WO2014030420A1 - ブレーキ制御装置 - Google Patents

ブレーキ制御装置 Download PDF

Info

Publication number
WO2014030420A1
WO2014030420A1 PCT/JP2013/067063 JP2013067063W WO2014030420A1 WO 2014030420 A1 WO2014030420 A1 WO 2014030420A1 JP 2013067063 W JP2013067063 W JP 2013067063W WO 2014030420 A1 WO2014030420 A1 WO 2014030420A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
valve
gate
suction passage
master cylinder
Prior art date
Application number
PCT/JP2013/067063
Other languages
English (en)
French (fr)
Inventor
大澤 俊哉
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US14/422,460 priority Critical patent/US20150232076A1/en
Priority to CN201380034495.3A priority patent/CN104395159B/zh
Publication of WO2014030420A1 publication Critical patent/WO2014030420A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/147In combination with distributor valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • B60T8/3255Systems in which the braking action is dependent on brake pedal data
    • B60T8/3275Systems with a braking assistant function, i.e. automatic full braking initiation in dependence of brake pedal velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • B60T8/4809Traction control, stability control, using both the wheel brakes and other automatic braking systems
    • B60T8/4827Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems
    • B60T8/4863Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems
    • B60T8/4872Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems pump-back systems

Definitions

  • the present invention relates to a brake control device mounted on a vehicle.
  • An object of the present invention is to provide a brake control device that can suppress a driver's uncomfortable feeling.
  • the brake control device of the present invention is preferably provided with a reservoir in a first suction passage that connects the master cylinder and the suction side of the pump, and the master cylinder and the reservoir are connected separately from the first suction passage.
  • the second suction passage is provided, and when a predetermined sudden braking state is detected, the brake fluid is allowed to flow into the reservoir through the second suction passage.
  • FIG. 1 is a schematic configuration diagram of a brake control device 1 according to a first embodiment, and shows a hydraulic circuit configuration of a hydraulic unit 6 together.
  • FIG. The characteristic of the wheel cylinder hydraulic pressure Pw with respect to the master cylinder hydraulic pressure Pm of Example 1 is shown.
  • the characteristic of the wheel cylinder hydraulic pressure Pw with respect to the pedal stroke Sp of Example 1 is shown.
  • 3 is a flowchart illustrating a brake fluid pressure control process according to the first embodiment.
  • 3 is a flowchart illustrating a brake fluid pressure control process according to the first embodiment.
  • FIG. 2 is a view similar to FIG. 1 and shows a flow of brake fluid during brake fluid pressure control in the first embodiment.
  • the relationship characteristic of the pedal stroke Sp of Example 1 and the pedal effort Fp is shown.
  • 6 is a time chart of control according to the first embodiment when the brake pedal 2 is depressed slowly or at a normal speed.
  • 6 is a time chart of control according to the first embodiment when the brake pedal 2 is depressed rapidly (the pedal stroke Sp is less than a predetermined value Spa).
  • 6 is a time chart of control according to the first embodiment when the brake pedal 2 is depressed rapidly (the pedal stroke Sp is equal to or greater than a predetermined value Spa).
  • the relationship characteristic of the valve opening pressure of the gate-in valve 23 of Example 2 and an electric current value is shown.
  • FIG. 10 is a time chart of control according to a second embodiment when the brake pedal 2 is depressed rapidly (the pedal stroke Sp is less than a predetermined value Spa).
  • FIG. 4 is a schematic configuration diagram of a brake control device 1 according to a third embodiment, and also shows a hydraulic circuit configuration of a hydraulic unit 6.
  • FIG. 1 is a schematic configuration diagram of a brake control device 1 according to the first embodiment, and also shows a hydraulic circuit configuration of a hydraulic unit 6.
  • the vehicle braking system (brake system) includes a brake pedal 2, a master cylinder 4, a brake control device 1, and a wheel cylinder 5.
  • the vehicle is a vehicle that can generate a regenerative braking force by an electric motor, such as a hybrid vehicle or an electric vehicle, but is not limited thereto.
  • the brake pedal 2 is a brake operation member to which a brake operation by a driver is input, and transmits a depression force of the brake pedal 2 (hereinafter referred to as a pedal depression force Fp) as a brake operation force to the master cylinder 4.
  • the brake pedal 2 is provided with a pedal stroke sensor 8 as a brake operation amount detection means for detecting an operation amount (specifically, pedal stroke Sp) of the brake pedal 2 as a state of brake operation.
  • the master cylinder 4 is a hydraulic pressure generating device that generates a brake hydraulic pressure according to the brake operation state.
  • the master cylinder 4 is integrally provided with a reservoir tank 40 as a fluid source for storing brake fluid as hydraulic fluid, and the master cylinder 4 receives supply of brake fluid from the reservoir tank 40.
  • the master cylinder 4 is a so-called tandem type and is connected to the brake control device 1 (hydraulic pressure unit 6) via brake piping systems (brake circuits) 10P and 10S of two independent systems (primary P system and secondary S system). Has been.
  • brake control device 1 hydraulic pressure unit 6
  • brake piping systems brake piping systems (brake circuits) 10P and 10S of two independent systems (primary P system and secondary S system).
  • a brake hydraulic pressure (master cylinder hydraulic pressure Pm) equivalent to the operating force (pedal depression force Fp) by the brake pedal 2 is created, and this hydraulic pressure is hydraulic pressure in each system. It is supplied to the unit 6.
  • the wheel cylinder 5 is provided on each wheel FL, FR, RL, RR of the vehicle and connected to the brake control device 1 (hydraulic pressure unit 6), and supplied with brake fluid from the brake control device 1 (hydraulic pressure unit 6).
  • the brake fluid pressure (wheel cylinder fluid pressure Pw) of each wheel FL, FR, RL, RR is generated.
  • a plurality of wheels corresponding to each of the four wheels are distinguished by adding symbols a, b, c, and d as necessary, where a is a front left wheel FL and b is a front right wheel FR.
  • C correspond to the rear left wheel RL, and d correspond to the rear right wheel RR, respectively.
  • the brake control device (hereinafter referred to as device 1) is provided so as to be capable of executing boost control that increases the master cylinder hydraulic pressure Pm and increases the wheel cylinder hydraulic pressure Pw in accordance with the driver's brake operation.
  • boost control boost control
  • vehicle motion control helicopter control
  • automatic brake control such as preceding vehicle follow-up control
  • regeneration This is a brake fluid pressure control device provided so as to be able to execute cooperative brake control and the like.
  • the apparatus 1 has a hydraulic unit 6 provided so as to be able to control the wheel cylinder hydraulic pressure Pw, and a control unit 7 which is an electronic control unit for controlling the hydraulic unit 6, and these are integrated. It is a so-called electromechanical unit. Both units 6 and 7 may be separated.
  • the brake circuit 10 is a so-called X pipe.
  • the P system brake circuit 10P exiting the master cylinder 4 is connected to the front left wheel FL and the rear right wheel RR wheel cylinders 5a and 5d, and the S system brake circuit 10S is connected to the front right wheel FR.
  • the wheel cylinders 5b and 5c of the rear left wheel RL are connected to the wheel cylinders 5b and 5c of the rear left wheel RL, respectively, to form an X-shaped (diagonal) type piping structure.
  • so-called front and rear piping that is, an H-shaped piping structure divided into two systems of front wheels FL and FR and rear wheels RL and RR may be employed.
  • the hydraulic unit 6 is an actuator arranged between the master cylinder 4 and the wheel cylinder 5 and is provided so that the master cylinder hydraulic pressure Pm or the control hydraulic pressure can be supplied to each wheel cylinder 5 individually.
  • the hydraulic unit 6 is a hydraulic device (actuator) for generating a control hydraulic pressure to be supplied to each wheel cylinder 5, for example, a pump 30 that is a hydraulic pressure generation source, a plurality of control valves 20, and the like. And a housing that houses these hydraulic devices.
  • the master cylinder 4 supplies the brake fluid to the hydraulic unit 6 via the brake piping systems 10P and 10S, and the wheel cylinder 5 is supplied with the wheel cylinder fluid by the brake fluid supplied from the hydraulic unit 6.
  • Generate pressure Pw The hydraulic unit 6 is provided so that the wheel cylinder hydraulic pressure Pw can be controlled to be equal to or lower than the master cylinder hydraulic pressure Pm, can be controlled to be higher than the master cylinder hydraulic pressure Pm, or can be kept substantially constant. .
  • the brake circuit 10 which is a hydraulic circuit will be described by taking the P system as an example.
  • the brake circuit 10 has a plurality of passages 11 and the like through which the brake fluid flows in the hydraulic unit 6.
  • the brake circuit 10 has a supply passage 11 from the master cylinder 4 side toward the wheel cylinder 5 side.
  • the supply passage 11 is provided with a gate-out valve 20 as a shut-off valve for switching between communication and shut-off.
  • a check valve 26 is provided that allows only brake fluid to flow from the master cylinder 4 side to the wheel cylinder 5 side (the discharge side of the pump 30).
  • the supply passage 11 closer to the wheel cylinder 5 than the gate-out valve 20 branches into a pressure increasing passage 11a on the front wheel FL side and a pressure increasing passage 11d on the rear wheel RR side.
  • the pressure increasing passage 11a is connected to the wheel cylinder 5a of the front left wheel FL
  • the pressure increasing passage 11d is connected to the wheel cylinder 5d of the rear right wheel RR.
  • the pressure-increasing passages 11a and 11d are provided with pressure-increasing valves (in valves) 21a and 21d for switching between communication and blocking, respectively.
  • a check valve 27 that allows only the brake fluid to flow from the wheel cylinder 5 side to the master cylinder 4 side (the discharge side of the pump 30) is provided.
  • the wheel cylinders 5 a and 5 d communicate with the master cylinder 4 via the pressure increasing passages 11 a and 11 d and the supply passage 11.
  • Pressure reducing passages 14a and 14d are connected to pressure increasing passages 11a and 11d on the wheel cylinder 5 side of the pressure increasing valve 21, respectively.
  • the decompression passage 14a is a decompression passage on the front wheel FL side connected to the wheel cylinder 5a
  • the decompression passage 14d is a decompression passage on the rear wheel RR side connected to the wheel cylinder 5d.
  • the decompression passages 14a and 14d are respectively provided with decompression valves (out valves) 22a and 22d for switching between communication and blocking.
  • the decompression passages 14 a and 14 d merge to form the decompression passage 14 and are connected to an internal reservoir 25 provided between the suction side of the pump 30 and the master cylinder 4.
  • the supply passage 11 branches from the gate-out valve 20 on the master cylinder 4 side to form a first suction passage 15 and a second suction passage 13.
  • the suction side of the pump 30 communicates with the master cylinder 4 (reservoir tank 40) via the first suction passage 15 and the supply passage 11. That is, the first suction passage 15 is a passage connecting the master cylinder 4 and the suction side of the pump 30, and an internal reservoir 25 is provided on the first suction passage 15.
  • the first suction passage 15 is connected to the suction side of the pump 30 via the internal reservoir 25.
  • the second suction passage 13 is a passage that is provided in parallel with the first suction passage 15 and connects the master cylinder 4 and the internal reservoir 25, one end of which is connected to the first suction passage 15 and the other end of the pressure reduction passage. 14d.
  • the second suction passage 13 is provided with a gate-in valve 23 as a shutoff valve for switching between communication and shutoff.
  • the second suction passage 13 may be a passage that connects the master cylinder 4 and the internal reservoir 25.
  • One end of the second suction passage 13 is connected between the master cylinder 4 and the gate-out valve 20 in the supply passage 11, for example.
  • the end may be directly connected between the suction side of the pump 30 in the first suction passage 15 and the internal reservoir 25 or directly to the internal reservoir 25, and is not particularly limited.
  • the discharge side of the pump 30 is connected via the discharge passage 12 to the supply passage 11 on the wheel cylinder 5 side than the gate-out valve 20.
  • a check valve 28 is provided on the discharge side (discharge passage 12) of the pump 30.
  • the check valve 28 suppresses the backflow of the brake fluid from the supply passage 11 between the gate-out valve 20 and the pressure increasing valve 21 to the discharge side of the pump 30.
  • the discharge side of the pump 30 communicates with the master cylinder 4 through the discharge passage 12 and the supply passage 11 (gate-out valve 20), and the foil through the discharge passage 12 and the supply passage 11 (pressure increase passages 11a and 11d). It communicates with the cylinders 5a and 5d.
  • the supply passage 11 branches from the first suction passage 15, and the supply passage 11 (first brake circuit) connects the discharge side (discharge passage 12) of the pump 30, the master cylinder 4, and the wheel cylinder 5.
  • a gate-out valve 20 is provided in the supply passage 11.
  • a hydraulic pressure sensor 43 as an internal pressure sensor is provided downstream of the check valve 28 in the discharge passage 12. The hydraulic pressure sensor 43 detects the pressure on the discharge side of the pump 30 (discharge pressure of the pump 30) and inputs the detected value to the control unit 7.
  • the brake circuit 10S of the S system is configured similarly to the brake circuit 10P of the P system.
  • the brake circuit 10P is provided with a hydraulic pressure sensor 42 on the master cylinder 4 side with respect to the gate-out valve 20 in the supply passage 11.
  • the hydraulic pressure sensor 42 detects the master cylinder hydraulic pressure Pm and inputs the detected value to the control unit 7.
  • the pump 30 is provided for each of the P and S systems, is driven to rotate by the motor 3, and sucks and discharges brake fluid through each piping system.
  • the pump 30 is a gear type pump excellent in quietness, specifically, an external gear type pump. However, the pump 30 is not limited to this, and an internal gear type or plunger type pump can be employed.
  • the motor 3 is a direct current brush motor, but is not limited thereto.
  • the rotation speed of the motor 3 is controlled by a command voltage from the control unit 7 and drives the pump 30.
  • the pump 30 as a brake fluid pressure source other than the master cylinder 4 sucks the brake fluid in the master cylinder 4 through the internal reservoir 25 and discharges it to the wheel cylinder 5 side, thereby increasing the wheel cylinder fluid pressure Pw. .
  • the pump 30 has a function of scraping the brake fluid stored in the internal reservoir 25 and returning it to the master cylinder 4 side through the gate-out valve 20.
  • the internal reservoir 25 is a reservoir provided in the hydraulic pressure unit 6 so as to be able to store brake fluid, and stores brake fluid sent via the pressure reducing valve 22 or the gate-in valve 23.
  • the internal reservoir 25 is a reservoir with a pressure adjusting function provided so as to be able to adjust the brake fluid.
  • the internal reservoir 25 is linked to the piston 250 that is stroked by the flow of the brake fluid and the piston 250, and from the first suction passage 15.
  • a check valve 24 as a pressure regulating valve for adjusting the amount of brake fluid flowing into the interior.
  • the check valve 24 is provided between the master cylinder 4 on the first suction passage 15 and the internal reservoir 25.
  • the check valve 24 changes from the open state to the closed state.
  • the biasing force of the spring 252 (obtained by discounting the biasing force of the check valve return spring) is F
  • the pressure receiving area of the piston 250 is S1.
  • the check cylinder 24 is opened and the master cylinder hydraulic pressure Pm is applied to the piston 250 and Pm ⁇ S1> F, the piston 250 moves (strokes) in the direction in which the spring 252 is compressed. Move (stroke) toward the part.
  • the valve body 240 strokes the predetermined amount and sits on the seat portion, the flow of brake fluid from the first suction passage 15 into the internal reservoir 25 is blocked.
  • Piston 250 and valve body 240 are separate bodies, and the stroke amount (upper limit) of piston 250 is provided larger than the stroke amount (upper limit) of valve body 240. Therefore, even after the valve body 240 is stroked by the predetermined amount and is seated on the seat portion, the piston 250 can be stroked to increase the amount of brake fluid stored in the internal reservoir 25.
  • the brake fluid stored in the internal reservoir 25 is pumped up and returned to the supply passage 11 side.
  • the internal reservoir 25 is depressurized by pumping up by the pump 30 and pushes the check valve 24 open. That is, when the check valve 24 is closed, the pressure on the master cylinder 4 side of the valve body 240 is the master cylinder hydraulic pressure Pm.
  • the pressure Ps on the internal reservoir 25 side of the valve body 240 is F / S1
  • the pressure Ps applied to the suction side of the pump 30 does not exceed F / S1 but is kept below a predetermined pressure.
  • the pump 30 In this valve-opened state, the pump 30 is in a state where the brake fluid can be sucked from the internal reservoir 25 and the brake fluid can be sucked from the master cylinder 4 (first suction passage 15).
  • the valve closing operation is performed as described above.
  • the check valve 24 automatically repeats opening and closing when the pump 30 is operated, so that the pump 30 sucks brake fluid from the master cylinder 4 (first suction passage 15) and the wheel cylinder hydraulic pressure Pw.
  • the pressure applied to the suction side of the pump 30 is regulated to a predetermined value or less.
  • Each of the valves 20 to 23 is an electromagnetic valve (solenoid valve), which generates electromagnetic force when a drive current is applied to the solenoid (coil), and opens and closes the valve by reciprocating a plunger or the like. Is.
  • the gate-out valve 20 is a proportional control valve in which the opening degree of the valve changes proportionally depending on the current value, and is a normally open valve (normally open type) that opens when not energized.
  • the gate-out valve 20 operates proportionally between the fully open state and the fully closed state by a command current from the control unit 7, and intermittently connects (communicates) between the master cylinder 4 and the discharge side of the pump 30 and the pressure increasing valve 21. ⁇
  • the flow rate or hydraulic pressure is proportionally controlled by shutting off.
  • the check valve 26 is opened so as to transmit the master cylinder hydraulic pressure Pm to the discharge side of the pump 30 and the booster valve 21 side when the master cylinder hydraulic pressure Pm> (pressure on the discharge side of the pump 30). Operate.
  • the valve body of the gate-out valve 20 includes a pressure on the upstream side of the gate-out valve 20 (corresponding to the master cylinder hydraulic pressure Pm) and a pressure on the downstream side (the pressure on the discharge side of the pump 30). Force) due to differential pressure (valve opening pressure).
  • the differential pressure can be controlled to a desired value. That is, the biasing force of the spring that biases the valve body of the gate-out valve 20 is uniquely determined according to the position of the valve body.
  • balance control of the gate-out valve 20 a current value energized to the solenoid to control the differential pressure to a predetermined value is referred to as a balance current value.
  • the pressure increasing amount of the wheel cylinder 5 by the pump 30 is the amount of liquid discharged from the pump 30 and the amount of leaked liquid from the gate-out valve 20 to the master cylinder 4 side. It is determined according to the difference. Therefore, the number of revolutions of the motor 3 (pump discharge fluid amount) is controlled, and the solenoid of the gate-out valve 20 is energized to control the electromagnetic force (balance current value) so that the differential pressure becomes a desired value. Then, the opening degree of the gate-out valve 20 (the amount of leaked fluid) is automatically adjusted, and the wheel cylinder fluid pressure Pw can be adjusted arbitrarily.
  • the gate-in valve 23 is a proportional control valve and is a normally closed valve (normally closed type) that closes when not energized.
  • the gate-in valve 23 operates proportionally between the fully closed state and the fully opened state by a command current from the control unit 7, and intermittently (communication / shutoff) between the master cylinder 4 and the internal reservoir 25.
  • the flow rate or hydraulic pressure can be proportionally controlled.
  • the pressure increasing valve 21 is an on / off valve that takes two positions, that is, a fully opened state and a fully closed state, and is a normally open valve that opens when not energized.
  • the pressure increasing valve 21 opens and closes by a command current from the control unit 7, supplies the master cylinder hydraulic pressure Pm or pump discharge pressure supplied to the pressure increasing valve 21 to the wheel cylinder 5 by opening the valve, or closes the valve.
  • the wheel cylinder hydraulic pressure Pw can be arbitrarily increased or maintained.
  • the check valve 27 opens so that the wheel cylinder hydraulic pressure Pw is released to the master cylinder 4 when the wheel cylinder hydraulic pressure Pw> (pressure on the discharge side of the pump 30).
  • the pressure reducing valve 22 is a proportional control valve on the front wheels FL, FR side, and an on / off valve on the rear wheels RL, RR side, both of which are normally closed when not energized.
  • the pressure reducing valve 22 opens and closes in response to a command current from the control unit 7 and temporarily supplies the brake fluid in the wheel cylinder 5 to the internal reservoir 25 by opening the valve (that is, the brake fluid is discharged from the wheel cylinder 5).
  • the wheel cylinder hydraulic pressure Pw can be arbitrarily reduced by shutting off the supply (discharge) by closing the valve.
  • the pressure increasing valve 21 and the pressure reducing valve 22 on the rear wheels RL and RR may be proportional control valves.
