KR101018660B1 - 다중벽 탄소나노튜브 제조용 촉매조성물 - Google Patents

다중벽 탄소나노튜브 제조용 촉매조성물 Download PDF

Info

Publication number
KR101018660B1
KR101018660B1 KR1020090128632A KR20090128632A KR101018660B1 KR 101018660 B1 KR101018660 B1 KR 101018660B1 KR 1020090128632 A KR1020090128632 A KR 1020090128632A KR 20090128632 A KR20090128632 A KR 20090128632A KR 101018660 B1 KR101018660 B1 KR 101018660B1
Authority
KR
South Korea
Prior art keywords
catalyst
catalyst composition
carbon nanotubes
metal
carbon
Prior art date
Application number
KR1020090128632A
Other languages
English (en)
Inventor
류상효
이완성
장영찬
Original Assignee
금호석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사 filed Critical 금호석유화학 주식회사
Priority to KR1020090128632A priority Critical patent/KR101018660B1/ko
Priority to US12/836,014 priority patent/US8673807B2/en
Application granted granted Critical
Publication of KR101018660B1 publication Critical patent/KR101018660B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 다중벽 탄소나노튜브(Multi-Walled Carbon Nanotube; MWCNT)를 고수율로 제조하기 위한 촉매조성물에 관한 것이다. 보다 상세하게는 본 발명은 주 촉매로서 Co, Al과 불활성 지지체로서 Mg를 주성분으로 하고 선택적으로 Ni, Cr, Mn, Mo, W, Pb, Ti, Sn, 또는 Cu 중에서 선택된 하나 이상의 금속을 조촉매로서 혼합 첨가시킨 다성분 금속 촉매에 관한 것이다. 더욱이 본 발명의 촉매조성물을 다중벽 탄소나노튜브의 합성에 사용함으로써 5~20nm의 직경과 100~10,000의 아스펙트비를 가지는 다중벽 탄소나노튜브를 고수율로 제조할 수 있다.
다중벽 탄소나노튜브, 촉매조성물, 다성분 금속 촉매, 고수율

