WO2014042054A1 - 窒化アルミニウム基板およびiii族窒化物積層体 - Google Patents
窒化アルミニウム基板およびiii族窒化物積層体 Download PDFInfo
- Publication number
- WO2014042054A1 WO2014042054A1 PCT/JP2013/073806 JP2013073806W WO2014042054A1 WO 2014042054 A1 WO2014042054 A1 WO 2014042054A1 JP 2013073806 W JP2013073806 W JP 2013073806W WO 2014042054 A1 WO2014042054 A1 WO 2014042054A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- aluminum nitride
- substrate
- group iii
- iii nitride
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 212
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 title claims abstract description 210
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 135
- 239000013078 crystal Substances 0.000 claims abstract description 180
- 239000004065 semiconductor Substances 0.000 claims abstract description 35
- 230000003746 surface roughness Effects 0.000 claims description 68
- 238000005259 measurement Methods 0.000 claims description 42
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 38
- 239000000203 mixture Substances 0.000 claims description 34
- 238000005424 photoluminescence Methods 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 238000005121 nitriding Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 286
- 239000012535 impurity Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 28
- 238000011156 evaluation Methods 0.000 description 26
- 230000000704 physical effect Effects 0.000 description 23
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 18
- 238000005498 polishing Methods 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 17
- 238000009826 distribution Methods 0.000 description 17
- 239000007789 gas Substances 0.000 description 15
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 10
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 229910021529 ammonia Inorganic materials 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 229910052594 sapphire Inorganic materials 0.000 description 8
- 239000010980 sapphire Substances 0.000 description 8
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 6
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000006061 abrasive grain Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000005253 cladding Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000004943 liquid phase epitaxy Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- LALRXNPLTWZJIJ-UHFFFAOYSA-N triethylborane Chemical compound CCB(CC)CC LALRXNPLTWZJIJ-UHFFFAOYSA-N 0.000 description 2
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- MHYQBXJRURFKIN-UHFFFAOYSA-N C1(C=CC=C1)[Mg] Chemical compound C1(C=CC=C1)[Mg] MHYQBXJRURFKIN-UHFFFAOYSA-N 0.000 description 1
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000005092 sublimation method Methods 0.000 description 1
- VCZQFJFZMMALHB-UHFFFAOYSA-N tetraethylsilane Chemical compound CC[Si](CC)(CC)CC VCZQFJFZMMALHB-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/186—Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
- H01L29/045—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/68—Crystals with laminate structure, e.g. "superlattices"
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/16—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02389—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3202—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34333—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
Definitions
- the present invention relates to a novel aluminum nitride substrate. Specifically, the present invention relates to a novel aluminum nitride substrate having an aluminum nitride single crystal layer having a specific inclined surface as a main surface.
- Aluminum nitride is a direct transition type semiconductor having a large forbidden band width of about 6.2 eV. Therefore, mixed crystals with aluminum nitride and group III nitride gallium nitride (GaN), and indium nitride (InN), in particular, mixed crystals with a proportion of Al in group III elements of 50 atomic% or more (hereinafter referred to as Al System III group nitride single crystal is also expected as an ultraviolet light emitting device material.
- GaN group III nitride gallium nitride
- InN indium nitride
- Al System III group nitride single crystal is also expected as an ultraviolet light emitting device material.
- a semiconductor device such as an ultraviolet light emitting device, a cladding layer, an active layer, etc. are provided between an n-type semiconductor layer electrically joined to the n-electrode and a p-type semiconductor layer electrically joined to the p-electrode. It is necessary to form a laminated structure including. From the viewpoint of luminous efficiency, it is important that any layer has a high crystal quality, that is, there are few crystal dislocations and point defects, a uniform crystal composition distribution, and a low impurity concentration.
- Non-Patent Document 1 when an aluminum nitride buffer layer and a GaN layer are grown on a sapphire substrate whose main surface is a plane inclined by 0.5 ° to 2 ° from the c-plane ((0001) plane), the off angle The smaller the is, the more flat the growth surface is. This is because molecular steps (hereinafter simply referred to as “steps”) are regularly arranged on the surface by tilting the substrate surface within an appropriate range from the c-plane, and when a group III nitride single crystal is grown on the substrate, This is because the supplied atomic species can be easily taken into the step, and a high-quality crystal with high flatness can be obtained.
- steps molecular steps
- the sapphire substrate is a heterogeneous substrate having a composition different from that of the group III nitride, it is disadvantageous as a substrate for crystal growth of the group III nitride. This is because a high-quality crystal layer cannot be obtained due to generation of crystal defects and cracks due to lattice constant misfit between the sapphire substrate and the group III nitride.
- group III nitride is grown at a high temperature
- sapphire having a thermal expansion coefficient different from that of group III nitride is disadvantageous in that a difference in thermal expansion occurs.
- SiC substrates are also disadvantageous. In particular, this tendency becomes remarkable when an Al group III nitride single crystal which is a mixed crystal having a proportion of Al in the group III element necessary for forming the ultraviolet light emitting element of 50 atomic% or more is grown.
- a group III nitride substrate is used as a crystal growth substrate and the off-angle is limited (for example, see Patent Document 2). Specifically, it is parallel to the c-plane (having an off-angle in the range of less than 0.05 ° with respect to the c-plane) or an off-angle in the range of 0.05 ° to 15 ° with respect to the c-plane
- a method for epitaxially growing a semiconductor layer on a group III nitride substrate is described. It is shown that a semiconductor layer with good crystallinity is formed by making it substantially parallel to the c-plane, and a device with good characteristics can be obtained. On the other hand, it is shown that a semiconductor layer with few defects can be formed by setting the angle between 0.05 ° and 15 °.
- This Patent Document 2 describes a group III nitride substrate having an off angle in the range of 0 ° to 15 ° with respect to the c-plane.
- the off angle is not specified.
- a mixed crystal having an Al ratio of 20 atomic% or less is formed on an aluminum nitride single crystal substrate having a surface roughness (Ra) of 0.09 to 0.41 nm by chemical mechanical polishing (CMP).
- CMP chemical mechanical polishing
- the device obtained in this example semiconductor element in which a semiconductor layer is laminated on an aluminum nitride single crystal substrate
- Patent Document 3 has an off angle ( ⁇ ) of 0.03 to 1.0 ° with respect to the c-plane, and a deviation angle ( ⁇ ) with respect to the m-axis direction in the off direction is 0.5 to 16 °.
- ⁇ off angle
- ⁇ deviation angle
- a nitride semiconductor free-standing substrate that does not include a region of ⁇ 0.5 ° ⁇ ⁇ 0.5 ° on the substrate surface is described, and specifically, a GaN substrate is disclosed.
- a mixed crystal layer of a group III nitride single crystal containing Al (for example, a mixed crystal layer made of AlGaN or the like) is required as described above.
- a high-quality light-emitting element layer with very few dislocations can be formed by using an aluminum nitride single crystal substrate having a lattice constant close to that of the mixed crystal layer as a crystal growth substrate on which the mixed crystal layer is laminated. It is conceivable that.
- the higher the Al ratio the more the aluminum nitride single crystal substrate is used, for example, when a mixed crystal layer made of an Al group III nitride single crystal having an Al ratio of 50 atomic% or more is stacked. Is advantageous.
- the present inventors have grown a mixed crystal layer made of a group III nitride single crystal having an Al ratio of 50 atomic% or more on an aluminum nitride single crystal substrate.
- the surface roughness (Ra) is 0.40 nm or less
- the ratio of Al is 50 atomic% on the surface (main surface) of the aluminum nitride single crystal substrate having an off angle of 0 ° to 15 °.
- the flatness of the mixed crystal layer is further improved compared to the case of using an aluminum nitride single crystal substrate that is parallel to the c-plane (having an off angle in the range of less than 0.05 ° with respect to the c-plane).
- an object of the present invention is made of aluminum nitride, which has good flatness, uniform composition distribution, and can grow a high-quality group III nitride single crystal layer having a low impurity concentration on its surface. It is to provide a substrate.
- Al 1- (x + y + z) Ga x In y B z N (where x, y and z are each independently a rational number of 0 or more and less than 0.5, and the sum of x, y and z is 0.
- the growth surface of the growth layer has high flatness, the composition distribution of the growth layer is uniform, and the impurity concentration can be reduced.
- the object is to provide an aluminum substrate.
- Another object of the present invention is to provide a high-quality light emitting device.
- the present inventors have intensively studied to solve the above problems.
- various conditions were examined for growing a high-quality group III nitride single crystal when a substrate made of aluminum nitride was used as the substrate for crystal growth.
- the off angle of the crystal growth surface (crystal growth surface) of the substrate made of aluminum nitride was studied, the above problem was solved by controlling the off angle of the aluminum nitride substrate more strictly than before. As a result, the present invention has been completed.
- the first present invention is a substrate made of aluminum nitride, Nitriding characterized by having an aluminum nitride single crystal layer whose main surface is a plane inclined in the m-axis direction within a range of 0.05 ° or more and 0.40 ° or less from the (0001) plane of the wurtzite structure. It is an aluminum substrate.
