A1 having a volume ratio of “chain carbonate / cyclic carbonate” of 3.0. It can be seen that the utilization rate of the positive electrode is small and not suitable for high capacity.
  • the battery Z9 having a "chain carbonate / cyclic carbonate” volume ratio of 9.0 has a lower positive electrode utilization rate and a higher capacity than the battery Z7 having a "chain carbonate / cyclic carbonate” volume ratio of 3.0. Not suitable for conversion.
  • the battery A1 having a volume ratio of “chain carbonate / cyclic carbonate” of 4.0 has the same positive electrode utilization rate as the battery Z7 having a volume ratio of “chain carbonate / cyclic carbonate” of 3.0.
  • the dissociation degree of the Li salt decreases, and the reaction resistance increases, so that the positive electrode utilization rate decreases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 高容量かつ高信頼性を両立した非水電解質二次電池を提供する。本発明の一局面の非水電解質二次電池は、リチウム遷移金属複合酸化物を含む正極と、リチウムイオンを挿入脱離可能な炭素材料を含む負極と、非水電解液とを備えた非水電解質二次電池において、リチウム遷移金属複合酸化物はNiを含み、リチウム遷移金属複合酸化物は一次粒子が凝集して形成された二次粒子からなり、Niがリチウム遷移金属複合酸化物中のリチウムを除く全金属元素におけるモル換算で主成分であり、一次粒子及び二次粒子の少なくとも一方の表面にタングステン化合物が付着し、非水電解液が環状カーボネートと鎖状カーボネートからなり、鎖状カーボネートと環状カーボネートとの体積比(鎖状カーボネート/環状カーボネート)が3以上、9未満であることを特徴とする。

