WO2014034473A1 - 導電性マイエナイト型化合物粉末の製造方法 - Google Patents

導電性マイエナイト型化合物粉末の製造方法 Download PDF

Info

Publication number
WO2014034473A1
WO2014034473A1 PCT/JP2013/072163 JP2013072163W WO2014034473A1 WO 2014034473 A1 WO2014034473 A1 WO 2014034473A1 JP 2013072163 W JP2013072163 W JP 2013072163W WO 2014034473 A1 WO2014034473 A1 WO 2014034473A1
Authority
WO
WIPO (PCT)
Prior art keywords
type compound
powder
mayenite type
surface area
compound powder
Prior art date
Application number
PCT/JP2013/072163
Other languages
English (en)
French (fr)
Inventor
細野 秀雄
亨和 原
泰徳 井上
政明 北野
文隆 林
壽治 横山
聡 松石
喜丈 戸田
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to CA2881788A priority Critical patent/CA2881788C/en
Priority to EP13833435.4A priority patent/EP2891627B1/en
Priority to KR1020157005322A priority patent/KR101940777B1/ko
Priority to CN201380044557.9A priority patent/CN104583129B/zh
Priority to US14/423,303 priority patent/US9573822B2/en
Priority to RU2015111257A priority patent/RU2647290C2/ru
Priority to JP2014532935A priority patent/JP6152381B2/ja
Priority to BR112015003948A priority patent/BR112015003948A8/pt
Publication of WO2014034473A1 publication Critical patent/WO2014034473A1/ja
Priority to US15/383,412 priority patent/US10124319B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/16Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/164Calcium aluminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/347Ionic or cathodic spraying; Electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0411Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a method for producing a conductive mayenite compound powder having a large specific surface area that is useful for electronic materials and catalyst materials having electrical conductivity.
  • the mayenite type compound has a representative composition of 12CaO ⁇ 7Al 2 O 3 (hereinafter referred to as “C12A7”), and the C12A7 crystal has two of 66 oxygen ions in a unit cell containing two molecules. It has been reported that it has a unique crystal structure in which it is included as “free oxygen” in the space in the cage formed by the crystal skeleton (Non-patent Document 1).
  • C12A7 obtained by substituting free oxygen ions with electrons can be expressed by a chemical formula [Ca 24 Al 28 O 64 ] 4+ (e ⁇ ) 4 (hereinafter, “C12A7: e ⁇ ”).
  • C12A7: e ⁇ a substance in which electrons are replaced with anions as described above is referred to as “electride”, and electride has a characteristic of exhibiting good electron conduction characteristics (Non-patent Document 2).
  • the inventors of the present invention have (i) a method in which a C12A7 single crystal or fine powder hydrostatic press-molded body is maintained at 600 to 800 ° C. in an alkali metal or alkaline earth metal vapor, and (b) a thin film of C12A7.
  • Patent Document 2 Reduction of carbon, Al, Ti, etc. into a powder obtained by pulverizing a sintered product that has been held and sintered by a solid phase reaction, a press-molded product of the powder, or a sintered product obtained by sintering the molded product at 1200 to 1350 ° C.
  • Patent Documents 3 and 4 A patent application was filed for an invention (Patent Documents 3 and 4) relating to a method of adding conductivity and heat-treating at 600 to 1415 ° C. to impart conductivity (that is, substitution of free oxygen ions and electrons).
  • a method of reducing a physical film by heating to 700 to 1500 ° C. Patent Document 6
  • Patent Document 7 a method of sintering a mixture of a reducing agent such as metal Al or metal Ca and a raw material at 1200 to 1415 ° C.
  • Patent Document 8 mayenite type A method in which the compound powder is heated to 300 to 1200 ° C. to form a sintered body having open pores, and the obtained sintered body is heated to 1200 to 1450 ° C. in a reducing atmosphere (patent text) 9) invention relates to such is patent.
  • Non-patent Document 3 The conductive mayenite type compound is used for an electron emitter, a field emission display device, a cold cathode fluorescent tube, a flat illumination device, an electron emission material (Patent Document 10), a discharge lamp electrode (Patent Document 11), and the like.
  • C12A7 is also used as a catalyst or catalyst support even if it has no conductivity.
  • C12A7 is a catalyst obtained by spray-drying a starting complex solution at 1300 to 1400 ° C. for 2 hours or more. It is known to be used as a steam cracking reaction catalyst for producing a soft olefin (Patent Document 15).
  • Non-Patent Documents 4 and 5 a method of obtaining a carrier having a high specific surface area by a method in which a precursor is synthesized by a hydrothermal method or a sol-gel method and then calcined has been proposed.
  • Non-patent Document 6 It has been reported that when C12A7 is left in an atmosphere containing moisture, hydroxyl ions (OH ⁇ ) are included in the cage and are not easily detached even at high temperatures (Non-patent Document 6).
  • the conductive mayenite type compound is expected to be applied to cold electron emitters, conductors, organic EL electron injection electrodes, thermoelectric conversion materials, thermoelectric power generation materials, reducing agents, oxidizing agents, catalysts, and the like.
  • a raw material mixed with a reducing agent is fired at a high temperature of 1200 ° C. or more and simultaneously reduced (Patent Document 8).
  • a reduction process for a mayenite type compound synthesized by baking at a high temperature of 1200 ° C. or higher (Patent Document 8), etc., requires a high-temperature synthesis step.
  • the present inventors have found a method for producing a conductive mayenite type compound powder having a large specific surface area, and have completed the present invention.
  • an electron injection operation by a reduction treatment at a high temperature of 1200 ° C. or higher is necessary for the mayenite type compound, and even if a raw material powder having a large specific surface area is used, Although a powder having a large specific surface area could not be obtained, the present inventors found a means capable of performing electron injection operation at a low temperature of 1100 ° C. or lower, and a conductive mayenite type compound powder having a specific surface area of 5 m 2 g ⁇ 1 or more. Realized manufacturing.
  • the present invention includes (1) a process of hydrothermally treating a mixture of raw material powder of mayenite type compound and water to form a precursor powder of mayenite type compound, (2) a step of heating and dehydrating the precursor powder to form a mayenite type compound powder; (3) forming the activated mayenite type compound powder by heating the mayenite type compound powder in an inert gas atmosphere or in a vacuum at a temperature range of 400 to 1100 ° C.
  • a conductive mayenite type compound powder having a conduction electron concentration of 10 15 cm -3 or more and a specific surface area of 5 m 2 g -1 or more.
  • the present invention provides the above-described production method, wherein after the step (4), further, (5) a temperature rising rate of 30 to 60 ° C. min ⁇ 1 and 900 to 1100 by a rapid temperature rising heating method (RTA method).
  • RTA method rapid temperature rising heating method
  • the mayenite type compound is typically 12CaO ⁇ 7Al 2 O 3 .
  • the reducing agent is preferably Ca or CaH 2 .
  • the conductive mayenite type compound powder having a specific surface area of 5 m 2 g ⁇ 1 or more is as follows. First, by using a hydrothermal synthesis method as a first point, a raw material of a mayenite type compound, for example, in the case of C12A7, a Ca source and an Al source are uniformly mixed well, and a hydrated oxide that becomes a crystal source at a low temperature Can be formed as a precursor. By heating and dehydrating the precursor, a mayenite compound can be obtained at a lower temperature than solid phase synthesis. As a result, the obtained mayenite compound has fine specific surface area because it is a fine particle of sub-micro order.
  • the reducing agent does not function and injection of electrons is difficult.
  • the mayenite compound powder having such a large specific surface area is evacuated at 800 to 1000 ° C., adsorbed water, surface hydroxyl groups, OH ⁇ in the cage and the like can be sufficiently removed, and thus the reducing agent can be used without deactivation.
  • a conductive mayenite compound powder can be obtained by reduction treatment at a low temperature (700 to 800 ° C.).
  • RTA method a rapid thermal heating method
  • RTA method a rapid thermal heating method
  • rapid increase in temperature can be achieved. Since the temperature can be reduced, the reduction treatment can be completed before the particles are sintered and agglomerated, so that the conductive mayenite compound having a high specific surface area can be obtained even by heat reduction at a relatively high temperature (900 to 1100 ° C.). can get.
  • the present invention provides a supported metal catalyst obtained by supporting a conductive mayenite type compound powder produced by the above method by impregnation method, physical mixing method, thermal decomposition method, liquid phase method, sputtering method or vapor deposition method. It is a method of manufacturing.
  • the supported metal component is not particularly limited, but Li, Na, K, Rb, or Cs selected from Group 1A elements, Mg, Ca, Sr, or Ba selected from Group 2A elements, Sc, Y selected from Group 3A elements Ti, Zr, or Hf selected from Group 4A elements, V, Nb, or Ta, Group 6A elements Cr, Mo or W, Group 7A elements Mn, Tc, or Re , Group 8 transition metal Fe, Ru, or Os, Group 9 element Co, Rh, or Ir, Group 10 element Ni, Pd, or Pt, Group 11 element Cu, Ag, or Au, Group 12 element Zn, Cd, or Hg, Group 13 element B, Al, Ga, In, or Tl, Si, Ge, Sn, or Pb, Group 15 element selected from Group 14 element It can be used et chosen As, Sb, or Se selected from Bi, 16 group elements, or any of Te. Alternatively, these components can be combined.
  • the catalyst of the present invention can be used for various catalytic reactions such as oxidation, hydrogenation, isomerization, disproportionation, esterification, condensation reaction, acid-base reaction, or polymerization reaction, but is not limited thereto. Absent.
  • transition metal elements are used in various synthetic reactions as homogeneous and heterogeneous catalysts, and in particular, Group 6, 8 or 9 transition metals such as Fe, Ru, Os, Co, Rh, and Mo. Is suitable as a catalyst for synthesizing ammonia by a direct reaction between hydrogen and nitrogen.
  • Mo, W, Re, Fe, Co, Ru, Rh, and Os are known as transition metals having ammonia synthesis activity, and these components were modified with an electron injection material such as alkali metal or alkaline earth metal.
  • a catalyst, a combination of the aforementioned elements, a group 8 or group 6B transition metal nitride, or a Co / Mo composite nitride can be used as the catalyst.
  • the mayenite type compound powder or porous material containing the conductive electrons obtained in the above step of 1 ⁇ 10 15 cm ⁇ 3 or more, a transition metal compound and an impregnation method or physical It is obtained by heating after mixing by a mixing method and reductively decomposing the transition metal compound into a transition metal.
  • a transition metal compound may be deposited on the surface by CVD, sputtering, or the like, and the transition metal compound may be thermally decomposed to deposit a transition metal.
  • the transition metal compound is not particularly limited.
  • the following process can be adopted as the impregnation method.
  • carbon powder is dispersed in a transition metal compound solution (for example, a hexane solution of Ru carbonyl complex) and stirred.
  • the transition metal compound is about 0.01 to 40 wt%, preferably 0.02 to 30 wt%, more preferably about 0.05 to 20 wt% with respect to the carrier powder.
  • the solvent is evaporated to dryness by heating for 30 minutes to 5 hours in an inert gas stream such as nitrogen, argon or helium or under vacuum at 50 to 200 ° C.
  • the catalyst precursor comprising the dried transition metal compound is reduced.
  • the amount of the transition metal is 0.01 to 30 wt%, preferably 0.02 to 20 wt%, more preferably 0.05 to 10 wt% with respect to the carrier powder.
  • the carrier powder on which the transition metal is supported includes the same amount of electrons as the original after the supporting step, and has a low work function as a carrier, so that it has a large ability to donate electrons to the transition metal, and nitrogen and nitrogen on the transition metal. As a result of significantly promoting the activation of hydrogen, it functions as a high-performance ammonia synthesis catalyst.
  • the catalyst of the present invention is a high-performance ammonia synthesis catalyst without using alkali metal or alkaline earth metal and their compounds as promoter compounds, but these promoter compounds may be used as necessary. .
  • the supported metal catalyst can be used as a molded body using a normal molding technique. Specific examples include granular, spherical, tablet, ring, macaroni, four-leaf, dice, and honeycomb shapes. It can also be used after coating on a suitable support.
  • the present invention also provides an ammonia synthesis method for use in a synthesis reaction in which ammonia gas (NH 3 ) is produced by reacting a supported metal catalyst produced by the above method with nitrogen gas (N 2 ) and hydrogen gas (H 2 ). It is.
  • ammonia gas NH 3
  • N 2 nitrogen gas
  • H 2 hydrogen gas
  • a conductive mayenite type compound powder having a large specific surface area and useful as an electronic material part such as a PDP protective film material or an electrode material requiring high-temperature heat treatment, or a catalyst material is conventionally reduced. It can be provided by an electron injection method using an agent.
  • the crystal of the mayenite type compound is constituted by a cage structure (cage) having an inner diameter of about 0.4 nm sharing its wall surface and three-dimensionally connecting.
  • an anion such as O 2 ⁇ is contained in the inside of the cage of the mayenite type compound, and these can be replaced with conduction electrons by chemical treatment. Increasing the annealing time increases the conduction electron concentration in the mayenite type compound.
  • the mayenite type compound In the mayenite type compound, electrons substituted for oxide ions (O 2 ⁇ ) included in the structure become conduction electrons, and in the case of C12A7, the composition formula ([Ca 24 Al 28 O 64 ] 4+ (O 2 ⁇ ) 2 ⁇ x (e ⁇ ) 2x ) (0 ⁇ x ⁇ 2). Further, by replacing oxide ions with electrons, the conduction electron concentration becomes 1 ⁇ 10 15 cm ⁇ 3 or more. Therefore, the mayenite type compound containing conduction electrons can be referred to as a “conductive mayenite type compound”. In the case of C12A7: e ⁇ , the theoretical maximum concentration of conduction electrons is 2.3 ⁇ 10 21 cm ⁇ 3 . By the above method, a mayenite type compound having a conduction electron concentration equal to the theoretical value can be obtained. it can.
  • the conductive mayenite type compound absorbs light at 2.8 eV and 0.4 eV.
  • the electron density can be obtained by measuring this light absorption coefficient.
  • the electron density in the cage can be measured using electron spin resonance (ESR).
  • ESR electron spin resonance
  • the mayenite type compound containing conduction electrons reduces iodine by dissolving in a solution containing iodine. Using this action, the electron density in the cage can be measured by redox titration.