- the main surface is further inclined in the a-axis direction in a range of 0.00 ° to 0.40 °.
- Al 1- (x + y + z) Ga x In y B z N (where x, y, and z are each independently 0 or more and 0 ) on the main surface of the aluminum nitride single crystal layer.
- x is a rational number greater than 0 and less than 0.5
- y and z are rational numbers greater than or equal to 0 and less than 0.5.
- a group III nitride laminate having an AlGaInBN layer having a composition of more than 0 and less than 0.5 and in the photoluminescence measurement of the AlGaInBN layer at 300 K, the band of the AlGaInBN layer A group III nitride laminate in which the edge emission peak is observed at 4.56 eV or more and less than 5.96 eV and the half width of the emission peak is 225 meV or less can be easily obtained.
- an AlN layer (x, y, and z in Al 1- (x + y + z) Ga x In y B z N is 0) is directly laminated on the main surface of the aluminum nitride single crystal layer, and the AlN In the photoluminescence measurement at 300 K of the layer, a group III nitride laminate in which the half-value width of the band edge emission peak of the AlN crystal is 145 meV or less and the surface roughness (Ra) of the AlN layer is 0.2 nm or less. It can also be obtained.
- band edge emission is emission inherent to a crystal caused by recombination of holes at the top of the valence band and electrons at the bottom of the conduction band, and its emission energy reflects the composition of the crystal. Yes.
- the third aspect of the present invention is a group III nitride semiconductor device having at least an aluminum nitride single crystal layer and the AlGaInBN layer portion in the group III nitride laminated body.
- the aluminum nitride substrate of the present invention as a substrate for crystal growth of a group III nitride single crystal layer, the flatness of the growth surface of the group III nitride single crystal layer can be enhanced.
- the composition distribution of the group III nitride single crystal layer can be made more uniform and the impurity concentration can be made lower. As a result, a high-quality light-emitting element can be manufactured.
- the lattice constant is closer Al 1- (x + y + z ) Ga x In y B z N (where, x, y and z is an each independently from 0 to less than 0.5 rational number , X, y, and z are less than 0.5.)
- AlGaInBN layer that satisfies the composition represented by (2) is grown thereon, a particularly excellent effect is exhibited. Therefore, the group III nitride laminate having the aluminum nitride substrate of the present invention can be used as a deep ultraviolet light emitting device.
- FIG. 1 is a cross-sectional view of an aluminum nitride substrate according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view of a group III nitride semiconductor device according to an embodiment of the present invention.
- the present invention is an aluminum nitride substrate which is a substrate made of aluminum nitride and has an aluminum nitride single crystal layer whose surface is a surface having a specific off angle.
- the aluminum nitride substrate of the present invention is a crystal growth substrate in which a group III nitride single crystal layer is grown on the main surface of the aluminum nitride single crystal layer. Then, a structure including the aluminum nitride single crystal layer portion and the group III nitride single crystal layer formed thereon is used as a light emitting element.
- FIG. 1 is a view schematically showing a cross section of an aluminum nitride substrate of the present invention.
- the aluminum nitride substrate of the present invention is made of aluminum nitride, and is an aluminum nitride single unit whose principal surface is a plane inclined in the m-axis direction within a range of 0.05 ° to 0.40 ° from the (0001) plane of the wurtzite structure.
- An aluminum nitride substrate having a crystal layer at least on the surface.
- an aluminum nitride substrate having an aluminum nitride single crystal layer on at least the surface thereof, wherein an off angle 3 that is an angle formed between main surface 1 and c-plane 2 of the aluminum nitride substrate is in a range of 0.05 ° to 0.40 °. It is.
- the main surface is a portion having the widest area of the aluminum nitride single crystal layer and is a surface that becomes the surface of the aluminum nitride substrate.
- a group III nitride for example, an AlGaInBN layer described in detail below is grown on the main surface.
- the aluminum nitride substrate is made only of aluminum nitride. That is, the aluminum nitride substrate of the present invention does not include a laminated substrate in which a single crystal layer made of aluminum nitride is formed on a sapphire or SiC substrate. In the case of using a substrate containing such different materials (sapphire, SiC), it is considered that the lattice constant difference and the thermal expansion difference from the group III nitride single crystal layer are partly contributed, but high quality A group III nitride laminate cannot be obtained. In particular, it becomes difficult to reduce the dislocation density of the group III nitride laminate.
- the aluminum nitride substrate of the present invention has at least a surface of an aluminum nitride single crystal layer whose principal surface is a plane inclined in the m-axis direction within a range of 0.05 ° to 0.40 ° from the (0001) plane of the wurtzite structure.
- This is an aluminum nitride substrate. Therefore, as long as it has the aluminum nitride single crystal layer, it may be a single substrate of an aluminum nitride single crystal layer or a multilayer substrate. In the case of a multilayer substrate, it is sufficient if the aluminum nitride single crystal layer is laminated on a polycrystalline layer or an amorphous layer (non-single crystal layer) substrate made of aluminum nitride.
- the non-single layer can also be removed. That is, the group III nitride laminated body of the present invention and the group III nitride semiconductor device of the present invention only need to include the aluminum nitride single crystal layer portion.
- the aluminum nitride substrate of the present invention may be a laminate of aluminum nitride single crystal layers having different impurity concentrations. In this case, it is preferable that the portion that becomes the aluminum nitride single crystal layer has less impurities.
- the main surface (the surface of the aluminum nitride substrate) of the aluminum nitride single crystal layer on which Group III nitride is grown is 0.05 ° or more and 0.40 ° from the (0001) plane of the wurtzite structure.
- the surface must be inclined in the m-axis direction within the following range.
- the main surface is a surface inclined in the m-axis direction within the above range, the surface of the group III nitride single crystal layer grown on the surface can be planarized, the composition distribution can be made uniform, and the impurity concentration can be reduced. it can.
- the angle inclined in the m-axis direction of the main surface is less than 0.05 °, regular steps are not formed on the growing crystal surface, and the growth mode starts from random nucleation, and the growth surface This is not preferable because of the large unevenness.
- the angle of the main surface inclined in the m-axis direction exceeds 0.40 °, so-called step bunching is formed in which the step difference between the steps is not a monoatomic layer but several atomic layers, and the growth surface has a large unevenness. Therefore, it is not preferable. This is because when the unevenness of the growth surface becomes large, some of the atoms forming the mixed crystal are segregated on the surface and the composition distribution fluctuates or the impurity concentration increases.
- the main surface is in the range of 0.05 ° to 0.35 ° from the (0001) plane of the wurtzite structure. It is preferably a surface inclined in the m-axis direction, more preferably a surface inclined in the m-axis direction in a range of 0.10 ° to 0.35 °, particularly 0.11 ° to 0.32 °. The surface is preferably inclined in the m-axis direction in the following range.
- the off-angle direction that is, the direction in which the angle formed by the c-plane and the aluminum nitride substrate surface (main surface) is maximized includes the a-axis direction in addition to the m-axis direction. .
- the main surface of the aluminum nitride single crystal layer is a surface inclined in the m-axis direction within the range of 0.05 ° or more and 0.40 ° or less from the (0001) surface of the wurtzite structure, this a The angle inclined in the axial direction is not particularly limited.
- the main surface of the aluminum nitride single crystal is in the range of 0.00 ° to 0.40 ° from the (0001) plane of the wurtzite structure.
- the surface is preferably inclined in the a-axis direction.
- the main surface is inclined in the m-axis direction within the above range from the (0001) surface of the wurtzite structure, the surface flatness is obtained on the surface by using a surface that is not inclined at all in the a-axis direction.
- a high-quality group III nitride single crystal layer having a uniform composition distribution and a low impurity concentration can be produced.
- the main surface is inclined in the m-axis direction within the above range from the (0001) plane of the wurtzite structure, and is also inclined in the a-axis direction in the range of more than 0.00 ° and not more than 0.40 °.
- the main surface is inclined from the (0001) plane of the wurtzite structure in the range of 0.05 ° to 0.35 ° in the m-axis direction and 0.05 ° to 0.35 in the a-axis direction. It is preferable to incline in the range of ⁇ °, incline in the range of 0.10 ° to 0.35 ° in the m-axis direction, and in the range of 0.10 ° to 0.35 ° in the a-axis direction.
- the off angle of the main surface of the aluminum nitride single crystal layer can be measured by a known method. Specifically, it can be determined by X-ray measurement. In the present invention, the off angle that the main surface of the aluminum nitride single crystal layer has with respect to the m or a axis direction may be measured with respect to the c plane of the aluminum nitride single crystal layer.
- the aluminum nitride single crystal layer is not particularly limited as long as the off angle in the m-axis direction satisfies the above range, but preferably has the following physical properties.
- the dislocation density of the aluminum nitride single crystal is preferably 1 ⁇ 10 6 cm ⁇ 2 or less.
