WO2014034739A1 - 熱交換式反応管 - Google Patents
熱交換式反応管 Download PDFInfo
- Publication number
- WO2014034739A1 WO2014034739A1 PCT/JP2013/073050 JP2013073050W WO2014034739A1 WO 2014034739 A1 WO2014034739 A1 WO 2014034739A1 JP 2013073050 W JP2013073050 W JP 2013073050W WO 2014034739 A1 WO2014034739 A1 WO 2014034739A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- flow path
- reaction tube
- catalyst
- pipe part
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1818—Feeding of the fluidising gas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/02—Apparatus characterised by being constructed of material selected for its chemically-resistant properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/0015—Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
- B01J8/0025—Feeding of the particles in the reactor; Evacuation of the particles out of the reactor by an ascending fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1818—Feeding of the fluidising gas
- B01J8/1827—Feeding of the fluidising gas the fluidising gas being a reactant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1836—Heating and cooling the reactor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00026—Controlling or regulating the heat exchange system
- B01J2208/00035—Controlling or regulating the heat exchange system involving measured parameters
- B01J2208/00044—Temperature measurement
- B01J2208/00061—Temperature measurement of the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00168—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
- B01J2208/00194—Tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00168—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
- B01J2208/00203—Coils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00389—Controlling the temperature using electric heating or cooling elements
- B01J2208/00415—Controlling the temperature using electric heating or cooling elements electric resistance heaters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/0053—Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00548—Flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00884—Means for supporting the bed of particles, e.g. grids, bars, perforated plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00991—Disengagement zone in fluidised-bed reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/02—Apparatus characterised by their chemically-resistant properties
- B01J2219/025—Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
- B01J2219/0254—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Definitions
- the sufficiently heated first gas flows in the lower part (dispersion plate side) of the second pipe part, and the periphery is covered with the high-temperature first pipe part and the heating device.
- the rising first gas can maintain a high temperature without cooling. Since the upper part (outlet side) of the second pipe part is in contact with the first pipe part that is not sufficiently heated, the low temperature at which the first gas after the high-temperature reaction flowing out from the second pipe part flows into the first pipe part At the same time, the first gas flowing into the first pipe part is heated by the first gas flowing out from the second pipe part, and heat exchange occurs.
- the fluidizing medium is a particulate support
- the first gas is a raw material gas containing a carbon source of carbon nanotubes
- the second gas is a catalyst gas containing a catalyst for carbon nanotube synthesis. can do.
- the catalyst gas can be delivered to the support at a low temperature and reacted on the high temperature support.
- the catalyst can be supported on the support by bringing the low temperature catalyst gas from the third flow path into contact with the high temperature support in the second flow path.
- the raw material gas containing the high temperature carbon source from the first channel can be decomposed by the catalyst on the high temperature support to effectively synthesize the carbon nanotubes.
- FIG. 1 It is a schematic plan view of the heat exchange type reaction tube which concerns on 1st Embodiment. It is a schematic plan view of the heat exchange type reaction tube which concerns on 2nd Embodiment. It is the schematic of the heat exchange type reaction tube of a modification, (a) is a schematic front view, (b) is sectional drawing in the III (b) -III (b) line
- schematic cross-sectional view of the heat exchange type reaction tube of a modification. 2 is a schematic plan view of a reaction tube in Comparative Example 1.
- the first pipe portion 2 is formed in a bottomed circular tube and is erected in the vertical direction.
- An inlet 6 for allowing the source gas to flow into the first flow path 4 is formed at the upper end of the first pipe portion 2.
- the second pipe portion 3 is formed in a circular tube having a smaller diameter than the first pipe portion 2 and is erected in the vertical direction. And the 2nd pipe part 3 is supported by the support member extended from the inner wall of the 1st pipe part 2, and is a clearance gap between the 1st pipe part 2 so that it may become concentric with the 1st pipe part 2. Is held uniformly.
- this effect can further be heightened by making this diameter into 0.1 mm or more and 0.2 mm or more.
- the diameter of the hole formed in the dispersion plate 8 is 0.8 mm or less, it is possible to suppress the catalyst carrying support from falling off the dispersion plate 8. And this effect can further be heightened by making this diameter into 0.6 mm or less and 0.4 mm or less.
