WO2014034282A1 - リチウムイオン二次電池の製造方法及び製造装置 - Google Patents

リチウムイオン二次電池の製造方法及び製造装置 Download PDF

Info

Publication number
WO2014034282A1
WO2014034282A1 PCT/JP2013/068689 JP2013068689W WO2014034282A1 WO 2014034282 A1 WO2014034282 A1 WO 2014034282A1 JP 2013068689 W JP2013068689 W JP 2013068689W WO 2014034282 A1 WO2014034282 A1 WO 2014034282A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
secondary battery
ion secondary
binder
insulating material
Prior art date
Application number
PCT/JP2013/068689
Other languages
English (en)
French (fr)
Inventor
洋一 ▲高▼原
正志 西亀
千恵美 窪田
菊池 廣
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to KR1020157001475A priority Critical patent/KR101660189B1/ko
Priority to CN201380035645.2A priority patent/CN104428925B/zh
Publication of WO2014034282A1 publication Critical patent/WO2014034282A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method and apparatus for manufacturing a lithium ion secondary battery, and more particularly to a method and apparatus for manufacturing a lithium ion secondary battery including a positive electrode, a negative electrode, and a separator that electrically separates the positive electrode and the negative electrode.
  • Lithium ion secondary batteries have the advantages described above, and are therefore widely used in portable electronic devices such as digital cameras, notebook personal computers, and mobile phones. Furthermore, in recent years, research and development of large-sized lithium ion secondary batteries capable of realizing high capacity, high output, and high energy density as electric vehicle batteries and power storage batteries have been promoted.
  • Lithium ion secondary batteries have attracted attention as power sources for such electric vehicles and hybrid vehicles.
  • the lithium ion secondary battery has a high operating voltage and high energy density, sufficient countermeasures against abnormal heat generation due to an internal short circuit or an external short circuit are required.
  • the lithium ion secondary battery is a kind of non-aqueous electrolyte secondary battery, as shown in FIG. 8 showing its operating principle, and is a secondary battery in which lithium ions in the electrolyte are responsible for electrical conduction.
  • Lithium metal oxide is used for the positive electrode material (active material)
  • carbon material such as graphite is used for the negative electrode material (active material)
  • an organic solvent such as ethylene carbonate + lithium hexafluorophosphate (LiPF 6 ) is used for the electrolyte. It is the mainstream to use lithium salt.
  • lithium ions exit from the positive electrode and enter the negative electrode during charging, and conversely during discharge, lithium ions exit from the negative electrode and enter the positive electrode.
  • the structure of the lithium ion secondary battery includes, for example, a positive electrode plate coated with a positive electrode material, a negative electrode plate coated with a negative electrode material, and a separator such as a polymer film that prevents contact between the positive electrode plate and the negative electrode plate.
  • the electrode winding body is provided. In the lithium ion secondary battery, the electrode winding body is inserted into the outer can and the electrolyte is injected into the outer can.
  • a positive electrode plate coated with a positive electrode material on a metal foil and a negative electrode plate coated with a negative electrode material on a metal foil are formed in a band shape, and the positive electrode plate and the negative electrode plate formed in a band shape
  • the electrode winding body is formed by winding in a spiral shape through the separator so that the electrode does not directly contact.
  • Patent Document 1 discloses that a positive electrode film and a negative electrode film are separately formed, a separator film is bonded to the negative electrode film, and the positive electrode film is applied to the negative electrode film with a separator.
  • the conventional electrode manufacturing method in which the electrode winding body is formed by laminating the electrode, the number of processes is large, and the solution-like electrolytic substance is uniformly injected into the current collector in which a plurality of the electrode winding bodies are stacked. A technique for improving the point that is very difficult and many defective products are generated is disclosed.
  • Patent Document 1 applies a positive electrode substance-containing solution and an electrolytic and insulating substance-containing solution to both surfaces of a positive electrode sheet using a die coater having a solution discharge slit. Then, a positive electrode sheet is formed through a heating step, and similarly, a negative electrode substance-containing solution and an electrolytic and insulating substance-containing solution are applied to both surfaces of the negative electrode sheet using a die coater, A secondary battery manufacturing method and a secondary battery manufacturing apparatus are disclosed in which a negative electrode sheet material is formed through a heating step, and both electrode sheet materials are laminated to form an electrode winding body.
  • the electrode material of the positive electrode or the negative electrode is applied on the surface of the carrier material, and then the insulating material that becomes the separator is applied, thereby improving the production efficiency.
  • the manufacturing apparatus can be made more compact.
  • the electrode material is insulated from the electrode material layer / insulating material layer interface.
  • the insulating material layer functioning as a separator becomes thinner, a short circuit between the positive electrode and the negative electrode is more likely to occur, and the risk of defects increases.
  • the present invention provides a method and an apparatus for manufacturing a lithium ion secondary battery that can reduce the thickness of the mixed layer formed at the interface between the electrode material layer and the insulating material layer.
  • a method of manufacturing a lithium ion secondary battery including a positive electrode, a negative electrode, and a separator that electrically separates the positive electrode and the negative electrode, an electrode substrate supplied at a predetermined speed
  • the layers of both materials are dried and fixed in a drying furnace.
  • an electrode sheet was manufactured.
  • an electrode substrate feed roll that supplies an electrode substrate at a predetermined speed
  • first, second, and third rollers that convey the electrode substrate at a predetermined speed
  • the first A slit die coater for applying an electrode material to the electrode substrate from a position opposed to the roller, and on a layer of the electrode material on the electrode substrate downstream from the slit die coater from a position opposed to the second roller.
  • curtain coater for coating an insulating material, a drying furnace for heating and drying and fixing a layer of the electrode material and the insulating material coated on the electrode substrate downstream of the curtain coater, and the electrode material
  • An apparatus for manufacturing a lithium ion secondary battery comprising a winding roll for winding the electrode substrate to which an insulating material is fixed is provided.
  • the present invention in the case of adopting an electrode sheet manufacturing method in which an electrode material and an insulating material are applied on the surface of a carrier material and are simultaneously dried and fixed, mixing of the interface between the electrode material layer and the insulating material layer is performed. Since the generation of the layer can be suppressed thinly, even when the insulating material is thin, the short circuit between the positive electrode and the negative electrode is reduced, and the risk of defects is reduced. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