- the total impurity amount of O, Si, C, and B contained in the aluminum nitride single crystal layer is preferably 1 ⁇ 10 18 atoms / cm 2 or less.
- the crystal quality of the aluminum nitride single crystal layer for example, the full width at half maximum of the rocking curve of the (0002) plane and the (10-10) plane is preferably 400 arcsec or less.
- the curvature radius of a main surface in an aluminum nitride substrate is 1 m or more.
- the upper limit of the radius of curvature is preferably as large as possible, but is 10,000 m or less in consideration of industrial production.
- the thickness of the aluminum nitride substrate is not particularly limited, but is preferably in the following range. Specifically, when the aluminum nitride substrate is composed of a single layer composed of only an aluminum nitride single crystal layer, the thickness is preferably 10 to 2000 ⁇ m. In the case of a layer made of non-single crystal aluminum nitride (non-single crystal layer) and an aluminum nitride layer, the thickness of the aluminum nitride layer is 0.005 to 300 ⁇ m, and the thickness of the non-single crystal layer is 10 to It is preferably 2000 ⁇ m.
- the thicknesses of the aluminum nitride substrate and the aluminum nitride single crystal layer satisfy the above range, a higher-quality group III nitride laminate and group III nitride semiconductor device can be obtained, and the production thereof can be performed. It becomes easy.
- the aluminum nitride substrate of the present invention is characterized by an aluminum nitride single crystal layer portion having a main surface inclined in the m-axis direction within a range of 0.05 ° or more and 0.40 ° or less from the (0001) plane of the wurtzite structure.
- This aluminum nitride single crystal layer is manufactured by first producing an aluminum nitride single crystal layer by a known method, and then subjecting the obtained aluminum nitride single crystal layer to a process such as chemical mechanical polishing (CMP). Can be manufactured.
- CMP chemical mechanical polishing
- HVPE hydride vapor phase epitaxy
- MOCVD metal organic chemical vapor deposition
- PVT sublimation method
- An aluminum nitride single crystal layer is grown by a vapor phase growth method such as (MBE; Molecular beam epitaxy), a liquid layer growth method such as an LPE method (Liquid phase epitaxy), or a combination thereof.
- the portion constituting the aluminum nitride single crystal layer is preferably manufactured by the HVPE method.
- the aluminum nitride substrate of the present invention is a single layer
- it can be produced, for example, by the method described in JP-A-2009-190960.
- a multilayer substrate having a polycrystalline layer or an amorphous layer can be produced by, for example, a method described in JP-A-2009-161390.
- an aluminum nitride substrate having good crystal quality and good ultraviolet light transmission Y. Kumagai, et. al.
- the aluminum nitride single crystal layer is preferably a thick single crystal aluminum nitride film grown by HVPE.
- the laminate may be a single-layer aluminum nitride substrate made of a thick film of the single crystal aluminum nitride by removing the sublimation substrate portion.
- m is within the range of 0.05 ° or more and 0.40 ° or less from the (0001) surface of the wurtzite structure according to the first invention. It can be processed into an aluminum nitride substrate having at least a surface of an aluminum nitride single crystal layer whose main surface is an inclined surface in the axial direction.
- a CMP method chemical mechanical polishing
- CMP polishing is preferable.
- the c-plane aluminum nitride substrate is polished.
- an aluminum nitride substrate is chemically and mechanically polished using a slurry in which abrasive grains are dispersed.
- Mechanismically means that a slurry is supplied and physically polished while rotating while the aluminum nitride substrate is sandwiched between two polishing pads.
- “Chemically” refers to chemically etching the surface of the aluminum nitride substrate by making the slurry acidic or basic. In the CMP method, a substrate having a flat surface can be efficiently obtained by combining mechanical polishing and chemical polishing.
- the aluminum nitride substrate is held on a holding table whose tilt angle can be adjusted, and the holding table so that the polishing surface (main surface) with respect to the (0001) surface of the wurtzite structure is at the predetermined angle. Set the inclination angle of and perform polishing.
- the magnitude of the force with which the polishing pad presses the aluminum nitride substrate and the number of revolutions of the polishing pad may be appropriately adjusted and are not particularly limited.
- the force with which the polishing pad presses the aluminum nitride substrate is too strong, or when the rotational speed is too high, the aluminum nitride substrate may be broken.
- the force with which the polishing pad presses the aluminum nitride substrate is too weak, or when the rotational speed is low, there is a demerit that the polishing rate becomes slow.
- the abrasive grains in the slurry are not particularly limited as long as they are harder than aluminum nitride, and examples thereof include diamond, SiC, Al 2 O 3 and the like.
- the pH of the slurry is not particularly limited, but it is generally performed under basic conditions of pH 8 or higher or acidic conditions of pH 6 or lower.
- the grain size of the abrasive grains is not particularly limited, but abrasive grains having a diameter in the range of 0.1 ⁇ m to 15 ⁇ m are appropriately used in order from the largest grain size.
- the aluminum nitride single crystal layer may be processed by the method as described above to form the main surface of the aluminum nitride single crystal layer.
- a group III nitride laminated body including this aluminum nitride single crystal layer and a group III nitride semiconductor device will be described.
- Group III nitride laminate and Group III nitride semiconductor device In the present invention, a group III nitride single crystal layer is grown on the surface of the aluminum nitride substrate manufactured by the above method (the main surface of the aluminum nitride single crystal layer). Then, a group III nitride stacked body and a group III nitride semiconductor device including the stacked body are manufactured.
- the group III nitride semiconductor device 10 includes an n layer 12 (n-type cladding layer), a quantum well layer 13, a p layer 14 (p-type cladding layer), and a p-type cap on an aluminum nitride substrate 11.
- the layer 15 has a structure in which the layers 15 are sequentially stacked.
- a negative electrode 20 is formed on the n layer 12, and a positive electrode 21 is formed on the p-type cap layer 15.
- Each layer is not particularly limited, but is preferably grown by MOCVD (metal organic chemical vapor deposition).
- an aluminum nitride substrate (aluminum nitride single crystal layer) and a buffer layer having the same or intermediate lattice constant as the n layer are formed for the purpose of improving crystal quality.
- the thickness of the buffer layer is not particularly limited, but is 2 nm to 1000 nm. However, if an aluminum nitride substrate with good crystal quality is used, a good III nitride semiconductor device can be formed without forming this buffer layer.
- the donor impurity atoms in the n layer 12 are not particularly limited, but Si can be used.
- the concentration is not particularly limited, but is preferably 10 17 to 10 20 cm ⁇ 3 .
- the thickness of the n layer 12 is not particularly limited, but is 200 nm to 3000 nm.
- the quantum well layer 13 is preferably composed of a multiple quantum well structure (MQW (Multi Quantum Well) structure) in which a well layer and a barrier layer are repeatedly stacked.
- the thickness of the quantum well layer 13 is not particularly limited, but the well layer is 1 to 5 nm and the barrier layer is 2 to 50 nm.
- the number of repetitions is not particularly limited, but is preferably 1 to 10 times.
- the p layer 14 is doped with acceptor impurity atoms and exhibits p-type characteristics.
- the acceptor impurity is not particularly limited, and examples thereof include Mg, Zn, Ca, Cd, and Be. Among these, Mg and Be are preferable.
- the concentration of donor impurity atoms is preferably 10 17 to 10 20 cm ⁇ 3 .
- the thickness of the p layer 14 is not particularly limited, but is 5 to 200 nm.
- an electron block layer having a larger band gap energy than the p layer can be formed for the purpose of improving the electron injection efficiency.
- the thickness of this block layer is not particularly limited, but is 2 nm to 100 nm.
- the p-type cap layer 15 is easy to obtain a high hole concentration, has an ohmic contact with the metal constituting the positive electrode 21, and is preferably made of a GaN layer.
- the p-type cap layer 15 is preferably doped with acceptor impurity atoms, and the impurity atom concentration is preferably 10 17 to 10 20 cm ⁇ 3 .
- the p-type cap layer 15 may be adjusted to have a desired composition by changing the supply ratio of the source gas and the source gas of donor impurity atoms.
- the thickness of the p-type cap layer is not particularly limited, but is 2 to 3000 nm.
- the group III nitride laminate of the present invention has a layer composed of at least a group III nitride single crystal on an aluminum nitride substrate.
- at least one group III nitride single crystal layer is Al 1- (x + y + z) Ga x In y B z N (where x, y, and z are independently 0 or more and 0 It is a rational number less than 0.5, and the sum of x, y and z is less than 0.5.)
- the AlGaInBN layer satisfies the composition represented by That is, when the group III nitride single crystal layer having a lattice constant close to that of the aluminum nitride substrate is formed thereon, an excellent effect is exhibited.
- the AlGaInBN layer only needs to be present on the aluminum nitride substrate, and may be laminated directly on the main surface of the aluminum nitride substrate, or may be laminated via another group III nitride single crystal layer. It may be.