- the heating unit 11 is a part for heating the raw material gas and for synthesizing the carbon nanotubes on the catalyst carrying support by circulating the raw material gas on the catalyst carrying support held by the dispersion plate 8. For this reason, it is preferable to set the heating part 11 so that it may be below the inflow port 6 and may include a flow region in which the catalyst-carrying support body flows when the raw material gas is supplied.
- the catalyst gas and the raw material gas that have circulated on the support are discharged from the outlet 10 formed on the upper end surface of the second pipe portion 3.
- the catalyst gas and the raw material gas that have circulated on the support are transferred to the second flow path.
- the ascent rate decreases.
- the support that has been lifted by the momentum of the catalyst gas and the raw material gas can be lowered in the diameter-expanded tube portion 9, and the support can be prevented from jumping out from the outlet 10.
- FIGS. 10 is a Raman spectrum of the carbon nanotube in Comparative Example 1.
- FIG. 11 is a Raman spectrum of the carbon nanotube in Example 1.
- Example 8 A heat exchange type reaction tube 21 shown in FIG. 2 was used as a reaction tube, and the temperature distribution in the second flow path 5 was measured with a thermocouple for measurement. Further, in Example 8, the heat exchange type reaction tube 21 in which the third tube portion 22 penetrates the dispersion plate 8 was used.
- the inner diameter of the first pipe portion 2 (the outer diameter of the first flow path 4) is 50 mm
- the inner diameter of the second pipe section 3 (the outer diameter of the second flow path 5) is 40 mm
- the inner diameter of the third pipe portion 22 (the first diameter).
- the same conditions as in Example 5 were used except that the outer diameter of the three flow passages 23 was 2 mm and the second flow passage 5 was filled with the catalyst-supporting support.
- Example 8 since the catalyst bus is supplied from the third tube portion 22 penetrating the dispersion plate 8 to the second flow path 5, the catalyst does not adhere to the dispersion plate 8. As a result, since it is not necessary to clean the dispersion plate 105, the carbon nanotube synthesis cycle can be repeated.
- a catalyst supporting step is performed in which a catalyst is supported on the beads, which are the support, by supplying a catalyst gas from the third tube portion 22, and then by supplying a raw material gas from the inlet 6
- a CVD process for synthesizing carbon nanotubes was performed thereon.