  • FIG. 1 is a configuration diagram of a manufacturing process of a lithium ion secondary battery in Example 1.
  • FIG. It is a block diagram of the manufacturing process of the lithium ion secondary battery in the comparative example of this invention. It is a conceptual diagram of the cross section of the interface of the slurry-like electrode material layer apply
  • 6 is a configuration diagram of a manufacturing process of a lithium ion secondary battery in Example 2.
  • FIG. It is a figure showing the relationship between the insulating layer film thickness and mixed layer film thickness in the die coating method of Example 2 and a comparative example.
  • FIG. 9 is a diagram schematically showing specific steps until a lithium ion secondary battery is manufactured.
  • the manufacturing process of a lithium ion secondary battery includes a positive electrode sheet manufacturing process, a negative electrode sheet manufacturing process, a battery cell assembly process, and a battery module assembly process.
  • a slurry material positive electrode material
  • various materials that are raw materials of the positive electrode material are kneaded and prepared to prepare a slurry material (positive electrode material).
  • coating and drying this slurry material to a film-form metal foil processing, such as a compression and a cutting
  • the negative electrode sheet manufacturing process is different from the positive electrode sheet manufacturing process in various materials used as raw materials, but the procedure until the negative electrode sheet is manufactured is the same.
  • various materials that are the raw materials of the negative electrode material are kneaded and prepared to prepare a slurry material (negative electrode material) (kneading / preparation), and the slurry material is applied to a film-like metal foil and dried (coating) ), And processing such as compression or cutting of the metal foil coated with the slurry material (processing) to produce a film-like negative electrode sheet.
  • a positive electrode and a negative electrode having a size necessary for the battery cell are cut out from the film-like positive electrode sheet and negative electrode sheet in a process called winding, and the positive electrode sheet and the negative electrode are cut out.
  • a separator having a size necessary for the battery cell is cut out from the film-like separator material for separating the electrode sheet, and the positive electrode and the negative electrode are overlapped with each other with the cut-out separator interposed therebetween (winding).
  • a group of electrode pairs of the positive electrode, the negative electrode, and the separator assembled together is assembled and welded. Thereafter, the group of welded electrode pairs is placed in a battery can into which an electrolytic solution has been injected (injected), and then the battery can is completely sealed (sealed) to form a battery cell.
  • the battery cell inspection step repeatedly charges and discharges the cells of the lithium ion secondary battery created in the cell assembly step, and inspects the performance and reliability of the battery cell (for example, the capacity and voltage of the battery cell, charging or discharging) (Inspection of current and voltage at the time) (single cell inspection). Thereby, a battery cell is completed and a battery cell assembly process is complete
  • a battery module is formed by combining a plurality of battery cells in series, and a battery system is manufactured by connecting a controller for charge / discharge control (module assembly).
  • module inspection an inspection regarding the performance and reliability of the battery module assembled in the module assembly process (for example, inspection of capacity and voltage of the battery module, current and voltage during charging or discharging) is performed (module inspection). ).
  • the present invention is a manufacturing method and a manufacturing apparatus related to a coating process in the positive electrode sheet manufacturing process and the negative electrode sheet manufacturing process. By carrying out the present invention, it is possible to omit the liquid injection step of injecting the electrolytic solution into the battery can in the battery cell assembly step.
  • FIG. 2 shows a series of manufactures in which a positive electrode sheet or negative electrode sheet disclosed in the second embodiment of Patent Document 1 is continuously coated with an electrode material, electrolysis and an insulating material, and dried and fixed.
  • the block diagram of a process is shown.
  • electrode materials, electrolysis, and insulating materials are applied to both surfaces of a carrier material (positive electrode sheet or negative electrode sheet), but it is considered impractical.
  • an example of a manufacturing process in which an electrode material, electrolysis, and an insulating material are applied to one side of a carrier material is shown.
  • one side of the positive electrode sheet is manufactured.
  • the positive electrode plate PEP is fed from the positive electrode plate feed roll 1RL1, coated with the positive electrode material PAS supplied from the slit die coater 1DC1 opposed to the roller 2RL2, and then supplied from the slit die coater 2DC2 at the position opposed to the roller 3RL3.
  • the insulating material IF to be coated is applied, dried by passing through a drying furnace DRY, wound around a winding roll 5RL5, and a positive electrode sheet is manufactured.
  • a manifold 73 of the base 71 is provided by a metering pump (not shown) from a tank that stores a positive electrode material (slurry material) PAS (not shown). Is supplied with positive electrode material (slurry material) PAS. After the pressure distribution of the positive electrode material is made uniform in the manifold 73, the positive electrode material (slurry material) PAS is supplied to the slit 74 provided in the base 71 and discharged.
  • a positive electrode material reservoir 75 called a bead is formed between the positive electrode material and the carrier material (positive electrode sheet-like material) 81 in this state to form a coating film.
  • a coating film is continuously formed by supplying the same amount of positive electrode material as consumed by the coating film formation from the slit 74.
  • the pressure for supplying the positive electrode material to the manifold 73 is the slit 74 pressure loss + the downstream lip 78 pressure loss of the base 71 + the downstream meniscus 79 pressure.
  • electrolysis and an insulating material are continuously applied by the second slit die coater 2DC2, but the die coating method is the same as the conditions in the slit die coater 1DC1 described above.
  • the slurry material (insulating material IF) discharged from the slit 74 of the slit die coater 2DC2 is applied on the carrier material (positive electrode sheet) 81 coated with the positive electrode material upstream. .
  • both coating layers can be dried and fixed simultaneously through a heating / drying process in a drying furnace DRY, which is efficient.
  • the slurry-like positive electrode material and insulating material applied on the carrier material are formed of an electrode material layer (on the electrode material layer (EP) applied on the electrode plate (EP)), as shown in the conceptual diagram of FIG. It has been confirmed by the present inventors that a mixed layer (MIX) having lost its insulating function can be formed at the interface between EL) and the insulating material layer (SEL). As a result of the generation of the mixed layer (MIX), there is a problem that the thickness of the insulating material layer (SEL) having an insulating function becomes thinner than originally intended.
  • a die coating method will be described in which the mixed layer at the interface between the electrode material layer and the insulating material layer can be made thin even when the insulating material layer serving as a separator is designed to be thin as the lithium ion secondary battery becomes compact.