Description

非水電解質二次電池
 本発明は、非水電解質二次電池に関する。
 近年、携帯電話、ノートパソコン、スマートフォン等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての電池にはさらなる高容量化が要求されている。充放電に伴い、リチウムイオンが正負極間を移動することにより充放電を行う非水電解質二次電池は、高いエネルギー密度を有し、高容量であるので、上記のような移動情報端末の駆動電源として広く利用されている。
 更に最近では、非水電解質二次電池は電気自動車等の動力用電源としても注目されており、さらなる用途拡大が見込まれている。このような用途では、電池を長時間使用可能にする高容量化、充電と放電を繰り返したときの電池の長寿命化、電池の低コスト化などについて、さらなる改善が望まれている。
 高容量化の手段として、例えば活物質の高充填化やNi系正極活物質の使用の検討が進められている。
 しかしながら、活物質の高充填化を進めると電極への電解液の浸透性が悪くなり、電極中の正極利用率が低下し、結果として電池の高容量化ができなくなる。
 また、電池内の空間体積が制限されているため、高充填化により電池内の残空間が減少した場合、充放電サイクル時や高温保存時のガス発生で電池の内圧が上昇しやすくなり、安全機構であるCID(電流遮断機構)の誤作動の懸念が生じ、高容量化と信頼性の両立が困難であった。
 ここで、特許文献1には環状カーボネートの割合を体積比で10%未満とし、鎖状カーボネートの割合を増やし、電解液の粘度を下げて高温保存特性を改善させることが記述されている。
 また、特許文献2には、Niを含有する正極活物質にタングステンを固溶させ、表面近傍のタングステン濃度を高くし、さらに電解液にジフルオロリン酸リチウムを添加させて、出力特性を向上させることが記述されている。
特開2008-262902号公報 特開2013-069580号公報
 しかしながら、特許文献1に開示された技術をNi系正極活物質に用いた場合、鎖状カーボネートは分解されやすく、ガスが多量に発生するため、上述したCIDの誤作動の懸念が生じる課題がある。また、環状カーボネート比率を10%未満に低下させるとLi塩の解離度が低下し、反応抵抗が増大するために正極利用率が低下し、電池容量を向上させることができない。
 また、特許文献2に開示された技術をNi系正極活物質に用いた場合、ガス発生量が増加する。これは固溶したタングステンとの相互作用によりNiの活性が上がり、電解液が分解されやすくなったためと考えられる。ここにジフルオロリン酸リチウムを添加すると、正極活物質上でジフルオロリン酸リチウムが分解し、更にガス発生量が増加する。そのため、上記CIDの誤作動の観点から実質的に電池容量の向上ができないという課題があった。
 上記課題を解決すべく、本発明の一局面によれば、リチウム遷移金属複合酸化物を含む正極と、リチウムイオンを挿入脱離可能な炭素材料を含む負極と、非水電解液とを備えた非水電解質二次電池において、リチウム遷移金属複合酸化物はNiを含み、リチウム遷移金属複合酸化物は一次粒子が凝集して形成された二次粒子からなり、リチウム遷移金属複合酸化物中のNiが、リチウム遷移金属複合酸化物中のリチウムを除く全金属元素におけるモル換算で主成分であり、一次粒子及び二次粒子の少なくとも一方の表面にタングステン化合物が付着し、非水電解液が環状カーボネートと鎖状カーボネートからなり、鎖状カーボネートと環状カーボネートとの体積比(鎖状カーボネート/環状カーボネート)が3以上、9未満であることを特徴とする。
 本発明によれば、鎖状カーボネート比率の高い電解液の使用により正極利用率を向上させつつ、ガス発生量低減が可能となり、電池内への活物質の充填量を高めながら、CIDの誤作動の課題も解消し、高容量化と高信頼性を両立した非水電解質二次電池を提供できる。
本発明の実施形態の一例である非水電解質二次電池の略図的平面図である。 図1のII-II線に沿った略図的断面図である。 本発明の実施形態の一例である負極を示す略図的断面図である。
 本発明の実施形態について以下に説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
 <非水電解質二次電池>
 本実施形態の一例である非水電解質二次電池は、リチウム遷移金属複合酸化物を含む正極と、リチウムイオンを挿入脱離可能な炭素材料を含む負極と、非水電解液とを備えた非水電解質二次電池において、リチウム遷移金属複合酸化物はNiを含み、リチウム遷移金属複合酸化物は一次粒子が凝集して形成された二次粒子からなり、リチウム遷移金属複合酸化物中のNiが、リチウム遷移金属複合酸化物中のリチウムを除く全金属元素におけるモル換算で主成分であり、一次粒子及び二次粒子の少なくとも一方の表面にタングステン化合物が付着し、非水電解液が環状カーボネートと鎖状カーボネートからなり、鎖状カーボネートと環状カーボネートとの体積比(鎖状カーボネート/環状カーボネート)が3以上、9未満であるものである。
 本実施形態に係る非水電解質二次電池では、高容量なNi系正極材料の一次粒子及び二次粒子の少なくとも一方の表面にタングステン化合物を付着させることで、Liイオンを透過させつつNi系正極材料と非水電解液との接触を妨げることができる。その結果、鎖状カーボネート比率の高い電解液の使用により正極利用率を向上させつつ、ガス発生量の低減が可能となり、電池内への活物質の充填量を高めながら、CIDの誤作動の課題も解消し、電池容量の向上を実現させることができる。
 なお、このガス発生量を低減させる効果は、タングステン化合物を付着させたNi系正極材料でのみ有効であり、特許文献2に記載されているようなタングステンを固溶させたNi系正極材料では効果がなく、ガス発生量が逆に増加する。
 非水電解質二次電池の一例としては、正極及び負極がセパレータを介して巻回されてなる電極体と、非水電解質とが外装体に収納された構造が挙げられる。上記非水電解質二次電池の具体的な構成について、図1及び図2を用いて詳細に説明する。
 図1及び図2に示されるように、非水電解質二次電池10は、外周囲を覆うラミネート外装体11と、偏平状の巻回電極体12と、非水電解質としての非水電解液とを備えている。巻回電極体12は、正極13と負極14とがセパレータ15を介して互いに絶縁された状態で偏平状に巻回された構造を有している。巻回電極体12の正極13には正極集電タブ16が接続され、同じく負極14には負極集電タブ17が接続されている。巻回電極体12は、外周囲を覆うラミネート外装体11の内部に非水電解液とともに封入されており、ラミネート外装体11の外周縁端部はヒートシール部18により密封されている。
 図中、延在部19は、電池の予備充電時に電解液等の分解により発生したガスが充放電に及ぼす影響を最小限に抑制するための予備室である。予備充電後に、ラミネート外装体11をA-A線でヒートシールすることにより密閉した後、延在部19を切断する。
 また、電極体の構造や外装体はこれに限定されない。電極体の構造は、例えば正極及び負極がセパレータを介して交互に積層してなる積層型であってもよい。また、外装体は、例えば金属製の角形電池缶等であってもよい。
 [負極]
 図3に示されるように、負極14は、負極集電体14aと、負極集電体14a上に形成された負極合剤層14bとを備える。負極集電体14aには、例えば、導電性を有する薄膜体、特に銅などの負極の電位範囲で安定な金属箔や合金箔、銅などの金属表層を有するフィルムが用いられる。負極合剤層は、負極活物質の他に、増粘剤及び結着剤を含むことが好適である。増粘剤としては、カルボキシメチルセルロース、カルボキシアルキルセルロース、ヒドロキシアルキルセルロース又はアルコキシセルロース等を用いることが好ましい。結着剤としてはスチレン-ブタジエンゴム(SBR)やポリイミド等を用いることが好ましい。
 負極活物質としては、リチウムイオンの挿入脱離が可能な炭素材料である負極活物質14cを用いる。炭素材料は、黒鉛を含む粒子が好適である。負極活物質は、炭素材料である負極活物質14cと、ケイ素または/およびケイ素化合物である負極活物質14dとを備えることが好ましい。ケイ素化合物は、SiO(好ましくは0.5≦x≦1.5)で表されるケイ素酸化物の粒子であることが好ましい。また、負極活物質14dは表面が炭素を含む材料で被覆されていることが更に好ましい。
 炭素被膜は、主に非晶質炭素から構成されることが好ましい。非晶質炭素を用いることで、ケイ素化合物表面に良好かつ均一な被膜を形成することが可能となり、ケイ素化合物へのリチウムイオンの拡散をより促進させることが可能となる。
 負極活物質14cと負極活物質14dとの質量比は、99:1~70:30であることが好ましく、97:3~90:10であることがより好ましい。質量比が当該範囲内であれば、出力特性の向上効果が大きくなるためである。これは、負極活物質14dの質量比が大きくなり過ぎると、電池の放電電圧が低下し、出力特性も低下するからである。
 [正極]
 正極は、正極集電体と、正極集電体上に形成された正極活物質層とで構成される。正極集電体には、例えば、導電性を有する薄膜体、特にアルミニウムなどの正極の電位範囲で安定な金属箔や合金箔、アルミニウムなどの金属表層を有するフィルムが用いられる。正極活物質層は、正極活物質の他に、導電材及び結着剤を含むことが好ましい。