Description

다중벽 탄소나노튜브 제조용 촉매조성물 {A catalyst composition for the synthesis of multi-walled carbon nanotubes}
본 발명은 다중벽 탄소나노튜브(Multi-Walled Carbon Nanotube; MWCNT)를 고수율로 제조하기 위한 촉매조성물에 관한 것이다. 보다 상세하게는 본 발명은 주 촉매로서 Co, Al과 불활성 지지체로서 Mg를 주성분으로 하고 선택적으로 Ni, Cr, Mn, Mo, W, Pb, Ti, Sn, 또는 Cu 중에서 선택된 하나 이상의 금속을 조촉매로서 혼합 첨가시킨 다성분 금속 촉매에 관한 것이다. 더욱이 본 발명의 촉매조성물을 다중벽 탄소나노튜브의 합성에 사용함으로써 5~20nm의 직경과 100~10,000의 아스펙트비를 가지는 다중벽 탄소나노튜브를 고수율로 제조할 수 있다.
탄소나노튜브는 1개의 탄소 원자가 3개의 다른 탄소 원자와 결합한 육각형 벌집 모양의 흑연면이 나노크기의 직경으로 둥글게 말린 형태를 갖고 있으며, 크기나 형태에 따라 독특한 물리적 성질을 갖는 거대 분자이다. 속이 비어 있어 가볍고 전기 전도도는 구리만큼 좋으며, 열전도도는 다이아몬드만큼 우수하고 인장력은 철 강에 못지 않다. 말려진 형태에 따라서 단일벽 탄소나노튜브(Single-Walled Carbon Nanotube; SWCNT), 다중벽 탄소나노튜브(Multi-Walled Carbon Nanotube; MWCNT), 다발형 탄소나노튜브(Rope Carbon Nanotube)로 구분되기도 한다.
이러한 탄소나노튜브는 일반적으로 전기방전법, 레이저 증착법, 플라즈마 화학기상증착법, 열화학증착법, 기상합성법 및 전기분해법 등의 방법으로 제조될 수 있으며, 이중 기상합성법의 경우 기판을 사용하지 않고 반응로 안에 탄소를 함유하고 있는 가스와 촉매금속을 직접 공급하여 반응시켜 탄소나노튜브의 증착물을 형성하기 때문에 고순도의 탄소나노튜브를 대량으로 합성할 수 있으면서도 경제성이 뛰어나 가장 각광받고 있다.
기상합성법에서는 촉매금속의 사용이 필수적이며, 이중 Ni, Co 또는 Fe 등이 가장 많이 쓰이고 있으며, 각각의 촉매금속 입자는 하나의 씨드(seed)로 작용하여 탄소나노튜브가 형성되기 때문에, 촉매금속을 수 나노부터 수십 나노 크기의 입자로 형상화하는 것이 탄소나노튜브 합성의 핵심 기술이라 할 수 있다. 따라서, 탄소나노튜브 합성에 필수적인 촉매금속의 제조방법에 대한 여러 연구가 진행되고 있다.
지금까지 보고된 촉매금속의 제조방법으로는, 예를 들면 촉매 담지체 및 촉매금속 또는 금속 조합을 용액 상태에서 pH, 온도 및/또는 조성물을 변화시켜 공침 시킨 후 침전물을 분리하여 공기 또는 다른 가스 환경에서 가열 처리하는 방법, 미립자 담체물질과 촉매 금속을 함유하는 현탁액을 건조 또는 증발시키는 초기 함침법, 제올라이트와 같은 양이온 미립자 담체물질을 촉매 금속염과 혼합하여 이온화 시킨 후 수소 또는 다른 환원수단을 이용하여 고온에서 금속입자로 환원하는 방법, 촉매금속과 마그네시아, 알루미나, 실리카 등의 고체 산화물 담체물질을 혼합된 상태에서 연소시키는 방법, 및 촉매금속 전구체 용액을 분무/미세화하여 연소시키는 방법 등이 보고되고 있는 실정이다.
화학적 기상증착법(CCVD)에 사용되며 촉매로 불리는 금속 성분은 합성 공정 동안 서서히 소모되는데, 이러한 소모는, 예를 들어 전체 촉매 입자 상에 탄소가 석출되어 입자를 완전히 덮어버리는 것(인캡핑)으로 인한 금속 성분의 실활화 때문이다. 일반적으로 실활화된 촉매의 재활성화는 가능하지 않거나 경제적으로 의미가 없다. 현재까지 알려진 촉매의 경우, 지지체 및 활성 금속 촉매를 포함하는 촉매 조성물 1g 당 기껏해야 몇 그램의 탄소 나노튜브만이 수득되는 경우도 많이 관찰되고 있다. 상기한 촉매의 실활화로 인한 소모 때문에, 사용된 촉매를 기준으로 일정 시간에 탄소나노튜브의 고수율을 확보할 수 있는 촉매 및 공정의 개발이 당업계에서는 상업화의 중요한 요건이자 걸림돌이 되고 있는 실정이다.
현재까지 알려진 특허문헌에 개시된 탄소나노튜브용 촉매 조성물로는 다음과 같은 기술이 개시되어 있다.
미국 하이페리온 카탈리시스 인터네셔날사의 미국특허 제5,165,909호에 의하면, Al2O3 담지체에 철 촉매를 담지한 후 500℃ 내외의 온도에서 공기 중에서 소성시키고, 약 900℃ 정도의 온도에서 수소 가스를 사용하여 촉매를 사전환원 처리한 후, 약 1,000℃ 이상의 고온에서 탄소 공급원 가스인 벤젠과 수소 가스를 함께 흘려주어 카본 원섬유를 제조하는 방법을 기술하고 있다. 그러나, 이러한 문헌에서 보여주는 탄소나노튜브의 촉매 수율은 낮은 편이며, 촉매를 소성하고 사전환원 처리하거나 합성 중에 수소가스를 탄소가스와 함께 혼합하여 흘려주며, 합성조건도 800℃ 이상의 고온인 단점이 존재하고 있다.
