WO2014030616A1 - 半導体基板の洗浄方法および洗浄システム - Google Patents
半導体基板の洗浄方法および洗浄システム Download PDFInfo
- Publication number
- WO2014030616A1 WO2014030616A1 PCT/JP2013/072118 JP2013072118W WO2014030616A1 WO 2014030616 A1 WO2014030616 A1 WO 2014030616A1 JP 2013072118 W JP2013072118 W JP 2013072118W WO 2014030616 A1 WO2014030616 A1 WO 2014030616A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cleaning
- semiconductor substrate
- solution
- mixed solution
- sulfuric acid
- Prior art date
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 127
- 239000000758 substrate Substances 0.000 title claims abstract description 89
- 239000004065 semiconductor Substances 0.000 title claims abstract description 88
- 238000000034 method Methods 0.000 title claims abstract description 57
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 116
- 239000000243 solution Substances 0.000 claims abstract description 116
- 239000011259 mixed solution Substances 0.000 claims abstract description 57
- 238000010438 heat treatment Methods 0.000 claims abstract description 45
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 42
- 150000004968 peroxymonosulfuric acids Chemical class 0.000 claims abstract description 33
- -1 halide ions Chemical class 0.000 claims abstract description 31
- 238000002156 mixing Methods 0.000 claims abstract description 24
- 150000004820 halides Chemical class 0.000 claims abstract description 22
- 239000007800 oxidant agent Substances 0.000 claims abstract description 20
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 13
- 230000001590 oxidative effect Effects 0.000 claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims description 67
- 238000012546 transfer Methods 0.000 claims description 15
- 238000009835 boiling Methods 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 238000007599 discharging Methods 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 5
- 230000001052 transient effect Effects 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910021332 silicide Inorganic materials 0.000 abstract description 9
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 abstract description 9
- 238000003860 storage Methods 0.000 description 30
- 239000008151 electrolyte solution Substances 0.000 description 11
- 239000003792 electrolyte Substances 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229910019001 CoSi Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910005883 NiSi Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-N peroxydisulfuric acid Chemical compound OS(=O)(=O)OOS(O)(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- DAFQZPUISLXFBF-UHFFFAOYSA-N tetraoxathiolane 5,5-dioxide Chemical compound O=S1(=O)OOOO1 DAFQZPUISLXFBF-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02043—Cleaning before device manufacture, i.e. Begin-Of-Line process
- H01L21/02052—Wet cleaning only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/10—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/10—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
- B08B3/102—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration with means for agitating the liquid
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3947—Liquid compositions
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/28—Per-compounds
- C25B1/29—Persulfates
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F1/00—Electrolytic cleaning, degreasing, pickling or descaling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
- H01L21/02068—Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28088—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32134—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/14—Hard surfaces
- C11D2111/22—Electronic devices, e.g. PCBs or semiconductors
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/40—Specific cleaning or washing processes
- C11D2111/44—Multi-step processes
Definitions
- the present invention relates to a semiconductor substrate cleaning method and a cleaning system for cleaning a semiconductor substrate in which at least part of TiN is exposed and silicidized.
- NiSi or CoSi using Ni or Co as a silicide material is used.
- an alloy in which 5 to 10% of Pt or Pd is mixed with Ni or Co is used.
- NiPt an improvement in heat resistance and an effect of suppressing junction leakage current are expected.
- the alloy is formed on a Si substrate and then subjected to thermal oxidation treatment to react the alloy with Si to form silicide, but it is necessary to remove the remaining unreacted alloy.
- a method using SPM mixed solution of sulfuric acid and hydrogen peroxide
- a method using aqua regia is known as a cleaning method that suppresses etching of gate metal (TiN or the like) while dissolving NiPt.
- a method of treating with a hydrochloric acid-based oxidizing agent after treating with a sulfuric acid-based oxidizing agent has been proposed. (See Patent Document 6)
- NiPt can be dissolved if the blending ratio of hydrogen peroxide is increased, but TiN that should not be etched at that time (for example, exposed as gate metal) is also dissolved. Resulting in.
- aqua regia damages the silicide film.
- the method of treating with a sulfuric acid-based oxidant and then treating with a hydrochloric acid-based oxidant has a problem that it takes time and operation becomes complicated as compared with one-agent treatment because it is treated in two stages.
- the present invention has been made against the background of the above circumstances, and when cleaning a semiconductor substrate on which a metal electrode is formed and silicidized, cleaning is effectively performed while suppressing damage to the TiN and silicide films. Another object is to provide a semiconductor substrate cleaning method and a cleaning system that can be performed.
- the first present invention is a method of cleaning a semiconductor substrate that is at least partially exposed and silicidized,
- a persulfuric acid production step for producing a predetermined concentration of persulfuric acid by electrolysis in the electrolysis unit by circulating a sulfuric acid solution through the electrolysis unit;
- the sulfuric acid solution containing persulfuric acid obtained in the persulfuric acid generation step and a halide solution containing one or more halide ions are mixed without passing through the electrolysis section, and after mixing, the persulfuric acid is mixed.
- a solution mixing step for producing a mixed solution having an oxidant concentration containing 0.001 to 2 mol / L,
- a heating step of heating the mixed solution A cleaning step of transporting the heated mixed solution and bringing it into contact with the semiconductor substrate for cleaning.
- heating is performed so that the liquid temperature of the mixed solution becomes a temperature below the boiling point of 80 to 200 ° C.
- the method for cleaning a semiconductor substrate according to the third aspect of the present invention is characterized in that, in the second aspect of the present invention, the mixed solution at 80 ° C. or higher is brought into contact with the semiconductor substrate within 5 minutes.
- the semiconductor substrate cleaning method according to any one of the first to third aspects, wherein the semiconductor substrate has a metal film used for the silicidation treatment, and the metal film is made of platinum. It is characterized by including.
- a method for cleaning a semiconductor substrate according to any one of the first to fourth aspects of the present invention, wherein the total concentration of the halide ions in the mixed solution is 0.2 mmol / L to 2 mol / L. It is characterized by being.
- the semiconductor substrate cleaning method of the sixth aspect of the present invention is characterized in that, in any of the first to fifth aspects of the present invention, the concentration of the sulfuric acid solution is 50 to 95% by mass in the mixed solution. .
- a seventh aspect of the present invention there is provided a method for cleaning a semiconductor substrate according to any one of the first to sixth aspects of the present invention, wherein the solution heated and transferred at the initial stage of the heating step is not brought into contact with the semiconductor substrate. It is characterized by discharging out of the system.
