CN1141250C - 一种流化床连续化制备碳纳米管的方法及其反应装置 - Google Patents

一种流化床连续化制备碳纳米管的方法及其反应装置 Download PDF

Info

Publication number
CN1141250C
CN1141250C CNB011183497A CN01118349A CN1141250C CN 1141250 C CN1141250 C CN 1141250C CN B011183497 A CNB011183497 A CN B011183497A CN 01118349 A CN01118349 A CN 01118349A CN 1141250 C CN1141250 C CN 1141250C
Authority
CN
China
Prior art keywords
gas
reactor
carbon
fluidized
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB011183497A
Other languages
English (en)
Other versions
CN1327943A (zh
Inventor
�κ
魏飞
罗国华
王垚
李志飞
汪展文
骞伟忠
金涌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB011183497A priority Critical patent/CN1141250C/zh
Publication of CN1327943A publication Critical patent/CN1327943A/zh
Priority to PCT/CN2002/000044 priority patent/WO2002094713A1/zh
Priority to DE60237361T priority patent/DE60237361D1/de
Priority to US10/478,512 priority patent/US7563427B2/en
Priority to JP2002591391A priority patent/JP3878555B2/ja
Priority to EP02700107A priority patent/EP1391425B1/en
Priority to AT02700107T priority patent/ATE478031T1/de
Application granted granted Critical
Publication of CN1141250C publication Critical patent/CN1141250C/zh
Priority to US12/400,713 priority patent/US20090286675A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition

Abstract

本发明涉及一种流化床连续化制备碳纳米管的方法,首先将过渡金属的氧化物催化剂载于担体上,然后将其放在催化剂活化反应器内,通入流动的氢气或一氧化碳与氮气的混合气体进行还原反应,最后将催化剂送至流化床中,通入反应混合气体,流化床的下部则得到碳纳米管。本发明的方法和装置,在流化床中经过化学气相沉积,在催化剂载体上生长出碳纳米管。该方法的装置结构简单,方法易操作,适于连续化千吨./年级工业规模化生产。