한편 이와 같은 단점을 개선하기 위해 미국 하이페리온 카탈리시스 인터네셔날사의 미국특허 제6,696,387호 ‘탄소 섬유를 제조하기 위한 촉매 및 그의 제조방법’에서는 알루미나 및/또는 마그네시아 촉매 담지체 분말과 철을 주촉매로 함유하고 선택적으로 V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt 또는 Lanthanides에서 선택된 적어도 하나 이상의 금속원소로 구성된 촉매 조성물을 개시하고 있다. 그러나 이와 같은 촉매 조성물의 경우 알루미나 및/또는 마그네시아 촉매 담지체 분말을 사용함으로써 담지체 분말 내에 주촉매인 금속 촉매의 균질한 분산이 이루어지지 않아 다중벽 탄소나노튜브를 고수율로 정밀하게 제조하는 데는 어려움이 있었던 것이다.
한편 벨기에 에스에이 나노실 사의 PCT 국제특허 공보 WO 2007/33438호 에서는 다중벽 탄소나노튜브 생산을 위한 촉매 시스템을 개시하고 있는 바, 일반식 (Ni, Co)FeyOz(Al2O3)w 으로 표시되는 촉매 조성물을 탄화수소류를 다중벽 탄소나노튜브 및 수소로 선택적으로 전환시키기 위한 촉매로 개시하고 있으며 상기 일반식의 촉매 조성물 중 바람직하게는 CoFe2O4(Al2O3)4,5, CoFe2O4(Al2O3)16 또는 CoFe2O4(Al2O3)32로 표시되는 촉매 조성물을 개시하고 있는 것이다. 즉 상기 촉매 조성물 중 Al2O3는 촉매 담지체 분말로 사용하고 있고 주촉매로는 (Ni, Co)와 Fe를 사용하고 있는 것이다. 그러나 이와 같은 촉매 조성물의 경우도 알루미나 촉매 담지체 분말을 사용함으로써 담지체 분말 내에 주촉매인 (Ni, Co), Fe 금속 촉매의 균질한 분산이 이루어지지 않아 다중벽 탄소나노튜브를 고수율로 정밀하게 제조하는 데는 어려움이 있었던 것이다.
따라서 본 발명자들은 상기와 같은 종래의 문제점을 해결하기 위해 대한민국 특허출원 제10-2009-11712호 '얇은 다중벽 탄소나노튜브 제조용 촉매조성물 및 이의 제조방법'에서 [Fea:Alb]x:My:Mgz의 조성으로 구성된 탄소나노튜브 제조용 촉매 조성물을 개시한 바 있다. 이때 Fe, Al은 촉매 활성 물질로서 철, 알루미늄, 그의 산화물 또는 유도체를 나타내며, Mg는 불활성 지지체로서 마그네슘, 그의 산화물 또는 유도체를 나타내며, M은 Co, Ni, Cr, Mn, Mo, W, V, Sn 또는 Cu 중에서 선택된 하나 이상의 전이금속 또는 그의 산화물, 유도체를 나타내는 것이다.
그러나 본 발명자들은 상기한 [Fea:Alb]x:My:Mgz의 조성으로 구성된 탄소나노튜브 제조용 촉매 조성물에서 주촉매 금속을 Fe에서 Co로 전환시키고 Fe와 Co를 최적 몰분율로 조성을 변화시킬 때 촉매 담지체 성분을 포함한 모든 촉매조성물의 몰분율을 조절함으로써 수용액 상에서 공침시키거나, 분무 건조 또는 분무 열분해시켜 제조할 때 더욱 균일한 나노촉매 조성물로 분산되어 촉매 수율이 현저히 증가됨을 발견하고 본 발명을 완성하게 된 것이다.
즉 본 발명의 촉매조성물인 주 촉매로서 Co, Al과 불활성 지지체로서 Mg를 주성분으로 하고 선택적으로 Ni, Cr, Mn, Mo, W, Pb, Ti, Sn, 또는 Cu 중에서 선택된 하나 이상의 금속을 조촉매로서 혼합 첨가시킨 다성분 금속 촉매를 개발함으로써 촉매제조 공정 중에 수소환원 공정을 사용하지 않더라도 높은 촉매 수율을 나타냄을 확인하여 탄소나노튜브를 고수율로 합성할 수 있는 촉매조성물을 개발하게 된 것이다.
본 발명이 해결하고자 하는 기술적 과제는 종래의 본 발명자들의 촉매 조성물인 [Fea:Alb]x:My:Mgz의 조성으로 구성된 탄소나노튜브 제조용 촉매 조성물에서 주촉매 금속으로 사용하는 Fe를 Co로 전환시켜 Fe와 Co를 최적 몰분율로 조성을 변화시키고, 촉매 담지체 성분을 포함한 모든 촉매조성물의 몰분율을 조절하여 수용액 상에서 공침시키거나, 분무 건조 또는 분무 열분해시켜 제조할 때 더욱 균일한 나노촉매 조성물로 분산시켜 촉매 수율을 향상코자 한 것이다.
즉 촉매담지체 성분을 포함한 모든 촉매조성물을 수용액 상에서 공침시키거나, 분무 건조 또는 분무 열분해시켜 제조하여 더욱 균일한 신규의 나노촉매 조성물을 제공하여 촉매수율을 증가시킬 뿐 아니라, 또한 본 발명의 촉매조성물인 주 촉매로서 Co, Al과 불활성 지지체로서 Mg를 주성분으로 하고 선택적으로 Ni, Cr, Mn, Mo, W, Pb, Ti, Sn, 또는 Cu 중에서 선택된 하나 이상의 금속을 조촉매로서 혼합 첨가시킨 다성분 금속 촉매를 개발함으로써 촉매제조 공정 중에 수소환원 공정을 사용하지 않더라도 높은 촉매 수율을 나타냄을 확인하여 탄소나노튜브를 고수율로 합성할 수 있는 촉매조성물을 개발코자 한 것이다.
본 발명의 목적은 하기식으로 표시되는 탄소나노튜브 합성용 촉매조성물을 제공하는 것이다.