  • the control unit 7 is an electronic control unit that controls the brake fluid pressure of each wheel FL, FR, RL, RR by outputting a control command to the fluid pressure unit 6. Detection values sent from the pedal stroke sensor 8 and the hydraulic pressure sensors 42 and 43 and information on the running state sent from the vehicle are inputted, and based on a built-in program, the opening and closing of each solenoid valve 20 and the rotation speed of the motor 3 (The discharge amount of the pump 30) is controlled. Thereby, boost control, antilock brake control, automatic brake control, regenerative cooperative brake control, and the like are realized.
  • the tendency to lock is alleviated by controlling the wheel cylinder hydraulic pressure Pw of the wheel that tends to be locked (pressure reduction, etc.).
  • the anti-lock brake control unit 72 provided in the control unit 7 estimates the road surface ⁇ based on, for example, the detected value of the wheel cylinder hydraulic pressure Pw, and the slip ratio of the wheel having a tendency to lock is determined based on a predetermined tire model.
  • the wheel cylinder hydraulic pressure Pw is controlled (depressurized or the like) so that the maximum braking force can be obtained while suppressing the tendency.
  • the wheel cylinder hydraulic pressure Pw is reduced by controlling the pressure reducing valve 22 in the valve opening direction.
  • the wheel cylinder hydraulic pressure Pw is controlled to be the target hydraulic pressure.
  • the brake fluid that has flowed out of the wheel cylinder 5 flows into the internal reservoir 25 through the pressure reducing passage 14.
  • the brake fluid stored in the internal reservoir 25 is scraped by the pump 30 and returned to the master cylinder 4 side through the gate-out valve 20 (supply passage 11).
  • at least one of the pressure reducing valves 22 of each system is a proportional control valve, finer control is possible and smooth pressure reducing control is possible. It is feasible.
  • the regenerative cooperative brake control when the brake is depressed, if the regenerative braking force (and the braking force based on the master cylinder hydraulic pressure Pm) is insufficient with respect to the driver's requested braking force, the shortage is reduced by the hydraulic pressure control by the hydraulic unit 6.
  • the gate-out valve 20 is controlled to an intermediate opening by balance control, the pressure increasing valve 21 is controlled in the valve opening direction, and the pressure reducing valve 22 is controlled in the valve closing direction. Then, the pump 30 is driven to suck and discharge the brake fluid from the master cylinder 4, thereby supplying the pump pressure to the wheel cylinder 5 by the shortage.
  • the gate-out valve 20 When the required hydraulic braking force decreases, the gate-out valve 20 is balanced, the pressure-increasing valve 21 is opened, the pressure-reducing valve 22 is closed, and the pump 30 is stopped.
  • the wheel cylinder hydraulic pressure Pw is discharged to the master cylinder 4 through the gate-out valve 20 (supply passage 11).
  • boost control the assist hydraulic pressure formed by driving the hydraulic pressure unit 6 (using the discharge hydraulic pressure of the pump 30) is applied to the master cylinder hydraulic pressure Pm generated by the master cylinder 4 in response to the brake operation.
  • the wheel cylinder hydraulic pressure Pw higher than the master cylinder hydraulic pressure Pm is created.
  • the control unit 7 includes a brake operation amount detection unit 70 and a brake fluid pressure control unit 71.
  • the brake operation amount detector 70 detects a pedal stroke Sp as a brake operation amount based on an input signal from the pedal stroke sensor 8.
  • the master cylinder hydraulic pressure Pm may be detected based on an input signal from the hydraulic pressure sensor 42 as the brake operation amount.
  • the brake hydraulic pressure control unit 71 presets the characteristics of the wheel cylinder hydraulic pressure Pw with respect to a parameter (for example, master cylinder hydraulic pressure Pm) indicating the driver required braking force as a map, and detects the detected parameter (master cylinder hydraulic pressure Pm). Based on the above, the target wheel cylinder hydraulic pressure Pw0 according to the above characteristic (map) is calculated. Then, each actuator of the hydraulic unit 6 is controlled so that the detected wheel cylinder hydraulic pressure Pw matches the target wheel cylinder hydraulic pressure Pw0.
  • FIG. 2 shows the characteristic (map) of the target wheel cylinder hydraulic pressure Pw0 when the master cylinder hydraulic pressure Pm is used as the parameter.
  • the target wheel cylinder pressure Pw0 is zero when the master cylinder pressure Pm is less than the predetermined value Pm0, and the master cylinder pressure Pm increases when the master cylinder pressure Pm is greater than Pm0 and less than the specified value Pm1. Accordingly, the target wheel cylinder hydraulic pressure Pw0 increases proportionally (with an increasing gradient greater than 1), and when the master cylinder hydraulic pressure Pm exceeds a predetermined value Pm1, the target foil cylinder hydraulic pressure is set regardless of the magnitude of the master cylinder hydraulic pressure Pm.
  • the pressure Pw0 is provided with characteristics that are substantially constant. Note that the pedal stroke Sp may be used as the parameter.
  • the characteristic (map) of the target wheel cylinder hydraulic pressure Pw0 is, for example, as shown in FIG.
  • the target wheel cylinder hydraulic pressure Pw0 is zero in a range where the pedal stroke Sp is a predetermined value Sp0 or less, and the pedal stroke is zero. In the range where Sp is greater than Sp0 and less than or equal to the predetermined value Sp1, the target wheel cylinder hydraulic pressure Pw0 increases as the pedal stroke Sp increases, and the gradient of the increase gradually increases.When the pedal stroke Sp becomes greater than the predetermined value Sp1, the pedal The target wheel cylinder hydraulic pressure Pw0 is set so as to be substantially constant regardless of the size of the stroke Sp.
  • the brake fluid pressure control unit 71 has a suction passage selection unit 710. Based on the pedal stroke Sp detected by the brake operation amount detector 70, the intake passage selector 710 detects whether or not a predetermined sudden braking state is present. Specifically, it is detected whether or not the brake pedal 2 is in a sudden depression state in which the brake pedal 2 is rapidly depressed. When the rate of change of the detected pedal stroke Sp with respect to time is a spike stop equivalent value indicating a predetermined sudden operation, and the operating direction of the brake pedal 2 is the stepping direction (the detected pedal stroke Sp increases) In addition, it is determined that the state is a sudden stepping state (in a broad sense).
  • the intake passage selection unit 710 detects whether or not the brake operation amount is equal to or greater than a predetermined amount based on the pedal stroke Sp detected by the brake operation amount detection unit 70.
  • the predetermined value Spa is set to the pedal stroke Sp corresponding to the point at which the hydraulic pressure-consumed liquid quantity characteristic of the wheel cylinder 5 starts to become substantially linear. Note that whether or not the brake operation amount is equal to or greater than a predetermined amount may be detected using the master cylinder hydraulic pressure Pm.
  • the suction passage selection unit 710 supplies the brake fluid of the master cylinder 4 to the internal reservoir 25 according to the brake operation state (whether it is a sudden braking state, or whether the brake operation amount is a predetermined amount or more).
  • This is a selection means for selecting the suction passage for flowing into the first suction passage 15 and the second suction passage 13.
  • the gate-in valve 23 is closed.
  • the brake fluid flows into the internal reservoir 25 not through the second suction passage 13 but through the first suction passage 15.
  • the second intake passage 13 is basically communicated by opening the gate-in valve 23.
  • the check valve 24 since the check valve 24 is closed due to a response delay of the pump 30 (motor 3), the first suction passage 15 is blocked. As a result, the brake fluid flows from the master cylinder 4 into the internal reservoir 25 not through the first suction passage 15 but through the second suction passage 13. Even when a predetermined sudden braking state is detected, when a brake operation amount greater than a predetermined amount (pedal stroke Sp greater than a predetermined value Spa) is detected, or a master cylinder hydraulic pressure Pm greater than a predetermined value Pma Is detected, the gate-in valve 23 is closed. As a result, the brake fluid flows into the internal reservoir 25 not through the second suction passage 13 but through the first suction passage 15.
  • the predetermined value Pma is set to be equal to or lower than a predetermined pressure resistance value on the pump suction side.
  • step S1 each actuator of the hydraulic unit 6 is deactivated. That is, the gate-in valve 23 is deactivated (closed), the gate-out valve 20 is deactivated (opened), the pressure increasing valve 21 is deactivated (opened), and the pressure reducing valve 22 is deactivated.
  • the motor 3 (pump 30) is deactivated. Thereafter, the process proceeds to step S2.
  • step S2 detection values of various sensors are read. Thereafter, the process proceeds to step S3.
  • step S3 it is determined whether or not to perform brake fluid pressure control (boost control). If it is determined that control is to be performed, the process proceeds to step S4.
  • step S4 it is determined whether or not it is in a predetermined sudden braking state, specifically, whether or not it is in a sudden stepping state. If it is determined that the vehicle is suddenly depressed, the process proceeds to step S5. If it is not determined that the vehicle is suddenly depressed, the process proceeds to step S8. In step S5, it is determined whether or not the brake operation amount is greater than or equal to a predetermined amount, specifically, whether or not the detected pedal stroke Sp is greater than or equal to a predetermined value Spa. If it is determined that the value is less than the predetermined value Spa, the process proceeds to step S6.
  • step S8 it is determined whether or not the detected master cylinder hydraulic pressure Pm is equal to or greater than a predetermined value Pma. If it is determined that the value is less than the predetermined value Pma, the process proceeds to step S7. If it is determined that the value is equal to or greater than the predetermined value Pma, the process proceeds to step S8. In step S7, the gate-in valve 23 is actuated (opened). Thereafter, the process proceeds to step S9. In step S8, the gate-in valve 23 is deactivated (closed). Thereafter, the process proceeds to step S9.
  • step S6 If the master cylinder hydraulic pressure Pm is greater than or equal to the predetermined value Pma in step S6, the process proceeds to step S8 to close the gate-in valve 23, and if it is less than the predetermined value Pma, the process proceeds to step S7 and the gate-in valve 23 is opened.
  • the master cylinder hydraulic pressure Pm having a high pressure predetermined value Pma or more
  • the target wheel cylinder hydraulic pressure Pw0 is calculated based on the detected master cylinder hydraulic pressure Pm or the pedal stroke Sp (driver required braking force shown).
  • step S10 it is determined whether or not the pressure increase control of the wheel cylinder hydraulic pressure Pw is performed. For example, if the detected wheel cylinder hydraulic pressure Pw is lower than the target wheel cylinder hydraulic pressure Pw0, it is determined that the pressure increase control is performed. If it is determined that the pressure increase control is to be performed, the process proceeds to step S12. If it is determined not to perform pressure increase control, the process proceeds to step S11. In step S11, it is determined whether or not the holding control of the wheel cylinder hydraulic pressure Pw is performed.
  • step S12 the pump 30 (motor 3) is operated in a state where the brake operation is performed, and the gate-out valve 20 is operated to control the valve closing direction (the intermediate opening is set by balance control). 21 is deactivated (or controlled in the valve opening direction), and the pressure reducing valve 22 is deactivated (or controlled in the valve closing direction).
  • the flow of brake fluid through the gate-out valve 20 in the supply passage 11 is limited.
  • the pump 30 sucks the brake fluid in the master cylinder 4 through the suction passage (the first suction passage 15 or the second suction passage 13) selected in steps S4 to S8, and the brake created in the master cylinder 4
  • the hydraulic pressure (master cylinder hydraulic pressure Pm) is increased to increase the wheel cylinder hydraulic pressure Pw.
  • the wheel cylinder hydraulic pressure Pw is increased to a pressure higher than the master cylinder hydraulic pressure Pm.
  • step S13 with the brake operation being performed, the pump 30 (motor 3) is deactivated, the gate-out valve 20 is activated (closed), and the pressure increasing valve 21 is deactivated (opened). ), The pressure reducing valve 22 is deactivated (closed). The brake fluid in the wheel cylinder 5 is sealed in a passage between the pressure reducing valve 22, the check valve 28, the gate-out valve 20, and the check valve 26, so that the wheel cylinder hydraulic pressure Pw is maintained. Thereafter, the process proceeds to step S15. In step S14, with the brake operation being performed, the pump 30 (motor 3) is deactivated and the gate-out valve 20 is activated to control the valve closing direction (the intermediate opening is set by balance control).
  • step S15 it is determined whether or not the detected wheel cylinder hydraulic pressure Pw substantially matches the target wheel cylinder hydraulic pressure Pw0. If it is determined that they substantially match, the process proceeds to step S16. If it is determined that they do not substantially match, the process returns to step S10.
  • step S16 it is determined whether or not to finish the brake fluid pressure control (boost control). If it is determined to end the control, the process proceeds to step S17. If it is not determined to end the control, the process returns to step S9. In step S17, as in step S1, each actuator of the hydraulic unit 6 is deactivated. Thereafter, the current control cycle is terminated.
  • boost control brake fluid pressure control
  • FIG. 6 shows the brake circuit of the device 1 of this embodiment, as in FIG.
  • the brake fluid pressure control (for example, boost control) is performed in a state where the brake pedal 2 is depressed, and the flow of the brake fluid when increasing the wheel cylinder fluid pressure Pw is indicated by an arrow.
  • the flow of the brake fluid only in the P system is shown, but the S system is the same.
  • FIG. 7 shows a relational characteristic between the pedal stroke Sp and the pedal depression force Fp at the time of the wheel cylinder pressure increase control in the state where the depression operation of the brake pedal 2 is performed.
  • step S12 When the wheel cylinder hydraulic pressure Pw is controlled to increase while the brake pedal 2 is depressed, in step S12, the pump 30 is driven and the gate-out valve 20 is controlled to an intermediate opening by balance control.
  • the pressure increasing valve 21 is deactivated (or controlled in the valve opening direction), and the pressure reducing valve 22 is deactivated (or controlled in the valve closing direction).
  • the pump 30 sucks the brake fluid in the master cylinder 4 based on the detected increase in the pedal stroke Sp and increases the wheel cylinder hydraulic pressure Pw.
  • the suction passage selection unit 710 selects the first suction passage 15 as the suction passage for flowing the brake fluid into the internal reservoir 25. Specifically, the gate-in valve 23 is closed. Therefore, as indicated by the dotted arrow ⁇ in FIG. 6, the pump 30 sucks the brake fluid in the master cylinder 4 through the first suction passage 15. Specifically, the internal reservoir 25 is depressurized by the operation of the pump 30 and the check valve 24 is opened, whereby the first suction passage 15 is brought into a communication state. Therefore, the brake fluid flowing into the internal reservoir 25 via the first suction passage 15 is sucked by the pump 30.
  • the second suction passage 13 is disconnected, and the brake fluid does not flow into the internal reservoir 25 through the second suction passage 13.
  • the pump 30 discharges the sucked brake fluid to the supply passage 11 on the wheel cylinder 5 side of the gate-out valve 20 as shown by the solid line arrow ⁇ in FIG. Supply toward 5.
  • the wheel cylinder hydraulic pressure Pw is increased.
  • Most of the brake fluid flowing into the internal reservoir 25 via the first suction passage 15 is sucked into the pump 30 without being stored in the internal reservoir 25. Therefore, the amount of brake fluid delivered from the master cylinder 4 (that is, the pedal stroke Sp) corresponds to the amount of suction fluid of the pump 30 (which is substantially proportional).
  • the pedal stroke Sp is exclusively correlated with the amount of the suction fluid of the pump 30, and is restrained by this.
  • the amount of liquid sucked by the pump 30 and sent to the wheel cylinder 5 can be regarded as being equal to the amount of liquid sent from the master cylinder, and the brake pedal 2 can stroke by this amount of liquid.
  • the response delay of the pump 30 (motor 3) that is, the increase in the intake fluid amount (pedal stroke Sp) of the pump 30 is relatively small. Therefore, the relational characteristic at this time is as shown by a solid line in FIG.
  • the pedal depressing force Fp increases as the pedal stroke Sp increases, and the rate of increase gradually increases as the pedal stroke Sp increases (in other words, exponential).
  • the increment of the pedal stroke Sp with respect to the pedal depression force Fp is relatively large, so that the brake pedal 2 has a so-called soft (light) pedal operation feeling.
  • the pedal stroke Sp is equal to or greater than the predetermined value Spa
  • an increase in the pedal stroke Sp with respect to the pedal depression force Fp is relatively small, so that the pedal operation feeling that the brake pedal 2 becomes harder (heavy) with the stroke is obtained.
  • the intake passage selection unit 710 basically selects the second intake passage 13 as an intake passage for flowing brake fluid into the internal reservoir 25. Specifically, the gate-in valve 23 is opened. Therefore, as indicated by the one-dot chain line arrow ⁇ in FIG. 6, the pump 30 sucks the brake fluid in the master cylinder 4 through the second suction passage 13. Specifically, in a sudden stepping state, due to a delay in response of the pump 30 (motor 3), the pressure reduction in the internal reservoir 25 due to the operation of the pump 30 and the opening of the check valve 24 associated therewith are delayed. The master cylinder hydraulic pressure Pm acts to close the valve.
  • the first suction passage 15 is disconnected and the brake fluid does not flow into the internal reservoir 25 via the first suction passage 15.
  • the opening of the gate-in valve 23 brings the second suction passage 13 into communication, and the brake fluid from the master cylinder 4 flows into the internal reservoir 25 through the second suction passage 13.
  • the stroke amount (upper limit) of the piston 250 of the internal reservoir 25 is set larger than the stroke amount (upper limit) of the check valve 24. For this reason, even after the check valve 24 is closed and the stroke of the check valve 24 (valve element 240) is limited, the piston 250 of the internal reservoir 25 can be stroked. Therefore, the brake fluid can be more reliably poured into the internal reservoir 25 via the gate-in valve 23 (second suction passage 13).
  • the brake fluid can be more reliably poured into the internal reservoir 25 via the gate-in valve 23 (second suction passage 13). Can do.
  • the pump 30 sucks the brake fluid that has flowed into the internal reservoir 25 (via the second suction passage 13) as indicated by the solid arrow ⁇ in FIG.
  • the sucked brake fluid is discharged to the supply passage 11 closer to the wheel cylinder 5 than the gate-out valve 20 and supplied toward the wheel cylinder 5.
  • the wheel cylinder hydraulic pressure Pw is increased.
  • the above-mentioned relational characteristic in the sudden stepping state is as shown by a one-dot chain line in FIG. That is, the relational characteristic is the same as the relational characteristic (solid line in FIG. 7) when the brake pedal 2 is depressed slowly or at a normal speed, and the pedal operation feeling is also the same.
  • the relational characteristic in the sudden stepping state will be described using a comparative example.
  • This comparative example is different from the present embodiment only in that the second suction passage 13 (gate-in valve 23) is not provided, and the pump 30 sucks brake fluid through the first suction passage 15 even in a sudden stepping state. It is the structure to do.
  • FIG. 8 shows the above relational characteristics of the comparative example.
  • the relational characteristic of the comparative example when the brake pedal 2 is depressed slowly or at a normal speed is the same as that of the present example as shown by the solid line in FIG. 8, while the relational characteristic of the comparative example in the sudden depression state. Unlike the present embodiment, is shown by a one-dot chain line in FIG. That is, in the comparative example, because the pump 30 sucks the brake fluid in the master cylinder 4 through the first suction passage 15 regardless of the brake operation state, the pedal stroke Sp corresponds to the suction fluid amount of the pump 30 ( The pedal stroke Sp is constrained by the amount of the suction fluid of the pump 30.
  • the brake fluid in the master cylinder 4 is supplied to the second suction passage 13.
  • the amount of brake fluid (that is, pedal stroke Sp) delivered from the master cylinder 4 can be increased independently of the amount of suction fluid of the pump 30.
  • the pedal stroke Sp does not directly correlate with the suction fluid amount of the pump 30 (not in a substantially proportional relationship), and can be increased regardless of the response delay of the pump 30 (motor 3).
  • the pedal stroke Sp can be secured even in a sudden stepping state, and as shown by the one-dot chain line in FIG. 7, the same relational characteristics as when the brake pedal 2 is depressed slowly or at a normal speed. Can be realized. Therefore, deterioration of the pedal operation feeling can be suppressed.
  • FIG. 9 to FIG. 11 are time charts showing an example of a time change of each variable when the brake pedal 2 is depressed and the device 1 performs brake fluid pressure control (for example, boost control).
  • FIG. 9 is a time chart when the brake pedal 2 is depressed slowly or at a normal speed. The brake pedal 2 is depressed at time t0. 4 and 5, the flow proceeds in the order of steps S1 to S4 ⁇ S8 to S10 ⁇ S12 ⁇ S15, the gate-in valve 23 is deactivated (closed), and the gate-out valve 20 is activated (with an intermediate opening). ), And outputs a command (current) for operating the motor 3.
  • the master cylinder hydraulic pressure Pm increases accordingly.