- a method for cleaning a semiconductor substrate according to the seventh aspect of the present invention wherein the heating step includes a transient heating process, and heating is performed while passing a solution through the transient heating process. It is characterized by starting.
- the method for cleaning a semiconductor substrate according to a ninth aspect of the present invention is the method for cleaning a semiconductor substrate according to any one of the first to eighth aspects of the present invention, wherein after the cleaning step, the mixed solution in the system is passed through the path in the heating step It is characterized by having a mixed solution discharge process which discharges outside the system without doing.
- a semiconductor substrate cleaning system includes: A cleaning unit that at least partially exposes TiN and cleans the silicided semiconductor substrate with a cleaning liquid; An electrolysis unit for electrolyzing a sulfuric acid solution; A first circulation path for circulating a sulfuric acid solution while passing through the electrolysis unit; A second circulation path connected to the first circulation path for circulating the sulfuric acid solution without passing through the electrolysis unit; A solution mixing section for mixing a halide solution containing one or more halide ions into the sulfuric acid solution in the second circulation path; A cleaning liquid transfer path that is connected to the second circulation path and feeds the mixed liquid to the cleaning section as a cleaning liquid; A heating unit interposed in the second circulation path or the cleaning liquid transfer path to heat the solution in the path; A discharge path that is connected to the second circulation path or the cleaning liquid transfer path at a position downstream of the heating unit and discharges the mixed solution outside the system without reaching the cleaning unit. .
- An eleventh aspect of the present invention is a semiconductor substrate cleaning system according to the tenth aspect of the present invention,
- the first circulation path and the second circulation path can each independently or linked solution circulation.
- a semiconductor substrate cleaning system includes a connection switching unit that switches connection between the second circulation path, the cleaning liquid transfer path, and the discharge path in the tenth or eleventh aspect of the present invention. It is characterized by.
- the semiconductor substrate cleaning system according to any one of the tenth to twelfth aspects of the present invention, wherein the electrolyzing unit has an oxidant concentration of 0.001 to 2 mol / liter based on the mixed solution. It is characterized by producing persulfuric acid so as to be L.
- the semiconductor substrate cleaning system according to any one of the tenth to thirteenth aspects of the present invention, wherein the solution mixing unit has a total concentration of the halide ions based on the mixed solution.
- a mixed solution is produced so as to be 0.2 mmol / L to 2 mol / L.
- a semiconductor substrate cleaning system is characterized in that, in any of the tenth to fourteenth aspects of the present invention, the cleaning section is a single wafer cleaning apparatus.
- the semiconductor substrate to be cleaned in the present invention is a semiconductor substrate in which at least part of TiN is exposed and silicidation is performed.
- the method for producing the semiconductor substrate is not particularly limited as the present invention.
- the sulfuric acid solution used in the present invention is a sulfuric acid solution containing at least persulfuric acid as an oxidizing agent.
- persulfuric acid include peroxodisulfuric acid and peroxomonosulfuric acid, and either one or a mixture of both may be used.
- persulfuric acid and hydrogen peroxide generated by the self-decomposition of persulfuric acid occupy almost the whole amount.
- the mixing conditions of the oxidizing agent are set so that the concentration of the oxidizing agent is 0.001 to 2 mol / L in the mixed solution of the sulfuric acid solution and the halide solution. The concentration is desirably maintained when contacting the semiconductor substrate.
- the sulfuric acid solution is preferably set so that the sulfuric acid concentration in the mixed solution of the sulfuric acid solution and the halide solution is 50 to 95% by mass, and if it is 80% by mass or more, the boiling point is not high and the temperature is higher. More preferable because it can be washed.
- the dissolution efficiency of the metal contained in the film used for the silicidation treatment is lowered, so that the content is preferably 90% by mass or less.
- the halide solution is a solution containing one or more halide ions, and examples of the halide ions include one or more of fluoride ions, chloride ions, bromide ions, and iodide ions.
- examples of the solution containing halide ions include a solution of a halide ion hydroacid (HF, HCl, HBr, HI) or a salt thereof (NaCl).
- HF, HCl, HBr, HI a halide ion hydroacid
- NaCl a salt thereof
- HBr, HI, and I 2 are easily colored, and salts such as NaCl may cause Na to remain on the wafer.
- HF requires caution in handling, and HCl is preferable.
- the halide ions are preferably adjusted so that the total concentration of each halide ion is 0.2 mmol / L to 2 mol / L in the mixed solution of the sulfuric acid solution and the
- the sulfuric acid solution and the halide solution can be mixed in the second circulation path, but may be mixed in a tank such as a mixing tank interposed in the path of the second circulation path. In short, what is necessary is just to mix while circulating in the path
- the sulfuric acid solution and the halide solution are mixed and the liquid temperature is 80 ° C. or higher in order to avoid consumption of the generated complexing agent until it comes into contact with the film formed for silicidation. After that, it is preferable to contact the semiconductor substrate within 5 minutes (preferably 3 minutes).
- the mixed solution brought into contact with the semiconductor substrate is desirably brought into contact with the semiconductor substrate at a liquid temperature of 80 ° C. or higher, preferably 100 ° C. or higher. This is because the cleaning ability is insufficient at less than 80 ° C., and the cleaning ability is almost sufficient at 100 ° C. or higher.
- the upper limit of the liquid temperature can be set to a temperature not higher than the boiling point of 200 ° C. or lower, but more preferably a temperature not higher than the boiling point of 160 ° C. or lower from the viewpoint of energy efficiency and etching rate.
- it shall have said temperature when making a mixed solution contact a semiconductor substrate.
- the cleaning may be either batch type or single wafer type, but the single wafer type is more preferable in terms of contact efficiency.
- efficient electrolysis is possible by performing electrolysis while avoiding the flow of halide ions into the electrolysis portion as much as possible, and as a result, a sulfuric acid solution containing at least persulfuric acid as an oxidizing agent and When the mixed solution containing halide ions comes into contact with the semiconductor substrate in an oxidant concentration of 0.001 to 2 mol / L, the semiconductor substrate can be effectively cleaned without damaging the TiN or silicide film. .
- FIG. 1 It is a figure which shows the semiconductor substrate cleaning system of one Embodiment of this invention. Similarly, it is a figure explaining operation
- the semiconductor substrate cleaning system 1 includes an electrolysis unit 2 that performs electrolysis while flowing a sulfuric acid solution.