[Coa:Alb]x:My:Mgz
상기 식에서
Co, Al은 촉매 활성 물질로서 코발트, 알루미늄, 그의 산화물 또는 유도체 등을 나타내며,
Mg는 불활성 지지체로서 마그네슘, 그의 산화물 또는 유도체를 나타내며,
M은 Ni, Cr, Mn, Mo, W, Pb, Ti, Sn, 또는 Cu 중에서 선택된 하나 이상의 전이금속 또는 그의 산화물, 유도체이다.
x, y, z는 각각 [Co와 Al의 합], M, Mg의 몰분율을 나타내며
x+y+z=10, 2.0≤x≤9.5, 0.0≤y≤2.5, 0.5≤z≤8.0이고,
a, b는 Co와 Al의 몰분율을 나타내며
a+b=10, 4.0≤a≤8.0, 2.0≤b≤6.0이다.
이때, 상기 식에서 x, y, z는 각각 [Co와 Al의 합], M, Mg의 몰분율을 나타내며 바람직하게는 x+y+z=10, 3.0≤x≤9.0, 0.0≤y≤2.0, 1.0≤z≤7.0이고; a, b는 Co와 Al의 몰분율을 나타내며 바람직하게는 a+b=10, 4.5≤a≤7.5, 2.5≤b≤5.5이다.
본 발명의 또다른 목적은 촉매 활성 금속, 불활성 지지체로 구성된 금속 촉매 조성 ([Fea:Alb]x:My:Mgz) 각각의 금속염을 물에 혼합 용해시키는 단계, 상기 금속염 혼합 수용액을 공침제를 넣어 균질하게 공침시키거나, 분무 건조시키거나, 분무 열 분해시켜 금속 촉매 조성물을 수득하는 단계, 상기 수득된 금속 촉매 조성물을 여과, 건조 및 분쇄하고 400~1200℃의 고온에서 열산화 시키는 단계 및 상기 열 산화된 금속 촉매 조성물을 다시 건식 분쇄 시켜 미립화 하는 단계를 포함하는 탄소나노튜브 합성용 촉매조성물의 제조방법을 제공하는 것이다.
이때, 상기 금속염은 금속의 질산염, 황산염, 알콕사이드, 카보네이트, 클로라이드 중에서 선택된 형태임을 특징으로 한다.
본 발명의 또다른 목적은 상기 탄소나노튜브 합성용 촉매조성물을 준비하는 단계, 반응기 내부에 촉매조성물을 투입하고 500~900℃의 온도에서 반응기 내부로 탄소수 1~4의 포화 또는 불포화 탄화수소에서 선택된 1종 이상의 탄소 공급원 또는 상기 탄소 공급원과 수소의 혼합가스를 주입하는 단계, 및 촉매 표면 위에서 주입된 탄소 공급원의 고온 열 분해를 통해 탄소 원자를 화학적 기상 증착법으로 증착시켜 탄소나노튜브를 성장시키는 단계로 구성된 탄소나노튜브의 제조방법을 제공하는 것이다.
이때, 상기 반응기는 수직형 고정층 반응기, 수평관형 고정층 반응기, 회전 관형 반응기, 이동층 반응기 또는 유동층 반응기에서 선택됨을 특징으로 한다.
또한 본 발명은 상기 탄소나노튜브 제조방법에 따라 제조된 5~20nm의 직경과 100~10,000의 아스펙트비를 가지는 탄소나노튜브를 제공하는 것이다.
한편 본 발명의 또다른 목적은 탄소나노튜브를 전기전도성 및 강도보강용 고분자 복합재료, 열전도성 및 강도보강용 금속 복합재료, 연료전지용 촉매의 담체, 유기단위 반응의 촉매의 담체, 메탄 및 수소의 가스 저장재, 리튬이차전지의 전극재 및 도전재, 고용량 전기 2중층 커패시티의 전극재, 디스플레이의 방출소자 및 멤브레인 소재 등으로 사용하는 방법을 제공하는 것이다.
본 발명의 효과는 본 발명의 신규한 촉매조성물을 이용하여 제조된 탄소나노튜브는 5~20nm의 직경을 가지는 다중벽 탄소나노튜브를 제공할 수 있다. 또한, 본 발명에서 제시한 주 촉매로서 Co, Al과 불활성 지지체로서 Mg를 주성분으로 하고 선택적으로 Ni, Cr, Mn, Mo, W, Pb, Ti, Sn, 또는 Cu 중에서 선택된 하나 이상의 금속을 조촉매로서 혼합 첨가시킨 다성분 금속 촉매조성물을 이용하면 30분 정도의 짧은 합성시간에 종래 촉매 대비 약 3~5배 이상의 고수율로 고순도 탄소나노튜브 소재를 제조할 수 있는 장점이 있다.
본 발명의 또 다른 효과는 본 발명에서 제시한 촉매조성물은 일반적으로 당업계에서 촉매제조시 수행하는 수소환원 공정을 거치지 않고도 고수율의 탄소나노튜브를 제조할 수 있으므로 촉매제조 공정의 단순화를 이룰 수 있는 장점이 있다. 이러한 촉매제조 공정의 단순화와 높은 촉매수율은 탄소나노튜브의 제조원가를 낮출 수 있어, 본 발명의 촉매조성물로 제조된 탄소나노튜브는 다양한 응용분야에 경제적으로 적용할 수 있는 장점이 있다.
본 발명의 목적은 하기식으로 표시되는 탄소나노튜브 합성용 촉매조성물을 제공하는 것이다.
[Coa:Alb]x:My:Mgz
상기 식에서
Co, Al은 촉매 활성 물질로서 코발트, 알루미늄, 그의 산화물 또는 유도체 등을 나타내며,
Mg는 불활성 지지체로서 마그네슘, 그의 산화물 또는 유도체를 나타내며,
M은 Ni, Cr, Mn, Mo, W, Pb, Ti, Sn, 또는 Cu 중에서 선택된 하나 이상의 전이금속 또는 그의 산화물, 유도체이다.
x, y, z는 각각 [Co와 Al의 합], M, Mg의 몰분율을 나타내며