Description

一种流化床连续化制备碳纳米管的方法及其反应装置
本发明涉及一种流化床连续化制备碳纳米管的方法及其反应装置,属化工设备技术领域。
传统气固流化床仅能用于直径大于30微米的非C类颗粒的流化过程,对于催化裂解制备碳纳米管这类固体气相沉积过程,由于会出现一维纳米材料并易产生粘结,极易造成生产过程中的流化困难,从而使床内出现结块、局部温度、浓度不均匀或因碳在颗粒间沉积而无法正常操作。因此,至今尚未见有关利用流化床进行连续化大批量生产碳纳米材料的文献报道。
纳米颗粒聚团流态化技术由于充分考虑到了纳米颗粒的聚集及粘结行为,通过对催化裂解化学气相沉积过程中的生长行为、纳米颗粒团聚状态及流态化状态的全面分析,控制合理的一维纳米材料生长结构及状态来达到使反应过程中始终处于正常流态化甚至散式流态化的状态。因而合理的反应速度、操作条件以及与床内结构的合理组合,确保床层处于纳米颗粒聚团流化状态,是进行流化床碳纳米管连续化生产的核心技术。
本发明的目的是提出一种流化床连续化制备碳纳米管的方法及其反应装置,通过控制催化剂及生成碳纳米材料在气流作用下的流化状态,实现碳纳米材料的连续化、大批量生产,得到晶化程度高、纯度高和产量高的碳纳米管。
本发明提出的流化床连续化制备碳纳米管的方法,包括下列步骤:
(1)将过渡金属的氧化物催化剂载于担体上;
(2)将上述负载催化剂放在催化剂活化反应器内,于500~900℃温度下,通入流动的氢气或一氧化碳与氮气的混合气体进行还原反应,使过渡金属氧化物纳米颗粒还原为单质金属纳米颗粒,氢气或一氧化碳与氮气按体积比1∶0.3~1混合,还原时间为0.3~3小时;
(3)将催化剂送至流化床中,流化床的温度为500~900℃,通入一氧化碳及7碳以下低碳烃与氢气、氮气的混合气体至反应器内,气体配比为氢气∶碳源气体∶氮气=0.4~1∶1∶0.1~2,反应过程的空速为5~10000小时-1,气体的空塔流速为0.08~2米/秒,流化床的下部得到碳纳米管。
本发明设计的流化床连续化制备碳纳米管的反应装置,包括主反应器、催化剂活化器、气体分布器、气固分离器和产品脱气段。催化剂活化器与主反应器相通,气体分布器置于主反应器内的下部,气固分离器置于主反应器内的顶部,主反应器壁上设有换热管,主反应器底部设有气体入口,产品脱气段与主反应器下部相联。
本发明的方法和装置,在氢气和氮气中还原制成纳米金属催化剂,利用过渡金属纳米颗粒的催化效应和载体的模板效应,在流化床中经过化学气相沉积,在催化剂载体上生长出直径为4~80纳米,长度为0.5~200微米的碳纳米管。该方法的装置)结构简单,方法易操作,适于连续化千吨/年级工业规模化生产。
本发明设计的装置还具有以下几个明显的特点:
1、综合利用了流化床反应器的特点,设计结构紧凑,实用性强
2、反应器系统可调性强,操作弹性大。反应器的进料及出料位置可根据对反应停留时间的要求、产品结构的要求进行调整。
3、可连续地将催化剂及反应所产碳纳米材料移入、移出,实现连续化、大批量生产。
4、可实现床内温度、浓度均匀地进行碳纳米材料的生长,无局部过热及粘结现象发生。
5、可在大规模装置上实现反应器的移热/供热,对放热或吸热的催化裂解过程均适合。
附图说明:
图1是本发明设计的反应装置的结构示意图。
图1中,1是反应器,2是气体分布器,3是移热/供热器,4是催化剂入口,5是产品出口,6是催化剂活化器,7是气固分离器,8是进气装置,9是产品脱气段。
如图1所示,本发明设计的流化床连续化制备碳纳米管的反应装置,包括主反应器1、催化剂活化器6、气体分布器2、气固分离器7和产品脱气段9。催化剂活化器6与主反应器1相通,气体分布器2置于主反应器1内的下部,气固分离器7置于主反应器内的顶部,主反应器壁上设有换热管3,主反应器底部设有气体入口,产品脱气段9通过产品出口5与主反应器1的下部相联。产品出料口5可用以调节流化床内物料高度。出料口处设有脱气段9,以脱除产品吸附的有机物。反应器顶部设有气固分离器7。根据不同工艺要求,该装置可用于烃类催化裂解制碳纳米管、纤维,制氢以及合成其它纳米材料的过程。
下面介绍本发明的实施例:
实施例一:
(1)将过渡金属Ni-Cu氧化物载于担体玻璃珠上;
(2)将上述负载催化剂放在催化剂活化反应器内于520℃下通入氢气与氮气混合气体进行还原反应,氢气与氮气按体积比1∶1混合,还原时间为2小时;
(3)将催化剂送至流化床中,温度为520℃,通入氢气、丙烯与氮气的混合气体至反应器内,配比为H2∶C 3∶N2=1∶1∶1,反应过程的空速为5小时-1,气体的空塔流速为0.09米/秒。
实施例二:
(1)将过渡金属Fe-Cu氧化物载于担体SiO2上;
(2)将上述负载催化剂放在催化剂活化反应器内于650℃下通入氢气与氮气混合气体进行还原反应,氢气与氮气按体积比1∶0.5混合,还原时间为0.5小时;
(3)将催化剂送至流化床中,温度为700℃,通入氢气、乙烯与氮气的混合气体至反应器内,配比为H2∶C 3∶N2=1∶1∶1,反应过程的空速为10000小时-1,气体的空塔流速为0.5米/秒。
实施例三:
(1)将过渡金属Co-Mn氧化物载于担体Al2O3上;
(2)将上述负载催化剂放在催化剂活化反应器内于800℃下通入氢气与氮气混合气体进行还原反应,氢气与氮气按体积比1∶0.5混合,还原时间为0.3小时;
(3)将催化剂送至流化床中,温度为870℃,通入氢气、甲烷与氮气的混合气体至反应器内,配比为H2∶CH1∶N2=0.5∶1∶0.1,反应过程的空速为5000小时-1,气体的空塔流速为0.8米/秒。
实施例四:
(1)将过渡金属Xi氧化物载于担体Al2O3上;
(2)将上述负载催化剂放在催化剂活化反应器内于870℃下通入一氧化碳与氮气混合气体进行还原反应,一氧化碳与氮气按体积比1∶0.5混合,还原时间为3小时;
(3)将催化剂送至流化床中,温度为870℃,通入氢气、乙烯与氮气的混合气体至反应器内,配比为H2∶C 3∶N2=1∶1∶0.5,反应过程的空速为8000小时-1,气体的空塔流速为1.3米/秒。
实施例五:
(1)将过渡金属Xi-Cu氧化物载于担体Al203上;
(2)将上述负载催化剂放在催化剂活化反应器内于870℃下通入氢气与氮气混合气体进行还原反应,氢气与氮气按体积比1∶0.5混合,还原时间为0.5小时;
(3)将催化剂送至流化床中,温度为870℃,通入氢气、甲烷与氮气的混合气体至反应器内,配比为H2∶CH1∶N2=1∶1∶0.5,反应过程的空速为9000小时-1,气体的空塔流速为1.7米/秒。