  • FIG. 1 is an example of a configuration diagram of a method for manufacturing a lithium ion secondary battery of the present embodiment.
  • the positive electrode plate PEP is fed from the positive electrode plate feed roll 1RL1, coated with the positive electrode material PAS supplied from the slit die coater DC1 opposed to the roller 2RL2, and the insulating material supplied from the curtain coater CC1 at the position opposed to the roller 3RL3.
  • the IF is applied, dried by passing through a drying furnace DRY, wound on a winding roll 5RL5, and a positive electrode sheet is manufactured.
  • the coating is performed by supplying the insulating material IF from the curtain coater CC1. Is the method.
  • the curtain coater CC1 is connected to the manifold 76 of the base 72 by a metering pump (not shown) from a tank storing an insulating material (slurry material) IF (not shown). Slurry material) IF is supplied. After the pressure distribution of the insulating material is made uniform in the manifold 76, the insulating material (slurry material) IF is supplied to the slit 77 provided in the base 72 and discharged. The discharged insulating material (slurry material) IF forms a curtain film 80 having a uniform and stable flow rate and falls, and this curtain film 80 is a carrier material that travels relatively with the base 72 at a constant interval h2. (Positive electrode sheet) The positive electrode material PAS layer 81 is stretched at the same speed as the carrier material at the moment of contact with the positive electrode material PAS layer, and is applied uniformly.
  • the distance h2 between the curtain coater CC1 and the carrier material (positive electrode sheet) 81 is set to 100 ⁇ m to 10 mm.
  • the coating film is continuously formed by supplying the same amount of insulating material from the slit 77 as consumed by the coating film formation.
  • the pressure for supplying the insulating material to the manifold 76 may be sufficient to ensure the pressure loss of the slit portion 77 and the flow rate equal to the amount consumed by the coating film formation.
  • the insulating material (slurry material) IF discharged from the slit 77 drops at the initial speed V 0 at the interval h2,
  • the velocity Vc is small, and the pressure at which the positive electrode material coating on the carrier material contacts the positive electrode material reservoir 75 of the slit die coater 1DC1. It is characterized in that it is smaller than the pressure loss of the downstream lip 78 of the base 71 + the pressure of the downstream meniscus 79.
  • the positive electrode material PAS is a solution in which an active material made of lithium cobaltate and carbon as a conductive auxiliary are mixed, and a binder (binder) made of polyvinylidene fluoride is dissolved in N-methylpyrrolidone (NMP).
  • NMP N-methylpyrrolidone
  • the slurry kneaded in the above was used.
  • the insulating material IF a slurry in which silica (SiO 2 ) powder was kneaded into a solution obtained by dissolving a binder (binder) made of polyvinylidene fluoride in N-methylpyrrolidone (NMP) was used.
  • the evaluation of the mixed layer at the interface between the electrode material layer and the insulating material layer in the die coating method of this example was performed by cutting out the cross section of the completed electrode and calculating the film thickness of the mixed layer from the image observed with the SEM.
  • the results of evaluating the film thickness of the mixed layer MIX based on the conceptual diagram of the cross section shown in FIG. 3 are summarized in FIG.
  • the thickness of the mixed layer increases as the thickness of the insulating layer decreases, and the possibility of occurrence of a short circuit increases at the thickness of the insulating layer of 25 ⁇ m or less.
  • the die coating method of this example it was found that even if the thickness of the insulating layer was thin, the thickness of the mixed layer was 5 ⁇ m or less, and the possibility of occurrence of a short circuit was low.
  • Example 2 describes an example of a die coating method in which the interface between the electrode material layer and the insulating material layer is uniform, and the risk of occurrence of a short circuit is reduced even when the separator material is further thinned.
  • FIG. 5 is an example of a configuration diagram of a method for manufacturing the lithium ion secondary battery of the present embodiment.
  • the positive electrode plate PEP is fed from the positive electrode plate feed roll RL1, coated with the positive electrode material PAS supplied from the slit die coater DC1 opposed to the roller 2RL2, and the insulating material supplied from the curtain coater CC1 at the position opposed to the roller 3RL3.
  • the IF is coated, the coating film height is adjusted by the knife coater KC1 that opposes the roller 6RL6, dried by passing through the drying furnace DRY, wound on the winding roll 5RL5, and the positive electrode sheet is manufactured. .
  • the positive electrode material PAS is a slurry in which an active material made of lithium cobaltate and carbon as a conductive additive are mixed and kneaded into a solution in which a binder (binder) made of polyvinylidene fluoride is dissolved in N-methylpyrrolidone (NMP).
  • a binder (binder) made of polyvinylidene fluoride is dissolved in N-methylpyrrolidone (NMP).
  • NMP N-methylpyrrolidone
  • the evaluation of the mixed layer at the interface between the electrode material layer and the insulating material layer in the die coating method of this example was performed by cutting out the cross section of the completed electrode and calculating the film thickness of the mixed layer from the image observed with the SEM.
  • the results of evaluating the film thickness of the mixed layer MIX based on the conceptual diagram of the cross section shown in FIG. 3 are summarized in FIG.
  • the thickness of the mixed layer increases as the thickness of the insulating layer decreases, and the possibility of occurrence of a short circuit increases at the thickness of the insulating layer of 25 ⁇ m or less.
  • the thickness of the mixed layer is 5 ⁇ m or less, and the possibility of occurrence of a short circuit is low.
  • Examples 1 and 2 described above an example was described in which the positive electrode sheet was manufactured by applying the positive electrode material PAS and the insulating material IF to one surface of the positive electrode plate PEP.
  • the positive electrode material PAS and the insulating material IF are coated on both surfaces of the positive electrode plate PEP, the positive electrode sheet wound around the winding roll 5RL5 is reversed, and the back surface is coated again through the same process. It is possible.
  • the negative electrode material NAS is a slurry obtained by kneading a negative electrode active material made of a carbon material (carbon material) and a solution in which a binder (binder) made of polyvinylidene fluoride is dissolved in N-methylpyrrolidone (NMP).
  • NMP N-methylpyrrolidone
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the technical idea of the present invention has been described by taking a lithium ion secondary battery as an example.
  • the technical idea of the present invention is limited to a lithium ion secondary battery. Instead, it can be widely applied to an electricity storage device (for example, a battery or a capacitor) including a positive electrode, a negative electrode, and a separator that electrically separates the positive electrode and the negative electrode.
  • an electricity storage device for example, a battery or a capacitor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 リチウムイオン二次電池の電極を塗工した上にセパレータとなる絶縁材料をスリットダイコータで塗工した場合、電極材料と絶縁材料の界面に混合層ができるため、絶縁材料が薄くなるに従って、短絡による不良の危険性が高くなる。 その解決手段として、所定速度で供給された電極基板にスリットダイコータにより電極材料を塗工し、その下流で前記電極基板上の電極材料の層の上にカーテンコータにより絶縁材料を塗工した後、乾燥炉にて両材料の層を乾燥・固着させて電極シートを製造するリチウムイオン二次電池の製造方法を提案する。