  • the motor 3 operates from time t0, and the pump 30 sucks brake fluid from the internal reservoir 25 at a predetermined suction speed. Since the brake operation speed is slow or normal, the suction of the pump 30 (decompression in the internal reservoir 25) is not delayed with respect to the increase in the master cylinder hydraulic pressure Pm. Accordingly, the check valve 24 is opened, and the brake fluid flows from the master cylinder 4 into the internal reservoir 25 via the first suction passage 15, and the pump 30 sucks this brake fluid and discharges it to the wheel cylinder 5 side. . Therefore, according to the relational characteristic (solid line) in FIG. 7, the pedal stroke Sp starts to increase and the wheel cylinder hydraulic pressure Pw starts to increase as the pedal effort Fp increases.
  • the wheel cylinder hydraulic pressure Pw is controlled to a target value higher than the master cylinder hydraulic pressure Pm.
  • the depression of the brake pedal 2 (the pedal depression force Fp, that is, the master cylinder hydraulic pressure Pm) is maintained. 4 and 5, the flow proceeds from step S 1 to S 4 ⁇ S 8 to S 10 ⁇ S 11 ⁇ S 13 ⁇ S 15, the gate-in valve 23 is deactivated, the gate-out valve 20 is activated (closed), and the motor 3 A command to deactivate is output. Since the gate-in valve 23 and the gate-out valve 20 are closed and the check valve 24 is also closed when the pump 30 is not operated, the pedal stroke Sp is maintained.
  • the pump 30 is deactivated and the gate-out valve 20 is closed, the wheel cylinder hydraulic pressure Pw is also kept constant.
  • the depression of the brake pedal 2 is returned, and the pedal depression force Fp, that is, the master cylinder hydraulic pressure Pm starts to decrease. 4 and 5, the flow proceeds in the order of steps S1 to S4 ⁇ S8 to S10 ⁇ S11 ⁇ S14 ⁇ S15, the gate-in valve 23 is deactivated, the gate-out valve 20 is activated (intermediate opening), and the motor A command to deactivate 3 is output.
  • FIG. 10 is a time chart when the brake pedal 2 is rapidly depressed. It is assumed that the pedal stroke Sp is less than the predetermined value Spa and the master cylinder hydraulic pressure Pm is less than the predetermined value Pma. It is assumed that the brake pedal 2 is depressed at time t0 and is determined to be in a sudden depression state until time t1. 4 and 5, the flow proceeds from step S1 to S7 ⁇ S9 ⁇ S10 ⁇ S12 ⁇ S15. The gate-in valve 23 is operated (opened) and the gate-out valve 20 is operated (intermediate opening). Then, a command for operating the motor 3 is output. As the pedal effort Fp increases, the master cylinder hydraulic pressure Pm increases accordingly.
  • the motor 3 operates from time t0, and the pump 30 sucks brake fluid from the internal reservoir 25 at a predetermined suction speed. Since the brake operation speed is rapid, the suction of the pump 30 (decompression in the internal reservoir 25) is delayed with respect to the increase in the master cylinder hydraulic pressure Pm. Accordingly, the check valve 24 is closed, and the brake fluid flows from the master cylinder 4 into the internal reservoir 25 via the second suction passage 13 instead of the first suction passage 15, and the pump 30 sucks the brake fluid. Discharge to the wheel cylinder 5 side. Therefore, according to the relational characteristic (dashed line) in FIG. 7, the pedal stroke Sp starts to increase and the wheel cylinder hydraulic pressure Pw starts to increase as the pedal effort Fp increases.
  • the wheel cylinder hydraulic pressure Pw is controlled to a target value higher than the master cylinder hydraulic pressure Pm.
  • FIG. 11 is a time chart when the brake pedal 2 is rapidly depressed. It is assumed that the pedal stroke Sp is not less than the predetermined value Spa and the master cylinder hydraulic pressure Pm is less than the predetermined value Pma. It is assumed that the brake pedal 2 is depressed at time t0 and is determined to be in a sudden depression state until time t1. From time t0 to time t01, since the pedal stroke Sp is less than the predetermined value Spa, the flow proceeds from step S1 to S7 ⁇ S9 ⁇ S10 ⁇ S12 ⁇ S15 in the flowcharts of FIGS. Similarly to t1, the pedal stroke Sp corresponding to the pedal depression force Fp at the time of sudden depression is ensured.
  • step S1 Since the pedal stroke Sp becomes equal to or greater than the predetermined value Spa at time t01, the flow proceeds from step S1 to S5 ⁇ S8 to S10 ⁇ S12 ⁇ S15 in the flowcharts of FIGS. 4 and 5, and the gate-in valve 23 is deactivated (closed). ) After the operation of the motor 3 is started (turned on) at time t0, the response delay of the motor 3 is eliminated at time t01, and even if the brake operation speed is rapid, the master cylinder hydraulic pressure Pm increases. In contrast, the suction of the pump 30 (decompression in the internal reservoir 25) is not delayed.
  • the check valve 24 is opened, and the brake fluid flows from the master cylinder 4 into the internal reservoir 25 not via the second suction passage 13 but through the first suction passage 15, and the pump 30 sucks this brake fluid. Discharge to the wheel cylinder 5 side. Therefore, the pedal stroke Sp increases in accordance with the increase in the pedal effort Fp in accordance with the relational characteristic (dashed line) in FIG. That is, from time t01 to t1, even in a sudden stepping state, the pump 30 sucks the brake fluid through the first suction passage 15 so that the characteristic of the pedal stroke Sp with respect to the pedal depression force Fp is appropriately set. It is possible to make the pedal operation feeling more appropriate. After time t1 at which the holding of the brake pedal is started is the same as in FIG.
  • a master cylinder hydraulic pressure Pm corresponding to the pedal depression force Fp is created from the master cylinder 4, and the pump 30 pressurizes the created master cylinder hydraulic pressure Pm and increases the wheel cylinder hydraulic pressure Pw.
  • the force transmitted from the brake pedal 2 is amplified and transmitted to the master cylinder 4 between the brake pedal 2 and the master cylinder 4, and the master cylinder hydraulic pressure Pm is generated by the boosted brake operation force.
  • the boosting function can be realized using the hydraulic unit 6. That is, the brake system can have a booster-less configuration that does not include a mechanical booster (booster) between the brake pedal 2 and the master cylinder 4.
  • the booster of the said type (For example, the negative pressure booster using the negative pressure which an engine generate
  • the booster-less configuration since the booster-less configuration is adopted, the fluctuation of the master cylinder hydraulic pressure Pm is more easily transmitted to the brake pedal 2. Therefore, the above effect of improving the pedal operation feeling by selecting the suction passage according to the brake operation state can be obtained more effectively.
  • the brake fluid that flows into the internal reservoir 25 from the master cylinder 4 by opening the gate-in valve 23 in the sudden braking state is sucked by the pump 30 and supplied to the wheel cylinder 5. That is, the brake fluid supplied from the master cylinder 4 to the internal reservoir 25 for securing the pedal stroke Sp is used for increasing the pressure of the wheel cylinder 5.
  • the configuration of control and the like can be simplified.
  • the brake fluid that flows into the reservoir 25 via the second suction passage 13 in the sudden braking state may not be sucked by the pump 30.
  • the internal reservoir 25 into which the brake fluid flows in order to secure the pedal stroke Sp in the sudden braking state is also a reservoir into which the brake fluid decompressed by the antilock brake control unit 72 flows. Accordingly, the existing internal reservoir 25 of the hydraulic unit 6 provided to execute the anti-lock brake control is used (shared) as the internal reservoir 25 for securing the pedal stroke Sp in the sudden braking state.
  • the system (hydraulic pressure unit and control logic) can be easily applied and the cost can be reduced.
  • a brake operation amount detector 70 for detecting an operation amount (pedal stroke Sp) of the brake operation member (brake pedal 2) by the driver;
  • a pump 30 for drawing in brake fluid in the master cylinder 4 and increasing the wheel cylinder hydraulic pressure Pw based on an increase in the operation amount (pedal stroke Sp) of the brake operation member detected by the brake operation amount detection unit 70;
  • a first suction passage 15 connecting the master cylinder 4 and the suction side of the pump 30;
  • a reservoir (internal reservoir 25) provided in the first suction passage 15;
  • a second suction passage 13 provided in parallel with the first suction passage 15 and connecting the master cylinder 4 and the reservoir (internal reservoir 25);
  • a gate-in valve 23 provided in the second suction passage 13, When a predetermined sudden braking state is detected by the brake operation amount detector 70, the gate-in valve 23 is opened, and the brake fluid flows into the reservoir (internal reservoir 25). Therefore, the operational feeling at
  • a brake fluid pressure (master cylinder fluid pressure Pm) corresponding to the operation force (pedal depression force Fp) by the brake operation member (brake pedal 2) is created, and the pump 30 Increase the hydraulic pressure (master cylinder hydraulic pressure Pm) and increase the wheel cylinder hydraulic pressure Pw. Therefore, a boosterless device is obtained.
  • the pump 30 sucks the brake fluid that has flowed into the reservoir (internal reservoir 25). Therefore, the liquid amount balance can be secured and the configuration can be simplified.
  • An anti-lock brake control unit 72 for reducing the wheel cylinder hydraulic pressure Pw is provided, and the brake fluid depressurized by the anti-lock brake control unit 72 flows into the reservoir (internal reservoir 25). Therefore, an existing system can be applied and cost reduction can be achieved.
  • the reservoir (internal reservoir 25) is a piston 250 that strokes based on the inflow of brake fluid, and the amount of brake fluid flowing into the reservoir (internal reservoir 25) from the first suction passage 15 in conjunction with the piston 250.
  • the pump 30 includes a pressure regulating valve (check valve 24) to be adjusted, and the pump 30 sucks the brake fluid through the pressure regulating valve (check valve 24) after closing the gate-in valve 23. Therefore, it is possible to mechanically suppress the deterioration of the operation feeling after sudden depression (in a narrow sense) without requiring special control.
  • the brake control device 1 controls the gate-in valve 23 while the second suction passage 13 is selected, thereby obtaining a relational characteristic between the pedal depression force Fp and the pedal stroke Sp (hereinafter referred to as Fp-Sp characteristic). It is intended to be as intended.
  • the gate-in valve 23 of this embodiment is a proportional valve that can change the opening degree or the valve-opening pressure according to the current value, as in the case of the gate-out valve 20, except that it is normally open and normally closed. It is.
  • FIG. 12 is a map showing the relationship between the valve opening pressure of the gate-in valve 23 and the current value.
  • the valve opening pressure of the gate-in valve 23 is a differential pressure between the pressure on the upstream side of the gate-in valve 23 (corresponding to the master cylinder hydraulic pressure Pm) and the pressure on the downstream side (corresponding to the pressure in the internal reservoir 25). If the pressure in the internal reservoir 25 is regarded as substantially zero, the valve opening pressure is substantially equal to the master cylinder hydraulic pressure Pm. Therefore, by adjusting the current value of the gate-in valve 23 based on this map, the valve opening pressure, that is, the master cylinder hydraulic pressure Pm can be controlled to a desired value.
  • FIG. 13 is a map showing a relational characteristic between the pedal stroke Sp and the target value of the master cylinder hydraulic pressure Pm in a sudden stepping state.
  • the relationship between the pedal stroke Sp and the master cylinder hydraulic pressure Pm in this map is set to be equal to the relationship between the pedal stroke Sp and the pedal effort Fp when the brake pedal 2 is depressed slowly or at a normal speed.
  • the pedal depression force Fp is substantially proportional to the master cylinder hydraulic pressure Pm
  • the relational characteristic in FIG. 13 has the same shape as the relational characteristic in the solid line in FIG.
  • step S7 the target value Pm0 of the master cylinder hydraulic pressure Pm is set based on the map of FIG. 13 according to the detected pedal stroke Sp. Then, a current value for operating the gate-in valve 23 is determined based on the set master cylinder hydraulic pressure target value Pm0 based on the map of FIG.
  • the master cylinder hydraulic pressure Pm is shown in the map of FIG. 12 based on the detected pedal stroke Sp.
  • the current value of the gate-in valve 23 is controlled so as to be the target value Pm0 shown.
  • the valve opening pressure (or opening) of the gate-in valve 23 is set so that the pedal depression force Fp becomes an appropriate value by adjusting the current value. Therefore, the Fp-Sp characteristic in the steeply depressed state can be set to a desired characteristic, and thereby a better pedal feeling can be obtained.
  • FIG. 14 is a time chart similar to FIG. 10 by the apparatus 1 of the present embodiment.
  • the brake pedal 2 is depressed at time t0, the flow proceeds from step S1 to S7 ⁇ S9 ⁇ S10 ⁇ S12 ⁇ S15 in the flow charts of FIGS. 4 and 5, and the gate-in valve 23 is operated (intermediate opening), and the gate The out valve 20 is operated (intermediate opening is set), and a command to operate the motor 3 is output.
  • the current value of the gate-in valve 23 is determined as described above.
  • the master cylinder hydraulic pressure Pm is controlled according to the pedal stroke Sp according to the characteristics of the map of FIG. Therefore, better Fp-Sp characteristics can be obtained until time t1 when the gate-in valve 23 is closed, and pedal feeling during sudden depression can be further improved.
  • the other points are the same as in FIG.
  • the gate-in valve 23 is not an on / off valve but a proportional control valve, it is easy to create a good pedal feel as described above.
  • an on / off valve may be used as the gate-in valve 23 instead of a proportional control valve.
  • the intermediate opening can be achieved by controlling the effective current by PWM control.
  • PWM control in order to improve the feeling of the driver by suppressing sound vibration, it is preferable to use a proportional control valve as in this embodiment.
  • the gate-in valve 23 is a proportional valve whose opening degree can be changed by a current value, and the gate-in valve 23 is opened so that the pedal depression force Fp becomes an appropriate value by adjusting the current value.
  • the gate-in valve 23 is an on / off valve and is downstream of the gate-in valve 23 in the second suction passage 13 (internal).
  • the second embodiment is different from the second embodiment in that an orifice 230 as a throttle portion is provided on the reservoir 25 side.
  • the gate-in valve 23 is configured by a combination of an on / off valve and an orifice.
  • an orifice may be provided on the upstream side (master cylinder 4 side) of the gate-in valve 23 in the second suction passage 13.
  • the problem of the deterioration of the brake operation feeling is that the first suction passage 15 is mechanically disconnected due to a response delay of the pump 30 (motor 3) as in the embodiment and the comparative example in a predetermined sudden braking state.
  • the present invention is not limited to this, and may occur if the pump 30 prevents the brake fluid from being sucked from the master cylinder 4 through the first suction passage 15 by the response delay of the pump 30 (motor 3). Therefore, it is not the internal reservoir 25 with the pressure adjusting function integrated with the check valve 24 on the first suction passage 15 (the stroke of the reservoir piston 250 and the opening and closing of the check valve 24 are interlocked) as in the embodiment.
  • the suction passage selection means of the present invention may be applied to a device having a normal internal reservoir.
  • a gate valve is provided on the first suction passage 15 upstream of the internal reservoir (on the master cylinder side) so that the communication state of the first suction passage 15 can be switched without interlocking with the internal reservoir.
  • the embodiment includes the internal reservoir 25 having a pressure adjusting function, the brake operation feeling can be mechanically adjusted without requiring separate control as compared with the case where the gate valve is provided. For example, there is an advantage that the deterioration of the operation feeling after a sudden stepping (in a narrow sense) can be mechanically suppressed without requiring special control.
  • the problem of the deterioration of the brake operation feeling is that the pump 30 sucks brake fluid from the master cylinder 4 through the first suction passage 15 in a predetermined sudden braking state. Even if the configuration is hindered by other causes other than the response delay, it may occur. Therefore, the first suction passage 15 upstream of the internal reservoir (on the master cylinder side) is not limited to the one provided with a valve, but includes, for example, a throttle portion such as an orifice for limiting the flow rate in the first suction passage 15.
  • the suction passage selection means of the present invention may be applied. Also in this case, the pedal stroke Sp can be secured and the brake operation feeling can be improved by selecting the second suction passage 13 in a predetermined sudden braking state.
  • an on / off valve may be used instead of a proportional control valve.
  • an intermediate opening degree can be achieved by controlling an effective current by PWM control.
  • PWM control it is preferable to use a proportional control valve as in the embodiment.
  • a first brake circuit that branches from the first suction passage and connects the discharge side of the pump, the master cylinder, and the wheel cylinder; A gate-out valve provided in the first brake circuit, The brake control device according to claim 1, wherein when a predetermined sudden braking state is detected by the brake operation amount detection unit, the gate-out valve is controlled in a valve closing direction. Brake fluid can be more reliably poured into the reservoir via the gate-in valve.
  • the reservoir includes a piston that strokes due to the flow of brake fluid, and a pressure regulating valve that moves in conjunction with the piston and blocks the inflow of brake fluid from the first suction passage to the reservoir when a predetermined amount of stroke is applied,
  • the brake device according to claim 1 wherein a stroke amount of the piston is larger than a stroke amount of the pressure regulating valve, and the piston can be stroked through the second suction passage. Brake fluid can be more reliably poured into the reservoir via the gate-in valve.
  • the brake device, wherein the gate-in valve is a proportional control valve. Easy to create pedal feel.
  • the gate device is an on / off valve, and an orifice is provided downstream of the gate-in valve. A pedal feel can be created at a low cost.
  • (B1) a brake operation amount detection unit for detecting the operation amount of the brake operation member by the driver;
  • a pump for sucking in brake fluid in the master cylinder and increasing wheel cylinder hydraulic pressure based on an increase in the operation amount of the brake operation member detected by the brake operation amount detection unit;
  • a first suction passage connecting the master cylinder and the suction side of the pump;
  • a reservoir provided in the first suction passage, into which brake fluid from the master cylinder flows;
  • a second suction passage provided in parallel with the first suction passage and connecting the master cylinder and the reservoir;
  • Selecting means for selecting an intake passage from the first intake passage and the second intake passage according to the brake operation state detected by the brake operation amount detection unit;
  • a brake control device that causes brake fluid to flow into the reservoir via the selected suction passage.
  • a gate-in valve is provided in the second suction passage; A brake device that opens the gate-in valve when a predetermined sudden braking state is detected by the brake operation amount detector.
  • a brake fluid pressure corresponding to the operation force by the brake operation member is created in the master cylinder, and the pump pressurizes the created brake fluid pressure and increases the wheel cylinder fluid pressure. Brake control device.
  • B4 In the brake control device described in (B3), The brake control device according to claim 1, wherein the pump sucks brake fluid that has flowed into the reservoir.
  • the reservoir includes a piston that strokes based on an inflow of brake fluid, and a pressure regulating valve that adjusts the amount of brake fluid that flows into the reservoir from the first suction passage in conjunction with the piston.
  • the pump is configured to suck the brake fluid through the pressure regulating valve after closing the gate-in valve.
  • (B7) In the brake control device described in (B1), A first brake circuit that branches from the first suction passage and connects the discharge side of the pump, the master cylinder, and the wheel cylinder; A gate-out valve provided in the first brake circuit, The brake control device according to claim 1, wherein when a predetermined sudden braking state is detected by the brake operation amount detection unit, the gate-out valve is controlled in a valve closing direction.
  • the gate-in valve is a proportional control valve.
  • (C1) a brake operation amount detection unit for detecting the operation amount of the brake operation member by the driver;
  • a pump for sucking in brake fluid in the master cylinder and increasing wheel cylinder hydraulic pressure based on an increase in the operation amount of the brake operation member detected by the brake operation amount detection unit;
  • a first suction passage connecting the master cylinder and the suction side of the pump;
  • a second suction passage provided separately from the first suction passage and connected to the master cylinder;
  • Reservoirs provided in the first suction passage and the second suction passage;
  • a pressure regulating valve that is provided between the master cylinder and the reservoir on the first suction passage and is closed when a predetermined amount of brake fluid flows into the reservoir;
  • a gate-in valve provided in the second suction passage, When a predetermined sudden braking state is detected by the brake operation amount detector, the pressure regulating valve is closed while the gate-in valve is opened, and brake fluid is supplied to the reservoir via the second suction passage.
  • the brake control device characterized by flowing in. (C2)
  • a brake fluid pressure corresponding to the operation force by the brake operation member is created in the master cylinder, and the pump pressurizes the created brake fluid pressure and increases the wheel cylinder fluid pressure.
  • Brake control device In the brake control device described in (C1), A brake fluid pressure corresponding to the operation force by the brake operation member is created in the master cylinder, and the pump pressurizes the created brake fluid pressure and increases the wheel cylinder fluid pressure. Brake control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