x+y+z=10, 2.0≤x≤9.5, 0.0≤y≤2.5, 0.5≤z≤8.0이고,
a, b는 Co와 Al의 몰분율을 나타내며
a+b=10, 4.0≤a≤8.0, 2.0≤b≤6.0이다.
이때, 상기 식에서 x, y, z는 각각 [Co와 Al의 합], M, Mg의 몰분율을 나타내며 바람직하게는 x+y+z=10, 3.0≤x≤9.0, 0.0≤y≤2.0, 1.0≤z≤7.0이고; a, b는 Co와 Al의 몰분율을 나타내며 바람직하게는 a+b=10, 4.5≤a≤7.5, 2.5≤b≤5.5이다.
또한, 본 발명의 촉매조성물은 주 촉매로서 Co, Al과 불활성 지지체로서 Mg를 주성분으로 하고 선택적으로 Ni, Cr, Mn, Mo, W, Pb, Ti, Sn, 또는 Cu 중에서 선택된 하나 이상의 금속을 조촉매로서 혼합 첨가시킴에 있어 각각의 금속염을 물에 녹인 수용액으로부터 제조하는 것을 특징으로 하며, 그 제조방법으로는 금속염 수용액에 공침제 수용액을 넣어 촉매조성물을 공침시키는 공침법, 금속염 수용액의 분무건조법, 금속염 수용액의 분무열분해법에서 선택될 수 있음을 특징으로 한다.
본 발명의 촉매조성물의 대표적인 제조방법은 다음과 같은 단계를 지닌다. 1) 촉매조성물 각각의 원료인 금속염을 모두 섞어 물에 용해한 금속염 혼합 용액(P1)을 준비하는 단계; 2) 상기 금속염 혼합 용액에 공침제를 첨가하여 공침시키 거나, 분무 건조시키거나 분무 열분해시켜 복합금속 침전물을 형성하는 단계(P2); 3) 필터링으로 상기 침전물을 분리하여 80~230℃의 오븐에서 건조하는 단계(P3); 4) 건조된 복합금속 침전물을 건식 분쇄하는 단계(P4); 5) 분쇄된 복합금속 침전물을 400~1,200℃의 고온에서 열산화하는 단계(P5); 6) 열산화된 촉매조성물을 한번 더 건식 분쇄하여 미립화하는 단계(P6)이다.
본 발명의 방법에서 사용되는 금속염은 질산염, 황산염, 알콕사이드, 카보네이트, 클로라이드 중 한가지 형태일 수 있으며, 바람직하게는 질산염 형태의 금속염을 사용하는 것이다.
본 발명에 따르는 신규 촉매조성물은 하기의 몇몇 실시예에 의해 예시되지만, 이러한 실시예는 본 발명을 제한하는 것으로 이해되어서는 안 된다.
(실시예 1) 촉매조성물 구성 성분 중 Co와 Al의 중량비율 변화
전이금속 M이 포함되지 않은 Co, Al, Mg의 세가지 조성물로 된 촉매를 제조하여 탄소나노튜브를 합성하였다. Co와 Al의 합의 몰비율을 7, M의 몰비율은 0, Mg의 몰비율은 3으로 고정된 조건에서 Co와 Al의 몰비율을 10:0에서 0:10까지 변량한 일련의 촉매들을 제조하고 탄소나노튜브를 합성하여 Co와 Al의 몰비율 변화에 따른 탄소나노튜브의 촉매수율 변화를 확인하였다.
촉매의 제조는 다음의 제조방법에 따라 수행하였다. 소정량의 Co(NO3)2·6H2O, Al(NO3)3·9H2O, Mg(NO3)2·6H2O를 탈이온화수에 녹인 용액과 소정량의 중탄산암모늄(NH4HCO3)을 탈이온화수에 녹인 용액을 준비하였다. 실온에서 금속염 혼합 용액에 중탄산암모늄 용액을 분할 첨가하면서 교반하여 침전물을 형성시키고 60분 동안 더 교반하였다. 형성된 침전물은 필터 페이퍼를 이용하여 여과하였으며 얻어진 필터 케이크를 120℃의 공기 분위기 오븐에서 24시간 동안 건조시킨 후 건식 고회전 분쇄기를 이용하여 분쇄하였다. 이어서 600℃의 공기 분위기 반응기에서 4시간 동안 열산화한 후 다시 한번 건식 고회전 분쇄기로 분쇄하여 촉매조성물을 미립화하였다.
이렇게 준비된 촉매를 이용하여 실험실 규모의 고정층 장치에서 탄소나노튜브를 합성하였다. 소정량의 촉매를 석영관의 중간부에 장착한 후, 질소 분위기에서 소정의 온도까지 승온하고 일정 시간 동안 유지시킨 후 소정의 시간 동안 에틸렌과 수소 가스의 부피 혼합비를 4:1로 흘리면서 1시간 동안 합성 반응을 행하여 소정량의 다중벽 탄소나노튜브를 제조하였다. 이후, 석출된 탄소의 양을 상온에서 수득하여 측정하였다. 석출된 탄소의 구조 및 형태를 FE-SEM 및 HR-TEM 분석을 이용하여 관찰하였다. 하기에 촉매수율로 불리는, 사용된 촉매를 기준으로 석출된 탄소의 양은 촉매의 중량 (Mcat) 및 반응 후 중량 증가량 (Mtotal-Mcat)을 기준으로 정의하 였다. (촉매수율 = 100*(Mtotal-Mcat)/Mcat) 본 발명을 예시하는 실시예1을 하기 표1에 나타내었다.
아래의 표 1로부터 본 발명의 촉매조성물은 Co와 Al의 몰비율이 Co가 4.0≤a≤8.0이고, Al이 2.0≤b≤6.0의 일정 범위에 속할 경우에만 고수율로 탄소나노튜브를 제조할 수 있음을 알 수 있다.
실시예 1에서 제조한 촉매를 이용한 탄소나노튜브 합성 결과
촉매조성* 촉매
투입량
(mg)
반응온도
(℃)
반응가스 유랑
(mL/분)
반응시간
(분)
촉매수율
(%)
[Co:Al]:Mg=[7.95:2.05]:3 100