Description

リチウムイオン二次電池の製造方法及び製造装置
 本発明は、リチウムイオン二次電池の製造方法及びその装置に関し、特に正極、負極および、正極と負極を電気的に分離するセパレータとを備えるリチウムイオン二次電池の製造方法及び製造装置に関する。
 携帯電子機器の発達に伴い、これらの携帯電子機器の電力供給源として、繰り返し充電が可能な小型二次電池が使用されている。中でも、エネルギー密度が高く、サイクルライフが長いとともに、自己放電性が低く、かつ、作動電圧が高いリチウムイオン二次電池が注目されている。リチウムイオン二次電池は、上述した利点を有するため、デジタルカメラ、ノート型パーソナルコンピュータ、携帯電話機などの携帯電子機器に多用されている。さらに、近年では、電気自動車用電池や電力貯蔵用電池として、高容量、高出力、かつ、高エネルギー密度を実現できる大型のリチウムイオン二次電池の研究開発が進められている。特に、自動車産業においては、環境問題に対応するため、動力源としてモータを使用する電気自動車や、動力源としてエンジン(内燃機関)とモータとの両方を使用するハイブリッド車の開発が進められている。このような電気自動車やハイブリッド車の電源としてもリチウムイオン二次電池が注目されている。ただし、リチウムイオン二次電池は、作動電圧が高く、エネルギー密度が高いがゆえに、内部短絡や外部短絡などによる異常発熱に対する十分な対策が必要とされている。
 リチウムイオン二次電池は、図8にその動作原理を示すように、非水電解質二次電池の一種で、電解質中のリチウムイオンが電気伝導を担う二次電池である。正極材料(活物質)にはリチウム金属酸化物を用い、負極材料(活物質)にはグラファイトなどの炭素材を用い、電解質には炭酸エチレンなどの有機溶媒+ヘキサフルオロリン酸リチウム(LiPF6)といったリチウム塩を用いるのが主流となっている。電池内では充電時にリチウムイオンは正極から出て負極に入り、放電時には逆にリチウムイオンは負極から出て正極に入る。
  リチウムイオン二次電池の構造は、例えば、正極材料を塗工した正極板と、負極材料を塗工した負極板と、正極板と負極板の接触を防止するポリマフィルムなどのセパレータとを捲回した電極捲回体を備えている。そして、リチウムイオン二次電池では、この電極捲回体が外装缶に挿入されるとともに、外装缶内に電解液が注入されている。つまり、リチウムイオン二次電池では、金属箔に正極材料を塗工した正極板と、金属箔に負極材料を塗工した負極板とが帯状に形成され、帯状に形成された正極板と負極板が直接接触しないように、セパレータを介して断面渦巻状に捲回されて電極捲回体が形成される。
 特開2003-045491号公報(特許文献1)は、正極電極フィルム、負極電極フィルムを個別に形成して、負極電極フィルムにセパレータフィルムを貼り合わせて、該セパレータ付き負極電極フィルムに前記正極電極フィルムを積層して電極捲回体を形成する従来の電極製造方法では工程数が多い点、及び前記電極捲回体を複数枚積層した集電体内に溶液状の電解物質を均一に注入することは非常に困難で不良品の発生が多い点を改善する技術を開示している。
  特開2003-045491号公報(特許文献1)は、正極シート状物の両面に正極電極物質含有溶液と、電解、絶縁物質含有溶液とを、溶液吐出用スリットを有するダイコータを使用して塗布して、加熱工程を経て正極電極シート状物を形成し、同様に、負極シート状物の両面に負極電極物質含有溶液と、電解、絶縁物質含有溶液とを、ダイコータを使用して塗布して、加熱工程を経て負極電極シート状物を形成し、両電極シート状物を積層して電極捲回体を形成する二次電池製造方法および二次電池製造装置を開示している。
特開2003-045491号公報
 リチウムイオン二次電池の電極材料の塗工において、特許文献1のようにキャリア材の面に正極や負極の電極材料を塗工した上にセパレータとなる絶縁材料を塗工することで、生産効率の向上、製造装置のコンパクト化を可能とすることができる。
 しかしながら、キャリア材の面に正極や負極の電極材料を塗工した上に連続してセパレータとなる絶縁材料をスリットダイコータで塗工した場合、電極材料層と絶縁材料層の界面に電極材料と絶縁材料の混合層ができ、セパレータとして機能する絶縁材料の層が薄くなるに従って、正極と負極の短絡が発生しやすくなり、不良の危険性が高くなる。
 そこで、本発明は、電極材料層と絶縁材料層の界面にできる混合層を薄くすることが出来るリチウムイオン二次電池の製造方法及び製造装置を提供する。
 上記課題を解決するために本発明では、正極、負極、および、正極と負極とを電気的に分離するセパレータとを備えたリチウムイオン二次電池の製造方法において、所定速度で供給された電極基板にスリットダイコータにより電極材料を塗工し、その下流で前記電極基板上の電極材料の層の上にカーテンコータにより絶縁材料を塗工した後、乾燥炉にて両材料の層を乾燥・固着させて電極シートを製造するようにした。
 また、上記課題を解決するために本発明では、電極基板を所定速度で供給する電極基板送り出しロールと、電極基板を所定速度で搬送する第1、第2、第3のローラと、前記第1のローラに対抗した位置より前記電極基板に電極材料を塗工するスリットダイコータと、前記スリットダイコータの下流において、前記第2のローラに対抗した位置より前記電極基板上の電極材料の層の上に絶縁材料を塗工するカーテンコータと、前記カーテンコータの下流において、前記電極基板上に塗工された電極材料と絶縁材料の層を加熱して、乾燥・固着させる乾燥炉と、前記電極材料と絶縁材料が固着された前記電極基板を巻き取る巻き取りロールとを備えたことを特徴とするリチウムイオン二次電池の製造装置を構成した。
 本発明によれば、キャリア材の面に電極材料と絶縁材料とを重ねて塗布して同時に乾燥、固着させる電極シートの製造方法を採用する場合に、電極材料層と絶縁材料層の界面の混合層の生成を薄く抑えることが出来るので、絶縁材料が薄くなった場合でも正極と負極の短絡は少なくなり、不良の危険性が低くなる。
  上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
実施例1におけるリチウムイオン二次電池の製造工程の構成図である。 本発明の比較例におけるリチウムイオン二次電池の製造工程の構成図である。 キャリア材の上に塗布されたスラリー状の電極材料層と絶縁材料層の界面の断面の概念図である。 実施例1と比較例のダイコーティング方法における絶縁層膜厚と混合層膜厚との関係を表わす図である。 実施例2におけるリチウムイオン二次電池の製造工程の構成図である。 実施例2と比較例のダイコーティング方法における絶縁層膜厚と混合層膜厚との関係を表わす図である。 (a)スリットダイコータによる塗布の状況を模式的に示す断面図であり、(b)カーテンコータによる塗布の状況を模式的に示す断面図である。 リチウムイオン二次電池の動作原理を説明する図である。 リチウムイオン二次電池が製造されるまでの具体的な工程を模式的に示す図である。
 以下、実施例を図面を用いて説明する。
  図9は、リチウムイオン二次電池が製造されるまでの具体的な工程を模式的に示す図である。図9に示すように、リチウムイオン二次電池の製造工程は、正極電極シート製造工程と負極電極シート製造工程と電池セルの組立工程と電池モジュールの組立工程とを含んでいる。