 ドライバによるブレーキペダル2のペダルストロークSpを検出するためのブレーキ操作量検出部70と、該ブレーキ操作量検出部70により検出されたブレーキ操作部材のペダルストロークSpの増加に基づいてマスタシリンダ4内のブレーキ液を吸入しホイルシリンダ液圧Pwを増圧するためのポンプ30と、マスタシリンダ4とポンプ30の吸入側を接続する第1吸入通路15と、該第1吸入通路15に設けられた内部リザーバ25と、第1吸入通路15と並列に設けられ、マスタシリンダ4と内部リザーバ25を接続する第2吸入通路13と、第2吸入通路13に設けられたゲートイン弁23とを備え、ブレーキ操作量検出部70によって所定の急制動状態を検出した場合には、ゲートイン弁23を開弁し、内部リザーバ25へとブレーキ液を流入させる。

Description

ブレーキ制御装置
 本発明は、車両に搭載されるブレーキ制御装置に関する。
 従来、ドライバ(運転者)によるブレーキ操作部材の操作時に、ポンプがマスタシリンダ内のブレーキ液を吸入してホイルシリンダ側へ吐出することでホイルシリンダ液圧を増圧するブレーキ制御装置が知られている(例えば特許文献1)。
特開2006-192945号公報
 しかし、従来の装置では、ドライバがブレーキ操作部材を急速に操作すると、ブレーキ操作部材の操作フィーリングが悪化し、ドライバに違和感を与えるおそれがあった。本発明の目的とするところは、ドライバの違和感を抑制することができるブレーキ制御装置を提供することにある。
 上記目的を達成するため、本発明のブレーキ制御装置は、好ましくは、マスタシリンダとポンプの吸入側を接続する第1吸入通路にリザーバを設け、第1吸入通路とは別にマスタシリンダとリザーバを接続する第2吸入通路を設け、所定の急制動状態を検出した場合に第2吸入通路を介してブレーキ液をリザーバへ流入させることとした。
 よって、ドライバに違和感を与えることを抑制することができる。
実施例1のブレーキ制御装置1の概略構成図であり、液圧ユニット6の油圧回路構成を併せて示す。 実施例1のマスタシリンダ液圧Pmに対するホイルシリンダ液圧Pwの特性を示す。 実施例1のペダルストロークSpに対するホイルシリンダ液圧Pwの特性を示す。 実施例1のブレーキ液圧制御処理を表すフローチャートである。 実施例1のブレーキ液圧制御処理を表すフローチャートである。 図1と同様の図であり、実施例1のブレーキ液圧制御時のブレーキ液の流れを示す。 実施例1のペダルストロークSpとペダル踏力Fpとの関係特性を示す。 比較例の急踏み状態でのペダルストロークSpとペダル踏力Fpとの関係特性を示す。 ブレーキペダル2がゆっくり、ないし普通の速度で踏み込まれたときの実施例1による制御のタイムチャートである。 ブレーキペダル2が急速に踏み込まれたとき(ペダルストロークSpが所定値Spa未満)の実施例1による制御のタイムチャートである。 ブレーキペダル2が急速に踏み込まれたとき(ペダルストロークSpが所定値Spa以上)の実施例1による制御のタイムチャートである。 実施例2のゲートイン弁23の開弁圧と電流値との関係特性を示す。 実施例2の急踏み状態におけるペダルストロークSpとマスタシリンダ液圧Pmの目標値との関係特性を示す。 ブレーキペダル2が急速に踏み込まれたとき(ペダルストロークSpが所定値Spa未満)の実施例2による制御のタイムチャートである。 実施例3のブレーキ制御装置1の概略構成図であり、液圧ユニット6の油圧回路構成を併せて示す。
 以下、本発明のブレーキ制御装置を実現する形態を、図面に基づき説明する。
 [実施例1]
 図1は、実施例1のブレーキ制御装置1の概略構成図であり、液圧ユニット6の油圧回路構成を併せて示す。車両の制動系(ブレーキシステム)は、ブレーキペダル2とマスタシリンダ4とブレーキ制御装置1とホイルシリンダ5とを有している。車両はハイブリッド車両や電気自動車等の、電動機により回生制動力を発生可能な車両であるが、これに限らない。ブレーキペダル2は、ドライバによるブレーキ操作が入力されるブレーキ操作部材であり、ブレーキ操作力としてのブレーキペダル2の踏力(以下、ペダル踏力Fpという)をマスタシリンダ4に伝達する。ブレーキペダル2には、ブレーキ操作の状態としてブレーキペダル2の操作量(具体的にはペダルストロークSp)を検出するブレーキ操作量検出手段として、ペダルストロークセンサ8が設けられている。
 マスタシリンダ4は、ブレーキ操作状態に応じたブレーキ液圧を発生する液圧発生装置である。マスタシリンダ4には、作動液としてのブレーキ液を貯留する液源としてのリザーバタンク40が一体に設けられており、マスタシリンダ4は、リザーバタンク40からブレーキ液の供給を受ける。マスタシリンダ4は所謂タンデム型であって、独立した2系統(プライマリP系統,セカンダリS系統)のブレーキ配管系(ブレーキ回路)10P,10Sを介してブレーキ制御装置1(液圧ユニット6)に接続されている。以下、各系統にそれぞれ設けられているものについては、必要に応じてP,Sの記号を添えて区別するものとする。マスタシリンダ4(の各液圧室)からは、ブレーキペダル2による操作力(ペダル踏力Fp)相当のブレーキ液圧(マスタシリンダ液圧Pm)が創生され、この液圧が各系統で液圧ユニット6に供給される。
 ホイルシリンダ5は、車両の各車輪FL,FR,RL,RRに設けられると共にブレーキ制御装置1(液圧ユニット6)に接続され、ブレーキ制御装置1(液圧ユニット6)からブレーキ液を供給されて各車輪FL,FR,RL,RRのブレーキ液圧(ホイルシリンダ液圧Pw)を発生する。以下、4輪の各々に対応して複数設けられているものについては、必要に応じてa,b,c,dの記号を添えて区別し、aは前左輪FL、bは前右輪FR、cは後左輪RL、dは後右輪RRにそれぞれ対応するものとする。
 ブレーキ制御装置(以下、装置1という。)は、ドライバのブレーキ操作に応じてマスタシリンダ液圧Pmを加圧しホイルシリンダ液圧Pwを増圧する倍力制御を実行可能に設けられると共に、ブレーキ操作から独立して任意の車輪のホイルシリンダ液圧Pwを制御することにより、アンチロックブレーキ制御や、車両の運動制御(横滑り防止等の挙動制御)や、先行車追従制御等の自動ブレーキ制御や、回生協調ブレーキ制御等を実行可能に設けられたブレーキ液圧制御装置である。装置1は、ホイルシリンダ液圧Pwを制御可能に設けられた液圧ユニット6と、液圧ユニット6を制御する電子制御ユニットであるコントロールユニット7とを有しており、これらが一体化された所謂機電一体型のユニットである。なお、両ユニット6、7を別体としてもよい。
 ブレーキ回路10は所謂X配管であり、マスタシリンダ4から出たP系統のブレーキ回路10Pが前左輪FLと後右輪RRのホイルシリンダ5a,5dに、S系統のブレーキ回路10Sが前右輪FRと後左輪RLのホイルシリンダ5b,5cに夫々接続され、X字(ダイヤゴナル)型の配管構造となっている。なお、所謂前後配管、すなわち前輪FL,FRと後輪RL,RRの2系統に分けたH字型の配管構造としてもよい。
 液圧ユニット6は、マスタシリンダ4とホイルシリンダ5との間に配置されたアクチュエータであり、マスタシリンダ液圧Pm又は制御液圧を各ホイルシリンダ5に個別に供給可能に設けられている。液圧ユニット6は、各ホイルシリンダ5に供給する制御液圧を発生するための液圧機器(アクチュエータ)として、液圧発生源である(例えば回転式の)ポンプ30及び複数の制御弁20等を有すると共に、これら液圧機器を内蔵するハウジングを有する。ブレーキペダル2が踏み込まれると、マスタシリンダ4はブレーキ液をブレーキ配管系10P,10Sを介して液圧ユニット6に供給し、ホイルシリンダ5は液圧ユニット6から供給されるブレーキ液によりホイルシリンダ液圧Pwを発生する。液圧ユニット6は、ホイルシリンダ液圧Pwを、マスタシリンダ液圧Pm以下に制御することも、マスタシリンダ液圧Pm以上に制御することも、略一定に保持することも可能に設けられている。
 以下、P系統を例にとり、油圧回路であるブレーキ回路10について説明する。ブレーキ回路10は、液圧ユニット6内に、ブレーキ液が流通する複数の通路11等を有している。ブレーキ回路10は、マスタシリンダ4側からホイルシリンダ5側に向かう供給通路11を有している。供給通路11には、その連通・遮断を切り換える遮断弁としてのゲートアウト弁20が設けられている。また、ゲートアウト弁20と並列に、マスタシリンダ4側からホイルシリンダ5側(ポンプ30の吐出側)へのブレーキ液の流通のみを許容するチェック弁26が設けられている。ゲートアウト弁20よりもホイルシリンダ5側の供給通路11は、前輪FL側の増圧通路11aと後輪RR側の増圧通路11dに分岐している。増圧通路11aは前左輪FLのホイルシリンダ5aに接続し、増圧通路11dは後右輪RRのホイルシリンダ5dに接続している。増圧通路11a、11dには、その連通・遮断を切り換える増圧弁(イン弁)21a,21dが夫々設けられている。また、増圧弁21と並列に、ホイルシリンダ5側からマスタシリンダ4側(ポンプ30の吐出側)へのブレーキ液の流通のみを許容するチェック弁27が設けられている。このように、ホイルシリンダ5a、5dは、増圧通路11a、11d及び供給通路11を介してマスタシリンダ4と連通している。
 増圧弁21よりもホイルシリンダ5側の増圧通路11a、11dには、減圧通路14a、14dが夫々接続している。減圧通路14aは、ホイルシリンダ5aに接続する前輪FL側の減圧通路であり、減圧通路14dは、ホイルシリンダ5dに接続する後輪RR側の減圧通路である。減圧通路14a、14dには、その連通・遮断を切り換える減圧弁(アウト弁)22a,22dが夫々設けられている。減圧通路14a、14dは合流して減圧通路14となり、ポンプ30の吸入側とマスタシリンダ4との間に設けられた内部リザーバ25に接続している。
 一方、供給通路11は、ゲートアウト弁20よりもマスタシリンダ4側で分岐し、第1吸入通路15と第2吸入通路13を形成している。ポンプ30の吸入側は、第1吸入通路15及び供給通路11を介してマスタシリンダ4(リザーバタンク40)と連通している。すなわち、第1吸入通路15は、マスタシリンダ4とポンプ30の吸入側とを接続する通路であり、第1吸入通路15上には内部リザーバ25が設けられている。第1吸入通路15は、内部リザーバ25を経由してポンプ30の吸入側に接続している。第2吸入通路13は、第1吸入通路15と並列に設けられてマスタシリンダ4と内部リザーバ25とを接続する通路であり、その一端は第1吸入通路15に接続し、他端は減圧通路14dに接続している。第2吸入通路13には、その連通・遮断を切り換える遮断弁としてのゲートイン弁23が設けられている。なお、第2吸入通路13は、マスタシリンダ4と内部リザーバ25とを接続する通路であればよく、その一端が例えば供給通路11におけるマスタシリンダ4とゲートアウト弁20との間に接続し、他端が例えば第1吸入通路15におけるポンプ30の吸入側と内部リザーバ25との間や内部リザーバ25に直接接続することとしてもよく、特に限定しない。
 ポンプ30の吐出側は、吐出通路12を介して、ゲートアウト弁20よりもホイルシリンダ5側の供給通路11に接続している。ポンプ30の吐出側(吐出通路12)にはチェック弁28が設けられている。チェック弁28は、ゲートアウト弁20と増圧弁21との間の供給通路11からポンプ30の吐出側へのブレーキ液の逆流を抑制する。ポンプ30の吐出側は、吐出通路12及び供給通路11(ゲートアウト弁20)を介してマスタシリンダ4と連通すると共に、吐出通路12及び供給通路11(増圧通路11a、11d)を介してホイルシリンダ5a、5dと連通している。言い換えると、第1吸入通路15から供給通路11が分岐しており、この供給通路11(第1ブレーキ回路)がポンプ30の吐出側(吐出通路12)とマスタシリンダ4とホイルシリンダ5とを接続すると共に、この供給通路11にゲートアウト弁20が備えられている。ポンプ30の吐出側には、吐出通路12におけるチェック弁28の下流側に、内部圧センサとしての液圧センサ43が設けられている。液圧センサ43は、ポンプ30の吐出側の圧力(ポンプ30の吐出圧)を検出し、検出した値をコントロールユニット7に入力する。
 S系統のブレーキ回路10Sも、P系統のブレーキ回路10Pと同様に構成されている。なお、ブレーキ回路10Pには、供給通路11におけるゲートアウト弁20よりもマスタシリンダ4側に、液圧センサ42が設けられている。液圧センサ42は、マスタシリンダ液圧Pmを検出し、検出した値をコントロールユニット7に入力する。
 ポンプ30は、P,S系統ごとに設けられており、モータ3により回転駆動され、各配管系統でブレーキ液の吸入・吐出を行う。ポンプ30は静粛性に優れるギヤ式ポンプ、具体的には外接ギヤ式ポンプであるが、これに限らず、内接ギヤ式やプランジャ式等のポンプを採用可能である。モータ3は、直流ブラシモータであるが、これに限られない。モータ3は、コントロールユニット7からの指令電圧により回転数制御され、ポンプ30を駆動する。ポンプ30は、マスタシリンダ4以外のブレーキ液圧源として、マスタシリンダ4内のブレーキ液を内部リザーバ25を介して吸入し、ホイルシリンダ5側に吐出することで、ホイルシリンダ液圧Pwを増圧する。また、ポンプ30は、内部リザーバ25に貯留したブレーキ液を掻き出し、ゲートアウト弁20を介してマスタシリンダ4側に戻す機能を有する。
 内部リザーバ25は、液圧ユニット6に内蔵され、ブレーキ液を貯留可能に設けられたリザーバであり、減圧弁22又はゲートイン弁23を介して送られてくるブレーキ液を貯留する。内部リザーバ25は、ブレーキ液を調圧可能に設けられた調圧機能付きのリザーバであり、ブレーキ液の流れ込みによりストロークするピストン250と、ピストン250と連動し、第1吸入通路15から内部リザーバ25内へ流入するブレーキ液量を調整する調圧弁としてのチェック弁24とを備えている。チェック弁24は、第1吸入通路15上のマスタシリンダ4と内部リザーバ25との間に設けられている。ポンプ30が非作動であり、かつマスタシリンダ4からブレーキ液が供給されないとき、内部リザーバ25のピストン250は付勢手段としてのスプリング252により付勢され、ロッド251を介してチェック弁24の弁体(ボール)240を(例えば図外のチェック弁用リターンスプリングの力に抗して)押し上げる。よって、弁体240はシート部(弁座)から所定量だけ離間し、チェック弁24は開弁状態となる。このとき第1吸入通路15は内部リザーバ25を介してポンプ30の吸入側に連通する。内部リザーバ25内へ所定量のブレーキ液が流れ込む(貯留される)とチェック弁24が閉弁し、マスタシリンダ4側から第1吸入通路15を介したポンプ30の吸入側へのブレーキ液の流通を遮断する。
 第1吸入通路15からマスタシリンダ液圧Pmが供給されると、チェック弁24が開弁状態から閉弁状態となる。スプリング252の付勢力(上記チェック弁用リターンスプリングの付勢力を割り引いたもの)をF、ピストン250の受圧面積をS1とする。チェック弁24が開弁した状態でマスタシリンダ液圧Pmがピストン250に加わり、Pm×S1>Fとなると、ピストン250はスプリング252を圧縮する方向に移動(ストローク)するため、弁体240もシート部へ向かって移動(ストローク)する。弁体240が上記所定量だけストロークしてシート部に着座すると、第1吸入通路15から内部リザーバ25内へのブレーキ液の流れが阻止される。ホイルシリンダ5a,5d内のブレーキ液が減圧通路14を介して内部リザーバ25に流入し、又はマスタシリンダ4内のブレーキ液が第2吸入通路13を介して内部リザーバ25に流入すると、ピストン250がスプリング252を圧縮する方向に移動して内部リザーバ25の容積が増大し、ブレーキ液が貯留される。なお、ピストン250と弁体240は別体であり、ピストン250のストローク量(の上限)は弁体240のストローク量(の上限)より大きく設けられている。このため、弁体240が上記所定量だけストロークしてシート部に着座した後も、ピストン250がストロークして内部リザーバ25内へのブレーキ液の貯留量を増大することが可能となっている。
 ポンプ30が作動すると、内部リザーバ25に貯留したブレーキ液が汲み上げられ、供給通路11側に還流される。このとき、チェック弁24が閉じていたとしても、ポンプ30による汲み上げによって内部リザーバ25内が減圧され、チェック弁24を押し開く。すなわち、チェック弁24の閉弁状態で、弁体240のマスタシリンダ4側の圧力はマスタシリンダ液圧Pmである。一方、弁体240の内部リザーバ25側の圧力Ps=F/S1であるため、ポンプ30の吸入側に加わる圧力PsはF/S1以上にはならず、所定圧以下に保たれる。この状態でポンプ30が内部リザーバ25のブレーキ液を吸入すると、圧力Psが低下するため、ピストン250はスプリング252の付勢力Fにより弁体240の側に押される。このとき、チェック弁24の油路径(バルブシート径)、すなわちチェック弁24においてブレーキ液が流通する際の通路断面積をS2とすると、Pm×S2<Fであれば、弁体240はシート部から離れ、チェック弁24が開弁状態となる。開弁圧F/S2は所定圧に設定されている。この開弁状態で、ポンプ30は、内部リザーバ25からブレーキ液を吸入すると共に、マスタシリンダ4(第1吸入通路15)からブレーキ液を吸入可能な状態になる。そして、マスタシリンダ液圧Pmが内部リザーバ25のピストン250に加わり、ピストン250がスプリング252を圧縮する方向に移動すると、上記説明したように、閉弁動作を行う。以上のように、チェック弁24は、ポンプ30の作動時に、開閉を自動的に繰り返すことで、ポンプ30がマスタシリンダ4(第1吸入通路15)からブレーキ液を吸入してホイルシリンダ液圧Pwを増圧することを可能にするとともに、ポンプ30の吸入側に加わる圧力を所定値以下に調圧する。