- the electrolysis unit 2 is a non-diaphragm type, and an anode 2a and a cathode 2b each having at least a portion in contact with a sulfuric acid solution as a diamond electrode are disposed inside without being separated by a diaphragm, and a DC power source (not shown) is connected to both electrodes.
- the electrolysis unit 2 may be configured as a diaphragm type and may be provided with a bipolar electrode.
- the electrolyte storage tank 10 is connected to the electrolysis unit 2 through the electrolysis side circulation line 3 so as to be able to circulate.
- an electrolysis-side circulation pump 4 for circulating a sulfuric acid solution and a cooler 5 are interposed in this order in the electrolysis-side circulation line 3 on the sending side, and the electrolysis-side circulation line 3 on the return side Is provided with a gas-liquid separator 6.
- An off-gas treatment unit 7 is connected to the gas-liquid separator 6.
- the electrolysis side circulation line 3 and the electrolyte storage tank 10 constitute the first circulation path of the present invention.
- the electrolyte storage tank 10 is further connected to the supply side of the storage-side circulation line 20 via a liquid supply pump 21a.
- a liquid feed pump 21a On the liquid feed side of the storage side circulation line 20, a liquid feed pump 21a, a filter 22, a preheating tank 23, a liquid feed pump 21b, and a rapid heater 24 are provided in this order toward the downstream side.
- the liquid feed front end side of the circulation line 20 is connected to one port of the three-way valve 25.
- the rapid heater 24 has a quartz pipe line, and heats the sulfuric acid solution in a transient manner using, for example, a near infrared heater.
- the other side of the three-way valve 25 is connected to the return side of the storage-side circulation line 20, and the return-side storage-side circulation line 20 is connected to the three-way valve 26 (between two ports), the circulation tank 27, and the liquid feed pump. 21c and the cooler 29 are interposed in this order, and the return-side tip of the storage-side circulation line 20 is connected to the electrolyte storage tank 10.
- the storage-side circulation line 20 and the electrolyte solution storage tank 10 constitute the second circulation path of the present invention.
- the three-way valves 25 and 26 correspond to the connection switching unit of the present invention.
- the electrolysis-side circulation line 3 and the storage-side circulation line 20 are joined by the electrolyte storage tank 10, and the electrolyte storage tank 10 has a partial function of the first circulation path and the second circulation path. I'm in charge.
- the cleaning liquid transfer line 40 is connected to the other port of the three-way valve 25.
- the front end side of the cleaning liquid transfer line 40 is connected to the nozzle 31 in the single wafer cleaning machine 30.
- the single wafer cleaning machine 30 corresponds to the cleaning section of the present invention.
- the single wafer cleaning machine 30 is provided with a drain line 42 for discharging the mixed solution used for cleaning.
- a discharge line 41 is connected to ports other than the two ports that bear a part of the second circulation path of the three-way valve 26, and the discharge line 41 joins the drain line 42 at the downstream end.
- a halide solution charging unit 11 is connected to at least one of the electrolytic solution storage tank 10, the preheating tank 23, and the reflux tank 27, and the halide solution is charged into the sulfuric acid solution in any one of the tanks. It is possible to mix. At least one of the electrolytic solution storage tank 10, the preheating tank 23, the reflux tank 27, and the halide solution charging unit 11 jointly constitute the solution mixing unit of the present invention. It is also possible to adopt a configuration in which the halide solution can be injected into the storage-side circulation line 20.
- each step can be executed by controlling the electrolysis operation, the operation of each liquid feed pump, the switching operation of the three-way valves 25, 26, and the like by the control unit.
- the operation contents of each process will be described below.
- the above operations and the like are executed under the control of a control unit (not shown).
- a suitable target example in the present embodiment is that at least a part of TiN is exposed, such as a metal gate electrode or a sidewall, and the thickness thereof is 60 nm or less (preferably 30 nm or less), and the thickness of the silicide layer. Is 60 nm or less (preferably 25 nm or less) and the gate width is 45 nm or less (preferably 30 nm or less).
- the semiconductor substrate which is the subject of the present invention is not limited to this.
- the semiconductor substrate 100 is disposed on a turntable (not shown) in the single wafer cleaning machine 30 in preparation for cleaning.
- the electrolytic solution storage tank 10 contains sulfuric acid having a sulfuric acid concentration of 50 to 95% by mass.
- the electrolysis unit 2 is energized between the anode 2a and the cathode 2b, and the sulfuric acid solution in the electrolyte storage tank 10 is fed by the electrolysis-side circulation pump 4 through the electrolysis-side circulation line 3, and the electrolysis unit 2 Then, the liquid is recirculated to the electrolytic solution storage tank 10 through the gas-liquid separator 6.
- the sulfuric acid solution is preferably cooled to a liquid temperature of 30 to 80 ° C.
- the liquid passage speed is preferably set to 1 to 1 between the anode 2 a and the cathode 2 b of the electrolysis unit 2. 10,000 m / hr. Is passed through.
- persulfuric acid is generated in the sulfuric acid solution by supplying a current so that the current density on the electrode surface is preferably 10 to 100,000 A / m 2 while passing the sulfuric acid solution.
- the sulfuric acid solution in which persulfuric acid is generated is discharged from the electrolysis unit 2, and gas such as hydrogen generated by electrolysis is separated by the gas-liquid separator 6.
- the separated gas is subjected to processing such as dilution in an off-gas processing unit 7 connected to the gas-liquid separator 6.
- the sulfuric acid solution containing persulfuric acid from which the gas has been separated by the gas-liquid separator 6 is circulated to the electrolytic solution storage tank 10 through the electrolytic side circulation line 3.
- the sulfuric acid solution in the electrolytic side circulation line 3 repeats the above circulation, electrolysis, and gas-liquid separation, and the persulfuric acid concentration gradually increases.
- the sulfuric acid solution in the electrolytic solution storage tank 10 is supplied through the storage-side circulation line 20 by the liquid supply pump 21 a, and the SS and the like in the sulfuric acid solution are removed by the filter 22, and then stored in the preheating tank 23. Is done. At this time, heating is not performed in the preheating tank 23.
- the sulfuric acid solution in the preheating tank 23 is further fed by the liquid feed pump 21 b and passes through the rapid heater 24. At this time, the rapid heater 24 does not perform the heating operation.