- the AlGaInB layer (including the AlN layer) is preferably laminated directly on the main surface of the aluminum nitride substrate. More specifically, in the case of a deep ultraviolet light emitting element, it is preferable that the n layer and the p layer become the AlGaInBN layer. Therefore, for example, the well layer in the quantum well layer may be formed of a group III nitride single crystal layer having an Al content of less than 50 atomic%.
- the AlGaInBN layer, Al 1- (x + y + z) Ga x In the y B z N, 0 ⁇ X ⁇ 0.4,0 ⁇ Y ⁇ 0.01,0 ⁇ Z ⁇ 0.01, and 0 ⁇ X + Y + Z ⁇ 0.42 is more preferable, 0.2 ⁇ X ⁇ 0.4, 0 ⁇ Y ⁇ 0.01, 0 ⁇ Z ⁇ 0.01, and 0.2 ⁇ X + Y + Z ⁇ 0.42 are satisfied. More preferably.
- the group III nitride laminate of the present invention is not particularly limited, but may have the following characteristics.
- the AlGaNInN layer is a rational number in which Al 1- (x + y + z) Ga x In y B z N is greater than 0 and less than 0.5, and y and z are 0 or more
- the AlGaInBN layer is a band of the AlGaInBN layer in a photoluminescence measurement at 300K.
- the edge emission peak is observed at 4.56 eV or more and less than 5.96 eV, and the half width of the peak can be 225 meV or less.
- the AlGaInBN layer can have a surface roughness (Ra) of 1.0 nm or less. That is, since the half width is 225 meV or less, a high-quality group III nitride laminated body with a more uniform composition distribution and a low impurity concentration is obtained. Further, since the surface roughness (Ra) is 1.0 nm or less, a Group III nitride laminate having high flatness is obtained. Normally, when the emission peak shifts to the low energy side, three-dimensional growth is facilitated, and therefore the fluctuation of the composition of the growth surface tends to increase.
- the AlGaInBN layer of the group III nitride laminate has an emission peak of 4.56 eV or more and less than 5.96 eV, the half width is 225 meV or less, and the surface roughness (Ra) is 1.0 nm.
- the following is preferable. Further, it is more preferable that the emission peak is observed at 4.56 eV or more and less than 5.96 eV, the half width is 225 meV or less, and the surface roughness (Ra) is 1.0 nm or less.
- the AlGaInBN layer of the group III nitride laminate has an emission peak of 4.56 eV or more and 5.39 eV or less, and a half width of 50 meV or more and 225 meV or less.
- the roughness (Ra) is preferably 0.05 nm or more and 1.0 nm or less.
- the preferable composition of AlGaInBN in this case is more preferably 0 ⁇ X ⁇ 0.4, 0 ⁇ Y ⁇ 0.01, 0 ⁇ Z ⁇ 0.01, and 0 ⁇ X + Y + Z ⁇ 0.42. More preferably, .2 ⁇ X ⁇ 0.4, 0 ⁇ Y ⁇ 0.01, 0 ⁇ Z ⁇ 0.01, and 0.2 ⁇ X + Y + Z ⁇ 0.42.
- the AlN layer (in the Al 1- (x + y + z) Ga x In y B z N, where x, y, and z are When the AlGaInBN layer is 0), the AlN layer has a band edge emission peak half-value width of 145 meV or less and a surface roughness (Ra) of 0 in the photoluminescence measurement at 300K. .2 nm or less.
- the AlN layer of the group III nitride laminate has a half width of 120 to 145 meV and a surface roughness (Ra) of 0.05 to 0.2 nm. It is preferable.
- a group III nitride semiconductor device including such a group III nitride laminate can be used as a high-quality light-emitting device.
- the group III nitride laminated body and the group III nitride semiconductor element can be manufactured by MOCVD according to a known method.
- a desired AlGaInBN layer is grown by placing the aluminum nitride substrate 11 in a MOCVD apparatus, setting a desired temperature in a state where hydrogen as a carrier gas is circulated, and supplying a source gas.
- Trimethylaluminum (TMA) and trimethylgallium (TMG), trimethylindium (TMIn), triethylboron (TEB) can be used as the group III material, and ammonia (NH 3 ) can be used as the group V material.
- a source gas of donor impurity atoms can be appropriately supplied.
- n layer 12 when the n layer 12 is obtained, tetraethylsilane is introduced into the reactor, and when the p layer 14 is obtained, cyclopentadienyl magnesium (Cp 2 Mg) is used as a carrier gas, a group III source gas, V It can be introduced and grown together with a group source gas.
- Cp 2 Mg cyclopentadienyl magnesium
- the group III nitride laminate of the present invention can be produced.
- the said method is an example of the manufacturing method of the group III nitride laminated body of this invention.
- the formation method in particular of the negative electrode 20 and the positive electrode 21 is not restrict
- the negative electrode 20 is formed on the exposed n layer 12 by etching using a known method. Examples of the negative electrode material include Al, Au, Ni, Cu and the like.
- the positive electrode 21 is formed on the p-type cap layer 15. Examples of the positive electrode material include Al, Au, Ni, and Cu.
- the group III nitride semiconductor device of the present invention can be manufactured.
- the group III nitride laminate obtained by the above method is grown on the aluminum nitride substrate of the present invention, the dislocation density is small, the composition distribution is uniform, the impurity concentration is low, and the flatness is high. Become. As a result, the group III nitride semiconductor device (light emitting device) including the group III nitride laminate has a high quality.
- Example 2 from the laminated body (Examples 1 to 3, Comparative Examples 1 to 4) composed of the aluminum nitride substrate 11, the n layer 12, and the quantum well layer 13, the aluminum nitride substrate 11 and the n layer 12 are used.
- PL measurements of the laminates (Examples 4 to 6, Comparative Examples 5 to 8) and laminates (Examples 7 to 9 and Comparative Examples 9 to 12) in which an AlN layer is directly laminated on the aluminum nitride substrate 11 are performed.
- the group III nitride single crystal layer was evaluated (composition distribution evaluation).
- PL measurement was performed using a 193 nm ArF excimer laser. As a matter of course, it can be said that the shorter the half width, the more uniform the composition distribution.
- a reference area (2 ⁇ m ⁇ 2 ⁇ m in this case) is extracted from the roughness curved surface in the direction of the average value, and this extracted portion The absolute value of the deviation from the average surface to the measurement curved surface is summed, and it is the value obtained by averaging it with the reference area.
- the smaller the Ra value the flatter the surface.
- Example 1 The front and back surfaces of a c-plane aluminum nitride substrate made of an aluminum nitride single crystal having a thickness of about 500 ⁇ m were ground and subjected to CMP.
- the aluminum nitride substrate has a surface inclined by 0.11 ° in the m-axis direction from the (0001) plane of the wurtzite structure, and has a thickness of 200 ⁇ m (an aluminum nitride substrate made of only an AlN single crystal layer) )
- the curvature radius of this aluminum nitride substrate was 20 m, and the surface roughness (Ra) was 0.17 nm.
- the inclination in the a-axis direction from the (0001) plane of the wurtzite structure was 0.00 °.
- an n layer 1 ⁇ m (Al 0.7 Ga 0.3 N) doped with Si was formed by MOCVD. Thereafter, a barrier layer and a well layer were formed on the n layer by MOCVD so that the quantum well layer had the following structure.
- the barrier layer is 2 nm and is formed so as to satisfy the composition of Al 0.35 Ga 0.65 N
- the well layer is 7 nm and formed so as to satisfy the composition of Al 0.7 Ga 0.3 N. did.
- This barrier layer and well layer were repeatedly formed three times, and these layers were used as quantum well layers.
- the growth conditions were a growth temperature of 1050 ° C., a V / III ratio of 1400, a system pressure of 50 mbar, and TMA and TMG as raw material gases and ammonia diluted with hydrogen (9.8 slm) were supplied.
- the obtained substrate (Group III nitride laminate) was cooled and taken out from the MOCVD apparatus, and PL measurement was performed.
- the peak position of the emission peak due to the quantum well layer was 4.76 eV, and the half-value width was 197 meV.
- the surface roughness (Ra) was 0.18 nm.
- Example 2 The same operation and evaluation as in Example 1 were performed except that an aluminum nitride substrate having a main surface inclined by 0.23 ° in the m-axis direction from the (0001) plane of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Example 3 The same operation and evaluation as in Example 1 were performed except that an aluminum nitride substrate having a main surface inclined by 0.32 ° in the m-axis direction from the (0001) plane of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Example 4 Only an n layer 1 ⁇ m (Al 0.7 Ga 0.3 N) doped with Si was formed on the same aluminum nitride substrate as in Example 1 by MOCVD.
- the growth conditions were a growth temperature of 1050 ° C., a V / III ratio of 1400, a system pressure of 50 mbar, and TMA and TMG as raw material gases and ammonia diluted with hydrogen (9.8 slm) were supplied.
- the obtained substrate (Group III nitride laminate) was cooled and taken out from the MOCVD apparatus, and PL measurement was performed.
- the peak position of the emission peak attributed to the n layer was 5.17 eV, and the half width was 211 meV.
- the surface roughness (Ra) was 0.17 nm.