  • the specific surface area is a value measured by an adsorption isotherm of nitrogen molecules at a liquid nitrogen temperature ( ⁇ 196 ° C.).
  • Equilibrium pressure of adsorption isotherm P / P 0 ; P is the partial pressure (Pa) of the adsorbed gas in equilibrium with the sample surface at ⁇ 196 ° C., P 0 is the vapor pressure (Pa) of the adsorbed gas) 0.05 to
  • the specific surface area of the synthesized conductive mayenite type compound was estimated by applying the BET (Brunauer, Emmett and Teller) formula in the range of 0.3.
  • the mayenite type compound used as the starting material of the target compound is more preferably a fine powder (primary particle size of 100 nm or less) or a bulk porous body having a pore structure.
  • the surface area per gram is increased, and the gap between the particles is also in the mesopore region (2 nm to 100 nm or less).
  • the hydroxide which becomes the precursor of the mayenite type compound can be obtained by a hydrothermal treatment method.
  • a precursor compound can be obtained by placing a solvent such as water or alcohol and a raw material in a pressure vessel and heating at a temperature not lower than the boiling point of the solvent for several hours to several days.
  • Ca 3 Al 2 (OH) 12 which is a hydroxide used as a precursor of the mayenite type compound C12A7, is a mixture of water, calcium hydroxide, and aluminum hydroxide in a stoichiometric composition and heated at, for example, 150 ° C. for about 6 hours. You can get it. By heating and dehydrating the obtained precursor at about 400 to 1000 ° C. in the atmosphere, a mayenite type compound powder C12A7 having a large specific surface area (about 20 to 60 m 2 g ⁇ 1 ) can be obtained.
  • the high specific surface area mayenite-type compound powder synthesized via hydrothermal treatment has a hydroxyl group that is firmly bonded to the surface or cage skeleton, and the reducing agent reacts with the hydroxyl group (2CaH 2 ) in the process of containing conduction electrons. + 2OH ⁇ 2CaO + 3H 2 ), it is necessary to activate the surface of the powder or the inside of the cage skeleton by eliminating the hydroxyl groups as much as possible in the pretreatment step of the electron injection step.
  • the specific surface area after treatment is reduced with increasing pretreatment temperature, in a temperature range of 400 ⁇ 1000 ° C.
  • the specific surface area is, for example, changes from 60 m 2 g -1 to 6 m 2 g -1.
  • a pretreatment method it is better to heat at a temperature of 400 to 1100 ° C. in an inert gas atmosphere or in a vacuum.
  • the heating temperature is preferably 700 to 1000 ° C., more preferably 800 to 900 ° C.
  • a powder having a high specific surface area can be obtained.
  • the reducing agent is consumed by the hydroxyl group held in the powder in the reduction treatment step, a high conduction electron concentration cannot be obtained.
  • a temperature exceeding 1100 ° C. a high conduction electron concentration can be obtained, but since powder sintering proceeds, a high specific surface area mayenite type compound powder cannot be obtained.
  • the raw material powder of the mayenite type compound having a chemical equivalent composition may be heated in a range of 400 to 1100 ° C. in a reducing atmosphere.
  • the range of 600 to 900 ° C. is preferable, and 700 to 800 ° C. is more preferable. If it is less than 400 degreeC, reaction with the oxygen ion in a cage and a reducing agent is inadequate, and a high conduction electron density cannot be obtained.
  • a temperature higher than 1100 ° C. a high conduction electron concentration can be obtained, but the specific surface area decreases due to sintering.
  • the treatment time is preferably 3 hours or longer in order to sufficiently diffuse oxygen ions and exchange them with conduction electrons.
  • the reducing agent is not particularly limited as long as it reacts with oxygen ions in the cage within the above heating temperature range, for example, alkali metals such as Na and Li, alkaline earth metals such as Mg, Ca, and CaH 2 and their hydrogen. Chemicals can be used. Since CaH 2 becomes CaO after reduction and remains as an impurity, it becomes a factor of reducing the effective surface area of the conductive mayenite type compound.
  • the specific surface area of the mayenite-type compound powder that has undergone the treatment step including conduction electrons decreases as the treatment temperature during the process increases. For example, a sample obtained by pre-treating the mayenite-type compound powder at 800 ° C. has a temperature of 600 to 800 ° C. When the reduction treatment is performed in the temperature range of ° C., for example, it changes from 30 m 2 g ⁇ 1 to about 20 m 2 g ⁇ 1 .
  • RTA treatment method A part of the surface of the mayenite type compound powder that has reacted with the reducing agent may be insulated by being covered with, for example, calcium oxide.
  • the RTA method can be used as a method for reducing the insulating powder surface.
  • the RTA method is an abbreviation for rapid temperature raising and heating method, and is known as a method for improving the crystallinity of a semiconductor.
  • the rate of temperature rise is as slow as about 5 to 10 ° C. min ⁇ 1, and the reduction of the surface area due to particle sintering cannot be prevented.
  • the crystallinity of the electride surface can be increased without reducing the surface area, and conduction including the surface of the mayenite type compound powder is possible.
  • the temperature is increased at a temperature increase rate of 30 to 60 ° C. min ⁇ 1 in an inert atmosphere, a reducing atmosphere, or a vacuum, and the heating temperature is maintained at 900 to 1100 ° C. for 5 to 15 seconds. Then, the temperature raising and heating and holding steps are repeated 2 to 5 times.
  • the holding temperature is in the range of 950 to 1100 ° C.
  • ⁇ Process for producing catalyst using conductive mayenite type compound as carrier> Produces a catalyst by carrying a transition metal catalyst such as Ru on the conductive mayenite type compound powder produced by the above method by impregnation method, physical mixing method, thermal decomposition method, liquid phase method, sputtering method, or vapor deposition method. can do.
  • a conductive mayenite type compound powder and a transition metal compound powder are solid-phase mixed by a physical mixing method, and then the transition metal compound is heated and reduced in a reducing atmosphere such as a hydrogen atmosphere in a temperature range of 50 to 600 ° C. By doing so, a supported metal catalyst is obtained. Before heating and reducing, it is desirable to repeat heating and maintenance several times in a vacuum in order to suppress sintering of the supported metal particles.
  • the impregnation method includes a step of dispersing conductive mayenite type compound powder in a solvent solution of a transition metal compound, a step of forming a catalyst precursor composed of the transition metal compound by evaporating the solvent of the solvent solution, and a reducing atmosphere Heating in, reducing the transition metal compound to form the metal catalyst.
  • the carrier powder on which the transition metal is supported includes the same amount of electrons as the original after the supporting step, and has a low work function as a carrier, so that the ability to donate electrons to the transition metal is large and the specific surface area of the carrier is large.
  • the activation of nitrogen and hydrogen on the transition metal is remarkably promoted, and as a result, it functions as a high-performance ammonia synthesis catalyst as compared with the case where the conductive mayenite powder having a small specific surface area is used.
  • the transition metal catalyst supported on the conductive mayenite type compound powder is used, and in the reactor, the raw material nitrogen and hydrogen are reacted at a reaction temperature of 100 to 600 ° C. and a reaction pressure of 10 kPa to 30 MPa.
  • Ammonia can be synthesized by reacting on the catalyst.
  • ⁇ Pretreatment> As a pretreatment, the powder was put in a silica glass tube and heated and taken out in a vacuum of 1 ⁇ 10 ⁇ 4 Pa at 900 ° C. for 5 hours.
  • the specific surface area of the powder obtained at this stage was about 30 m 2 g ⁇ 1 .
  • the Ta tube filled with the mixture was put in a silica glass tube and heated at 700 ° C. for 15 hours in a vacuum of 1 ⁇ 10 ⁇ 4 Pa.
  • a conductive mayenite type compound powder having a conduction electron concentration of 1.0 ⁇ 10 21 cm ⁇ 3 and a specific surface area of 17 m 2 g ⁇ 1 was obtained.
  • the sample sealed in a vacuum was taken out, ground in a mortar, and then packed again in a silica glass tube and sealed while pulling a vacuum. By heating this silica glass tube at 1100 ° C.
  • a conductive mayenite type compound powder C12A7: e ⁇ (C12A7e 21 with a conduction electron concentration of about 2 ⁇ 10 21 cm ⁇ 3 and a specific surface area of 1 m 2 g ⁇ 1 Notation).
  • a mayenite type compound powder having a large specific surface area was synthesized under the same conditions as in Example 1 except that the raw material was pretreated at 800 ° C instead of the pretreatment temperature of 900 ° C in Example 1.
  • the specific surface area of the powder obtained at this stage was 40 m 2 g ⁇ 1 .
  • a conductive mayenite compound powder was synthesized under the same conditions as in Example 1 except that the reduction treatment temperature in Example 1 was changed to 700 ° C. and reduced at 600 ° C.
  • the conduction electron concentration was 1.0 ⁇ 10 21 cm ⁇ 3 and the specific surface area was 31 m 2 g ⁇ 1 .
  • a conductive mayenite compound powder was synthesized under the same conditions as in Example 1 except that the reduction treatment temperature in Example 1 was changed to 700 ° C. and reduced at 600 ° C.
  • the conduction electron concentration was 0.8 ⁇ 10 21 cm ⁇ 3 and the specific surface area was 20 m 2 g ⁇ 1 .
  • Pretreatment> A mayenite type compound powder having a large specific surface area was synthesized under the same conditions as in Example 1 except that the raw material was pretreated at 800 ° C instead of the pretreatment temperature of 900 ° C in Example 1.
  • the specific surface area at this stage was 40 m 2 g ⁇ 1 .
  • the conductive mayenite compound powder was synthesized by reduction treatment under the same conditions as in Example 1.
  • the conduction electron concentration was 1.0 ⁇ 10 21 cm ⁇ 3 and the specific surface area was 23 m 2 g ⁇ 1 .
  • Pretreatment> A mayenite type compound powder having a large specific surface area was synthesized under the same conditions as in Example 1, except that the raw material pretreatment temperature in Example 1 was changed to 900 ° C and pretreated at 800 ° C. The specific surface area at this stage was 40 m 2 g ⁇ 1 .
  • Example 2 ⁇ Electron injection by reduction treatment>
  • the conductive mayenite compound powder was synthesized under the same conditions as in Example 1 except that the reduction treatment temperature in Example 1 was changed to 700 ° C. and reduced at 800 ° C.
  • the conduction electron concentration was 0.4 ⁇ 10 21 cm ⁇ 3 and the specific surface area was 10 m 2 g ⁇ 1 .
  • a mayenite type compound powder was synthesized in the same manner as in Example 1. However, the pretreatment of Example 1 was not performed, and the electron injection by the reduction treatment was not performed. The conduction electron concentration was zero and the specific surface area was 60 m 2 g ⁇ 1 .
  • Example 2 The electride was synthesized under the same conditions as in Example 1 except that the pretreatment temperature of the raw material of Example 1 was changed to 900 ° C. and the pretreatment was performed at 1000 ° C. A conductive mayenite type compound powder having a conduction electron concentration of 1.4 ⁇ 10 21 cm ⁇ 1 and a specific surface area of 6 m 2 g ⁇ 1 was obtained.
  • ⁇ Pretreatment> As a pretreatment of this raw material, the powder was placed in a silica glass tube and heated in a vacuum of 1 ⁇ 10 ⁇ 4 Pa at 800 ° C. for 20 hours while evacuating.
  • RTA processing> Furthermore, in order to activate the surface of the powder, the process of filling the tammann tube and vacuum-sealing the tube, raising the temperature at a rate of 45 ° C. min ⁇ 1 and heating and holding at 950 ° C. for 5 seconds is repeated twice. RTA treatment. A conductive mayenite type compound powder having a conduction electron concentration of 0.5 ⁇ 10 21 cm ⁇ 1 and a specific surface area of 19 m 2 g ⁇ 1 was obtained.
  • the conductive mayenite type compound powder was synthesized under the same conditions as in Example 7 except that the RTA treatment temperature in Example 7 was changed to 950 ° C. and the RTA treatment was carried out at a treatment temperature of 1000 ° C.
  • a conductive mayenite type compound powder having a conduction electron concentration of 1.5 ⁇ 10 21 cm ⁇ 1 and a specific surface area of 14 m 2 g ⁇ 1 was obtained.
  • Table 1 summarizes the synthesis and processing conditions of Examples 1 to 8 and Comparative Examples 1 and 2.
  • the gas coming out from the flow reactor was bubbled into a 0.005 M sulfuric acid aqueous solution, the produced ammonia was dissolved in the solution, and the resulting ammonium ions were quantified by ion chromatography.
  • the production rate of ammonia at 340 ° C. was 2388 micromolg ⁇ 1 h ⁇ 1 .
  • a 2 wt% Ru-supported catalyst was prepared in the same manner as in Example 9 except that the conductive mayenite type compound powder having a specific surface area of 31 m 2 g ⁇ 1 obtained in Example 2 was used, and an ammonia synthesis reaction was carried out.
  • the ammonia production rate at 340 ° C. was 1575 micromol-g ⁇ 1 h ⁇ 1 .
  • a 2 wt% Ru-supported catalyst was prepared in the same manner as in Example 9 except that the conductive mayenite type compound powder having a specific surface area of 20 m 2 g ⁇ 1 obtained in Example 3 was used, and an ammonia synthesis reaction was carried out.
  • the ammonia production rate at 340 ° C. was 1831 micromol ⁇ 1 h ⁇ 1 .
  • a 2 wt% Ru-supported catalyst was prepared in the same manner as in Example 9 except that the conductive mayenite type compound powder having a specific surface area of 23 m 2 g ⁇ 1 obtained in Example 4 was used, and an ammonia synthesis reaction was carried out.
  • the ammonia production rate at 340 ° C. was 1696 micromolg ⁇ 1 h ⁇ 1 .
  • a 2 wt% Ru-supported catalyst was prepared in the same manner as in Example 9 except that the conductive mayenite type compound powder having a specific surface area of 10 m 2 g ⁇ 1 obtained in Example 5 was used, and an ammonia synthesis reaction was carried out.
  • the ammonia production rate at 340 ° C. was 1793 micromol-g ⁇ 1 h ⁇ 1 .
  • a 2 wt% Ru-supported catalyst was prepared in the same manner as in Example 9 except that the mayenite type compound powder having a specific surface area of 60 m 2 g ⁇ 1 obtained in Comparative Example 2 was used, and an ammonia synthesis experiment was performed.
  • the ammonia production rate at 340 ° C. was 895 micromolg ⁇ 1 h ⁇ 1 .
  • Table 2 The results of Examples 9 to 13 and Comparative Examples 3 and 4 are summarized in Table 2.
  • the conductive mayenite type compound having a large specific surface area obtained by the production method of the present invention can be used as an electronic material such as a transparent electrode or a cold emitter having excellent electronic characteristics. Furthermore, it can be used as a high-performance reducing agent or catalyst material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Pyridine Compounds (AREA)