- the port to which the cleaning liquid transfer line 40 is connected is closed, and the feed side and return side ports of the storage side circulation line 20 are opened.
- the three-way valve 26 opens two ports to which the storage-side circulation line 20 is connected, and closes the port to which the discharge line 41 is connected.
- the sulfuric acid solution fed by the liquid feed pump 21 b passes through the rapid heater 24 and is then stored in the reflux tank 27 via the three-way valve 25 and the three-way valve 26.
- the sulfuric acid solution in the recirculation tank 27 is fed by the liquid feed pump 21 c, and the sulfuric acid solution is preferably cooled to 30 to 80 ° C. by the cooler 29 and is recirculated to the electrolyte storage tank 10.
- the solution in the electrolytic solution storage tank 10 is also circulated by the storage side circulation line 20. That is, in this step, the sulfuric acid solution is circulated through the electrolytic solution storage tank 10 in both the electrolytic side circulation line 3 and the storage side circulation line 20.
- the operation of the liquid feed pump 4 and the energization in the electrolysis unit 2 are stopped, and the persulfuric acid generation step is completed.
- the liquid feed pumps 21a, 21b, and 21c may continue the liquid feed as they are, or may be temporarily stopped.
- the halide solution is charged from the halide solution charging unit 11 into the connected tank.
- the halide solution is a solution containing one or more halide ions, and examples of the halide ions include one or more of fluoride ions, chloride ions, bromide ions, and iodide ions.
- solution containing halide ions examples include a solution of a halide ion hydroacid (HF, HCl, HBr, HI) or a salt thereof (NaCl).
- HF halide ion hydroacid
- HCl HCl
- HBr HBr
- I 2 a salt thereof
- salts such as NaCl may cause Na to remain on the wafer.
- HF requires caution in handling, and HCl is preferable.
- the input amount of the halide solution is set so that the total concentration of halide ions is 0.2 mmol / L to 2 mol / L in the mixed solution of the storage-side circulation line 20 and all the parts interposed therebetween.
- the input amount of the halide solution itself is considerably smaller than the volume of the sulfuric acid solution, and the sulfuric acid concentration and the oxidizing agent concentration in the sulfuric acid solution can be regarded as being equivalent to those before mixing.
- the liquid feed pumps 21a, 21b, 21c When the halide solution is introduced with the liquid feed pumps 21a, 21b, 21c stopped, the liquid feed pumps 21a, 21b, 21c are operated, and the liquid feed pumps 21a, 21b, 21c are still in operation. Then, it is operated as it is, and the two solutions are uniformly mixed while circulating the sulfuric acid solution and the halide solution through the storage-side circulation line 20.
- the open / closed state of the three-way valves 25 and 26 is the same as in the persulfuric acid generation step.
- the solution mixing step is terminated. At this time, it is desirable to keep the liquid feed pumps 21a, 21b, and 21c operated.
- the rapid heater 24 In the solution mixing step, the rapid heater 24 is not operated, but the preheating tank 23 may be operated so as to heat the mixed solution to 90 to 120 ° C.
- the preheating tank 23 is operated to heat the solution to 90 to 120 ° C., and the rapid heater 24 is operated. Further, as shown in FIG. 4, the three-way valve 25 is not changed as it is, and the communication direction is switched by the three-way valve 26 to connect the storage-side circulation line 20 and the discharge line 41. Thereby, the solution circulation through the storage-side circulation line 20 is stopped. In the heating / cleaning step, heating is started in a state where the liquid feed pumps 21a, 21b, and 21c are operating.
- the rapid heater 24 Since the rapid heater 24 is premised on heating while passing the solution, when the rapid heater 24 is operated in a state where liquid feeding is stopped, the solution remaining in the rapid heater 24 is rapidly heated. Therefore, it is desirable to start heating in a state where the solution is circulated.
- the three-way valve 26 is switched while the liquid feed pumps 21a, 21b, and 21c are operating. That is, the port to which the return side upstream side of the storage side circulation line 20 is connected and the port to which the discharge line 41 is connected are opened, and the port to which the return side downstream side of the storage side circulation line 20 is connected is closed. Furthermore, the preheating tank 23 and the rapid heater 24 are started to operate. The rapid heater 24 performs rapid heating at the outlet of the cleaning liquid nozzle 31 of the single wafer cleaning device 30 so that the temperature becomes a boiling point of 100 to 200 ° C. or lower.
- a relatively low-temperature mixed solution or a heated initial mixed solution in the storage-side circulation line 20 on the downstream side of the rapid heater 24 is stored in the storage-side circulation. It is discharged out of the system through a part of the line 20, the three-way valve 26, the discharge line 41, and the drain line 42.
- the mixed solution heated to a temperature not higher than the boiling point of 100 to 200 ° C. is introduced from the feed side of the storage-side circulation line 20 to the cleaning liquid transfer line 40, sent from the nozzle 31, and contacts the semiconductor substrate 100.
- the delivery state of the nozzle 31 is exemplified by spraying, dropping, or flowing down, and the solution may be sprayed onto the semiconductor substrate 100 by applying pressure when dropping or flowing down.
- the mixed solution desirably has a temperature below the boiling point of 100 to 200 ° C. when in contact with the semiconductor substrate 100.
- the mixed solution is in contact with the semiconductor substrate 100 within 5 minutes after being mixed and at a temperature not higher than the boiling point of 100 to 200 ° C.
- This time is determined by the distance from the rapid heater 24 to the nozzle 31, the distance from the nozzle 31 to the semiconductor substrate 100, the liquid feeding speed, and the like. The length of the line and the liquid feeding speed so as to satisfy the above time conditions in advance. Set.
- the cleaning of the semiconductor substrate 100 is completed, the operations of the preheating tank 23 and the rapid heater 24 are stopped, and the heating process and the cleaning process are finished.
- the completion of the cleaning may be determined, for example, by setting a cleaning time in advance and reaching the cleaning time, and may determine that the cleaning is complete according to the results of various measurements.
- the heating process and the cleaning process are described as being performed substantially simultaneously. However, these processes may be independent, and for example, the cleaning process may be started after the heating process.
- the mixed solution discharging step will be described with reference to FIG.
- the three-way valve 25 is switched to close the port to which the cleaning liquid transfer line 40 is connected, and the sending side and the return side of the storage-side circulation line 20 are connected to each other.