 各弁20~23は、電磁弁(ソレノイドバルブ)であり、ソレノイド(コイル)へ駆動電流が通電されることにより電磁力を発生し、プランジャ等を往復移動させることで弁を開閉作動する周知のものである。
 ゲートアウト弁20は、電流値により弁の開度が比例的に変化する比例制御弁であり、非通電時に開弁する常開弁(ノーマルオープン型)である。ゲートアウト弁20は、コントロールユニット7からの指令電流により全開状態と全閉状態との間を比例的に動作し、マスタシリンダ4とポンプ30の吐出側及び増圧弁21との間を断続(連通・遮断)することで、流量ないし液圧を比例制御する。なお、チェック弁26は、マスタシリンダ液圧Pm>(ポンプ30の吐出側の圧)となったときに、マスタシリンダ液圧Pmをポンプ30の吐出側及び増圧弁21の側へ伝えるように開動作する。ゲートアウト弁20の弁体には、ゲートアウト弁20の上流側の圧力(マスタシリンダ液圧Pmに相当)と下流側の圧力(ポンプ30の吐出側の圧力であり、ホイルシリンダ液圧Pwに相当)との差圧(開弁圧)による力が作用する。ゲートアウト弁20のソレノイドに通電する電流を制御することで、上記差圧を所望の値に制御することができる。すなわち、ゲートアウト弁20の弁体を付勢するスプリングの付勢力は、当該弁体の位置に応じて一意に決まる。このため、電流値を所定値に制御すれば、この電流値に応じた電磁力とスプリングの付勢力とが最終的に釣り合うような上記差圧による力が弁体に作用するようになるまで、弁体がストロークして開度すなわちゲートアウト弁20を流れる流量を調節する。これにより、目標とする差圧が実現される。以下、これをゲートアウト弁20の釣り合い制御といい、上記差圧を所定値に制御するためにソレノイドに通電する電流値を釣り合い電流値という。例えば、増圧弁21が開で減圧弁22が閉のときは、ポンプ30によるホイルシリンダ5の増圧量は、ポンプ30の吐出液量とゲートアウト弁20からマスタシリンダ4側へのリーク液量との差に応じて決定される。このため、モータ3の回転数(ポンプ吐出液量)を制御すると共に、上記差圧が所望の値となるようにゲートアウト弁20のソレノイドに通電してその電磁力(釣り合い電流値)を制御すれば、ゲートアウト弁20の開度(上記リーク液量)が自動的に調整され、ホイルシリンダ液圧Pwを任意に調圧することができる。
 ゲートイン弁23は、比例制御弁であり、非通電時に閉弁する常閉弁(ノーマルクローズ型)である。ゲートイン弁23は、コントロールユニット7からの指令電流により全閉状態と全開状態との間を比例的に動作し、マスタシリンダ4と内部リザーバ25との間を断続(連通・遮断)することで、流量ないし液圧を比例制御することが可能に設けられている。
 増圧弁21は、弁の開度が全開状態と全閉状態の2位置をとるオン・オフ弁であり、非通電時に開弁する常開弁である。増圧弁21は、コントロールユニット7からの指令電流により開閉動作を行い、増圧弁21に供給されるマスタシリンダ液圧Pm又はポンプ吐出圧を開弁によりホイルシリンダ5に供給し、又は閉弁によりこの供給を遮断することで、ホイルシリンダ液圧Pwを任意に増圧ないし保持可能に設けられている。また、チェック弁27は、ホイルシリンダ液圧Pw>(ポンプ30の吐出側の圧)となったときに、ホイルシリンダ液圧Pwをマスタシリンダ4に抜くように開動作する。減圧弁22は、前輪FL,FR側が比例制御弁であり、後輪RL,RR側がオン・オフ弁であって、ともに非通電時に閉弁する常閉弁である。減圧弁22は、コントロールユニット7からの指令電流により開閉動作を行い、開弁によりホイルシリンダ5内のブレーキ液を一時的に内部リザーバ25に供給し(すなわちホイルシリンダ5からブレーキ液を排出し)、閉弁によりこの供給(排出)を遮断することで、ホイルシリンダ液圧Pwを任意に減圧可能に設けられている。なお、増圧弁21や後輪RL,RR側の減圧弁22を比例制御弁としてもよい。
 コントロールユニット7は、液圧ユニット6に制御指令を出力することで、各車輪FL,FR,RL,RRのブレーキ液圧を制御する電子制御ユニットである。ペダルストロークセンサ8や液圧センサ42,43から送られる検出値、及び車両から送られる走行状態に関する情報が入力され、内蔵されるプログラムに基づき、各電磁弁20等の開閉及びモータ3の回転数(ポンプ30の吐出量)を制御する。これにより、倍力制御やアンチロックブレーキ制御や自動ブレーキ制御や回生協調ブレーキ制御等を実現する。
 アンチロックブレーキ制御では、ロック傾向にある車輪のホイルシリンダ液圧Pwを制御(減圧等)することでロック傾向を緩和する。コントロールユニット7に備えられたアンチロックブレーキ制御部72は、例えばホイルシリンダ液圧Pwの検出値に基づき路面μを推定し、所定のタイヤモデルに基づき、ロック傾向にある車輪のスリップ率が、ロック傾向を抑制しつつ最大の制動力を得ることができる所定範囲内となるよう、ホイルシリンダ液圧Pwを制御(減圧等)する。例えば減圧制御では、減圧弁22を開弁方向に制御することで、ホイルシリンダ液圧Pwを減圧する。減圧弁22の開弁量等を制御することで、ホイルシリンダ液圧Pwが目標液圧となるように制御する。ホイルシリンダ5から流出したブレーキ液は、減圧通路14を介して内部リザーバ25へ流れ込む。内部リザーバ25に貯留したブレーキ液はポンプ30により掻き出し、ゲートアウト弁20(供給通路11)を介してマスタシリンダ4側に戻す。なお、本実施例では、各系統の減圧弁22のうち少なくとも1つ(前輪FL,FRの減圧弁22a、22b)を比例制御弁としているため、より細かい制御が可能となり、滑らかな減圧制御が実現可能となっている。
 また、回生協調ブレーキ制御では、ブレーキ踏み込み制動時、ドライバ要求制動力に対し回生制動力(及びマスタシリンダ液圧Pmによる制動力)だけでは不足する場合、その不足分を液圧ユニット6による液圧制動力で補う。例えば、必要な液圧制動力が増大するときは、ゲートアウト弁20を釣り合い制御により中間開度に制御し、増圧弁21を開弁方向に制御し、減圧弁22を閉弁方向に制御する。そして、ポンプ30を駆動してマスタシリンダ4からブレーキ液を吸入し、吐出することにより、上記不足分だけ、ポンプ圧をホイルシリンダ5に供給する。また、必要な液圧制動力が減少するときは、ゲートアウト弁20を釣り合い制御、増圧弁21を開、減圧弁22を閉、ポンプ30を停止することにより、上記不足分だけホイルシリンダ液圧Pwを残しつつ、ホイルシリンダ液圧Pwをゲートアウト弁20(供給通路11)を介してマスタシリンダ4に排出する。
 以下、倍力制御の詳細について説明する。倍力制御では、ブレーキ操作に応じてマスタシリンダ4が発生するマスタシリンダ液圧Pmに対し、液圧ユニット6を駆動して(ポンプ30の吐出液圧を用いて)形成するアシスト液圧を加圧することで、マスタシリンダ液圧Pmよりも高いホイルシリンダ液圧Pwを創生する。
 コントロールユニット7は、ブレーキ操作量検出部70とブレーキ液圧制御部71を有する。ブレーキ操作量検出部70は、ブレーキ操作量として、ペダルストロークセンサ8からの入力信号に基づきペダルストロークSpを検出する。なお、ブレーキ操作量として、液圧センサ42からの入力信号に基づきマスタシリンダ液圧Pmを検出することとしてもよい。
 ブレーキ液圧制御部71は、ドライバ要求制動力を示すパラメータ(例えばマスタシリンダ液圧Pm)に対するホイルシリンダ液圧Pwの特性をマップとして予め設定し、検出された上記パラメータ(マスタシリンダ液圧Pm)に基づき、上記特性(マップ)に従う目標ホイルシリンダ液圧Pw0を算出する。そして、検出されるホイルシリンダ液圧Pwが目標ホイルシリンダ液圧Pw0と一致するように、液圧ユニット6の各アクチュエータを制御する。図2は、上記パラメータとしてマスタシリンダ液圧Pmを用いた場合における、目標ホイルシリンダ液圧Pw0の上記特性(マップ)を示す。マスタシリンダ液圧Pmが微小な所定値Pm0以下の範囲では目標ホイルシリンダ液圧Pw0がゼロであり、マスタシリンダ液圧PmがPm0より大きく所定値Pm1以下の範囲ではマスタシリンダ液圧Pmの増加に応じて目標ホイルシリンダ液圧Pw0が比例的に(1より大きい増大勾配で)増大し、マスタシリンダ液圧Pmが所定値Pm1より大きくなるとマスタシリンダ液圧Pmの大きさに関わらず目標ホイルシリンダ液圧Pw0が略一定になるような特性に設けられている。なお、上記パラメータとしてペダルストロークSpを用いてもよい。この場合、目標ホイルシリンダ液圧Pw0の上記特性(マップ)は、例えば図3のように、ペダルストロークSpが微小な所定値Sp0以下の範囲では目標ホイルシリンダ液圧Pw0がゼロであり、ペダルストロークSpがSp0より大きく所定値Sp1以下の範囲ではペダルストロークSpの増加に応じて目標ホイルシリンダ液圧Pw0が増大すると共にその増大勾配が徐々に増加し、ペダルストロークSpが所定値Sp1より大きくなるとペダルストロークSpの大きさに関わらず目標ホイルシリンダ液圧Pw0が略一定になるような特性に設ける。
 ブレーキ液圧制御部71は、吸入通路選択部710を有する。吸入通路選択部710は、ブレーキ操作量検出部70により検出されたペダルストロークSpに基づき、所定の急制動状態であるか否かを検出する。具体的には、ブレーキペダル2が急速に踏み込まれた急踏み状態であるか否かを検出する。検出されたペダルストロークSpの時間に対する変化率が、所定の急操作を示すスパイクストップ相当値であり、かつ、ブレーキペダル2の操作方向が踏込み方向(検出されたペダルストロークSpが増加)である場合に、(広義の)急踏み状態であると判定する。なお、検出されたマスタシリンダ液圧Pm(の時間変化率や増減方向)を用いて急踏み状態を検出することとしてもよい。また、吸入通路選択部710は、ブレーキ操作量検出部70により検出されたペダルストロークSpに基づき、ブレーキ操作量が所定量以上であるか否かを検出する。検出されたペダルストロークSpが所定値Spa以上の場合に、ブレーキ操作量が所定量以上であると判定する。所定値Spaは、ホイルシリンダ5の液圧-消費液量特性が略線形になり始める点に相当するペダルストロークSpに設定する。なお、ブレーキ操作量が所定量以上であるか否かを、マスタシリンダ液圧Pmを用いて検出することとしてもよい。
 吸入通路選択部710は、ブレーキ操作状態(急制動状態であるか否か、さらには、ブレーキ操作量が所定量以上であるか否か)に応じて、マスタシリンダ4のブレーキ液を内部リザーバ25へ流し込むための吸入通路を、第1吸入通路15と第2吸入通路13から選択する選択手段である。所定の急制動状態が検出されない場合、ゲートイン弁23を閉弁する。これにより、第2吸入通路13ではなく第1吸入通路15を介して、内部リザーバ25へブレーキ液を流入させる。所定の急制動状態が検出された場合、基本的に、ゲートイン弁23を開弁することで、第2吸入通路13を連通させる。この場合、後述するように、ポンプ30(モータ3)の応答遅れによりチェック弁24は閉弁するため、第1吸入通路15は遮断される。これにより、マスタシリンダ4から、第1吸入通路15ではなく第2吸入通路13を介して、内部リザーバ25へブレーキ液を流入させる。所定の急制動状態が検出された場合であっても、所定量以上のブレーキ操作量(所定値Spa以上のペダルストロークSp)が検出されたとき、又は、所定値Pma以上のマスタシリンダ液圧Pmが検出されたときは、ゲートイン弁23を閉弁する。これにより、第2吸入通路13ではなく第1吸入通路15を介して、内部リザーバ25へブレーキ液を流入させる。上記所定値Pmaは、ポンプ吸入側の所定の耐圧値以下に設定する。
 図4及び図5は、本実施例のブレーキ液圧制御部71による制御処理を表すフローチャートである。この制御フローは、所定周期毎に繰り返し実行する。
 ステップS1では、液圧ユニット6の各アクチュエータを非作動状態とする。すなわち、ゲートイン弁23を非作動とする(閉弁する)と共に、ゲートアウト弁20を非作動とし(開弁し)、増圧弁21を非作動とし(開弁し)、減圧弁22を非作動とし(閉弁し)、モータ3(ポンプ30)を非作動とする。その後、ステップS2に進む。
 ステップS2では、各種センサの検出値を読み込む。その後、ステップS3に進む。
 ステップS3では、ブレーキ液圧制御(倍力制御)を行うか否かを判定する。制御を行うと判定した場合はステップS4に進む。制御を行わないと判定した場合は今回の制御周期を終了する。
 ステップS4~S8では、吸入通路選択部710が吸入通路を選択する。
 ステップS4では、所定の急制動状態であるか否か、具体的には急踏み状態であるか否かを判定する。急踏み状態であると判定した場合はステップS5に進む。急踏み状態であると判定しない場合はステップS8に進む。
 ステップS5では、ブレーキ操作量が所定量以上であるか否か、具体的には、検出されたペダルストロークSpが所定値Spa以上であるか否かを判定する。所定値Spa未満と判定した場合はステップS6に進む。所定値Spa以上と判定した場合はステップS8に進む。
 ステップS6では、検出されたマスタシリンダ液圧Pmが所定値Pma以上であるか否かを判定する。所定値Pma未満であると判定した場合はステップS7に進む。所定値Pma以上であると判定した場合はステップS8に進む。
 ステップS7では、ゲートイン弁23を作動させる(開弁する)。その後、ステップS9に進む。
 ステップS8では、ゲートイン弁23を非作動とする(閉弁する)。その後、ステップS9に進む。
 ステップS6で、マスタシリンダ液圧Pmが所定値Pma以上の場合にステップS8に進んでゲートイン弁23を閉じ、所定値Pma未満の場合にステップS7に進んでゲートイン弁23を開く。これにより、高圧(所定値Pma以上)のマスタシリンダ液圧Pmが第2吸入通路13を介してポンプ30の吸入側の通路に作用することを回避し、この通路を保護する。
 ステップS9では、検出されるマスタシリンダ液圧Pm又はペダルストロークSp(に示されるドライバ要求制動力)に基づき目標ホイルシリンダ液圧Pw0を算出する。具体的には、図2又は図3に示す特性を満足するホイルシリンダ液圧の目標値Pw0を算出する。その後、ステップS10に進む。
 ステップS10では、ホイルシリンダ液圧Pwの増圧制御を行うか否かを判定する。例えば、検出されたホイルシリンダ液圧Pwが目標ホイルシリンダ液圧Pw0よりも低ければ、増圧制御を行うと判定する。増圧制御を行うと判定した場合はステップS12に進む。増圧制御を行わないと判定した場合はステップS11に進む。
 ステップS11では、ホイルシリンダ液圧Pwの保持制御を行うか否かを判定する。例えば、検出されたホイルシリンダ液圧Pwが目標ホイルシリンダ液圧Pw0よりも高ければ、保持制御を行わず、減圧制御を行うと判定する。保持制御を行うと判定した場合はステップS13に進む。保持制御を行わない(減圧制御を行う)と判定した場合はステップS14に進む。
 ステップS12では、ブレーキ操作が行われた状態で、ポンプ30(モータ3)を作動させると共に、ゲートアウト弁20を作動させて閉弁方向に制御し(釣り合い制御により中間開度とし)、増圧弁21を非作動とし(又は開弁方向に制御し)、減圧弁22を非作動とする(又は閉弁方向に制御する)。ゲートアウト弁20を閉弁方向に制御することで、供給通路11におけるゲートアウト弁20を介したブレーキ液の流通が制限される。ポンプ30は、ステップS4~S8で選択された吸入通路(第1吸入通路15又は第2吸入通路13)を介してマスタシリンダ4内のブレーキ液を吸入し、マスタシリンダ4で創生されたブレーキ液圧(マスタシリンダ液圧Pm)を加圧して、ホイルシリンダ液圧Pwを増圧する。言い換えると、ホイルシリンダ液圧Pwをマスタシリンダ液圧Pmよりも高い圧に増圧する。その後、ステップS15に進む。
 ステップS13では、ブレーキ操作が行われた状態で、ポンプ30(モータ3)を非作動とすると共に、ゲートアウト弁20を作動させ(閉弁し)、増圧弁21を非作動とし(開弁し)、減圧弁22を非作動とする(閉弁する)。ホイルシリンダ5内のブレーキ液を、減圧弁22とチェック弁28とゲートアウト弁20とチェック弁26との間の通路内に封じ込めることで、ホイルシリンダ液圧Pwを保持する。その後、ステップS15に進む。
 ステップS14では、ブレーキ操作が行われた状態で、ポンプ30(モータ3)を非作動とすると共に、ゲートアウト弁20を作動させて閉弁方向に制御し(釣り合い制御により中間開度とし)、増圧弁21を非作動とし(又は開弁方向に制御し)、減圧弁22を非作動とする(又は閉弁方向に制御する)。ホイルシリンダ5が増圧通路11a等(増圧弁21)及び供給通路11(ゲートアウト弁20)を介してマスタシリンダ4と連通し、ホイルシリンダ5内のブレーキ液をマスタシリンダ4に戻すことで、ホイルシリンダ液圧Pwを減圧する。その後、ステップS15に進む。
 ステップS15では、検出されたホイルシリンダ液圧Pwが目標ホイルシリンダ液圧Pw0と略一致したか否かを判定する。略一致したと判定した場合はステップS16に進む。略一致していないと判定した場合はステップS10に戻る。
 ステップS16では、ブレーキ液圧制御(倍力制御)を終了するか否かを判定する。制御を終了すると判定した場合はステップS17に進む。制御を終了すると判定しない場合はステップS9に戻る。
 ステップS17では、ステップS1と同様、液圧ユニット6の各アクチュエータを非作動状態とする。その後、今回の制御周期を終了する。
 [実施例1の作用]