Claims (2)

1、一种流化床连续化制备碳纳米管的方法,其特征在于该方法包括下列各步骤:
(1)将过渡金属的氧化物催化剂载于担体上;
(2)将上述负载催化剂放在催化剂活化反应器内,于500~900℃温度下,通入流动的氢气或一氧化碳与氮气的混合气体进行还原反应,使过渡金属氧化物纳米颗粒还原为单质金属纳米颗粒,氢气或一氧化碳与氮气按体积比1∶0.3~1混合,还原时间为0.3~3小时;
(3)将催化剂送至流化床中,流化床的温度为500~900℃,通入一氧化碳及7碳以下低碳烃与氢气、氮气的混合气体至反应器内,气体配比为氢气∶碳源气体∶氮气=0.4~1∶1∶0.1~2,反应过程的空速为5~10000小时-1,气体的空塔流速为0.08~2米/秒,流化床的下部得到直径为4~80纳米、长度为0.5~200微米的碳纳米管。
2、一种用于如权利要求1所述的方法的反应装置,其特征在于碳纳米管的直径为4~80纳米、长度为0.5~200微米,反应装置包括主反应器、催化剂活化器、气体分布器、气固分离器和产品脱气段;所述的催化剂活化器与主反应器相通,气体分布器置于主反应器内的下部,气固分离器置于主反应器内的顶部,主反应器壁上设有换热管,主反应器底部设有气体入口,产品脱气段与主反应器下部相联。
CNB011183497A 2001-05-25 2001-05-25 一种流化床连续化制备碳纳米管的方法及其反应装置 Expired - Lifetime CN1141250C (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CNB011183497A CN1141250C (zh) 2001-05-25 2001-05-25 一种流化床连续化制备碳纳米管的方法及其反应装置
JP2002591391A JP3878555B2 (ja) 2001-05-25 2002-01-29 ナノ凝集体流動層を用いたカーボンナノチューブの連続製造方法及びその反応装置
DE60237361T DE60237361D1 (de) 2001-05-25 2002-01-29 Kontinuierliche massenproduktion von kohlenstoffnanoröhren in einer nanoagglomerat-wirbelschicht
US10/478,512 US7563427B2 (en) 2001-05-25 2002-01-29 Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed and the reactor
PCT/CN2002/000044 WO2002094713A1 (fr) 2001-05-25 2002-01-29 Production de nanotubes de carbone a grande echelle dans un reacteur a lit fluidise a base de nano-agglomerats
EP02700107A EP1391425B1 (en) 2001-05-25 2002-01-29 Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed
AT02700107T ATE478031T1 (de) 2001-05-25 2002-01-29 Kontinuierliche massenproduktion von kohlenstoffnanoröhren in einer nanoagglomerat- wirbelschicht
US12/400,713 US20090286675A1 (en) 2001-05-25 2009-03-09 Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed and the reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB011183497A CN1141250C (zh) 2001-05-25 2001-05-25 一种流化床连续化制备碳纳米管的方法及其反应装置

Publications (2)

Publication Number Publication Date
CN1327943A CN1327943A (zh) 2001-12-26
CN1141250C true CN1141250C (zh) 2004-03-10

Family

ID=4663122

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011183497A Expired - Lifetime CN1141250C (zh) 2001-05-25 2001-05-25 一种流化床连续化制备碳纳米管的方法及其反应装置

Country Status (7)

Country Link
US (1) US7563427B2 (zh)
EP (1) EP1391425B1 (zh)
JP (1) JP3878555B2 (zh)
CN (1) CN1141250C (zh)
AT (1) ATE478031T1 (zh)
DE (1) DE60237361D1 (zh)
WO (1) WO2002094713A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI807169B (zh) * 2019-02-28 2023-07-01 南韓商Lg化學股份有限公司 流化床反應器