- the return side downstream side of the storage side circulation line 20 is closed and the return side upstream side of the storage side circulation line 20 and the discharge line 41 are communicated.
- the liquid feed pumps 21a, 21b, and 21c are kept operating, so that the mixed solution is discharged out of the system through a part of the storage-side circulation line 20, the discharge line 41, and the drain line 42. .
- the discharge amount at this time can be set as appropriate.
- the rapid heater 24 By continuing to flow the mixed solution as it is after finishing the heating process and the washing process, it is possible to prevent the solution from being heated suddenly in the rapid heater 24, and the rapid heater 24 is cooled to Can be prepared for solution circulation. This is because the rapid heater 24 is in a heat storage state even after the heating operation is stopped, and if the liquid flow is stopped, the solution remaining in the rapid heater 24 may be rapidly heated.
- the discharge of the mixed solution out of the system also has the purpose of reducing the amount of halide ions in the system. If the halide ions remain in the concentration at the time of washing, the electrolysis will be hindered when the process proceeds to the persulfuric acid production step.
- the halide ion concentration can be reduced by stopping the liquid feeding pumps 21a, 21b, and 21c and replenishing sulfuric acid. At this time, the total amount of the mixed solution remaining in the second circulation path may be discharged, and when a predetermined amount of sulfuric acid solution is replenished, the total concentration of halide ions becomes 0.02 mmol / L or less. Emissions can be determined as follows. Thereafter, the semiconductor substrate can be continuously cleaned by repeating the persulfuric acid generation process, the solution mixing process, the heating / cleaning process, and the mixed solution discharging process after replenishing the next semiconductor substrate with the sulfuric acid solution. .
- the single wafer type was described as the cleaning unit, but the present invention may be a batch type.
- the single-wafer type cleaning unit is for cleaning one or several semiconductor substrates, and in particular, one that sprays, drops, flows down, etc. a cleaning solution on the semiconductor substrate is exemplified.
- the batch-type cleaning unit is for cleaning a plurality of semiconductor substrates, and in particular, a unit that stores a cleaning solution and immerses the semiconductor substrate therein for a predetermined time is exemplified.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Weting (AREA)
Abstract
Description
また、NiPtを溶解しつつゲート金属(TiNなど)のエッチングを抑える洗浄方法として、王水を用いる方法が知られている。(特許文献4、5参照)
また、硫酸系酸化剤で処理した後に塩酸系酸化剤で処理する方法が提案されている。(特許文献6参照)
また、王水を用いる方法では、王水がシリサイド膜を痛めてしまう。
さらに、硫酸系酸化剤で処理した後に塩酸系酸化剤で処理する方法では、二段階で処理するため一剤処理と比較して時間がかかり操作が煩雑になるという問題がある。
硫酸溶液を電解部に通液しつつ循環させて前記電解部での電解により所定濃度の過硫酸を生成する過硫酸生成工程と、
前記過硫酸生成工程で得た、過硫酸を含有する硫酸溶液と、一種以上のハロゲン化物イオンを含むハロゲン化物溶液とを、前記電解部に通液することなく混合して、混合後において過硫酸を含む酸化剤濃度が0.001~2mol/Lの混合溶液を生成する溶液混合工程と、
前記混合溶液を加熱する加熱工程と、
加熱された前記混合溶液を移送して前記半導体基板に接触させて洗浄する洗浄工程とを有することを特徴とする。
TiNが少なくとも一部露出し、シリサイド化処理がされた半導体基板を洗浄液によって洗浄する洗浄部と、
硫酸溶液を電解する電解部と、
前記電解部に通液しつつ硫酸溶液を循環させる第1循環路と、
前記第1循環路に接続され前記電解部に通液することなく硫酸溶液を循環させる第2循環路と、
前記第2循環路内の硫酸溶液に一種以上のハロゲン化物イオンを含むハロゲン化物溶液を混合する溶液混合部と、
前記第2循環路に接続され、混合液を洗浄液として前記洗浄部に送液する洗浄液移送路と、
前記第2循環路または前記洗浄液移送路に介設され、前記路内の溶液を加熱する加熱部と、
前記第2循環路または前記洗浄液移送路に前記加熱部の下流側位置で接続され、前記混合溶液を前記洗浄部に至らすことなく系外に排出する排出路と、を備えることを特徴とする。
前記第1循環路と前記第2循環路とは、それぞれ単独のまたは連動した溶液循環が可能であることを特徴とする。
酸化剤は、硫酸溶液とハロゲン化物溶液の混合溶液において、0.001~2mol/Lの濃度となるように混合条件を設定しておく。該濃度は、半導体基板に接触する際に維持されているのが望ましい。
酸化剤濃度0.001mol/L未満では洗浄力が不足し、酸化剤濃度が2mol/Lを超過するとエッチングレートが高くなってしまい実用が困難である。