Abstract

【課題】導電性マイエナイト型化合物は、コールド電子エミッター、導電体、有機EL電子注入電極、熱電変換材料、熱電子発電材料、還元剤、酸化剤、触媒、などへの応用が期待されている。比表面積が大きい導電性マイエナイト型化合物が得られれば、各用途の有用性は著しく高まる。 【解決手段】(1)原料粉末と水の混合物を水熱処理して前駆体粉末を形成する工程、(2)前記前駆体粉末を加熱脱水してマイエナイト型化合物粉末を形成する工程、(3)化合物粉末を不活性ガス雰囲気又は真空中で加熱して活性化したマイエナイト型化合物粉末を形成する工程、(4)前記活性化したマイエナイト型化合物粉末と還元剤を混合し、還元処理によりマイエナイト型化合物に電子を注入する工程によって、伝導電子濃度が1015cm-3以上であり、比表面積が5m2-1以上の導電性マイエナイト型化合物粉末を製造する。

Description

導電性マイエナイト型化合物粉末の製造方法
 本発明は、電気伝導性を有する電子材料や触媒材料などに有用な、比表面積の大きい導電性マイエナイト化合物粉末の製造方法に関する。
 CaO、Al23、SiO2を構成成分とするアルミノケイ酸カルシウム中に、鉱物名をマイエナイトと呼ぶ物質があり、その結晶と同型の結晶構造を有する化合物を「マイエナイト型化合物」という。マイエナイト型化合物は、12CaO・7Al23(以下、「C12A7」と記す)なる代表組成を有し、C12A7結晶は、2分子を含む単位胞にある66個の酸素イオンの内の2個が、結晶骨格で形成されるケージ内の空間に「フリー酸素」として包接されているという、特異な結晶構造を持つことが報告されている(非特許文献1)。
 2003年以降、マイエナイト型化合物に含まれるフリー酸素イオンが種々の陰イオンで置換できることが本発明者らにより明らかにされた。特に、強い還元雰囲気にC12A7を保持すると、全てのフリー酸素イオンを電子で置換することができる。フリー酸素イオンを電子で置換したC12A7は、化学式で、[Ca24Al2864]4+(e-4(以下、「C12A7:e-」)と記すことができる。また、このように、陰イオンに対し電子が置き換わった物質を「エレクトライド」と呼び、エレクトライドは良好な電子伝導特性を示す特徴を有する(非特許文献2)。
 本発明者らは、(イ)C12A7の単結晶や微粉末の静水圧プレス成型体をアルカリ金属又はアルカリ土類金属蒸気中、600~800℃に保持する方法、(ロ)C12A7の薄膜に不活性イオンをイオン打ち込みする方法、又は、(ハ)C12A7の微粉末の静水圧プレス成型体を還元雰囲気で溶融し、融液から直接固化する方法で、1×1019cm-3以上の濃度の伝導電子を有するC12A7:e-及びC12A7と同型化合物が得られることを見出した(特許文献1)。
 また、本発明者らは、良好な導電性マイエナイト型化合物の原料物質を溶融し、低酸素分圧の雰囲気中で保持してから冷却凝固させる方法に関する発明(特許文献2)、原料粉末を高温保持して固相反応で焼結した焼結物を粉砕した粉末、その粉末のプレス成型体、又はその成型体を1200~1350℃で焼結した焼結体に炭素、Al、Ti等の還元剤を加えて、600~1415℃で熱処理して導電性を付与(すなわち、フリー酸素イオンと電子の置換)する方法に関する発明(特許文献3、4)を特許出願した。さらに、C12A7単結晶をチタン金属(Ti)蒸気中でアニールし、金属電気伝導性を示すC12A7:e-を得ることに成功し、その製法及び電子放出材料としてのその用途に関する発明を特許出願した(特許文献5)。
 導電性マイエナイト型化合物の製造方法としては、例えば、非水溶液原料を500~1500℃に加熱焼成して得られる12Ca1-xSrxO7Al23(x=0~1)で示される複合酸化物膜を700~1500℃に加熱して還元処理する方法(特許文献6)、混合した原料を還元雰囲気下で、酸素分圧が1000Pa以下の不活性雰囲気又は真空雰囲気中において、1200~1415℃で加熱する方法(特許文献7)、金属Alや金属Ca等の還元剤と原料の混合物を1200~1415℃で焼結するか、1415~1600℃で溶融する方法(特許文献8)、マイエナイト型化合物粉末を300~1200℃に加熱して開気孔を有する焼結体を形成し、得られた焼結体を還元性雰囲気中で1200~1450℃に加熱する方法(特許文献9)などに関する発明が特許出願されている。
 金属電気伝導性を示すC12A7:e-に関しては、CaCO3及びAl23を11:7で混合して、1300℃で加熱した生成物を金属Ca蒸気雰囲気中で加熱することで粉末を直接合成することもできる(非特許文献3)。導電性マイエナイト型化合物は、電子エミッター、フィールドエミッションディスプレイ装置、冷陰極蛍光管、平面型照明装置、及び電子放出材料(特許文献10)、放電ランプ用電極(特許文献11)等に使用される。
 さらに、導電性マイエナイト型化合物であるC12A7のAlの一部をGa又はInで置換したマイエナイト型化合物に係わる発明の出願がなされており、これは、PDP保護膜材料や、有機ELデバイスにおける電荷注入材料など、高温加熱処理が必要とされる電極材料として適する(特許文献12)。
 本発明者らは、導電性マイエナイト型化合物に、RuやFeなどの金属を担持したアンモニア合成反応の触媒に関する発明(特許文献13)及び導電性マイエナイト型化合物を用いて二酸化炭素を一酸化炭素に還元する方法に関する発明(特許文献14)について特許出願した。また、C12A7は、導電性を有しないものでも触媒や触媒担体としての用途を有し、例えば、原料の錯体溶液を噴霧乾燥後1300~1400℃で2時間以上仮焼して得られた触媒を軟質オレフィン生成用の水蒸気分解反応触媒として使用することが知られている(特許文献15)。最近では、水熱法やゾルーゲル法で前駆体を合成後、焼成する方法により高比表面積の担体を得る方法が提案されている(非特許文献4,5)。
 なお、C12A7を、水分を含む雰囲気に放置すると水酸基イオン(OH-)がケージ中に包接され、高温でも離脱し難いことが報告されている(非特許文献6)。
WO2005/000741 WO2005/077859 WO2006/129674 WO2006/129675 WO2007/060890 特開2009-107858号公報 特開2010-132467号公報 特開2012-082081号公報 特開2012-126618号公報 WO2006/112455 WO2011/024821 特開2009-203126号公報 WO2012/077658 特開2012-025636号公報 米国特許第6,696,614号明細書
Von Hans Bartl und Thomas Scheller,"N.Jahrbuch F.Mineralogie.Monatshefte",35,547-552,(1970) S.Matsuishi,Y.Toda,M.Miyakawa,K.Hayashi,T.Kamiya,M.Hirano,I.Tanaka and H.Hosono,"Science",301,626-629,(2003) S.Matsuishi,T.Nomura,M.Hirano,K.Kodama,S.Shamoto and H.Hosono,"Chemistry of Materials",21,2589-2591,(2009) L.Gong,Z.Lin,S.Ning,J.Sun,J.Shen,Y.Torimoto and Q.Li,"Material Letters",64,1322-1324,(2010) C.Li,D.Hirabayashi and K.Suzuki,"Materials Research Bulletin",46,1307-1310,(2011) K.Hayashi,M.Hirano and H.Hosono,"J.Phys.Chem.B",109,11900-11906,(2005)
 導電性マイエナイト型化合物は、コールド電子エミッター、導電体、有機ELの電子注入電極、熱電変換材料、熱電子発電材料、還元剤、酸化剤、触媒、などへの応用が期待されている。
 伝導電子を1015cm-3以上含む導電性マイエナイト型化合物を製造するための公知方法においては、例えば、還元剤を混合した原料を1200℃以上の高温で焼成すると同時に還元処理する(特許文献8)か、1200℃以上の高温で焼成して合成したマイエナイト型化合物に対して還元処理する(特許文献8)等の方法のように、高温の合成工程が必要である。
 そのため、比表面積の大きな原料を用いてもマイエナイト型化合物が生成、結晶化する過程において粒子のシンタリングが生じ、結果として表面積が小さい粒子又は塊となってしまうので、比表面積がせいぜい2m2-1程度の小さなマイエナイト型化合物しか得られない。したがって、従来、比表面積が大きく、且つ、1015cm-3以上の伝導電子を含むマイエナイト型化合物及び、その製造手段は知られていない。比表面積が5m2-1以上の導電性マイエナイト型化合物が得られれば、導電性マイエナイト型化合物の上記の各用途の有用性は著しく高まると考えられる。
 本発明者らは、上記目的を達成すべく鋭意検討を行った結果、比表面積が大きい導電性マイエナイト型化合物粉末の製造方法を見出し、本発明を完成するに至った。
 すなわち、従来の方法では、マイエナイト型化合物に1200℃以上の高温での還元処理による電子注入操作が必要であり、比表面積の大きな原料粉末を用いても高温処理による原料粉体の焼結により、比表面積の大きな粉末が得られなかったが、本発明者らは1100℃以下の低温で電子注入操作が可能な手段を見出し、比表面積が5m2-1以上の導電性マイエナイト型化合物粉末の製造を実現した。
 本発明は、(1)マイエナイト型化合物の原料粉末と水の混合物を水熱処理してマイエナイト型化合物の前駆体粉末を形成する工程、
(2)前記前駆体粉末を加熱脱水してマイエナイト型化合物粉末を形成する工程、
(3)前記マイエナイト型化合物粉末を不活性ガス雰囲気又は真空中で400~1100℃の温度範囲で、3時間以上加熱して活性化したマイエナイト型化合物粉末を形成する工程、
(4)前記活性化したマイエナイト型化合物粉末と還元剤を混合し、400~1100℃の温度範囲に加熱して還元処理によりマイエナイト型化合物に電子を注入する工程、
を少なくとも含む、伝導電子濃度が1015cm-3以上であり、比表面積が5m2-1以上の導電性マイエナイト型化合物粉末の製造方法、である。
 また、本発明は、上記の製造方法において、工程(4)の後に、さらに、(5)迅速昇温加熱法(RTA法)により、30~60℃min-1の昇温速度、900~1100℃の加熱保持を繰り返す工程を有する導電性マイエナイト型化合物粉末の製造方法、である。
 本発明の方法において、マイエナイト型化合物は、代表的には12CaO・7Al23である。また、還元剤は、好ましくはCa又はCaH2である。
 比表面積が5m2-1以上の導電性マイエナイト型化合物粉末が得られた理由は以下の2点である。まず、1点目として、水熱合成法を用いることで、マイエナイト型化合物の原料、例えば、C12A7の場合はCa源とAl源が均一によく混ざり、低温で結晶の元となる水和酸化物を前駆体として形成することができる。その前駆体を加熱脱水することで、固相合成よりも低温でマイエナイト化合物が得られる。その結果、得られたマイエナイト化合物はサブマイクロオーダーの微粒子であるため高い比表面積を有する。しかし、このような微粒子は従来の方法と同様な方法では還元能力が高い還元剤を用いても、還元剤が機能せず、電子の注入は困難である。このような比表面積が大きいマイエナイト化合物粉末を800~1000℃で真空排気処理すると、吸着水、表面水酸基、ケージ内のOH-等を十分除去できるため、還元剤を失活させることなく利用できる。また、還元能力の高いCaH2を用いると、低温(700~800℃)で還元処理することで、導電性マイエナイト化合物粉末を得ることができる。
 2点目として、前記還元処理後に表面の一部が絶縁的になった粉末表面をさらに還元する際に、迅速昇温加熱法(Rapid Thermal Anealing(以下、RTA法という)を用いると、高速昇温ができるため、粒子の焼結・凝集が起こる前に還元処理を終えることができるため、比較的高い温度(900~1100℃)で加熱還元しても、高い比表面積の導電性マイエナイト化合物が得られる。