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090286675A1 (en) * 2001-05-25 2009-11-19 Tsinghua University Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed and the reactor
JP4160781B2 (ja) * 2002-05-27 2008-10-08 三菱重工業株式会社 繊維状ナノ炭素の製造方法及び装置
US6905544B2 (en) * 2002-06-26 2005-06-14 Mitsubishi Heavy Industries, Ltd. Manufacturing method for a carbon nanomaterial, a manufacturing apparatus for a carbon nanomaterial, and manufacturing facility for a carbon nanomaterial
AU2003291133A1 (en) 2002-11-26 2004-06-18 Carbon Nanotechnologies, Inc. Carbon nanotube particulates, compositions and use thereof
EP1428573B1 (de) * 2002-12-03 2011-06-22 FutureCarbon GmbH Vorrichtung und Verfahren zum Herstellen von Kohlenstoff-Nanomaterial
EP1445236A1 (fr) * 2003-02-05 2004-08-11 Université de Liège Procédé et installation pour la fabrication de nanotubes de carbone
KR101155057B1 (ko) * 2003-04-09 2012-06-11 삼성코닝정밀소재 주식회사 탄소나노튜브의 제조방법
GB0327169D0 (en) * 2003-11-21 2003-12-24 Statoil Asa Method
JP4613268B2 (ja) * 2004-01-27 2011-01-12 清水建設株式会社 球状カーボンナノチューブ集合体の製造方法
KR100626016B1 (ko) * 2004-09-20 2006-09-20 삼성에스디아이 주식회사 탄소나노케이지 제조 방법
DE102004054959A1 (de) * 2004-11-13 2006-05-18 Bayer Technology Services Gmbh Katalysator zur Herstellung von Kohlenstoffnanoröhrchen durch Zersetzung von gas-förmigen Kohlenverbindungen an einem heterogenen Katalysator
CN100371241C (zh) * 2004-11-24 2008-02-27 中国科学院金属研究所 一种制备大尺寸机械密封用各向同性热解炭材料的设备
CN1323029C (zh) * 2004-12-10 2007-06-27 中国科学院长春应用化学研究所 燃烧聚烯烃合成碳纳米管的方法
FR2881735B1 (fr) * 2005-02-07 2008-04-18 Arkema Sa Procede de synthese de nanotubes de carbone
JP2006225245A (ja) * 2005-02-21 2006-08-31 Mitsubishi Heavy Ind Ltd ナノカーボン材料
KR100664545B1 (ko) * 2005-03-08 2007-01-03 (주)씨엔티 탄소나노튜브 대량합성장치 및 대량합성방법
FR2895393B1 (fr) * 2005-12-23 2008-03-07 Arkema Sa Procede de synthese de nanotubes de carbone
DE102006007147A1 (de) * 2006-02-16 2007-08-23 Bayer Technology Services Gmbh Verfahren zur kontinuierlichen Herstellung von Katalysatoren
EP1837306B1 (en) 2006-03-20 2011-07-20 Research Institute of Petroleum Industry (RIPI) Continuous process for producing carbon nanotubes
DE102006017695A1 (de) * 2006-04-15 2007-10-18 Bayer Technology Services Gmbh Verfahren zur Herstellung von Kohlenstoffnanoröhrchen in einer Wirbelschicht
US8268281B2 (en) * 2006-05-12 2012-09-18 Honda Motor Co., Ltd. Dry powder injector for industrial production of carbon single walled nanotubes (SWNTs)
KR100793172B1 (ko) 2006-08-30 2008-01-10 세메스 주식회사 탄소나노튜브 제조 설비 및 이를 이용한 탄소나노튜브의제조 방법
CN100450922C (zh) * 2006-11-10 2009-01-14 清华大学 一种超长定向的碳纳米管丝/薄膜及其制备方法
WO2008064368A2 (en) 2006-11-24 2008-05-29 Honda Motor Co., Ltd. Injector for large amount of aerosol powder for synthesis of carbon nanotubes
US20080135482A1 (en) * 2006-11-27 2008-06-12 Kripal Singh Polyamide nanofiltration membrane useful for the removal of phospholipids
CN101049927B (zh) * 2007-04-18 2010-11-10 清华大学 连续化生产碳纳米管的方法及装置
KR100860013B1 (ko) 2007-06-01 2008-09-25 주식회사 제이오 탄소나노튜브의 대량합성을 위한 회전 다단식 원통형 반응기