 次に、装置1の作用を説明する。
 図6は、図1と同様、本実施例の装置1のブレーキ回路を示す。ブレーキペダル2の踏み込み操作が行われた状態で、ブレーキ液圧制御(例えば倍力制御)を行い、ホイルシリンダ液圧Pwを増圧制御する際のブレーキ液の流れを矢印で示す。なお、説明を簡略化するため、P系統のみのブレーキ液の流れを示すが、S系統も同様である。図7は、ブレーキペダル2の踏み込み操作が行われた状態でのホイルシリンダ増圧制御時の、ペダルストロークSpとペダル踏力Fpとの関係特性を示す。ブレーキペダル2が踏み込まれた状態で、ホイルシリンダ液圧Pwを増圧制御する際には、ステップS12で、ポンプ30を駆動すると共に、ゲートアウト弁20を釣り合い制御により中間開度に制御し、増圧弁21を非作動とし(又は開弁方向に制御し)、減圧弁22を非作動とする(又は閉弁方向に制御する)。ポンプ30は、検出されたペダルストロークSpの増加に基づいてマスタシリンダ4内のブレーキ液を吸入しホイルシリンダ液圧Pwを増圧する。
 ブレーキペダル2がゆっくり、ないし普通の速度で踏み込まれたときは、吸入通路選択部710が、ブレーキ液を内部リザーバ25へ流し込むための吸入通路として第1吸入通路15を選択する。具体的には、ゲートイン弁23を閉弁する。よって、図6の点線の矢印αで示すように、ポンプ30は、マスタシリンダ4内のブレーキ液を第1吸入通路15を介して吸入する。具体的には、ポンプ30の作動によって内部リザーバ25内が減圧されチェック弁24が開弁することにより、第1吸入通路15が連通状態となる。よって、第1吸入通路15を介して内部リザーバ25へ流入するブレーキ液がポンプ30によって吸入される。一方、ゲートイン弁23の閉弁によって第2吸入通路13が非連通状態となり、ブレーキ液が第2吸入通路13を介して内部リザーバ25へ流入しない。ポンプ30は、図6の実線の矢印γで示すように、吸入したブレーキ液をゲートアウト弁20よりもホイルシリンダ5側の供給通路11へ吐出し、ゲートアウト弁20で調圧して、ホイルシリンダ5に向けて供給する。これにより、ホイルシリンダ液圧Pwを増圧する。第1吸入通路15を介して内部リザーバ25に流入するブレーキ液の大部分は、内部リザーバ25内に貯留されることなくポンプ30に吸入される。よって、マスタシリンダ4から送出されるブレーキ液量(すなわちペダルストロークSp)は、ポンプ30の吸入液量に相当する(略比例関係にある)。ペダルストロークSpは専らポンプ30の吸入液量に相関し、これに拘束される。言い換えると、ポンプ30で吸入しホイルシリンダ5へ送った液量は、マスタシリンダから送った液量に等しいとみなすことができ、この液量分だけブレーキペダル2がストロークできる。また、ブレーキペダル2がゆっくり、ないし普通の速度で踏み込まれたとき、ポンプ30(モータ3)の応答遅れ、すなわちポンプ30の吸入液量(ペダルストロークSp)の増加の遅れは比較的少ない。よって、このときの上記関係特性は、図7の実線で示すようになる。すなわち、ペダルストロークSpの増加に応じてペダル踏力Fpが増大し、その増大率がペダルストロークSpの増加に応じ徐々に上昇する(いわば指数関数的な)特性となる。ペダルストロークSpが所定値Spaより小さい範囲Aでは、ペダル踏力Fpに対するペダルストロークSpの増加分が比較的大きいため、ブレーキペダル2がいわば柔らかい(軽い)ペダル操作フィーリングとなる。ペダルストロークSpが所定値Spa以上となる範囲Bでは、ペダル踏力Fpに対するペダルストロークSpの増加分が比較的小さくなるため、ブレーキペダル2がストロークと共に硬く(重く)なるペダル操作フィーリングとなる。
 ブレーキペダル2が急速に踏み込まれた急踏み状態では、吸入通路選択部710が、基本的に、ブレーキ液を内部リザーバ25へ流し込むための吸入通路として、第2吸入通路13を選択する。具体的には、ゲートイン弁23を開弁する。よって、図6の一点鎖線の矢印βで示すように、ポンプ30は、マスタシリンダ4内のブレーキ液を第2吸入通路13を介して吸入する。具体的には、急踏み状態では、ポンプ30(モータ3)の応答遅れにより、ポンプ30の作動による内部リザーバ25内の減圧、及びこれに伴うチェック弁24の開弁が遅れ、チェック弁24はマスタシリンダ液圧Pmが作用することにより閉弁状態となる。これにより、第1吸入通路15が非連通状態となり、ブレーキ液が第1吸入通路15を介して内部リザーバ25へ流入しない。一方、ゲートイン弁23の開弁によって第2吸入通路13が連通状態となり、マスタシリンダ4からのブレーキ液は第2吸入通路13を介して内部リザーバ25へ流入する。ここで、内部リザーバ25のピストン250のストローク量(の上限)はチェック弁24のストローク量(の上限)より大きく設けられている。このため、チェック弁24が閉弁してチェック弁24(弁体240)のストロークが制限されるようになった後も、内部リザーバ25のピストン250はストローク可能である。よって、ゲートイン弁23(第2吸入通路13)を介して内部リザーバ25内へより確実にブレーキ液を流し込むことができる。また、急踏み状態でゲートアウト弁20を閉弁方向に制御するようにしたことで、ゲートイン弁23(第2吸入通路13)を介して内部リザーバ25内へより確実にブレーキ液を流し込むことができる。ポンプ30は、図6の実線の矢印γで示すように、(第2吸入通路13を介して)内部リザーバ25へ流入したブレーキ液を吸入する。吸入したブレーキ液をゲートアウト弁20よりもホイルシリンダ5側の供給通路11へ吐出し、ホイルシリンダ5に向けて供給する。これにより、ホイルシリンダ液圧Pwを増圧する。
 よって、急踏み状態での上記関係特性は、図7の一点鎖線で示すようになる。すなわち、ブレーキペダル2がゆっくり、ないし普通の速度で踏み込まれたときの関係特性(図7の実線)と同様の関係特性となって、ペダル操作フィーリングも同様となる。以下、比較例を用いて、急踏み状態での上記関係特性を説明する。この比較例は、第2吸入通路13(ゲートイン弁23)を備えない点のみ本実施例と相違し、急踏み状態であってもポンプ30が第1吸入通路15を介してブレーキ液を吸入する構成である。図8は、比較例の上記関係特性を示す。ブレーキペダル2がゆっくり、ないし普通の速度で踏み込まれたときの比較例の関係特性は、図8の実線で示すように本実施例と同様である一方、急踏み状態での比較例の関係特性は、本実施例と異なり図8の一点鎖線で示すようになる。すなわち、比較例では、ブレーキ操作状態に関わらず、ポンプ30がマスタシリンダ4内のブレーキ液を第1吸入通路15を介して吸入するため、ペダルストロークSpはポンプ30の吸入液量に相当し(略比例関係にあり)、ペダルストロークSpはポンプ30の吸入液量により拘束される。よって、急踏み状態で、ポンプ30(モータ3)の応答遅れが生じ、相対的にポンプ30の吸入速度が遅くなると、ポンプ30の吸入液量がなかなか増大しないため、ドライバがブレーキペダル2を踏んでペダル踏力Fpが増大しても、ブレーキペダル2が直ぐにはストロークしない。一方、ポンプ30(モータ3)の応答が追いつくと漸くポンプ吸入液量が増大し、ブレーキペダル2がストロークする。よって、図8の一点鎖線で示すような特性となり、ペダルストロークSpが所定値Spbより小さい範囲では、すなわちブレーキ操作初期には、ペダル踏力Fpに対するペダルストロークSpの増加分が比較的小さく、ブレーキペダル2がいわば硬い(重い)ペダル操作フィーリングとなる。すなわち、急踏みの際、ドライバがブレーキペダル2を踏んでもストロークしにくい特性となり、ペダルが入り込まない感覚が発生するため、ペダル操作フィーリングが悪化するおそれがある。
 これに対し、本実施例の装置1では、上記のように、急踏み状態で、ポンプ30(モータ3)の応答遅れが生じても、マスタシリンダ4内のブレーキ液を、第2吸入通路13を介して内部リザーバ25内へ流し込む。第2吸入通路13を介して内部リザーバ25に流入するブレーキ液は、内部リザーバ25内に貯留可能である。よって、マスタシリンダ4から送出されるブレーキ液量(すなわちペダルストロークSp)は、ポンプ30の吸入液量の多寡とは独立して増大しうる。言い換えると、ペダルストロークSpは、ポンプ30の吸入液量に直接相関せず(略比例関係になく)、ポンプ30(モータ3)の応答遅れに関わらず増大可能である。これにより、急踏み状態であっても、ペダルストロークSpの確保が可能となり、図7の一点鎖線で示すように、ブレーキペダル2がゆっくり、ないし普通の速度で踏み込まれたときと同様の関係特性を実現することができる。したがって、ペダル操作フィーリングの悪化を抑制することができる。
 具体的には、ブレーキペダル2の急踏みを検知すると、ペダルストロークSpが所定値Spaより小さい範囲A内でありブレーキ操作量が所定量未満であるとき(狭義の急踏み時)に、ゲートイン弁23を作動させ(開弁し)てペダルストロークSpを確保する。よって、(狭義の)急踏み時において、ペダル踏力Fpに対するペダルストロークSpの増加分が比較的大きい特性とし、ブレーキペダル2がゆっくりないし普通の速度で踏み込まれたときと同様の関係特性を実現することで、上記ペダル操作フィーリングの悪化を抑制することができる。一方、(広義の)急踏み状態であっても、ペダルストロークSpが所定値Spa以上となってブレーキ操作量が所定量以上になったとき(狭義の急踏み以後)は、ペダル踏力Fpに対するペダルストロークSpの増加分は小さくてよい。むしろ、ブレーキペダル2がストロークと共に硬くなるフィーリングが好ましい。よって、このストローク範囲Bではゲートイン弁23を非作動とする(閉弁する)ことで、ペダル踏力Fpに対するペダルストロークSpが過大になることを抑制する。すなわち、第1吸入通路15を選択し、マスタシリンダ4から送られるブレーキ液をポンプ30がチェック弁24を経由して吸入するようにする。これにより、(狭義の)急踏み後には、ブレーキペダル2がゆっくりないし普通の速度で踏み込まれたときと同様の関係特性を実現することができる。したがって、より適切なペダル操作フィーリングを得ることができる。
 図9~図11は、ブレーキペダル2が踏まれて装置1がブレーキ液圧制御(例えば倍力制御)を行う際の各変数の時間変化の一例を示すタイムチャートである。
 図9は、ブレーキペダル2がゆっくり、ないし普通の速度で踏み込まれたときのタイムチャートである。 
 時刻t0でブレーキペダル2が踏まれる。図4,5のフローチャートでステップS1~S4→S8~S10→S12→S15と進む流れとなり、ゲートイン弁23を非作動とし(閉弁し)、ゲートアウト弁20を作動させ(中間開度とし)、モータ3を作動させる指令(電流)を出力する。ペダル踏力Fpが増大すると共に、これに応じてマスタシリンダ液圧Pmが増加する。時刻t0からモータ3が作動し、所定の吸入速度でポンプ30が内部リザーバ25からブレーキ液を吸入する。ブレーキ操作速度がゆっくりないし普通であるため、マスタシリンダ液圧Pmの増大に対し、ポンプ30の吸入(内部リザーバ25内の減圧)が遅れない。よって、チェック弁24が開弁し、マスタシリンダ4からブレーキ液が第1吸入通路15を介して内部リザーバ25へ流入すると共に、ポンプ30がこのブレーキ液を吸入してホイルシリンダ5側へ吐出する。よって、図7の関係特性(実線)に従い、ペダル踏力Fpの増大に応じてペダルストロークSpが増加を開始すると共に、ホイルシリンダ液圧Pwが増加し始める。ゲートアウト弁20の釣り合い制御により、ホイルシリンダ液圧Pwがマスタシリンダ液圧Pmよりも高い目標値に制御される。
 時刻t1でブレーキペダル2の踏み込み(ペダル踏力Fpすなわちマスタシリンダ液圧Pm)が保持される。図4,5のフローチャートでステップS1~S4→S8~S10→S11→S13→S15と進む流れとなり、ゲートイン弁23を非作動とし、ゲートアウト弁20を作動させ(閉弁し)、モータ3を非作動とする指令を出力する。ゲートイン弁23とゲートアウト弁20が閉弁し、ポンプ30の非作動によりチェック弁24も閉弁するため、ペダルストロークSpが保持される。また、ポンプ30が非作動となり、ゲートアウト弁20が閉弁するため、ホイルシリンダ液圧Pwも一定に保持される。
 時刻t2でブレーキペダル2の踏み込みが戻され、ペダル踏力Fpすなわちマスタシリンダ液圧Pmが減少し始める。図4,5のフローチャートでステップS1~S4→S8~S10→S11→S14→S15と進む流れとなり、ゲートイン弁23を非作動とし、ゲートアウト弁20を作動させ(中間開度とし)、モータ3を非作動とする指令を出力する。ホイルシリンダ5のブレーキ液は供給通路(ゲートアウト弁20)を介してマスタシリンダ4(リザーバタンク40)へ戻されるため、ペダル踏力Fpの減少に応じてペダルストロークSpが小さくなると共に、ホイルシリンダ液圧Pwが低下する。
 図10はブレーキペダル2が急速に踏み込まれたときのタイムチャートである。ペダルストロークSpが所定値Spa未満であり、マスタシリンダ液圧Pmが所定値Pma未満であるものとする。
 時刻t0でブレーキペダル2が踏まれ、時刻t1まで急踏み状態と判断されるものとする。
図4,5のフローチャートでステップS1~S7→S9→S10→S12→S15と進む流れとなり、ゲートイン弁23を作動させ(開弁し)、ゲートアウト弁20を作動させ(中間開度とし)、モータ3を作動させる指令を出力する。ペダル踏力Fpが増大すると共に、これに応じてマスタシリンダ液圧Pmが増大する。時刻t0からモータ3が作動し、所定の吸入速度でポンプ30が内部リザーバ25からブレーキ液を吸入する。ブレーキ操作速度が急速であるため、マスタシリンダ液圧Pmの増大に対し、ポンプ30の吸入(内部リザーバ25内の減圧)が遅れる。よって、チェック弁24が閉弁し、マスタシリンダ4からブレーキ液が第1吸入通路15ではなく第2吸入通路13を介して内部リザーバ25へ流入すると共に、ポンプ30がこのブレーキ液を吸入してホイルシリンダ5側へ吐出する。よって、図7の関係特性(一点鎖線)に従い、ペダル踏力Fpの増大に応じてペダルストロークSpが増加を開始すると共に、ホイルシリンダ液圧Pwが増加し始める。ゲートアウト弁20の釣り合い制御により、ホイルシリンダ液圧Pwがマスタシリンダ液圧Pmよりも高い目標値に制御される。このように、時刻t0~t1間で急踏み時のペダル踏力Fpに応じたペダルストロークSpを確保することで、ペダル操作フィーリングの悪化を抑制することができる。
 時刻t1でブレーキペダル2の踏み込みが保持されると、図4,5のフローチャートでステップS1~S4→S8~S10→S11→S13→S15と進む流れとなり、ゲートイン弁23を非作動とする。時刻t1以後は、図9と同様である。
 図11はブレーキペダル2が急速に踏み込まれたときのタイムチャートである。ペダルストロークSpが所定値Spa以上となり、マスタシリンダ液圧Pmが所定値Pma未満であるものとする。
 時刻t0でブレーキペダル2が踏まれ、時刻t1まで急踏み状態と判断されるものとする。時刻t0から時刻t01までは、ペダルストロークSpが所定値Spa未満であるため、図4,5のフローチャートでステップS1~S7→S9→S10→S12→S15と進む流れとなり、図10の時刻t0~t1と同様にして、急踏み時のペダル踏力Fpに応じたペダルストロークSpが確保される。
 時刻t01でペダルストロークSpが所定値Spa以上になるため、図4,5のフローチャートでステップS1~S5→S8~S10→S12→S15と進む流れとなり、ゲートイン弁23を非作動とする(閉弁する)。時刻t0でモータ3の作動が開始され(オンとされ)た後、時刻t01ではモータ3の応答遅れは解消されており、ブレーキ操作速度が急速であっても、マスタシリンダ液圧Pmの増大に対し、ポンプ30の吸入(内部リザーバ25内の減圧)が遅れない。よって、チェック弁24が開弁し、マスタシリンダ4からブレーキ液が第2吸入通路13ではなく第1吸入通路15を介して内部リザーバ25へ流入すると共に、ポンプ30がこのブレーキ液を吸入してホイルシリンダ5側へ吐出する。よって、図7の関係特性(一点鎖線)に従い、ペダル踏力Fpの増大に応じてペダルストロークSpが増加する。すなわち、時刻t01~t1では、急踏み状態であっても、ポンプ30がブレーキ液を第1吸入通路15を介して吸入するようにすることで、ペダル踏力Fpに対するペダルストロークSpの特性を適切な(硬めの)ものとし、ペダル操作フィーリングをより適切なものとすることができる。
 ブレーキペダル踏み込みの保持が開始される時刻t1以後は、図9と同様である。
 以下、装置1の他の作用を説明する。
 マスタシリンダ4からはペダル踏力Fp相当のマスタシリンダ液圧Pmが創生され、ポンプ30は創生されたマスタシリンダ液圧Pmを加圧し、ホイルシリンダ液圧Pwを増圧する。このように、ブレーキペダル2とマスタシリンダ4との間に、ブレーキペダル2から伝達された力を増幅してマスタシリンダ4に伝え、この倍力されたブレーキ操作力によりマスタシリンダ液圧Pmを発生させる形式の倍力装置を備えない構成にあっても、液圧ユニット6を用いて倍力機能を実現することができる。すなわち、ブレーキシステムを、ブレーキペダル2とマスタシリンダ4との間にメカ的な倍力装置(ブースタ)を備えない、いわばブースタレスの構成にすることができる。なお、上記形式の倍力装置(例えばエンジンの発生する負圧を利用する負圧ブースタや電動ブースタ等)を設けることとしてもよい。本実施例では、ブースタレスの構成としたため、マスタシリンダ液圧Pmの変動がよりブレーキペダル2に伝わりやすい。したがって、ブレーキ操作状態に応じた吸入通路の選択によるペダル操作フィーリング向上という上記効果を、より効果的に得ることができる。