- the first catalyst gas and the second catalyst gas are supplied from the inlet 103 for 2 minutes to perform a deposition step of depositing the catalyst on the beads serving as the support, and then the inlet 103 Then, a reducing gas was supplied for 10 minutes to reduce the catalyst deposited on the beads to form fine particles.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Abstract
Description
第1の実施形態に係る熱交換式反応管は、粒子状の支持体(粒状担体)に触媒粒子(カーボンナノチューブ合成用触媒)を担持させた粒子状の触媒担持支持体上に原料ガス(第一ガス)を流通させることで、触媒担持支持体上にカーボンナノチューブを合成させるものである。
次に、本発明の第2の実施形態について説明する。
反応管として、図5に示す反応管101を用いた。反応管101は、一直線状に延びる直線管部102により構成し、その下端に原料ガスが供給される流入口103を形成し、その上端に原料ガスが排出される流出口104を形成した。直線管部102内に、貫通孔の形成された分散板を配置した。直線管部102の下端から所定高さ位置までの区間を加熱部106とし、この加熱部106の周囲に、加熱部106を加熱する加熱装置(不図示)を配置した。
反応管として、図1に示す熱交換式反応管1を用いた。加熱装置で加熱部11を加熱し、第二流路5に粒子状の触媒担持支持体を投入して、流入口6から原料ガスを供給して、カーボンナノチューブを合成した。原料ガスの総流量を2.70slmとした。原料ガスの構成としては、C2H2を0.3容量%(vol%)、H2を10容量%、H2Oを50ppmvとし、雰囲気ガスとしてArを用いた。加熱装置の温度を800℃とし、反応時間は10分間とした。
比較例1の反応管101と実施例1の熱交換式反応管1とを用いて合成したカーボンナノチューブを、走査線電子顕微鏡(SEM、日立製作所社製:S-4800)で観察した結果を図8及び図9に示す。図8は、比較例1におけるSEM画像である。図9は、実施例1におけるSEM画像である。
ラマン分光器(HORIBA社製:HR-800)を用い、ラマン分光法により、比較例1の反応管101と実施例1の熱交換式反応管1とを用いて合成したカーボンナノチューブについて評価した。測定波長は488nmとした。測定の結果を図10及び図11に示す。図10は、比較例1におけるカーボンナノチューブのラマンスペクトルである。図11は、実施例1におけるカーボンナノチューブのラマンスペクトルである。
反応管として、図5に示す反応管101を用いた場合の温度分布を、Fluentを用いて解析した。解析条件としては、直線管部102の内径i.d.(inside diameter)を22mmとし、加熱部106の長さを300mmとし、加熱部106の外表面を820℃とし、加熱部106以外の外表面を27℃とした。また、流入口103に供給する第一ガスの流速を変え、それぞれ、流入口103に供給する第一ガスの総流量を3.16slm、5.00slm、10.00slm、31.60slmとした。反応管101には流動化媒体を含めず、ガス流のみの温度分布を評価した。
反応管として、図1に示す熱交換式反応管1を用いた場合の温度分布を、Fluentを用いて解析した。解析条件としては、第一管部2の内径(第一流路4の外径)を35mmとし、第二管部3の内径(第二流路5の外径)を22mmとし、加熱部11の長さを300mmとし、第一管部2の底面から分散板8までの距離を10mmとし、加熱部11の外表面を820℃とし、加熱部11以外の外表面を27℃とした。また、流入口6に供給する第一ガスの流速を変え、それぞれ、流入口6に供給する第一ガスの総流量を3.16slm、31.60slmとした。第二管部3には流動化媒体を含めず、ガス流のみの温度分布を評価した。
反応管として、図2に示す熱交換式反応管21を用いた場合の温度分布を、Fluentを用いて解析した。解析条件としては、第一管部2の内径(第一流路4の外径)を35mmとし、第二管部3の内径(第二流路5の外径)を22mmとし、第三管部22の内径(第三流路23の外径)を2mmとし、加熱部11の長さを300mmとし、第一管部2の底面から分散板8までの距離を10mmとし、加熱部11の外表面を820℃とし、加熱部11以外の外表面を27℃とした。また、流入口6に供給する第一ガスの流速を変え、それぞれ、流入口6に供給する第一ガスの総流量を2.16slm、4.00slm、9.00slmとした。第三流路23に供給する第二ガスの流速は同一とし、それぞれ、第三流路23に供給する第二ガスの総量を1.00slmとした。第二管部3には流動化媒体を含めず、ガス流のみの温度分布を評価した。
実施例2及び実施例3は、比較例2に比べて、ガスの均熱性が高まるため、カーボンナノチューブを効果的に成長させることができることが分かった。
反応管として、図5に示す反応管101を用い、直線管部102に触媒担持支持体を充填しない場合の温度分布を、計測用熱電対により実測した。具体的には、図15に示すように、直線管部102の周囲を断熱材107で覆い、直線管部102と断熱材107との間に加熱装置108を配置した。実験条件としては、直線管部102の内径を22mmとし、加熱部106の長さを300mmとし、反応管101の設置場所の室温を27℃とし、加熱装置108による加熱温度を820℃とした。また、流入口103に供給する第一ガスの流速を変え、それぞれ、流入口103に供給する第一ガスの総流量を3.16slm、5.00slm、10.00slmとした。