 さらに、本発明は、上記の方法で製造した導電性マイエナイト型化合物粉末に金属触媒を含浸法、物理的混合法、熱分解法、液相法、スパッタリング法又は蒸着法により担持させて担持金属触媒を製造する方法である。
 担持金属成分は特に限定しないが、1A族元素から選ばれる、Li、Na、K、Rb、あるいはCs、2A族元素から選ばれるMg、Ca、Sr、あるいはBa、3A族から選ばれるSc、Y、ランタニド、あるいはアクチニド、4A族元素から選ばれるTi、Zr、あるいはHf、5A族元素のV、Nb、あるいはTa、6A族元素のCr、MoあるいはW、7A族元素のMn、Tc、あるいはRe、8族遷移金属のFe、Ru、あるいはOs、9族元素のCo、Rh、あるいはIr、10族元素のNi、Pd、あるいはPt、11族元素のCu、Ag、あるいはAu、12族元素のZn、Cd、あるいはHg、13族元素のB、Al、Ga、In、あるいはTl、14族元素から選ばれるSi、Ge、Sn、あるいはPb、15族元素から選ばれるAs、Sb、あるいはBi、16族元素から選ばれるSe、あるいはTeのいずれかを用いることができる。あるいは、これら成分を組み合わせることもできる。
 本発明の触媒は、酸化、水素化、異性化、不均化、エステル化、縮合反応、酸塩基反応、あるいは重合反応など各種の触媒反応に用いることができるが、これに限定されるものではない。なかでも遷移金属元素は均一系・不均一系の触媒として各種の合成反応に使用されており、特に、Fe、Ru、Os、Co、Rh、Mo等の6族、8族又は9族遷移金属は、水素と窒素との直接反応によりアンモニアを合成する触媒として適する。
 例えば、アンモニア合成活性をもつ遷移金属として、Mo、W、Re、Fe、Co、Ru、Rh、Osが知られており、これら成分にアルカリ金属、アルカリ土類金属などの電子注入材で修飾した触媒、あるいは前述元素の組み合わせや、8族又は6B族遷移金属の窒化物やCo・Mo複合窒化物を触媒に用いることができる。
 マイエナイト型化合物粉末や多孔体を担体として用いる場合は、前記工程で得られた伝導電子を1×1015cm-3以上含むマイエナイト型化合物粉末や多孔体を、遷移金属化合物と含浸法や物理的混合法で混合した後に加熱して、遷移金属化合物を遷移金属に還元分解することで得られる。さらに、遷移金属化合物をその表面にCVD法、スパッタ法等で堆積させ、該遷移金属化合物を熱分解して遷移金属を析出させるなどの方法を使用できる。
 遷移金属化合物は特に限定されないが、例えば、トリルテニウムドデカカルボニル[Ru3(CO)12]、ジクロロテトラキス(トリフェニルホスフィン)ルテニウム(II)[RuCl2(PPh3)4]、ジクロロトリス(トリフェニルホスフィン)ルテニウム(II)[RuCl2(PPh3)3]、トリス(アセチルアセトナト)ルテニウム(III)[Ru(acac)3]、ルテノセン[Ru(C5H5)]、塩化ルテニウム[RuCl3]、ペンタカルボニル鉄[Fe(CO)5]、ノナカルボニル鉄[Fe2(CO)9]、テトラカルボニル鉄ヨウ化物[Fe(CO)4I2]、塩化鉄[FeCl3]、フェロセン[Fe(C5H5)2]、トリス(アセチルアセトナト)鉄(III)[Fe(acac)3]、ドデカカルボニル三鉄[Fe3(CO)12]、塩化コバルト[CoCl3]、トリス(アセチルアセトナト)コバルト(III)[Co(acac)3]、コバルト(II)アセチルアセトナト[Co(acac)2]、コバルトオクタカルボニル[Co2(CO)8]、コバルトセン[Co(C5H52]、トリオスミウムドデカカルボニル[Os3(CO)12]、モリブデンヘキサカルボニル[Mo(CO)6]、などの熱分解し易い無機金属化合物又は有機金属錯体などを例示できる。
 含浸法としては、次の工程を採用できる。例えば、炭体粉末を遷移金属化合物溶液(例えば、Ruカルボニル錯体のヘキサン溶液)に分散し、撹拌する。この際、遷移金属化合物は、担体粉末に対して0.01~40wt%、好ましくは0.02~30wt%、より好ましくは0.05~20wt%程度である。その後、窒素、アルゴン、ヘリウム等の不活性ガス気流中、又は真空下、50~200℃で30分から5時間の間、加熱して溶媒を蒸発させ乾固する。次に、乾固した遷移金属化合物からなる触媒前駆体を還元する。以上の工程により担体粉末に数nm~数百nmの粒子径の微粒子として遷移金属を坦持した担持金属触媒が得られる。
 遷移金属の量は担体粉末に対して0.01~30wt%、好ましくは0.02~20wt%、より好ましくは0.05~10wt%である。遷移金属が担持された担体粉末は、担持工程後も当初と同程度の電子を包接しており、担体として仕事関数が小さいので遷移金属への電子供与能力が大きく、遷移金属上での窒素及び水素の活性化を著しく促進する結果、高性能なアンモニア合成触媒として機能する。
 本発明の触媒は、アルカリ金属やアルカリ土類金属及びそれらの化合物を促進剤化合物に用いないでも高性能なアンモニア合成触媒となるが、必要に応じてこれらの促進剤化合物を用いてもかまわない。
 また、担持金属触媒は通常の成型技術を用い成型体として使用することができる。具体的には、粒状、球状、タブレット、リング、マカロニ、四葉、サイコロ、ハニカム状などの形状が挙げられる。また、適当な支持体にコーティングしてから使用することもできる。
 また、本発明は、上記の方法で製造した担持金属触媒を窒素ガス(N2)と水素ガス(H2)を反応させてアンモニアガス(NH3)を生成する合成反応に用いるアンモニア合成法、である。
 本発明の方法により、PDP保護膜材料や高温加熱処理が必要とされる電極材料などの電子材料部品や、あるいは触媒素材として有用な、比表面積の大きい、導電性マイエナイト型化合物粉末を従来の還元剤を用いる電子注入法により提供することができる。
 以下、本発明の製造法について詳細に説明する。
 マイエナイト型化合物の結晶は、内径0.4nm程度の籠状の構造(ケージ)がその壁面を共有し、三次元的に繋がることで構成される。通常、マイエナイト型化合物のケージの内部にはO2-などのアニオンが含まれているが、化学処理によってそれらを伝導電子に置換できる。アニール時間を長くすることで、マイエナイト型化合物中の伝導電子濃度は高くなる。
 マイエナイト型化合物は、構造中に内包する酸化物イオン(O2-)を置換した電子が伝導電子となり、C12A7の場合、組成式([Ca24Al28644+(O2-2-x(e-2x)(0<x<2)で示される。更に、酸化物イオンを電子で置換することにより、伝導電子濃度は1×1015cm-3以上になる。したがって、伝導電子を含むマイエナイト型化合物は、「導電性マイエナイト型化合物」と称することができる。伝導電子の理論的最大濃度はC12A7:e-の場合、2.3×1021cm-3であり、前記の方法により、理論値に等しい量の伝導電子濃度を持つマイエナイト型化合物を得ることができる。
 導電性マイエナイト型化合物は、2.8eV及び0.4eVに光吸収を生じる。この光吸収係数を測定することにより電子密度が得られる。試料が粉末体であるとき、拡散反射法を用いると簡便に電子密度が得られる。また、ケージ中の電子はスピン活性があるので、電子スピン共鳴(ESR)を用いてケージ中の電子密度を測定することも可能である。さらに、伝導電子を含むマイエナイト型化合物は、ヨウ素を含む溶液中に溶かすことでヨウ素を還元する。この作用を利用し、酸化還元滴定でケージ中の電子密度を測定できる。
 本発明に関して、比表面積は、液体窒素温度(-196℃)における窒素分子の吸着等温線により測定した値である。吸着等温線の平衡圧(P/P0;Pは-196℃で試料表面と平衡状態にある吸着気体の分圧(Pa)、P0は吸着気体の蒸気圧(Pa))0.05~0.3の範囲においてBET(Brunauer,Emmett and Teller)式を適用し、合成した導電性マイエナイト型化合物の比表面積を見積もった。
<マイエナイト型化合物の合成>
 本発明の方法において、目的化合物の出発原料に用いるマイエナイト型化合物は、微粉末(一次粒子サイズ100nm以下)又は細孔構造を持ったバルクの多孔体であればより好ましい。マイエナイト型化合物を微粒子にすることにより、グラム当たりの表面積が増加し、粒子の間隙もメソ孔領域(2nmから100nm以下)になる。マイエナイト型化合物の前駆体となる水酸化物は、水熱処理法により得ることができる。
 <水熱処理によるマイエナイト型化合物の合成方法>
 水熱合成法は結晶性の良い微粒子の無機酸化物を合成する方法として古くから検討されている。水やアルコール等の溶媒と原料を耐圧容器に入れて溶媒の沸点以上の温度で数時間~数日加熱することで前駆体化合物を得ることができる。
 マイエナイト型化合物C12A7の前駆体となる水酸化物であるCa3Al2(OH)12は水と水酸化カルシウム、水酸化アルミニウムを化学量論組成で混合し、例えば、150℃、6時間程度加熱することで得ることができる。得られた前駆体を大気中で、400~1000℃程度で加熱して脱水することにより、比表面積の大きな(20~60m2-1程度)マイエナイト型化合物粉末C12A7が得られる。
 <マイエナイト型化合物の前処理>
 水熱処理を経由して合成した高比表面積のマイエナイト型化合物粉末は表面やケージ骨格内に強固に結合した水酸基を保有しており、伝導電子を含ませる工程で還元剤が水酸基と反応(2CaH2+2OH→2CaO+3H2)して消費されるため、電子を注入する工程の前処理工程により水酸基を極力なくして粉末の表面又はケージ骨格内を活性化しておく必要がある。前処理後の比表面積は前処理温度の上昇に伴い減少し、400~1000℃の温度範囲では比表面積は、例えば、60m2-1から6m2-1に変化する。
 前処理法としては、400~1100℃の温度で、不活性ガス雰囲気又は真空下で加熱する方がよい。加熱温度は、好ましくは700~1000℃、より好ましくは、800~900℃の範囲が良い。400℃未満の温度では、高い比表面積を有する粉末が得られるが、還元処理工程において還元剤が粉末に保有されている水酸基により消費されるため高い伝導電子濃度を得ることはできない。一方、1100℃を超える温度では、高い伝導電子濃度が得られるが、粉末の焼結が進行するので、高い比表面積のマイエナイト型化合物粉末を得ることはできない。活性化を十分行うために3時間以上加熱することが好ましい。
 <マイエナイト型化合物に還元処理により伝導電子を含ませる工程>
 伝導電子を含んだマイエナイト型化合物の粉末を作製する場合、化学当量組成のマイエナイト型化合物の原料の粉末を還元雰囲気下、400~1100℃の範囲で加熱すればよい。好ましくは、600~900℃の範囲が、より好ましくは700~800℃が良い。400℃未満では、ケージ内の酸素イオンと還元剤との反応が不十分で、高い伝導電子濃度を得る事が出来ない。一方、1100℃超の温度では、高い伝導電子濃度を得ることができるが、シンタリングにより比表面積の低下が生じる。処理時間は十分に酸素イオンを拡散させ、伝導電子と交換させるため3時間以上が好ましい。
 還元剤としては、上記加熱温度範囲でケージ内の酸素イオンと反応するものであればよく、例えば、Na、Liなどのアルカリ金属、Mg、Ca、CaH2などのアルカリ土類金属及びそれらの水素化物が使用できる。CaH2は還元後CaOとなって不純物として残留するため導電性マイエナイト型化合物の有効表面積を低下させる要因となる。伝導電子を含ませる処理工程を経たマイエナイト型化合物粉末は工程時の処理温度が高いほど比表面積は小さくなり、例えばマイエナイト型化合物粉末を800℃で前処理を行った試料に対して600℃から800℃の温度領域で還元処理を行うと、例えば30m2-1から20m2-1程度へと変化する。
<RTA処理法>