 急制動状態でゲートイン弁23の開弁によりマスタシリンダ4から内部リザーバ25へ流入したブレーキ液は、ポンプ30により吸入され、ホイルシリンダ5へ供給される。すなわち、ペダルストロークSpの確保のためマスタシリンダ4から内部リザーバ25へ供給されたブレーキ液は、ホイルシリンダ5の増圧のために用いられる。よって、ブレーキ回路の液量収支が自動的に確保されるため、制御等の構成の簡素化を図ることができる。なお、急制動状態で第2吸入通路13を介してリザーバ25へ流入したブレーキ液を、ポンプ30により吸入しない構成としてもよい。
 急制動状態でペダルストロークSpの確保のためブレーキ液が流れ込む内部リザーバ25は、アンチロックブレーキ制御部72によって減圧したブレーキ液が流れ込むリザーバでもある。よって、アンチロックブレーキ制御を実行可能に設けられた既存の液圧ユニット6の内部リザーバ25を、急制動状態におけるペダルストロークSpの確保のための内部リザーバ25として利用(共用)することで、既存のシステム(液圧ユニットや制御ロジック)を容易に応用でき、コストの低減を図ることができる。
 [実施例1の効果]
 以下、実施例1のブレーキ制御装置1が奏する効果を列挙する。
 (A1)ドライバによるブレーキ操作部材(ブレーキペダル2)の操作量(ペダルストロークSp)を検出するためのブレーキ操作量検出部70と、
 ブレーキ操作量検出部70によって検出されたブレーキ操作部材の操作量(ペダルストロークSp)の増加に基づいてマスタシリンダ4内のブレーキ液を吸入しホイルシリンダ液圧Pwを増圧するためのポンプ30と、
 マスタシリンダ4とポンプ30の吸入側を接続する第1吸入通路15と、
 第1吸入通路15に設けられたリザーバ(内部リザーバ25)と、
 第1吸入通路15と並列に設けられ、マスタシリンダ4とリザーバ(内部リザーバ25)を接続する第2吸入通路13と、
 第2吸入通路13に設けられたゲートイン弁23とを備え、
 ブレーキ操作量検出部70によって所定の急制動状態を検出した場合には、ゲートイン弁23を開弁し、リザーバ(内部リザーバ25)へとブレーキ液を流入させる。
 よって、急制動時の操作フィーリングを向上し、ドライバの違和感を抑制することができる。
 (A2)マスタシリンダ4にてブレーキ操作部材(ブレーキペダル2)による操作力(ペダル踏力Fp)相当のブレーキ液圧(マスタシリンダ液圧Pm)が創生され、ポンプ30は、創生されたブレーキ液圧(マスタシリンダ液圧Pm)を加圧し、ホイルシリンダ液圧Pwを増圧する。
 よって、ブースタレス装置が得られる。
 (A3)ポンプ30は、リザーバ(内部リザーバ25)に流入したブレーキ液を吸入する。
 よって、液量収支を確保し、構成の簡素化を図ることができる。
 (A4)ホイルシリンダ液圧Pwを減圧するためのアンチロックブレーキ制御部72を備え、リザーバ(内部リザーバ25)には、アンチロックブレーキ制御部72によって減圧したブレーキ液が流入する。
 よって、既存のシステムを応用でき、コスト低減を図ることができる。
 (A5)ブレーキ操作量検出部70が所定量(所定値Spa)以上のブレーキ操作量(ペダルストロークSp)を検出したときは、ゲートイン弁23を閉弁する。
 よって、ブレーキ操作量(ペダルストロークSp)が過大になることを抑制し、操作フィーリングを向上することができる。
 (A6)リザーバ(内部リザーバ25)は、ブレーキ液の流入に基づいてストロークするピストン250と、ピストン250と連動し、第1吸入通路15からリザーバ(内部リザーバ25)へと流入するブレーキ液量を調整する調圧弁(チェック弁24)とを備え、ポンプ30は、ゲートイン弁23を閉弁した後に調圧弁(チェック弁24)を介してブレーキ液を吸入する。
 よって、(狭義の)急踏み後の操作フィーリング悪化を、特別な制御を要することなくメカ的に抑制することができる。
 [実施例2] 
 実施例2のブレーキ制御装置1は、第2吸入通路13を選択中、ゲートイン弁23を制御することで、ペダル踏力FpとペダルストロークSpとの関係特性(以下、Fp-Sp特性という)を狙い通りとすることを図るものである。
 本実施例のゲートイン弁23は、常開か常閉かといった違いを除けば、ゲートアウト弁20と同様、電流値により開度ないし開弁圧を変更可能な比例弁であり、釣り合い制御が可能である。図12は、ゲートイン弁23の開弁圧と電流値との関係特性を示すマップである。ゲートイン弁23の開弁圧は、ゲートイン弁23の上流側の圧力(マスタシリンダ液圧Pmに相当)と下流側の圧力(内部リザーバ25内の圧力に相当)との差圧であり、内部リザーバ25内の圧力を略ゼロとみなせば、開弁圧はマスタシリンダ液圧Pmと略等しい。よって、このマップに基づきゲートイン弁23の電流値を調整することで、開弁圧すなわちマスタシリンダ液圧Pmを所望の値に制御することができる。
 図13は、急踏み状態におけるペダルストロークSpとマスタシリンダ液圧Pmの目標値との関係特性を示すマップである。このマップにおけるペダルストロークSpとマスタシリンダ液圧Pmとの関係は、ブレーキペダル2がゆっくり、ないし普通の速度で踏み込まれたときの、ペダルストロークSpとペダル踏力Fpとの関係に等しくなるように設定されている。すなわち、ペダル踏力Fpはマスタシリンダ液圧Pmと略比例関係にあり、図13の関係特性は、図7の実線の関係特性と同様の形状を有している。
 本実施例のコントロールユニット7による制御処理を表すフローチャートは、ゲートイン弁23の制御に関する下記の点を除き、図4及び図5と同様である。
すなわち、ステップS7で、検出したペダルストロークSpに応じて、図13のマップに基づきマスタシリンダ液圧Pmの目標値Pm0を設定する。そして、設定したマスタシリンダ液圧目標値Pm0に応じて、図12のマップに基づき、ゲートイン弁23を作動させるときの電流値を決定する。
 このように、本実施例では、マスタシリンダ液圧Pmを制御することでペダル踏力Fpを調整可能な点に着目し、検出したペダルストロークSpに基づき、マスタシリンダ液圧Pmが図12のマップに示す目標値Pm0になるように、ゲートイン弁23の電流値を制御する。言い換えると、電流値の調整により、ペダル踏力Fpが適切な値になるよう、ゲートイン弁23の開弁圧(ないし開度)を設定する。よって、急踏み状態におけるFp-Sp特性を狙い通りの特性とすることができ、これにより一層良好なペダルフィーリングを得ることができる。
 図14は、本実施例の装置1による、図10と同様のタイムチャートである。
 時刻t0でブレーキペダル2が踏まれると、図4,5のフローチャートでステップS1~S7→S9→S10→S12→S15と進む流れとなり、ゲートイン弁23を作動させ(中間開度とし)、ゲートアウト弁20を作動させ(中間開度とし)、モータ3を作動させる指令を出力する。時刻t0後、ゲートイン弁23の開弁によりマスタシリンダ4からブレーキ液が第2吸入通路13を介して内部リザーバ25へ流入する際、ゲートイン弁23の電流値を上記のように決定し、マスタシリンダ液圧Pmを図13のマップの特性に従いペダルストロークSpに応じて制御する。よって、ゲートイン弁23が閉弁される時刻t1までの間、より良好なFp-Sp特性を得ることができ、急踏み時のペダルフィーリングをより向上することができる。
 他の点は図10と同様である。 
 本実施例では、ゲートイン弁23はオン・オフ弁ではなく比例制御弁であるため、上記のように良好なペダルフィールを創生しやすい。なお、ゲートイン弁23として、比例制御弁でなくオン・オフ弁を用いてもよく、この場合、例えばPWM制御により実効電流を制御することで中間開度を達成することができる。但し、音振を抑制してドライバのフィーリングを向上するためには、本実施例のように比例制御弁を用いることが好ましい。
 [実施例3]
 実施例2では、ゲートイン弁23は、電流値で開度等を変更可能な比例弁であって、電流値の調整により、ペダル踏力Fpが適切な値になるよう、ゲートイン弁23の開度等を設定することとしたが、本実施例では、図15に示すように、ゲートイン弁23はオン・オフ弁であって、第2吸入通路13におけるゲートイン弁23の下流側(内部リザーバ25側)に絞り部としてのオリフィス230を設けた点で、実施例2と相違する。言い換えると、ゲートイン弁23を、オン・オフ弁とオリフィスとの組合せにより構成する。オリフィス230の径(絞り量)を予め調整することで、ゲートイン弁23の開度を実質的に設定し、実施例2と同様、ペダルストロークSpに対してペダル踏力Fpが適切な値になるようにする。
 この場合、ゲートイン弁23をオン・オフ制御することで、良好なペダルフィールを、実施例2よりも安価に創生できる。なお、第2吸入通路13におけるゲートイン弁23の上流側(マスタシリンダ4側)にオリフィスを設けることとしてもよい。
 [他の実施例]
 以上、本発明を実現するための形態を、実施例に基づいて説明してきたが、本発明の具体的な構成は実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
 例えば、倍力制御だけでなく、ドライバのブレーキ操作時にポンプがマスタシリンダからブレーキ液を吸入してホイルシリンダ側へ吐出することでホイルシリンダ液圧を増圧するものであれば、他のブレーキ液圧制御(例えば回生協調ブレーキ制御)に本発明の吸入通路選択手段を適用してもよい。
 また、ブレーキ操作フィーリングの悪化という問題は、所定の急制動状態で、実施例や比較例のように第1吸入通路15がポンプ30(モータ3)の応答遅れによりメカ的に非連通状態となるものに限らず、ポンプ30が第1吸入通路15を介してマスタシリンダ4からブレーキ液を吸入することがポンプ30(モータ3)の応答遅れにより妨げられる構成であれば、生じうる。よって、第1吸入通路15上に、実施例のようにチェック弁24と一体化した(リザーバピストン250のストロークとチェック弁24の開閉とが連動する)調圧機能付きの内部リザーバ25ではない、通常の内部リザーバを有するものに、本発明の吸入通路選択手段を適用してもよい。この場合、内部リザーバよりも上流側(マスタシリンダ側)の第1吸入通路15上に、内部リザーバと連動せずに第1吸入通路15の連通状態を切り替え可能に設けられたゲート弁を備えるものが考えられる。これに対し、実施例では調圧機能付きの内部リザーバ25を備えたため、上記ゲート弁を備えたものに比べ、制御を別途要することなく、メカ的にブレーキ操作フィーリングを調整することができる。例えば、(狭義の)急踏み後の操作フィーリング悪化を、特別な制御を要することなくメカ的に抑制することができるという利点がある。
 さらに言えば、ブレーキ操作フィーリングの悪化という問題は、所定の急制動状態で、ポンプ30が第1吸入通路15を介してマスタシリンダ4からブレーキ液を吸入することが、ポンプ30(モータ3)の応答遅れ以外の他の原因により妨げられる構成であっても、生じうる。よって、内部リザーバよりも上流側(マスタシリンダ側)の第1吸入通路15上に、弁を備えるものに限らず、例えば、第1吸入通路15における流量を制限するオリフィス等の絞り部を備えるものに、本発明の吸入通路選択手段を適用してもよい。この場合も、所定の急制動状態で、第2吸入通路13を選択することで、ペダルストロークSpを確保し、ブレーキ操作フィーリングを向上することができる。
 ゲートアウト弁20として、比例制御弁でなくオン・オフ弁を用いてもよく、この場合、例えばPWM制御により実効電流を制御することで中間開度を達成することができる。但し、音振を抑制してドライバのフィーリングを向上するためには、実施例のように比例制御弁を用いることが好ましい。
 以下に、実施例から把握される発明をその効果と共に列挙する。
 (A7)(A1)に記載のブレーキ制御装置において、
 前記第1吸入通路から分岐し、前記ポンプの吐出側と前記マスタシリンダと前記ホイルシリンダとを接続する第1ブレーキ回路と、
 前記第1ブレーキ回路に設けられたゲートアウト弁とを備え、
 前記ブレーキ操作量検出部によって所定の急制動状態を検出した場合には、前記ゲートアウト弁を閉弁方向に制御することを特徴とするブレーキ制御装置。
 ゲートイン弁経由でリザーバ内へより確実にブレーキ液を流し込むことができる。
 (A8)(A7)に記載のブレーキ制御装置において、
 前記リザーバは、ブレーキ液の流れ込みによりストロークするピストンと、前記ピストンと連動してストロークし、所定量ストロークすると前記第1吸入通路から前記リザーバへのブレーキ液の流入を阻止する調圧弁とを備え、
 前記ピストンのストローク量は前記調圧弁のストローク量より大きく、前記第2吸入通路を介して前記ピストンをストロークできることを特徴とするブレーキ装置。
 ゲートイン弁経由でリザーバ内へより確実にブレーキ液を流し込むことができる。
 (A9)(A1)に記載のブレーキ制御装置において、
 前記ゲートイン弁は、比例制御弁であることを特徴とするブレーキ装置。
 ペダルフィールを創生しやすい。
 (A10)(A1)に記載のブレーキ制御装置において、
 前記ゲートイン弁はオン・オフ弁であって、前記ゲートイン弁の下流にオリフィスを設けたことを特徴とするブレーキ装置。
 安価にペダルフィールを創生できる。
 (B1)ドライバによるブレーキ操作部材の操作量を検出するためのブレーキ操作量検出部と、
 前記ブレーキ操作量検出部によって検出されたブレーキ操作部材の操作量の増加に基づいてマスタシリンダ内のブレーキ液を吸入しホイルシリンダ液圧を増圧するためのポンプと、
 前記マスタシリンダと前記ポンプの吸入側を接続する第1吸入通路と、
 前記第1吸入通路に設けられ、前記マスタシリンダからのブレーキ液が流入するリザーバと、
 前記第1吸入通路と並列に設けられ、前記マスタシリンダと前記リザーバを接続する第2吸入通路と、
 前記ブレーキ操作量検出部によって検出されたブレーキ操作状態に応じて、前記第1吸入通路と前記第2吸入通路とから吸入通路を選択する選択手段とを備え、
 前記選択された吸入通路を介してブレーキ液を前記リザーバへと流入させることを特徴とするブレーキ制御装置。
 (B2)(B1)に記載のブレーキ制御装置において、
 前記第2吸入通路にゲートイン弁が設けられ、
 前記ブレーキ操作量検出部によって所定の急制動状態を検出した場合には、前記ゲートイン弁を開弁することを特徴とするブレーキ装置。
 (B3)(B2)に記載のブレーキ制御装置において、
 前記マスタシリンダにて前記ブレーキ操作部材による操作力相当のブレーキ液圧が創生され、前記ポンプは、前記創生されたブレーキ液圧を加圧し、前記ホイルシリンダ液圧を増圧することを特徴とするブレーキ制御装置。
 (B4)(B3)に記載のブレーキ制御装置において、
 前記ポンプは、前記リザーバに流入したブレーキ液を吸入することを特徴とするブレーキ制御装置。
 (B5)(B1)に記載のブレーキ制御装置において、
 前記ブレーキ操作量検出部が所定量以上のブレーキ操作量を検出したときは、前記ゲートイン弁を閉弁することを特徴とするブレーキ制御装置。
 (B6)(B5)に記載のブレーキ制御装置において、
 前記リザーバは、ブレーキ液の流入に基づいてストロークするピストンと、前記ピストンと連動し、前記第1吸入通路から前記リザーバへと流入するブレーキ液量を調整する調圧弁とを備え、
 前記ポンプは、前記ゲートイン弁を閉弁した後に前記調圧弁を介してブレーキ液を吸入することを特徴とするブレーキ装置。
 (B7)(B1)に記載のブレーキ制御装置において、
 前記第1吸入通路から分岐し、前記ポンプの吐出側と前記マスタシリンダと前記ホイルシリンダとを接続する第1ブレーキ回路と、
 前記第1ブレーキ回路に設けられたゲートアウト弁とを備え、
 前記ブレーキ操作量検出部によって所定の急制動状態を検出した場合には、前記ゲートアウト弁を閉弁方向に制御することを特徴とするブレーキ制御装置。
 (B8)(B1)に記載のブレーキ制御装置において、
 前記ゲートイン弁は、比例制御弁であることを特徴とするブレーキ装置。
 (C1)ドライバによるブレーキ操作部材の操作量を検出するためのブレーキ操作量検出部と、
 前記ブレーキ操作量検出部によって検出されたブレーキ操作部材の操作量の増加に基づいてマスタシリンダ内のブレーキ液を吸入しホイルシリンダ液圧を増圧するためのポンプと、
 前記マスタシリンダと前記ポンプの吸入側を接続する第1吸入通路と、
 前記第1吸入通路とは別に設けられ、前記マスタシリンダと接続する第2吸入通路と、
 前記第1吸入通路及び前記第2吸入通路に設けられたリザーバと、
 前記第1吸入通路上の前記マスタシリンダと前記リザーバとの間に設けられ、前記リザーバに所定量のブレーキ液が流入すると閉弁する調圧弁と、
 前記第2吸入通路に設けられたゲートイン弁とを備え、
 前記ブレーキ操作量検出部によって所定の急制動状態を検出した場合には、前記調圧弁を閉弁する一方、前記ゲートイン弁を開弁し、前記第2吸入通路を介して前記リザーバにブレーキ液を流入させることを特徴とするブレーキ制御装置。
 (C2)(C1)に記載のブレーキ制御装置において、
 前記マスタシリンダにて前記ブレーキ操作部材による操作力相当のブレーキ液圧が創生され、前記ポンプは、前記創生されたブレーキ液圧を加圧し、前記ホイルシリンダ液圧を増圧することを特徴とするブレーキ制御装置。
2   ブレーキペダル(ブレーキ操作部材)
4   マスタシリンダ
13  第2吸入通路
15  第1吸入通路
23  ゲートイン弁
24  チェック弁(調圧弁)
25  内部リザーバ(リザーバ)
250 ピストン
30  ポンプ
70  ブレーキ操作量検出部
72  アンチロックブレーキ制御部