KR101359415B1 (ko) * 2007-07-27 2014-02-06 금호석유화학 주식회사 탄소나노튜브 합성 방법 및 장치
KR100910382B1 (ko) * 2007-08-16 2009-08-04 세메스 주식회사 촉매 분산 유동층을 이용한 탄소 나노튜브 합성 장치
KR100916330B1 (ko) * 2007-08-21 2009-09-11 세메스 주식회사 탄소나노튜브 합성 방법 및 장치
DE102007044031A1 (de) * 2007-09-14 2009-03-19 Bayer Materialscience Ag Kohlenstoffnanoröhrchenpulver, Kohlenstoffnanoröhrchen und Verfahren zu ihrer Herstellung
KR100976198B1 (ko) 2007-09-19 2010-08-17 세메스 주식회사 탄소나노튜브 제조장치 및 그 방법
DE102007046160A1 (de) * 2007-09-27 2009-04-02 Bayer Materialscience Ag Verfahren zur Herstellung eines Katalysators für die Herstellung von Kohlenstoffnanoröhrchen
KR100933028B1 (ko) 2007-09-28 2009-12-21 세메스 주식회사 탄소나노튜브 제조 설비 및 이를 이용한 탄소나노튜브의제조 방법
US20090200176A1 (en) 2008-02-07 2009-08-13 Mccutchen Co. Radial counterflow shear electrolysis
KR100977147B1 (ko) * 2007-12-31 2010-08-23 세메스 주식회사 유동층 탄소나노튜브 생성 장치 및 그것을 사용한탄소나노튜브 생성 설비 및 방법
US20120156124A1 (en) * 2008-02-12 2012-06-21 New Jersey Institute Of Technology Single Wall Carbon Nanotubes By Atmospheric Chemical Vapor Deposition
KR100982200B1 (ko) * 2008-03-26 2010-09-15 강흥원 탄소나노선재의 제조장치 및 제조방법
EP2307311A1 (en) * 2008-06-30 2011-04-13 Showa Denko K.K. Process for producing carbon nanomaterial and system for producing carbon nanomaterial
CN101348249B (zh) * 2008-09-05 2011-03-30 清华大学 一种在颗粒内表面制备碳纳米管阵列的方法
JP2010100518A (ja) * 2008-09-25 2010-05-06 Nissin Electric Co Ltd カーボンナノコイルの製造方法および製造装置
US8119074B2 (en) * 2008-12-17 2012-02-21 Centro de Investigacion en Materiales Avanzados, S.C Method and apparatus for the continuous production of carbon nanotubes
EP2419553A4 (en) 2009-04-17 2014-03-12 Seerstone Llc PROCESS FOR PRODUCING SOLID CARBON BY REDUCING CARBON OXIDES
FR2949075B1 (fr) 2009-08-17 2013-02-01 Arkema France Catalyseur fe/mo supporte, son procede de preparation et utilisation pour la fabrication de nanotubes
FR2949074B1 (fr) 2009-08-17 2013-02-01 Arkema France Catalyseur bi-couche, son procede de preparation et son utilisation pour la fabrication de nanotubes
EP2889268A1 (en) * 2009-09-10 2015-07-01 The University of Tokyo Method for simultaneously producing carbon nanotubes and hydrogen, and device for simultaneously producing carbon nanotubes and hydrogen
US8293204B2 (en) * 2009-12-19 2012-10-23 Abbas Ali Khodadadi Carbon nanotubes continuous synthesis process using iron floating catalysts and MgO particles for CVD of methane in a fluidized bed reactor
KR101551429B1 (ko) * 2009-12-31 2015-09-21 주식회사 효성 유동층 cnt를 적용한 폴리아미드 전도성 복합사 제조 방법
US8540902B2 (en) * 2010-01-13 2013-09-24 CNano Technology Limited Carbon nanotube based pastes
KR101864455B1 (ko) * 2010-02-19 2018-06-04 고쿠리츠다이가쿠호우진 도쿄다이가쿠 나노카본재료 제조장치 및 나노카본재료 제조방법
WO2011109421A1 (en) * 2010-03-01 2011-09-09 Auburn University Novel nanocomposite for sustainability of infrastructure
CN103249672B (zh) * 2010-11-25 2016-03-02 谢嘉骏 用于氢生产的系统和方法
CN102120570B (zh) * 2011-01-22 2013-08-28 广州市白云化工实业有限公司 一种连续化生产碳纳米管的工艺方法
DE102011003463A1 (de) * 2011-02-01 2012-08-02 E.G.O. Elektro-Gerätebau GmbH Verfahren zur Herstellung einer elektrischen Spule und elektrische Spule