- Example 5 The same operation and evaluation as in Example 4 were performed except that an aluminum nitride substrate having a main surface inclined by 0.23 ° in the m-axis direction from the (0001) plane of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Example 6 The same operation and evaluation as in Example 4 were performed except that an aluminum nitride substrate having a main surface inclined by 0.32 ° in the m-axis direction from the (0001) plane of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1. The results are summarized in Table 1.
- Example 7 Only an AlN layer 0.2 ⁇ m doped with Si was formed on the same aluminum nitride substrate as in Example 1 by MOCVD.
- the growth conditions were a growth temperature of 1200 ° C., a V / III ratio of 2500, an internal pressure of 35 mbar, and TMA and TMG as raw material gases and ammonia diluted with hydrogen (8.5 slm) were supplied.
- the obtained substrate (Group III nitride laminate) was cooled and taken out from the MOCVD apparatus, and PL measurement was performed.
- the peak position of the emission peak attributable to the AlN layer was 5.96 eV, and the half width was 140 meV.
- the surface roughness (Ra) was 0.08 nm.
- Example 8 The same operation and evaluation as in Example 7 were performed except that an aluminum nitride substrate having a main surface inclined by 0.23 ° in the m-axis direction from the (0001) plane of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Example 9 The same operation and evaluation as in Example 7 were performed except that an aluminum nitride substrate having a main surface inclined by 0.32 ° in the m-axis direction from the (0001) plane of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Example 10 The same operation as in Example 1 except that an aluminum nitride substrate having a main surface inclined by 0.14 ° in the m-axis direction and 0.24 ° in the a-axis direction from the (0001) plane of the wurtzite structure was used. And evaluated.
- the physical properties other than the off-angle of the main surface (crystal quality, radius of curvature, surface roughness (Ra), thickness, inclination in the a-axis direction) were the same as the aluminum nitride substrate used in Example 1.
- Example 11 The same operation as in Example 1 except that an aluminum nitride substrate having a main surface inclined by 0.23 ° in the m-axis direction and 0.19 ° in the a-axis direction from the (0001) plane of the wurtzite structure was used. And evaluated.
- the physical properties other than the off-angle of the main surface (crystal quality, radius of curvature, surface roughness (Ra), thickness, inclination in the a-axis direction) were the same as the aluminum nitride substrate used in Example 1.
- Example 12 The same operation and evaluation as in Example 1 were performed except that an aluminum nitride substrate having a main surface inclined by 0.30 ° in the m-axis direction from the (0001) plane of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Example 13 The same operation as in Example 1 except that an aluminum nitride substrate having a principal surface inclined by 0.32 ° in the m-axis direction and 0.11 ° in the a-axis direction from the (0001) plane of the wurtzite structure was used. And evaluated.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Example 14 Only an n layer 1 ⁇ m (Al 0.7 Ga 0.3 N) doped with Si was formed on the same aluminum nitride substrate as in Example 10 by MOCVD.
- the growth conditions were a growth temperature of 1050 ° C., a V / III ratio of 1400, a system pressure of 50 mbar, and TMA and TMG as raw material gases and ammonia diluted with hydrogen (9.8 slm) were supplied.
- the obtained substrate (Group III nitride laminate) was cooled and taken out from the MOCVD apparatus, and PL measurement was performed.
- the peak position of the emission peak attributed to the n layer was 5.20 eV, and the half width was 215 meV.
- the surface roughness (Ra) was 0.20 nm.
- Example 15 On the same aluminum nitride substrate as in Example 11, only an n layer 1 ⁇ m (Al 0.7 Ga 0.3 N) doped with Si was formed by MOCVD.
- the growth conditions were a growth temperature of 1050 ° C., a V / III ratio of 1400, a system pressure of 50 mbar, and TMA and TMG as raw material gases and ammonia diluted with hydrogen (9.8 slm) were supplied.
- the obtained substrate (Group III nitride laminate) was cooled and taken out from the MOCVD apparatus, and PL measurement was performed.
- the peak position of the emission peak attributed to the n layer was 5.16 eV, and the half width was 218 meV.
- the surface roughness (Ra) was 0.25 nm.
- Example 16 On the same aluminum nitride substrate as in Example 12, only an n layer 1 ⁇ m (Al 0.7 Ga 0.3 N) doped with Si was formed by MOCVD.
- the growth conditions were a growth temperature of 1050 ° C., a V / III ratio of 1400, a system pressure of 50 mbar, and TMA and TMG as raw material gases and ammonia diluted with hydrogen (9.8 slm) were supplied.
- the obtained substrate (Group III nitride laminate) was cooled and taken out from the MOCVD apparatus, and PL measurement was performed.
- the peak position of the emission peak attributed to the n layer was 5.16 eV, and the half width was 209 meV.
- the surface roughness (Ra) was 0.15 nm.
- Example 17 Only an n layer 1 ⁇ m (Al 0.7 Ga 0.3 N) doped with Si was formed by MOCVD on the same aluminum nitride substrate as in Example 13.
- the growth conditions were a growth temperature of 1050 ° C., a V / III ratio of 1400, a system pressure of 50 mbar, and TMA and TMG as raw material gases and ammonia diluted with hydrogen (9.8 slm) were supplied.
- the obtained substrate (Group III nitride laminate) was cooled and taken out from the MOCVD apparatus, and PL measurement was performed.
- the peak position of the emission peak attributed to the n layer was 5.17 eV, and the half width was 216 meV.
- the surface roughness (Ra) was 0.30 nm.
- Comparative Example 1 The same operation and evaluation as in Example 1 were performed, except that an aluminum nitride substrate having a main surface inclined by 0.03 ° in the m-axis direction from the (0001) plane of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Comparative Example 2 The same operation and evaluation as in Example 1 were performed except that an aluminum nitride substrate having a main surface inclined by 0.41 ° in the m-axis direction from the (0001) plane of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Comparative Example 3 The same operation and evaluation as in Example 1 were performed except that an aluminum nitride substrate having a main surface inclined by 0.64 ° in the m-axis direction from the (0001) plane of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Comparative Example 4 The same operation and evaluation as in Example 1 were performed except that an aluminum nitride substrate having a main surface inclined by 0.81 ° in the m-axis direction from the (0001) plane of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Comparative Example 5 The same operation and evaluation as in Example 4 were performed except that an aluminum nitride substrate having a main surface inclined by 0.03 ° in the m-axis direction from the (0001) plane of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Comparative Example 6 The same operation and evaluation as in Example 4 were performed except that an aluminum nitride substrate having a main surface inclined by 0.41 ° in the m-axis direction from the (0001) plane of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Comparative Example 7 The same operation and evaluation as in Example 4 were performed except that an aluminum nitride substrate having a main surface inclined by 0.81 ° in the m-axis direction from the (0001) surface of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Comparative Example 8 The same operation and evaluation as in Example 7 were performed except that an aluminum nitride substrate having a main surface inclined by 0.03 ° in the m-axis direction from the (0001) plane of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Comparative Example 9 The same operation and evaluation as in Example 7 were performed except that an aluminum nitride substrate having a main surface inclined by 0.41 ° in the m-axis direction from the (0001) plane of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Comparative Example 10 The same operation and evaluation as in Example 7 were performed except that an aluminum nitride substrate having a main surface inclined by 0.81 ° in the m-axis direction from the (0001) plane of the wurtzite structure was used.
- the physical properties other than the off-angle of the main surface were the same as the aluminum nitride substrate used in Example 1.
- Comparative Example 11 The same operation as in Example 1 except that an aluminum nitride substrate having a main surface inclined by 0.42 ° in the m-axis direction and 0.15 ° in the a-axis direction from the (0001) plane of the wurtzite structure was used. And evaluated.
- the physical properties (crystal quality, curvature radius, surface roughness (Ra), thickness) other than the off-angle of the main surface were the same as those of the aluminum nitride substrate used in Example 1.
- Comparative Example 12 On the same aluminum nitride substrate as in Comparative Example 11, only an n layer 1 ⁇ m (Al 0.7 Ga 0.3 N) doped with Si was formed by MOCVD.
- the growth conditions were a growth temperature of 1050 ° C., a V / III ratio of 1400, a system pressure of 50 mbar, and TMA and TMG as raw material gases and ammonia diluted with hydrogen (9.8 slm) were supplied.
- the obtained substrate (Group III nitride laminate) was cooled and taken out from the MOCVD apparatus, and PL measurement was performed.
- the peak position of the emission peak attributed to the n layer was 5.19 eV, and the half width was 237 meV.
- the surface roughness (Ra) was 0.37 nm.
