DE102007046160A1 - Verfahren zur Herstellung eines Katalysators für die Herstellung von Kohlenstoffnanoröhrchen - Google Patents

Verfahren zur Herstellung eines Katalysators für die Herstellung von Kohlenstoffnanoröhrchen Download PDF

Info

Publication number
DE102007046160A1
DE102007046160A1 DE102007046160A DE102007046160A DE102007046160A1 DE 102007046160 A1 DE102007046160 A1 DE 102007046160A1 DE 102007046160 A DE102007046160 A DE 102007046160A DE 102007046160 A DE102007046160 A DE 102007046160A DE 102007046160 A1 DE102007046160 A1 DE 102007046160A1
Authority
DE
Germany
Prior art keywords
catalyst
drying
temperature
carbon nanotubes
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102007046160A
Other languages
English (en)
Inventor
Sigurd Dr. Buchholz
Volker Dr. Michele
Leslaw Prof. Dr. Mleczko
Rainer Dr. Bellinghausen
Aurel Dr. Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Priority to DE102007046160A priority Critical patent/DE102007046160A1/de
Priority to EP08802164A priority patent/EP2197579A1/de
Priority to JP2010526190A priority patent/JP5335796B2/ja
Priority to KR1020107006606A priority patent/KR20100059913A/ko
Priority to PCT/EP2008/007614 priority patent/WO2009043445A1/de
Priority to CN200880109383A priority patent/CN101808738A/zh
Priority to US12/212,678 priority patent/US20090087372A1/en
Priority to TW097136997A priority patent/TW200932354A/zh
Publication of DE102007046160A1 publication Critical patent/DE102007046160A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0004Apparatus specially adapted for the manufacture or treatment of nanostructural devices or systems or methods for manufacturing the same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1271Alkanes or cycloalkanes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1273Alkenes, alkynes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Es werden ein Verfahren zur Herstellung eines Katalysators für die Herstellung von Kohlenstoffnanoröhrchen, die Verwendung des Katalysators für die Herstellung von Kohlenstoffnanoröhrchen und die nach diesem Herstellungsverfahren gewonnenen Kohlenstoffnanoröhrchen beschrieben. Der Katalysator wird auf Basis mindestens zweier Metalle aus der Reihe: Kobalt, Mangan, Eisen, Nickel und Molybdän aus löslichen Vorläuferverbindungen durch Sprühtrocknung oder Sprühgranulation der in einem Lösemittel gelösten Vorläuferverbindungen und anschließende Kalzinierung hergestellt.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Katalysators für die Herstellung von Kohlenstoffnanoröhrchen, die Verwendung des Katalysators für die Herstellung von Kohlenstoffnanoröhrchen und die nach diesem Herstellungsverfahren gewonnenen Kohlenstoffnanoröhrchen. Der Katalysator wird auf Basis mindestens zweier Metalle aus der Reihe: Kobalt, Mangan, Eisen, Nickel und Molybdän aus löslichen Vorläuferverbindungen durch Versprühen der in einem Lösemittel ganz oder teilweise gelösten Vorläuferverbindungen und anschließende Kalzinierung hergestellt.
  • Unter Kohlenstoffnanoröhrchen werden hauptsächlich zylinderförmige Kohlenstoffröhren mit einem Durchmesser zwischen 3 und 80 nm verstanden, die Länge beträgt ein Vielfaches, mindestens 20-faches, des Durchmessers. Kohlenstoffnanoröhrchen werden im Folgenden abkürzend als „CNT" bezeichnet. Diese Röhrchen bestehen aus Lagen geordneter Kohlenstoffatome und weisen einen in der Morphologie unterschiedlichen Kern auf. Diese Kohlenstoffnanoröhrchen werden beispielsweise auch als „carbon fibrils" oder „hollow carbon fibres" bezeichnet. Die beschriebenen Kohlenstoffnanoröhrchen haben aufgrund ihrer Dimensionen und ihrer besonderen Eigenschaften eine technische Bedeutung für die Herstellung von Kompositmaterialien. Wesentliche weitere Möglichkeiten liegen in Elektronik-, Energie- und weiteren Anwendungen.
  • Kohlenstoffnanoröhrchen sind ein seit längerer Zeit bekanntes Material. Obwohl Iijima in 1991 (S. Iijima, Nature 354, 56–58, 1991) allgemein als Entdecker der Nanotubes bezeichnet wird, sind diese Materialien, insbesondere faserförmige Graphitmaterialien mit mehreren Graphitschichten schon länger bekannt. So wurde z. B. bereits in den 70er und frühen 80er Jahren die Abscheidung von sehr feinem faserförmigen Kohlenstoff aus der katalytischen Zersetzung von Kohlenwasserstoffen beschrieben ( GB 1469930A1 , 1977 und EP 56004 A2 , 1982, Tates und Baker). Allerdings werden die auf Basis kurzkettiger Kohlenwasserstoffe hergestellten Kohlenstofffilamente nicht näher im Bezug auf ihren Durchmesser charakterisiert. Die Herstellung von Kohlenstoffnanoröhrchen mit Durchmessern kleiner 100 nm ist unter anderem auch in EP 205 556 B1 bzw. WO A 86/03455 beschrieben.
  • Für die Herstellung werden hier leichte (d. h. kurz- und mittelkettige aliphatische oder ein- oder zweikernige aromatische) Kohlenwasserstoffe und ein auf Eisen basierender Katalysator beschrieben, an dem Kohlenstoffträger bei Temperaturen oberhalb von 800–900°C zersetzt werden.
  • Die bekannten Methoden umfassen beispielsweise Lichtbogen-, Laserablations- und katalytische Verfahren. Bei den katalytischen Verfahren kann zwischen der Abscheidung an geträgerten Katalysatorpartikeln und der Abscheidung an in-situ gebildeten Metallzentren mit Durchmessern im Nanometerbereich (sogenannte Flow-Verfahren) unterschieden werden. Bei vielen dieser Verfahren werden Ruß, amorpher Kohlenstoff und Fasern mit großen Durchmessern (größer 100 nm) als Nebenprodukte gebildet.
  • Bei der Herstellung über die katalytische Abscheidung von Kohlenstoff aus bei Reaktionsbedingungen gasförmigen Kohlenwasserstoffen (im folgenden CCVD; Catalytic Carbon Vapour Deposition) werden als mögliche Kohlenstoffspender Acetylen, Methan, Ethan, Ethylen, Butan, Buten, Butadien, Benzol und weitere, Kohlenstoff enthaltende Edukte genannt. Die Katalysatoren beinhalten in der Regel Metalle, Metalloxide oder zersetzbare bzw. reduzierbare Metallkomponenten. Beispielsweise sind im Stand der Technik als Metalle Fe, Mo, Ni, V, Mn, Sn, Co, Cu und weitere genannt. Die einzelnen Metalle haben meist zwar eine Tendenz, Nanotubes zu bilden, allerdings werden laut Stand der Technik hohe Ausbeuten und geringe Anteile amorpher Kohlenstoffe vorteilhaft mit Metallkatalysatoren erreicht, die eine Kombination der oben genannten Metalle enthalten. Die Bildung von Kohlenstoffnanoröhrchen und die Eigenschaften der gebildeten Röhrchen hängen in komplexer Weise von der als Katalysator verwendeten Metallkomponente oder einer Kombination mehrerer Metallkomponenten, dem verwendeten Trägermaterial und der Wechselwirkung zwischen Katalysator und Träger, dem Eduktgas und -partialdruck, einer Beimischung von Wasserstoff oder weiteren Gasen, der Reaktionstemperatur und der Verweilzeit bzw. dem verwendeten Reaktor ab.
  • Zur Herstellung von Kohlenstoffnanoröhrchen sind verschiedene Verfahren und Katalysatoren bekannt. Bereits in EP 0205 556 A1 (Hyperion Catalysis International) werden solche Kohlenstoffnanoröhrchen beschrieben. Die zitierte Schutzrechtsanmeldung beschreibt einen eisenhaltigen Katalysator und die Umsetzung verschiedenster Kohlenwasserstoffe bei hohen Temperaturen oberhalb von 800–1000°C. Ebenfalls wird die Verwendung von Ni als Katalysator beschrieben, z. B. Dissertation M. G. Nijkamp, Universiteit Utrecht, NL, 2002 „Hydrogen Storage using Physisorption Modified Carbon Nanofibers and Related Materials". Ebenfalls werden von Shaikhutdinov et al. (Shamil' K. Shaikhutdinov, L. B. Avdeeva, O. V. Goncharova, D. I. Kochubey, B. N. Novgorodov, L. M. Plyasova, „Coprecipitated Ni-Al and Ni-Cu-Al catalysts for methane decomposition and carbon deposition I.", Applied Catalysis A: General, 126, 1995, Seiten 125–139) Ni-basierende Systeme als aktiv in der Zersetzung von Methan zu Kohlenstoffnanomaterialien beschrieben. Einen weiteren Überblick über Methoden zur Herstellung geben beispielsweise Geus und DeJong in einem Übersichtsartikel (K. P. De Jong und J. W. Geus in Catal. Rev.-Sci. Eng., 42(4), 2000, Seiten 481–510).
  • Für die Herstellung einer besonderen Modifikation der Kohlenstoffnanoröhrchen speziell für die Anwendung in Polymeren wird auch z. B. in US 6,358,878 B1 (Hyperion Catalysis International Inc.) die Verwendung von Trägern mit wohl definierter Struktur berichtet. Eine teilweise parallele Ausrichtung der langen Nanoröhrchen und Fasern zu Bündeln wird durch die Verwendung von Trägermaterialien erreicht, die eine Struktur aus spaltbaren planaren Flächen aufweisen oder aus Kristalliten mit eben solchen spaltbaren Flächen bestehen. Diese Materialien liefern zwar ein Material, dass für die Polymeranwendung besonders geeignet ist, allerdings werden die aktiven Komponenten bevorzugt durch Tränk- und Imprägnierverfahren aufgebracht. Wie allgemein in der Literatur zur Herstellung heterogener Katalysatoren bekannt ist, ist jedoch die Menge der Katalysatorbeladung bei gleichzeitig hoher Dispergierung limitiert. Für das Kohlenstoffnanoröhrchenwachstum vorteilhaft sind aber sehr hohe Dispergierungen bzw. geringe Durchmesser der aktiven Katalysatorkomponenten. Geringe Aktivkomponentendurchmesser werden bei Imprägnierungen oder Auffällungen auf Katalysatorträger nur bei geringen Beladungen und hoher Dispersion erzielt. Dadurch wird die Leistungsfähigkeit der verwendeten Katalysatoren stark begrenzt. In US 6,358,878 B1 werden typische Ausbeuten in der Größenordnung des 20–25-fachen der eingesetzten Katalysatormasse genannt. Höhere Ausbeuten werden nicht offenbart. Bei den dargelegten Katalysatoren ist der Gehalt an Katalysator- und Trägerresten so hoch, dass diese Reste für die weitere Verwendung entfernt werden müssen. Hieraus ergibt sich ein erhöhter technischer Aufwand, der mehrere weitere Verfahrensschritte nach sich zieht. Weiterhin werden durch die Aufarbeitung und Reinigung unter Umständen die Morphologie und Eigenschaften der Kohlenstoffnanoröhrchen je nach gewählter Verfahrensweise beeinflusst.