反応管として、図1に示す熱交換式反応管1を用い、第二流路5に触媒担持支持体を充填しない場合の温度分布を、計測用熱電対により実測した。具体的には、図17に示すように、第一管部2の周囲を断熱材12で覆い、第一管部2と断熱材12との間に加熱装置13を配置した。実験条件としては、第一管部2の内径(第一流路4の外径)を35mmとし、第二管部3の内径(第二流路5の外径)を22mmとし、加熱部11の長さを300mmとし、第一管部2の底面から分散板8までの距離を10mmとし、熱交換式反応管1の設置場所の室温を27℃とし、加熱装置13よる加熱温度を820℃とした。また、流入口6に供給する第一ガスの流速を変え、それぞれ、流入口6に供給する第一ガスの総流量を3.16slm、5.00slm、10.00slmとした。
反応管として、図2に示す熱交換式反応管21を用い、第二流路5に触媒担持支持体を充填しない場合の温度分布を、計測用熱電対により実測した。具体的には、図19に示すように、第一管部2の周囲を断熱材25で覆い、第一管部2と断熱材25との間に加熱装置26を配置した。実験条件としては、第一管部2の内径(第一流路4の外径)を35mmとし、第二管部3の内径(第二流路5の外径)を22mmとし、第三管部22の内径(第三流路23の外径)を2mmとし、加熱部11の長さを300mmとし、第一管部2の底面から分散板8までの距離を10mmとし、熱交換式反応管1の設置場所の室温を27℃とし、加熱装置13よる加熱温度を820℃とした。また、流入口6に供給する第一ガスの流速を変え、それぞれ、流入口6に供給する第一ガスの総流量を2.16slm、4.00slm、9.00slmとした。第三流路23に供給する第二ガスの流速は同一とし、それぞれ、第三流路23に供給する第二ガスの総量を1.00slmとした。つまり、第二流路5に供給する第一ガス及び第二ガスの総流量を、3.16slm、5.00slm、10.00slmとした。
比較例3、実施例4及び実施例5におけるガスの総流量が10.00slmの場合の計測結果を図21に纏めて示す。図21に示すように、比較例3では、ガスの温度が、分散板105の地点において540℃付近であるのに対し、実施例4及び実施例5では、ガスの温度が、分散板8の地点において既に800℃前後に到達している。また、比較例3では、分散板105からの距離に応じて計測温度が大きく異なっているが、実施例4及び実施例5は、比較例3に比べて、分散板8からの距離に応じた計測温度の変化が格段に小さくなっている。しかも、図16、図18及び図20に示すように、実施例4及び実施例5では、総流量が変化しても、比較例3に比べて、分散板からの距離に応じた計測温度の変化が格段に小さくなっている。
直線管部102に触媒担持支持体を充填した点を除き、比較例3と同一条件で反応管の温度分布を計測した。計測結果を図22に示す。
第二流路5に触媒担持支持体を充填した点を除き、実施例4と同一条件で交換式反応管の温度分布を計測した。計測結果を図23に示す。
第二流路5に触媒担持支持体を充填した点を除き、実施例5と同一条件で交換式反応管の温度分布を計測した。計測結果を図24に示す。
比較例4、実施例6及び実施例7におけるガスの総流量が10.00slmの場合の計測結果を図25に纏めて示す。図25に示すように、比較例4では、ガスの温度が、分散板105の地点において640℃付近であるのに対し、実施例6及び実施例7では、ガスの温度が、分散板8の地点において既に800℃前後に到達している。また、比較例4では、分散板105からの距離に応じて計測温度が大きく異なっているが、実施例6及び実施例7は、比較例3に比べて、分散板8からの距離に応じた計測温度の変化が格段に小さくなっている。しかも、図22~図24に示すように、実施例6及び実施例7では、総流量が変化しても、比較例4に比べて、分散板からの距離に応じた計測温度の変化が格段に小さくなっている。
反応管として、図5に示す反応管101を用い、直線管部102内の温度分布を計測用熱電対により実測した。直線管部102の内径を23mmとし、直線管部102に触媒担持支持体を充填した他は、比較例3と同じ条件とした。
反応管として、図2に示す熱交換式反応管21を用い、第二流路5内の温度分布を計測用熱電対により実測した。また、実施例8では、第三管部22が分散板8を貫通している熱交換式反応管21を用いた。第一管部2の内径(第一流路4の外径)を50mmとし、第二管部3の内径(第二流路5の外径)を40mmとし、第三管部22の内径(第三流路23の外径)を2mmとし、第二流路5に触媒担持支持体を充填した他は、実施例5と同じ条件とした。
図28に示すように、比較例5では、分散板105からの距離に応じて計測温度が大きく異なっており、分散板105から遠く離れないとガスの温度が高くならない。つまり、比較例5では、高速のガス流により支持体であるビーズが冷えるため、装置のスケールアップができないという課題がある。なお、ガスの流量増加と装置の管径増大とは同様の効果である。
比較例5で用いた反応管101を用いて、CVD法によりカーボンナノチューブの合成を行った。なお、反応管101の直線管部102の内径を22mmとし、ガス流路の断面積を約380mm2とした。
実施例8で用いた熱交換式反応管21を用いて、CVD法によりカーボンナノチューブの合成を行った。なお、熱交換式反応管21の第一管部2の内径を40mmとし、ガス流路の断面積を約1260mm2とした。
比較例6と実施例9とを比較すると、実施例9の熱交換式反応管21は、ガス流路の断面積が比較例6の反応管101に比べて約3倍となっているが、回収されたカーボンナノチューブの重量も比較例6の反応管101に比べて約3倍となっていた。このような結果から、熱交換式反応管21をスケールアップしても等温場を維持できることから、カーボンナノチューブの生産性を向上できると考えられる。なお、比較例6の反応管101の直線管部102の内径を、実施例9と同様に太くしたところ、カーボンナノチューブを合成することができなかった。
CVD工程を25分行った他は、実施例9と同じ条件として、合成されたカーボンナノチューブを回収した。
Claims (8)