 正極活物質は、リチウムと、金属元素Mとを含むリチウム遷移金属複合酸化物であり、前記金属元素Mは、ニッケル、コバルト、マンガン等を含む群より選択される少なくとも一種からなり、かつ金属元素Mの中でニッケルを主成分として含む。ここで、主成分がニッケルであるとは、リチウムを除く金属元素Mのうち、ニッケルの割合(モル換算)が最も多いことを意味する。
 また、リチウム含有遷移金属複合酸化物は、Mg、Al等の非遷移金属元素を含有するものであってもよい。具体例としては、Ni-Co-Mn、Ni-Mn-Al、Ni-Co-Al等のリチウム含有遷移金属複合酸化物が挙げられる。
 正極活物質は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。
 上記の中でもNi-Co-Mn系のリチウム含有遷移金属複合酸化物は、出力特性に加え回生特性にも優れること等から好適であり、Ni-Co-Alのリチウム含有遷移金属複合酸化物は高容量かつ出力特性に優れるためさらに好適である。
 上記Ni-Co-Al系のリチウム含有遷移金属複合酸化物およびNi-Co-Mn系のリチウム含有遷移金属複合酸化物は、一般式LiNi1-x(0.95≦a≦1.2、0.45≦x<1、MはCo、Mn及びAlから選択される少なくとも1種類以上の元素)で表される酸化物であることが好ましい。
 Liの組成比aが0.95≦a≦1.2の条件を満たすものを用いるのは、0.95≦a≦1.2の条件を満たすと、NiイオンがLiサイトに入るカチオンミキシングが生じにくくなり、出力特性が向上するからである。
 また、Niの組成比xが0.45≦x<1の条件を満たすものを用いるのは、0.45≦xの条件を満たし、リチウム含有遷移金属複合酸化物に含まれる金属元素のうちリチウムを除く金属元素のなかで、ニッケルの割合(モル換算)が最も多くなると、充放電反応に寄与できるNiが増え、高容量になるためである。
 リチウム含有遷移金属複合酸化物は、特に、一般式LiNiCoAl(0.95≦a≦1.2、0.8≦x<1、0<y<0.2、0<z≦0.05、x+y+z=1)で表される酸化物であることが好ましい。
 Coの組成比yが0<y<0.2の条件を満たすものを用いるのは、y<0.2の条件を満たすと、高容量を維持しながら、かつ充放電に伴うリチウム酸ニッケル化合物の相転移を抑制できるからである。
 また、Alの組成比zが0<z≦0.05の条件を満たすものを用いるのは、0<z≦0.05の条件を満たすと、正極の熱安定性が向上するからである。一方、0.05>zとなると、出力特性が低下する。
 リチウム含有遷移金属複合酸化物の一次粒子及び二次粒子の少なくとも一方の表面には、タングステン化合物が付着していることが好ましく、一次粒子と二次粒子の両方の表面に付着していることが好ましい。
 リチウム含有遷移金属複合酸化物の表面にタングステン化合物が付着していると、非水電解液とNi系正極活物質との接触を防ぎ、副反応によるガス発生が抑制されると考えられる。
 リチウム含有遷移金属複合酸化物の表面に付着させるタングステン化合物としては、タングステンの酸化物及びタングステンのリチウム複合酸化物から選ばれる少なくとも1種であることが好ましく、特に、WO、LiWO、WO等が好ましい。
 リチウム含有遷移金属複合酸化物の表面に付着させるタングステン化合物の量は、リチウム含有遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して、0.1モル%以上1.5モル%以下であることが好ましい。
 付着量が0.1モル%未満だとリチウム含有遷移金属複合酸化物の表面に付着するタングステン化合物が少なくなり、本発明の効果を充分に得られないためである。一方、付着量が1.5モル%を越えると正極活物質の比容量が低下し、実質的に高容量化ができないためである。
 リチウム含有遷移金属複合酸化物の表面に、タングステン化合物を付着させる方法としては、例えば、正極合剤スラリー作製時にリチウム含有遷移金属複合酸化物とタングステン化合物を混合する方法や、焼成後のリチウム含有遷移金属複合酸化物に、タングステン化合物を混合した後、熱処理する方法等を挙げることができる。
 なお、焼成後のリチウム含有遷移金属複合酸化物に、タングステン化合物を混合した後、熱処理することで製造した場合は、リチウム含有遷移金属複合酸化物の一次粒子及び二次粒子の両方の表面にタングステン化合物を付着させることができるので、より好ましい。
 [非水電解質]
 非水電解質は、非水系溶媒と、非水系溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質(非水電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。
 非水系溶媒としては、例えば鎖状カーボネートや環状カーボネートが用いられる。鎖状カーボネートとしてはジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。環状カーボネートとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネート(VC)などが挙げられる。特に、低粘度、低融点でリチウムイオン伝導度の高い非水系溶媒として鎖状カーボネートと環状カーボネートの混合溶媒を用いることが好適である。
 また、この混合溶媒の比率は、鎖状カーボネートと環状カーボネートとの体積比(鎖状カーボネート/環状カーボネート)が3以上、9未満であることが好ましい。
 「鎖状カーボネート/環状カーボネート」の体積比が3未満であると、高充填化した電池では電池への電解液の浸透性が悪くなるため、電極中の正極利用率が低下し、結果として電池の高容量化ができなくなる。
 一方、「鎖状カーボネート/環状カーボネート」の体積比が9以上であると、Li塩の解離度が低下し、反応抵抗が増大するために正極利用率が低下し、電池容量が向上できない。
 また、出力向上を目的として酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステルを含む化合物を上記の溶媒を添加することができる。
 また、サイクル性向上を目的としてプロパンスルトン等のスルホン基を含む化合物;1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,3-ジオキサン、1,4-ジオキサン、2-メチルテトラヒドロフラン等のエーテルを含む化合物を上記の溶媒に添加することができる。
 また、ブチロニトリル、バレロニトリル、n-ヘプタンニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル等のニトリルを含む化合物;ジメチルホルムアミド等のアミドを含む化合物等を上記の溶媒に添加することもできる。
 また、これらの水素原子(H)の一部がフッ素原子(F)により置換されている溶媒も用いることができる。
 非水電解質は、ジフルオロリン酸リチウム(LiPO)及び/又はモノフルオロリン酸リチウム(LiPOF)を含有していることが好ましい。
 非水電解質にこれらが含有されていると、タングステン化合物上で分解し、正極活物質の表面に被膜を形成する。この被膜は充放電時や高温保存時にタングステン化合物の溶解を抑制させることができ、ガス抑制効果を高めることができるためである。
 電解質塩としては、例えばリチウム塩を用いることができ、リチウム塩としては、P、B、F、O、S、NおよびClからなる群から選択される1種以上の元素を含むリチウム塩を用いることができる。具体例としては、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、Lii、クロロボランリチウム、ホウ酸塩類、イミド塩類などを用いることができる。
 中でも、イオン伝導性と電気化学的安定性の観点から、LiPFを用いることが好ましい。
 電解質塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、これら電解質塩は、非水電解質1Lに対し0.8~1.5molの割合で含まれていることが好ましい。
 [セパレータ]
 セパレータには、例えば、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。
 特にシャットダウン機能による安全性向上という観点からは、セパレータを構成する基材としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィンなどが好適である。
 また高温条件下での放電時の正極の発熱によるセパレータの劣化を抑制するという観点からは、セパレータの正極と対向する表面に耐熱性材料を含む耐熱層が形成されていることが好ましい。耐熱性材料としては、脂肪族系ポリアミド、芳香族系ポリアミド(アラミド)などのポリアミド樹脂;ポリアミドイミド、ポリイミドなどのポリイミド樹脂などがより好ましい。
 以下、実験例を挙げ、本発明の実施例をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。
               〔第1実験例〕
 (実験例1)
 [正極の作製]
 [正極合剤スラリーの調整]
 リチウム含有遷移金属複合酸化物としてのLiNi0.82Co0.15Al0.03で表されるリチウムニッケルコバルトアルミニウム複合酸化物に、酸化タングステン(WO)を混合した後、200℃で熱処理することにより、リチウムニッケルコバルトアルミニウム複合酸化物の表面にタングステン化合物が付着した正極活物質を得た。