  • Eine leichte Entfernung der Katalysatorreste von den CNT ist beispielsweise auch das Ziel der Anmeldung WO 03/004410 A1 . Als Lösung für dieses Problem wird die Verwendung von löslichen Trägern wie Hydroxiden und/oder Carbonaten von Ca, Mg, Al, Ce, Ti, La als Träger genannt. Deren Herstellung durch intensive Vermischung der katalytisch aktiven Komponenten mit den alkalischen Trägerkomponenten erfolgt quasi im trockenen Zustand (ggf. pastösen Zustand) in Mischapparaten wie bspw. Kugelmühle, Kneter usw. Die Mikrovermischung der so hergestellten Pulver ist suboptimal und führt zu starken Schwankungen in dem Durchmesser der Metallcluster und somit der CNT.
  • Grundsätzlich haben die im Stand der Technik beschriebenen Katalysatoren den Nachteil, dass die Aufwendungen für die Herstellung des heterogenen Katalysators verhältnismäßig hoch sind. Bei der Herstellung von geträgerten Katalysatoren muss eine genügende Dispergierung der zum Wachstum beitragenden Primärkristallite gewährleistet sein. Diese kann z. B., wie in der heterogenen Katalyse bekannt, durch eine Imprägnierung mit vergleichsweise niedrigen Gehalten an aktiven Metallen geschehen [Handbook of Heterogeneous Catalysis, Vol 1, 1997, Kap. 2.2.]. Hier wird durch die vergleichsweise geringe Oberflächenkonzentration an katalytisch aktivem Metall eine genügende Dispergierung und damit der geringe Durchmesser der aktiven Metallcluster sichergestellt. Beim Auffällen der Aktivkomponenten auf vorgelegte Träger einer bestimmten Partikelgröße oder auf eine Suspension von kleinteiligen Katalysatorträgern (typischerweise Aluminimum-, Magnesium-, Silizium-, Zirkonoxide und andere) wird in der Regel eine Änderung der Bedingungen benötigt, dies können z. B. Temperatursprünge, Konzentrationssprünge und die Zugabe eines Fällungsagenz sein [Handbook of Heterogeneous Catalysis, Vol 1, 1997, Kap. 2.1.3.]. Hierbei wird eine zusätzliche Komponente in das System eingebracht und es fallen, insbesondere im Falle der Verwendung eines Fällungsagenz, zusätzliche Abfall- und Nebenproduktströme an. Zusätzlich können die sich durch die Fällung ergebenden Nebenkomponenten wie Alkalioxide bzw. -halogenide dazu führen, dass die katalytischen Eigenschaften beeinträchtigt werden. Hierdurch werden in vielen Fällen zeitaufwendige Waschungen des erhaltenen Katalysatorfeststoffs notwendig. Bspw. aus WO 2006/050903 A2 ist ein Verfahren zur Herstellung eines Katalysators für die Herstellung von CNT bekannt geworden, bei dem die Vorläuferverbindungen für den Katalysator einer alkalischen Fällungsreaktion unterzogen werden und der Katalysator aufwendig aus den gefällten Mischhydroxiden weiter hergestellt wird. Aufgrund der zahlreichen lokalen Parameter bei den Fällungen und Imprägnierungen ist es weiter bekannt, dass ein Scale-Up der Herstellung mit großen Schwierigkeiten verbunden ist, so dass üblicherweise in der Praxis Katalysatoren mit einer breiten Verteilung der Metallclusterdurchmesser erhalten werden.
  • Insbesondere im Fall der Herstellung von Carbon Nanotubes ist eine enge Partikeldurchmesserverteilung wichtig, um reproduzierbar die im Produkt gewünschten Durchmesser der Kohlenstoffnanomaterialien zu erhalten. WO 2007/093337 A2 beschreibt die Herstellung eines Katalysators mittels einer kontinuierlichen Fällung in einem Mikromischer. Zwar werden dadurch sehr kleine Metallclusterdurchmesser bzw. gleichzeitig eine sehr enge Verteilung der Durchmessern erreicht, aber das Verfahren benötigt aufwändige Filtrations- und Waschschritte zur Herstellung eines hochaktiven Katalysators.
  • Ein weiterer Nachteil bei der Herstellung der Katalysatoren nach dem vorstehenden Stand der Technik ist, dass durch nasschemische Herstellung als Fällung bzw. Tränkung ein Verlust an aktiven Komponenten in Kauf genommen werden muss. Meist sind die Lösungen aufgrund der hohen Verdünnungen, in denen die katalytisch aktiven Metalle anfallen, nur schwer aufzuarbeiten.
  • Ein aufwendiges weiteres Problem ist die Formgebung der erhaltenen Katalysatoren. Sollen diese in einem Verfahren eingesetzt werden, in dem innerhalb des Reaktors die Katalysatorpartikel bzw. Katalysator/Kohlenstoffnanomaterialagglomerate bzw. Kohlenstoffagglomerate durch die Anströmung mit einem Fluid bewegt werden oder der Feststoffinhalt des Reaktors bewegt wird, so ist eine definierte Partikelgrößenverteilung notwendig, die oft erst innerhalb enger Grenzen einen störungsunanfälligen und effizienten Reaktorbetrieb erlaubt. Unter der Partikelgröße wird hierbei die Größe eine belegten Trägers bzw. das in der Reaktion eingesetzte Gemisch aus Träger und Aktivmetallen bezeichnet. Im Falle eines klassischen Katalysators sind daher zusätzliche Verfahrensschritte wie z. B. Zerkleinerung oder Agglomeration und Klassierung notwendig. Bei letzteren kann die Ausbeute an Katalysator aus Fällungsreaktionen deutlich reduziert werden. Weiter besteht die Gefahr, dass Verunreinigungen z. B. aus Apparaten oder anderen Chargen die Qualität des Materials beeinflussen.
  • CNT-Katalysatoren mit definierter Partikelgröße werden insbesondere benötigt bei der Verwendung der Katalysatoren zur Reaktion in einer Wirbelschicht, einer zirkulierenden Wirbelschicht, einem bewegten Bett, ebenso auch aus anderen Gründen im Festbett (um den Druckverlust über die Katalysatorschüttung zu reduzieren), im Floating Reaktor, Flugstaub/Flugwolkenreaktor, Downer oder Riser. Bei den genannten Reaktoren ist die Partikelgeschwindigkeit und damit in der Regel die Misch- oder Verweilzeit im Reaktor abhängig vom Partikeldurchmesser, daher ist eine möglichst enge Partikelgrößenverteilung von technischem Vorteil.
  • Die Aufgabe der vorliegenden Erfindung besteht ausgehend vom Stand der Technik darin, ein Verfahren zur Herstellung von Katalysatoren für die CNT-Herstellung zu entwickeln, welches die genannten Nachteile der bekannten Verfahren vermeidet und insbesondere energieeffizient arbeitet, in effizienter Art und Weise die Einsatzstoffe bei der Katalysatorherstellung ausnutzt, bevorzugt die in der Katalysatorherstellung anfallenden Abfallmengen oder die aufzuarbeitenden Abwässer und somit die Arbeitsschritte in der Herstellung des feststoffförmigen Katalysators minimiert und insbesondere eine Einstellung einer vorteilhaften Partikelgröße des Katalysators erlaubt.
  • Besonders sollte die Recyclisierung von solchem Katalysatormaterial in das Herstellungsverfahren möglich sein, welches z. B. nicht im Bereich der gewünschten Partikelgrößenverteilung anfällt. Der erhaltene Katalysator sollte auch bevorzugt in den allen oben beschriebenen Reaktortypen einsetzbar sein, insbesondere in bewegten Betten wie Wirbelbetten.
  • Überraschenderweise zeigte sich in Untersuchungen, dass sich geeignete Katalysatoren durch Sprühtrocknung oder Sprühagglomeration aus Salzlösungen der Aktivmetalle und Trägermaterialien in überwiegend oder vollständig gelöster Form in unerwartet einfacher Art und Weise herstellen lassen.
  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Katalysators auf Basis von mindestens zwei katalytisch aktiven Metallen aus der Reihe: Kobalt, Mangan, Eisen, Nickel und Molybdän für die Herstellung von Kohlenstoffnanoröhrchen mit den Schritten:
    • a) Lösen von mindestens zwei thermisch zersetzbaren Vorläuferverbindungen des Katalysators ausgewählt aus der Reihe der Salze von: Kobalt, Mangan, Eisen, Nickel und Molybdän in einem Lösungsmittel unter Bildung einer Lösung gegebenenfalls mit suspendierten nicht gelösten Vorläuferverbindungen, bevorzugt einem wässrigen Lösungsmittel,
    • b) Entfernen des Lösungsmittels durch Sprühgranulation oder Sprühtrocknung mit einem Trocknungsgas einer Temperatur von 150 bis 600°C, bevorzugt mittels Düsen- oder Scheibenzerstäuber, insbesondere unter Erhalt einer Austrittstemperatur des Abgases (= Gemisches aus Trocknungsgas und Lösungsmitteldampf) von mindestens 70°C, bevorzugt 70–200°C, besonders bevorzugt 80–120°C,
    • c) gegebenenfalls Mahlen der aus Schritt b) erhaltenen Mischung und gegebenenfalls Nachtrocknen der aus Schritt b) erhaltenen Mischung bei einer Temperatur von 60 bis 500°C,
    • d) gegebenenfalls Klassieren der aus Schritt b) oder c) erhaltenen Mischung unter Erhalt eines Granulats mit einem Teilchendurchmesser im Bereich von 30 bis 100 μm, bevorzugt von 40 bis 70 μm,
    • e) gegebenenfalls weiteres Nachtrocknen des aus Schritt d) erhaltenen Granulats bei einer Temperatur von 60 bis 500°C,
    • f) Kalzinierung des aus Schritt e) erhaltenen Granulats in Gegenwart eines Sauerstoff enthaltenden Gases, insbesondere in Gegenwart von Luft, bei einer Temperatur von 200 bis 900°C, bevorzugt 250 bis 800°C, besonders bevorzugt 300 bis 700°C, bei einer Behandlungszeit von mindestens 0,5 h, bevorzugt 1 bis 24 h besonders bevorzugt 2 bis 16 h unter Entfernung der Zersetzungsgase und Erhalt des Katalysators,
    • g) gegebenenfalls anschließende Reduktion des Katalysators aus Schritt f) mittels reduzierender Gase, insbesondere mit Wasserstoff, insbesondere bei einer Temperatur von 250 bis 750°C,
  • Das neue Verfahren wird im Folgenden noch einmal allgemein beschrieben.
  • In einem ersten Schritt werden die katalytisch aktiven Materialien und die Trägersubstanzen in einem Lösungsmittel gelöst und eventuell nicht mehr gelöste Anteile suspendiert. Geeignete Lösungsmittel hierfür sind z. B. Wasser, Alkohole, niedrig siedende aliphatische und aromatische Kohlenwasserstoffe, generell kohlenstoffhaltige Lösungsmittel, z. B. Nitromethan oder überkritisches CO2. Bevorzugt sind aufgrund der leichten Nutzbarkeit bekannter Techniken alkoholische oder wässrige Lösungsmittel oder Mischungen daraus. Besonders bevorzugt sind wässrige Lösungsmittel.