FR2972942B1 (fr) * 2011-03-21 2017-11-24 Arkema France Procede de fabrication de nanotubes de carbone et appareil pour la mise en oeuvre du procede.
US9687802B2 (en) * 2011-04-04 2017-06-27 Lg Chem, Ltd. Apparatus and method for continuously producing carbon nanotubes
JP5807455B2 (ja) * 2011-08-31 2015-11-10 東レ株式会社 カーボンナノチューブ含有組成物の製造方法。
US9087626B2 (en) 2011-10-31 2015-07-21 CNano Technology Limited Measuring moisture in a CNT based fluid or paste
FR2984922B1 (fr) 2011-12-22 2015-04-17 Arkema France Procede de co-production de nanotubes de carbone et de graphene
NO2749379T3 (zh) * 2012-04-16 2018-07-28
CN104271498B (zh) 2012-04-16 2017-10-24 赛尔斯通股份有限公司 用非铁催化剂来还原碳氧化物的方法和结构
MX354526B (es) 2012-04-16 2018-03-07 Seerstone Llc Metodos y sistemas para capturar y secuestrar carbono y para reducir la masa de oxidos de carbono en una corriente de gas de desechos.
WO2013158160A1 (en) 2012-04-16 2013-10-24 Seerstone Llc Method for producing solid carbon by reducing carbon dioxide
WO2013158158A1 (en) 2012-04-16 2013-10-24 Seerstone Llc Methods for treating an offgas containing carbon oxides
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US9604848B2 (en) 2012-07-12 2017-03-28 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
JP6025979B2 (ja) 2012-07-13 2016-11-16 シーアストーン リミテッド ライアビリティ カンパニー アンモニアおよび固体炭素生成物を形成するための方法およびシステム
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
US10526707B2 (en) * 2012-08-29 2020-01-07 The University Of Tokyo Heat exchanger type reaction tube
MX2015006893A (es) 2012-11-29 2016-01-25 Seerstone Llc Reactores y metodos para producir materiales de carbono solido.
JP2014125418A (ja) * 2012-12-27 2014-07-07 Mitsubishi Materials Corp カーボンナノファイバーの製造装置及び製造方法
KR101414560B1 (ko) * 2013-01-09 2014-07-04 한화케미칼 주식회사 전도성 필름의 제조방법
WO2014151119A2 (en) 2013-03-15 2014-09-25 Seerstone Llc Electrodes comprising nanostructured carbon
WO2014151138A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Reactors, systems, and methods for forming solid products
EP3113880A4 (en) 2013-03-15 2018-05-16 Seerstone LLC Carbon oxide reduction with intermetallic and carbide catalysts
WO2014150944A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Methods of producing hydrogen and solid carbon
EP3129133A4 (en) 2013-03-15 2018-01-10 Seerstone LLC Systems for producing solid carbon by reducing carbon oxides
CN103253650B (zh) * 2013-05-22 2015-03-25 苏州工业园区日高能源科技有限公司 一种纳米碳材的制备方法
CN103420359B (zh) * 2013-08-08 2016-04-06 山东大展纳米材料有限公司 赤泥催化制备碳纳米管的方法、反应装置及应用
US9657723B1 (en) * 2014-03-26 2017-05-23 Lockheed Martin Corporation Carbon nanotube-based fluidized bed heat transfer media for concentrating solar power applications
US9987608B2 (en) 2014-09-19 2018-06-05 NanoSynthesis Plus, Ltd. Methods and apparatuses for producing dispersed nanostructures
KR101797809B1 (ko) * 2015-03-09 2017-11-14 주식회사 엘지화학 탄소 나노구조물의 제조방법, 이에 의해 제조된 탄소 나노구조물 및 이를 포함하는 복합재
JP6755029B2 (ja) * 2016-03-08 2020-09-16 学校法人早稲田大学 繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