- the group III nitride laminate obtained in the examples has little composition distribution fluctuation, low impurity concentration, and low surface roughness (Ra). Further, as shown in Examples 1 to 3, when a quantum well layer is grown on the high quality n layer (AlGaInBN layer) shown in Examples 4 to 6, the quantum well layer is also of high quality. I understand that.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Led Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
ウルツ鉱構造の(0001)面から0.05°以上0.40°以下の範囲でm軸方向に傾斜した面を主面とする窒化アルミニウム単結晶層を少なくとも表面に有することを特徴とする窒化アルミニウム基板である。本発明の窒化アルミニウム基板において、前記主面は、さらに0.00°以上0.40°以下の範囲でa軸方向に傾斜していることが好ましい。
図1は、本発明の窒化アルミニウム基板の断面を模式的に示した図である。本発明の窒化アルミニウム基板は、窒化アルミニウムからなり、ウルツ鉱構造の(0001)面から0.05°以上0.40°以下の範囲でm軸方向に傾斜した面を主面とする窒化アルミニウム単結晶層を少なくとも表面に有する窒化アルミニウム基板である。すなわち、窒化アルミニウム基板の主面1とc面2のなす角であるオフ角3が0.05°以上0.40°以下の範囲である、窒化アルミニウム単結晶層を少なくとも表面に有する窒化アルミニウム基板である。なお、前記主面とは、窒化アルミニウム単結晶層の最も広い面積を有する部分であり、窒化アルミニウム基板の表面となる面である。そして、該主面上に、III族窒化物、例えば、下記に詳述するAlGaInBN層を成長させる。
また、前記主面が、ウルツ鉱構造の(0001)面から前記範囲でm軸方向に傾斜し、かつ0.00°を超え0.40°以下の範囲でa軸方向にも傾斜する面を有する場合には、ステップ形成がより安定し、III族窒化物単結晶層を安定して成長することができる。その中でも、前記主面がウルツ鉱構造の(0001)面から、m軸方向へ0.05°以上0.35°以下の範囲で傾斜し、かつa軸方向へ0.05°以上0.35°以下の範囲で傾斜することが好ましく、m軸方向へ0.10°以上0.35°以下の範囲で傾斜し、かつa軸方向へ0.10°以上0.35°以下の範囲で傾斜することがさらに好ましく、m軸方向へ0.11°以上0.32°以下の範囲で傾斜し、かつa軸方向へ0.11°以上0.32°以下の範囲で傾斜することが特に好ましい。
先ず、具体的には、ハイドライド気相成長法(HVPE;Hydride vapor phase epitaxy)、有機金属気相成長法(MOCVD;Metalorganic chemical vapor deposition)、昇華法(PVT;Physical Vapor Tranport)、分子線エピタキシ法(MBE;Molcular beam epitaxy)等の気相成長法や、LPE法(Liquid phase epitaxy)等の液層成長法、あるいはこれらの組み合わせにより、窒化アルミニウム単結晶層を成長させる。中でも、生産性、最終的に得られるIII族窒化物半導体素子の光取出し等を考慮すると、HVPE法で窒化アルミニウム単結晶層を成長させることが好ましい。特に、窒化アルミニウム単結晶層を構成する部分は、HVPE法で製造することが好ましい。
上記方法にて用意された窒化アルミニウム基板の該基板面を研磨することにより、第一の本発明であるウルツ鉱構造の(0001)面から0.05°以上0.40°以下の範囲でm軸方向に傾斜した面を主面とする窒化アルミニウム単結晶層を少なくとも表面に有する窒化アルミニウム基板へと加工することができる。例えば、一般的にエピレディー基板を用意する際に用いられるCMP法(Chemical mechanical polishing)が研磨方法として適用できる。研磨後の基板表面の平坦性を考慮するとCMP研磨であることが好ましい。本実施形態では、c面窒化アルミニウム基板を研磨する。
本発明においては、以上のような方法で製造した窒化アルミニウム基板の表面(窒化アルミニウム単結晶層の主面)に、III族窒化物単結晶層を成長させる。そして、III族窒化物積層体、及びその積層体を含むIII族窒化物半導体素子を製造する。
本発明のIII族窒化物積層体は、特に制限されるものではないが、以下の特性を有するものとすることができる。
III族窒化物積層体、およびIII族窒化物半導体素子は公知となっている方法に準じ、MOCVD法を用いて製造することができる。
負電極20、正電極21の形成方法は、特に制限されるものではなく、公知の方法を採用することができる。負電極20は、公知の方法によりエッチングして、露出したn層12の上に形成する。負電極材料としてはAl、Au、Ni、Cu等が挙げられる。正電極21は、p型キャップ層15の上に形成する。正電極材料としてはAl、Au、Ni、Cu等が挙げられる。
(光学特性評価)
結晶品質は、300Kにおけるフォトルミネッセンス(以下、単に「PL」とする場合もある)測定により評価した。これは、PL測定における量子井戸層の発光ピークの半値幅が、量子井戸層内の組成の揺らぎや不純物濃度に起因するためである。この半値幅の評価は、上記III族窒化物積層体またはIII窒化物半導体素子を用いたPL測定で行うことができる。本発明においては、図2において、窒化アルミニウム基板11、n層12、および量子井戸層13からなる積層体(実施例1~3、比較例1~4)、窒化アルミニウム基板11およびn層12からなる積層体(実施例4~6、比較例5~8)、並びに、窒化アルミニウム基板11上に直接AlN層を積層した積層体(実施例7~9、比較例9~12)のPL測定を行い、III族窒化物単結晶層の評価(組成分布の評価)を行った。PL測定は、193nmArFエキシマレーザを用いて実施した。なお、当然のことではあるが、この半値幅が短いものほど、組成分布がより均一であると言える。
(表面モフォロジ評価)
窒化アルミニウム基板のAlN単結晶層、n層および量子井戸層の表面粗さの評価は、原子間力顕微鏡(AFM)を用い2μm×2μmの範囲を測定し評価した。これは、結晶表面の粗さが大きくなると量子井戸層内の組成の揺らぎや不純物原子の取り込みが増大すると考えられるためである。表面粗さはRaで評価した。Raとは、JIS B 0601に記載されている表面粗さ評価指標の一つであり、粗さ曲面から、その平均値の方向に基準面積(ここでは2μm×2μm)を抜き取り、この抜き取り部分の平均面から測定曲面までの偏差の絶対値を合計して、それを基準面積で平均した値をいう。なお、当然のことではあるが、このRaの値が小さいものほど、表面が平坦であると言える。
厚さ約500μmの窒化アルミニウム単結晶からなるc面窒化アルミニウム基板の表面および裏面を研削し、CMP研磨した。そして、窒化アルミニウム基板の主面がウルツ鉱構造の(0001)面からm軸方向に0.11°傾斜した面を有する、厚さ200μmの窒化アルミニウム基板(AlN単結晶層のみからなる窒化アルミニウム基板)を得た。この窒化アルミニウム基板の曲率半径は、20mであり、表面粗さ(Ra)は0.17nmであった。また、ウルツ鉱構造の(0001)面からのa軸方向の傾斜は0.00°であった。
主面がウルツ鉱構造の(0001)面からm軸方向に0.23°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例1と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.32°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例1と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
実施例1と同様の窒化アルミニウム基板上に、MOCVD法によりSiをドープしたn層1μm(Al0.7Ga0.3N)のみを形成した。成長条件は、成長温度が1050℃、V/III比が1400、系内圧力50mbarであり、原料ガスであるTMA、TMG、および水素で希釈したアンモニア(9.8slm)を供給した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.23°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例4と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.32°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例4と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。結果を表1にまとめた。
実施例1と同様の窒化アルミニウム基板上に、MOCVD法によりSiをドープしたAlN層0.2μmのみを形成した。成長条件は、成長温度が1200℃、V/III比が2500、系内圧力35mbarであり、原料ガスであるTMA、TMG、および水素で希釈したアンモニア(8.5slm)を供給した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.23°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例7と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.32°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例7と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.14°、a軸方向に0.24°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例1と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.23°、a軸方向に0.19°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例1と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.30°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例1と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.32°、a軸方向に0.11°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例1と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
実施例10と同様の窒化アルミニウム基板上に、MOCVD法によりSiをドープしたn層1μm(Al0.7Ga0.3N)のみを形成した。成長条件は、成長温度が1050℃、V/III比が1400、系内圧力50mbarであり、原料ガスであるTMA、TMG、および水素で希釈したアンモニア(9.8slm)を供給した。
実施例11と同様の窒化アルミニウム基板上に、MOCVD法によりSiをドープしたn層1μm(Al0.7Ga0.3N)のみを形成した。成長条件は、成長温度が1050℃、V/III比が1400、系内圧力50mbarであり、原料ガスであるTMA、TMG、および水素で希釈したアンモニア(9.8slm)を供給した。
実施例12と同様の窒化アルミニウム基板上に、MOCVD法によりSiをドープしたn層1μm(Al0.7Ga0.3N)のみを形成した。成長条件は、成長温度が1050℃、V/III比が1400、系内圧力50mbarであり、原料ガスであるTMA、TMG、および水素で希釈したアンモニア(9.8slm)を供給した。