  • Als geeignete Vorläuferverbindungen für die katalytisch aktiven Materialien und die Trägersubstanzen eignen sich bevorzugt solche Verbindungen, die sich in dem verwendeten Lösungsmittel oder Lösungsmittelgemisch lösen lassen und die sich nach Entfernung des Lösungsmittels thermisch zu der entsprechenden Katalysatorverbindung (d. h. Metalloxiden) zersetzen lassen. Geeignete Verbindungen sind zum Beispiel anorganische Salze, z. B.: die Hydroxide, Carbonate, Nitrate und ähnliche sowie Oxalate oder Salze der niederen Carbonsäuren, insbesondere Acetate oder Derivate sowie metallorganische Verbindungen, z. B. Acetylacetonate, der Metalle Kobalt, Mangan, Eisen, Molybdän und Nickel, wobei die Metalle in beliebiger möglicher Oxidationsstufe vorliegen können. Ein oder mehrere Trägerkomponenten können wahlweise auch als nichtlöslicher Feststoff der Lösung zugegeben werden, so dass Suspensionen erhalten werden. Die Partikelgröße des Feststoffs ist dabei vorteilhaft bevorzugt kleiner als der Partikeldurchmesser der nach dem Gesamtverfahren erhaltenen Katalysatoragglomerate. In einer weiteren bevorzugten Variante des ersten Verfahrensschrittes wird zusätzlich Feinstaub aus der Klassierung in Schritt d) (also Partikeln, deren Durchmesser unterhalb eines vorgegebenen Spezifikationsbereiches liegt) zur Lösung/Suspension gegeben, wobei die Feinstaubpartikeln als Kristallisationskeime wirken und durch das Recycling des Feinstaubs die Gesamtausbeute des Verfahrens gesteigert wird.
  • Die Maximaltemperatur des bei der Sprühgranulation oder Sprühtrocknung aus dem zur Behandlung verwendeten Trockner austretenden Gasgemisches aus Trocknungsgas und Lösungsmittel wird so gewählt, dass es im Austritt aus dem Trockner nicht zur Ausbildung klebriger Phasen des bei der Sprühgranulation oder Sprühtrocknung entstehenden Feststoffes kommt.
  • Die Gaseintrittstemperatur des Trocknungsgases für die Trocknung soll möglichst hoch gewählt werden, um eine möglichst hohe Trocknungsleistung zu erzielen. Die Gaseintrittstemperatur kann im Bereich 150–600°C gewählt werden. Falls keine sicherheitstechnischen Bedenken oder Qualitätseinbußen zu befürchten sind durch thermische Zersetzung von rückgewehtem Trockengut oder Anbackungen im Gaseintrittsbereich, liegt die bevorzugte Trocknungsgaseintrittstemperatur im Bereich 300–500°C. Als Trocknungsgas wird bevorzugt Luft oder Inertgas, insbesondere Stickstoff verwendet.
  • Bei der Sprühtrocknung [siehe: K. Masters, "Spray Drying Handbook", Longman Scientific & Technical 1991, 725 Seiten, ISBN 0-582-06266-7] wird flüssiges Feuchtgut („Slurry"), z. B. eine Lösung oder Suspension, in mehr oder weniger kleine Tropfen zerteilt und durch Kontakt mit einem heißen Gasstrom getrocknet. Man erhält ein Pulver, dessen Partikelgrößenverteilung maßgeblich durch die Tropfengrößenverteilung eingestellt werden kann. Da es sich bei der Sprühtrocknung um eine Kurzzeittrocknung handelt mit einer Verweilzeit je nach Turmlänge von knapp 1 sec bis max. ca. 30 sec, sind i. d. R. die Tropfen unterhalb 500 μm einzustellen, in Laborapparaten mit entsprechend kleinen Verweilzeiten < 50 μm. Da zumindest bei längeren Sprühtürmen mit Partikeldurchmessern oberhalb von 100–200 μm grobes Trockengut erzeugt werden kann, wie es aus Granulationstechnologien bekannt ist, spricht man auch häufig von Sprühgranulation. Darüber hinaus sind aber auch nachgeschaltete Agglomerationsprozesse, die auch im Konusbereich des Sprühturms integriert sein können, möglich [vergl. Gehrmann et al., "Trockner", Chem. Ing. Tech. (75) 2003, 1706–1714.]
  • Die Zerstäubung des Feuchtgutes kann mit sog. Zweistoffdüsen erfolgen, die vorzugsweise bei niedrigem Durchsatz und zum Erhalt kleiner Tropfen eingesetzt werden. Dabei wird Zerstäubungsgas, meist Druckluft oder Stickstoff, aufgegeben. Je nach Zuführung unterscheidet man zwischen Zweistoffdüsen mit äußerer oder innerer Zumischung. Erstere wird i. d. R. mit größeren Gasmengen betrieben bis zu Gasdurchsätzen von 2 kg Gas pro kg Feuchtgut, um Tropfengrößen unterhalb 50 μm zu erreichen. Bei Zweistoffdüsen mit innerer Vermischung reichen i. d. R. kleinere Gasdurchsätze von ca. 0,1 kg Gas pro kg Feuchtgut. Alternativ können für den hier vorgesehenen Anwendungsfall mit relativ kleinen Partikelgrößen unterhalb 100 μm auch Scheibenzerstäuber eingesetzt werden, die mit einer Drehzahl im Bereich von 20.000 Upm und Umfangsgeschwindigkeiten von 100 m/s und mehr betrieben werden. Beide Technologien, Zweistoffdüse und Scheibe, eignen sich besonders für kleinere Tropfendurchmesser < 100 μm. Es können durch entsprechende Herabsetzung von Gasmenge bzw. Drehzahl zwar auch gröbere Tropfen erzeugt werden, aber ein Feinanteil ist nicht vermeidbar. Engere Tropfenverteilungen lassen sich i. d. R. durch Einstoffdüsen erreichen, in denen die Zerstäubungsenergie durch erhöhten Vordruck der Feuchtguts bereitgestellt wird. Bei einem Druck von ca. 5 bis 20 bar lassen sich gröbere Tropfen mit einem Durchmesser d50 > 100 μm einstellen. Bei höherem Druck von 50–100 bar, in Ausnahmefällen bis zu 300 bar, je nach Viskosität und Oberflächenspannung des Feuchtguts, können aber auch feinere Tropfendurchmesser eingestellt werden. Die Einstoffdüse eignet sich besonders für hohe Durchsätze, da auf das relativ teure Druckgas verzichtet wird, ist aber dafür empfindlich gegenüber Durchsatzschwankungen. Für den großtechnischen Einsatz scheint die Einstoffdüse vorteilhaft. Im Entwicklungsmaßstab hingegen haben sich eher die Zweistoffdüsen durchgesetzt.
  • Die Restfeuchte des sprühgetrockneten Produktes kann in bestimmten Grenzen, abhängig vom produktspezifischem Trocknungsverhalten, durch die Abgastemperatur des Trockners eingestellt werden Die Gaseintrittstemperatur wird hingegen so hoch wie möglich eingestellt, da die Temperaturdifferenz im Trockner auch den Durchsatz bestimmt. Das Produkt nimmt während der Trocknung aufgrund der Verdunstungskühlung eine gegenüber der Gastemperatur deutlich niedrigere Beharrungstemperatur, i. d. R. von 40–100°C an, je nach Lösemittelbeladung im Trocknungsgas. Das Trockengut nimmt dann sehr schnell die lokale Gastemperatur an, so dass das Produkt den Trockner mit annähernd Abgastemperatur verlässt. Wenn eine Übertrocknung nicht befürchtet werden muss und auch ein Verkleben des Trockengutes durch höhere Temperaturen und die damit verbundenen Schmelzvorgänge nicht befürchtet werden muss, kann eine höhere Abgastemperatur toleriert werden, um das Produkt gleichzeitig zu tempern. Allerdings muss dafür ein entsprechende Reduzierung des Durchsatzes hingenommen werden. Daher wird i. d. R. eine ggf. erforderliche Temperung in geeigneten Apparaten nachgeschaltet. Eine Nutzung der Abwärme aus der Temperung für die Trocknung ist denkbar und kann den Gesamtenergieverbrauch reduzieren.
  • Das in Schritt b) erhaltene Feststoffmaterial hat je nach Verfahrensführung keine oder eine geringe verbleibende Restfeuchte und wird in Schritt d) wie beschrieben klassiert. Bei der Klassierung kann unerwünschtes Grobgut oder Feingut aussortiert werden und in die Prozesse gemäß Schritt a) oder b) wieder zugeführt werden. Weiter ist eine formgebende Behandlung ausnahmsweise zusätzlich möglich, z. B. durch Verpressen, Tablettierung oder Agglomeration des Zwischenproduktes, wenn die im nachfolgenden CNT-Herstellungsprozess gewünschte Form noch nicht erreicht wurde. Dies ist jedoch gewöhnlich nicht notwendig. Es ist möglich, weitere verfahrenstechnische Schritte einzufügen, z. B. eine Entstaubung, Kompaktierung oder insbesondere Trocknen und Mahlen des Zwischenproduktes vor der Klassierung. Auf die Mahlung und Trocknung (optionaler Schritt c)) kann gewöhnlich verzichtet werden, da das Zwischenprodukt meist in der gewünschten Korngröße aus dem Sprühtrockungsverfahren nach Schritt b) erhalten wird. Bevorzugt ist eine Klassierung und Wiederverwendung des Anteils des Zwischenproduktes, das eine Größe außerhalb des gewünschten Partikelgrößenbereichs hat, ohne zusätzliche Feststoffbehandlung bzw. Formgebung. Beim Feinstaub (also dem Anteil der Partikeln, deren Durchmesser unterhalb der Spezifikationsgrenze liegt) ist diese Wiederverwendung ohne weitere Behandlung durch Rückführung in die Herstellung der Lösung (Schritt a)) möglich und bevorzugt; für das Grobgut (also Partikeln, deren Durchmesser oberhalb der Spezifikationsgrenze liegt) wird in der Regel ein Zerkleinerungsschritt vor der Wiederverwendung nicht zu vermeiden sein.
  • Das erhaltene gegebenenfalls klassierte katalytisch aktive Zwischenprodukt aus Schritt c) bzw. b) wird nun ggf. nachgetrocknet (Schritt e)) und dann kalziniert. (Schritt f)). Hierzu können absatzweise oder kontinuierliche Methoden verwandt werden. Je nach verwendeten Edukten kommt es zur Bildung von Zersetzungsprodukten (z. B. NOx), die im Prozess abgesondert werden müssen, Verfahren hierfür sind dem Fachmann aus der technischen Herstellung von Katalysatoren bekannt. Die Nachtrocknung gemäß Schritt e) erfolgt bevorzugt bei einer Temperatur von 150 bis 300°C bei temperaturstabilen Katalysatorzwischenprodukten, die keine Klebephasen durch Aufschmelzvorgänge bilden, und erfolgt bevorzugt im Bereich 80–120°C bei temperatursensiblen Katalysatorzwischenprodukten, die zur Ausbildung von Klebephasen neigen.
  • Je nach verwendeten Edukten kann die Kalzinierungstemperatur kontinuierlich oder stufenweise erhöht oder gesenkt werden.
  • Je nach erforderlicher Kalziniertemperatur kann der Schritt der Trocknung und Kalzinierung in Schritt b) kombiniert und unmittelbar sprühpyrolisiertes Material erhalten werden. Es kann weiter aufgrund der einzustellenden Feuchtegrade und Abreaktionsgrade der zu zersetzenden Präkursoren notwendig sein, eine weitere Kalzinierstufe hinter einen Sprühpyrolyseteil nachzuschalten, dessen Abwärme in der Sprühtrocknung genutzt werden kann.
  • Die beschriebene thermische Behandlung (Kalzinierung gemäß Schritt f)) kann z. B. in Festbetten, Hordenöfen, Wirbel- und Bewegtbetten, Drehrohröfen, Risern, Downer, zirkulierenden Systemen erfolgen. Die Kalzinierdauer ist auch von der Wahl des Reaktionsapparates abhängig und wird entsprechend angepasst.
  • Je nach verwendeten katalytisch aktiven Metallen kann gegebenenfalls eine Reduktion von Vorteil sein. Diese kann in den oben zu Schritt e) beschriebenen Reaktoren separat oder in-situ durch Zugabe eines ein Reduktionsmittel enthaltenden Fluids, insbesondere Wasserstoff, erfolgen.
  • Im Folgenden werden bevorzugte besondere Ausführungen der Erfindung dargestellt:
    Das Lösungsmittel für Schritt a) ist bevorzugt ausgewählt aus wenigstens einem Lösungsmittel der Reihe: Wasser, Alkohole, niedrig siedende, aliphatische und aromatische Kohlenwasserstoffe, Nitromethan oder überkritisches CO2, bevorzugt Wasser und Alkohole, oder möglichen Mischungen hiervon.
  • In einem bevorzugten Verfahren wird für ein zur Ausbildung von klebrigen Phasen neigendes Produkt die Nachtrocknung e) bei einer Temperatur von 80 bis 120°C durchgeführt, um ein Aufschmelzen zu verhindern. Bei der vorhergehenden Sprühtrocknung müssen für derartige Produkte zur Vermeidung von Schmelzvorgängen und der entsprechenden Bildung klebriger Phasen bereits geringe Abgastemperaturen und hohe Restfeuchten gefahren werden, so dass eine Nachtrocknung in der Regel unvermeidlich ist.
  • In einem weiterhin bevorzugten alternativen Verfahren wird die Trocknung e) bei einer Temperatur von 150 bis 300°C durchgeführt, um gebundenes Wasser in Form von Hydrathüllen bereits vor der Kalzinierung zu entfernen. Dies ist möglich wenn das Material nicht wie oben beschrieben zur Verklebung neigt.
  • Die Klassierung d) wird besonders bevorzugt so durchgeführt, dass ein Granulat mit einer Teilchengröße im Bereich von 40 bis 70 μm erhalten wird. Der mittlere Katalysatorpartikel-Durchmesser wird dabei nach der gewünschten Größe der zu produzierenden CNT-Agglomerate gewählt. Eine möglichst enge Partikelgrößenverteilung ist insbesondere für den Einsatz des Katalysators in einer Wirbelschicht von technischem Vorteil, da üblicherweise nur ein relativ enges Geschwindigkeitsfenster existiert, bei dem die schwereren großen CNT-Agglomerate im Reaktor noch nicht defluidisieren und gleichzeitig die feinen Katalysatorpartikel nicht nach oben aus dem Bett ausgetragen werden, ein stationärer Betrieb des Reaktors also ohne besondere Rückführungsmaßnahmen möglich ist.
  • In einem bevorzugten Verfahren sind die Vorläuferverbindungen ausgewählt aus Hydroxiden, Carbonaten, Nitraten, Oxalaten oder anderen Salze niederer Carbonsäuren, insbesondere Acetaten, der Metalle Co, Mn, Fe, Ni und Mo. Besonders bevorzugt umfassen die Vorläuferverbindungen Hydroxide, Carbonate oder Nitrate, insbesondere Nitrate wenigstens des Kobalt und Mangans.
  • In einer besonders bevorzugten Variante des neuen Verfahrens werden zusammen mit den Vorläuferverbindungen für den Katalysator Vorläuferverbindungen für einen Katalysatorträger ausgewählt aus der Reihe der Metallverbindungen von: Erdalkalimetalle (z. B. Magnesium, Kalzium), Aluminium, Silizium, Titan, Cer und Lanthan, bevorzugt Hydroxide, Carbonate oder Nitrate von Erdalkalimetallen, Aluminium, Silizium, Titan und Titan, beim Schritt a) im Lösungsmittel gelöst und/oder suspendiert.
  • Besonders energieeffizient arbeitet ein bevorzugtes Verfahren, bei dem die Nachtrocknung e) und die Kalzinierung f) in einem gemeinsamen Reaktionsraum durchgeführt werden.
  • Die Sprühgranulation oder Sprühtrocknung gemäß Schritt b) erfolgt bevorzugt unter Verwendung einer Einstoffzerstäubungsdüse oder einer Zweistoffzerstäubungsdüse unter Zumischung von Inertgas oder Luft bei der Zerstäubung. Bei einer Einstoffzerstäubung wird die erforderliche Energie zur Erzeugung der Tropfen (Oberflächenenergie) nur aus der Flüssigkeit bezogen, die dazu mit hohem Vordruck und entsprechend hoher Geschwindigkeit durch eine kleine Düsenöffnung gefördert wird. Durch geschickte Wahl des Vordrucks und Düsendurchmessers sowie abhängig von den Stoffeigenschaften weiterer Parameter wie z. B. der Geometrie der vorgeschalteten Drall- oder Mischkammer können der mittlere Durchmesser und die Breite der Durchmesserverteilung der entstehenden Tropfen in gewünschter Weise eingestellt werden. Bei der Zweistoffzerstäubung wird die erforderliche Energie zur Erzeugung der Tropfen nicht oder nicht ausschließlich aus der Flüssigkeit bezogen, sondern zusätzlich unter hohem Druck ein Gas mit dem Flüssigkeitsstrahl in Kontakt gebracht. Der Flüssigkeitsvordruck kann dann erheblich geringer sein als bei der Einstoffzerstäubung oder ganz entfallen. Die Wahl des geeigneten Verfahrens für eine gegebene Zerstäubungsaufgabe ist zudem von den gewünschten Durchsatzleistungen abhängig. Die genauen Betriebsparameter können in der Regel nach Durchführung entsprechender Vorversuche festgelegt werden, da die wechselseitigen Abhängigkeiten der Parameter komplex sind.
  • Im Falle, dass die Sprühgranulation oder Sprühtrocknung unter Verwendung einer Einstoffzerstäubungsdüse durchgeführt wird, beträgt die Druckdifferenz über der Düse von 5·105 bis 300·105 Pa (5 bis 300 bar), bevorzugt 20·105 bis 100·105 Pa (20 bis 100 bar), besonders bevorzugt 40·105 bis 70·105 Pa (40 bis 70 bar).
  • Im Falle, dass die Sprühgranulation oder Sprühtrocknung b) bevorzugt unter Verwendung einer Zweistoffzerstäubungsdüse durchgeführt wird, erfolgt dieser Schritt unter Zumischung von Inertgas oder Luft, wobei das Verhältnis von Gasmassenstrom zu Flüssigkeitsmassenstrom von 0,1 zu 1 bis 2 zu 1 beträgt. Die kleineren Luftmengen können vornehmlich in Zweistoffdüsen mit innerer Vermischung und Flüssigkeitsvordruck erreicht werden und bergen neben der Einsparung von Druckgas die Gefahr der Düsenverstopfung. In Zweistoffdüsen mit äußerer Vermischung ist die Gefahr der Verstopfung der Düse geringer, es muss aber i. d. R. mehr Zerstäubungsgas eingesetzt werden.
  • Ein alternatives weiteres bevorzugtes Verfahren ist dadurch gekennzeichnet, dass das zur Entfernung des Lösungsmittels in Schritt b) ein Scheibenzerstäuber verwendet wird, der mit einer Drehzahl der Zerstäuberscheibe im Bereich von 2000 bis 20000 upm betrieben wird, insbesondere je nach Durchmesser der Scheibe, mit einer Umfangsgeschwindigkeit von 50–150 m/s. Der Vorteil der Scheibenzerstäubung ist die Einsparung von Druckgas und Flüssigkeitsvordruck sowie eine breite lokale Verteilung des Tropfensprühs im Sprühturm mit nur einem Zerstäubungsorgan.
  • Sehr vorteilhaft ist auch eine bevorzugte Variante des neuen Verfahrens, bei der die bei der Nachtrocknung e) und/oder der Kalzinierung f) anfallenden Abgase und/oder Heizgase zum Wärmetausch bei Durchführung der Sprühtrocknung zurückgeführt werden.
  • Gegenstand der Erfindung ist noch ein Katalysator zur Herstellung von Kohlenstoffnanoröhrchen, der aus dem erfindungsgemäßen Verfahren erhalten wird.
  • Das nach dem erfindungsgemäßen Katalysator-Herstellungsverfahren gewonnene Katalysatormaterial kann grundsätzlich zur Herstellung von nanostrukturierten, zumindest in einer Raumrichtung auch nanoskaligen Kohlenstoffmaterialien, insbesondere Kohlenstoffnanoröhrchen, durch Zersetzung von kohlenstoffhaltigen Gasen oder deren Gemischen bei erhöhter Temperatur in An- oder Abwesenheit von inerten Gasen, das heißt an der Zersetzungsreaktion chemisch nicht direkt beteiligten Gasen in den beschriebenen Reaktortypen verwendet werden. Da das erfindungsgemäße Katalysator-Herstellungsverfahren aktive katalytische Materialien für einen breiten Anwendungsbereich zugänglich macht, kann ein breiter Bereich von Reaktionsparametern, z. B. Reaktionstemperatur (T = 300°C–2500°C), Konzentrationen (eines oder mehrerer kohlenstoffhaltiger Eduktgase, die unter den gewählten Bedingungen nanoskalige Kohlenstoffmaterialien bilden) und Verweilzeit (Verweilzeit des katalytisch aktiven Materials, der Gemische von katalytisch aktivem Material und nanoskaligen Kohlenstoffmaterialien und der hauptsächlich aus Kohlenstoff bestehenden Kohlenstoffnanomaterialien) im Bereich von 0,01 s < t < 36000 s (10 h) angewendet werden.
  • Ein beigemischtes Inertgas, Wasserstoff oder das kohlenstoffhaltige Eduktgas kann im Verfahren recycliert werden. Das kohlenstoffhaltige Eduktgas kann Verbindungen mit beliebigen Heteroatomen wie z. B. Stickstoff, Schwefel, enthalten. Es können bestimmte, in der Abscheidung einen Einbau von Heteroatomen in die Kohlenstoffstruktur der Nanomaterialien erzeugende Substanzen separat in den Prozess gegeben werden.
  • Weiterhin ist Gegenstand der Erfindung das Verfahren zur Herstellung von faserförmigen Kohlenstoffmaterialien, insbesondere von Kohlenstoffnanoröhrchen mit einem mittleren Einzeldurchmesser von 2–60 nm und einem Aspektverhältnis Länge:Durchmesser (L:D) > 10 durch Zersetzung von Kohlenwasserstoffen mit und ohne Heteroatome, insbesondere C1- bis C5- Alkanen oder C2- bis C5-Alkenen, an einem Katalysator in Gegenwart von Inertgas und gegebenenfalls Wasserstoff bei einer Temperatur von 450 bis 1200°C in einem Festbett oder einem Fließbett, bevorzugt einem Wirbelbett, sowie Aufarbeitung und Reinigung der erhaltenen Kohlenstoffnanoröhrchen, dadurch gekennzeichnet, dass ein Katalysator verwendet wird, der aus dem erfindungsgemäßen Katalysator-Herstellungsverfahren erhalten wird.
  • Gegenstand der Erfindung ist auch noch die Verwendung des Katalysators, der aus dem erfindungsgemäßen Katalysator-Herstellungsverfahren erhalten wird, zur Herstellung von Kohlenstoffnanoröhrchen oder Agglomeraten von Kohlenstoffnanoröhrchen.
  • Die Abtrennung der nanoskaligen Kohlenstoffmaterialien vom eingesetzten Katalysator und ggf. Reinigung erfolgt nach aus dem Stand der Technik grundsätzlich bekannten physikalischen und/oder chemische Methoden. Die Rückführung der bei der Reinigung gewonnenen katalytisch aktiven Metalle und der Trägermaterialien in den Herstellungsprozess erfolgt in einer bevorzugten Ausführung der Erfindung.
  • Die nach den erfindungsgemäßen Verfahren erhaltenen Kohlenstoffnanoröhrchen bestehen im wesentlichen aus weitestgehend konzentrischen Graphitschichten mit defektarmen Röhrenabschnitten oder weisen eine Fischgräten- oder Helixstruktur auf und haben einen ungefüllten oder gerillten Kern.
  • Die Kohlenstoffnanoröhrchen werden besonders bevorzugt in Form von Agglomeraten erhalten, wobei die Agglomerate insbesondere einen mittleren Durchmesser im Bereich von 0,5–2 mm haben. Ein weiter bevorzugtes Verfahren, ist dadurch gekennzeichnet, dass die Kohlenstoffnanoröhrchen einen mittleren Durchmesser von 3 bis 100 nm, bevorzugt 3 bis 80 nm, besonders bevorzugt 5–25 nm aufweisen.