- 第一ガスが流入されて前記第一ガスが下降する第一流路を形成する第一管部と、
前記第一流路の下部に連通されて前記第一ガスが上昇する第二流路を形成し、流動化媒体が充填される第二管部と、
前記第一管部及び前記第二管部を覆う加熱装置と、
を有し、
前記第一流路と前記第二流路とが隔壁を隔てて隣接されており、
前記第二流路に、前記流動化媒体を保持して前記第一ガスを通過させる分散板が設けられている、
熱交換式反応管。 - 前記第一管部及び前記第二管部は、前記第一管部の内部に前記第二管部が配置される二重管構造に形成されている、
請求項1に記載の熱交換式反応管。 - 前記第一管部は、単一もしくは複数の管からなり、
前記第一管部及び前記第二管部は、前記第二管部の外側に前記第一管部が配置される構造に形成されている、
請求項1に記載の熱交換式反応管。 - 前記流動化媒体は、カーボンナノチューブ合成用触媒が担持された粒子状の触媒担持支持体であり、
前記第一ガスは、カーボンナノチューブの炭素源を含む原料ガスである、
請求項2又は3に記載の熱交換式反応管。 - 前記第一流路に連通されることなく前記第二流路に連通されて、第二ガスが流入される第三流路を形成する第三管部を更に有する、
請求項1~3の何れか一項に記載の熱交換式反応管。 - 前記第一流路は、前記加熱装置および前記第二流路との熱交換による前記第一ガスの予熱が促進される位置に配置されており、
前記第三流路は、前記加熱装置および前記第二流路との熱交換による前記第二ガスの予熱が抑えられる位置に配置されている、
請求項5に記載の熱交換式反応管。 - 前記分散板は、前記第二流路の下端に設けられており、
前記第三流路は、前記分散板に接続される、
請求項5又は6に記載の熱交換式反応管。 - 前記流動化媒体は、粒子状の支持体であり、
前記第一ガスは、カーボンナノチューブの炭素源を含む原料ガスであり、
前記第二ガスは、カーボンナノチューブ合成用触媒を含む触媒ガスである、
請求項5~7の何れか一項に記載の熱交換式反応管。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/424,248 US10526707B2 (en) | 2012-08-29 | 2013-07-28 | Heat exchanger type reaction tube |
KR1020157005177A KR102166813B1 (ko) | 2012-08-29 | 2013-08-28 | 열교환식 반응관 |
EP13833410.7A EP2891516A4 (en) | 2012-08-29 | 2013-08-28 | REACTION TUBE OF HEAT EXCHANGER TYPE |
JP2014533055A JP6230071B2 (ja) | 2012-08-29 | 2013-08-28 | 熱交換式反応管 |
CA2883515A CA2883515A1 (en) | 2012-08-29 | 2013-08-28 | Heat exchanger type reaction tube |
CN201380045004.5A CN104619408A (zh) | 2012-08-29 | 2013-08-28 | 热交换式反应管 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012189305 | 2012-08-29 | ||
JP2012-189305 | 2012-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014034739A1 true WO2014034739A1 (ja) | 2014-03-06 |
Family
ID=50183545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/073050 WO2014034739A1 (ja) | 2012-08-29 | 2013-08-28 | 熱交換式反応管 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10526707B2 (ja) |
EP (1) | EP2891516A4 (ja) |
JP (1) | JP6230071B2 (ja) |
KR (1) | KR102166813B1 (ja) |
CN (2) | CN111921462A (ja) |
CA (1) | CA2883515A1 (ja) |
WO (1) | WO2014034739A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015151281A (ja) * | 2014-02-12 | 2015-08-24 | 日立化成株式会社 | 反応管及び触媒担持方法 |
JP2016153353A (ja) * | 2015-02-20 | 2016-08-25 | 学校法人早稲田大学 | カーボンナノチューブの製造装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10526707B2 (en) * | 2012-08-29 | 2020-01-07 | The University Of Tokyo | Heat exchanger type reaction tube |
JP6887688B2 (ja) * | 2019-02-07 | 2021-06-16 | 株式会社高純度化学研究所 | 蒸発原料用容器、及びその蒸発原料用容器を用いた固体気化供給システム |
JP6901153B2 (ja) * | 2019-02-07 | 2021-07-14 | 株式会社高純度化学研究所 | 薄膜形成用金属ハロゲン化合物の固体気化供給システム。 |