650 C2H4:H2=
160:40
60 1842
[Co:Al]:Mg=[6.47:3.53]:3 2326
[Co:Al]:Mg=[5.79:4.21]:3 2815
[Co:Al]:Mg=[5.17:4.83]:3 2508
[Co:Al]:Mg=[4.07:5.93]:3 1827
*주) 상기 5가지 촉매의 [Co:Al]:Mg의 몰비율은 7:3으로 동일하다.
(비교예 1) 촉매조성물 구성 성분 중 Co와 Al의 중량비율 변화
실시예 1과 동일한 방법으로 촉매조성물 구성 성분 중 Co와 Al의 몰비율을 변화시켜 제조된 촉매조성물의 촉매수율을 측정하였다. 아래의 표 2로부터 본 발명의 촉매조성물이 Co와 Al의 몰비율이 Co가 4.0≤a≤8.0이고, Al이 2.0≤b≤6.0의 일정 범위 밖에 있는 경우 고수율로 탄소나노튜브를 제조할 수 없었다. 또한 조성물 중 Co를 사용하지 않은 경우, 즉 Al:Mg=7:3인 촉매의 경우에는 촉매수율이 0%로 촉매작용을 전혀 하지 못함을 알 수 있으며 이러한 결과로부터 Al은 단독으로는 촉매 활성이 없으나 Co와 같이 사용할 경우 Co의 촉매수율을 매우 크게 증가시켜 주는 보조촉매로 작용함을 알 수 있다.
비교예 1에서 제조한 촉매를 이용한 탄소나노튜브 합성 결과
촉매조성* 촉매
투입량
(mg)
반응온도
(℃)
반응가스
유랑
(mL/분)
반응시간
(분)
촉매수율
(%)
[Co:Al]:Mg=[10:0]:3 100 650 C2H4:H2=
160:40
60 628
[Co:Al]:Mg=[3.14:6.86]:3 1185
[Co:Al]:Mg=[2.34:7.66]:3 726
[Co:Al]:Mg=[1.64:8.36]:3 556
[Co:Al]:Mg=[1.03:8.97]:3 421
[Co:Al]:Mg=[0.48:9.52]:3 127
[Co:Al]:Mg=[0:10]:3 0
*주) 상기 7가지 촉매의 [Co:Al]:Mg의 몰비율은 7:3으로 동일하다.
(실시예 2) 탄소나노튜브 제조용 촉매조성물
전이금속 M이 포함된 Co, Al, M, Mg의 네가지 조성물로 된 촉매를 제조하여 탄소나노튜브를 합성하였다. Co와 Al의 합의 몰비율을 6, M의 몰비율은 1, Mg의 몰비율은 3이며 Co와 Al 각각의 몰비율은 5.79:4.21인 촉매를 여러 가지 M의 경우에 대하여 제조하고 탄소나노튜브를 합성하여 촉매수율 변화를 확인하였다.
촉매의 제조는 다음의 제조방법에 따라 수행하였다. 소정량의 Co(NO3)2·6H2O, Al(NO3)3·9H2O, Mg(NO3)2·6H2O와 Ni(NO3)2·6H2O, Cr(NO3)3·9H2O, Mn(NO3)4·4H2O, (NH4)6Mo7O24·4H2O, Cu(NO3)2·3H2O 중 한가지를 탈이온화수에 녹인 용액과 소정량의 중탄산암모늄(NH4HCO3)을 탈이온화수에 녹인 용액을 준비하였다. 실온에서 금속염 혼합 용액에 중탄산암모늄 용액을 분할 첨가하면서 교반하여 침전물을 형성시키고 60분 동안 더 교반하였다. 형성된 침전물은 필터 페이퍼를 이용하여 여과하였으며 얻어진 필터 케이크를 120℃의 공기 분위기 오븐에서 24시간 동안 건조시킨 후 건식 고회전 분쇄기를 이용하여 분쇄하였다. 이어서 600℃의 공기 분위기 반응기에서 4시간 동안 열산화한 후 다시 한번 건식 고회전 분쇄기로 분쇄하여 촉매조성물을 미립화하였다.
이렇게 준비된 촉매를 이용하여 실험실 규모의 고정층 장치에서 탄소나노튜브를 합성하였다. 소정량의 촉매를 석영관의 중간부에 장착한 후, 질소 분위기에서 소정의 온도까지 승온하고 일정 시간 동안 유지시킨 후 소정의 시간 동안 에틸렌 또는 프로판 가스 중 하나와 수소 가스의 부피 혼합비를 4:1로 흘리면서 1시간 동안 합성 반응을 행하여 소정량의 다중벽 탄소나노튜브를 제조하였다. 이후, 석출된 탄소의 양을 상온에서 수득하여 측정하였다. 석출된 탄소의 구조 및 형태를 FE-SEM 및 HR-TEM 분석을 이용하여 관찰하였다. 하기에 촉매수율로 불리는, 사용된 촉매를 기준으로 석출된 탄소의 양은 촉매의 중량 (Mcat) 및 반응 후 중량 증가량 (Mtotal-Mcat)을 기준으로 정의하였다. (촉매수율 = 100*(Mtotal-Mcat)/Mcat) 본 발명을 예시하는 실시예 2를 하기 표 3에 나타내었다.
아래의 표 3로부터 본 발명의 촉매조성물인 Co, Al, M, Mg은 M이 포함되지 않더라도 Co와 Al의 몰비율이 일정 범위에 속할 경우에는 높은 촉매수율을 나타내지만 M이 소정량 첨가됨에 따라 촉매수율이 10~70% 정도 더 증가함을 알 수 있다. 또한 탄소나노튜브를 합성하는 방법에 있어서도 탄소원으로 사용되어지는 가스가 에틸렌에만 국한되지 않고 프로판과 같은 다른 탄화수소 가스를 사용해도 고수율로 탄소나노튜브를 제조할 수 있음을 알 수 있다.
실시예 2에서 제조한 촉매를 이용한 탄소나노튜브 합성 결과
촉매조성* 촉매 투입량
(mg)
반응온도
(℃)
반응가스 유랑
(mL/분)
반응시간
(분)
촉매수율
(%)
[Co:Al]:Ni:Mg=
[5.79:4.21]:1:3
100 650 C2H4:H2=160:40 60 3068
[Co:Al]:Cr:Mg=
[5.79:4.21]:1:3
3517
[Co:Al]:Mn:Mg=
[5.79:4.21]:1:3
3420
[Co:Al]:Mo:Mg=
[5.79:4.21]:1:3
4509
[Co:Al]:Cu:Mg=
[5.79:4.21]:1:3
4799
[Co:Al]:Mg=
[5.79:4.21]:8
2025
[Co:Al]:Mg=
[5.79:4.21]:3
700 C3H8:H2=160:40 4362
[Co:Al]:Mn:Mg=
[5.79:4.21]:1:3
4244
[Co:Al]:Mo:Mg=
[5.79:4.21]:1:3
4167
[Co:Al]:Cu:Mg=
[5.79:4.21]:1:3
5020
*상기 10가지 촉매에서 [Co:Al]의 몰분율은 (10-(전이금속 M의 몰분율+Mg의 몰분율))로 동일하다.
(비교예 2) 탄소나노튜브 제조용 촉매조성물
일반적으로 당업계에서 촉매제조시 Al(OH)3, 알루미나, 마그네시아 등의 촉매담지체 분말을 사용하는 것과 동일한 방법으로 Al2O3와(또는) MgO 담지체 분말을 사용하여 Co 또는 Co와 Al이 담지된 촉매들을 제조하고 탄소나노튜브를 합성하여 촉매수율을 확인하였다.
또한 본 발명의 실시예에서 제시된 촉매조성물 중 일부를 변형하여 Mg 성분이 없는 촉매, 전이금속 M이 과량으로 함유된 촉매들을 제조하고 탄소나노튜브를 합성하여 촉매수율을 확인하였다. 촉매의 제조는 실시예의 제조방법과 동일하게 수행하였다.
이렇게 준비된 촉매를 이용하여 실험실 규모의 고정층 장치에서 탄소나노튜브를 합성하였다. 소정량의 촉매를 석영관의 중간부에 장착한 후, 질소 분위기에서 소정의 온도까지 승온하고 일정 시간 동안 유지시킨 후 소정의 시간 동안 에틸렌과 수소 가스의 부피 혼합비를 4:1로 흘리면서 1시간 동안 합성 반응을 행하여 소정량의 다중벽 탄소나노튜브를 제조하였다. 이후, 석출된 탄소의 양을 상온에서 수득하여 측정하였다. 석출된 탄소의 구조 및 형태를 FE-SEM 및 HR-TEM 분석을 이용하여 관찰하였다. 하기에 촉매수율로 불리는, 사용된 촉매를 기준으로 석출된 탄소의 양은 촉매의 중량 (Mcat) 및 반응 후 중량 증가량 (Mtotal-Mcat)을 기준으로 정의하였다. (촉매수율 = 100*(Mtotal-Mcat)/Mcat) 본 발명의 비교예 2를 하기 표 4에 나타내었다.
아래의 표 4로부터 일반적으로 당업계에서 촉매제조시 Al(OH)3, 알루미나, 마그네시아 등의 촉매담지체 분말을 사용하는 것과 동일한 방법으로 Al2O3와(또는) MgO을 담지체로 사용하여 Co 또는 Co와 Al이 담지된 촉매들을 평가한 결과 실시예의 탄소나노튜브 합성 조건과 동일한 조건 하에서도 430% 이하의 매우 낮은 촉매수율을 나타냄을 알 수 있다. 또한 본 발명의 촉매조성물에서 Mg가 포함되지 않거나 전이금속 M이 과량으로 첨가된 경우에는 1000% 이상의 비교적 높은 촉매수율을 보이지만 본 발명의 실시예의 촉매수율과 비교하면 절반 이하의 촉매수율을 나타냄을 알 수 있다.
비교예 2에서 제조한 촉매를 이용한 탄소나노튜브 합성 결과
촉매조성* 촉매
투입량
(mg)
반응온도
(℃)
반응가스
유랑
(mL/분)
반응시간
(분)
촉매수율
(%)
비고
[Co:Al2O3]:MgO=
[6:4]:3
100 650 C2H4:H2=
160:40
60 352 종래기술에 의한 Co 또는 Co, Al 담지 촉매
Co:Al2O3=
6:4
430
[Co:Al]:MgO=
[3.79:4.21]:3
140
Co:Al=
5.79:4.21
840 Mg 불포함 촉매
[Co:Al]:Mn:Mg=
[5.79:4.21]:4:3
1037 전이금속 M 과량 촉매
[Co:Al]:Mo:Mg=
[5.79:4.21]:4:3
1206
*주) 상기 6가지 촉매에서 [Co:Al]의 몰분율은 (10-MgO의 몰분율) 또는 (10-(전이금속 M의 몰분율+Mg의 몰분율))이다.
도 1은 본 발명의 실시예 1에서 얻어진 촉매조성물 중 Co와 Al의 몰비율 변화에 따른 탄소나노튜브의 촉매수율 변화를 도식화한 그래프이다.
도 2는 본 발명의 실시예 1로부터 제조된 탄소나노튜브의 고배율-투과 전자현미경(HR-TEM) 사진이다.
도 3은 본 발명의 실시예 1로부터 제조된 탄소나노튜브의 전계방사 주사전자현미경(FE-SEM) 사진이다.