  • Die nach dem erfindungsgemäßen CNT-Herstellungsverfahren erhältlichen Kohlenstoffnanomaterialien eignen sich zur Verwendung als Additiv in Polymeren, insbesondere zur mechanischen Verstärkung und zur Erhöhung der elektrischen Leitfähigkeit. Die beschriebenen Kohlenstoffnanomaterialien können ferner als Material für die Gas- und Energiespeicherung, zur Färbung und als Flammschutzmittel eingesetzt werden. Aufgrund der guten elektrischen Leitfähigkeit können die erfindungsgemäß hergestellten Kohlenstoffnanomaterialien als Elektrodenmaterial oder zur Herstellung von Leiterbahnen und leitfähigen Strukturen eingesetzt werden. Es ist auch möglich, die erfindungsgemäßen Kohlenstoffnanoröhrchen als Emitter in Displays einzusetzen. Bevorzugt werden die Kohlenstoffnanomaterialien in Polymerkompositmaterialien, Keramik- oder Metallkompositmaterialien zur Verbesserung der elektrischen oder Wärme-Leitfähigkeit und mechanischen Eigenschaften, zur Herstellung von leitfähigen Beschichtungen und Kompositmaterialien, als Farbstoff, in Batterien, Kondensatoren, Displays (z. B. Flat Screen Displays) oder Leuchtmitteln, als Field Effect Transistor, als Speichermedium z. B. für Wasserstoff oder Lithium, in Membranen z. B. für die Reinigung von Gasen, als Katalysator oder als Trägermaterial z. B. für katalytisch aktive Komponenten in chemischen Reaktionen, in Brennstoffzellen, im medizinischen Bereich z. B. als Gerüst zur Wachstumssteuerung von Zellgewebe, im diagnostischen Bereich z. B. als Marker, sowie in der chemischen und physikalischen Analytik (z. B. in Rasterkraftmikroskopen) eingesetzt.
  • Im Folgenden wird die Erfindung an Hand von Ausführungsbeispielen und Figuren beispielhaft näher erläutert. Es zeigen
  • 1 eine transmissionselektronenmikroskopische Aufnahme von Kohlenstoffnanomaterial, das unter Verwendung von erfindungsgemäß hergestelltem Katalysator gemäß Beispiel 2 hergestellt wurde (TEM: FA. FEI/Philips Tecnai 20 LaB6-Kathode, Kamera Tietz F114T 1x1K, Methode nach Herstellerangaben)
  • 2 eine hochauflösende transmissionselektronenmikroskopische Aufnahme von Kohlenstoffnanomaterial, das unter Verwendung von erfindungsgemäß hergestelltem Katalysator gemäß Beispiel 2 hergestellt wurde (TEM: FA. FEI/Philips Tecnai 20 LaB6-kathode, Kamera Tietz F114T 1x1K, Methode nach Herstellerangaben)
  • 3 eine Rasterelektronenmikroskop-Aufnahme von Kohlenstoffnanomaterial, das unter Verwendung von erfindungsgemäß hergestelltem Katalysator gemäß Beispiel 3 hergestellt wurde (REM: FA. FEI SFEGSEM Sirion 100 T, Methode nach Herstellerangaben)
  • Beispiele
  • Beispiel 1: Herstellung eines Katalysators durch Sprühtrocknung und nachfolgende Kalzinierung:
  • Es wurden vier Lösungen hergestellt von 213,2 g Co(NO3)2·6H2O in 549,5 ml deionisiertem Wasser, 186,8 g Mn(NO3)2·4H2O in 549,5 ml deionisiertem Wasser, 395,6 g Al(NO3)3·9H2O in 384,6 ml deionisiertem Wasser und 336,3 g Mg(NO3)2·6H2O in 384,6 ml deionisiertem Wasser. Die Mn- und Co-haltigen Lösungen bzw. die Al- und Mg-haltigen Lösungen wurden vereinigt und bei Raumtemperatur 5 min gerührt. Die zwei erhaltenen Lösungen wurden anschließend ebenfalls vereinigt und 5 min gerührt. Möglicherweise vorhandene Austrübungen wurden durch tropfenweise Zugabe von verdünnter HNO3 gelöst. Von dieser Lösung wurden 2,84 kg in einem Nubilosa-Sprühtrockner (d = 0,8 m, HZylinder = 1 m, Nubilosa-Zweistoffdüse, Produktabscheidung über Zyklon) 1 h lang dosiert. Die Eintrittstemperatur lag bei 180°C, während die Austrittstemperatur (hinter Zyklon) 92°C betrug. Dabei wurde N2 mit einem Volumenstrom von 100 Nm3/h dosiert. Aus dem Zyklon wurden ca. 282 g Feststoff entnommen. Der Feststoff hatte eine Primär-Korngröße (Durchmesser) im Bereich von 5 bis 50 μm; im Austrag des Trockners neigte das Produkt zur Agglomeration, die zu einer Vergröberung der Korngröße führt. Anschließend wurde der Feststoff über Nacht bei 180°C nachgetrocknet und nachfolgend bei 400°C an Luft für 4 h kalziniert. Die Ausbeute nach der Kalzinierung betrug 55%. Das theoretische Verhältnis der eingesetzten Aktivmetalle bezogen auf das Trägermaterial beträgt Mn:Co:Al2O3:MgO = 17:18:44:22.
  • Beispiel 2: Verwendung des unter Beispiel 1 beschriebenen Katalysators in der Synthese von kohlenstoffhaltigen Nanomaterialien in einem Festbettreaktor
  • Die Katalysatoren wurden in einer Festbettapparatur im Labormaßstab getestet. Hierzu wurde eine definierte Menge an Katalysator aus Beispiel 1 in einem von außen durch einen Wärmeträger beheiztem Quarzrohr mit einem inneren Durchmesser von 9 mm vorgelegt. Die Temperatur der Feststoffschüttungen wurde über eine PID-Regelung des elektrisch beheizten Wärmeträgers geregelt. Die Temperatur der Katalysatorschüttung bzw. der Katalysator-/Nanotubes-Mischung wurde durch ein mit einer inerten Quarzkapillare umgebenes Thermoelement bestimmt. Eduktgase und inerte Verdünnungsgase wurden über elektronisch gesteuerte Massendurchflussregler in den Reaktor geleitet. Die Katalysatorproben wurden zunächst in einem Strom aus Wasserstoff und Inertgas auf die Reaktionstemperatur von 650°C aufgeheizt. Nach Erreichen der Reaktionstemperatur wurde das Eduktgas Ethen zugeschaltet. Das Volumenverhältnis der Eduktgasmischung betrug Ethen:Wasserstoff:Ar = 45:60:5. Der Gesamtvolumenstrom wurde auf 110 mLN·min–1 eingestellt. Die Beaufschlagung des Katalysators mit den Eduktgasen erfolgte für einen Zeitraum von 100–120 Minuten in der Regel bis zur vollständigen Desaktivierung des Katalysators. Danach wurde die Menge an abgeschiedenem Kohlenstoff durch Auswiegen bestimmt. Die Struktur und Morphologie des abgeschiedenen Kohlenstoffs wurde mit Hilfe von REM- und/oder TEM-Analysen ermittelt. Die Menge an abgeschiedenem Kohlenstoff im Bezug auf eingesetzten Katalysator, im weiteren als Ertrag bezeichnet, wurde auf Basis der Masse an Katalysator nach Kalzinierung (mkat, 0) und dem Gewichtszuwachs nach Reaktion (mgesamt – mkat, 0) definiert: Ertrag = (mgesamt – mkat, 0)/mkat, 0. Der Ertrag des in Beispiel 1 hergestellten Katalysators betrug 25,385 gCNT/gKAT.
  • Beispiel 3: Verwendung des unter Beispiel 1 beschriebenen Katalysators in der Synthese von kohlenstoffhaltigen Nanomaterialien in einem Wirbelbett
  • Die Katalysatoren wurden absatzweise in einer Technikumsfließbettapparatur getestet. Die Apparatur besteht aus einem Edelstahlreaktor mit einem Durchmesser von ID = 100 mm und einer Höhe von ca. 1200 mm, ausgestattet mit erweitertem Kopf. Die Produktabfuhr erfolgte im unteren Drittel mit deutlichem Abstand zum Gasverteiler. Im oberen Teil unterhalb des Reaktorkopfes kann der Katalysator über ein Schleusensystem zugegeben werden. Die Zufuhr von Katalysator und Abfuhr von Produkt bzw. Produkt und Katalysator kann absatzweise oder quasikontinuierlich erfolgen. Der Reaktor ist elektrisch beheizt und mit kommerziellen Massendurchflußreglern zur Eduktgaszufuhr versehen. Die Betttemperatur der im Reaktor befindlichen Schüttung kann mit Hilfe mehrerer Thermoelemente gemessen und geregelt werden.
  • Im Versuch wurde aus dem in Beispiel 1 hergestellten Material eine Kornfraktion von 32–80 μm durch Sieben hergestellt. Die Temperatur wurde innerhalb des Reaktors auf T = 650°C eingestellt (Aufheizen in N2) und während des Versuches geregelt. Es wurden in 2 aufeinander folgenden Versuchen einmal 20 g und einmal 25 g Katalysator zugegeben. Zur besseren Dosierbarkeit im Labormaßstab wurde der Katalysator mit einer geringen Menge Carbon Nanotubes gemischt. Jeweils nach der Zugabe wurde ein Eduktstrom von 4 LN/min Stickstoff und 36 LN/min Ethylen eingestellt und die Reaktion wurde solange gefahren, bis ein beginnender Rückgang des Umsatzes beobachtet wurde. Die Anfangsumsätze lagen zwischen XC2H4 = 67% und XC2H4 = 72% Nach der Ablauf der Reaktionszeit jedes Versuches wurde der Reaktionsraum inertisiert und das Material entnommen sowie neuer Katalysator zugeführt. Aus insgesamt 45 g zugegebenem Katalysator wurden so 1514 g Kohlenstoffnanoröhrchen hergestellt, dies entspricht einer Ausbeute von 33,64 g Kohlenstoffnanoröhrchen pro Gramm in den Reaktor gegebenen Katalysator. Der Fehler in der Kohlenstoffbilanz betrug weniger als 4%. Als gasförmige Nebenprodukte wurden mittels Gaschromatographie geringe Mengen (Selektivität jeweils kleiner 8%) Ethan und Methan detektiert.
  • Der nach dem erfindungsgemäßen Sprühverfahren hergestellte Katalysator zeichnet sich gegenüber dem Stand der Technik durch eine einfache, zeit- und kostensparende Herstellung und eine hohe Aktivität des erfindungsgemäßen Katalysators sowie durch eine hohe Qualität der damit erzeugten Kohlenstoffnanoröhrchen aus.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - GB 1469930 A1 [0003]
    • - EP 56004 A2 [0003]
    • - EP 205556 B1 [0003]
    • - WO 86/03455 A [0003]
    • - EP 0205556 A1 [0007]
    • - US 6358878 B1 [0008, 0008]
    • - WO 03/004410 A1 [0009]
    • - WO 2006/050903 A2 [0010]
    • - WO 2007/093337 A2 [0011]
  • Zitierte Nicht-Patentliteratur
    • - Iijima in 1991 (S. Iijima, Nature 354, 56–58, 1991) [0003]
    • - M. G. Nijkamp, Universiteit Utrecht, NL, 2002 „Hydrogen Storage using Physisorption Modified Carbon Nanofibers and Related Materials" [0007]
    • - Shaikhutdinov et al. (Shamil' K. Shaikhutdinov, L. B. Avdeeva, O. V. Goncharova, D. I. Kochubey, B. N. Novgorodov, L. M. Plyasova, „Coprecipitated Ni-Al and Ni-Cu-Al catalysts for methane decomposition and carbon deposition I.", Applied Catalysis A: General, 126, 1995, Seiten 125–139) [0007]
    • - Geus und DeJong in einem Übersichtsartikel (K. P. De Jong und J. W. Geus in Catal. Rev.-Sci. Eng., 42(4), 2000, Seiten 481–510) [0007]
    • - Handbook of Heterogeneous Catalysis, Vol 1, 1997, Kap. 2.2. [0010]
    • - Handbook of Heterogeneous Catalysis, Vol 1, 1997, Kap. 2.1.3. [0010]
    • - K. Masters, "Spray Drying Handbook", Longman Scientific & Technical 1991, 725 Seiten, ISBN 0-582-06266-7 [0024]
    • - Gehrmann et al., "Trockner", Chem. Ing. Tech. (75) 2003, 1706–1714 [0024]