硫酸溶液は、硫酸溶液とハロゲン化物溶液の混合溶液において、硫酸濃度が50~95質量%となるように設定するのが望ましく、80質量%以上とすることが、沸点が高くない、より高温で洗浄できるという理由でより好ましい。ただし含水量が極度に少ないとシリサイド化処理に用いた膜に含まれる金属の溶解効率が下がるので90質量%以下とするのが好ましい。
なお、ハロゲン化物イオンは、硫酸溶液とハロゲン化物溶液の混合溶液において、各ハロゲン化物イオン濃度の総和が0.2mmol/L~2mol/Lとなるように調整するのが望ましい。
これは、80℃未満では洗浄能力が不足であり、100℃以上であれば洗浄能力はほぼ十分だからである。一方、液温の上限は200℃以下の沸点以下の温度とすることができるが、エネルギー効率やエッチングレートの点から160℃以下の沸点以下の温度であることがより好ましい。
なお、液温を調整する場合、半導体基板に混合溶液を接触させる際に上記温度を有するものとする。
以下に、本発明の一実施形態の半導体基板洗浄システム1を図1に基づいて説明する。
半導体基板洗浄システム1は、硫酸溶液を通液しつつ電解する電解部2を備えている。電解部2は無隔膜型であり、少なくとも硫酸溶液と接液する部分をダイヤモンド電極とした陽極2aおよび陰極2bが隔膜で隔てることなく内部に配置され、両電極には図示しない直流電源が接続されている。なお、本発明としては、電解部2を隔膜型によって構成することも可能であり、バイポーラ電極を備えるものであってもよい。
三方弁25の他のポートには、貯留側循環ライン20の戻り側が接続されており、戻り側の貯留側循環ライン20には、三方弁26(2ポート間)、環流槽27、送液ポンプ21c、冷却器29がこの順に介設され、貯留側循環ライン20の戻り側先端は、電解液貯留槽10に接続されている。貯留側循環ライン20および電解液貯留槽10は、本発明の第2循環路を構成する。上記三方弁25、26は、本発明の接続切替部に相当するものである。
なお、電解液貯留槽10、予加熱槽23、環流槽27の少なくとも1つには、ハロゲン化物溶液投入部11が接続されており、いずれかの槽の硫酸溶液にハロゲン化物溶液を投入して混合することが可能になっている。電解液貯留槽10、予加熱槽23、環流槽27の少なくとも1つと、ハロゲン化物溶液投入部11とは、共同して本発明の溶液混合部を構成する。また、貯留側循環ライン20にハロゲン化物溶液を注入できる構成とすることも可能である。
上記半導体基板洗浄システム1では、電解の動作、各送液ポンプの動作、三方弁25、26の切替動作等を制御部によって制御して各工程を実行することができる。以下に各工程の動作内容を説明する。なお、以下の工程では、上記動作等は図示しない制御部の制御によって実行される。
次に、半導体基板洗浄システム1における過硫酸生成工程を図2を用いて説明する。
半導体基板100は、洗浄に備えて、枚葉式洗浄機30内の回転台など(図示しない)に配置される。
上記工程により電解側循環ライン3と貯留側循環ライン20、電解液貯留槽10、予加熱槽23、環流槽27にある硫酸溶液中の酸化剤濃度が均等になり、電解の制御によって、酸化剤濃度として0.001~2mol/Lの範囲内において予め設定した濃度に調整される。
次に、溶液混合工程を図3を参照しつつ説明する。
送液ポンプ21a、21b、21cを稼働させたまま、または送液ポンプ21a、21b、21cを停止した状態で、電解液貯留槽10、予加熱槽23、環流槽27の少なくとも1つに接続したハロゲン化物溶液投入部11から、接続がされた槽にハロゲン化物溶液を投入する。ハロゲン化物溶液は、一種以上のハロゲン化物イオンを含む溶液であり、ハロゲン化物イオンとしては、例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンの一種または二種以上が例示される。ハロゲン化物イオンを含む溶液としては、ハロゲン化物イオンの水素酸(HF、HCl、HBr、HI)やその塩(NaCl)の溶液が挙げられる。しかしHBrやHI、I2は着色しやすく、NaClのような塩はNaがウエハ上に残存する恐れがあり、さらにHFは取り扱いに注意を要するため、HClが好ましい。
なお、溶液混合工程では、急速加熱器24は動作させないが、予加熱槽23は混合溶液を90~120℃に加熱するように動作させてもよい。
次いで、溶液混合工程で得られた混合溶液を加熱する工程を図4、図5に基づいて説明する。
加熱工程の初期では、予加熱槽23を動作させて溶液を90~120℃に加熱するとともに、急速加熱器24を動作させる。さらに、図4に示すように、三方弁25は、そのまま変更せず、三方弁26で連通方向を切り換えて、貯留側循環ライン20と排出ライン41とを連通させる。これにより貯留側循環ライン20を通じた溶液循環は停止する。加熱・洗浄工程では、送液ポンプ21a、21b、21cが稼働した状態で加熱を開始をする。急速加熱器24は、溶液を通液しつつ加熱することを前提とするため、送液が停止した状態で急速加熱器24を動作させると急速加熱器24内に残っている溶液が急激に加熱され、沸騰などの諸問題を引き起こすおそれがあり、溶液を循環させた状態で加熱を開始するのが望ましい。
さらに、予加熱槽23、急速加熱器24の動作開始がなされる。急速加熱器24では、枚葉式洗浄装置30の洗浄液ノズル31出口で100~200℃の沸点以下の温度となるように急速加熱する。
なお、加熱工程初期では、上記三方弁26の接続切替によって、急速加熱器24の下流側の貯留側循環ライン20内にあって比較的低温の混合溶液や加熱初期の混合溶液が、貯留側循環ライン20の一部、三方弁26、排出ライン41、ドレインライン42を通して系外に排出される。
半導体基板100に対する洗浄を完了すると、予加熱槽23および急速加熱器24の動作を停止し、加熱工程および洗浄工程を終了する。洗浄の完了は、例えば予め洗浄時間を定めておき、この洗浄時間に達することで洗浄完了とすることができ、また、各種測定の結果に応じて洗浄完了と判定してもよい。
なお、この形態では、加熱工程と洗浄工程とがほぼ同時に実行されるものとして説明したが、これら工程が独立し、例えば加熱工程後に洗浄工程を開始するものであってもよい。
次に、混合溶液排出工程について図6に基づいて説明する。
加熱工程、洗浄工程を終了した後、三方弁25を切り替えて洗浄液移送ライン40が接続されたポートを閉じ、貯留側循環ライン20の送り側と戻り側とを連通させ、それとともに三方弁26を切り替えて貯留側循環ライン20の戻り側下流側を閉じ、貯留側循環ライン20の戻り側上流側と排出ライン41を連通させる。この状態で、送液ポンプ21a、21b、21cは稼働したままの状態を維持することで、貯留側循環ライン20の一部、排出ライン41、ドレインライン42を通じて混合溶液が系外に排出される。この際の排出量は適宜設定することができる。加熱工程、洗浄工程を終了した後、そのまま混合溶液を流し続けることで、急速加熱器24内で溶液が急激に加熱されるのを防止でき、また、急速加熱器24を冷却して、次の溶液循環に備えることができる。急速加熱器24は加熱動作を停止した後も、蓄熱状態にあり、通液を停止すると、急速加熱器24内に残存している溶液が急激に加熱されるおそれがあるためである。
その後は、次の半導体基板に対し、硫酸溶液の補充後、過硫酸生成工程、溶液混合工程、加熱・洗浄工程、混合溶液排出工程を繰り返すことで継続して半導体基板の洗浄を行うことができる。
2 電解部
3 電解側循環ライン
4 送液ポンプ
10 電解液貯留槽
20 貯留側循環ライン
21a、21b、21c 送液ポンプ
23 予加熱槽
24 急速加熱器
25 三方弁
26 三方弁
30 枚葉式洗浄機
31 ノズル
40 洗浄液移送ライン
41 排出ライン
42 ドレインライン
100 半導体基板
Claims (15)
- TiNが少なくとも一部露出し、シリサイド化処理がされた半導体基板を洗浄する方法であって、
硫酸溶液を電解部に通液しつつ循環させて前記電解部での電解により所定濃度の過硫酸を生成する過硫酸生成工程と、
前記過硫酸生成工程で得た、過硫酸を含有する硫酸溶液と、一種以上のハロゲン化物イオンを含むハロゲン化物溶液とを、前記電解部に通液することなく混合して、混合後において過硫酸を含む酸化剤濃度が0.001~2mol/Lの混合溶液を生成する溶液混合工程と、
前記混合溶液を加熱する加熱工程と、
加熱された前記混合溶液を移送して前記半導体基板に接触させて洗浄する洗浄工程とを有することを特徴とする半導体基板の洗浄方法。 - 前記加熱工程では、前記混合溶液の液温が80~200℃の沸点以下の温度となるように加熱することを特徴とする請求項1記載の半導体基板の洗浄方法。