Claims (8)

  1. 하기식으로 표시되는 탄소나노튜브 합성용 촉매조성물
    [Coa:Alb]x:My:Mgz
    상기 식에서
    Co, Al은 촉매 활성 물질로서 코발트, 알루미늄, 그의 산화물 또는 유도체를 나타내며,
    Mg는 불활성 지지체로서 마그네슘, 그의 산화물 또는 유도체를 나타내며,
    M은 Ni, Cr, Mn, Mo, W, Pb, Ti, Sn, 또는 Cu 중에서 선택된 하나 이상의 전이금속 또는 그의 산화물, 유도체이다.
    x, y, z는 각각 [Co와 Al의 합], M, Mg의 몰분율을 나타내며
    x+y+z=10, 2.0≤x≤9.5, 0.0≤y≤2.5, 0.5≤z≤8.0이고,
    a, b는 Co와 Al의 몰분율을 나타내며
    a+b=10, 4.0≤a≤8.0, 2.0≤b≤6.0이다.
  2. 제 1항에 있어서, 상기 식에서 x, y, z는 각각 [Co와 Al의 합], M, Mg의 몰분율을 나타내며 x+y+z=10, 3.0≤x≤9.0, 0.0≤y≤2.0, 1.0≤z≤7.0이고; a, b는 Co와 Al의 몰분율을 나타내며 a+b=10, 4.5≤a≤7.5, 2.5≤b≤5.5이다.
  3. 1) 촉매 활성 금속, 불활성 지지체로 구성된 금속 촉매 조성 ([Fea:Alb]x:My:Mgz) 각각의 금속염을 물에 혼합 용해시키는 단계;
    2) 상기 금속염 혼합 수용액을 공침제를 넣어 균질하게 공침시키거나, 분무 건조시키거나, 분무 열 분해시켜 금속 촉매 조성물을 수득하는 단계;
    3) 상기 수득된 금속 촉매 조성물을 여과, 건조 및 분쇄하고 400~1200℃의 고온에서 열산화 시키는 단계; 및
    4) 상기 열 산화된 금속 촉매 조성물을 다시 건식 분쇄 시켜 미립화 하는 단계;
    를 포함하는 제 1항의 탄소나노튜브 합성용 촉매조성물의 제조방법.
  4. 제 3항에 있어서, 상기 금속염은 금속의 질산염, 황산염, 알콕사이드, 카보네이트, 클로라이드 중에서 선택된 형태임을 특징으로 하는 탄소나노튜브 합성용 촉매조성물의 제조방법.
  5. 1) 제 1항의 탄소나노튜브 합성용 촉매조성물을 준비하는 단계;
    2) 반응기 내부에 촉매조성물을 투입하고 500~900℃의 온도에서 반응기 내부 로 탄소수 1~4의 포화 또는 불포화 탄화수소에서 선택된 1종 이상의 탄소 공급원 또는 상기 탄소 공급원과 수소의 혼합가스를 주입하는 단계; 및
    3) 촉매 표면 위에서 주입된 탄소 공급원의 고온 열 분해를 통해 탄소 원자를 화학적 기상 증착법으로 증착시켜 탄소나노튜브를 성장시키는 단계;
    로 구성된 탄소나노튜브의 제조방법.
  6. 제 5항에 있어서, 상기 반응기는 수직형 고정층 반응기, 수평관형 고정층 반응기, 회전 관형 반응기, 이동층 반응기 또는 유동층 반응기에서 선택됨을 특징으로 하는 탄소나노튜브의 제조방법.
  7. 제 5항의 탄소나노튜브 제조방법에 따라 제조된 5~20nm의 직경과 100~10,000의 아스펙트비를 가지는 탄소나노튜브.
  8. 삭제
KR1020090128632A 2009-12-22 2009-12-22 다중벽 탄소나노튜브 제조용 촉매조성물 KR101018660B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020090128632A KR101018660B1 (ko) 2009-12-22 2009-12-22 다중벽 탄소나노튜브 제조용 촉매조성물
US12/836,014 US8673807B2 (en) 2009-12-22 2010-07-14 Catalyst composition for the synthesis of thin multi-walled carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090128632A KR101018660B1 (ko) 2009-12-22 2009-12-22 다중벽 탄소나노튜브 제조용 촉매조성물