Claims (18)

  1. Verfahren zur Herstellung eines Katalysators auf Basis mindestens zweier Metalle aus der Reihe: Kobalt, Mangan, Eisen, Nickel und Molybdän für die Herstellung von Kohlenstoffnanoröhrchen mit den Schritten: a) Lösen von mindestens zwei thermisch zersetzbaren Vorläuferverbindungen des Katalysators ausgewählt aus der Reihe der Salze von: Kobalt, Mangan, Eisen, Nickel und Molybdän in einem Lösungsmittel unter Bildung einer Lösung gegebenenfalls mit suspendierten nicht gelösten Vorläuferverbindungen, bevorzugt einem wässrigen Lösungsmittel, b) Entfernen des Lösungsmittels durch Sprühgranulation oder Sprühtrocknung mit einem Trocknungsgas einer Temperatur von 150–600°C, bevorzugt 300–500°C, bevorzugt mittels Düsen- oder Scheibenzerstäuber, insbesondere unter Erhalt einer Austrittstemperatur des Abgases (Gemisch aus Trocknungsgas und Lösungsmitteldampf) von mindestens 70°C, bevorzugt 70–200°C, besonders bevorzugt 80–120°C, c) gegebenenfalls Mahlen der aus Schritt b) erhaltenen Mischung und gegebenenfalls Nachtrocknen der aus Schritt b) erhaltenen Mischung bei einer Temperatur von 60 bis 500°C, bevorzugt von 150 bis 300°C, falls das Produkt in dem Temperaturbereich nicht zum Verkleben neigt, bzw. bevorzugt von 60–120°C, um die Klebeeigenschaften des Trockengutes zu umgehen. d) gegebenenfalls Klassieren der aus Schritt b) oder c) erhaltenen Mischung unter Erhalt eines Granulats mit einem Teilchendurchmesser im Bereich von 30 bis 100 μm, e) gegebenenfalls weiteres Nachtrocknen des aus Schritt d) erhaltenen Granulats bei einer Temperatur von 60 bis 500°C, f) Kalzinierung des aus Schritt e) erhaltenen Granulats in Gegenwart eines Sauerstoff enthaltenden Gases, insbesondere in Gegenwart von Luft, bei einer Temperatur von 200 bis 900°C, bevorzugt 250 bis 800°C, besonders bevorzugt 300 bis 700°C, bei einer Behandlungszeit von mindestens 0,5 h, bevorzugt 1 bis 24 h, besonders bevorzugt 2 bis 16 h unter Entfernung der Zersetzungsgase und Erhalt des Katalysators. g) gegebenenfalls anschließende Reduktion des Granulatmaterials mittels reduzierender Gase, insbesondere mit Wasserstoff, insbesondere bei einer Temperatur von 200 bis 750°C,
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Lösungsmittel für Schritt a) ausgewählt ist aus wenigstens einem Lösungsmittel der Reihe: Wasser, Alkohole, niedrig siedende, aliphatische und aromatische Kohlenwasserstoffe, Nitromethan oder überkritisches CO2 , bevorzugt Wasser und Alkohole oder möglichen Mischungen hiervon.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Trocknung e) für ein zur Ausbildung von klebrigen Phasen neigendes Produkt bei einer Temperatur von 80 bis 120°C und für ein nicht zur Ausbildung von klebrigen Phasen neigendes Produkt bei einer Temperatur von 150 bis 300°C durchgeführt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Klassierung d) unter Erhalt eines Granulats mit einem Teilchendurchmesser im Bereich von 40 bis 70 μm durchgeführt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Vorläuferverbindungen ausgewählt sind aus Hydroxiden, Carbonaten, Nitraten, Oxalaten oder anderer Salze niederer Carbonsäuren, insbesondere Acetaten der Metalle Kobalt, Mangan, Eisen, Molybdän und Nickel.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Vorläuferverbindungen Hydroxide, Carbonate oder Nitrate, insbesondere Nitrate, wenigstens des Kobalts, Mangans, Eisens, Molybdäns bzw. Nickels umfassen.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zusammen mit den Vorläuferverbindungen für den Katalysator Vorläuferverbindungen für einen Katalysatorträger ausgewählt aus der Reihe der Metallverbindungen von: Aluminium, Magnesium, Kalzium, Titan, Cer und Lanthan, bevorzugt Hydroxide, Carbonate oder Nitrate von Aluminium, Magnesium, Kalzium und Titan, beim Schritt a) im Lösungsmittel gelöst und/oder suspendiert werden.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in Schritt a) zusätzlich rückgeführter Feinstaub von Katalysatormaterial aus der Klassierung in Schritt d) zur Lösung bzw. Suspension gegeben wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Trocknung e) und die Kalzinierung f) in einem gemeinsamen Reaktionsraum durchgeführt werden.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Sprühgranulation oder Sprühtrocknung b) unter Verwendung einer Einstoffzerstäubungsdüse oder einer Zweistoffzerstäubungsdüse unter Zumischung von Inertgas oder Luft bei der Zerstäubung erfolgt.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Sprühgranulation oder Sprühtrocknung unter Verwendung einer Einstoffzerstäubungsdüse bei einer Druckdifferenz über der Düse von 5·105 bis 300·105 Pa (5 bis 300 bar), bevorzugt 20·105 bis 100·105 Pa (20 bis 100 bar), besonders bevorzugt 40·105 bis 70·105 Pa (40 bis 70 bar), erfolgt.
  12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Sprühgranulation oder Sprühtrocknung unter Verwendung einer Zweistoffzerstäubungsdüse unter Zumischung von Inertgas oder Luft erfolgt, wobei das Verhältnis von Gasmassenstrom zu Flüssigkeitsmassenstrom von 0,1 zu 1 bis 2 zu 1 beträgt.
  13. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das zur Entfernung des Lösungsmittels in Schritt b) ein Scheibenzerstäuber verwendet wird, der mit einer Drehzahl der Zerstäuberscheibe im Bereich von 2000 bis 20000 upm betrieben wird.
  14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die bei der Trocknung e) und/oder Kalzinierung g) anfallenden Abgase und/oder Heizgase zum Wärmetausch bei Durchführung der Sprühtrocknung zurückgeführt werden.
  15. Katalysator zur Herstellung von Kohlenstoffnanoröhrchen erhalten aus einem Verfahren gemäß einem der Ansprüche 1 bis 14.
  16. Verfahren zur Herstellung von faserförmigen Kohlenstoffmaterialien, insbesondere von Kohlenstoffnanoröhrchen mit einem mittleren Einzeldurchmesser von 2–60 nm und einem Aspektverhältnis Länge:Durchmesser (L:D) > 10 durch Zersetzung von Kohlenwasserstoffen mit und ohne Heteroatome, insbesondere C1- bis C5-Alkanen oder C2- bis C5-Alkenen, an einem Katalysator gegebenenfalls in Gegenwart von Inertgas und/oder Wasserstoff bei einer Temperatur von 450 bis 1200°C in einem Festbett oder einem Fließbett, bevorzugt einem Wirbelbett, Aufarbeitung und Reinigung der erhaltenen Kohlenstoffnanoröhrchen, dadurch gekennzeichnet, dass ein Katalysator erhalten aus einem Herstellungsverfahren gemäß einem der Ansprüche 1 bis 14 verwendet wird.
  17. Verwendung des Katalysators nach Anspruch 15 zur Herstellung von Kohlenstoffnanoröhrchen oder Agglomeraten von Kohlenstoffnanoröhrchen.
  18. Verwendung der Kohlenstoffnanoröhrchen erhalten aus einem Verfahren nach Anspruch 16 in Polymerkompositmaterialien, Keramik- oder Metallkompositmaterialien zur Verbesserung der elektrischen oder Wärme-Leitfähigkeit und mechanischen Eigenschaften, zur Herstellung von leitfähigen Beschichtungen und Kompositmaterialien, als Farbstoff, in Batterien, Kondensatoren, Displays (z. B. Flat Screen Displays) oder Leuchtmitteln, als Field Effect Transistor, als Speichermedium z. B. für Wasserstoff oder Lithium, in Membranen z. B. für die Reinigung von Gasen, als Katalysator oder als Trägermaterial z. B. für katalytisch aktive Komponenten in chemischen Reaktionen, in Brennstoffzellen, im medizinischen Bereich z. B. als Gerüst zur Wachstumssteuerung von Zellgewebe, im diagnostischen Bereich z. B. als Marker, sowie in der chemischen und physikalischen Analytik (z. B. in Rasterkraftmikroskopen).
DE102007046160A 2007-09-27 2007-09-27 Verfahren zur Herstellung eines Katalysators für die Herstellung von Kohlenstoffnanoröhrchen Withdrawn DE102007046160A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE102007046160A DE102007046160A1 (de) 2007-09-27 2007-09-27 Verfahren zur Herstellung eines Katalysators für die Herstellung von Kohlenstoffnanoröhrchen
EP08802164A EP2197579A1 (de) 2007-09-27 2008-09-13 Verfahren zur herstellung eines katalysators für die herstellung von kohlenstoffnanoröhrchen
JP2010526190A JP5335796B2 (ja) 2007-09-27 2008-09-13 カーボンナノチューブを製造するために用いる触媒の製造方法
KR1020107006606A KR20100059913A (ko) 2007-09-27 2008-09-13 탄소 나노튜브 제조에 사용되는 촉매의 제조 방법
PCT/EP2008/007614 WO2009043445A1 (de) 2007-09-27 2008-09-13 Verfahren zur herstellung eines katalysators für die herstellung von kohlenstoffnanoröhrchen
CN200880109383A CN101808738A (zh) 2007-09-27 2008-09-13 制备碳纳米管生产用的催化剂的方法
US12/212,678 US20090087372A1 (en) 2007-09-27 2008-09-18 Process for the preparation of a catalyst for the production of carbon nanotubes
TW097136997A TW200932354A (en) 2007-09-27 2008-09-26 Process for the preparation of a catalyst for the production of carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007046160A DE102007046160A1 (de) 2007-09-27 2007-09-27 Verfahren zur Herstellung eines Katalysators für die Herstellung von Kohlenstoffnanoröhrchen