DE102021107171A1 (de) | 2021-03-23 | 2022-09-29 | Skeleton Technologies GmbH | Wirbelbettreaktorbehälter und Wirbelbettreaktorsystem |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08301602A (ja) * | 1995-05-10 | 1996-11-19 | Fuji Electric Co Ltd | 燃料改質器 |
JP2002211904A (ja) | 2001-01-12 | 2002-07-31 | Osaka Gas Co Ltd | 水素製造方法および二重管式反応管 |
JP2003095614A (ja) * | 2001-09-18 | 2003-04-03 | Toshiba International Fuel Cells Corp | 水素製造装置 |
JP2009161426A (ja) * | 2007-12-31 | 2009-07-23 | Semes Co Ltd | 流動層炭素ナノチューブの生成装置並びにそれを使用した炭素ナノチューブの生成設備及び方法 |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1803306A (en) * | 1927-01-08 | 1931-04-28 | Commercial Solvents Corp | Catalytic apparatus |
US3251337A (en) | 1963-07-16 | 1966-05-17 | Robert E Latta | Spiral fluidized bed device and method for coating particles |
US3737283A (en) * | 1971-11-26 | 1973-06-05 | Fuller Co | Fluidized solids reactor |
FR2299932A1 (fr) * | 1975-02-07 | 1976-09-03 | Anvar | Lithium tres finement divise et son procede de fabrication |
DE2626446C3 (de) * | 1976-06-12 | 1978-12-14 | Hobeg Hochtemperaturreaktor-Brennelement Gmbh, 6450 Hanau | Verfahren zur Beschichtung von Teilchen für die Herstellung von Brenn- und/oder Absorberelementen für Kernreaktoren und Vorrichtung dazu |
US4221182A (en) * | 1976-10-06 | 1980-09-09 | General Atomic Company | Fluidized bed gas coating apparatus |
US4080927A (en) * | 1976-10-06 | 1978-03-28 | General Atomic Company | Fluidized bed-gas coater apparatus |
US4116160A (en) * | 1976-10-26 | 1978-09-26 | General Atomic Company | Fluidized bed, gas coating apparatus |
JPS57135708A (en) * | 1981-02-12 | 1982-08-21 | Shin Etsu Chem Co Ltd | Manufacturing of high purity silicon granule |
JP4132480B2 (ja) | 1999-10-13 | 2008-08-13 | 日機装株式会社 | カーボンナノファイバースライバー糸状糸及びその製造方法 |
CN1183031C (zh) | 2000-03-23 | 2005-01-05 | 中国科学院成都有机化学研究所 | 一种制备碳纳米管的方法 |
US6413487B1 (en) * | 2000-06-02 | 2002-07-02 | The Board Of Regents Of The University Of Oklahoma | Method and apparatus for producing carbon nanotubes |
US6827786B2 (en) * | 2000-12-26 | 2004-12-07 | Stephen M Lord | Machine for production of granular silicon |
CN1141250C (zh) | 2001-05-25 | 2004-03-10 | 清华大学 | 一种流化床连续化制备碳纳米管的方法及其反应装置 |
US20030157000A1 (en) * | 2002-02-15 | 2003-08-21 | Kimberly-Clark Worldwide, Inc. | Fluidized bed activated by excimer plasma and materials produced therefrom |
JP3816017B2 (ja) | 2002-03-27 | 2006-08-30 | 大阪瓦斯株式会社 | チューブ状炭素物質の製造装置、製造設備及びカーボンナノチューブの製造方法 |
EP1810949A1 (en) | 2004-09-24 | 2007-07-25 | Japan Science and Technology Agency | Process and apparatus for producing carbon nanostructure |
WO2008014607A1 (en) * | 2006-07-31 | 2008-02-07 | Tekna Plasma Systems Inc. | Plasma surface treatment using dielectric barrier discharges |