 還元剤と反応したマイエナイト型化合物粉末の表面の一部は、例えば酸化カルシウムに覆われて絶縁的になっていることがある。この絶縁的になった粉末表面を還元する方法として、RTA法を使用できる。RTA法は迅速昇温加熱法の略であり、半導体の結晶性を向上させる方法として知られている。粉末の表面を加熱するための従来の方法では、昇温速度が5~10℃min-1程度と遅く、粒子のシンタリングによる表面積の低下を防ぐことはできなかった。一方、RTA法を用いると表面積を低下させることなく、エレクトライド表面の結晶性を上げることができ、かつマイエナイト型化合物粉末の表面を含めた伝導化が可能である。RTA法で結晶化する場合、不活性雰囲気、還元性雰囲気、又は真空中で30~60℃min-1の昇温速度で昇温し、加熱温度として900~1100℃で5~15秒間保持して、昇温と加熱保持工程を2~5回繰り返し加熱する。好ましくは、保持温度は950~1100℃の範囲が良い。
<導電性マイエナイト型化合物を担体とする触媒の製造工程>
 上記の方法で製造した導電性マイエナイト型化合物粉末にRu等の遷移金属触媒を含浸法、物理的混合法、熱分解法、液相法、スパッタリング法、又は蒸着法により担持させることにより触媒を製造することができる。物理的混合法は、導電性マイエナイト型化合物粉末と遷移金属化合物粉末とを物理的混合法により固相混合した後に水素雰囲気等の還元雰囲気で50~600℃の温度範囲で遷移金属化合物を加熱還元することによって担持金属触媒を得る。加熱還元の前に、真空中で昇温、維持を数回繰り返すことが担持金属粒子のシンタリングを抑制させる点で望ましい。
 含浸法は、導電性マイエナイト型化合物粉末を遷移金属化合物の溶媒溶液に分散させる工程、該溶媒溶液の溶媒を蒸発させて乾固した該遷移金属化合物からなる触媒前駆体を形成する工程、還元雰囲気中で加熱して該遷移金属化合物を還元して前記金属触媒を形成する工程からなる。
 遷移金属が担持された担体粉末は、担持工程後も当初と同程度の電子を包接しており、担体として仕事関数が小さいので遷移金属への電子供与能力が大きく、かつ担体の比表面積が大きいので遷移金属上での窒素及び水素の活性化を著しく促進する結果、比表面積の小さい導電性マイエナイト粉末を用いた場合よりも高性能なアンモニア合成触媒として機能する。これらの方法で導電性マイエナイト型化合物粉末に担持された遷移金属触媒を用い、反応装置内で、100℃から600℃以下の反応温度、10kPa~30MPaの反応圧力条件で、原料の窒素と水素を前記触媒上で反応させてアンモニアを合成することができる。
<マイエナイト型化合物粉末の合成>
 Ca(OH)2とAl(OH)3をCa:Al=12:14となるように秤量し、混合した。混合粉体の重量が10wt%となるように蒸留水を測りとり、合計160gを遊星型ボールミルにて4時間撹拌・混合した。得られた混合溶液を耐圧密閉容器に入れ、撹拌しながら150℃、6時間加熱処理(水熱処理)を施した。得られた沈殿物を濾別し、乾燥後粉砕してマイエナイト型化合物の前駆体粉末:Ca3Al2(OH)12約20gを得た。この前駆体粉末を大気中で600℃、5時間加熱脱水を施し、原料の比表面積の大きいマイエナイト型化合物粉体を得た。この原料の比表面積は60m2-1であった。
<前処理>
 前処理として前記粉体をシリカガラス管内に入れ、1×10-4Paの真空中で900℃、5時間排気しながら加熱して取り出した。この段階で得られた粉体の比表面積は約30m2-1であった。
<還元処理による電子注入>
 前処理後の粉体3gに対し還元剤であるCaH2を0.4g加え十分に混合して混合物とした後、Ta製チューブに前記混合物を詰めた。前記混合物の詰まったTa製チューブをシリカガラス管内に入れて、1×10-4Paの真空中で700℃、15時間加熱した。伝導電子濃度が1.0×1021cm-3、比表面積が17m2-1の導電性マイエナイト型化合物粉末を得た。
[比較例1]
<マイエナイト型化合物粉末の合成>
 CaCO3及びAl23の各粉末をCaとAlの割合が11:14となるように混合し、合計30gをアルミナ坩堝中にて1300℃で6時間加熱した。得られた粉末をシリカガラス管内に挿入し1×10-4Paの真空中で1100℃、15時間加熱し原料のマイエナイト型化合物粉末を得た。この段階で得られた粉体の比表面積は1m2-1以下であった。
<還元処理による電子注入>
 上記の合成法によって得た粉末3gを、シリカガラス管内に金属Ca粉末0.18gとともに挿入し、700℃で15時間加熱することにより内部を金属Ca蒸気雰囲気として粉体と反応させた。真空に封管された試料を取り出し、乳鉢ですりつぶした後、再びシリカガラス管内に詰めて真空に引きながら封管した。このシリカガラス管を1100℃、2時間加熱することで伝導電子濃度が約2×1021cm-3、比表面積は1m2-1の導電性マイエナイト型化合物粉末C12A7:e-(C12A7e21と表記する)を得た。
 実施例1の原料の前処理温度900℃に代えて、800℃で前処理した以外は実施例1と同じ条件で比表面積の大きいマイエナイト型化合物粉末の合成を実施した。この段階で得られた粉体の比表面積は40m2-1となっていた。
<還元処理による電子注入>
 実施例1の還元処理温度を700℃に代えて、600℃で還元処理した以外は実施例1と同じ条件で導電性マイエナイト化合物粉末の合成を実施した。伝導電子濃度が1.0×1021cm-3であり、比表面積は31m2-1であった。
<還元処理による電子注入>
 実施例1の還元処理温度を700℃に代えて、600℃で還元処理した以外は実施例1と同じ条件で導電性マイエナイト化合物粉末の合成を実施した。伝導電子濃度が0.8×1021cm-3であり、比表面積は20m2-1であった。
<前処理>
 実施例1の原料の前処理温度900℃に代えて、800℃で前処理した以外は実施例1と同じ条件で比表面積の大きいマイエナイト型化合物粉末の合成を実施した。この段階の比表面積は40m2-1となっていた。
<還元処理による電子注入>
 実施例1と同様の条件で還元処理して導電性マイエナイト化合物粉末の合成を実施した。伝導電子濃度が1.0×1021cm-3であり、比表面積は23m2-1であった。
<前処理>
 実施例1の原料前処理温度900℃に代えて、800℃で前処理した以外は実施例1と同じ条件で比表面積の大きいマイエナイト型化合物粉末の合成を実施した。この段階の比表面積は40m2-1となっていた。
<還元処理による電子注入>
 実施例1の還元処理温度を700℃に代えて、800℃で還元処理した以外は実施例1と同じ条件で導電性マイエナイト化合物粉末の合成を実施した。伝導電子濃度が0.4×1021cm-3であり、比表面積は10m2-1であった。
[比較例2]
 実施例1と同じ方法でマイエナイト型化合物粉末を合成した。ただし、実施例1の前処理を行わず、還元処理による電子注入も実施しなかった。伝導電子濃度はゼロで、比表面積は60m2-1であった。
<前処理>
 実施例1の原料の前処理温度900℃に代えて、1000℃で前処理した以外は実施例1と同じ条件でエレクトライドの合成を実施した。伝導電子濃度が1.4×1021cm-1、比表面積が6m2-1の導電性マイエナイト型化合物粉末が得られた。
<マイエナイト型化合物の合成>
 実施例1で得たCa3Al2(OH)12を酸素気流中、800℃で2時間加熱脱水し、原料のマイエナイト型化合物粉末を得た。
<前処理>
 この原料の前処理として粉体をシリカガラス管内に入れ、1×10-4Paの真空中で800℃、20時間排気しながら加熱した。
<還元処理による電子注入>
 実施例1のCaH2の代わりに、還元剤としてCaメタルを用いた。前処理後の粉体2gに対し還元剤であるCaメタルを0.12g加えて、シリカガラス管内に入れて、1×10-4Paの真空中で700℃、15時間加熱した。
<RTA処理>
 さらに粉体の表面活性化のため、タンマン管に詰めて真空封管したのち、45℃min-1の昇温速度で昇温し、950℃で5秒間加熱保持する工程を、2回繰り返してRTA処理した。伝導電子濃度は0.5×1021cm-1、比表面積が19m2-1の導電性マイエナイト型化合物粉末が得られた。
<RTA処理>
 実施例7のRTA処理温度950℃に代えて、処理温度1000℃でRTA処理したこと以外は実施例7と同じ条件で導電性マイエナイト型化合物粉末の合成を実施した。伝導電子濃度が1.5×1021cm-1、比表面積が14m2-1の導電性マイエナイト型化合物粉末が得られた。
 実施例1~8、比較例1、2の合成及び処理条件を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
<導電性マイエナイト型化合物粉末へのRuの担持>
 実施例1で得られた電子注入量が1.0×1021cm-3であり、比表面積が17m2-1のC12A7e-粉末1gとRu3(CO)120.042gをパイレックス(登録商標)ガラス管に入れ、真空封管した。真空封管したものを電気炉内で回転させながら以下のプログラムで加熱処理をした。
[40℃、20min昇温→40℃、60min維持→70℃、120min昇温→70℃、60min維持→120℃、120min昇温→120℃、60min維持→250℃、150min昇温→250℃、120min維持]
 その後、真空封管を破り、水素ガス(26.7kPa)雰囲気下、300℃で5時間昇温、2時間加熱処理をすることで、2wt%のRuを担持した導電性マイエナイト型化合物粉末を得た。
<アンモニア合成反応>
 窒素ガス(N2)と水素ガス(H2)を反応させてアンモニアガス(NH3)を生成する反応を行った。得られた触媒0.2gを石英ガラス管に詰め、固定床流通系反応装置に取り付けて反応を行った。ガスの流量は、N2:15mL
min-1,H2:45mLmin-1,計60mLmin-1に設定し、圧力:大気圧、反応温度:320~400℃で反応を行った。流通系の反応器から出てきたガスを0.005M硫酸水溶液中にバブリングさせ、生成したアンモニアを溶液中に溶解させ、生じたアンモニウムイオンをイオンクロマトグラフにより定量した。340℃におけるアンモニアの生成速度は、2388マイクロmolg-1-1であった。
[比較例3]
 比較例1で得られた電子注入量が2.0×1021cm-3であり、比表面積が1m2-1のC12A7e21粉末を使う以外は実施例9と同様な方法で2wt%Ru担持触媒を調製し、アンモニア合成反応を実施した。340℃におけるアンモニア生成速度は、1229マイクロmolg-1-1であった。
 実施例2で得られた比表面積が31m2-1の導電性マイエナイト型化合物粉末を使う以外は実施例9と同様な方法で2wt%Ru担持触媒を調製し、アンモニア合成反応を実施した。340℃におけるアンモニア生成速度は、1575マイクロmolg-1-1であった。
 実施例3で得られた比表面積が20m2-1の導電性マイエナイト型化合物粉末を使う以外は実施例9と同様な方法で2wt%Ru担持触媒を調製し、アンモニア合成反応を実施した。340℃におけるアンモニア生成速度は、1831マイクロmolg-1-1であった。
 実施例4で得られた比表面積が23m2-1の導電性マイエナイト型化合物粉末を使う以外は実施例9と同様な方法で2wt%Ru担持触媒を調製し、アンモニア合成反応を実施した。340℃におけるアンモニア生成速度は、1696マイクロmolg-1-1であった。
 実施例5で得られた比表面積が10m2-1の導電性マイエナイト型化合物粉末を使う以外は実施例9と同様な方法で2wt%Ru担持触媒を調製し、アンモニア合成反応を実施した。340℃におけるアンモニア生成速度は、1793マイクロmolg-1-1であった。
[比較例4]
 比較例2で得られた比表面積が60m2-1のマイエナイト型化合物粉末を使う以外は実施例9と同様な方法で2wt%Ru担持触媒を調製し、アンモニア合成実験を実施した。340℃におけるアンモニア生成速度は895マイクロmolg-1-1であった。
 実施例9~13、比較例3、4の結果を表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 本発明の製造方法で得られる比表面積の大きい導電性マイエナイト型化合物は、電子的特性の優れた透明電極やコールドエミッターなどの電子材料として利用することができる。さらに、高性能な還元剤や触媒材料などとしても利用可能である。