 正極電極シート製造工程では、まず、正極材料の原料となる各種材料を混練および調合して、スラリー材料(正極材料)を作成する。そして、フィルム状の金属箔にこのスラリー材料を塗工、乾燥した後、スラリー材料が塗工された金属箔に圧縮や切断といった加工を行い、フィルム状の正極電極シートを製造する。
 一方、負極電極シート製造工程では、正極電極シート製造工程とは使用される原料となる各種材料は異なるが、負極電極シートが製造されるまでの手順は同じである。まず、負極材料の原料となる各種材料を混練および調合してスラリー材料(負極材料)を作成し(混練・調合)、フィルム状の金属箔にこのスラリー材料を塗工、乾燥した後(塗工)、スラリー材料が塗工された金属箔の圧縮や切断といった加工を行い(加工)、フィルム状の負極電極シートを製造する。
 その後、電池セル組立工程では、捲回と呼ばれる工程で、上記のフィルム状の正極電極シートおよび負極電極シートから、電池セルに必要な大きさの正極および負極を切り出すとともに、これら正極電極シートと負極電極シートを分離するためのフィルム状のセパレータ材料から電池セルに必要な大きさのセパレータを切り出し、正極および負極に、切り出したセパレータを挟んで重ねて捲き合わせる(捲回)。そして、捲き合わせた正極、負極およびセパレータの電極対の群を組み立てて溶接する。その後、溶接したこれら電極対の群を、電解液が注入(注液)された電池缶内に配置した後、電池缶を完全に密閉し(封口)、電池セルを作成する。
 電池セル検査工程は、セル組立工程にて作成されたリチウムイオン二次電池のセルを繰り返し充放電し、この電池セルの性能及び信頼性に関する検査(例えば、電池セルの容量や電圧、充電または放電時の電流や電圧等の検査)を行なう(単電池検査)。これにより、電池セルが完成し、電池セル組立工程が終了する。
 次に、モジュール組立工程では、電池セルを複数個直列に組み合わせて電池モジュールを構成し、さらに、充/放電制御用コントローラを接続して電池システムを製造する(モジュール組立)。その後、モジュール検査工程において、モジュール組立工程において組み立てられた電池モジュールの性能及び信頼性に関する検査(例えば、電池モジュールの容量や電圧、充電または放電時の電流や電圧等の検査)を行なう(モジュール検査)。
 本発明は、前記正極電極シート製造工程、及び前記負極電極シート製造工程における塗工工程に係わる製造方法及び製造装置である。本発明の実施により、前記電池セル組立工程において、電解液を電池缶内へ注入する注液工程を省くことが可能である。
 図2に特許文献1の第2実施例に開示されている正極シート状物、または負極シート状物に電極物質、および電解、絶縁物質を連続して塗布して、乾燥・固着させる一連の製造工程の構成図を示す。特許文献1ではキャリア材(正極シート状物、または負極シート状物)の両面に電極物質、および電解、絶縁物質を塗布しているが、現実的ではないと考えられるので、本実施例の比較例として、キャリア材の片面に電極物質、および電解、絶縁物質を塗布する製造工程例を示す。
 図2の製造工程では、正極電極シートの片面を製造している。正極板PEPは、正極板送り出しロール1RL1から送り出され、ローラ2RL2に対抗するスリットダイコータ1DC1から供給される正極材料PASが塗工され、続いて、ローラ3RL3と対抗した位置のスリットダイコータ2DC2から供給される絶縁材料IFが塗工され、乾燥炉DRYを通過することで乾燥され、巻き取りロール5RL5に巻き取られ、正極電極シートが製造される。
 前記したスリットダイコータ1DC1は、従来から厚膜塗工や、高粘度塗料を塗布する用途に広く採用されている。本比較例のダイコーティング方法では、図7(a)に口金71により示す通り、図示していない正極材料(スラリー材料)PASを貯留したタンクより図示していない定量ポンプによって、口金71のマニホールド73に正極材料(スラリー材料)PASが供給される。マニホールド73において、正極材料の圧力分布を均一にした後、口金71に設けられたスリット74へ正極材料(スラリー材料)PASが供給され、吐出される。吐出された正極材料(スラリー材料)PASは、口金71と一定間隔h1(本比較例、および本実施例において共にh1=50~100μmとしている)を保って相対的に走行するキャリア材(正極シート状物)81との間にビードと呼ばれる正極材料溜り75を形成して、この状態でキャリア材(正極シート状物)81の走行に伴って正極材料を引き出して塗膜を形成する。
 ここで、塗膜形成により消費される量と同量の正極材料をスリット74から供給することにより塗膜を連続的に形成する。蒸発速度の速い有機溶剤系の薄膜の塗布を安定的に行なうために、前記正極材料溜り75の下流側メニスカス(液面の屈曲)79の形状の安定化が重要となる。そのために、マニホールド73へ正極材料を供給する圧力は、スリット部74圧損+口金71の下流側リップ部78圧損+下流側メニスカス79圧力となる。
 図2の製造工程では、引き続き第2のスリットダイコータ2DC2により電解、絶縁物質を塗布しているが、そこでのダイコーティング方法は前記したスリットダイコータ1DC1における条件と同様である。スリットダイコータ2DC2のスリット74から吐出された電解、絶縁物質を原料とするスラリー材料(絶縁材料IF)を、上流でキャリア材(正極シート状物)81に正極材料が塗膜された上に塗布する。
 以上のように、スラリー状の正極材料と絶縁材料を重ねて塗布した後、乾燥炉DRYによる加熱・乾燥工程を経て、両方の塗膜層を同時に乾燥、固着させることが出来て効率がよい。しかし、キャリア材の上に塗布されたスラリー状の正極材料と絶縁材料は、図3に断面の概念図を示すように、電極板のキャリア材(EP)の上に塗布された電極材料層(EL)と絶縁材料層(SEL)との界面には絶縁機能が失われた混合層(MIX)ができることが本発明者により確認された。この混合層(MIX)の生成により、絶縁機能を持つ絶縁材料層(SEL)の厚さが本来意図した厚さより薄くなることが問題である。
 本実施例では、リチウムイオン二次電池のコンパクト化に伴いセパレータとなる絶縁材料層を薄く設計する場合でも、電極材料層と絶縁材料層の界面の混合層を薄くできるダイコーティング方法を説明する。
 図1は、本実施例のリチウムイオン二次電池の製造方法の構成図の例である。
  正極板PEPは、正極板送り出しロール1RL1から送り出され、ローラ2RL2に対抗するスリットダイコータDC1から供給される正極材料PASが塗工され、ローラ3RL3と対抗した位置のカーテンコータCC1から供給される絶縁材料IFが塗工され、乾燥炉DRYを通過することで乾燥され、巻き取りロール5RL5に巻き取られ、正極電極シートが製造される。本実施例は、図2に示す比較例において、スリットダイコータ2DC2から絶縁材料IFを供給して塗工しているのに替えて、カーテンコータCC1から絶縁材料IFを供給して塗工するダイコーティング方法である。