Publications (1)

Publication Number Publication Date
KR101018660B1 true KR101018660B1 (ko) 2011-03-04

Family

ID=43938265

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090128632A KR101018660B1 (ko) 2009-12-22 2009-12-22 다중벽 탄소나노튜브 제조용 촉매조성물

Country Status (2)

Country Link
US (1) US8673807B2 (ko)
KR (1) KR101018660B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051271A1 (en) * 2012-09-25 2014-04-03 Korea Kumho Petrochemical Co., Ltd. Catalyst composition for the synthesis of multi-walled carbon nanotube
WO2015105302A1 (ko) * 2014-01-09 2015-07-16 주식회사 제이오 다중벽 탄소나노튜브 합성을 위한 촉매, 그 촉매의 제조 방법 및 그 촉매로 합성된 다중벽 탄소나노튜브
KR101756453B1 (ko) * 2014-01-09 2017-07-10 주식회사 제이오 다중벽 탄소나노튜브 합성을 위한 촉매, 그 촉매의 제조 방법 및 그 촉매로 합성된 다중벽 탄소나노튜브

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102035714B1 (ko) * 2012-08-08 2019-10-23 연세대학교 원주산학협력단 탄화수소 개질용 니켈 촉매
JP2014166936A (ja) * 2013-02-28 2014-09-11 National Institute Of Advanced Industrial & Technology カーボンナノチューブ集合体の製造方法
US9890045B2 (en) 2013-12-30 2018-02-13 Indian Oil Corporation Limited Process for simultaneous production of carbon nanotube and a product gas from crude oil and its products
CN103825034A (zh) * 2014-02-19 2014-05-28 湖南科技大学 一种用于燃料电池乙醇氧化反应的钯-锡-镍三元金属纳米电催化剂、制备方法及应用
CN111495380B (zh) * 2019-01-31 2023-07-07 江苏天奈科技股份有限公司 一种碳纳米管催化剂的制备方法及一种碳纳米管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050033338A (ko) * 2003-10-06 2005-04-12 주식회사 카본나노텍 탄소나노선재 제조용 촉매의 제조방법과 탄소나노선재제조용 촉매
KR20070084180A (ko) * 2004-11-13 2007-08-24 바이엘 머티리얼사이언스 아게 불균질 촉매 상 기체 탄소 화합물의 분해에 의한 탄소나노튜브의 제조용 촉매
WO2009043445A1 (de) 2007-09-27 2009-04-09 Bayer Materialscience Ag Verfahren zur herstellung eines katalysators für die herstellung von kohlenstoffnanoröhrchen
KR20090068701A (ko) * 2007-12-24 2009-06-29 엠파워(주) 분무 열분해 방법을 이용한 탄소나노튜브용 촉매 제조장치및 촉매 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165909A (en) 1984-12-06 1992-11-24 Hyperion Catalysis Int'l., Inc. Carbon fibrils and method for producing same
KR970702758A (ko) 1994-04-29 1997-06-10 마이클 제이. 켈리 개선된 다이 립을 갖는 조합 롤 및 다이 피복 방법 및 장치(combination roll and die coating method and apparatus with improved die lip)
US5502019A (en) * 1994-07-15 1996-03-26 Philip Morris Incorporated Conversion of carbon monoxide using cobalt-based metal oxide catalysts
GB0418934D0 (en) * 2004-08-25 2004-09-29 Johnson Matthey Plc Catalysts
EP1797950A1 (en) 2005-12-14 2007-06-20 Nanocyl S.A. Catalyst for a multi-walled carbon nanotube production process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050033338A (ko) * 2003-10-06 2005-04-12 주식회사 카본나노텍 탄소나노선재 제조용 촉매의 제조방법과 탄소나노선재제조용 촉매
KR20070084180A (ko) * 2004-11-13 2007-08-24 바이엘 머티리얼사이언스 아게 불균질 촉매 상 기체 탄소 화합물의 분해에 의한 탄소나노튜브의 제조용 촉매
WO2009043445A1 (de) 2007-09-27 2009-04-09 Bayer Materialscience Ag Verfahren zur herstellung eines katalysators für die herstellung von kohlenstoffnanoröhrchen
KR20090068701A (ko) * 2007-12-24 2009-06-29 엠파워(주) 분무 열분해 방법을 이용한 탄소나노튜브용 촉매 제조장치및 촉매 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051271A1 (en) * 2012-09-25 2014-04-03 Korea Kumho Petrochemical Co., Ltd. Catalyst composition for the synthesis of multi-walled carbon nanotube
WO2015105302A1 (ko) * 2014-01-09 2015-07-16 주식회사 제이오 다중벽 탄소나노튜브 합성을 위한 촉매, 그 촉매의 제조 방법 및 그 촉매로 합성된 다중벽 탄소나노튜브
KR101756453B1 (ko) * 2014-01-09 2017-07-10 주식회사 제이오 다중벽 탄소나노튜브 합성을 위한 촉매, 그 촉매의 제조 방법 및 그 촉매로 합성된 다중벽 탄소나노튜브
US9975774B2 (en) 2014-01-09 2018-05-22 Jeio Co., Ltd. Catalyst for synthesizing multi-wall carbon nanotubes, method for producing catalyst, and multi-wall carbon nanotubes synthesized by catalyst

Also Published As

Publication number Publication date
US20120077031A1 (en) 2012-03-29
US8673807B2 (en) 2014-03-18

Similar Documents

Publication Publication Date Title
KR100976174B1 (ko) 얇은 다중벽 탄소나노튜브 제조용 촉매조성물 및 이의 제조방법
KR101303061B1 (ko) 다중벽 탄소나노튜브 제조용 촉매조성물
KR101018660B1 (ko) 다중벽 탄소나노튜브 제조용 촉매조성물
KR100969860B1 (ko) 탄소나노튜브 제조용 촉매조성물
KR101241034B1 (ko) 분무 열분해 방법을 이용한 고수율 탄소나노튜브 합성용 촉매조성물의 제조 방법
JP5702043B2 (ja) 不均一触媒でガス状炭素化合物を分解することによりカーボンナノチューブを製造するための触媒
JP4979705B2 (ja) 多層カーボンナノチューブ製造工程のための触媒系
KR101424910B1 (ko) 카본나노튜브 및 그 제조방법
KR101535387B1 (ko) 담지촉매, 탄소나노튜브 집합체 및 그 제조방법
JP2010137222A (ja) 金属ナノ触媒およびその製造方法、ならびにこれを用いて製造されたカーボンナノチューブの成長形態の調節方法
JP2008529957A (ja) 単層壁炭素ナノチューブ触媒
KR20100067048A (ko) 금속나노촉매, 그 제조방법 및 이를 이용하여 제조된 탄소나노튜브
KR101778834B1 (ko) 탄소나노튜브 제조방법 및 이를 이용하여 제조된 탄소나노튜브
KR20070082141A (ko) 탄소나노튜브 합성용 촉매의 제조방법
KR101241035B1 (ko) 높은 겉보기밀도를 지닌 탄소나노튜브 합성용 촉매조성물의 제조 방법
EP3915676A1 (en) Improved catalyst for mwcnt production
KR101440417B1 (ko) 초음파 열분해법을 이용한 탄소나노튜브 합성용 촉매의 제조방법 및 그로부터 제조된 촉매를 이용한 탄소나노튜브
JP2009041127A (ja) 気相成長炭素繊維の製造方法および気相成長炭素繊維
JP2009062646A (ja) 気相成長炭素繊維の製造方法および気相成長炭素繊維

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140205

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150212

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151202

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170216

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180212

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190220

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20200213

Year of fee payment: 10