- 80℃以上の前記混合溶液を生成してから5分以内に前記半導体基板に接触させることを特徴とする請求項2に記載の半導体基板の洗浄方法。
- 前記半導体基板は前記シリサイド化処理に用いた金属膜を有し、該金属膜が白金を含むことを特徴とする請求項1~3のいずれかに記載の半導体基板の洗浄方法。
- 前記混合溶液において、前記ハロゲン化物イオンの濃度の総和が0.2mmol/L~2mol/Lであることを特徴とする請求項1~4のいずれかに記載の半導体基板の洗浄方法。
- 前記硫酸溶液の濃度が、前記混合溶液において50~95質量%であることを特徴とする請求項1~5のいずれかに記載の半導体基板の洗浄方法。
- 前記加熱工程の初期に加熱されて移送される溶液を、前記半導体基板に接触させることなく系外に排出することを特徴とする請求項1~6のいずれかに記載の半導体基板の洗浄方法。
- 前記加熱工程に一過式の加熱過程を含み、前記一過式の加熱過程に溶液を通液しつつ加熱を開始することを特徴とする請求項7記載の半導体基板の洗浄方法。
- 前記洗浄工程後、系内の混合溶液を加熱工程における経路を通し、かつ前記経路で加熱することなく系外に排出する混合溶液排出工程を有することを特徴とする請求項1~8のいずれかに記載の半導体基板の洗浄方法。
- TiNが少なくとも一部露出し、シリサイド化処理がされた半導体基板を洗浄液によって洗浄する洗浄部と、
硫酸溶液を電解する電解部と、
前記電解部に通液しつつ硫酸溶液を循環させる第1循環路と、
前記第1循環路に接続され前記電解部に通液することなく硫酸溶液を循環させる第2循環路と、
前記第2循環路内の硫酸溶液に一種以上のハロゲン化物イオンを含むハロゲン化物溶液を混合する溶液混合部と、
前記第2循環路に接続され、混合液を洗浄液として前記洗浄部に送液する洗浄液移送路と、
前記第2循環路または前記洗浄液移送路に介設され、前記路内の溶液を加熱する加熱部と、
前記第2循環路または前記洗浄液移送路に前記加熱部の下流側位置で接続され、前記混合溶液を前記洗浄部に至らすことなく系外に排出する排出路と、を備えることを特徴とする半導体基板の洗浄システム。 - 前記第1循環路と前記第2循環路とは、それぞれ単独のまたは連動した溶液循環が可能であることを特徴とする請求項10記載の半導体基板の洗浄システム。
- 前記第2循環路と、前記洗浄液移送路および排出路との接続切り替えを行う接続切替部を備えることを特徴とする請求項10または11に記載の半導体基板の洗浄システム。
- 前記電解部は、前記混合溶液を基準にして、酸化剤濃度が0.001~2mol/Lとなるように過硫酸を生成するものであること特徴とする請求項10~12のいずれかに記載の半導体基板の洗浄システム。
- 前記溶液混合部は、前記混合溶液を基準にして、前記ハロゲン化物イオンの濃度の総和が0.2mmol/L~2mol/Lとなるように混合溶液を生成するものであること特徴とする請求項10~13のいずれかに記載の半導体基板の洗浄システム。
- 前記洗浄部が枚葉式洗浄装置であることを特徴とする請求項10~14のいずれかに記載の半導体基板の洗浄システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157003010A KR102073663B1 (ko) | 2012-08-22 | 2013-08-19 | 반도체 기판의 세정 방법 및 세정 시스템 |
SG11201501256YA SG11201501256YA (en) | 2012-08-22 | 2013-08-19 | Cleaning method and cleaning system for semiconductor substrates |
US14/423,270 US10032623B2 (en) | 2012-08-22 | 2013-08-19 | Method and system for cleaning semiconductor substrate |
CN201380043869.8A CN104584198B (zh) | 2012-08-22 | 2013-08-19 | 半导体基板的清洗方法以及清洗系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012183307A JP5787098B2 (ja) | 2012-08-22 | 2012-08-22 | 半導体基板の洗浄方法および洗浄システム |
JP2012-183307 | 2012-08-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014030616A1 true WO2014030616A1 (ja) | 2014-02-27 |
Family
ID=50149925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/072118 WO2014030616A1 (ja) | 2012-08-22 | 2013-08-19 | 半導体基板の洗浄方法および洗浄システム |
Country Status (7)
Country | Link |
---|---|
US (1) | US10032623B2 (ja) |
JP (1) | JP5787098B2 (ja) |
KR (1) | KR102073663B1 (ja) |
CN (1) | CN104584198B (ja) |
SG (1) | SG11201501256YA (ja) |
TW (1) | TWI594316B (ja) |
WO (1) | WO2014030616A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024154418A1 (ja) * | 2023-01-19 | 2024-07-25 | 株式会社Screenホールディングス | 基板処理装置、および、基板処理方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI630652B (zh) | 2014-03-17 | 2018-07-21 | 斯克林集團公司 | 基板處理裝置及使用基板處理裝置之基板處理方法 |
JP6385714B2 (ja) * | 2014-05-16 | 2018-09-05 | 東京エレクトロン株式会社 | 基板液処理装置、基板液処理装置の洗浄方法及び記憶媒体 |
JP6499414B2 (ja) * | 2014-09-30 | 2019-04-10 | 株式会社Screenホールディングス | 基板処理装置 |
JP6609919B2 (ja) * | 2014-12-19 | 2019-11-27 | 栗田工業株式会社 | 半導体基板の洗浄方法 |
US20170356891A1 (en) * | 2015-01-14 | 2017-12-14 | Kurita Water Industries Ltd. | Method and apparatus for measuring concentration of oxidant and system for cleaning electronic material |
JP6191720B1 (ja) * | 2016-03-25 | 2017-09-06 | 栗田工業株式会社 | 過硫酸溶液製造供給装置及び方法 |
JP6979852B2 (ja) | 2017-10-26 | 2021-12-15 | 株式会社Screenホールディングス | 処理液供給装置、基板処理装置、および処理液供給方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009263689A (ja) * | 2008-04-22 | 2009-11-12 | Japan Organo Co Ltd | 過硫酸製造装置および洗浄システム |
JP2011166064A (ja) * | 2010-02-15 | 2011-08-25 | Panasonic Corp | 半導体装置の製造方法及びそれを用いた半導体装置の製造装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6982006B1 (en) * | 1999-10-19 | 2006-01-03 | Boyers David G | Method and apparatus for treating a substrate with an ozone-solvent solution |