KR102579608B1 (ko) * 2016-08-04 2023-09-18 에스케이이노베이션 주식회사 탄소나노튜브의 제조방법
CN106395791A (zh) * 2016-08-26 2017-02-15 宁波埃飞化工科技有限公司 一种碳纳米管的喷雾式窑炉及其生产方法
CN106379885B (zh) * 2016-08-31 2019-11-19 潍坊昊晟碳材料有限公司 一种碳纳米管或石墨烯的高效制备方法
CN106430150B (zh) * 2016-08-31 2019-05-03 潍坊昊晟碳材料有限公司 一种连续高效的碳纳米管流化床制备方法
CN106395793B (zh) * 2016-08-31 2018-11-16 潍坊昊晟碳材料有限公司 一种还原活化-反应耦合一体的碳纳米管高效制备方法
CN106430151B (zh) * 2016-08-31 2018-11-16 潍坊昊晟碳材料有限公司 一种还原活化-反应耦合一体的碳纳米管制备方法
CN106395794B (zh) * 2016-08-31 2019-05-03 潍坊昊晟碳材料有限公司 一种耦合流化床碳纳米管高效连续制备方法
CN106395795A (zh) * 2016-08-31 2017-02-15 潍坊昊晟碳材料有限公司 一种连续的碳纳米管流化床制备方法
CN106477556A (zh) * 2016-09-06 2017-03-08 南昌大学 一种全自动碳纳米材料连续生产设备及生产方法
CN106914190A (zh) * 2017-04-14 2017-07-04 青岛科技大学 一种反应时间可控的气固两相反应器
US10537840B2 (en) 2017-07-31 2020-01-21 Vorsana Inc. Radial counterflow separation filter with focused exhaust
CN107311150A (zh) * 2017-08-25 2017-11-03 安徽智博新材料科技有限公司 一种高效连续化流化床制备碳纳米管的方法
CN107697903A (zh) * 2017-09-29 2018-02-16 中山国安火炬科技发展有限公司 一种用流化床生产碳纳米管的设备及其制备方法
CN108467024B (zh) * 2018-05-30 2021-05-11 合肥百思新材料研究院有限公司 一种基于化学气相沉积法批量制备碳纳米管的流化床
CN109592667A (zh) * 2019-01-21 2019-04-09 山东斯恩特纳米材料有限公司 一种采用多级复合流化床大规模连续化生产碳纳米管的装置及方法
CN110330008A (zh) * 2019-06-20 2019-10-15 徐成德 一种碳纳米管的连续生产方法
CN113135562B (zh) * 2020-01-20 2024-02-23 山东大展纳米材料有限公司 一种制备碳纳米管和氢气的方法和装置
CN111232953B (zh) * 2020-02-17 2021-06-25 清华大学 一种将挥发性有机物转化为纳米碳产物的装置及方法
CN111686650B (zh) * 2020-06-16 2022-06-28 哈尔滨万鑫石墨谷科技有限公司 一种碳纳米管制备装置及方法
CN112675790A (zh) * 2020-12-04 2021-04-20 厦门大学 一种自蓄热联产碳纳米管的反应器和方法
CN113336283B (zh) * 2021-05-31 2022-07-12 清华大学 将含氰有机废液转化为氮掺杂碳纳米材料的装置及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650657A (en) * 1982-01-15 1987-03-17 Trw Inc. Method for making carbonaceous materials
DE3347677A1 (de) * 1983-12-31 1985-07-11 VEG-Gasinstituut N.V., Apeldoorn Verfahren zur herstellung eines katalysators
US4663230A (en) 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US6375917B1 (en) 1984-12-06 2002-04-23 Hyperion Catalysis International, Inc. Apparatus for the production of carbon fibrils by catalysis and methods thereof
US5458784A (en) * 1990-10-23 1995-10-17 Catalytic Materials Limited Removal of contaminants from aqueous and gaseous streams using graphic filaments
JPH11310407A (ja) 1998-04-30 1999-11-09 Osaka Gas Co Ltd 機能性炭素材料の製造法
JP2000203819A (ja) 1999-01-14 2000-07-25 Osaka Gas Co Ltd 直線状カ―ボンナノチュ―ブの製造方法
EP1059266A3 (en) * 1999-06-11 2000-12-20 Iljin Nanotech Co., Ltd. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition
CN1140448C (zh) * 2000-03-07 2004-03-03 天津大学 镍催化裂解甲烷制备碳纳米管的方法
CN1183031C (zh) * 2000-03-23 2005-01-05 中国科学院成都有机化学研究所 一种制备碳纳米管的方法
US6413487B1 (en) * 2000-06-02 2002-07-02 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
US6919064B2 (en) * 2000-06-02 2005-07-19 The Board Of Regents Of The University Of Oklahoma Process and apparatus for producing single-walled carbon nanotubes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI807169B (zh) * 2019-02-28 2023-07-01 南韓商Lg化學股份有限公司 流化床反應器