 カーテンコータCC1は、図7(b)に口金72により示す通り、図示していない絶縁材料(スラリー材料)IFを貯留したタンクより図示していない定量ポンプによって、口金72のマニホールド76に絶縁材料(スラリー材料)IFが供給される。マニホールド76において、絶縁材料の圧力分布を均一にした後、口金72に設けられたスリット77へ絶縁材料(スラリー材料)IFが供給され、吐出される。吐出された絶縁材料(スラリー材料)IFは、均一な安定した流量のカーテン膜80を形成して落下し、このカーテン膜80は、口金72と一定間隔h2を保って相対的に走行するキャリア材(正極シート状物)81上の正極材料PAS層に当った瞬間にキャリア材と同速に引き伸ばされて、均一に塗工される。
 本実施例では、カーテンコータCC1とキャリア材(正極シート状物)81との間隔h2を100μm~10mmとしている。カーテンコータCC1においても、前記したスリットダイコータ1DC1と同様に、塗膜形成により消費される量と同量の絶縁材料をスリット77から供給することにより塗膜を連続的に形成する。そのために、マニホールド76へ絶縁材料を供給する圧力は、スリット部77圧損と、前記した塗膜形成により消費される量と同量の流量を確保する圧力があればよい。スリット77より吐出された絶縁材料(スラリー材料)IFは、初速V0で間隔h2を落下して、
Figure JPOXMLDOC01-appb-M000001
  でキャリア材に衝突するが、間隔h2は前記した通り小さいので、速度Vcは僅かであり、キャリア材上の正極材料の塗膜と接触する圧力は、前記したスリットダイコータ1DC1の正極材料溜り75における口金71の下流側リップ部78圧損+下流側メニスカス79圧力よりは小さくなるところが特徴である。
 本実施例では、正極材料PASはコバルト酸リチウムからなる活物質と導電助剤としてのカーボンを混合し、ポリフッ化ビニリデンからなる結着剤(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に混練したスラリーを用いた。
  絶縁材料IFはシリカ(SiO)の粉体をポリフッ化ビニリデンからなる結着剤(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に混練したスラリーを用いた。
 本実施例のダイコーティング方法における電極材料層と絶縁材料層の界面の混合層の評価は、完成した電極の断面を切り出し、SEMで観察した像から混合層の膜厚を算出した。図3に示す断面の概念図を基に、混合層MIXの膜厚を評価した結果を図4にまとめた。比較例では絶縁層の膜厚が薄くなるにしたがって混合層の膜厚が大きくなり、25μm以下の絶縁層の膜厚では短絡発生の可能性が高くなることが判る。本実施例のダイコーティング方法の結果は、絶縁層の膜厚が薄くなっていっても混合層の膜厚は5μm以下になっており、短絡発生の可能性は低いことが判った。
 実施例2では、電極材料層と絶縁材料層の界面が均一となり、セパレータ材料がさらに薄くなった場合でも短絡発生の危険性が低くなるダイコーティング方法の例を説明する。
 図5は、本実施例のリチウムイオン二次電池の製造方法の構成図の例である。
  正極板PEPは、正極板送り出しロールRL1から送り出され、ローラ2RL2に対抗するスリットダイコータDC1から供給される正極材料PASが塗工され、ローラ3RL3と対抗した位置のカーテンコータCC1から供給される絶縁材料IFが塗工され、ローラ6RL6に対抗するナイフコータKC1により塗工膜高さが調整され、乾燥炉DRYを通過することで乾燥され、巻き取りロール5RL5に巻き取られ、正極電極シートが製造される。
 正極材料PASはコバルト酸リチウムからなる活物質と導電助剤としてのカーボンを混合し、ポリフッ化ビニリデンからなる結着剤(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に混練したスラリーを用いた。
  絶縁材料IFはシリカ(SiO2)の粉体をポリフッ化ビニリデンからなる結着剤(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に混練したスラリーを用いた。
 本実施例のダイコーティング方法における電極材料層と絶縁材料層の界面の混合層の評価は、完成した電極の断面を切り出し、SEMで観察した像から混合層の膜厚を算出した。図3に示す断面の概念図を基に、混合層MIXの膜厚を評価した結果を図6にまとめた。比較例では絶縁層の膜厚が薄くなるにしたがって混合層の膜厚が大きくなり、25μm以下の絶縁層の膜厚では短絡発生の可能性が高くなることがわかる。本実施例のダイコーティング方法の結果は、絶縁層の膜厚がさらに薄くなっていっても混合層の膜厚は5μm以下になっており、短絡発生の可能性は低い。
 以上の実施例1,2では、正極板PEPの片面に正極材料PAS、および絶縁材料IFを塗工して、正極電極シートを製造する例を記載した。正極板PEPの両面に正極材料PAS、および絶縁材料IFを塗工する場合には、巻き取りロール5RL5に巻き取られた正極電極シートを反転させて、再度同一の工程を経て裏面を塗工することが考えられる。
 また、実施例1,2では、正極電極シート製造工程の例を示した。同様のダイコーティング方法を使用して、負極電極シート製造工程も実現できる。この場合には、負極材料NASは炭素材料(カーボン材料)からなる負極活物質と、ポリフッ化ビニリデンからなる結着剤(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に混練したスラリーを用いる。
  絶縁材料IFはシリカ(SiO)の粉体をポリフッ化ビニリデンからなる結着剤(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に混練したスラリーを用いる。
 負極電極シート製造工程では、負極板NEPに負極材料NASと絶縁材料IFとを重ねて塗布する場合と、負極板NEPに負極材料NASのみを塗布して負極電極シートを製造する場合の両方が考えられる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記実施例1、2では、リチウムイオン二次電池を例に挙げて、本発明の技術的思想について説明したが、本発明の技術的思想は、リチウムイオン二次電池に限定されるものではなく、正極、負極、および、正極と負極とを電気的に分離するセパレータとを備える蓄電デバイス(例えば、電池やキャパシタなど)に幅広く適用することができる。
RL1 正極板送り出しロール
RL2 ローラ2
RL3 ローラ3
RL4 ローラ4
RL5 巻き取りロール
RL6 ローラ6
PEP 正極板
DC1 スリットダイコータ1
DC2 スリットダイコータ2
PAS 正極活物質
CC1 カーテンコータ
IF  絶縁材料
DRY 乾燥炉
SEL 絶縁層
EL  電極層
EP  電極板
MIX 混合層
71 スリットダイコータ口金
72 カーテンコータ口金
73 マニホールド
74 スリット
75 電極材料溜り(ビード)
76 マニホールド
77 スリット
78 口金71の下流側リップ部
79 下流側メニスカス
80 絶縁材料のカーテン膜
81 キャリア材(正極シート状物)
h1 スリットダイコータ口金とキャリア材との間隔
h2 カーテンコータ口金とキャリア材との間隔