TW463309B (en) | 2000-08-10 | 2001-11-11 | Chartered Semiconductor Mfg | A titanium-cap/nickel (platinum) salicide process |
KR100795364B1 (ko) * | 2004-02-10 | 2008-01-17 | 삼성전자주식회사 | 반도체 기판용 세정액 조성물, 이를 이용한 세정 방법 및도전성 구조물의 제조 방법 |
US7618891B2 (en) | 2006-05-01 | 2009-11-17 | International Business Machines Corporation | Method for forming self-aligned metal silicide contacts |
JP5309454B2 (ja) | 2006-10-11 | 2013-10-09 | 富士通セミコンダクター株式会社 | 半導体装置の製造方法 |
KR100786707B1 (ko) | 2006-12-21 | 2007-12-18 | 삼성전자주식회사 | 불휘발성 메모리 장치 및 이의 제조 방법 |
JP5197986B2 (ja) | 2007-04-06 | 2013-05-15 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造装置 |
JP4759079B2 (ja) | 2008-12-03 | 2011-08-31 | パナソニック株式会社 | 半導体装置の製造方法 |
JP4749471B2 (ja) * | 2009-01-13 | 2011-08-17 | パナソニック株式会社 | 半導体装置の製造方法 |
JP5660279B2 (ja) * | 2009-03-24 | 2015-01-28 | 栗田工業株式会社 | 機能性溶液供給システムおよび供給方法 |
JP2011192779A (ja) * | 2010-03-15 | 2011-09-29 | Kurita Water Ind Ltd | 電子材料の洗浄方法および洗浄システム |
US9142424B2 (en) * | 2010-06-07 | 2015-09-22 | Kurita Water Industries Ltd. | Cleaning system and cleaning method |
-
2012
- 2012-08-22 JP JP2012183307A patent/JP5787098B2/ja not_active Expired - Fee Related
-
2013
- 2013-08-19 WO PCT/JP2013/072118 patent/WO2014030616A1/ja active Application Filing
- 2013-08-19 SG SG11201501256YA patent/SG11201501256YA/en unknown
- 2013-08-19 US US14/423,270 patent/US10032623B2/en not_active Expired - Fee Related
- 2013-08-19 CN CN201380043869.8A patent/CN104584198B/zh not_active Expired - Fee Related
- 2013-08-19 KR KR1020157003010A patent/KR102073663B1/ko active IP Right Grant
- 2013-08-22 TW TW102129928A patent/TWI594316B/zh not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009263689A (ja) * | 2008-04-22 | 2009-11-12 | Japan Organo Co Ltd | 過硫酸製造装置および洗浄システム |
JP2011166064A (ja) * | 2010-02-15 | 2011-08-25 | Panasonic Corp | 半導体装置の製造方法及びそれを用いた半導体装置の製造装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024154418A1 (ja) * | 2023-01-19 | 2024-07-25 | 株式会社Screenホールディングス | 基板処理装置、および、基板処理方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5787098B2 (ja) | 2015-09-30 |
SG11201501256YA (en) | 2015-05-28 |
CN104584198B (zh) | 2016-10-12 |
CN104584198A (zh) | 2015-04-29 |
KR20150043304A (ko) | 2015-04-22 |
TWI594316B (zh) | 2017-08-01 |
JP2014041915A (ja) | 2014-03-06 |
US20150262811A1 (en) | 2015-09-17 |
KR102073663B1 (ko) | 2020-02-05 |
US10032623B2 (en) | 2018-07-24 |
TW201411716A (zh) | 2014-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5787098B2 (ja) | 半導体基板の洗浄方法および洗浄システム | |
US8038799B2 (en) | Substrate processing apparatus and substrate processing method | |
KR102150291B1 (ko) | 반도체 기판 세정 시스템 및 반도체 기판의 세정 방법 | |
US20130068260A1 (en) | Method of cleaning electronic material and cleaning system | |
JP4412301B2 (ja) | 洗浄システム | |
JP5442705B2 (ja) | 半導体ワークピースを処理する溶液調製装置及び方法 | |
EP2733724A1 (en) | Method for cleaning metal gate semiconductor | |
JP2012129496A (ja) | 液処理方法、その液処理方法を実行させるためのプログラムを記録した記録媒体及び液処理装置 | |
TWI525690B (zh) | 半導體基板的洗淨方法與洗淨系統 | |
JP6609919B2 (ja) | 半導体基板の洗浄方法 | |
JP5126478B2 (ja) | 洗浄液製造方法および洗浄液供給装置ならびに洗浄システム | |
JP6132082B2 (ja) | 半導体基板の洗浄方法および洗浄システム | |
JP2006278687A (ja) | 硫酸リサイクル型枚葉式洗浄システム | |
TW202433633A (zh) | 基板處理裝置及基板處理方法 | |
WO2024171869A1 (ja) | 基板処理装置、および、基板処理方法 | |
TW202435308A (zh) | 基板處理裝置及基板處理方法 | |
TW202427659A (zh) | 基板處理裝置及基板處理方法 | |
TW202431398A (zh) | 基板處理裝置及基板處理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13830575 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157003010 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14423270 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13830575 Country of ref document: EP Kind code of ref document: A1 |