 次に、得られた正極活物質100質量部に、炭素導電剤としてのカーボンブラック1質量部と、結着剤としてのポリフッ化ビニリデン0.9質量部とを混合し、さらに、NMP(N-メチル-2-ピロリドン)を適量加えることにより正極合剤スラリーを調製した。
 次に、該正極合剤スラリーを、厚みが15μmのアルミニウム箔からなる正極集電体の両面に塗布し、乾燥した。これを所定の電極サイズに切り取り、ローラーを用いて合剤密度が3.64g/ccになるように圧延した。その後、正極集電体に正極集電タブを取り付け、正極集電体上に正極合剤層が形成された正極を作製した。
 [負極の作製]
 負極活物質としての黒鉛粉末100質量部と、増粘剤としてのカルボキシメチルセルロース(CMC)1質量部と、結着剤としてのスチレンブタジエンゴム(SBR)1質量部となるように混合し、さらに水を適宜加えた後、負極合剤スラリーを調製した。
 次に、負極合剤スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥した。これを所定の電極サイズに切り取り、ローラーを用いて圧延した。その後、負極集電体に負極集電タブを取り付け、負極集電体上に負極合剤層が形成された負極を作製した。
 [電極体の作製]
 偏平状の巻回電極体の作製には、上記正極を1枚、上記負極を1枚、ポリエチレン製微多孔膜からなるセパレータを1枚用いた。まず、正極と負極とをセパレータを介して互いに絶縁した状態で対向させた。次に、円柱形の巻き芯を用いて、渦巻き状に巻回した。この際、正極集電タブ及び負極集電タブは、共に電極内においてそれぞれ最外周側に位置するように配置した。その後、巻き芯を引き抜いて巻回電極体を作製した後、押し潰して、偏平状の巻回電極体を得た。この偏平状の巻回電極体は、正極と負極とがセパレータを介して積層された構造を有している。
 [非水電解液の調製]
 エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)とを、20:60:20の体積比で混合した。さらに、電解質としての六フッ化リン酸リチウム(LiPF)を、上記混合溶媒に対して1.3モル/リットルの濃度になるように溶解させて、非水電解液を調製した。
 [電池の作製]
 このようにして調製した非水電解液と上記偏平状の巻回電極体とを、アルゴン雰囲気下のグローブボックス中にて、アルミニウム製のラミネート外装体内に挿入し、図1及び図2に示される構造を有する、非水電解質二次電池10を作製した。ラミネート外装体11の外周縁端部はヒートシール部18により密封した。
 延在部19は、電池の予備充電時に電解液等の分解により発生したガスが充放電に及ぼす影響を最小限に抑制するための予備室である。予備充電後に、ラミネート外装体11をA-A線でヒートシールすることにより密閉した後、延在部19を切断してもよいが、ガス発生量を評価するために本実施例では延在部を残して試験を実施した。
 また、当該非水電解質二次電池は、電池電圧が4.2Vとなるまで充電し、その後2.5Vまで放電したときの電池の設計容量は、814mAhであった。
 このようにして作製した電池を、以下、電池A1と称する。
 (実験例2)
 正極活物質にLiNi0.82Co0.15Al0.03で表されるリチウムニッケルコバルトアルミニウム複合酸化物を用いたこと以外は、上記実験例1と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池を、以下、電池Z1と称する。
 (実験例3)
 負極合剤スラリーを調整する際に、負極活物質としての黒鉛粉末96質量部と、負極活物質としての炭素の被覆層を有するSiOを4質量部と、増粘剤としてのカルボキシメチルセルロース(CMC)1質量部と、結着剤としてのスチレンブタジエンゴム(SBR)1質量部となるように混合したこと以外は、上記実験例1と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池を、以下、電池A2と称する。
 (実験例4)
 非水電解液を調整する際、実験例1の非水電解液に、さらにジフルオロリン酸リチウムを、上記混合溶媒に対して1.0質量%溶解させたこと以外は、上記実験例1と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池を、以下、電池A3と称する。
 (実験例5)
 非水電解液を調整する際、実験例3の非水電解液に、さらにジフルオロリン酸リチウムを、上記混合溶媒に対して1.0質量%溶解させたこと以外は、上記実験例3と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池を、以下、電池A4と称する。
 (実験例6)
 リチウム遷移金属複合酸化物を焼成する際にタングステン酸化物を添加し、リチウム遷移金属複合酸化物内にタングステンを固溶させたこと以外は、上記実験例1と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池を、以下、電池Z2と称する。
 (実験例7)
 リチウム遷移金属複合酸化物を焼成する際にタングステン酸化物を添加し、リチウム遷移金属複合酸化物内にタングステンを固溶させたこと以外は、上記実験例4と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池を、以下、電池Z3と称する。
 (実験)
 <高温保存試験>
 [ガス発生量の算出]
 上記のようにして作製された電池A1~電池A7及び電池Z1の各電池について、25℃下で、以下の条件で充電し、85℃の恒温槽で72時間保存した。その後、ラミネート外装体の延在部(予備室)の厚みを測定した。その結果を表1に示す。
 (充放電条件)
・充電条件
 0.5It(407mA)の電流で電池電圧が4.2Vとなるまで、定電流充電を行った。さらに、4.2Vの電圧で電流値が0.02It(16mA)となるまで定電圧充電を行った。
Figure JPOXMLDOC01-appb-T000001
 上記表1から明らかなように、電池A1は、正極活物質の表面にタングステンを付着させていない電池Z1に比べてラミネート外装体の延在部の厚みが減少しており、ガス発生量が低減していることがわかる。それに対してタングステンを固溶させたZ2では逆にガス発生量が増加した。このような結果が得られた理由について定かではないが、以下の説明によるものと推察される。
 電池Z1では、高温保存時に活性状態にある正極活物質上で電解液の分解反応が起きた結果、ガスが発生し、ラミネート外装体の延在部の厚みが増加した。
 一方、電池A1では、電解液に対して活性でないタングステン化合物で正極活物質表面を覆っているため、活性状態にある正極活物質と電解液との反応が阻害され、ガスの発生が抑制された。
 また、電池Z2ではタングステンが正極活物質内に固溶しているため、付着した場合のような電解液の分解反応を抑制する効果が発揮されず、逆にタングステンとNiとの相互作用により、Niの活性が高まったことで、電解液の分解反応がより起きたと考えられる。
 また、負極にSiOを添加した電池A2では、ケイ素化合物であるSiOが発生したCOガス等と反応・吸収する効果により、ガス発生量が減少したと推察される。
 電池A3では電解液にジフルオロリン酸リチウムを添加することで、ジフルオロリン酸リチウムを添加していない電池Z1よりもガス発生量が減少している。このような結果が得られた理由についても定かではないが、以下の説明によるものと推察される。
 電解液にジフルオロリン酸リチウムを添加して充放電を行うと、正極活物質上にジフルオロリン酸リチウム由来の被膜が形成される。この被膜の存在により、リチウム遷移金属複合酸化物上に付着しているタングステン化合物の溶解が抑制された結果、タングステン化合物による電解液分解反応阻害効果が維持され、より効果的にガス発生を抑制できたと考えられる。この効果はSiO添加によるガス発生抑制メカニズムと重複しないため、電池A4においては更にガス発生低減効果が発現したと推察される。
              〔第2実験例〕
 (実験例8)
 非水電解液を調整する際、実験例1の非水電解液に、さらにジフルオロリン酸リチウムを、上記混合溶媒に対して0.1質量%溶解させたこと以外は、上記実験例1と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池をA5とする。
 (実験例9)
 非水電解液を調整する際、実験例1の非水電解液に、さらにジフルオロリン酸リチウムを、上記混合溶媒に対して0.5質量%溶解させたこと以外は、上記実験例1と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池をA6とする。
 (実験例10)
 非水電解液を調整する際、実験例1の非水電解液に、さらにジフルオロリン酸リチウムを、上記混合溶媒に対して2.0質量%溶解させたこと以外は、上記実験例1と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池をZ4とする。
Figure JPOXMLDOC01-appb-T000002
 上記表2から明らかなように、ジフルオロリン酸リチウムの添加量が0.1質量%以上、2.0質量%未満である電池A5、電池A6、電池A3では、ジフルオロリン酸リチウムを添加していない電池Z1と比較してガス発生量が低減する。逆にジフルオロリン酸リチウムの添加量が2.0質量%添加した電池Z4は、ジフルオロリン酸リチウムを添加していない電池Z1よりもガス発生量が増加する。このような効果が得られた結果についても定かではないが、下記理由によるものと推察される。