Claims (8)

  1.  正極、負極、および、正極と負極とを電気的に分離するセパレータとを備えたリチウムイオン二次電池の製造方法において、
     所定速度で供給された電極基板にスリットダイコータにより電極材料を塗工し、その下流で前記電極基板上の電極材料の層の上にカーテンコータにより絶縁材料を塗工した後、乾燥炉にて両材料の層を乾燥・固着させて電極シートを製造することを特徴とするリチウムイオン二次電池の製造方法。
  2.  前記電極材料は、正極材料PASはコバルト酸リチウムからなる活物質と導電助剤としてのカーボンを混合し、ポリフッ化ビニリデンからなる結着剤(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に混練したスラリーを用い、
     負極材料NASは炭素材料(カーボン材料)からなる負極活物質を、ポリフッ化ビニリデンからなる結着剤(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に混練したスラリーを用いることを特徴とする請求項1に記載のリチウムイオン二次電池の製造方法。
  3.  前記絶縁材料は、シリカ(SiO)の粉体をポリフッ化ビニリデンからなる結着剤(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に混練したスラリーを用いることを特徴とする請求項1に記載のリチウムイオン二次電池の製造方法。
  4.  所定速度で供給された前記電極基板上の電極材料の層の上にカーテンコータにより絶縁材料を塗工した後、ナイフコータにより塗工膜高さを調整して、乾燥炉へ投入することを特徴とする請求項1に記載のリチウムイオン二次電池の製造方法。
  5.  電極基板を所定速度で供給する電極基板送り出しロールと、
     電極基板を所定速度で搬送する第1、第2、第3のローラと、
     前記第1のローラに対抗した位置より前記電極基板に電極材料を塗工するスリットダイコータと、
     前記スリットダイコータの下流において、前記第2のローラに対抗した位置より前記電極基板上の電極材料の層の上に絶縁材料を塗工するカーテンコータと、
     前記カーテンコータの下流において、前記電極基板上に塗工された電極材料と絶縁材料の層を加熱して、乾燥・固着させる乾燥炉と、
     前記電極材料と絶縁材料が固着された前記電極基板を巻き取る巻き取りロールとを備えたことを特徴とするリチウムイオン二次電池の製造装置。
  6.  さらに、前記カーテンコータの下流、および前記乾燥炉の上流に、前記電極基板上の塗工膜高さを調整するナイフコータを備えたことを特徴とする請求項5に記載のリチウムイオン二次電池の製造装置。
  7.  前記電極材料は、正極材料PASはコバルト酸リチウムからなる活物質と導電助剤としてのカーボンを混合し、ポリフッ化ビニリデンからなる結着剤(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に混練したスラリーを用い、
     負極材料NASは炭素材料(カーボン材料)からなる負極活物質を、ポリフッ化ビニリデンからなる結着剤(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に混練したスラリーを用いることを特徴とする請求項5に記載のリチウムイオン二次電池の製造装置。
  8.  前記絶縁材料は、シリカ(SiO)の粉体をポリフッ化ビニリデンからなる結着剤(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に混練したスラリーを用いることを特徴とする請求項5に記載のリチウムイオン二次電池の製造装置。
PCT/JP2013/068689 2012-08-29 2013-07-08 リチウムイオン二次電池の製造方法及び製造装置 WO2014034282A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157001475A KR101660189B1 (ko) 2012-08-29 2013-07-08 리튬 이온 이차 전지의 제조 방법 및 제조 장치
CN201380035645.2A CN104428925B (zh) 2012-08-29 2013-07-08 锂离子二次电池的制造方法以及制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012188650A JP5875487B2 (ja) 2012-08-29 2012-08-29 リチウムイオン二次電池の製造方法及び製造装置
JP2012-188650 2012-08-29

Publications (1)

Publication Number Publication Date
WO2014034282A1 true WO2014034282A1 (ja) 2014-03-06

Family

ID=50183103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068689 WO2014034282A1 (ja) 2012-08-29 2013-07-08 リチウムイオン二次電池の製造方法及び製造装置

Country Status (4)