実施例13と同様の窒化アルミニウム基板上に、MOCVD法によりSiをドープしたn層1μm(Al0.7Ga0.3N)のみを形成した。成長条件は、成長温度が1050℃、V/III比が1400、系内圧力50mbarであり、原料ガスであるTMA、TMG、および水素で希釈したアンモニア(9.8slm)を供給した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.03°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例1と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.41°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例1と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.64°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例1と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.81°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例1と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.03°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例4と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.41°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例4と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.81°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例4と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.03°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例7と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.41°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例7と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.81°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例7と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ、a軸方向の傾斜)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
主面がウルツ鉱構造の(0001)面からm軸方向に0.42°、a軸方向に0.15°傾斜した面を有する窒化アルミニウム基板を使用した以外は、実施例1と同様の操作、評価を行った。主面のオフ角以外の物性(結晶品質、曲率半径、表面粗さ(Ra)、厚さ)は、実施例1で使用した窒化アルミニウム基板と同等のものを使用した。
比較例11と同様の窒化アルミニウム基板上に、MOCVD法によりSiをドープしたn層1μm(Al0.7Ga0.3N)のみを形成した。成長条件は、成長温度が1050℃、V/III比が1400、系内圧力50mbarであり、原料ガスであるTMA、TMG、および水素で希釈したアンモニア(9.8slm)を供給した。
2 c面
3 オフ角
10 III族窒化物半導体素子
11 窒化アルミニウム基板
12 n層
13 量子井戸層
14 p層
15 p型キャップ層
20 負電極
21 正電極
Claims (6)
- 窒化アルミニウムからなる基板であって、
ウルツ鉱構造の(0001)面から0.05°以上0.40°以下の範囲でm軸方向に傾斜した面を主面とする窒化アルミニウム単結晶層を少なくとも表面に有することを特徴とする窒化アルミニウム基板。 - 前記主面がウルツ鉱構造の(0001)面から0.00°以上0.40°以下の範囲でa軸方向に傾斜することを特徴とする、請求項1に記載の窒化アルミニウム基板。
- 請求項1または2に記載の窒化アルミニウム基板における窒化アルミニウム単結晶層の主面上に、
Al1-(x+y+z)GaxInyBzN(但し、x、y及びzは、夫々独立に0以上0.5未満の有理数であり、x、y及びzの和は、0.5未満である。)で示される組成を満足するAlGaInBN層を有することを特徴とするIII族窒化物積層体。 - 前記Al1-(x+y+z)GaxInyBzNにおいて、xが0を超え0.5未満の有理数であり、y及びzが0以上0.5未満の有理数であり、x、y及びzの和が0を超え0.5未満となる組成のAlGaInBN層を有し、
該AlGaInBN層の300Kにおけるフォトルミネッセンス測定において、バンド端発光ピークが4.56eV以上5.96eV未満に観測され、該発光ピークの半値幅が225meV以下であることを特徴とする請求項3に記載のIII族窒化物積層体。 - 前記窒化アルミニウム単結晶層の主面上に、
直接AlN層(前記Al1-(x+y+z)GaxInyBzNにおいて、x、y及びzが0である)が積層され、
該AlN層の300Kにおけるフォトルミネッセンス測定において、該AlN結晶のバンド端発光ピークの半値幅が145meV以下であり、
該AlN層の表面粗さ(Ra)が0.2nm以下であることを特徴とする請求項3に記載のIII族窒化物積層体。 - 請求項3~5の何れか1項に記載のIII族窒化物積層体における窒化アルミニウム単結晶層、および前記AlGaInBN層部分を少なくとも有するIII族窒化物半導体素子。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13837687.6A EP2896725B1 (en) | 2012-09-11 | 2013-09-04 | Aluminum nitride substrate and group-iii nitride laminate |
JP2014535504A JP6328557B2 (ja) | 2012-09-11 | 2013-09-04 | 窒化アルミニウム基板およびiii族窒化物積層体 |
US14/427,156 US9343525B2 (en) | 2012-09-11 | 2013-09-04 | Aluminum nitride substrate and group-III nitride laminate |
KR1020157005548A KR102062327B1 (ko) | 2012-09-11 | 2013-09-04 | 질화 알루미늄 기판 및 iii족 질화물 적층체 |
CN201380041307.XA CN104583470A (zh) | 2012-09-11 | 2013-09-04 | 氮化铝基板及iii族氮化物层叠体 |
CA2884169A CA2884169C (en) | 2012-09-11 | 2013-09-04 | Aluminum nitride substrate and group-iii nitride laminate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-199685 | 2012-09-11 | ||
JP2012199685 | 2012-09-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014042054A1 true WO2014042054A1 (ja) | 2014-03-20 |
Family
ID=50278168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/073806 WO2014042054A1 (ja) | 2012-09-11 | 2013-09-04 | 窒化アルミニウム基板およびiii族窒化物積層体 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9343525B2 (ja) |
EP (1) | EP2896725B1 (ja) |
JP (1) | JP6328557B2 (ja) |
KR (1) | KR102062327B1 (ja) |
CN (2) | CN110589757A (ja) |
CA (1) | CA2884169C (ja) |
WO (1) | WO2014042054A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017164233A1 (ja) * | 2016-03-23 | 2017-09-28 | 株式会社トクヤマ | 窒化アルミニウム単結晶基板の製造方法 |
JP2018078260A (ja) * | 2016-11-11 | 2018-05-17 | 株式会社トクヤマ | 窒化アルミニウム単結晶基板及び、該単結晶基板の製造方法 |
TWI738944B (zh) * | 2016-12-19 | 2021-09-11 | 日商古河機械金屬股份有限公司 | Iii族氮化物半導體基板及iii族氮化物半導體基板之製造方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016039116A1 (ja) | 2014-09-11 | 2016-03-17 | 株式会社トクヤマ | 窒化アルミニウム単結晶基板の洗浄方法および積層体 |
CN106711023A (zh) * | 2016-12-29 | 2017-05-24 | 苏州纳维科技有限公司 | Iii族氮化物衬底及其制备方法 |
JP6932995B2 (ja) * | 2017-05-23 | 2021-09-08 | Tdk株式会社 | 窒化物の単結晶 |
EP3432369A4 (en) | 2017-05-26 | 2019-08-28 | Soko Kagaku Co., Ltd. | MODEL, ULTRAVIOLET SEMICONDUCTOR LIGHT EMITTING ELEMENT, AND METHOD FOR PRODUCING THE MODEL |
US10833474B2 (en) * | 2017-08-02 | 2020-11-10 | Nlight, Inc. | CTE-matched silicon-carbide submount with high thermal conductivity contacts |
EP3686323B1 (en) * | 2017-09-22 | 2024-07-31 | Tokuyama Corporation | Group iii nitride single crystal substrate |
JP6872075B2 (ja) * | 2018-03-27 | 2021-05-19 | 日本碍子株式会社 | 窒化アルミニウム板 |
CN111063750B (zh) * | 2019-12-10 | 2021-07-27 | 广东省半导体产业技术研究院 | 一种紫外光电器件及其制备方法 |
CN111064075B (zh) * | 2019-12-26 | 2021-06-15 | 海南师范大学 | 一种深紫外垂直腔半导体激光器外延结构及制备方法 |
US20220320417A1 (en) * | 2021-04-01 | 2022-10-06 | Applied Materials, Inc. | Method of manufacturing aluminum nitride films |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11233391A (ja) | 1998-02-12 | 1999-08-27 | Nippon Telegr & Teleph Corp <Ntt> | 結晶基板とそれを用いた半導体装置およびその製法 |
JP2007005526A (ja) | 2005-06-23 | 2007-01-11 | Sumitomo Electric Ind Ltd | 窒化物結晶、窒化物結晶基板、エピ層付窒化物結晶基板、ならびに半導体デバイスおよびその製造方法 |
JP2009135441A (ja) | 2007-10-29 | 2009-06-18 | Hitachi Cable Ltd | 窒化物半導体自立基板及びそれを用いたデバイス |
JP2009132569A (ja) * | 2007-11-30 | 2009-06-18 | Sumitomo Electric Ind Ltd | 窒化アルミニウム結晶の成長方法、窒化アルミニウム結晶の製造方法および窒化アルミニウム結晶 |
JP2009147319A (ja) * | 2007-11-21 | 2009-07-02 | Mitsubishi Chemicals Corp | 窒化物半導体および窒化物半導体の結晶成長方法 |
JP2009161390A (ja) | 2008-01-04 | 2009-07-23 | Aienji:Kk | 横走流式石灰炉の構造 |
JP2009190960A (ja) | 2008-01-16 | 2009-08-27 | Tokyo Univ Of Agriculture & Technology | 積層体およびその製造方法 |
JP2010030799A (ja) * | 2008-07-25 | 2010-02-12 | Sumitomo Electric Ind Ltd | AlN基板の製造方法およびAlN基板 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4435123B2 (ja) * | 2006-08-11 | 2010-03-17 | ソニー株式会社 | 表示装置の駆動方法 |
JP5730484B2 (ja) * | 2007-01-26 | 2015-06-10 | クリスタル アイエス インコーポレイテッド | 厚みのある擬似格子整合型の窒化物エピタキシャル層 |