Claims (20)

  1.  ドライバによるブレーキ操作部材の操作量を検出するためのブレーキ操作量検出部と、
     前記ブレーキ操作量検出部によって検出されたブレーキ操作部材の操作量の増加に基づいてマスタシリンダ内のブレーキ液を吸入しホイルシリンダ液圧を増圧するためのポンプと、
     前記マスタシリンダと前記ポンプの吸入側を接続する第1吸入通路と、
     前記第1吸入通路に設けられたリザーバと、
     前記第1吸入通路と並列に設けられ、前記マスタシリンダと前記リザーバを接続する第2吸入通路と、
     前記第2吸入通路に設けられたゲートイン弁とを備え、
     前記ブレーキ操作量検出部によって所定の急制動状態を検出した場合には、前記ゲートイン弁を開弁し、前記リザーバへとブレーキ液を流入させることを特徴とするブレーキ制御装置。
  2.  請求項1に記載のブレーキ制御装置において、
     前記マスタシリンダにて前記ブレーキ操作部材による操作力相当のブレーキ液圧が創生され、
     前記ポンプは、前記創生されたブレーキ液圧を加圧し、前記ホイルシリンダ液圧を増圧することを特徴とするブレーキ制御装置。
  3.  請求項2に記載のブレーキ制御装置において、
     前記ポンプは、前記リザーバに流入したブレーキ液を吸入することを特徴とするブレーキ制御装置。
  4.  請求項3に記載のブレーキ制御装置において、
     前記ホイルシリンダ液圧を減圧するためのアンチロックブレーキ制御部を備え、
     前記リザーバには、前記アンチロックブレーキ制御部によって減圧したブレーキ液が流入することを特徴とするブレーキ装置。
  5.  請求項1に記載のブレーキ制御装置において、
     前記ブレーキ操作量検出部が所定量以上のブレーキ操作量を検出したときは、前記ゲートイン弁を閉弁することを特徴とするブレーキ制御装置。
  6.  請求項5に記載のブレーキ制御装置において、
     前記リザーバは、ブレーキ液の流れ込みによりストロークするピストンと、前記ピストンと連動し、前記第1吸入通路から前記リザーバへと流入するブレーキ液量を調整する調圧弁とを備え、
     前記ポンプは、前記ゲートイン弁を閉弁した後に前記調圧弁を介してブレーキ液を吸入することを特徴とするブレーキ装置。
  7.  請求項1に記載のブレーキ制御装置において、
     前記第1吸入通路から分岐し、前記ポンプの吐出側と前記マスタシリンダと前記ホイルシリンダとを接続する第1ブレーキ回路と、
     前記第1ブレーキ回路に設けられたゲートアウト弁とを備え、
     前記ブレーキ操作量検出部によって所定の急制動状態を検出した場合には、前記ゲートアウト弁を閉弁方向に制御することを特徴とするブレーキ制御装置。
  8.  請求項7に記載のブレーキ制御装置において、
     前記リザーバは、ブレーキ液の流れ込みによりストロークするピストンと、前記ピストンと連動してストロークし、所定量ストロークすると前記第1吸入通路から前記リザーバへのブレーキ液の流入を阻止する調圧弁とを備え、
     前記ピストンのストローク量は前記調圧弁のストローク量より大きく、前記第2吸入通路を介して前記ピストンをストロークできることを特徴とするブレーキ装置。
  9.  請求項1に記載のブレーキ制御装置において、
     前記ゲートイン弁は、比例制御弁であることを特徴とするブレーキ装置。
  10.  請求項1に記載のブレーキ制御装置において、
     前記ゲートイン弁はオン・オフ弁であって、前記ゲートイン弁の下流にオリフィスを設けたことを特徴とするブレーキ装置。
  11.  ドライバによるブレーキ操作部材の操作量を検出するためのブレーキ操作量検出部と、
     前記ブレーキ操作量検出部によって検出されたブレーキ操作部材の操作量の増加に基づいてマスタシリンダ内のブレーキ液を吸入しホイルシリンダ液圧を増圧するためのポンプと、
     前記マスタシリンダと前記ポンプの吸入側を接続する第1吸入通路と、
     前記第1吸入通路に設けられ、前記マスタシリンダからのブレーキ液が流入するリザーバと、
     前記第1吸入通路と並列に設けられ、前記マスタシリンダと前記リザーバを接続する第2吸入通路と、
     前記ブレーキ操作量検出部によって検出されたブレーキ操作状態に応じて、前記第1吸入通路と前記第2吸入通路とから吸入通路を選択する選択手段とを備え、
     前記選択された吸入通路を介してブレーキ液を前記リザーバへと流入させることを特徴とするブレーキ制御装置。
  12.  請求項11に記載のブレーキ制御装置において、
     前記第2吸入通路にゲートイン弁が設けられ、
     前記ブレーキ操作量検出部によって所定の急制動状態を検出した場合には、前記ゲートイン弁を開弁することを特徴とするブレーキ装置。
  13.  請求項12に記載のブレーキ制御装置において、
     前記マスタシリンダにて前記ブレーキ操作部材による操作力相当のブレーキ液圧が創生され、
     前記ポンプは、前記創生されたブレーキ液圧を加圧し、前記ホイルシリンダ液圧を増圧することを特徴とするブレーキ制御装置。
  14.  請求項13に記載のブレーキ制御装置において、
     前記ポンプは、前記リザーバに流入したブレーキ液を吸入することを特徴とするブレーキ制御装置。
  15.  請求項11に記載のブレーキ制御装置において、
     前記ブレーキ操作量検出部が所定量以上のブレーキ操作量を検出したときは、前記ゲートイン弁を閉弁することを特徴とするブレーキ制御装置。
  16.  請求項15に記載のブレーキ制御装置において、
     前記リザーバは、ブレーキ液の流入に基づいてストロークするピストンと、前記ピストンと連動し、前記第1吸入通路から前記リザーバへと流入するブレーキ液量を調整する調圧弁とを備え、
     前記ポンプは、前記ゲートイン弁を閉弁した後に前記調圧弁を介してブレーキ液を吸入することを特徴とするブレーキ装置。
  17.  請求項11に記載のブレーキ制御装置において、
     前記第1吸入通路から分岐し、前記ポンプの吐出側と前記マスタシリンダと前記ホイルシリンダとを接続する第1ブレーキ回路と、
     前記第1ブレーキ回路に設けられたゲートアウト弁とを備え、
     前記ブレーキ操作量検出部によって所定の急制動状態を検出した場合には、前記ゲートアウト弁を閉弁方向に制御することを特徴とするブレーキ制御装置。
  18.  請求項11に記載のブレーキ制御装置において、
     前記ゲートイン弁は、比例制御弁であることを特徴とするブレーキ装置。
  19.  ドライバによるブレーキ操作部材の操作量を検出するためのブレーキ操作量検出部と、
     前記ブレーキ操作量検出部によって検出されたブレーキ操作部材の操作量の増加に基づいてマスタシリンダ内のブレーキ液を吸入しホイルシリンダ液圧を増圧するためのポンプと、
     前記マスタシリンダと前記ポンプの吸入側を接続する第1吸入通路と、
     前記第1吸入通路とは別に設けられ、前記マスタシリンダと接続する第2吸入通路と、
     前記第1吸入通路及び前記第2吸入通路に設けられたリザーバと、
     前記第1吸入通路上の前記マスタシリンダと前記リザーバとの間に設けられ、前記リザーバに所定量のブレーキ液が流入すると閉弁する調圧弁と、
     前記第2吸入通路に設けられたゲートイン弁とを備え、
     前記ブレーキ操作量検出部によって所定の急制動状態を検出した場合には、前記調圧弁を閉弁する一方、前記ゲートイン弁を開弁し、前記第2吸入通路を介して前記リザーバにブレーキ液を流入させることを特徴とするブレーキ制御装置。
  20.  請求項19に記載のブレーキ制御装置において、
     前記マスタシリンダにて前記ブレーキ操作部材による操作力相当のブレーキ液圧が創生され、
     前記ポンプは、前記創生されたブレーキ液圧を加圧し、前記ホイルシリンダ液圧を増圧することを特徴とするブレーキ制御装置。
PCT/JP2013/067063 2012-08-23 2013-06-21 ブレーキ制御装置 WO2014030420A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/422,460 US20150232076A1 (en) 2012-08-23 2013-06-21 Brake Control Device
CN201380034495.3A CN104395159B (zh) 2012-08-23 2013-06-21 制动控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012183708A JP5849030B2 (ja) 2012-08-23 2012-08-23 ブレーキ制御装置
JP2012-183708 2012-08-23

Publications (1)

Publication Number Publication Date
WO2014030420A1 true WO2014030420A1 (ja) 2014-02-27

Family

ID=50149737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067063 WO2014030420A1 (ja) 2012-08-23 2013-06-21 ブレーキ制御装置

Country Status (4)

Country Link
US (1) US20150232076A1 (ja)
JP (1) JP5849030B2 (ja)
CN (1) CN104395159B (ja)
WO (1) WO2014030420A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6341557B2 (ja) * 2014-03-26 2018-06-13 ヴィオニア日信ブレーキシステムジャパン株式会社 車両用ブレーキ液圧制御装置
JP6341556B2 (ja) * 2014-03-26 2018-06-13 ヴィオニア日信ブレーキシステムジャパン株式会社 車両用ブレーキ液圧制御装置
JP2016016709A (ja) * 2014-07-07 2016-02-01 株式会社デンソー 車両用ブレーキ装置
US10870325B2 (en) 2014-12-16 2020-12-22 Aktv8 LLC System and method for vehicle stabilization
US10675936B2 (en) 2014-12-16 2020-06-09 Atv8 Llc System and method for vehicle stabilization
WO2016100529A1 (en) 2014-12-16 2016-06-23 Aktv8 LLC Electronically controlled vehicle suspension system and method of manufacture
JP6447399B2 (ja) * 2015-07-24 2019-01-09 株式会社アドヴィックス 車両用ブレーキ装置
JP2017077810A (ja) * 2015-10-21 2017-04-27 日立オートモティブシステムズ株式会社 ブレーキ制御装置
KR101724969B1 (ko) 2015-12-11 2017-04-07 현대자동차주식회사 페달 시뮬레이터를 가지는 브레이크 장치
DE102016208529A1 (de) * 2016-05-18 2017-11-23 Robert Bosch Gmbh Bremssystem für ein Fahrzeug und Verfahren zum Betreiben eines Bremssystems eines Fahrzeugs
DE102016209781A1 (de) * 2016-06-03 2017-12-07 Robert Bosch Gmbh Verfahren zum Betreiben eines hydraulischen Bremssystems, hydraulisches Bremssystem
WO2018049433A2 (en) * 2016-09-06 2018-03-15 Aktv8 LLC Tire management system and method
JP6623993B2 (ja) * 2016-09-21 2019-12-25 株式会社アドヴィックス 車両用制動装置
US10464536B2 (en) * 2016-11-11 2019-11-05 Honda Motor Co., Ltd. Adaptive vehicle braking systems, and methods of use and manufacture thereof
JP6950407B2 (ja) * 2017-09-28 2021-10-13 株式会社アドヴィックス 車両の制動制御装置
CN109624946B (zh) * 2017-10-06 2020-12-18 丰田自动车株式会社 车辆用制动力控制装置
JP7017904B2 (ja) * 2017-10-23 2022-02-09 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ブレーキ制御装置及びブレーキ制御方法並びにブレーキシステム
CN108032850A (zh) * 2017-12-04 2018-05-15 中车株洲电力机车有限公司 一种车辆及其制动方法、装置及系统
DE102018206566A1 (de) * 2018-04-27 2019-10-31 Robert Bosch Gmbh Fahrzeugbremssystem und Verfahren zur Bremsdrucksteigerung in einem ersten Radbremszylinder und Bremsdruckbegrenzung in einem zweiten Radbremszylinder eines Fahrzeugbremssystems
DE102018207207A1 (de) * 2018-05-09 2019-11-14 Robert Bosch Gmbh Verfahren zum Steuern einer Fahrdynamikregelungsvorrichtung und Fahrdynamikregelungsvorrichtung
JP7070145B2 (ja) * 2018-06-25 2022-05-18 株式会社アドヴィックス 車両の制動制御装置
KR102096090B1 (ko) * 2018-07-11 2020-04-01 현대모비스 주식회사 차량의 제동 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076528A (ja) * 2005-09-15 2007-03-29 Nissin Kogyo Co Ltd 車両用ブレーキ液圧制御装置
JP2011005899A (ja) * 2009-06-24 2011-01-13 Hitachi Automotive Systems Ltd ブレーキ制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4028290C1 (ja) * 1990-09-06 1992-01-02 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
DE4034113A1 (de) * 1990-10-26 1992-04-30 Bosch Gmbh Robert Hydraulische mehrkreis-bremsanlage, insbesondere fuer kraftfahrzeuge
JP3115909B2 (ja) * 1991-07-05 2000-12-11 曙ブレーキ工業株式会社 車両用アンチロックブレーキおよびトラクションコントロールシステム用油圧モジュレータ
JPH0687418A (ja) * 1992-09-04 1994-03-29 Toyota Motor Corp 液圧ブレーキ装置
CN1088665C (zh) * 1995-12-26 2002-08-07 株式会社电装 车辆用制动装置
JPH10250555A (ja) * 1997-03-14 1998-09-22 Unisia Jecs Corp ブレーキ制御装置
JPH1134837A (ja) * 1997-07-17 1999-02-09 Unisia Jecs Corp ブレーキ装置
JP5014916B2 (ja) * 2007-08-10 2012-08-29 日立オートモティブシステムズ株式会社 ブレーキ制御装置
JP5014919B2 (ja) * 2007-08-17 2012-08-29 日立オートモティブシステムズ株式会社 ブレーキ制御装置
US8029075B2 (en) * 2007-10-11 2011-10-04 Nissan Motor Co., Ltd. Brake control apparatus and process
JP2009215932A (ja) * 2008-03-10 2009-09-24 Hitachi Ltd タンデムポンプおよびブレーキ装置用タンデムポンプ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076528A (ja) * 2005-09-15 2007-03-29 Nissin Kogyo Co Ltd 車両用ブレーキ液圧制御装置
JP2011005899A (ja) * 2009-06-24 2011-01-13 Hitachi Automotive Systems Ltd ブレーキ制御装置

Also Published As

Publication number Publication date
CN104395159B (zh) 2017-03-08
JP2014040187A (ja) 2014-03-06
JP5849030B2 (ja) 2016-01-27
CN104395159A (zh) 2015-03-04
US20150232076A1 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
JP5849030B2 (ja) ブレーキ制御装置
JP5220827B2 (ja) 車両用ブレーキ装置
JP6063824B2 (ja) ブレーキ制御装置
JP5119646B2 (ja) 車両用ブレーキ制御装置
JP5892706B2 (ja) ブレーキ液圧発生装置
JP5860800B2 (ja) ブレーキ装置
US8870301B2 (en) Hydraulic brake system
WO2015146557A1 (ja) ブレーキ装置
JP4602428B2 (ja) バーハンドル車両用ブレーキ液圧制御装置
US9988028B2 (en) Brake apparatus
WO2021106924A1 (ja) ブレーキ制御装置
WO2017068968A1 (ja) ブレーキ制御装置
WO2017146194A1 (ja) 車両用制動装置
KR100839708B1 (ko) 차량의 전·후륜 제동 액압의 선형 감압 제어 및 기울기 차해소용 제동 유압 회로
JP6245696B2 (ja) ブレーキ液圧発生装置
JP2008207683A (ja) バーハンドル車両用ブレーキ液圧制御装置
JP4976724B2 (ja) 車両用ブレーキ液圧制御装置
JP6512695B2 (ja) ブレーキシステム
JP2001114085A (ja) ブレーキシステム用液圧制御装置
KR102231112B1 (ko) 차량의 능동 유압 부스터 시스템 및 그 제어방법
JP2015013554A (ja) バーハンドル車両用ブレーキ液圧制御装置
JP6937275B2 (ja) バーハンドル車両用ブレーキ液圧制御装置
JP6069063B2 (ja) ブレーキ制御装置
JP4815528B2 (ja) 車両用ブレーキ液圧制御装置
JP5977691B2 (ja) ブレーキ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831767

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14422460

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831767

Country of ref document: EP

Kind code of ref document: A1