Publications (1)

Publication Number Publication Date
DE102007046160A1 true DE102007046160A1 (de) 2009-04-02

Family

ID=40256920

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102007046160A Withdrawn DE102007046160A1 (de) 2007-09-27 2007-09-27 Verfahren zur Herstellung eines Katalysators für die Herstellung von Kohlenstoffnanoröhrchen

Country Status (8)

Country Link
US (1) US20090087372A1 (de)
EP (1) EP2197579A1 (de)
JP (1) JP5335796B2 (de)
KR (1) KR20100059913A (de)
CN (1) CN101808738A (de)
DE (1) DE102007046160A1 (de)
TW (1) TW200932354A (de)
WO (1) WO2009043445A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011020568A1 (de) * 2009-08-21 2011-02-24 Bayer Materialscience Ag Kohlenstoffnanoröhrchen-agglomerat
DE102013214229A1 (de) * 2013-07-19 2015-01-22 Bayer Materialscience Ag Verfahren zur Herstellung eines effizienten Katalysators für die Produktion mehrwandiger Kohlenstoffnanoröhrchen, mehrwandiges Kohlenstoffnanoröhrchen und Kohlenstoffnanoröhrchenpulver

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101007184B1 (ko) * 2008-10-17 2011-01-12 제일모직주식회사 탄소나노튜브 합성용 담지촉매, 그 제조방법 및 이를 이용한 탄소나노튜브
KR101007183B1 (ko) * 2008-10-23 2011-01-12 제일모직주식회사 탄소나노튜브 합성용 담지촉매, 그 제조방법 및 이를 이용한 탄소나노튜브
US9084990B2 (en) * 2009-07-17 2015-07-21 Southwest Nanotechnologies, Inc. Catalyst and methods for producing multi-wall carbon nanotubes
KR101018660B1 (ko) 2009-12-22 2011-03-04 금호석유화학 주식회사 다중벽 탄소나노튜브 제조용 촉매조성물
RU2476268C2 (ru) * 2010-06-15 2013-02-27 Общество с ограниченной ответственностью "НаноТехЦентр" Способ получения металлоксидных катализаторов для выращивания углеродных нанотрубок из газовой фазы
KR101241034B1 (ko) * 2010-08-10 2013-03-11 금호석유화학 주식회사 분무 열분해 방법을 이용한 고수율 탄소나노튜브 합성용 촉매조성물의 제조 방법
BR112013005802A2 (pt) * 2010-09-14 2016-05-10 Applied Nanostructured Sols substratos de vidro com nanotubos de carbono crescidos sobre os mesmos e métodos para sua produção
CN102363525B (zh) * 2011-07-01 2013-01-23 中国平煤神马集团开封炭素有限公司 干料加热器
CN102502591B (zh) * 2011-11-28 2013-09-04 深圳市贝特瑞纳米科技有限公司 纳米碳纤维的制备方法和设备
KR101448367B1 (ko) 2012-01-11 2014-10-07 주식회사 엘지화학 카본나노튜브 및 그 제조방법
KR101424910B1 (ko) * 2012-01-11 2014-07-31 주식회사 엘지화학 카본나노튜브 및 그 제조방법
KR101330364B1 (ko) * 2012-03-09 2013-11-15 재단법인 한국탄소융합기술원 고분자 복합체용 탄소나노튜브 펠렛 합성 방법
JP5497109B2 (ja) * 2012-07-03 2014-05-21 昭和電工株式会社 複合炭素繊維
JP6237311B2 (ja) * 2014-02-17 2017-11-29 東洋インキScホールディングス株式会社 カーボンナノチューブ合成用触媒
KR101783446B1 (ko) * 2014-09-30 2017-09-29 주식회사 엘지화학 중공형 탄소 캡슐의 제조 방법
KR101701973B1 (ko) * 2015-06-05 2017-02-03 금호석유화학 주식회사 페라이트 금속 산화물 촉매의 제조방법
CN108698830A (zh) * 2016-02-27 2018-10-23 学校法人早稻田大学 纤维状碳纳米结构体的制造方法
US10065244B2 (en) * 2016-04-18 2018-09-04 Taiwan Powder Technologies Co., Ltd. Method for fabricating porous spherical iron-based alloy powder
US11040876B2 (en) 2017-09-18 2021-06-22 West Virginia University Catalysts and processes for tunable base-grown multiwalled carbon nanotubes
KR102303667B1 (ko) 2017-10-31 2021-09-16 에스케이이노베이션 주식회사 탄소 나노 튜브 합성용 촉매 및 탄소 나노 튜브의 제조 방법
CN109745984B (zh) * 2017-11-08 2022-02-18 中国科学院金属研究所 一种金属单原子掺杂碳纳米管的制备方法
CN108101026B (zh) * 2017-12-21 2020-11-03 江苏天奈科技股份有限公司 一种酸洗碳纳米管的干燥方法
CN110330008A (zh) * 2019-06-20 2019-10-15 徐成德 一种碳纳米管的连续生产方法
EP3789113A1 (de) * 2019-09-05 2021-03-10 Evonik Operations GmbH Materialien mit kohlenstoffeingebetteten nickelnanopartikeln, verfahren zu deren herstellung und verwendung als heterogene katalysatoren
US20220331777A1 (en) * 2019-09-27 2022-10-20 Zeon Corporation Method of producing catalyst-bearing support and method of producing fibrous carbon nanostructure
CN116761675A (zh) * 2021-01-28 2023-09-15 日本瑞翁株式会社 催化剂负载体和纤维状碳纳米结构体的制造方法
CN114405513A (zh) * 2022-01-29 2022-04-29 江门道氏新能源材料有限公司 一种金属复合材料及其制备方法和应用
CN114433055B (zh) * 2022-03-10 2022-12-23 苏州大学 一种具有高度开放多级孔结构的碳催化剂及其制备方法和应用
CN114923125B (zh) * 2022-05-23 2023-11-03 中国计量大学 一种利用悬浮纳米颗粒吸附增强氢气稀释的安全排放装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0056004A2 (de) 1981-01-05 1982-07-14 Exxon Research And Engineering Company Herstellung von Kohlenstoffasern in der Gegenwart von Eisenmonoxid
WO1986003455A1 (en) 1984-12-06 1986-06-19 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same, and compositions containing same
US6358878B1 (en) 1989-09-28 2002-03-19 Hyperion Catalysis International, Inc. Carbon fibril-forming metal catalysts
WO2003004410A1 (en) 2001-07-03 2003-01-16 Facultes Universitaires Notre-Dame De La Paix Catalyst supports and carbon nanotubes produced thereon
WO2006050903A2 (de) 2004-11-13 2006-05-18 Bayer Materialscience Ag Katalysator zur herstellung von kohlenstoffnanoröhrchen durch zersetzung von gasförmigen kohlenstoffverbindungen an einem heterogenen katalysator
WO2007093337A2 (de) 2006-02-16 2007-08-23 Bayer Materialscience Ag Verfahren zur kontinuierlichen herstellung von katalysatoren