 ジフルオロリン酸リチウムの添加量が0.1質量%以上、2.0質量%未満の電池では、上述したように、ジフルオロリン酸リチウム由来の被膜によりタングステン化合物の溶解を抑制する効果により、ガス発生反応を効果的に阻害できるようになる。
 この効果はジフルオロリン酸リチウムの添加量を増やすことにより、ジフルオロリン酸リチウム由来の被膜による被覆率が向上した結果、タングステン化合物の溶解抑制効果も向上し、その結果、ガス発生反応阻害効果も向上したものと考えられる。
 しかし、過剰なジフルオロリン酸リチウムを添加した電池では、ジフルオロリン酸リチウム由来の被膜の被覆率向上によるタングステン化合物の溶解抑制効果が限度に達し、さらなるガス発生抑制の効果が得られない。さらに、ジフルオロリン酸リチウム自体の分解反応によりガスが発生し、ガス発生量が増加したと考えられる。
              〔第3実験例〕
 (実験例11)
 リチウム含有遷移金属複合酸化物としてのLiNi0.91Co0.06Al0.03で表されるリチウムニッケルコバルトアルミニウム複合酸化物に酸化タングステン(WO)を混合した後、200℃で熱処理することにより、リチウムニッケルコバルトアルミニウム複合酸化物の表面にタングステン化合物が付着した正極活物質を得たこと以外は、上記実験例1と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池をA7とする。
 (実験例12)
 正極活物質にLiNi0.91Co0.06Al0.03で表されるリチウムニッケルコバルトアルミニウム複合酸化物を用いたこと以外は、上記実験例11と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池を、以下、電池Z5と称する。
 (実験例13)
 非水電解液を調整する際、実験例11の非水電解液に、さらにジフルオロリン酸リチウムを、上記混合溶媒に対して1.0質量%溶解させたこと以外は、上記実験例11と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池をA8とする。
Figure JPOXMLDOC01-appb-T000003
 上記表3から明らかなようにリチウム含有遷移金属複合酸化物のNi比率を91モル%としても、リチウム複合酸化物表面にタングステン化合物を付着させた電池A7はタングステン化合物を付着させていない電池Z5よりもガス発生量が少なく、高容量化に向いていることがわかる。
 また、電池A7にジフルオロリン酸リチウムを添加させた電池A8は、電池A7よりもさらにガス発生量が少なく、高容量化に向いていることがわかる。
 このような結果が得られた理由は、本発明でのガス発生抑制効果が、ニッケル系正極活物質の表面にタングステン化合物を付着させることで、高活性なNi系正極活物質と電解液との接触を妨げ、ガス発生を抑制している。そのため、Ni比率を高めた場合においても本発明の効果が得られたと考えられる。また、ジフルオロリン酸リチウム添加の効果についても同様である。
              〔第4実験例〕
 (実験例14)
 リチウム含有遷移金属複合酸化物としてのLiNi0.94Co0.03Al0.03で表されるリチウムニッケルコバルトアルミニウム複合酸化物に酸化タングステン(WO)を混合した後、200℃で熱処理することにより、リチウムニッケルコバルトアルミニウム複合酸化物の表面にタングステン化合物が付着した正極活物質を得たこと以外は、上記実験例1と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池をA9とする。
 (実験例15)
 正極活物質にLiNi0.82Co0.15Al0.03で表されるリチウムニッケルコバルトアルミニウム複合酸化物を用いたこと以外は、上記実験例14と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池を、以下、電池Z6と称する。
 (実験例16)
 非水電解液を調整する際、実験例14の非水電解液に、さらにジフルオロリン酸リチウムを、上記混合溶媒に対して1.0質量%溶解させたこと以外は、上記実験例14と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池をA10とする。
Figure JPOXMLDOC01-appb-T000004
 上記表4から明らかなようにリチウム含有遷移金属複合酸化物のNi比率を94モル%としても、リチウム複合酸化物表面にタングステン化合物を付着させることにより、ガス発生量を減少させることができる。また、ジフルオロリン酸リチウム添加効果についても同様である。
              〔第5実験例〕
 (実験例17)
 実験例1で非水電解液を調整する際、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)とを、25:37.5:37.5の体積比で混合し、さらにジフルオロリン酸リチウムを、上記混合溶媒に対して1.0質量%溶解させたこと以外は、上記実験例1と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池を、以下、電池A11と称する。
 (実験例18)
 実験例17で非水電解液を調整する際、ジフルオロリン酸リチウムを混合溶媒に対して1.0質量%溶解させたこと以外は、上記実験例17と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池を、以下、電池A12と称する。
Figure JPOXMLDOC01-appb-T000005
 上記表5から明らかなように、「鎖状カーボネート/環状カーボネート」の体積比を3とした場合においてもジフルオロリン酸リチウムを添加した電池A12は、ジルフオロリン酸リチウムを添加していない電池A11よりもガス発生量が減少しており、高容量化に向いていることがわかる。
 このような結果が得られた理由は、高活性なNi系正極活物質表面での鎖状カーボネートの分解を、タングステン化合物が阻害するためである。そのため、「鎖状カーボネート/環状カーボネート」の体積比を3としても本発明の効果が得られる。
              〔参考実験例〕
 (実験例19)
 実験例1で非水電解液を調整する際、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)とを、3:4:3の体積比で混合したこと以外は、上記実験例1と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池を、以下、電池Z8と称する。
 (実験例20)
 実験例1で非水電解液を調整する際、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)とを、1:9の体積比で混合したこと以外は、上記実験例1と同様にして非水電解質二次電池を作製した。
 このようにして作製した電池を、以下、電池Z9と称する。
 <高温保存試験>
 [正極利用率の算出]
 上記のようにして作製された電池A1及び電池Z7~電池Z9の各電池について、25℃下で、以下の条件で充放電を行い、正極利用率を算出した。その結果を表6に示す。
 (充放電条件)
・充電条件
 0.5It(407mA)の電流で電池電圧が4.2Vとなるまで、定電流充電を行った。さらに、4.2Vの電圧で電流値が0.02It(16mA)となるまで定電圧充電を行った。そして、1.0It(814mA)の電流で電池電圧が2.5Vとなるまで定電流放電を行った。
 (正極利用率の算出式)
 正極利用率 = 1.0It放電容量/正極活物質重量・・・(1)
Figure JPOXMLDOC01-appb-T000006
 上記表6から明らかなように、「鎖状カーボネート/環状カーボネート」の体積比が2.3の電池Z8は、「鎖状カーボネート/環状カーボネート」の体積比が3.0の電池A1と比較して正極利用率が小さく、高容量化に向いていないことが分かる。
 また、「鎖状カーボネート/環状カーボネート」の体積比が9.0の電池Z9も、「鎖状カーボネート/環状カーボネート」の体積比が3.0の電池Z7よりも正極利用率が小さく、高容量化に向いていない。
 また、「鎖状カーボネート/環状カーボネート」の体積比が4.0の電池A1は、「鎖状カーボネート/環状カーボネート」の体積比が3.0の電池Z7と同等の正極利用率である。
 このような結果が得られた理由は、「鎖状カーボネート/環状カーボネート」の体積比が2.3の電池Z8では、低粘度な鎖状カーボネート比率が小さいため、高充填化した電池では、電池への電解液の浸透性が悪くなり、電極中の正極利用率が低下したためである。
 一方、「鎖状カーボネート/環状カーボネート」の体積比が9の電池Z9ではLi塩の解離度が低下し、反応抵抗が増大するために正極利用率が低下する。
 10  非水電解質二次電池
 11  ラミネート外装体
 12  巻回電極体
 13  正極
 14  負極
 14a 負極集電体
 14b 負極合剤層
 14c 負極活物質
 14d 負極活物質
 15  セパレータ
 16  正極集電タブ
 17  負極集電タブ
 18  ヒートシール部
 19  延在部 