KR100783667B1 (ko) * | 2006-08-10 | 2007-12-07 | 한국화학연구원 | 입자형 다결정 실리콘의 제조방법 및 제조장치 |
WO2008042182A1 (en) * | 2006-10-03 | 2008-04-10 | Univation Technologies, Llc | Method for preventing catalyst agglomeration based on production rate changes |
KR100944951B1 (ko) | 2007-12-31 | 2010-03-03 | 세메스 주식회사 | 탄소나노튜브 생성을 위한 유동층 방법 |
EP2307311A1 (en) | 2008-06-30 | 2011-04-13 | Showa Denko K.K. | Process for producing carbon nanomaterial and system for producing carbon nanomaterial |
CN102083522B (zh) * | 2008-06-30 | 2014-03-26 | Memc电子材料有限公司 | 流化床反应器系统及减少硅沉积在反应器壁上的方法 |
KR101048822B1 (ko) * | 2008-11-26 | 2011-07-12 | 세메스 주식회사 | 탄소나노튜브 합성 장치 |
SI22923B (sl) * | 2008-12-01 | 2017-12-29 | Brinox, D.O.O. | Procesna naprava za oblaganje delcev |
US20100242361A1 (en) * | 2009-03-31 | 2010-09-30 | Vail Timothy E | Fluidized beds having membrane walls and methods of fluidizing |
FR2977259B1 (fr) * | 2011-06-28 | 2013-08-02 | Commissariat Energie Atomique | Dispositif a profil specifique de reacteur de type lit a jet pour depot par cvd |
CN102389753B (zh) | 2011-09-29 | 2014-01-08 | 清华大学 | 吸热反应用双流化床反应器及吸热反应的供热方法 |
US10526707B2 (en) * | 2012-08-29 | 2020-01-07 | The University Of Tokyo | Heat exchanger type reaction tube |
TWI638770B (zh) | 2012-09-18 | 2018-10-21 | 美商艾克頌美孚上游研究公司 | 用於製造碳同素異形體之反應器系統 |
US9212421B2 (en) * | 2013-07-10 | 2015-12-15 | Rec Silicon Inc | Method and apparatus to reduce contamination of particles in a fluidized bed reactor |
DE102013209076A1 (de) * | 2013-05-16 | 2014-11-20 | Wacker Chemie Ag | Reaktor zur Herstellung von polykristallinem Silicium und Verfahren zur Entfernung eines Silicium enthaltenden Belags auf einem Bauteil eines solchen Reaktors |
EP3033168A4 (en) | 2013-08-12 | 2016-09-21 | United Technologies Corp | POWDER BALL Glow over vortex layer |
-
2013
- 2013-07-28 US US14/424,248 patent/US10526707B2/en not_active Expired - Fee Related
- 2013-08-28 CN CN202010872308.0A patent/CN111921462A/zh active Pending
- 2013-08-28 JP JP2014533055A patent/JP6230071B2/ja not_active Expired - Fee Related
- 2013-08-28 CN CN201380045004.5A patent/CN104619408A/zh active Pending
- 2013-08-28 WO PCT/JP2013/073050 patent/WO2014034739A1/ja active Application Filing
- 2013-08-28 KR KR1020157005177A patent/KR102166813B1/ko active IP Right Grant
- 2013-08-28 CA CA2883515A patent/CA2883515A1/en not_active Abandoned
- 2013-08-28 EP EP13833410.7A patent/EP2891516A4/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08301602A (ja) * | 1995-05-10 | 1996-11-19 | Fuji Electric Co Ltd | 燃料改質器 |
JP2002211904A (ja) | 2001-01-12 | 2002-07-31 | Osaka Gas Co Ltd | 水素製造方法および二重管式反応管 |