Claims (9)

  1. (1)マイエナイト型化合物の原料粉末と水の混合物を水熱処理してマイエナイト型化合物の前駆体粉末を形成する工程、
    (2)前記前駆体粉末を加熱脱水してマイエナイト型化合物粉末を形成する工程、
    (3)前記マイエナイト型化合物粉末を不活性ガス雰囲気又は真空中で400~1000℃の温度範囲で、3時間以上加熱して活性化したマイエナイト型化合物粉末を形成する工程、
    (4)前記活性化したマイエナイト型化合物粉末と還元剤を混合し、400~1100℃の温度範囲に加熱して還元処理によりマイエナイト型化合物に電子を注入する工程、
    によって伝導電子濃度が1015cm-3以上であり、比表面積が5m2-1以上の導電性マイエナイト型化合物粉末を得ることを特徴とするマイエナイト型化合物の製造方法。
  2. 請求項1記載の製造方法において、工程(4)の後に、さらに、(5)迅速昇温加熱法(RTA法)により、30~60℃min-1の昇温速度、900~1100℃の加熱保持を繰り返す工程を有することを特徴とするマイエナイト型化合物の製造方法。
  3. マイエナイト型化合物が、12CaO・7Al23であることを特徴とする請求項1又は2記載のマイエナイト型化合物の製造方法。
  4. 還元剤が、Ca又はCaH2であることを特徴とする請求項1又は2記載のマイエナイト型化合物の製造方法。
  5. 請求項1又は2に記載した方法で製造した導電性マイエナイト型化合物粉末に遷移金属触媒を含浸法、物理的混合法、熱分解法、液相法、スパッタリング法又は蒸着法により担持させることを特徴とする担持金属触媒の製造方法。
  6. 請求項5記載の方法で製造した担持金属触媒を窒素ガス(N2)と水素ガス(H2)を反応させてアンモニアガス(NH3)を生成する合成反応に用いることを特徴とするアンモニア合成法。
  7. 請求項1記載の工程(1)~(3)で得られた、粉末の表面又はケージ骨格内を活性化したことを特徴とするマイエナイト型化合物粉末。
  8. 請求項1記載の工程(1)~(4)で得られた、伝導電子濃度が1015cm-3以上であり、比表面積が5m2-1以上であることを特徴とするマイエナイト型化合物。
  9. 請求項5記載の方法で得られた、導電性マイエナイト型化合物粉末に遷移金属触媒を担持させたことを特徴とする担持金属触媒。
PCT/JP2013/072163 2012-08-30 2013-08-20 導電性マイエナイト型化合物粉末の製造方法 WO2014034473A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2881788A CA2881788C (en) 2012-08-30 2013-08-20 Method for producing conductive mayenite compound powder
EP13833435.4A EP2891627B1 (en) 2012-08-30 2013-08-20 Method for producing conductive mayenite compound powder
KR1020157005322A KR101940777B1 (ko) 2012-08-30 2013-08-20 도전성 마이에나이트형 화합물 분말의 제조방법
CN201380044557.9A CN104583129B (zh) 2012-08-30 2013-08-20 导电性钙铝石型化合物粉末的制造方法
US14/423,303 US9573822B2 (en) 2012-08-30 2013-08-20 Method for producing conductive mayenite compound powder
RU2015111257A RU2647290C2 (ru) 2012-08-30 2013-08-20 Способ получения порошка проводящего соединения типа майенита
JP2014532935A JP6152381B2 (ja) 2012-08-30 2013-08-20 導電性マイエナイト型化合物粉末の製造方法
BR112015003948A BR112015003948A8 (pt) 2012-08-30 2013-08-20 Método para produção de pó e composto maienite condutivo, método para produção de um catalisador metálico apoiado, e método para sintetizar amônia
US15/383,412 US10124319B2 (en) 2012-08-30 2016-12-19 Method for producing conductive mayenite compound powder having large specific surface area