Claims (6)

  1.  リチウム遷移金属複合酸化物を含む正極と、リチウムイオンを挿入脱離可能な炭素材料を含む負極と、非水電解液とを備えた非水電解質二次電池において、
     前記リチウム遷移金属複合酸化物はNiを含み、
     前記リチウム遷移金属複合酸化物は一次粒子が凝集して形成された二次粒子からなり、
     前記Niが、前記リチウム遷移金属複合酸化物中のリチウムを除く全金属元素におけるモル換算で主成分であり、
     前記一次粒子及び前記二次粒子の少なくとも一方の表面にタングステン化合物が付着し、
     前記非水電解液が環状カーボネートと鎖状カーボネートからなり、
     前記鎖状カーボネートと前記環状カーボネートとの体積比(鎖状カーボネート/環状カーボネート)が3以上、9未満である非水電解質二次電池。
  2.  前記非水電解液が、ジフルオロリン酸リチウムおよび/またはモノフルオロリン酸リチウムを含有する請求項1に記載の非水電解質二次電池。
  3.  前記ジフルオロリン酸リチウムおよび/またはモノフルオロリン酸リチウムが、前記非水電解液中に0.1wt%以上、2wt%未満含有される請求項2に記載の非水電解質二次電池。
  4.  前記負極が、珪素および/または珪素化合物を含有する請求項1~3のいずれかに記載の非水電解質二次電池。
  5.  前記リチウム遷移金属複合酸化物が、一般式LiNi1-x(0.9≦a≦1.2、0.45≦x<1、MはCo、MnおよびAlからなる群より選択される少なくとも1種類の元素)で表されるリチウム含有遷移金属複合酸化物である請求項1~4のいずれかに記載の非水電解質二次電池。
  6.  前記リチウム遷移金属複合酸化物が、一般式LiNiCoAl(0.9≦a≦1.2、0.8≦x<1、0<y<0.20、0<z≦0.05、x+y+z=1)で表されるリチウム含有遷移金属複合酸化物である請求項1~4のいずれかに記載の非水電解質二次電池。
PCT/JP2015/003549 2014-07-30 2015-07-14 非水電解質二次電池 WO2016017092A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016537734A JP6565916B2 (ja) 2014-07-30 2015-07-14 非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-154463 2014-07-30
JP2014154463 2014-07-30