Country Link
JP (1) JP5875487B2 (ja)
KR (1) KR101660189B1 (ja)
CN (1) CN104428925B (ja)
WO (1) WO2014034282A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106063020A (zh) * 2014-04-09 2016-10-26 株式会社日立高新技术 锂二次电池及其制造方法和制造装置
CN111077069A (zh) * 2019-12-09 2020-04-28 陕西煤业化工技术研究院有限责任公司 一种快速筛选锂电池用粘结剂的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6121353B2 (ja) * 2014-03-26 2017-04-26 株式会社日立ハイテクノロジーズ 蓄電デバイスの製造装置および蓄電デバイスの製造方法
JP6358911B2 (ja) * 2014-09-29 2018-07-18 株式会社日立ハイテクファインシステムズ 蓄電デバイスの製造装置および蓄電デバイスの製造方法
KR102107742B1 (ko) * 2016-02-25 2020-05-07 주식회사 엘지화학 중첩 부위의 두께를 저감시킨 코팅 장치 및 이를 이용하여 제조되는 전극
JP6699351B2 (ja) * 2016-05-25 2020-05-27 日本電気株式会社 電極の製造方法および電極の検査方法
CN105964485A (zh) * 2016-06-11 2016-09-28 深圳市新嘉拓自动化技术有限公司 帘式涂布供胶机构
JP6908103B2 (ja) * 2017-03-30 2021-07-21 日本電気株式会社 電池用電極、その製造方法及び電極製造装置
JP6819438B2 (ja) * 2017-04-21 2021-01-27 トヨタ自動車株式会社 電極板製造装置
JP2019087305A (ja) * 2017-11-01 2019-06-06 株式会社日立ハイテクファインシステムズ セパレータスラリ、二次電池の電極およびその製造方法、並びに、二次電池
CN108365269A (zh) * 2018-02-27 2018-08-03 清陶(昆山)自动化装备有限公司 一种湿法涂覆电解质膜用涂布机的涂覆工艺
JP7482429B2 (ja) 2018-12-26 2024-05-14 パナソニックIpマネジメント株式会社 電極の製造方法
CN110860424A (zh) * 2019-11-27 2020-03-06 衡阳市鑫晟新能源有限公司 一种锂电池电极板涂层全自动上料装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034215A (ja) * 2006-07-28 2008-02-14 Hitachi Ltd リチウム二次電池用正極とその製造方法、およびリチウム二次電池
JP2010238464A (ja) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd リチウム二次電池
JP2011071047A (ja) * 2009-09-28 2011-04-07 Sanyo Electric Co Ltd 非水電解質二次電池用正極の製造方法、並びに非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
JP2011243345A (ja) * 2010-05-17 2011-12-01 Konica Minolta Holdings Inc リチウムイオン電池用電極とその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2646265B2 (ja) * 1989-05-25 1997-08-27 コニカ株式会社 塗布方法
JP2003045491A (ja) 2001-07-31 2003-02-14 Toray Eng Co Ltd 二次電池製造方法および二次電池製造装置
JP2006179205A (ja) * 2004-12-21 2006-07-06 Hitachi Maxell Ltd 非水電解質電池
KR101351733B1 (ko) * 2007-01-11 2014-01-15 삼성에스디아이 주식회사 전극 조립체와 이를 구비하는 이차 전지 및 그 제조 방법
KR101111710B1 (ko) * 2008-01-29 2012-03-13 히다치 막셀 가부시키가이샤 절연층 형성용 슬러리, 전기화학소자용 세퍼레이터 및 그 제조방법, 및 전기화학소자
CN102197511A (zh) * 2009-07-31 2011-09-21 松下电器产业株式会社 非水电解质二次电池及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034215A (ja) * 2006-07-28 2008-02-14 Hitachi Ltd リチウム二次電池用正極とその製造方法、およびリチウム二次電池
JP2010238464A (ja) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd リチウム二次電池
JP2011071047A (ja) * 2009-09-28 2011-04-07 Sanyo Electric Co Ltd 非水電解質二次電池用正極の製造方法、並びに非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
JP2011243345A (ja) * 2010-05-17 2011-12-01 Konica Minolta Holdings Inc リチウムイオン電池用電極とその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106063020A (zh) * 2014-04-09 2016-10-26 株式会社日立高新技术 锂二次电池及其制造方法和制造装置
CN111077069A (zh) * 2019-12-09 2020-04-28 陕西煤业化工技术研究院有限责任公司 一种快速筛选锂电池用粘结剂的方法

Also Published As

Publication number Publication date
KR101660189B1 (ko) 2016-09-26
JP2014049184A (ja) 2014-03-17
KR20150033660A (ko) 2015-04-01
JP5875487B2 (ja) 2016-03-02
CN104428925A (zh) 2015-03-18
CN104428925B (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5875487B2 (ja) リチウムイオン二次電池の製造方法及び製造装置
WO2014155808A1 (ja) リチウムイオン電池の製造方法および製造装置
JP2015185509A (ja) リチウムイオン二次電池用負極の製造方法及び製造装置並びにリチウムイオン二次電池用負極及びリチウムイオン二次電池
US20120251734A1 (en) Drying device
US20160149208A1 (en) Electrode for secondary battery
JP2007280687A (ja) 電池用電極
WO2015045533A1 (ja) リチウムイオン二次電池の製造方法、リチウムイオン二次電池の製造装置およびリチウムイオン二次電池
JP6300619B2 (ja) リチウムイオン二次電池の電極板の製造方法および製造装置
CN108365164B (zh) 电池的制造方法
CN110998951A (zh) 电极片制造方法、全固态电池以及全固态电池制造方法
JP6307594B2 (ja) リチウムイオン二次電池及びその製造方法と製造装置
WO2015145806A1 (ja) 蓄電デバイスの製造装置および蓄電デバイスの製造方法
JP2007311057A (ja) 電池用電極
JP5929630B2 (ja) リチウムイオン二次電池の製造方法
JP2016115576A (ja) リチウムイオン電池の製造方法、リチウムイオン電池の製造装置およびリチウムイオン電池
JP6021775B2 (ja) リチウムイオン二次電池の製造方法およびリチウムイオン二次電池の製造装置
JP2020095852A (ja) 全固体電池
JP2011018594A (ja) 電池用電極の製造方法
JP6081333B2 (ja) リチウムイオン二次電池の製造方法およびリチウムイオン二次電池の製造装置
JP6510304B2 (ja) リチウムイオン二次電池の製造方法
WO2017130493A1 (ja) セパレータ用粉体及びセパレータ用スラリ並びにリチウムイオン電池及びその製造方法
CN115050919A (zh) 二次电池用电极的制造方法及二次电池的制造方法
JP2017084678A (ja) リチウムイオン電池の製造方法および製造装置
TW201946317A (zh) 間隙部分多層電極輪廓
CN114975876B (zh) 二次电池用电极的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157001475

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832880

Country of ref document: EP

Kind code of ref document: A1