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105572A (en) * 1976-03-31 1978-08-08 E. I. Du Pont De Nemours And Company Ferromagnetic toner containing water-soluble or water-solubilizable resin(s)
US4717559A (en) * 1986-06-03 1988-01-05 E.C.C. America Inc. Kaolin calciner waste heat and feed recovery system and method
CA2175814C (en) * 1993-11-08 2000-01-04 Stephane Fabrice Rouanet Antiperspirants containing aerogel particles
US6102024A (en) * 1998-03-11 2000-08-15 Norton Company Brazed superabrasive wire saw and method therefor
EP1154050A1 (de) * 2000-05-13 2001-11-14 Korean Carbon Black Co., Ltd., Degussa Group Kohlenstoffibrillen und Verfahren zu ihrer Herstellung
US20020009589A1 (en) * 2000-05-13 2002-01-24 Jung-Sik Bang Carbon fibrils and method for producing same
CN1141250C (zh) * 2001-05-25 2004-03-10 清华大学 一种流化床连续化制备碳纳米管的方法及其反应装置
AU2002347460A1 (en) * 2001-11-22 2003-06-10 Sasol Technology (Proprietary) Limited Ferrihydrite and aluminium-containing fischer-tropsch catalysts
US7250148B2 (en) * 2002-07-31 2007-07-31 Carbon Nanotechnologies, Inc. Method for making single-wall carbon nanotubes using supported catalysts
CN101102845A (zh) * 2004-11-03 2008-01-09 国际壳牌研究有限公司 耐磨性颗粒催化剂
EP1674154A1 (de) * 2004-12-23 2006-06-28 Nanocyl S.A. Herstellungsverfahren eines Trägerkatalysators zur Herstellung von Kohlenstoffnanoröhrchen
US20060148653A1 (en) * 2005-01-04 2006-07-06 Keller William W Light weight carriers
EP1797950A1 (de) * 2005-12-14 2007-06-20 Nanocyl S.A. Katalysator zur Herstellung von mehrwandigen Kohlenstoffnanoröhrchen
DE102006017695A1 (de) * 2006-04-15 2007-10-18 Bayer Technology Services Gmbh Verfahren zur Herstellung von Kohlenstoffnanoröhrchen in einer Wirbelschicht

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0056004A2 (de) 1981-01-05 1982-07-14 Exxon Research And Engineering Company Herstellung von Kohlenstoffasern in der Gegenwart von Eisenmonoxid
WO1986003455A1 (en) 1984-12-06 1986-06-19 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same, and compositions containing same
EP0205556A1 (de) 1984-12-06 1986-12-30 Hyperion Catalysis Int Kohlenstoffibrillen, deren herstellung und zusammensetzungen die diese enthalten.
EP0205556B1 (de) 1984-12-06 1995-05-10 Hyperion Catalysis International, Inc. Kohlenstoffibrillen, deren herstellung und zusammensetzungen die diese enthalten
US6358878B1 (en) 1989-09-28 2002-03-19 Hyperion Catalysis International, Inc. Carbon fibril-forming metal catalysts
WO2003004410A1 (en) 2001-07-03 2003-01-16 Facultes Universitaires Notre-Dame De La Paix Catalyst supports and carbon nanotubes produced thereon
WO2006050903A2 (de) 2004-11-13 2006-05-18 Bayer Materialscience Ag Katalysator zur herstellung von kohlenstoffnanoröhrchen durch zersetzung von gasförmigen kohlenstoffverbindungen an einem heterogenen katalysator
WO2007093337A2 (de) 2006-02-16 2007-08-23 Bayer Materialscience Ag Verfahren zur kontinuierlichen herstellung von katalysatoren

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Gehrmann et al., "Trockner", Chem. Ing. Tech. (75) 2003, 1706-1714
Geus und DeJong in einem Übersichtsartikel (K. P. De Jong und J. W. Geus in Catal. Rev.-Sci. Eng., 42(4), 2000, Seiten 481-510)
Handbook of Heterogeneous Catalysis, Vol 1, 1997, Kap. 2.1.3.
Handbook of Heterogeneous Catalysis, Vol 1, 1997, Kap. 2.2.
Iijima in 1991 (S. Iijima, Nature 354, 56-58, 1991)
K. Masters, "Spray Drying Handbook", Longman Scientific & Technical 1991, 725 Seiten, ISBN 0-582-06266-7
M. G. Nijkamp, Universiteit Utrecht, NL, 2002 "Hydrogen Storage using Physisorption Modified Carbon Nanofibers and Related Materials"
Shaikhutdinov et al. (Shamil' K. Shaikhutdinov, L. B. Avdeeva, O. V. Goncharova, D. I. Kochubey, B. N. Novgorodov, L. M. Plyasova, "Coprecipitated Ni-Al and Ni-Cu-Al catalysts for methane decomposition and carbon deposition I.", Applied Catalysis A: General, 126, 1995, Seiten 125-139)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011020568A1 (de) * 2009-08-21 2011-02-24 Bayer Materialscience Ag Kohlenstoffnanoröhrchen-agglomerat
US9422162B2 (en) 2009-08-21 2016-08-23 Covestro Deutschland Ag Carbon nanotube agglomerate
DE102013214229A1 (de) * 2013-07-19 2015-01-22 Bayer Materialscience Ag Verfahren zur Herstellung eines effizienten Katalysators für die Produktion mehrwandiger Kohlenstoffnanoröhrchen, mehrwandiges Kohlenstoffnanoröhrchen und Kohlenstoffnanoröhrchenpulver

Also Published As

Publication number Publication date
CN101808738A (zh) 2010-08-18
WO2009043445A1 (de) 2009-04-09
JP5335796B2 (ja) 2013-11-06
KR20100059913A (ko) 2010-06-04
JP2010540220A (ja) 2010-12-24
EP2197579A1 (de) 2010-06-23
US20090087372A1 (en) 2009-04-02
TW200932354A (en) 2009-08-01

Similar Documents

Publication Publication Date Title
DE102007046160A1 (de) Verfahren zur Herstellung eines Katalysators für die Herstellung von Kohlenstoffnanoröhrchen
EP2467328B1 (de) Kohlenstoffnanoröhrchen-agglomerat
DE102004054959A1 (de) Katalysator zur Herstellung von Kohlenstoffnanoröhrchen durch Zersetzung von gas-förmigen Kohlenverbindungen an einem heterogenen Katalysator
EP2010701B1 (de) Verfahren zur herstellung von kohlenstoffnanoröhrchen in einer wirbelschicht
DE102006007147A1 (de) Verfahren zur kontinuierlichen Herstellung von Katalysatoren
WO2009080204A1 (de) Verfahren zur herstellung von stickstoff-dotierten kohlenstoffnanoröhrchen
DE112007001681T5 (de) Verfahren zum Herstellen von NiO- und Ni-Nanostrukturen
WO2015007670A1 (de) Verfahren zur herstellung eines effizienten katalysators für die produktion mehrwandiger kohlenstoffnanoröhrchen, mehrwandiges kohlenstoffnanoröhrchen und kohlenstoffnanoröhrchenpulver
EP1901995A2 (de) Kohlenstoff-nanopartikel, deren herstellung und deren verwendung
EP2303782B1 (de) Verfahren zur herstellung nanokristalliner nickeloxide
DE10122027A1 (de) Verfahren zur Herstellung von Acrylsäure durch heterogen katalysierte Partialoxidation von Propan
WO2011101300A2 (de) Herstellung von kohlenstoffnanoröhrchen
DE102005032071A1 (de) Nanoporöse Katalysatorteilchen, deren Herstellung und deren Verwendung
EP2125213B1 (de) Aus hohlen formen bestehende mischoxidkatalysatoren
EP3120926A1 (de) Verfahren zur herstellung von mischoxidkatalysatoren
DE102012012510B4 (de) Graphithaltiger Katalysatorformkörper, dessen Herstellverfahren sowie Verwendung
DE102008004135B4 (de) Katalysatorpulver

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20120403