Publications (1)

Publication Number Publication Date
WO2016017092A1 true WO2016017092A1 (ja) 2016-02-04

Family

ID=55217017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003549 WO2016017092A1 (ja) 2014-07-30 2015-07-14 非水電解質二次電池

Country Status (2)

Country Link
JP (1) JP6565916B2 (ja)
WO (1) WO2016017092A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136212A1 (ja) * 2015-02-27 2016-09-01 三洋電機株式会社 非水電解質二次電池
WO2017150055A1 (ja) * 2016-03-04 2017-09-08 パナソニックIpマネジメント株式会社 非水電解質二次電池
CN108432025A (zh) * 2016-03-07 2018-08-21 株式会社东芝 非水电解质电池及电池包
WO2021039119A1 (ja) * 2019-08-30 2021-03-04 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP2021157925A (ja) * 2020-03-26 2021-10-07 Tdk株式会社 リチウムイオン二次電池
CN115004403A (zh) * 2020-01-31 2022-09-02 松下控股株式会社 非水电解质二次电池用正极和非水电解质二次电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167270A (ja) * 1997-08-21 1999-03-09 Sanyo Electric Co Ltd 非水系電解液二次電池
JP2008251480A (ja) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池
WO2008132797A1 (ja) * 2007-04-19 2008-11-06 Panasonic Corporation 非水電解質二次電池
JP2012033389A (ja) * 2010-07-30 2012-02-16 Panasonic Corp 正極活物質及びその製造方法並びにリチウムイオン二次電池
JP2012038680A (ja) * 2010-08-11 2012-02-23 Mitsubishi Chemicals Corp リチウム二次電池用正極活物質材料及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2012252807A (ja) * 2011-05-31 2012-12-20 Toyota Motor Corp リチウム二次電池
JP2013137947A (ja) * 2011-12-28 2013-07-11 Panasonic Corp リチウムイオン二次電池およびリチウムイオン二次電池用正極活物質の製造方法
WO2014128903A1 (ja) * 2013-02-22 2014-08-28 株式会社 日立製作所 リチウムイオン二次電池
WO2015098022A1 (ja) * 2013-12-27 2015-07-02 三洋電機株式会社 非水電解質二次電池
WO2015129188A1 (ja) * 2014-02-28 2015-09-03 三洋電機株式会社 非水電解質二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167270A (ja) * 1997-08-21 1999-03-09 Sanyo Electric Co Ltd 非水系電解液二次電池
JP2008251480A (ja) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池
WO2008132797A1 (ja) * 2007-04-19 2008-11-06 Panasonic Corporation 非水電解質二次電池
JP2012033389A (ja) * 2010-07-30 2012-02-16 Panasonic Corp 正極活物質及びその製造方法並びにリチウムイオン二次電池
JP2012038680A (ja) * 2010-08-11 2012-02-23 Mitsubishi Chemicals Corp リチウム二次電池用正極活物質材料及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2012252807A (ja) * 2011-05-31 2012-12-20 Toyota Motor Corp リチウム二次電池
JP2013137947A (ja) * 2011-12-28 2013-07-11 Panasonic Corp リチウムイオン二次電池およびリチウムイオン二次電池用正極活物質の製造方法
WO2014128903A1 (ja) * 2013-02-22 2014-08-28 株式会社 日立製作所 リチウムイオン二次電池
WO2015098022A1 (ja) * 2013-12-27 2015-07-02 三洋電機株式会社 非水電解質二次電池
WO2015129188A1 (ja) * 2014-02-28 2015-09-03 三洋電機株式会社 非水電解質二次電池