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-189371 2012-08-30
JP2012189371 2012-08-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/423,303 A-371-Of-International US9573822B2 (en) 2012-08-30 2013-08-20 Method for producing conductive mayenite compound powder
US15/383,412 Division US10124319B2 (en) 2012-08-30 2016-12-19 Method for producing conductive mayenite compound powder having large specific surface area

Publications (1)

Publication Number Publication Date
WO2014034473A1 true WO2014034473A1 (ja) 2014-03-06

Family

ID=50183288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072163 WO2014034473A1 (ja) 2012-08-30 2013-08-20 導電性マイエナイト型化合物粉末の製造方法

Country Status (9)

Country Link
US (2) US9573822B2 (ja)
EP (1) EP2891627B1 (ja)
JP (1) JP6152381B2 (ja)
KR (1) KR101940777B1 (ja)
CN (2) CN106277000B (ja)
BR (1) BR112015003948A8 (ja)
CA (1) CA2881788C (ja)
RU (1) RU2647290C2 (ja)
WO (1) WO2014034473A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218091A (ja) * 2014-05-20 2015-12-07 株式会社Ihi アンモニア合成触媒およびアンモニア合成方法
JP2015217384A (ja) * 2014-05-21 2015-12-07 株式会社Ihi 触媒、触媒の製造方法、アンモニア合成方法、アンモニア分解方法
JP2016059851A (ja) * 2014-09-17 2016-04-25 株式会社Ihi アンモニア合成触媒、アンモニア合成触媒の製造方法およびアンモニア合成方法
WO2016133133A1 (ja) * 2015-02-17 2016-08-25 味の素株式会社 含窒素製品及び発酵・培養生産物から選択される製品の製造システム及び製造方法
WO2016136235A1 (ja) * 2015-02-26 2016-09-01 日本特殊陶業株式会社 マイエナイト型化合物、多機能剤、及びマイエナイト型化合物含有製品の製造方法
JP2016164114A (ja) * 2015-02-26 2016-09-08 日本特殊陶業株式会社 マイエナイト型化合物、多機能剤、及びマイエナイト型化合物含有製品の製造方法
JP2016197498A (ja) * 2015-04-02 2016-11-24 日本電信電話株式会社 リチウム空気二次電池、その空気極用触媒の製造方法、並びにリチウム空気二次電池の製造方法
WO2018030394A1 (ja) 2016-08-08 2018-02-15 国立大学法人東京工業大学 アンモニア合成用触媒の製造方法及びアンモニアの製造方法
US10173202B2 (en) 2014-02-27 2019-01-08 Japan Science And Technology Agency Supported metal catalyst and method of synthesizing ammonia using the same
JPWO2018021282A1 (ja) * 2016-07-25 2019-06-13 国立大学法人東京工業大学 エレクトライド化マイエナイト型化合物の製造方法
WO2019156028A1 (ja) * 2018-02-07 2019-08-15 国立大学法人東京工業大学 複合物、複合物の製造方法、触媒及びアンモニアの製造方法
WO2019156029A1 (ja) * 2018-02-07 2019-08-15 国立大学法人東京工業大学 複合物、触媒及びアンモニアの製造方法
US10759668B2 (en) 2015-11-10 2020-09-01 Japan Science And Technology Agency Supported metal material, supported metal catalyst, and ammonia synthesis method using the same
JP2020142203A (ja) * 2019-03-07 2020-09-10 太平洋マテリアル株式会社 支持体固定化触媒担体
US10792645B2 (en) 2015-12-25 2020-10-06 Japan Science And Technology Agency Transition-metal-supporting intermetallic compound, supported metallic catalyst, and ammonia producing method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6143761B2 (ja) * 2012-09-20 2017-06-07 国立大学法人東京工業大学 水素生成触媒及び水素の製造法
CN104150912B (zh) 2014-08-11 2015-10-21 河海大学 一种在氧化物陶瓷粉体表面包覆金属纳米粒子的方法
EP3423407B1 (en) * 2016-03-01 2022-07-13 Starfire Energy Electrically enhanced haber-bosch (eehb) anhydrous ammonia synthesis
CN106854084A (zh) * 2016-12-08 2017-06-16 浙江大学 多孔导电钙铝石块体的制备方法
WO2018213305A1 (en) 2017-05-15 2018-11-22 Starfire Energy Metal-decorated barium calcium aluminum oxide and related materials for nh3 catalysis
US10787367B2 (en) 2017-05-26 2020-09-29 Starfire Energy Removal of gaseous NH3 from an NH3 reactor product stream
EP3713662A4 (en) 2017-11-25 2021-09-22 Starfire Energy CHEMICAL REACTOR WITH INTEGRATED HEAT EXCHANGER
CN109208079B (zh) * 2018-08-22 2020-09-22 武汉大学 一种钙铝石型半导体材料的制备方法
CN109433199B (zh) * 2018-10-22 2020-10-13 武汉大学 一种用于二氧化碳还原的钌基催化剂及其制备方法和应用
CN113423502B (zh) 2019-01-31 2024-05-10 星火能源公司 用于nh3合成和裂化的金属修饰的钡钙铝氧化物催化剂及其形成方法
BR112021016647A2 (pt) * 2019-02-26 2021-11-03 Tokyo Inst Tech Corpo sinterizado moldado, e método para a produção de corpo sinterizado moldado
CN110015675B (zh) * 2019-04-01 2021-11-16 中科合成油技术有限公司 导电性钙铝石型化合物粉末的制造方法
CN110496646B (zh) * 2019-07-31 2021-11-19 西北大学 应用于利用等离子体技术合成氨气的反应中的催化剂及其制备方法
CN110817916A (zh) * 2019-11-22 2020-02-21 北京工业大学 一种导电性钙铝石化合物低温快速合成方法
CN111558377B (zh) * 2020-05-12 2023-02-03 中国石油天然气集团有限公司 一种加氢精制催化剂及其制备方法与应用

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696614B2 (en) 1999-12-17 2004-02-24 Enichem S.P.A. Catalyst for steam cracking reactions and related preparation process
WO2005000741A1 (ja) 2003-06-26 2005-01-06 Japan Science And Technology Agency 電気伝導性12CaO・7Al 2O3 及び同型化合物とその製造方法
WO2005077859A1 (ja) 2004-02-13 2005-08-25 Asahi Glass Company, Limited 導電性マイエナイト型化合物の製造方法
JP2006083009A (ja) * 2004-09-15 2006-03-30 National Institute Of Advanced Industrial & Technology 活性酸素を包含あるいは吸蔵した無機化合物材料及びその製造方法
WO2006112455A1 (ja) 2005-04-18 2006-10-26 Asahi Glass Company, Limited 電子エミッタ、フィールドエミッションディスプレイ装置、冷陰極蛍光管、平面型照明装置、および電子放出材料
WO2006129675A1 (ja) 2005-05-30 2006-12-07 Asahi Glass Company, Limited 導電性マイエナイト型化合物の製造方法
WO2006129674A1 (ja) 2005-05-30 2006-12-07 Asahi Glass Company, Limited 導電性マイエナイト型化合物の製造方法
JP2007083126A (ja) * 2005-09-20 2007-04-05 Hirosaki Univ 酸素貯蔵物質および自動車排ガス浄化用三元触媒における酸素貯蔵方法
WO2007060890A1 (ja) 2005-11-24 2007-05-31 Japan Science And Technology Agency 金属的電気伝導性12CaO・7Al2O3化合物とその製法
JP2009107858A (ja) 2007-10-26 2009-05-21 Asahi Kasei Corp 複合酸化物膜および電気伝導性複合化合物膜の製造方法
JP2009203126A (ja) 2008-02-28 2009-09-10 Asahi Glass Co Ltd マイエナイト型化合物
JP2010132467A (ja) 2008-12-02 2010-06-17 Asahi Glass Co Ltd 酸化物の製造方法
WO2011024821A1 (ja) 2009-08-25 2011-03-03 旭硝子株式会社 放電ランプ用電極およびその製造方法
JP2012025636A (ja) 2010-07-26 2012-02-09 Tokyo Institute Of Technology 二酸化炭素の吸着還元剤及び還元方法
JP2012082081A (ja) 2010-10-07 2012-04-26 Sumitomo Chemical Co Ltd 導電性マイエナイト型化合物製造用の原料混合物、および導電性マイエナイト型化合物の製造方法
WO2012077658A1 (ja) 2010-12-07 2012-06-14 国立大学法人東京工業大学 アンモニア合成触媒及びアンモニア合成方法
JP2012126618A (ja) 2010-12-16 2012-07-05 Asahi Glass Co Ltd 導電性マイエナイト化合物の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU177860B (en) 1979-05-22 1982-01-28 Mta Koezponti Hivatala Method for producing carrier metal catalyzers
JP4124888B2 (ja) * 1998-10-23 2008-07-23 キヤノン株式会社 有機発光素子の製造方法
JP4057811B2 (ja) * 2001-12-28 2008-03-05 独立行政法人科学技術振興機構 エンジン排ガス浄化用触媒
JP4210750B2 (ja) * 2002-08-21 2009-01-21 独立行政法人産業技術総合研究所 活性酸素を包含した無機化合物及びその製造法
JP4145674B2 (ja) * 2003-02-04 2008-09-03 電気化学工業株式会社 酸素ラジカル含有カルシウムアルミネート粉末及びその製造方法
JP5058880B2 (ja) * 2007-06-19 2012-10-24 日本碍子株式会社 導電性セラミックス材料
EP2345624A4 (en) * 2008-08-27 2013-07-03 Asahi Glass Co Ltd MAYENIC COMPOUND AND MANUFACTURING METHOD THEREFOR
EP2351708A4 (en) * 2008-10-06 2013-07-17 Asahi Glass Co Ltd PROCESS FOR THE PRODUCTION OF AN OXIDE
WO2010090266A1 (ja) * 2009-02-05 2010-08-12 旭硝子株式会社 マイエナイト含有酸化物の製造方法および導電性マイエナイト含有酸化物の製造方法
JP2012101945A (ja) * 2009-02-17 2012-05-31 Asahi Glass Co Ltd マイエナイト含有酸化物の製造方法
CN102484032A (zh) * 2009-08-26 2012-05-30 旭硝子株式会社 放电灯用电极、放电灯用电极的制造方法以及放电灯
RU2459781C2 (ru) * 2010-06-21 2012-08-27 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ получения керамики со структурой майенита