Also Published As

Publication number Publication date
WO2002094713A1 (fr) 2002-11-28
JP3878555B2 (ja) 2007-02-07
EP1391425A1 (en) 2004-02-25
EP1391425A4 (en) 2005-08-03
CN1327943A (zh) 2001-12-26
US7563427B2 (en) 2009-07-21
EP1391425B1 (en) 2010-08-18
JP2004526660A (ja) 2004-09-02
DE60237361D1 (de) 2010-09-30
US20040151654A1 (en) 2004-08-05
ATE478031T1 (de) 2010-09-15

Similar Documents

Publication Publication Date Title
CN1141250C (zh) 一种流化床连续化制备碳纳米管的方法及其反应装置
CN100376477C (zh) 一种碳纳米管阵列生长装置及多壁碳纳米管阵列的生长方法
JP6755269B2 (ja) 二酸化炭素を還元することによって固体炭素を生成するための方法
Zhang et al. Carbon nanotube mass production: principles and processes
KR100814217B1 (ko) 탄소 나노튜브 생성 방법
CN1935637B (zh) 碳纳米管制备方法
Danafar et al. Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes—A review
CN100337909C (zh) 一种碳纳米管阵列的生长方法
CN100337910C (zh) 一种碳纳米管阵列的生长方法
JP4160781B2 (ja) 繊維状ナノ炭素の製造方法及び装置
US20090286675A1 (en) Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed and the reactor
SA517380712B1 (ar) جهاز وطريقة التجهيز المستمر لأنابيب الكربون بحجم النانو
CN100344532C (zh) 一种碳纳米管阵列的生长装置
CN108726507B (zh) 一种单级连续化制备碳纳米管的装置及方法
CN101421447A (zh) 流化床制备碳纳米管的方法
WO2001038219A1 (en) Combustion synthesis of single walled nanotubes
CN107697903A (zh) 一种用流化床生产碳纳米管的设备及其制备方法
CN103249672B (zh) 用于氢生产的系统和方法
CN1183031C (zh) 一种制备碳纳米管的方法
Son et al. Synthesis of multi-walled carbon nanotube in a gas-solid fluidized bed
CN111362253B (zh) 气相阻尼法催化裂解碳氢化合物制备的碳纳米管、装置及方法
CN106430150B (zh) 一种连续高效的碳纳米管流化床制备方法
Swartbooi et al. Synthesis of carbon nanotubes using fluidized bed technology
Zhao et al. Large scale synthesis of vertically aligned carbon nanotubes arrays by catalytic chemical vapor deposition

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Assignee: Tsinghua University

Assignor: XINNA TECHNOLOGY CO., LTD.

Contract record no.: 2010990000860

Denomination of invention: Process and reactor for continuously preparing nm carbon tubes with fluidized bed

Granted publication date: 20040310

License type: Exclusive License

Open date: 20011226

Record date: 20101027

EE01 Entry into force of recordation of patent licensing contract

Assignee: XINNA TECHNOLOGY CO., LTD.

Assignor: Tsinghua University

Contract record no.: 2010990000860

Denomination of invention: Process and reactor for continuously preparing nm carbon tubes with fluidized bed

Granted publication date: 20040310

License type: Exclusive License

Open date: 20011226

Record date: 20101027

EC01 Cancellation of recordation of patent licensing contract
EC01 Cancellation of recordation of patent licensing contract

Assignee: XINNA TECHNOLOGY CO., LTD.

Assignor: Tsinghua University

Contract record no.: 2010990000860

Date of cancellation: 20191024

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20011226

Assignee: Jiangsu Nanai Polytron Technologies Inc

Assignor: Tsinghua University

Contract record no.: X2019990000138

Denomination of invention: Process and reactor for continuously preparing nm carbon tubes with fluidized bed

Granted publication date: 20040310

License type: Exclusive License

Record date: 20191024

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20040310