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136212A1 (ja) * 2015-02-27 2016-09-01 三洋電機株式会社 非水電解質二次電池
US10910631B2 (en) 2016-03-04 2021-02-02 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
CN108713265A (zh) * 2016-03-04 2018-10-26 松下知识产权经营株式会社 非水电解质二次电池
JPWO2017150055A1 (ja) * 2016-03-04 2019-01-10 パナソニックIpマネジメント株式会社 非水電解質二次電池
US20190067677A1 (en) * 2016-03-04 2019-02-28 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
CN108713265B (zh) * 2016-03-04 2022-01-04 松下知识产权经营株式会社 非水电解质二次电池
WO2017150055A1 (ja) * 2016-03-04 2017-09-08 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP7022940B2 (ja) 2016-03-04 2022-02-21 パナソニックIpマネジメント株式会社 非水電解質二次電池
CN108432025A (zh) * 2016-03-07 2018-08-21 株式会社东芝 非水电解质电池及电池包
JPWO2017154908A1 (ja) * 2016-03-07 2018-09-27 株式会社東芝 非水電解質電池及び電池パック
EP3429019A4 (en) * 2016-03-07 2019-08-14 Kabushiki Kaisha Toshiba NONAQUEOUS ELECTROLYTE BATTERY AND BATTERY PACK
US10559814B2 (en) 2016-03-07 2020-02-11 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
CN108432025B (zh) * 2016-03-07 2021-03-30 株式会社东芝 非水电解质电池及电池包
WO2021039119A1 (ja) * 2019-08-30 2021-03-04 パナソニックIpマネジメント株式会社 非水電解質二次電池
CN114303261A (zh) * 2019-08-30 2022-04-08 松下知识产权经营株式会社 非水电解质二次电池
CN114303261B (zh) * 2019-08-30 2024-05-17 松下知识产权经营株式会社 非水电解质二次电池
JP7493164B2 (ja) 2019-08-30 2024-05-31 パナソニックIpマネジメント株式会社 非水電解質二次電池
CN115004403A (zh) * 2020-01-31 2022-09-02 松下控股株式会社 非水电解质二次电池用正极和非水电解质二次电池
JP2021157925A (ja) * 2020-03-26 2021-10-07 Tdk株式会社 リチウムイオン二次電池
JP7322776B2 (ja) 2020-03-26 2023-08-08 Tdk株式会社 リチウムイオン二次電池

Also Published As

Publication number Publication date
JP6565916B2 (ja) 2019-08-28
JPWO2016017092A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6589856B2 (ja) 非水電解質二次電池
JP6531652B2 (ja) 非水電解質二次電池用負極
JP5399188B2 (ja) 非水電解質二次電池
JP6447620B2 (ja) 非水電解質二次電池用正極活物質
US9786908B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6565916B2 (ja) 非水電解質二次電池
WO2016047056A1 (ja) 非水電解質二次電池
JP2009099523A (ja) リチウム二次電池
JP6254091B2 (ja) 非水電解質二次電池
JPWO2015098021A1 (ja) 非水電解質二次電池用負極
JP6443339B2 (ja) 非水電解質二次電池用正極
WO2012101949A1 (ja) 非水電解液二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解液二次電池用正極、及び、当該正極を用いた非水電解液二次電池
JP2010176996A (ja) 非水電解質二次電池
WO2013042503A1 (ja) 非水系二次電池
JP6522661B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2009218112A (ja) 非水電解質二次電池及びその製造方法
JP2004281158A (ja) 非水電解質二次電池
JP2004296098A (ja) 非水電解質二次電池
JP6072689B2 (ja) 非水電解質二次電池
JP2004158352A (ja) 非水電解質二次電池
JP6208144B2 (ja) 非水電解質二次電池
JP6081357B2 (ja) 非水電解質二次電池
JP2011124125A (ja) 非水電解質二次電池
WO2012101950A1 (ja) 非水電解質二次電池用正極、当該正極の製造方法、及び当該正極を用いた非水電解液二次電池
JP6299771B2 (ja) 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15828106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016537734

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15828106

Country of ref document: EP

Kind code of ref document: A1