JP2003095614A (ja) * | 2001-09-18 | 2003-04-03 | Toshiba International Fuel Cells Corp | 水素製造装置 |
JP2009161426A (ja) * | 2007-12-31 | 2009-07-23 | Semes Co Ltd | 流動層炭素ナノチューブの生成装置並びにそれを使用した炭素ナノチューブの生成設備及び方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2891516A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015151281A (ja) * | 2014-02-12 | 2015-08-24 | 日立化成株式会社 | 反応管及び触媒担持方法 |
JP2016153353A (ja) * | 2015-02-20 | 2016-08-25 | 学校法人早稲田大学 | カーボンナノチューブの製造装置 |
Also Published As
Publication number | Publication date |
---|---|
CN104619408A (zh) | 2015-05-13 |
EP2891516A1 (en) | 2015-07-08 |
KR20150048748A (ko) | 2015-05-07 |
US10526707B2 (en) | 2020-01-07 |
US20150218699A1 (en) | 2015-08-06 |
KR102166813B1 (ko) | 2020-10-16 |
JP6230071B2 (ja) | 2017-11-15 |
EP2891516A4 (en) | 2016-07-06 |
CN111921462A (zh) | 2020-11-13 |
JPWO2014034739A1 (ja) | 2016-08-08 |
CA2883515A1 (en) | 2014-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6230071B2 (ja) | 熱交換式反応管 | |
JP6389824B2 (ja) | 固体炭素材料を製造するための反応器および方法 | |
KR100933028B1 (ko) | 탄소나노튜브 제조 설비 및 이를 이용한 탄소나노튜브의제조 방법 | |
EP1855988A1 (en) | Carbon nano tubes mass fabrication system and mass fabrication method | |
JP2008137831A (ja) | カーボンナノチューブ製造装置及びそれを用いたカーボンナノチューブの製造方法。 | |
JP2019014645A (ja) | 流動床反応器におけるカーボンナノチューブの製造方法 | |
US8883260B2 (en) | Apparatus and method for producing carbon | |
US7572413B2 (en) | Apparatus for manufacturing carbon nanotubes | |
CN104870362B (zh) | 碳纳米管的制造方法 | |
JP2016108175A (ja) | カーボンナノチューブの製造方法 | |
JP5672008B2 (ja) | ナノカーボン複合体の製造方法および製造装置 | |
JP7283866B2 (ja) | 流動層反応器におけるカーボンナノチューブの製造方法 | |
WO2021029212A1 (ja) | カーボンナノチューブの製造装置および製造方法 | |
JP2016153353A (ja) | カーボンナノチューブの製造装置 | |
JP6256073B2 (ja) | 反応管及び触媒担持方法 | |
KR102672016B1 (ko) | 활성화 전처리된 촉매를 포함하는 유동화 반응기를 이용하는 수소 및 탄소체 제조방법 및 제조장치 | |
JP5791157B2 (ja) | 合成炉 | |
CN108778493B (zh) | 粒子处理装置以及催化剂担载体和/或纤维状碳纳米结构体的制造方法 | |
JP3927455B2 (ja) | 気相法炭素繊維の製造法および製造装置 | |
JP6755029B2 (ja) | 繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法 | |
JP2011213516A (ja) | カーボンナノ構造物の製造装置および製造方法 | |
JP2009174092A (ja) | カーボンファイバ製造方法 | |
JP2017149612A (ja) | カーボンナノチューブの製造装置および製造方法 | |
JP2006027947A (ja) | 単層カーボンナノチューブの製法 | |
JP2006088082A (ja) | 水素吸蔵材料及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13833410 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014533055 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2883515 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14424248 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157005177 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013833410 Country of ref document: EP |