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696614B2 (en) 1999-12-17 2004-02-24 Enichem S.P.A. Catalyst for steam cracking reactions and related preparation process
WO2005000741A1 (ja) 2003-06-26 2005-01-06 Japan Science And Technology Agency 電気伝導性12CaO・7Al 2O3 及び同型化合物とその製造方法
WO2005077859A1 (ja) 2004-02-13 2005-08-25 Asahi Glass Company, Limited 導電性マイエナイト型化合物の製造方法
JP2006083009A (ja) * 2004-09-15 2006-03-30 National Institute Of Advanced Industrial & Technology 活性酸素を包含あるいは吸蔵した無機化合物材料及びその製造方法
WO2006112455A1 (ja) 2005-04-18 2006-10-26 Asahi Glass Company, Limited 電子エミッタ、フィールドエミッションディスプレイ装置、冷陰極蛍光管、平面型照明装置、および電子放出材料
WO2006129675A1 (ja) 2005-05-30 2006-12-07 Asahi Glass Company, Limited 導電性マイエナイト型化合物の製造方法
WO2006129674A1 (ja) 2005-05-30 2006-12-07 Asahi Glass Company, Limited 導電性マイエナイト型化合物の製造方法
JP2007083126A (ja) * 2005-09-20 2007-04-05 Hirosaki Univ 酸素貯蔵物質および自動車排ガス浄化用三元触媒における酸素貯蔵方法
WO2007060890A1 (ja) 2005-11-24 2007-05-31 Japan Science And Technology Agency 金属的電気伝導性12CaO・7Al2O3化合物とその製法
JP2009107858A (ja) 2007-10-26 2009-05-21 Asahi Kasei Corp 複合酸化物膜および電気伝導性複合化合物膜の製造方法
JP2009203126A (ja) 2008-02-28 2009-09-10 Asahi Glass Co Ltd マイエナイト型化合物
JP2010132467A (ja) 2008-12-02 2010-06-17 Asahi Glass Co Ltd 酸化物の製造方法
WO2011024821A1 (ja) 2009-08-25 2011-03-03 旭硝子株式会社 放電ランプ用電極およびその製造方法
JP2012025636A (ja) 2010-07-26 2012-02-09 Tokyo Institute Of Technology 二酸化炭素の吸着還元剤及び還元方法
JP2012082081A (ja) 2010-10-07 2012-04-26 Sumitomo Chemical Co Ltd 導電性マイエナイト型化合物製造用の原料混合物、および導電性マイエナイト型化合物の製造方法
WO2012077658A1 (ja) 2010-12-07 2012-06-14 国立大学法人東京工業大学 アンモニア合成触媒及びアンモニア合成方法
JP2012126618A (ja) 2010-12-16 2012-07-05 Asahi Glass Co Ltd 導電性マイエナイト化合物の製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
C. LI; D. HIRABAYASHI; K. SUZUKI, MATERIALS RESEARCH BULLETIN, vol. 46, 2011, pages 1307 - 1310
K. HAYASHI; M. HIRANO; H. HOSONO, J. PHYS. CHEM. B, vol. 109, 2005, pages 11900 - 11906
L. GONG; Z. LIN; S. NING; J. SUN; J. SHEN; Y. TORIMOTO; Q. LI, MATERIAL LETTERS, vol. 64, 2010, pages 1322 - 1324
S. MATSUISHI; T. NOMURA; M. HIRANO; K. KODAMA; S. SHAMOTO; H. HOSONO, CHEMISTRY OF MATERIALS, vol. 21, 2009, pages 2589 - 2591
S. MATSUISHI; Y. TODA; M. MIYAKAWA; K. HAYASHI; T. KAMIYA; M. HIRANO; I. TANAKA; H. HOSONO, SCIENCE, vol. 301, 2003, pages 626 - 629
See also references of EP2891627A4
VON HANS BARTL; THOMAS SCHELLER, N. JAHRBUCH F. MINERALOGIE. MONATSHEFTE, vol. 35, 1970, pages 547 - 552

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10173202B2 (en) 2014-02-27 2019-01-08 Japan Science And Technology Agency Supported metal catalyst and method of synthesizing ammonia using the same
JP2015218091A (ja) * 2014-05-20 2015-12-07 株式会社Ihi アンモニア合成触媒およびアンモニア合成方法
JP2015217384A (ja) * 2014-05-21 2015-12-07 株式会社Ihi 触媒、触媒の製造方法、アンモニア合成方法、アンモニア分解方法
JP2016059851A (ja) * 2014-09-17 2016-04-25 株式会社Ihi アンモニア合成触媒、アンモニア合成触媒の製造方法およびアンモニア合成方法
WO2016133133A1 (ja) * 2015-02-17 2016-08-25 味の素株式会社 含窒素製品及び発酵・培養生産物から選択される製品の製造システム及び製造方法
US10941427B2 (en) 2015-02-17 2021-03-09 Ajinomoto Co., Inc. Production system and method of production for product selected from nitrogen-containing product and fermented and cultured product
WO2016136235A1 (ja) * 2015-02-26 2016-09-01 日本特殊陶業株式会社 マイエナイト型化合物、多機能剤、及びマイエナイト型化合物含有製品の製造方法
JP2016164114A (ja) * 2015-02-26 2016-09-08 日本特殊陶業株式会社 マイエナイト型化合物、多機能剤、及びマイエナイト型化合物含有製品の製造方法
JP2016197498A (ja) * 2015-04-02 2016-11-24 日本電信電話株式会社 リチウム空気二次電池、その空気極用触媒の製造方法、並びにリチウム空気二次電池の製造方法
US10759668B2 (en) 2015-11-10 2020-09-01 Japan Science And Technology Agency Supported metal material, supported metal catalyst, and ammonia synthesis method using the same
US10792645B2 (en) 2015-12-25 2020-10-06 Japan Science And Technology Agency Transition-metal-supporting intermetallic compound, supported metallic catalyst, and ammonia producing method
JPWO2018021282A1 (ja) * 2016-07-25 2019-06-13 国立大学法人東京工業大学 エレクトライド化マイエナイト型化合物の製造方法
US11267720B2 (en) 2016-07-25 2022-03-08 Japan Science And Technology Agency Method for manufacturing electride of mayenite-type compounds
WO2018030394A1 (ja) 2016-08-08 2018-02-15 国立大学法人東京工業大学 アンモニア合成用触媒の製造方法及びアンモニアの製造方法
JPWO2018030394A1 (ja) * 2016-08-08 2019-04-18 国立大学法人東京工業大学 アンモニア合成用触媒の製造方法及びアンモニアの製造方法
US11235310B2 (en) 2016-08-08 2022-02-01 Tokyo Institute Of Technology Method for manufacturing ammonia synthesis catalyst, and method for manufacturing ammonia
US11964260B2 (en) 2016-08-08 2024-04-23 Tokyo Institute Of Technology Method for manufacturing ammonia synthesis catalyst, and method for manufacturing ammonia
WO2019156029A1 (ja) * 2018-02-07 2019-08-15 国立大学法人東京工業大学 複合物、触媒及びアンモニアの製造方法
JPWO2019156028A1 (ja) * 2018-02-07 2021-01-28 国立大学法人東京工業大学 複合物、複合物の製造方法、触媒及びアンモニアの製造方法
JPWO2019156029A1 (ja) * 2018-02-07 2021-01-28 国立大学法人東京工業大学 複合物、触媒及びアンモニアの製造方法
WO2019156028A1 (ja) * 2018-02-07 2019-08-15 国立大学法人東京工業大学 複合物、複合物の製造方法、触媒及びアンモニアの製造方法
JP7410507B2 (ja) 2018-02-07 2024-01-10 国立大学法人東京工業大学 複合物、触媒及びアンモニアの製造方法
JP2020142203A (ja) * 2019-03-07 2020-09-10 太平洋マテリアル株式会社 支持体固定化触媒担体
JP7269563B2 (ja) 2019-03-07 2023-05-09 太平洋マテリアル株式会社 支持体固定化触媒担体

Also Published As

Publication number Publication date
CA2881788C (en) 2020-03-24
BR112015003948A2 (pt) 2021-08-03
US9573822B2 (en) 2017-02-21
CN106277000B (zh) 2019-01-22
US20170095793A1 (en) 2017-04-06
RU2647290C2 (ru) 2018-03-15
EP2891627A4 (en) 2016-06-15
JPWO2014034473A1 (ja) 2016-08-08
BR112015003948A8 (pt) 2021-09-14
EP2891627A1 (en) 2015-07-08
CN104583129A (zh) 2015-04-29
JP6152381B2 (ja) 2017-06-21
EP2891627B1 (en) 2024-10-02
CN104583129B (zh) 2016-09-07
CN106277000A (zh) 2017-01-04
US20150239747A1 (en) 2015-08-27
CA2881788A1 (en) 2014-03-06
RU2015111257A (ru) 2016-10-27
US10124319B2 (en) 2018-11-13
KR20150051215A (ko) 2015-05-11
KR101940777B1 (ko) 2019-01-22

Similar Documents

Publication Publication Date Title
JP6152381B2 (ja) 導電性マイエナイト型化合物粉末の製造方法
JP6680919B2 (ja) 担持金属触媒
US20240226854A1 (en) Method for manufacturing ammonia synthesis catalyst, and method for manufacturing ammonia
JP5820817B2 (ja) アンモニア合成触媒及びアンモニア合成方法
US9981845B2 (en) Catalyst for producing hydrogen and method for producing hydrogen
WO2017111028A1 (ja) 遷移金属担持金属間化合物、担持金属触媒、及びアンモニアの製造方法
JP6280443B2 (ja) 触媒、触媒の製造方法、アンモニア合成方法、アンモニア分解方法
JP6458417B2 (ja) 触媒、アンモニア合成方法
JP6344052B2 (ja) アンモニア合成触媒およびアンモニア合成方法
WO2019156028A1 (ja) 複合物、複合物の製造方法、触媒及びアンモニアの製造方法
JP2017013044A (ja) 光触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532935

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2881788

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14423303

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157005322

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015111257

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015003948

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015003948

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150224

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref document number: 112015003948

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2426 DE 04/07/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112015003948

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2012-189371 DE 30/08/2012 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA (DEPOSITANTE(S), INVENTOR(ES), NUMERO DE REGISTRO, DATA DE DEPOSITO E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013, UMA VEZ QUE NAO FOI POSSIVEL DETERMINAR O(S) TITULAR(ES) DA CITADA PRIORIDADE, NEM SEUS INVENTORES, INFORMACAO NECESSARIA PARA O EXAME.

ENP Entry into the national phase

Ref document number: 112015003948

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150224