JPWO2009020235A1 (ja) * | 2007-08-09 | 2010-11-04 | 昭和電工株式会社 | Iii族窒化物半導体エピタキシャル基板 |
EP2221885A4 (en) * | 2007-11-19 | 2013-09-25 | Panasonic Corp | SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR LIGHT EMITTING DEVICE |
EP2221856B1 (en) * | 2007-11-21 | 2020-09-09 | Mitsubishi Chemical Corporation | Nitride semiconductor, nitride semiconductor crystal growth method, and nitride semiconductor light emitting element |
CN102137960B (zh) * | 2008-09-01 | 2013-12-11 | 住友电气工业株式会社 | 制造氮化物衬底的方法和氮化物衬底 |
WO2010027016A1 (ja) * | 2008-09-05 | 2010-03-11 | シャープ株式会社 | 窒化物半導体発光素子および半導体発光素子 |
JP5453780B2 (ja) * | 2008-11-20 | 2014-03-26 | 三菱化学株式会社 | 窒化物半導体 |
JP5212283B2 (ja) * | 2009-07-08 | 2013-06-19 | 日立電線株式会社 | Iii族窒化物半導体自立基板の製造方法、iii族窒化物半導体自立基板、iii族窒化物半導体デバイスの製造方法及びiii族窒化物半導体デバイス |
JP5489117B2 (ja) * | 2009-09-01 | 2014-05-14 | シャープ株式会社 | 窒化物半導体素子、窒化物半導体素子の製造方法、窒化物半導体層の製造方法および窒化物半導体発光素子 |
US9287442B2 (en) * | 2009-12-04 | 2016-03-15 | Sensor Electronic Technology, Inc. | Semiconductor material doping |
JP5494259B2 (ja) * | 2010-06-08 | 2014-05-14 | 住友電気工業株式会社 | Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法 |
US8963165B2 (en) * | 2010-12-29 | 2015-02-24 | Sharp Kabushiki Kaisha | Nitride semiconductor structure, nitride semiconductor light emitting element, nitride semiconductor transistor element, method of manufacturing nitride semiconductor structure, and method of manufacturing nitride semiconductor element |
KR101978536B1 (ko) * | 2011-09-30 | 2019-05-14 | 쌩-고벵 크리스톡스 에 드테끄퇴르 | 특정한 결정학적 특징을 갖는 ⅲ-ⅴ족 기판 물질 및 제조 방법 |
-
2013
- 2013-09-04 CA CA2884169A patent/CA2884169C/en active Active
- 2013-09-04 CN CN201911060185.4A patent/CN110589757A/zh active Pending
- 2013-09-04 JP JP2014535504A patent/JP6328557B2/ja active Active
- 2013-09-04 EP EP13837687.6A patent/EP2896725B1/en active Active
- 2013-09-04 WO PCT/JP2013/073806 patent/WO2014042054A1/ja active Application Filing
- 2013-09-04 US US14/427,156 patent/US9343525B2/en active Active
- 2013-09-04 CN CN201380041307.XA patent/CN104583470A/zh active Pending
- 2013-09-04 KR KR1020157005548A patent/KR102062327B1/ko active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11233391A (ja) | 1998-02-12 | 1999-08-27 | Nippon Telegr & Teleph Corp <Ntt> | 結晶基板とそれを用いた半導体装置およびその製法 |
JP2007005526A (ja) | 2005-06-23 | 2007-01-11 | Sumitomo Electric Ind Ltd | 窒化物結晶、窒化物結晶基板、エピ層付窒化物結晶基板、ならびに半導体デバイスおよびその製造方法 |
JP2009135441A (ja) | 2007-10-29 | 2009-06-18 | Hitachi Cable Ltd | 窒化物半導体自立基板及びそれを用いたデバイス |
JP2009147319A (ja) * | 2007-11-21 | 2009-07-02 | Mitsubishi Chemicals Corp | 窒化物半導体および窒化物半導体の結晶成長方法 |
JP2009132569A (ja) * | 2007-11-30 | 2009-06-18 | Sumitomo Electric Ind Ltd | 窒化アルミニウム結晶の成長方法、窒化アルミニウム結晶の製造方法および窒化アルミニウム結晶 |
JP2009161390A (ja) | 2008-01-04 | 2009-07-23 | Aienji:Kk | 横走流式石灰炉の構造 |
JP2009190960A (ja) | 2008-01-16 | 2009-08-27 | Tokyo Univ Of Agriculture & Technology | 積層体およびその製造方法 |
JP2010030799A (ja) * | 2008-07-25 | 2010-02-12 | Sumitomo Electric Ind Ltd | AlN基板の製造方法およびAlN基板 |
Non-Patent Citations (3)
Title |
---|
See also references of EP2896725A4 |
X.Q. SHEN; H. OKUMURA, JOURNAL OF CRYSTAL GROWTH, vol. 300, 2007, pages 75 - 78 |
Y. KUMAGAI, APPLIED PHYSICS EXPRESS, vol. 5, 2012, pages 055504 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017164233A1 (ja) * | 2016-03-23 | 2017-09-28 | 株式会社トクヤマ | 窒化アルミニウム単結晶基板の製造方法 |
JPWO2017164233A1 (ja) * | 2016-03-23 | 2019-02-07 | 株式会社トクヤマ | 窒化アルミニウム単結晶基板の製造方法 |
US10822718B2 (en) | 2016-03-23 | 2020-11-03 | Tokuyama Corporation | Method for producing aluminum nitride single crystal substrate |
JP7023837B2 (ja) | 2016-03-23 | 2022-02-22 | 株式会社トクヤマ | 窒化アルミニウム単結晶基板の製造方法 |
JP2018078260A (ja) * | 2016-11-11 | 2018-05-17 | 株式会社トクヤマ | 窒化アルミニウム単結晶基板及び、該単結晶基板の製造方法 |
TWI738944B (zh) * | 2016-12-19 | 2021-09-11 | 日商古河機械金屬股份有限公司 | Iii族氮化物半導體基板及iii族氮化物半導體基板之製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014042054A1 (ja) | 2016-08-18 |
KR102062327B1 (ko) | 2020-01-03 |
US20150249122A1 (en) | 2015-09-03 |
JP6328557B2 (ja) | 2018-05-23 |
KR20150054785A (ko) | 2015-05-20 |
CN110589757A (zh) | 2019-12-20 |
US9343525B2 (en) | 2016-05-17 |
CN104583470A (zh) | 2015-04-29 |
CA2884169A1 (en) | 2014-03-20 |
EP2896725A4 (en) | 2016-05-04 |
EP2896725B1 (en) | 2022-01-19 |
CA2884169C (en) | 2020-08-11 |
EP2896725A1 (en) | 2015-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6328557B2 (ja) | 窒化アルミニウム基板およびiii族窒化物積層体 | |
TWI689611B (zh) | Iii族氮化物積層體及具有該積層體之發光元件 | |
JP5520056B2 (ja) | 中間層構造を有する窒化物半導体構造、及び中間層構造を有する窒化物半導体構造を製造する方法 | |
JP5702312B2 (ja) | 厚い窒化物半導体構造を製造する方法 | |
JP4529846B2 (ja) | Iii−v族窒化物系半導体基板及びその製造方法 | |
US7951617B2 (en) | Group III nitride semiconductor stacked structure and production method thereof | |
US20150176154A1 (en) | Nitride semiconductor multilayer structure, method for producing same, and nitride semiconductor light-emitting element | |
US9190268B2 (en) | Method for producing Ga-containing group III nitride semiconductor | |
JP5552873B2 (ja) | 窒化物半導体基板、その製造方法及び窒化物半導体デバイス | |
JP2004524250A (ja) | 窒化ガリウム材料および方法 | |
JP2010225881A (ja) | Iii族窒化物半導体の製造方法 | |
JP2009238772A (ja) | エピタキシャル基板及びエピタキシャル基板の製造方法 | |
JP6925141B2 (ja) | 半導体基板、半導体発光素子および灯具 | |
JP7260089B2 (ja) | 窒化物半導体 | |
JP2009023853A (ja) | Iii−v族窒化物系半導体基板及びその製造方法、並びにiii−v族窒化物系半導体デバイス | |
CN108963042B (zh) | Ramo4基板及氮化物半导体装置 | |
JP2004119423A (ja) | 窒化ガリウム結晶基板、その製造方法、窒化ガリウム系半導体素子および発光ダイオード | |
JP6306331B2 (ja) | 窒化物半導体層の成長方法及び窒化物半導体素子の製造方法 | |
JP5304715B2 (ja) | Iii−v族窒化物系半導体基板 | |
JP3928536B2 (ja) | リン化硼素単結晶基板の製造方法 | |
JP2024155681A (ja) | Iii族窒化物半導体の製造方法 | |
JP2019085290A (ja) | Iii族窒化物半導体基板 | |
JP2007186361A (ja) | 半導体層成長用基板およびそれを用いた半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13837687 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014535504 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157005548 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2884169 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14427156 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |