WO2014024868A1 - モールドの製造方法、および微細凹凸構造を表面に有する成形体とその製造方法 - Google Patents

モールドの製造方法、および微細凹凸構造を表面に有する成形体とその製造方法 Download PDF

Info

Publication number
WO2014024868A1
WO2014024868A1 PCT/JP2013/071223 JP2013071223W WO2014024868A1 WO 2014024868 A1 WO2014024868 A1 WO 2014024868A1 JP 2013071223 W JP2013071223 W JP 2013071223W WO 2014024868 A1 WO2014024868 A1 WO 2014024868A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
mold
producing
oxide film
molded body
Prior art date
Application number
PCT/JP2013/071223
Other languages
English (en)
French (fr)
Inventor
雅資 井川
英子 岡本
広志 尾野本
実男 廣幡
松原 雄二
秀樹 益田
Original Assignee
三菱レイヨン株式会社
公益財団法人神奈川科学技術アカデミー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社, 公益財団法人神奈川科学技術アカデミー filed Critical 三菱レイヨン株式会社
Priority to JP2013537962A priority Critical patent/JP5536287B1/ja
Priority to US14/419,293 priority patent/US9908265B2/en
Priority to CN201380041521.5A priority patent/CN104520087B/zh
Priority to KR1020157002887A priority patent/KR101680495B1/ko
Publication of WO2014024868A1 publication Critical patent/WO2014024868A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/045Anodisation of aluminium or alloys based thereon for forming AAO templates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2905/00Use of metals, their alloys or their compounds, as mould material
    • B29K2905/02Aluminium

Definitions

  • the present invention relates to a method for producing a mold having a fine concavo-convex structure consisting of a plurality of pores on the surface, a molded article produced using the mold and having a fine concavo-convex structure on the surface, and a method for producing the same.
  • This application claims priority based on Japanese Patent Application No. 2012-174349 filed in Japan on August 6, 2012 and Japanese Patent Application No. 2012-174350 filed on August 6, 2012 in Japan. And the contents thereof are incorporated herein.
  • nanoscale fine concavo-convex structure In recent years, it has become possible to impart a nanoscale fine concavo-convex structure to the surface of a molded body due to advances in microfabrication technology.
  • the nanoscale fine concavo-convex structure exhibits industrial functions such as the anti-reflection function called the moth-eye effect and the water repellent function called the Lotus effect. Is actively planned.
  • the method of transferring the fine concavo-convex structure formed on the surface of the mold to the surface of the molded body is suitable for industrial production because it can impart the fine concavo-convex structure to the surface of the molded body with simple and few steps.
  • a method for easily producing a large-area mold having a fine concavo-convex structure on the surface a method utilizing an oxide film (anodized porous alumina) having a plurality of pores by anodizing an aluminum base material has attracted attention.
  • the interval (pitch) between the pores increases in proportion to the applied voltage.
  • the method is also suitable as a method for producing a mold because the interval between the pores can be controlled relatively easily.
  • Step (1) A step of anodizing the surface of the aluminum base material and arranging the pores regularly ignoring the depth of the pores.
  • Step (2) A step of removing part or all of the oxide film formed in step (1).
  • Step (3) After step (2), the aluminum substrate is anodized again to form pores having an arbitrary depth while maintaining a regular arrangement.
  • the surface of an aluminum substrate may be mirror-finished by machining such as cutting or mechanical polishing.
  • a machined aluminum substrate is anodized at a voltage of 40 V or higher, white stripes that appear to be derived from cutting and polishing stripes when the aluminum substrate is machined appear, and the resulting mold surface becomes cloudy.
  • the mold surface tends to become cloudy.
  • white stripes are also transferred to the surface of the molded body. The molded body with the white stripes transferred to the surface tends to increase the haze, and as a result, the reflectance also increases.
  • Patent Document 1 discloses that an aluminum substrate is subjected to cathodic electrolysis and electrolysis before the first step of anodizing. A method of polishing or etching is disclosed.
  • the present invention has been made in view of the above circumstances, and a method for easily producing a mold in which surface turbidity is suppressed, and haze, even when producing a mold having a relatively large pore interval.
  • the molded object which has a fine concavo-convex structure on the surface, and its manufacturing method are provided.
  • the present inventors have found that immediately after voltage application, sudden increases in applied voltage and current (voltage / current jump) are likely to occur, and this voltage and / or current jump may cause clouding of the mold surface. It was found to be related to. Therefore, in the first step of anodization, the machined aluminum base material is controlled by controlling the increase in voltage and / or current immediately after voltage application, that is, by suppressing the jump of voltage and / or current. The present inventors have found that the cloudiness of the surface of the mold obtained by anodizing can be suppressed, and the present invention has been completed.
  • this invention has the following aspects.
  • ⁇ 1> A method for producing a mold in which an oxide film having a plurality of pores is formed on the surface of an aluminum substrate, wherein (a) a voltage is applied to the machined aluminum substrate, and the aluminum substrate A step of anodizing the surface of the film to form an oxide film, and (b) a step of removing at least part of the oxide film formed in the step (a).
  • the voltage (V a [V]) immediately before the end of (a) and the time (t a [second]) from the start of voltage application until the voltage (V a [V]) is reached.
  • the manufacturing method of the mold which satisfy
  • ⁇ 5> The method for producing a mold according to any one of ⁇ 1> to ⁇ 4>, wherein the electrolytic solution used in the anodic oxidation in the step (a) includes an organic acid.
  • ⁇ 6> The method for producing a mold according to ⁇ 5>, wherein a main component of the electrolytic solution is oxalic acid.
  • ⁇ 7> The method for producing a mold according to ⁇ 1>, wherein in the step (a), initial anodic oxidation is performed at 50 V or less, and finally anodic oxidation is performed at a voltage higher than initial anodic oxidation.
  • ⁇ 8> The method for producing a mold according to ⁇ 7>, wherein in step (a), anodization is finally performed at 60 V or higher.
  • ⁇ 9> The method for producing a mold according to any one of ⁇ 1> to ⁇ 8>, wherein in the step (a), the voltage is increased stepwise from an initial anodic oxidation to a final anodic oxidation.
  • ⁇ 10> The method for producing a mold according to any one of ⁇ 7> to ⁇ 9>, wherein the electrolytic solution used in the anodic oxidation in the step (a) includes an organic acid.
  • ⁇ 11> The method for producing a mold according to ⁇ 10>, wherein a main component of the electrolytic solution is oxalic acid.
  • ⁇ 16> The method for producing a mold according to ⁇ 15>, wherein a main component of the electrolytic solution used in the anodic oxidation in the step (c) is oxalic acid.
  • a fine concavo-convex structure comprising a plurality of pores formed on the surface of the mold obtained by the method for producing a mold according to any one of ⁇ 1> to ⁇ 16> is provided on the surface of the molded body.
  • the manufacturing method of the molded object which has the fine uneven structure on the surface to transfer.
  • a mold in which surface turbidity is suppressed can be easily produced.
  • a molded object with a low haze can be manufactured.
  • the molded object which has the fine concavo-convex structure of this invention on the surface has a low haze.
  • the “pore” means a recess having a fine concavo-convex structure formed on an oxide film on the surface of an aluminum substrate.
  • the “interval between pores” means a center-to-center distance between adjacent pores.
  • the “projection” refers to a convex portion having a fine concavo-convex structure formed on the surface of the molded body.
  • the “fine concavo-convex structure” means a structure in which the average interval between the convex portions or the concave portions is nanoscale.
  • (Meth) acrylate” is a general term for acrylate and methacrylate.
  • Active energy rays mean visible light, ultraviolet rays, electron beams, plasma, heat rays (infrared rays, etc.) and the like.
  • the manufacturing method of the mold of this invention is a method which has the following process (a) and a process (b).
  • the method for producing the mold preferably further includes the following steps (c) to (e).
  • (A) A step of applying a voltage to the machined aluminum substrate and anodizing the surface of the aluminum substrate to form an oxide film.
  • (B) A step of removing at least a part of the oxide film formed in the step (a).
  • C) A step of forming an oxide film having a plurality of pores by anodizing the aluminum substrate after the step (b) or the following step (d).
  • D A step of removing a part of the oxide film formed in the step (c).
  • (E) A step of alternately repeating the step (c) and the step (d).
  • Step (a) is a first oxide film forming step in which a voltage is applied to the machined aluminum base material, and the surface of the aluminum base material is anodized to form an oxide film.
  • step (a) is performed, for example, as shown in FIG. 1, an oxide film 14 having a plurality of pores 12 is formed on the surface of the aluminum substrate 10.
  • An oxide film can be formed on a portion immersed in the electrolytic solution by immersing a part or all of the surface of the aluminum base material in the electrolytic solution and anodizing.
  • the oxide film formed at the initial stage of anodization has non-uniformity in the position and size of the pores, and there is no regularity. However, as the oxide film becomes thicker, the regularity of the pore arrangement gradually increases. Go.
  • the shape of the aluminum substrate is not particularly limited, and may be any shape as long as it can be used as a mold, such as a plate shape, a columnar shape, or a cylindrical shape.
  • a machined material is used as the aluminum substrate.
  • “machining” is to physically cut or polish the surface of an aluminum base material to make a mirror surface without electrolytic polishing.
  • the physical polishing also includes “tape polishing”.
  • the purity of the aluminum substrate is preferably 98% by mass or more, more preferably 99.0% by mass or more, further preferably 99.5% by mass or more, and most preferably 99.9% by mass or more.
  • the purity of aluminum is low, when anodized, an uneven structure having a size to scatter visible light may be formed due to segregation of impurities, or the regularity of pores obtained by anodization may be lowered.
  • an aluminum base material that is processed into a predetermined shape by adding magnesium to aluminum may be used.
  • the strength of aluminum is increased, which makes it easier to process.
  • the amount of magnesium added is preferably determined in consideration of the strength of aluminum and the haze of the molded body, and is usually about 0.1 to 2% by mass with respect to aluminum.
  • Examples of the electrolytic solution include an acidic aqueous solution or an alkaline aqueous solution, and an acidic aqueous solution is preferable.
  • Examples of the acidic aqueous solution include inorganic acids (such as sulfuric acid and phosphoric acid) and organic acids (such as oxalic acid, malonic acid, tartaric acid, succinic acid, malic acid, and citric acid). These acids may be used individually by 1 type, and may be used in combination of 2 or more type.
  • As the electrolytic solution one containing an organic acid is preferable, and one containing oxalic acid as a main component is particularly preferable.
  • the electrolytic solution contains an organic acid, it becomes easy to easily obtain a fine concavo-convex structure having a relatively large pore interval of 100 nm or more.
  • oxalic acid is the main component, it is easy to obtain a fine concavo-convex structure having a relatively large pore interval of 100 nm or more and a relatively high pore regularity.
  • the concentration of oxalic acid is preferably 0.7 M or less. When the concentration of oxalic acid exceeds 0.7M, the current value becomes too high, and the surface of the oxide film may become rough.
  • the temperature of the electrolytic solution is preferably 60 ° C. or lower, and more preferably 45 ° C. or lower. When the temperature of the electrolytic solution exceeds 60 ° C., a so-called “burn” phenomenon occurs, and the pores may be broken, or the surface may melt and the regularity of the pores may be disturbed.
  • the concentration of sulfuric acid is preferably 0.7M or less. If the concentration of sulfuric acid exceeds 0.7M, the current value may become too high to maintain a constant voltage.
  • the temperature of the electrolytic solution is preferably 30 ° C. or less, and more preferably 20 ° C. or less. When the temperature of the electrolytic solution exceeds 30 ° C., a so-called “burn” phenomenon occurs, and the pores may be broken or the surface may melt and the regularity of the pores may be disturbed.
  • a main acid determines the type and ratio of another acid according to the applied voltage.
  • oxalic acid that is preferably used in a voltage range around 40 V is used as the main acid (main component), and the type and ratio of acids that are normally used in the voltage range of 120 to 195 V, such as phosphoric acid, malonic acid, and tartaric acid, are appropriately selected.
  • oxalic acid is the main acid and phosphoric acid is the other acid.
  • the ratio of the main acid is 45 to 90 mol%, preferably 50 to 75 mol%, of all acids (100 mol%).
  • the concentration of the electrolytic solution cannot be defined unconditionally because the preferred range varies depending on the type of acid, but an example is shown for the case where oxalic acid is the main acid and phosphoric acid is the other acid.
  • the concentration of oxalic acid is preferably 0.3 to 1.5M, more preferably 0.3 to 1.0M, and still more preferably 0.3 to 0.8M. If the concentration of oxalic acid is within this range, the pore diameter formed in the oxide film when anodized in the voltage range of 70 to 130 V and the diameter of the depression formed on the aluminum substrate are relatively uniform. It becomes possible to keep it.
  • the concentration of phosphoric acid is not particularly limited as long as the concentration of oxalic acid in all acids (100 mol%) is 45 to 90 mol%. If the concentration of phosphoric acid is within this range, the current density flowing during anodic oxidation can be sufficiently suppressed. Low current density is effective not only in preventing defects caused by high current density called thermal runaway or burns, but also in forming an oxide film with a uniform thickness.
  • a voltage is applied to the aluminum base material to perform anodization treatment.
  • current jump an abrupt increase in current
  • the mold surface becomes clouded
  • the haze of the molded body obtained by transferring the fine uneven structure of the resulting mold to the surface of the molded body further increases, and the reflectance increases.
  • a high voltage for example, 60 V or more
  • the jumping of the current increases and the cloudiness on the mold surface becomes remarkable.
  • the voltage (V a [V]) immediately before the end of the step (a) and the voltage (V a [V]) from the start of voltage application until reaching the voltage (V a [V]) Anodization is performed by applying a voltage to the aluminum base so that the time (t a [second]) satisfies the following formula (i). 0.010 ⁇ V a / t a ⁇ 14 ⁇ (i)
  • V a / t a is 0.010 greater, it can shorten the time step (a), the mold productivity can be prevented from being lowered.
  • V a / t a is 14
  • the jump of current is generated is high voltage immediately after the voltage application is applied can be suppressed. Therefore, the cloudiness of the mold surface is suppressed, the haze of the molded product to which the fine uneven structure of the resulting mold is transferred can be suppressed, and a molded product having a low reflectance can be obtained.
  • the V a / t a is less than 0.010 ultra 6, and more preferably less than 0.010 Ultra 2.
  • a method for applying a voltage so as to satisfy the above formula (i) is not particularly limited.
  • an initial anodic oxidation hereinafter also referred to as “initial anodic oxidation”
  • anodization is finally performed at a voltage higher than the initial anodization.
  • the voltage during initial anodization in the step (a) (hereinafter also referred to as “initial voltage”) is preferably 50 V or less, more preferably 45 V or less, and even more preferably 40 V or less.
  • initial voltage is preferably 50 V or less, more preferably 45 V or less, and even more preferably 40 V or less.
  • Voltage at the time of final anodic oxidation (hereinafter also referred to as “final anodic oxidation”) in step (a), that is, voltage (V a [V]) immediately before the end of step (a) (hereinafter referred to as “final voltage”) Is preferably a value higher than the initial voltage, specifically 40 V or higher, more preferably 60 V or higher, and even more preferably 65 V or higher. If the final anodic oxidation is performed at a voltage of 40 V or higher, an oxide film having highly regular pores with an interval of 100 nm or more is easily formed.
  • an oxide film having a relatively large pore interval specifically, an interval larger than 100 nm and a high regularity can be formed.
  • the upper limit value of the final voltage is not particularly limited, but is preferably 180 V or less.
  • the final anodic oxidation time for example, the time for maintaining a voltage of 60 V or more is preferably 1.5 minutes or more, and more preferably 2 minutes or more.
  • limit especially about an upper limit, From a viewpoint which can manufacture a mold in a short time, 10 minutes or less are preferable.
  • the voltage when the final anodization is performed at a voltage higher than the initial anodization, the voltage may be increased stepwise from the initial anodization to the final anodization, or the voltage may be continuously increased. However, it is preferable to increase the voltage stepwise in terms of easy control of the voltage. Also, when increasing the voltage stepwise, after initial anodization at a constant voltage for a certain period, the voltage is increased to the final voltage and the final anodization is performed at a constant voltage for a certain time. Alternatively, there may be a stage (another anodic oxidation) in which anodic oxidation is performed for a certain time at another constant voltage between the initial anodizing and the final anodizing.
  • the voltage may increase stepwise or continuously, or may decrease, or the voltage may be reduced to 0 V in the middle. It may be.
  • the voltage becomes 0 V during the anodic oxidation, the electric field applied to the anode is eliminated. Therefore, when the voltage is raised and the electric field is applied again after the voltage becomes 0 V in the middle, the aluminum base material and the oxide film may be partially separated, and the thickness of the oxide film may become uneven. . Therefore, it is preferable to perform anodization so that the voltage does not become 0 V in the middle.
  • the voltage may be increased instantaneously or gradually when increasing from an arbitrary voltage to the next voltage.
  • the boosting speed when the voltage is continuously increased.
  • the current flowing through the aluminum base material increases instantaneously, which may cause burns.
  • the pressurization speed is too slow, the processing time of the mold becomes long, and the productivity of the mold may be impaired, or an excessive oxide film may be formed thick while the voltage is increased.
  • anodization may be performed at a constant voltage from the beginning to the end.
  • the amount of electricity consumed in the anodic oxidation at the highest voltage to be finally applied is 0.9 to 20 A ⁇ s / cm 2 . If the voltage is changed during the anodic oxidation, the pores near the interface between the aluminum substrate and the oxide film are rearranged according to the change in voltage. If the amount of electricity consumed by anodic oxidation at the maximum voltage is 0.9 A ⁇ s / cm 2 or more, the thickness of the oxide film formed after reaching the maximum voltage is proportional to the maximum voltage of the pores. The thickness is sufficient to rearrange at intervals.
  • the oxide film formed in step (a) does not become too thick, and the crystal grains of the aluminum base material You can make the steps in the world less noticeable. If the level difference of the crystal grain boundary becomes so large that it can be visually recognized, the level difference of the crystal grain boundary is also transferred when the fine uneven structure of the obtained mold is transferred to the surface of the molded body. As a result, macroscopic unevenness that can be visually recognized is formed on the transfer surface, which may cause a defective appearance of the obtained molded body.
  • the “maximum voltage” is the highest voltage value in the step (a) and coincides with the voltage (final voltage) immediately before the end of the step (a).
  • the current density immediately after voltage application is preferably 20 mA / cm 2 or less, more preferably 10 mA / cm 2 . If the current density immediately after the voltage application is 20 mA / cm 2 or less, that is, if the current jump is suppressed, the cloudiness of the mold surface is suppressed, and the haze of the molded body to which the fine concavo-convex structure of the resulting mold is transferred increases. Can be further suppressed, and a molded product having a low reflectance can be obtained more easily. In particular, if the current density immediately after voltage application is 10 mA / cm 2 or less, the cloudiness of the mold surface can be further suppressed, and the haze of the molded body can be further suppressed from increasing.
  • immediate after voltage application refers to the moment when current flows to the aluminum substrate when a voltage is applied to the aluminum substrate installed in the manufacturing facility.
  • performing anodic oxidation so that the current density immediately after voltage application is a predetermined value or less is referred to as “current limitation”.
  • current limitation Normally, unless a special pretreatment is performed, only a thin oxide film formed by air oxidation is formed on the surface of the aluminum substrate at the stage of installation in the production facility. When a voltage is applied to such an aluminum substrate, the current value at the moment of flowing out to the aluminum substrate is remarkably increased, and the mold is likely to become cloudy.
  • the time when the current value rapidly increases immediately after the voltage is applied is referred to as “immediately after the voltage application”.
  • the voltage application It is preferable that the current density for 1 minute after starting is set to 20 mA / cm 2 or less.
  • the current density for 10 seconds after starting the application of a voltage shall be 20 mA / cm ⁇ 2 > or less.
  • the current density after the current is limited that is, after the oxide film derived from the anodic oxidation is formed on the surface of the aluminum substrate is not particularly limited, and may be maintained at 20 mA / cm 2 or less. And may exceed 20 mA / cm 2 . However, the current density tends to increase as the voltage increases.
  • the current density can be adjusted by controlling the current with an anodizing device.
  • the current density may be lowered when the temperature of the electrolytic solution is lowered.
  • the temperature of the electrolytic solution tends to increase due to Joule heat due to the applied voltage and the amount of current flowing.
  • the electrical conductivity also changes, which may cause the current density to fluctuate. Therefore, it is preferable to keep the temperature of the electrolyte constant during anodization.
  • the temperature of the electrolytic solution is preferably 8 ° C. or higher and more preferably 10 ° C. or higher from the viewpoint that the temperature of the electrolytic solution can be easily adjusted and maintained.
  • the concentration of the electrolytic solution may change due to evaporation.
  • the temperature of the electrolytic solution is preferably 30 ° C. or less from the viewpoint of suppressing the concentration change of the electrolytic solution.
  • the aluminum substrate 10 is anodized in the treatment tank 50 filled with the electrolytic solution L.
  • the electrolytic solution L in the processing tank 50 is supplied from the supply nozzle 52, overflows, and is stored in the sub tank 54 installed in the lower part of the processing tank 50.
  • the electrolyte L stored in the sub tank 54 is sucked out from the pump 56, passes through the heat exchanger 58, adjusted to a predetermined temperature, and then supplied again from the supply nozzle 52 to the processing tank 50. In this way, the aluminum substrate 10 is anodized while the electrolyte L is circulated.
  • the bottom of the processing tank 50 is preferably in a curved shape in accordance with the curvature of the aluminum base material 10. It is preferable that the supply nozzle 52 is disposed in the upper part of the processing tank 50.
  • the electrolytic solution L is preferably supplied from the supply nozzle 52 toward the curved bottom of the processing tank 50 and overflows from a position facing the supply nozzle 52.
  • the heat exchanger 58 is supplied with refrigerant from the refrigerator 60 and adjusts the temperature of the electrolyte L.
  • the refrigerant discharged from the heat exchanger 58 returns to the refrigerator 60, is cooled to a predetermined temperature, and is supplied to the heat exchanger 58 again.
  • the flow rate of the refrigerant supplied from the refrigerator 60 is controlled by the control valve 62.
  • the control valve 62 By controlling the flow rate of the refrigerant by the control valve 62, the temperature of the electrolyte L can be adjusted.
  • Examples of the control valve 62 include an electromagnetic valve whose valve opening is only on / off, a motor valve that can adjust the valve opening, and a control valve.
  • the temperature control of the electrolytic solution L is performed based on the temperature at an arbitrary location (for example, the temperature measurement point 64) in the processing tank 50, the response to a temperature increase immediately after anodization is accelerated.
  • the temperature of the electrolyte L supplied from the supply nozzle 52 becomes difficult to be stabilized due to temperature fluctuation due to the disturbance of the flow of the electrolyte L in the treatment tank 50, the electrolyte temperature tends to vibrate.
  • the temperature control of the electrolytic solution L is performed based on the temperature immediately after the electrolytic solution L comes out of the heat exchanger 58 (for example, the temperature measurement point 66), the temperature of the electrolytic solution L supplied to the treatment tank 50 is stable. However, the responsiveness due to the temperature change immediately after the start of anodic oxidation becomes extremely slow, and the temperature rise of the electrolytic solution L in the treatment tank 50 tends to increase.
  • the controller 68 capable of cascade control controls the electrolyte temperature (MASTER) in the processing tank 50 to the set temperature and immediately after leaving the heat exchanger 58. By measuring the temperature (SLAVE), it is possible to stabilize the temperature of the electrolyte L supplied from the supply nozzle 52 while maintaining high responsiveness of the temperature increase immediately after the anodic oxidation. Control becomes possible.
  • the thickness of the oxide film formed in the step (a) is preferably 0.5 to 10 ⁇ m. If the thickness of the oxide film is within this range, when the oxide film is removed in the step (b) described later, the machining marks on the surface of the aluminum substrate are sufficiently removed, and the step of the crystal grain boundary is removed. Is not large enough to be visible. Since the transfer of macro unevenness derived from the mold to the surface of the molded body can be avoided, it is suitable for use as a mold.
  • the thickness of the oxide film is proportional to the total amount of electricity consumed in anodic oxidation.
  • the thickness of the oxide film and the thickness of the oxide film formed by the initial anodic oxidation and the thickness of the oxide film formed by the final anodic oxidation can be controlled.
  • Step (b) is an oxide film removing step for removing at least part of the oxide film formed in step (a). For example, when the oxide film is completely removed in the step (b), the entire oxide film 14 is removed and the recess 16 is exposed on the surface of the aluminum substrate 10 as shown in FIG.
  • a depression made of the barrier layer at the bottom of the oxide film or a depression corresponding to the shape of the barrier layer is formed on the surface of the aluminum substrate.
  • the depressions formed by removing a part or all of the oxide film in the step (b) are also regularly arranged.
  • a method for removing a part or all of the oxide film 14 there is a method of immersing in a solution that selectively dissolves alumina without dissolving aluminum.
  • a solution that selectively dissolves alumina without dissolving aluminum.
  • examples of such a solution include a chromic acid / phosphoric acid mixed solution.
  • Step (c) is a second oxide film forming step in which, after the step (b) or the following step (d), the aluminum substrate is anodized again to form an oxide film having a plurality of pores.
  • the step (c) is performed after the step (b), for example, as shown in FIG. 1, the aluminum substrate 10 is anodized, and the oxide film 14 having a plurality of pores 12 is formed again.
  • step (c) is performed after the following step (d), a new oxide film is formed under the existing oxide film, and new pores extending downward from the bottom of the existing pores are formed. .
  • the depression acts as a pore generation point, and a new oxide film has a pore corresponding to the depression.
  • the dents are regularly arranged, regularly arranged pores are formed at the initial stage of anodization, that is, even when the newly formed oxide film is thin. The pore depth is adjusted, and regularly arranged pores can be easily manufactured.
  • Examples of the electrolytic solution include an acidic aqueous solution or an alkaline aqueous solution, and an acidic aqueous solution is preferable.
  • Examples of the acidic aqueous solution include inorganic acids (such as sulfuric acid and phosphoric acid) and organic acids (such as oxalic acid, malonic acid, tartaric acid, succinic acid, malic acid, and citric acid). These acids may be used individually by 1 type, and may be used in combination of 2 or more type.
  • As the electrolytic solution one containing an organic acid is preferable, and one containing oxalic acid as a main component is particularly preferable.
  • the electrolytic solution contains an organic acid, it becomes easy to easily obtain a fine concavo-convex structure having a relatively large pore interval of 100 nm or more.
  • oxalic acid is the main component, it is easy to obtain a fine concavo-convex structure having a relatively large pore interval of 100 nm or more and a relatively high pore regularity.
  • the concentration of oxalic acid is preferably 0.7 M or less. When the concentration of oxalic acid exceeds 0.7M, the current value becomes too high, and the surface of the oxide film may become rough.
  • the temperature of the electrolytic solution is preferably 60 ° C. or lower, and more preferably 45 ° C. or lower. When the temperature of the electrolytic solution exceeds 60 ° C., a so-called “burn” phenomenon occurs, and the pores may be broken, or the surface may melt and the regularity of the pores may be disturbed.
  • the concentration of sulfuric acid is preferably 0.7M or less. If the concentration of sulfuric acid exceeds 0.7M, the current value may become too high to maintain a constant voltage.
  • the temperature of the electrolytic solution is preferably 30 ° C. or less, and more preferably 20 ° C. or less. When the temperature of the electrolytic solution exceeds 30 ° C., a so-called “burn” phenomenon occurs, and the pores may be broken or the surface may melt and the regularity of the pores may be disturbed.
  • the electrolytic solution in step (c) may be the same as or different from the electrolytic solution used in step (a).
  • the ratio of the main acid is not restrict
  • the condition of the applied voltage in the step (c) is preferably 40 V or more, more preferably 60 V or more, further preferably 70 to 180 V, and most preferably 80 to 120 V.
  • the voltage is 60 V or higher, an oxide film having a relatively large pore interval (over 100 nm) can be easily formed.
  • the voltage is 180 V or less, anodization can be performed with a simple device without using a special method such as a device for maintaining the electrolyte at a low temperature or a jet of cooling liquid on the back surface of the aluminum substrate.
  • V c / t c is more than 2, the time of the step (c) can be shortened, the productivity of the mold can be prevented from being lowered, and the depression array obtained in the step (b) is maintained. it can.
  • V c / t c is less than 14, it is possible to suppress the occurrence of a current jump due to the application of a high voltage immediately after voltage application in step (c). Therefore, the cloudiness of the mold surface is suppressed, the haze of the molded product to which the fine uneven structure of the resulting mold is transferred can be suppressed, and a molded product having a low reflectance can be obtained.
  • V c / t c is preferably more than 2 and less than 10, more preferably more than 2 and less than 7.
  • step (c) is the same as the applied voltage in the final anodic oxidation in the step (a) because it is easy to adjust the depth of the pores while maintaining the interval between the pores obtained in the step (a). The same is preferred.
  • anodic oxidation may be finally performed at a higher voltage than the initial anodic oxidation.
  • the voltage may be increased stepwise from the initial anodic oxidation to the final anodic oxidation, or the voltage may be increased continuously, but the anode is increased while gradually increasing the voltage. Oxidation is preferably performed.
  • the energization time in step (c) is preferably 3 to 60 seconds. If the energization time is 3 seconds or more, the thickness of the finally obtained oxide film is easily set to 0.01 ⁇ m or more, which will be described later. In the oxide film having a thickness of less than 0.01 ⁇ m, the depth of the pore is less than 0.01 ⁇ m, and when used as a mold, the obtained molded product may not exhibit sufficient antireflection performance. When the energization time is 60 seconds or less, the thickness of the finally obtained oxide film is easily set to 0.8 ⁇ m or less, which will be described later. In the case of an oxide film having a thickness of more than 0.8 ⁇ m, the pores become deeper as the oxide film becomes thicker. Therefore, when it is used as a mold, there is a risk of causing a mold release failure.
  • the current density for 10 seconds immediately after the voltage application is 20 mA / cm 2 or less, more preferably 10 mA / cm 2 or less. Good. If the current density immediately after voltage application is 20 mA / cm 2 or less, that is, if the jumping of the current is suppressed, the cloudiness of the mold surface can be further suppressed, and the haze of the molded product to which the fine uneven structure of the resulting mold is transferred is increased. Can be more effectively suppressed, and a molded article having a lower reflectance can be obtained.
  • step (c) there is no particular limitation on the current density after the current is limited, that is, after the oxide film derived from the anodic oxidation is formed on the aluminum substrate surface, and may be maintained at 20 mA / cm 2 or less. And may exceed 20 mA / cm 2 .
  • the current density tends to increase as the voltage increases.
  • the anodic oxidation conditions (type of electrolyte, concentration, temperature, etc.) in the step (c) are not necessarily the same as those in the step (a), and may be changed as appropriate to easily adjust the thickness of the oxide film. Good.
  • Step (d) is a step of removing a part of the oxide film formed in step (c).
  • the step (d) is performed after the step (c), for example, as shown in FIG. 1, a part of the oxide film 14 formed in the step (c) is removed, and the pore diameter of the pores 12 is enlarged. Therefore, the step (d) is also a hole diameter enlargement processing step.
  • a method for removing a part of the oxide film that is, for expanding the pore diameter
  • a method in which the pores formed in the oxide film are expanded by etching is immersed in a solution dissolving alumina.
  • a solution dissolving alumina examples include a phosphoric acid aqueous solution of about 5.0% by mass. The longer the immersion time, the larger the pore diameter.
  • Step (e) is a repeated step of adjusting the depth and shape of the pores by alternately repeating step (c) and step (d).
  • step (c) and step (d) By alternately repeating the step (c) and the step (d), for example, as shown in FIG. 1, the shape of the pores 12 can be tapered so that the diameter gradually decreases from the opening in the depth direction. As a result, it is possible to obtain a mold 18 having an oxide film 14 composed of a plurality of periodic pores 12 formed on the surface.
  • the conditions of the step (c) and the step (d) for example, the electrolytic solution concentration and oxidation time for anodization, the time for the pore size enlargement process, and the temperature and concentration of the solution used for the pore size enlargement treatment, An oxide film having fine pores can be formed. What is necessary is just to set these conditions suitably according to the use etc. of the molded object manufactured using a mold.
  • the number of times of the step (c) is preferably at least 3 times including the step (c) performed before the step (e) from the viewpoint that the smoother taper shape can be obtained as the number of times increases.
  • the number of times of the step (d) is preferably at least three times including the step (d) performed before the step (e) because the smoother taper shape can be obtained as the number of times increases.
  • the number of times is less than 2 times, the pore diameter tends to decrease discontinuously.
  • an antireflection article such as an antireflection film
  • the reflectance is reduced. The effect may be inferior.
  • Step (e) may be completed in step (c) or may be completed in step (d).
  • Deeper pores can be obtained as the anodic oxidation in the step (c) and the step (e) is performed for a long time, but when used as a mold for transferring the fine concavo-convex structure, it is finally obtained through the step (e).
  • the thickness of the resulting oxide film may be about 0.01 to 0.8 ⁇ m.
  • the anodic oxidation conditions (type of electrolyte, concentration, temperature, etc.) other than the voltage in the step (c) are not necessarily matched with those in the step (a), and the thickness of the oxide film can be changed as appropriate for easy adjustment. May be.
  • the step (c) and the step (d) are repeated, it is not necessary to perform them under the same conditions as the previous steps, and various conditions may be appropriately changed.
  • mold manufacturing method of the present invention tapered pores whose diameter gradually decreases from the opening in the depth direction are formed on the surface of the aluminum base material in a relatively regular arrangement.
  • a mold having an oxide film (anodized porous alumina) having a fine relief structure formed on the surface can be produced.
  • the average interval between adjacent pores in the mold is preferably not more than the wavelength of visible light, and more preferably 150 to 600 nm. If the average interval between the pores is 150 nm or more, the scratch resistance can be improved without impairing the antireflection performance of a molded body (antireflection article, etc.) obtained by transferring the surface of the mold, and the protrusions can be integrated. It is possible to suppress whitening of the molded body due to the above. If the average interval between the pores is 600 nm or less, the surface of the molded body (transfer surface) obtained by transferring the surface of the mold is less likely to scatter visible light and exhibit a sufficient antireflection function. Suitable for manufacturing anti-reflective articles such as anti-reflection films.
  • the average interval between the pores is 600 nm or less, and the depth of the pores is preferably 100 nm or more, preferably 150 nm or more. Is more preferable.
  • the antireflection performance of the antireflection article may not be sufficient.
  • the surface on which the fine concavo-convex structure of the mold is formed may be subjected to a release treatment so that the release is easy.
  • the release treatment method include a method of coating a phosphate ester polymer, a silicone polymer, a fluorine polymer, a method of depositing a fluorine compound, a coating of a fluorine surface treatment agent or a fluorine silicone surface treatment agent. Methods and the like.
  • step (a) in the first-stage anodization step (step (a)), the voltage (V a [V]) immediately before the step (a) is finished, The voltage is applied to the aluminum base so that the time (t a [second]) from the start of voltage application to the time when the voltage (V a [V]) is reached satisfies the above formula (i). Anodizing is performed. By performing anodic oxidation in this way, the oxide film formed first can be formed while suppressing the jump of current immediately after voltage application.
  • the machined aluminum base material is anodized, the generation of white stripes can be suppressed, and a mold in which surface turbidity is suppressed can be manufactured.
  • this mold it is possible to obtain a molded body having a fine concavo-convex structure on the surface, having a low haze and a sufficiently reduced reflectance.
  • anodization is finally performed at 60 V or more, a mold in which the interval between the pores is relatively large and surface turbidity is suppressed can be manufactured.
  • the cloudiness of the mold surface can be suppressed.
  • the number of processes increases and is complicated.
  • the mold manufacturing method of the present invention the cloudiness on the mold surface can be suppressed only by limiting the current in the first stage anodizing step (step (a)). Therefore, if it is this invention, the mold by which surface cloudiness was suppressed can be manufactured simply.
  • step (a) if the current density immediately after voltage application is 20 mA / cm 2 or less, or the initial anodic oxidation is performed at 50 V or higher, and finally a voltage higher than the initial anodic oxidation (for example, 60 V or higher). )),
  • a voltage higher than the initial anodic oxidation for example, 60 V or higher.
  • the method for producing a molded product having a fine concavo-convex structure on the surface thereof according to the present invention comprises a fine concavo-convex structure comprising a plurality of pores formed on the surface of a mold obtained by the mold production method of the present invention. It is the method of transferring to the surface of the.
  • the inverted structure (protrusion) of the fine concavo-convex structure of the mold is transferred on the surface in a relationship between the key and the keyhole.
  • an uncured active energy ray-curable resin composition is filled between the mold and the molded body (transparent substrate), and the mold
  • a method of releasing the mold after irradiating the active energy ray to cure the active energy ray-curable resin composition is preferable.
  • cured material of an active energy ray curable resin composition was formed in the surface of a molded object main body can be manufactured.
  • the fine concavo-convex structure of the obtained molded body is an inverted structure of the fine concavo-convex structure of the mold.
  • the molded body is preferably one that does not significantly inhibit the irradiation of active energy rays because the irradiation of active energy rays is performed through the molded body.
  • Examples of the material of the molded body include polyester resin (polyethylene terephthalate, polybutylene terephthalate, etc.), polymethacrylate resin, polycarbonate resin, vinyl chloride resin, ABS resin, styrene resin, glass and the like.
  • the method using the active energy ray-curable resin composition does not require heating or cooling after curing as compared with the method using the thermosetting resin composition, the fine uneven structure can be transferred in a short time, Suitable for mass production.
  • a method of filling the active energy ray-curable resin composition a method in which the active energy ray-curable resin composition is supplied between the mold and the molded body (transparent substrate) and then rolled and filled, active energy ray curing is performed. Examples include a method of laminating a molded body main body on a mold coated with a curable resin composition, a method of previously coating an active energy ray-curable resin composition on a molded body main body, and laminating the mold body.
  • the active energy ray-curable resin composition contains a polymerization reactive compound and an active energy ray polymerization initiator.
  • a non-reactive polymer or active energy ray sol-gel reactive component may be contained depending on the application, and a thickener, leveling agent, ultraviolet absorber, light stabilizer, heat stabilizer, solvent Various additives such as inorganic fillers may be included.
  • polymerization reactive compound examples include monomers, oligomers, and reactive polymers having a radical polymerizable bond and / or a cationic polymerizable bond in the molecule.
  • monomer having a radical polymerizable bond examples include a monofunctional monomer and a polyfunctional monomer.
  • Monofunctional monomers having radical polymerizable bonds include (meth) acrylate derivatives (methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) Acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, alkyl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, Cyclohexyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, glycidyl (meth) acrylate, tetrahydrofurfuryl (
  • bifunctional monomers ethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, isocyanuric acid ethylene oxide modified di (meth) acrylate, triethylene glycol di) (Meth) acrylate, diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate, 1,3-butylene Glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate, 2,2-bis (4- (meth) acryloxypolyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxyethoxy) Enyl) propane, 2,2-bis (4- (3- (meth) acryloxy-2-hydroxypropoxy) phenyl) propane
  • Examples of the monomer having a cationic polymerizable bond include monomers having an epoxy group, an oxetanyl group, an oxazolyl group, a vinyloxy group, and the like, and a monomer having an epoxy group is particularly preferable.
  • Examples of the oligomer or reactive polymer having a radical polymerizable bond and / or a cationic polymerizable bond in the molecule include unsaturated polyesters such as a condensate of unsaturated dicarboxylic acid and polyhydric alcohol; polyester (meth) acrylate, poly Ether (meth) acrylates, polyol (meth) acrylates, epoxy (meth) acrylates, urethane (meth) acrylates, cationic polymerization type epoxy compounds, homopolymers of the above-mentioned monomers having radically polymerizable bonds in the side chains, and the like Can be mentioned.
  • unsaturated polyesters such as a condensate of unsaturated dicarboxylic acid and polyhydric alcohol
  • the active energy ray polymerization initiator a known polymerization initiator can be used, and it is preferable to select appropriately according to the type of the active energy ray used when the active energy ray curable resin composition is cured.
  • photoinitiators When using a photocuring reaction, photoinitiators include carbonyl compounds (benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyl, benzophenone, p-methoxybenzophenone, 2,2-di- Ethoxyacetophenone, ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone, methylphenylglyoxylate, ethylphenylglyoxylate, 4,4′-bis (dimethylamino) benzophenone, 2-hydroxy-2-methyl-1-phenylpropane -1-one, etc.), sulfur compounds (tetramethylthiuram monosulfide, tetramethylthiuram disulfide, etc.), 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2, , 6-trimethyl benzoyl) -
  • polymerization initiators include benzophenone, 4,4-bis (diethylamino) benzophenone, 2,4,6-trimethylbenzophenone, methyl orthobenzoylbenzoate, 4-phenylbenzophenone, t-butylanthraquinone 2-ethylanthraquinone, thioxanthone (2,4-diethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, etc.), acetophenone (diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, Benzyldimethyl ketal, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- ( -Morpholinophenyl) -butanone), benzophenone, 4,4-bis
  • the content of the active energy ray polymerization initiator in the active energy ray curable resin composition is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymerization reactive compound.
  • the active energy ray polymerization initiator is less than 0.1 part by mass, the polymerization is difficult to proceed.
  • the active energy ray polymerization initiator exceeds 10 parts by mass, the cured resin may be colored or the mechanical strength may be lowered.
  • non-reactive polymer examples include acrylic resins, styrene resins, polyurethane resins, cellulose resins, polyvinyl butyral resins, polyester resins, and thermoplastic elastomers.
  • active energy ray sol-gel reactive composition examples include an alkoxysilane compound and an alkyl silicate compound.
  • alkoxysilane compound examples include those represented by R x Si (OR ′) y .
  • tetramethoxysilane tetra-iso-propoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, methyltriethoxysilane, methyl
  • tripropoxysilane methyltributoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, trimethylpropoxysilane, and trimethylbutoxysilane.
  • alkyl silicate compound examples include those represented by R 1 O [Si (OR 3 ) (OR 4 ) O] z R 2 .
  • R 1 to R 4 each represents an alkyl group having 1 to 5 carbon atoms, and z represents an integer of 3 to 20.
  • Specific examples include methyl silicate, ethyl silicate, isopropyl silicate, n-propyl silicate, n-butyl silicate, n-pentyl silicate, acetyl silicate and the like.
  • a molded body having a fine concavo-convex structure on its surface is manufactured as follows using, for example, a manufacturing apparatus shown in FIG. Active energy ray curability from the tank 22 between a roll-shaped mold 20 having a fine concavo-convex structure (not shown) on the surface and a strip-shaped film 42 (molded body) that moves along the surface of the roll-shaped mold 20.
  • the resin composition 38 is supplied.
  • the film 42 and the active energy ray curable resin composition 38 are nipped between the roll-shaped mold 20 and the nip roll 26 whose nip pressure is adjusted by the pneumatic cylinder 24, and the active energy ray curable resin composition 38 is
  • the film 42 and the roll-shaped mold 20 are uniformly distributed, and at the same time, the concave portions of the fine concavo-convex structure of the roll-shaped mold 20 are filled.
  • the active energy ray curable resin composition 38 is irradiated through the film 42 from the active energy ray irradiation device 28 installed below the roll-shaped mold 20 to cure the active energy ray curable resin composition 38.
  • the cured resin layer 44 to which the fine uneven structure on the surface of the roll-shaped mold 20 is transferred is formed.
  • a molded body 40 as shown in FIG. 4 is obtained.
  • Examples of the active energy ray irradiation device 28 include a high-pressure mercury lamp and a metal halide lamp.
  • the irradiation amount of the active energy ray may be an energy amount that allows the active energy ray-curable resin composition to cure, and is usually about 100 to 10,000 mJ / cm 2 .
  • the molded body 40 manufactured in this way has a cured resin layer 44 formed on the surface of a film 42 (molded body main body).
  • the cured resin layer 44 is a film made of a cured product of the active energy ray curable resin composition, and has a fine uneven structure on the surface.
  • the fine uneven structure on the surface of the molded body 40 is formed by transferring the fine uneven structure on the surface of the oxide film, and is an active energy ray-curable resin composition.
  • a plurality of protrusions 46 made of a cured product is made of a cured product.
  • the fine concavo-convex structure is preferably a so-called moth-eye structure in which a plurality of protrusions (convex portions) having a substantially conical shape or a pyramid shape are arranged. It is known that the moth-eye structure in which the distance between the protrusions is less than or equal to the wavelength of visible light is an effective anti-reflection measure by continuously increasing the refractive index from the refractive index of air to the refractive index of the material. It has been.
  • the molded body having a fine concavo-convex structure on the surface exhibits various performances such as antireflection performance and water repellency performance by the fine concavo-convex structure on the surface.
  • an antireflection film for example, an object such as an image display device (TV, mobile phone display, etc.), display panel, meter panel, etc. It can be used by sticking to the surface or insert molding.
  • the molded body having a fine concavo-convex structure on its surface is a three-dimensional shape
  • an antireflection article is manufactured using a molded body (transparent substrate) having a shape according to the application, and this is applied to the surface of the object. It can also be used as a member that constitutes.
  • the object when the object is an image display device, not only the surface thereof but also a molded body having a fine uneven structure on the surface may be attached to the front plate, or the front plate itself may be It can also be comprised from the molded object which has an uneven
  • the surface of a rod lens array attached to a sensor array that reads an image, a cover glass of an image sensor such as a FAX, a copying machine, or a scanner, or a contact glass on which a document of a copying machine is placed has a fine uneven structure on the surface.
  • the body may be used.
  • the molded body having a fine concavo-convex structure on the surface of a light receiving portion of an optical communication device such as visible light communication signal reception sensitivity can be improved.
  • the molded object which has a fine concavo-convex structure on the surface can be developed for optical uses such as an optical waveguide, a relief hologram, an optical lens, and a polarization separation element, and for use as a cell culture sheet, in addition to the uses described above.
  • the fine concavo-convex structure on the mold surface obtained by the mold producing method of the present invention is transferred to the surface of the molded article main body. Therefore, a molded body having a low haze (specifically, 5% or less) and a sufficiently reduced reflectance can be produced. Moreover, according to this invention, the molded object which has the reverse structure of the fine concavo-convex structure of this mold on the surface can be simply manufactured in one process by using the mold obtained with the manufacturing method of the mold of this invention.
  • the molded object which has a fine uneven structure on the surface is not limited to the molded object 40 of the example of illustration.
  • the fine concavo-convex structure may be directly formed on the surface of the film 42 by the thermal imprint method without providing the cured resin layer 44.
  • the fine uneven structure is formed on the surface of the cured resin layer 44 from the viewpoint that the fine uneven structure can be efficiently formed using the roll-shaped mold 20.
  • step (a) the change in voltage over time was recorded with a data logger (“ZR-RX40” manufactured by OMRON Corporation) at 1 second intervals.
  • the time (t a [second]) from the start of voltage application until the final voltage (the voltage (V a [V]) immediately before the end of step (a) is reached) is measured, and V a / t a was determined.
  • Each cross-sectional sample was observed at a magnification of 50,000 times, and the depths of 10 pores were measured and averaged within the observation range. This measurement was performed at two points, and the average value of each observation point was further averaged to determine the average depth of the pores.
  • Example 1 Lump-like aluminum having a purity of 99.97% by mass was cut into a roll having a diameter of 200 mm and a width of 320 mm, and the surface was cut into a mirror surface, which was used as an aluminum substrate.
  • Table 1 shows the material of the base material. In the table, “Al” is aluminum, and “3N7” represents the purity of aluminum, which means a purity of 99.97% by mass.
  • step (a) Voltage and time in the step (a), 1 minute of the current density and the current from the start of the voltage application time to reach the final voltage and V a / t a, the type of electrolyte used in step (a) ( These are hereinafter referred to as “anodizing conditions”). Moreover, the external appearance of the aluminum base material surface after completion
  • Step (e) The step (c) and the step (d) were further alternately repeated 4 times. Finally, step (d) was performed. That is, the process (c) was performed 5 times in total, and the process (d) was performed 5 times in total.
  • the mold was washed with deionized water, and water on the surface was removed by air blowing to obtain a mold in which an oxide film having substantially conical pores with an average interval of 180 nm and an average depth of about 230 nm was formed.
  • the mold thus obtained was subjected to mold release treatment by immersing it in an aqueous solution of TDP-8 (manufactured by Nikko Chemicals Co., Ltd.) diluted to 0.1% by mass for 10 minutes and air drying overnight.
  • the active energy ray-curable resin composition having the following composition between the mold subjected to the mold release treatment and the acrylic film (“Acryprene HBS010” manufactured by Mitsubishi Rayon Co., Ltd.) which is the molded body (transparent substrate). Then, the active energy ray-curable resin composition was cured by irradiating ultraviolet rays with an integrated light quantity of 1000 mJ / cm 2 with a high-pressure mercury lamp. Thereafter, the mold was peeled off to obtain a molded body (film) composed of a molded body and a cured product of the cured composition.
  • Active energy ray-curable resin composition Dipentaerythritol hexaacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.): 25 parts by mass Pentaerythritol triacrylate (Daiichi Kogyo Seiyaku Co., Ltd.): 25 parts by mass, Ethylene oxide modified dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.): 25 parts by mass Polyethylene glycol diacrylate (manufactured by Toagosei Co., Ltd.): 25 parts by mass, 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF): 1 part by mass, Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (BASF): 0.5 mass, Polyoxyethylene alkyl (12-15) ether phosphoric acid (manufactured by Nippon Chemical Sales Co
  • Example 2 A mold was produced in the same manner as in Example 1 except that the anodic oxidation conditions in step (a) were changed as shown in Table 1, and a molded article was produced using the obtained mold.
  • Table 1 shows the anodic oxidation conditions in the step (a), the appearance evaluation results of the surface of the aluminum substrate after the completion of the step (a), and the measurement results of the haze of the molded body.
  • “Oxalic acid / phosphoric acid” in the table is a mixed aqueous solution prepared by adding phosphoric acid to a 0.3M oxalic acid aqueous solution so that the phosphoric acid concentration becomes 0.1M.
  • Example 3 Lump-like aluminum in which magnesium equivalent to 1% by mass is added to aluminum having a purity of 99.996% by mass is cut into a roll having a diameter of 200 mm and a width of 320 mm, and the surface is cut into a mirror surface, which is used as an aluminum substrate. Using this aluminum substrate, a mold was produced in the same manner as in Example 1 except that the anodizing conditions in step (a) were changed as shown in Table 1, and a molded body was obtained using the obtained mold. Manufactured. Table 1 shows the anodic oxidation conditions in the step (a), the appearance evaluation results of the surface of the aluminum substrate after the completion of the step (a), and the measurement results of the haze of the molded body. In the table, “4N6” represents the purity of aluminum and means a purity of 99.996% by mass. “+ Mg (1%)” means that 1% by mass of magnesium was added to aluminum.
  • Example 4 Lump-like aluminum in which magnesium equivalent to 1% by mass is added to aluminum having a purity of 99.996% by mass is cut into a roll having a diameter of 200 mm and a width of 320 mm, and the surface is cut into a mirror surface, which is used as an aluminum substrate. Using this aluminum substrate, the current was limited so that the current density for 1 minute after starting the application of voltage was 19.9 mA / cm 2 .
  • a mold was produced in the same manner as in Example 1 except that other anodic oxidation conditions in the step (a) were changed as shown in Table 1, and a molded article was produced using the obtained mold. Table 1 shows the anodic oxidation conditions in the step (a), the appearance evaluation results of the surface of the aluminum substrate after the completion of the step (a), and the measurement results of the haze of the molded body.
  • Example 5 The current was limited so that the current density for 1 minute from the start of voltage application was 19.9 mA / cm 2 .
  • a mold was produced in the same manner as in Example 1 except that other anodic oxidation conditions in the step (a) were changed as shown in Table 1, and a molded article was produced using the obtained mold.
  • Table 1 shows the anodic oxidation conditions in the step (a), the appearance evaluation results of the surface of the aluminum substrate after the completion of the step (a), and the measurement results of the haze of the molded body.
  • Example 6> The current was limited so that the current density for 1 minute from the start of voltage application was 19.9 mA / cm 2 .
  • a mold was produced in the same manner as in Example 1 except that other anodic oxidation conditions in the step (a) were changed as shown in Table 1, and a molded article was produced using the obtained mold.
  • Table 1 shows the anodic oxidation conditions in the step (a), the appearance evaluation results of the surface of the aluminum substrate after the completion of the step (a), and the measurement results of the haze of the molded body.
  • Example 7 The current was limited so that the current density for 1 minute from the start of voltage application was 8 mA / cm 2 .
  • a mold was produced in the same manner as in Example 1 except that other anodic oxidation conditions in the step (a) were changed as shown in Table 1, and a molded article was produced using the obtained mold.
  • Table 1 shows the anodic oxidation conditions in the step (a) and the appearance evaluation results of the aluminum substrate surface after the step (a).
  • Example 1 Lump-like aluminum having a purity of 99.97% by mass was cut into a roll having a diameter of 200 mm and a width of 320 mm, and the surface was cut into a mirror surface, which was used as an aluminum substrate. The same procedure as in Example 1 was conducted, except that this aluminum substrate was used and an oxide film having pores was formed by applying a voltage of 80 V without current limitation in step (a) and anodizing for 5 minutes. A mold was manufactured, and a molded body was manufactured using the obtained mold. Table 1 shows the anodic oxidation conditions in the step (a), the appearance evaluation results of the surface of the aluminum substrate after the completion of the step (a), and the measurement results of the haze of the molded body. Further, FIG. 5 shows a change in current during the period from the start of voltage application in step (a) until 5 minutes have passed.
  • step (a) in Comparative Example 1 V a / t a was 14 or more, step (a) an aluminum substrate surface after completion of no luster was not crowded-through the surrounding scene . Moreover, when the external appearance of the mold obtained by the comparative example 1 was observed visually, the surface was cloudy. Furthermore, the haze of the molded body (film) produced using the mold obtained in Comparative Example 1 was significantly higher than the haze of the molded body obtained in each Example.
  • the mold obtained by the mold manufacturing method of the present invention is useful for efficient mass production of antireflection articles, antifogging articles, antifouling articles, and water repellent articles.
  • the molded object obtained by the manufacturing method of the molded object which has the fine concavo-convex structure on the surface of this invention is suitable as an antireflection article, an antifogging article, an antifouling article, and a water-repellent article.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

 アルミニウム基材(10)の表面に複数の細孔(12)を有する酸化皮膜(14)が形成されたモールド(18)を製造する方法であって、(a)機械加工されたアルミニウム基材に電圧を印加し、前記アルミニウム基材の表面を陽極酸化して酸化皮膜を形成する工程と、(b)前記工程(a)で形成された酸化皮膜の少なくとも一部を除去する工程とを有し、前記工程(a)において、工程(a)を終了する直前の電圧(Va[V])と、電圧の印加を開始してから前記電圧(Va[V])に到達するまでの時間(ta[秒])とが下記式(i)を満たす、モールドの製造方法。0.010<Va/ta<14 ・・・(i)

Description

モールドの製造方法、および微細凹凸構造を表面に有する成形体とその製造方法
 本発明は、複数の細孔からなる微細凹凸構造を表面に有するモールドの製造方法、および該モールドを用いて製造した、微細凹凸構造を表面に有する成形体とその製造方法に関する。
 本願は、2012年8月6日に、日本に出願された特願2012-174349号、および2012年8月6日に、日本に出願された特願2012-174350号、に基づき優先権を主張し、その内容をここに援用する。
 近年、微細加工技術の進歩により、成形体の表面にナノスケールの微細凹凸構造を付与することが可能となった。ナノスケールの微細凹凸構造は、例えばモスアイ効果と呼ばれる反射防止機能や、ロータス効果と呼ばれる撥水機能のように、構造由来の機能が発現することから、ナノスケールの微細凹凸構造の産業上の利用が盛んに図られている。
 成形体の表面に微細凹凸構造を付与する技術は様々である。これらのうち、モールドの表面に形成された微細凹凸構造を、成形体本体の表面に転写する方法は、簡便かつ少ない工程で成形体の表面に微細凹凸構造を付与できるため、工業生産に適している。近年、微細凹凸構造を表面に有する大面積のモールドを簡便に製造する方法として、アルミニウム基材を陽極酸化することによって複数の細孔を有する酸化皮膜(陽極酸化ポーラスアルミナ)を利用する方法が注目されている。陽極酸化によって形成される酸化皮膜においては、印加電圧に比例して細孔の間隔(ピッチ)が大きくなる。細孔の間隔を比較的簡単に制御できる点においても、該方法は、モールドの製造方法として適している。
 陽極酸化を利用してモールドを製造する場合、モールドに好適な細孔の深さと規則的な配列とを両立するために、陽極酸化を二段階に分けて実施する方法が適している。すなわち、下記の工程(1)~工程(3)を順次行い、モールドに好適な細孔を得る。
 工程(1):アルミニウム基材の表面を陽極酸化し、細孔の深さを無視して細孔を規則的に配列させる工程。
 工程(2):工程(1)で形成された酸化皮膜の一部または全部を除去する工程。
 工程(3):工程(2)の後、アルミニウム基材を再び陽極酸化して、規則的な配列を保ったまま任意の深さの細孔を形成する工程。
 ところで、アルミニウム基材は、切削加工や機械研磨などの機械加工により表面が鏡面化されている場合がある。
 しかし、機械加工されたアルミニウム基材を40V以上の電圧で陽極酸化すると、アルミニウム基材を機械加工した際の切削スジや研磨スジに由来すると思われる白筋が現れ、得られるモールドの表面が白濁することがあった。特に、細孔の間隔が大きい酸化皮膜を形成するために、機械加工されたアルミニウム基材を60V以上の電圧で陽極酸化する場合、モールドの表面が白濁しやすかった。
 白濁したモールドを用いて微細凹凸構造を成形体本体の表面に転写した場合、白筋も成形体本体の表面に転写されてしまう。白筋が表面に転写された成形体はヘイズが上昇しやすく、結果、反射率も高くなる。
 機械加工されたアルミニウム基材を陽極酸化しても白濁しにくいモールドを製造する方法として、例えば特許文献1には、一段階目の陽極酸化の工程の前に、アルミニウム基材を陰極電解、電解研磨、またはエッチングする方法が開示されている。
国際公開第2010/128662号
 しかしながら、特許文献1に記載の方法の場合、一段階目の陽極酸化の工程の前に陰極電解、電解研磨、またはエッチングを行う必要があるため、工程数が増え、煩雑であった。
 本発明は、上記事情に鑑みてなされたものであり、細孔の間隔が比較的大きいモールドを製造する場合であっても、表面の白濁が抑制されたモールドを簡便に製造できる方法、およびヘイズが低い、微細凹凸構造を表面に有する成形体とその製造方法を提供する。
 本発明者らは鋭意検討した結果、電圧印加直後は、印加電圧や電流の急激な一瞬の上昇(電圧・電流の跳ね上がり)が起こりやすく、この電圧および/または電流の跳ね上がりが、モールド表面の白濁に関係していることが分かった。
 そこで、一段階目の陽極酸化の工程において、電圧の印加直後における電圧および/または電流の上昇を制御する、すなわち、電圧および/または電流の跳ね上がりを抑制することで、機械加工されたアルミニウム基材を陽極酸化しても得られるモールドの表面の白濁を抑制できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を有する。
<1> アルミニウム基材の表面に複数の細孔を有する酸化皮膜が形成されたモールドを製造する方法であって、(a)機械加工されたアルミニウム基材に電圧を印加し、前記アルミニウム基材の表面を陽極酸化して酸化皮膜を形成する工程と、(b)前記工程(a)で形成された酸化皮膜の少なくとも一部を除去する工程とを有し、前記工程(a)において、工程(a)を終了する直前の電圧(V[V])と、電圧の印加を開始してから前記電圧(V[V])に到達するまでの時間(t[秒])とが下記式(i)を満たす、モールドの製造方法。
 0.010<V/t<14  ・・・(i)
<2> 前記工程(a)において、電圧印加直後の電流密度が20mA/cm以下である、<1>に記載のモールドの製造方法。
<3> 前記工程(a)において、電圧印加直後の電流密度が10mA/cm以下である、<2>に記載のモールドの製造方法。
<4> 前記工程(a)において、最終的に初期の陽極酸化よりも高い電圧、かつ60V以上で陽極酸化を行う、<1>~<3>のいずれか一項に記載のモールドの製造方法。
<5> 前記工程(a)の陽極酸化において用いられる電解液が有機酸を含む、<1>~<4>のいずれか一項に記載のモールドの製造方法。
<6> 前記電解液の主成分がシュウ酸である、<5>に記載のモールドの製造方法。
<7> 前記工程(a)において、初期の陽極酸化を50V以下で行い、最終的に初期の陽極酸化よりも高い電圧で陽極酸化を行う、<1>に記載のモールドの製造方法。
<8> 前記工程(a)において、最終的に60V以上で陽極酸化を行う、<7>に記載のモールドの製造方法。
<9> 前記工程(a)において、初期の陽極酸化から最終の陽極酸化まで段階的に電圧を上昇させる、<1>~<8>のいずれか一項に記載のモールドの製造方法。
<10> 前記工程(a)の陽極酸化において用いられる電解液が有機酸を含む、<7>~<9>のいずれか一項に記載のモールドの製造方法。
<11> 前記電解液の主成分がシュウ酸である、<10>に記載のモールドの製造方法。
<12> (c)前記工程(b)または下記工程(d)の後、アルミニウム基材を陽極酸化して、複数の細孔を有する酸化皮膜を形成する工程と、(d)前記工程(c)で形成された酸化皮膜の一部を除去する工程と、(e)前記工程(c)と前記工程(d)とを交互に繰り返す工程とをさらに有し、前記工程(c)において、工程(c)を終了する直前の電圧(V[V])と、電圧を印加してから前記電圧(V[V])に到達するまでの時間(t[秒])とが、下記式(ii)を満たす、<1>~<11>のいずれか一項に記載のモールドの製造方法。
 2<V/t<14  ・・・(ii)
<13> 前記工程(c)において、電圧印加直後の電流密度が20mA/cm以下である、<12>に記載のモールドの製造方法。
<14> 前記工程(c)において、電圧印加直後の電流密度が10mA/cm以下である、<13>に記載のモールドの製造方法。
<15> 前記工程(a)において、初期の陽極酸化を40V以下で行い、かつ前記工程(c)の陽極酸化において用いられる電解液が有機酸を含む、<12>~<14>のいずれか一項に記載のモールドの製造方法。
<16> 前記工程(c)の陽極酸化において用いられる電解液の主成分がシュウ酸である、<15>に記載のモールドの製造方法。
<17> <1>~<16>のいずれか一項に記載のモールドの製造方法で得られたモールドの表面に形成された複数の細孔からなる微細凹凸構造を、成形体本体の表面に転写する、微細凹凸構造を表面に有する成形体の製造方法。
<18> <17>に記載の微細凹凸構造を表面に有する成形体の製造方法により製造された微細凹凸構造を表面に有する成形体であって、ヘイズが5%以下である、微細凹凸構造を表面に有する成形体。
 本発明のモールドの製造方法によれば、細孔の間隔が比較的大きいモールドを製造する場合であっても、表面の白濁が抑制されたモールドを簡便に製造できる。
 また、本発明の微細凹凸構造を表面に有する成形体の製造方法によれば、ヘイズが低い成形体を製造できる。
 また、本発明の微細凹凸構造を表面に有する成形体は、ヘイズが低い。
陽極酸化アルミナを表面に有するモールドの製造工程を示す断面図である。 アルミニウム基材を陽極酸化する装置の一例を示す構成図である。 微細凹凸構造を表面に有する成形体の製造装置の一例を示す構成図である。 微細凹凸構造を表面に有する成形体の一例を示す断面図である。 実施例1および比較例1における電流の変化を示したグラフである。
 本明細書において、「細孔」とは、アルミニウム基材の表面の酸化皮膜に形成された微細凹凸構造の凹部のことをいう。
 また、「細孔の間隔」は、隣接する細孔同士の中心間距離を意味する。
 また、「突起」とは、成形体の表面に形成された微細凹凸構造の凸部のことをいう。
 また、「微細凹凸構造」は、凸部または凹部の平均間隔がナノスケールであるの構造を意味する。
 また、「(メタ)アクリレート」は、アクリレートおよびメタクリレートの総称である。
 また、「活性エネルギー線」は、可視光線、紫外線、電子線、プラズマ、熱線(赤外線等)等を意味する。
<モールドの製造方法>
 本発明のモールドの製造方法は、下記の工程(a)、工程(b)を有する方法である。該モールドの製造方法は、下記の工程(c)~工程(e)をさらに有することが好ましい。
 (a)機械加工されたアルミニウム基材に電圧を印加し、前記アルミニウム基材の表面を陽極酸化して酸化皮膜を形成する工程。
 (b)前記工程(a)で形成された酸化皮膜の少なくとも一部を除去する工程。
 (c)前記工程(b)または下記工程(d)の後、アルミニウム基材を陽極酸化して、複数の細孔を有する酸化皮膜を形成する工程。
 (d)前記工程(c)で形成された酸化皮膜の一部を除去する工程。
 (e)前記工程(c)と前記工程(d)とを交互に繰り返す工程。
(工程(a))
 工程(a)は、機械加工されたアルミニウム基材に電圧を印加し、前記アルミニウム基材の表面を陽極酸化して酸化皮膜を形成する第一の酸化皮膜形成工程である。
 工程(a)を行うと、例えば図1に示すように、アルミニウム基材10の表面に複数の細孔12を有する酸化皮膜14が形成される。
 アルミニウム基材の表面の一部または全部を電解液に浸漬して陽極酸化することによって、電解液に浸漬した部分に酸化皮膜を形成できる。陽極酸化の初期に形成される酸化皮膜は、細孔の位置や大きさが不均一で規則性は皆無であるが、酸化皮膜が厚くなるとともに、徐々に細孔の配列の規則性が増していく。
 アルミニウム基材の形状は特に限定されず、板状、円柱状、円筒状等、モールドとして使用可能な形状であればどのような形状であってもよい。
 アルミニウム基材としては、機械加工されたものを用いる。
 本発明において「機械加工」とは、アルミニウム基材の表面を物理的に切削または研磨して、電解研磨することなく鏡面化することである。なお、物理的な研磨には「テープ研磨」も含まれる。
 アルミニウム基材の純度は、98質量%以上が好ましく、99.0質量%以上がより好ましく、99.5質量%以上がさらに好ましく、99.9質量%以上が最も好ましい。アルミニウムの純度が低いと、陽極酸化した時に、不純物の偏析により可視光を散乱する大きさの凹凸構造が形成されたり、陽極酸化で得られる細孔の規則性が低下したりすることがある。
 ところで、純度の高いアルミニウムを用いた場合、所望の形状(例えば円筒状など)に加工する際に、柔らかすぎて加工しにくくなる場合がある。そこで、アルミニウムにマグネシウムを添加して所定の形状に加工したものをアルミニウム基材として用いてもよい。マグネシウムを添加することで、アルミニウムの強度が高まるため加工しやすくなる。ただし、マグネシウムの添加量が増えるに連れて、得られるモールドの微細凹凸構造を成形体本体の表面に転写した成形体のヘイズが上昇する傾向にある。よって、マグネシウムの添加量はアルミニウムの強度と成形体のヘイズを考慮して決定するのが好ましく、通常は、アルミニウムに対して0.1~2質量%程度である。
 電解液としては、酸性水溶液またはアルカリ性水溶液が挙げられ、酸性水溶液が好ましい。酸性水溶液としては、無機酸(例えば硫酸、リン酸等)、有機酸(例えばシュウ酸、マロン酸、酒石酸、コハク酸、リンゴ酸、クエン酸等)が挙げられる。これらの酸は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 電解液としては、有機酸を含むものが好ましく、特にシュウ酸を主成分とするものが好ましい。電解液が有機酸を含めば、細孔の間隔が100nm以上と比較的大きい微細凹凸構造を容易に得やすくなる。特にシュウ酸を主成分とすれば、細孔の間隔が100nm以上と比較的大きく、細孔の規則性が比較的高い微細凹凸構造を容易に得やすくなる。
シュウ酸を電解液として用いる場合:
 シュウ酸の濃度は、0.7M以下が好ましい。シュウ酸の濃度が0.7Mを超えると、電流値が高くなりすぎて酸化皮膜の表面が粗くなることがある。
 電解液の温度は、60℃以下が好ましく、45℃以下がより好ましい。電解液の温度が60℃を超えると、いわゆる「ヤケ」といわれる現象がおこり、細孔が壊れたり、表面が溶けて細孔の規則性が乱れたりすることがある。
硫酸を電解液として用いる場合:
 硫酸の濃度は0.7M以下が好ましい。硫酸の濃度が0.7Mを超えると、電流値が高くなりすぎて定電圧を維持できなくなることがある。
 電解液の温度は、30℃以下が好ましく、20℃以下がより好ましい。電解液の温度が30℃を超えると、いわゆる「ヤケ」といわれる現象がおこり、細孔が壊れたり、表面が溶けて細孔の規則性が乱れたりすることがある。
2種以上を組み合わせて用いる場合:
 電解液の組成の決定方法としては、まず、主となる酸を決め、印加電圧に応じて別の酸の種類および割合を決定する方法が好ましい。例えば40V付近の電圧域で好適に用いられるシュウ酸を主となる酸(主成分)とし、リン酸、マロン酸、酒石酸等の通常120~195Vの電圧域で用いられる酸の種類および割合を適宜決定することが好ましく、シュウ酸を主となる酸とし、リン酸を他の酸とすることがより好ましい。
 主となる酸の割合は、すべての酸(100モル%)のうち45~90モル%であり、50~75モル%が好ましい。この範囲内であれば、主となる酸以外の酸(以下、「他の酸」とも記す。)の効果が十分に発揮され、印加電圧が高くても、主となる酸のみの場合に比べて電流密度が低下する。また、酸化皮膜の厚さや酸化皮膜の少なくとも一部を除去することでアルミニウム基材上に形成される窪みの径が不均一になる等の他の酸による悪影響が十分に小さい。
 電解液の濃度は、酸の種類によって好適な範囲が異なるため一概に規定できないが、シュウ酸を主となる酸、リン酸を他の酸とする場合について一例を示す。
 シュウ酸の濃度は、0.3~1.5Mが好ましく、0.3~1.0Mがより好ましく、0.3~0.8Mがさらに好ましい。シュウ酸の濃度がこの範囲内であれば、70~130Vの電圧域で陽極酸化した時に酸化皮膜に形成される細孔の径や、アルミニウム基材上に形成される窪みの径を比較的均一に保つことが可能となる。
 リン酸の濃度は、すべての酸(100モル%)のうちのシュウ酸の割合が45~90モル%となるような濃度であれば如何なる濃度でもよい。リン酸の濃度がこの範囲内にあれば、陽極酸化時に流れる電流密度を十分に抑制することができる。電流密度が低いと、熱暴走やヤケと呼ばれる高電流密度に起因する欠陥を防ぐだけでなく、均一な厚さの酸化皮膜を形成する点で効果がある。
 工程(a)では、アルミニウム基材に電圧を印加し陽極酸化処理を行うが、上述したように、電圧印加直後は、電流の急激な一瞬の上昇(電流の跳ね上がり)が起こりやすいことが分かった。この電流の跳ね上がりが起こると、モールド表面が白濁し、得られるモールドの微細凹凸構造を成形体本体の表面に転写した成形体のヘイズがさらに上昇し、反射率が高くなる。特に、細孔の間隔が比較的大きいモールドを製造するために、高い電圧(例えば60V以上)を印加した場合には、電流の跳ね上がりも大きくなり、モールド表面の白濁が顕著になる。
 そこで、工程(a)においては、工程(a)を終了する直前の電圧(V[V])と、電圧の印加を開始してから前記電圧(V[V])に到達するまでの時間(t[秒])とが下記式(i)を満たすように電圧をアルミニウム基材に印加して陽極酸化を行う。
 0.010<V/t<14  ・・・(i)
 V/tが0.010超であれば、工程(a)の時間を短くでき、モールドの生産性が低下することを抑制することができる。一方、V/tが14未満であれば、電圧印加直後に高い電圧が印加されて電流の跳ね上がりが発生することを抑制できる。よって、モールド表面の白濁が抑制され、得られるモールドの微細凹凸構造を転写した成形体のヘイズが上昇するのを抑制でき、反射率が低い成形体が得られる。
 V/tは0.010超6未満であることが好ましく、0.010超2未満であることがより好ましい。
 上記式(i)を満たすように電圧を印加する方法としては特に制限されないが、例えば初期の陽極酸化(以下、「初期陽極酸化」ともいう。)を、工程(a)を終了する直前の電圧よりも低い電圧で行い、最終的に初期陽極酸化よりも高い電圧で陽極酸化を行う方法が挙げられる。
 工程(a)における初期陽極酸化時の電圧(以下、「初期電圧」ともいう。)は50V以下が好ましく、45V以下がより好ましく、40V以下がさらに好ましい。50V以下の電圧で初期陽極酸化を行うことで、電圧印加直後に電流の跳ね上がりが発生することをより抑制でき、機械加工に由来すると思われる白筋が現れにくくなり、得られるモールドの表面が白濁するのをより抑制できる。初期電圧の下限値については特に制限されないが、15V以上が好ましい。
 工程(a)における最終の陽極酸化(以下、「最終陽極酸化」ともいう。)時の電圧、すなわち工程(a)を終了する直前の電圧(V[V])(以下、「最終電圧」ともいう。)は、初期電圧よりも高い値であることが好ましく、具体的には40V以上が好ましく、60V以上がより好ましく、65V以上がさらに好ましい。40V以上の電圧で最終陽極酸化を行えば、間隔が100nm以上の規則性の高い細孔を有する酸化皮膜が形成されやすくなる。特に60V以上の電圧で最終陽極酸化を行うことで、細孔の間隔が比較的大きい、具体的には間隔が100nmよりも大きく、規則性の高い酸化皮膜を形成できる。最終電圧の上限値については特に制限されないが、180V以下が好ましい。
 細孔の間隔が比較的大きい酸化皮膜が形成されやすい観点から、最終陽極酸化時間、例えば60V以上の電圧を維持する時間は1.5分以上が好ましく、2分以上がより好ましい。上限値については特に制限されないが、短時間でモールドを製造できる観点から、10分以下が好ましい。
 工程(a)では、初期陽極酸化よりも高い電圧で最終陽極酸化を行う場合、初期陽極酸化から最終陽極酸化まで、段階的に電圧を上昇させてもよいし、連続的に電圧を上昇させてもよいが、電圧の制御が容易である点で、段階的に電圧を上昇させるのが好ましい。
 また、段階的に電圧を上昇させる場合は、一定の電圧で一定の期間、初期陽極酸化を行った後に、最終電圧まで電圧を上昇させて、一定の電圧で一定の時間、最終陽極酸化を行ってもよいし、初期陽極酸化と最終陽極酸化との間に、別の一定の電圧で一定の時間、陽極酸化を行う段階(他の陽極酸化)があってもよい。
 さらに、初期陽極酸化、最終陽極酸化、および他の陽極酸化を行っている間は、段階的または連続的に電圧が上昇してもよいし、降下してもよいし、途中で電圧が0Vになってもよい。ただし、陽極酸化の途中で電圧が0Vになると、陽極にかかっていた電場が解消される。そのため、途中で電圧が0Vになった後に電圧を上昇させて再度電場をかけたとき、アルミニウム基材と酸化皮膜が部分的に剥離して、酸化皮膜の厚さが不均一になることがある。よって、途中で電圧が0Vにならないように陽極酸化を行うことが好ましい。
 段階的に電圧を上昇させる場合、任意の電圧から次の電圧へ昇圧する際には、瞬時に昇圧してもよいし、徐々に昇圧してもよい。なお、連続的に電圧を上昇させる場合の昇圧速度についても同様である。ただし、瞬時に電圧を昇圧させると、アルミニウム基材に流れる電流が瞬間的に増大し、ヤケが生じる場合がある。一方、昇圧速度が遅すぎると、モールドの加工時間が長くなり、モールドの生産性が損なわれたり、電圧を上昇させている間に余分な酸化皮膜が厚く形成されたりする場合がある。
 なお、上記式(i)を満たせば、最初から最後まで一定の電圧で陽極酸化を行ってもよい。
 工程(a)においては、最終的に印加される最高電圧での陽極酸化にて消費される電気量を0.9~20A・s/cmとすることが好ましい。陽極酸化中に電圧を途中で変更すると、アルミニウム基材と酸化皮膜界面近傍での細孔が電圧の変化に従って再配列する。最高電圧での陽極酸化にて消費される電気量が0.9A・s/cm以上であれば、最高電圧に至ってから形成される酸化皮膜の膜厚が、細孔が最高電圧に比例した間隔で再配列するのに十分な厚さとなる。一方、最高電圧での陽極酸化にて消費される電気量が20A・s/cm以下であれば、工程(a)にて形成される酸化皮膜が厚くなりすぎず、アルミニウム基材の結晶粒界の段差を目立たなくできる。視認できるほど結晶粒界の段差が大きくなると、得られるモールドの微細凹凸構造を成形体本体の表面に転写した際に、この結晶粒界の段差も転写されてしまう。その結果、視認できるほどのマクロな凹凸が転写面に形成され、得られる成形体の外観不良の原因となるおそれがある。
 なお、「最高電圧」とは、工程(a)における電圧の最高値のことであり、工程(a)の終了直前の電圧(最終電圧)と一致する。
 また、工程(a)においては、電圧印加直後の電流密度を20mA/cm以下とすることが好ましく、10mA/cmとすることがより好ましい。電圧印加直後の電流密度を20mA/cm以下とする、すなわち、電流の跳ね上がりを抑制すれば、モールド表面の白濁が抑制され、得られるモールドの微細凹凸構造を転写した成形体のヘイズが上昇するのをより抑制でき、反射率が低い成形体がより得られやすくなる。特に電圧印加直後の電流密度を10mA/cm以下とすれば、モールド表面の白濁をより抑制でき、成形体のヘイズが上昇するのをさらに抑制できる。
 なお、本発明において、「電圧印加直後」とは、製造設備に設置したアルミニウム基材に電圧を印可した際に、電流がアルミニウム基材に流れ出す瞬間のことを指す。また、電圧印加直後の電流密度が所定の値以下となるように陽極酸化を行うことを「電流制限」という。通常、特別な前処理を施さない限りは、製造設備に設置した段階でアルミニウム基材の表面には空気酸化による薄い酸化皮膜しか形成されていない。このようなアルミニウム基材に電圧を印可すると、アルミニウム基材に流れ出す瞬間の電流値の上昇が著しく、モールドが白濁しやすい。このように、本発明においては、特に電流値を制限しない場合、電圧を印加した瞬間に電流値が急激に上昇する時間を「電圧印加直後」といい、工程(a)においては、電圧の印加を開始してから1分間の電流密度を20mA/cm以下とすることが好ましい。また、後述する工程(c)においては、電圧の印加を開始してから10秒間の電流密度を20mA/cm以下とすることが好ましい。
 工程(a)において、電流制限した後、すなわち、アルミニウム基材表面に陽極酸化由来の酸化皮膜が形成された後の電流密度については特に制限されず、20mA/cm以下を維持してもよいし、20mA/cmを超えてもよい。ただし、電圧が上昇すると電流密度も高くなる傾向にある。
 電流密度は陽極酸化装置にて電流を制御することで調整できる。
 ところで、同一の濃度、同一の印加電圧であっても、電解液の温度を下げると電流密度が低下する場合がある。また、電圧を印加して陽極酸化を実施すると、電解液は印可電圧と流れた電流量とによるジュール熱によって温度が上昇する傾向にある。電解液は温度が変化すると電気伝導度も変化し、それにより電流密度が変動してしまう原因となる場合があるため、陽極酸化中は電解液の温度を一定に管理する事が好ましい。
 電解液の温度を容易に調整、維持できる点から、電解液の温度は、8℃以上が好ましく、10℃以上がより好ましい。また、電解液として酸水溶液を用いる場合、蒸発により電解液の濃度が変化してしまう場合がある。電解液の濃度変化を抑える点から、電解液の温度は、30℃以下が好ましい。
 陽極酸化中の電解液の温度を一定に管理しながらアルミニウム基材を陽極酸化する装置としては、例えば図2に示す構成のものが挙げられる。以下、図2を参照しながら、アルミニウム基材を陽極酸化する方法の一例について説明する。
 アルミニウム基材10は電解液Lで満たされた処理槽50の中で陽極酸化される。処理槽50中の電解液Lは供給ノズル52から供給され、オーバーフローして処理槽50の下部に設置したサブ槽54に貯留される。サブ槽54に貯留された電解液Lはポンプ56より吸出され、熱交換器58を通過して所定の温度に調整された後、再び供給ノズル52から処理槽50へと供給される。このように電解液Lを循環させながらアルミニウム基材10を陽極酸化する。
 処理槽50の底部はアルミニウム基材10の曲率に合わせて湾曲した形状が好ましい。
 供給ノズル52は処理槽50の上部に配置されることが好ましい。
 電解液Lは処理槽50の湾曲した底部に向けて供給ノズル52から供給され、供給ノズル52と対向する位置からオーバーフローすることが好ましい。
 処理槽50等を上記構成にすることで、処理槽50内で電解液Lが滞留しにくくなり、効率よく電解液Lの循環を行うことができる。電解液Lが滞留すると、電解液Lの温度が上昇する要因となる。
 熱交換器58には冷凍機60から冷媒が供給され、電解液Lの温度を調整する。熱交換器58から排出した冷媒は冷凍機60に戻り、所定の温度に冷やされ、再び熱交換器58へと供給される。
 冷凍機60から供給される冷媒の流量は制御バルブ62により制御される。制御バルブ62により冷媒の流量を制御することで、電解液Lの温度を調節することができる。制御バルブ62としては、例えばバルブ開度がオン・オフのみの電磁弁、バルブ開度が調整できるモーターバルブ、コントロールバルブなどが挙げられる。
 処理槽50内の電解液Lの温度制御方法としては、単一の制御系よりも図2に示すようなカスケード制御を用いることが好ましい。
 単一の制御系の場合、処理槽50内の任意の箇所(例えば温度測定点64)の温度を基準に電解液Lの温度制御を行うと、陽極酸化直後の温度上昇に対する応答性は早くなるが、処理槽50内の電解液Lの流れの乱れによる温度変動により供給ノズル52から供給される電解液Lの温度が安定しにくくなるため、電解液温度が振動する傾向にある。
 一方、熱交換器58から電解液Lが出た直後(例えば温度測定点66)の温度を基準に電解液Lの温度制御を行うと、処理槽50に供給される電解液Lの温度は安定するが、陽極酸化が始まった直後の温度変化による応答性は極めて遅くなり、処理槽50内の電解液Lの温度上昇が大きくなる傾向にある。
 図2に示すようなカスケード制御を用いれば、カスケード制御が行えるコントローラー68にて、処理槽50内の電解液温度(MASTER)を設定温度になるよう制御しながら、熱交換器58を出た直後の温度(SLAVE)を測定することで、陽極酸化直後の温度上昇の応答性も高いまま、供給ノズル52から供給される電解液Lの温度も安定させることができ、極めて精度の高い電解液温度制御が可能となる。
 工程(a)において形成される酸化皮膜の厚さは、0.5~10μmが好ましい。酸化皮膜の厚さがこの範囲内にあれば、後述の工程(b)において酸化皮膜を除去した際に、アルミニウム基材の表面の機械加工の痕は十分に除かれ、かつ結晶粒界の段差が視認できるほど大きくはない。モールド由来のマクロな凹凸の成形体本体の表面への転写を回避できるため、モールドとしての使用に適する。
 酸化皮膜の厚さは、陽極酸化にて消費される合計の電気量に比例する。合計の電気量や、電圧ごとに消費される電気量の比を調整することで、酸化皮膜の厚み、および初期陽極酸化で形成される酸化皮膜と最終陽極酸化で形成される酸化皮膜の厚みの比を制御することができる。
(工程(b))
 工程(b)は、工程(a)で形成された酸化皮膜の少なくとも一部を除去する酸化皮膜除去工程である。
 例えば工程(b)で酸化皮膜を全部除去した場合、図1に示すように、酸化皮膜14の全部が除去され、アルミニウム基材10の表面に窪み16が露出する。
 酸化皮膜の一部または全部を除去することによって、酸化皮膜の底部のバリア層からなる窪みまたはバリア層の形状に対応した窪みがアルミニウム基材の表面に形成される。工程(a)において規則的に配列した細孔を形成することによって、工程(b)において酸化皮膜の一部または全部を除去して形成される窪みも、規則的に配列したものとなる。
 酸化皮膜14の一部または全部を除去する方法としては、アルミニウムを溶解せず、アルミナを選択的に溶解する溶液に浸漬する方法が挙げられる。このような溶液としては、例えば、クロム酸/リン酸混合液等が挙げられる。
(工程(c))
 工程(c)は、工程(b)または下記工程(d)の後、アルミニウム基材を再び陽極酸化して、複数の細孔を有する酸化皮膜を形成する第二の酸化皮膜形成工程である。
 工程(b)の後に工程(c)を行うと、例えば図1に示すように、アルミニウム基材10が陽極酸化されて、複数の細孔12を有する酸化皮膜14が再び形成される。
 また、下記工程(d)の後に工程(c)を行うと、既存の酸化皮膜の下に新たな酸化皮膜が形成され、既存の細孔の底部から下方に延びる新たな細孔が形成される。
 アルミニウム基材の表面に窪みが形成された状態で再び陽極酸化すると、窪みが細孔発生点として作用し、新たな酸化皮膜の細孔は、窪みに対応した位置に発生する。特に、窪みが規則的に配列している場合、陽極酸化の初期、すなわち新たに形成される酸化皮膜が薄い状態であっても、規則的に配列した細孔が形成され、サブミクロンオーダーで細孔の深さが調節され、規則的に配列した細孔を容易に製造することができる。
 電解液としては、酸性水溶液またはアルカリ性水溶液が挙げられ、酸性水溶液が好ましい。酸性水溶液としては、無機酸(例えば硫酸、リン酸等)、有機酸(例えばシュウ酸、マロン酸、酒石酸、コハク酸、リンゴ酸、クエン酸等)が挙げられる。これらの酸は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 電解液としては、有機酸を含むものが好ましく、特にシュウ酸を主成分とするものが好ましい。電解液が有機酸を含めば、細孔の間隔が100nm以上と比較的大きい微細凹凸構造を容易に得やすくなる。特にシュウ酸を主成分とすれば、細孔の間隔が100nm以上と比較的大きく、細孔の規則性が比較的高い微細凹凸構造を容易に得やすくなる。
シュウ酸を電解液として用いる場合:
 シュウ酸の濃度は、0.7M以下が好ましい。シュウ酸の濃度が0.7Mを超えると、電流値が高くなりすぎて酸化皮膜の表面が粗くなることがある。
 電解液の温度は、60℃以下が好ましく、45℃以下がより好ましい。電解液の温度が60℃を超えると、いわゆる「ヤケ」といわれる現象がおこり、細孔が壊れたり、表面が溶けて細孔の規則性が乱れたりすることがある。
硫酸を電解液として用いる場合:
 硫酸の濃度は0.7M以下が好ましい。硫酸の濃度が0.7Mを超えると、電流値が高くなりすぎて定電圧を維持できなくなることがある。
 電解液の温度は、30℃以下が好ましく、20℃以下がより好ましい。電解液の温度が30℃を超えると、いわゆる「ヤケ」といわれる現象がおこり、細孔が壊れたり、表面が溶けて細孔の規則性が乱れたりすることがある。
 工程(c)における電解液は、工程(a)で用いた電解液と同じものでもよいし、異なるものでもよい。なお、工程(c)において2種類以上の酸を混合した電解液を用いる場合、主となる酸の割合は、特に制限されない。また、必要に応じて酸の種類を変更してもよい。
 工程(c)における印加電圧の条件は、40V以上が好ましく、60V以上がより好ましく、70~180Vがさらに好ましく、80~120Vが最も好ましい。特に電圧が60V以上であれば、細孔の間隔が比較的大きい(100nmを超える)酸化皮膜を簡便に形成できる。電圧が180V以下であれば、電解液を低温に維持する装置や、アルミニウム基材の背面に冷却液を噴射するなどの特殊な手法を用いることなく、簡便な装置で陽極酸化することができる。
 工程(c)においては、工程(c)を終了する直前の電圧(V[V])と、電圧を印加してから前記電圧(V[V])に到達するまでの時間(t[秒])とが、下記式(ii)を満たすことが好ましい。
 2<V/t<14  ・・・(ii)
 V/tが2超であれば、工程(c)の時間を短くでき、モールドの生産性が低下することを抑制することができ、しかも工程(b)で得た窪みの配列を維持できる。一方、V/tが14未満であれば、工程(c)において電圧印加直後に高い電圧が印加されて電流の跳ね上がりが発生することを抑制できる。よって、モールド表面の白濁が抑制され、得られるモールドの微細凹凸構造を転写した成形体のヘイズが上昇するのを抑制でき、反射率が低い成形体が得られる。
 V/tは2超10未満であることが好ましく、2超7未満であることがより好ましい。
 また、工程(c)における印加電圧は、工程(a)で得た細孔の間隔を維持したまま細孔の深さを調整しやすい点から、工程(a)の最終陽極酸化における印加電圧と同じことが好ましい。
 また、工程(a)と同様に、工程(c)において最終的に初期の陽極酸化よりも高い電圧で陽極酸化を行ってもよい。そのような場合は、初期の陽極酸化から最終の陽極酸化まで、段階的に電圧を上昇させてもよいし、連続的に電圧を上昇させてもよいが、段階的に電圧を上昇させながら陽極酸化を行うことが好ましい。
 工程(c)における通電時間は、3~60秒が好ましい。通電時間が3秒以上であれば、最終的に得られる酸化皮膜の厚さを後述する0.01μm以上にしやすい。厚さが0.01μm未満の酸化皮膜では、細孔の深さも0.01μmに満たず、モールドとして用いた場合、得られる成形体が十分な反射防止性能を示さないおそれがある。通電時間が60秒以下であれば、最終的に得られる酸化皮膜の厚さを後述する0.8μm以下にしやすい。厚さが0.8μm超の酸化皮膜では、酸化皮膜が厚くなる分だけ細孔も深くなるため、モールドとして用いた場合、離型不良を起こしやすくなるおそれがある。
 工程(b)の後の工程(c)においては、電圧印加直後、すなわち、電圧の印加を開始してから10秒間の電流密度を20mA/cm以下、より好ましくは10mA/cm以下としてもよい。電圧印加直後の電流密度を20mA/cm以下とする、すなわち、電流の跳ね上がりを抑制すれば、モールド表面の白濁をより抑制でき、得られるモールドの微細凹凸構造を転写した成形体のヘイズが上昇するのをより効果的に抑制でき、反射率がより低い成形体が得られる。
 工程(c)において、電流制限した後、すなわち、アルミニウム基材表面に陽極酸化由来の酸化皮膜が形成された後の電流密度については特に制限されず、20mA/cm以下を維持してもよいし、20mA/cmを超えてもよい。ただし、電圧が上昇すると電流密度も高くなる傾向にある。
 工程(c)における陽極酸化の条件(電解液の種類、濃度、温度等)は、必ずしも工程(a)と一致させる必要はなく、酸化皮膜の厚さを調整しやすい条件に適宜変更してもよい。
(工程(d))
 工程(d)は、工程(c)で形成された酸化皮膜の一部を除去する工程である。
 工程(c)の後に工程(d)を行うと、例えば図1に示すように、工程(c)によって形成された酸化皮膜14の一部が除去されて、細孔12の孔径が拡大する。よって、工程(d)は孔径拡大処理工程でもある。
 酸化皮膜の一部を除去する、すなわち孔径を拡大処理する具体的な方法としては、アルミナを溶解する溶液に浸漬して、酸化皮膜に形成されている細孔をエッチングによって拡大させる方法が挙げられる。このような溶液としては、例えば、5.0質量%程度のリン酸水溶液等が挙げられる。浸漬する時間を長くするほど、細孔の孔径は大きくなる。
(工程(e))
 工程(e)は、工程(c)と工程(d)とを交互に繰り返して細孔の深さと形状を調整する繰り返し工程である。
 工程(c)と工程(d)とを交互に繰り返すことによって、例えば図1に示すように、細孔12の形状を開口部から深さ方向に徐々に径が縮小するテーパー形状にでき、その結果、周期的な複数の細孔12からなる酸化皮膜14が表面に形成されたモールド18を得ることができる。
 工程(c)および工程(d)の条件、例えば、陽極酸化の電解液濃度や酸化時間、孔径拡大処理の時間、孔径拡大処理に利用する溶液の温度や濃度を適宜設定することによって、様々な形状の細孔を有する酸化皮膜を形成できる。モールドを用いて製造される成形体の用途等に応じて、これら条件を適宜設定すればよい。
 工程(c)の回数は、回数が多いほど滑らかなテーパー形状にすることができる点から、工程(e)の前に行った工程(c)も含めて少なくとも3回が好ましい。同じく、工程(d)の回数も、回数が多いほど滑らかなテーパー形状にすることができる点から、工程(e)の前に行った工程(d)も含めて少なくとも3回が好ましい。それぞれの回数が2回以下の場合、非連続的に細孔の孔径が減少する傾向にあり、このようなモールドを用いて反射防止物品(反射防止膜等)を製造した場合、その反射率低減効果が劣る可能性がある。
 工程(e)は、工程(c)で終了してもよく、工程(d)で終了してもよい。
 工程(c)および工程(e)における陽極酸化を長時間施すほど深い細孔を得ることができるが、微細凹凸構造を転写するためのモールドとして用いる場合、工程(e)を経て最終的に得られる酸化皮膜の厚さは、0.01~0.8μm程度でよい。工程(c)における電圧以外の陽極酸化の条件(電解液の種類、濃度、温度等)も必ずしも工程(a)と一致させる必要はなく、酸化皮膜の厚さを調整しやすい条件に適宜変更してもよい。また、工程(c)および工程(d)を繰り返す際に、前回に行った各工程と同一の条件で行う必要はなく、各種条件を適宜変更しても構わない。
(モールド)
 本発明のモールドの製造方法によれば、アルミニウム基材の表面に、開口部から深さ方向に徐々に径が縮小するテーパー形状の細孔が比較的規則的に配列して形成され、その結果、微細凹凸構造を有する酸化皮膜(陽極酸化ポーラスアルミナ)が表面に形成されたモールドを製造できる。
 モールドにおける隣接する細孔の平均間隔は、可視光の波長以下が好ましく、150~600nmがより好ましい。細孔の平均間隔が150nm以上であれば、モールドの表面を転写して得られる成形体(反射防止物品等)の反射防止性能を損なうことなく耐擦傷性能を向上でき、かつ突起同士の合一に起因する成形体の白化を抑制することができる。細孔の平均間隔が600nm以下であれば、モールドの表面の転写によって得られた成形体の表面(転写面)において可視光の散乱が起こりにくくなり、十分な反射防止機能が発現するため、反射防止膜等の反射防止物品の製造に適する。
 また、モールドを反射防止物品(反射防止膜等)の製造に用いる場合、細孔の平均間隔が600nm以下であるとともに、細孔の深さが100nm以上であることが好ましく、150nm以上であることがより好ましい。細孔の深さが100nm未満のモールドを用いた場合、反射防止物品の反射防止性能が十分ではなくなるおそれがある。
 また、モールドの細孔のアスペクト比(=深さ/平均間隔)は、0.25以上が好ましく、0.5以上がさらに好ましく、0.75以上がもっとも好ましい。アスペクト比が0.25以上であれば、反射率が低い表面を形成でき、その入射角依存性も十分に小さくなる。
 モールドの微細凹凸構造が形成された表面は、離型が容易になるように、離型処理が施されていてもよい。離型処理の方法としては、例えば、リン酸エステル系ポリマー、シリコーン系ポリマー、フッ素ポリマー等をコーティングする方法、フッ素化合物を蒸着する方法、フッ素系表面処理剤またはフッ素シリコーン系表面処理剤をコーティングする方法等が挙げられる。
(作用効果)
 以上説明した本発明のモールドの製造方法にあっては、一段階目の陽極酸化の工程(工程(a))において、工程(a)を終了する直前の電圧(V[V])と、電圧の印加を開始してから前記電圧(V[V])に到達するまでの時間(t[秒])とが上記式(i)を満たすように電圧をアルミニウム基材に印加して陽極酸化を行う。このように陽極酸化を行うことで、最初に形成される酸化皮膜を電圧印加直後の電流の跳ね上がりを抑制しながら形成できる。よって、機械加工されたアルミニウム基材を陽極酸化しても白筋の発生を抑えることができ、表面の白濁が抑制されたモールドを製造できる。このモールドを用いれば、ヘイズが低く、反射率が十分に低減された、微細凹凸構造を表面に有する成形体を得ることができる。
 特に、工程(a)において、最終的に陽極酸化を60V以上で行えば、細孔の間隔が比較的大きく、かつ表面の白濁が抑制されたモールドを製造できる。
 なお、特許文献1に記載のように、一段階目の陽極酸化の工程の前に、アルミニウム基材を陰極電解、電解研磨、またはエッチングを行えば、モールド表面の白濁を抑制することはできるが、工程数が増え、煩雑である。
 しかし、本発明のモールドの製造方法であれば、一段階目の陽極酸化の工程(工程(a))において電流制限するだけでモールド表面の白濁を抑制できる。よって、本発明であれば、表面の白濁が抑制されたモールドを簡便に製造できる。
 特に、工程(a)において、電圧印加直後の電流密度を20mA/cm以下とすれば、あるいは初期の陽極酸化を50V以上で行い、最終的に初期の陽極酸化よりも高い電圧(例えば60V以上)で陽極酸化を行えば、モールド表面の白濁をより抑制でき、得られるモールドの微細凹凸構造を転写した成形体のヘイズが上昇するのをより効果的に抑制でき、反射率がより低減された成形体が得られやすくなる。
<成形体およびその製造方法>
 本発明の、微細凹凸構造を表面に有する成形体の製造方法は、本発明のモールドの製造方法で得られたモールドの表面に形成された複数の細孔からなる微細凹凸構造を、成形体本体の表面に転写する方法である。
 モールドの微細凹凸構造(細孔)を転写して製造された成形体は、その表面にモールドの微細凹凸構造の反転構造(突起)が、鍵と鍵穴の関係で転写される。
 モールドの微細凹凸構造を成形体本体の表面に転写する方法としては、例えば、モールドと成形体本体(透明基材)の間に未硬化の活性エネルギー線硬化性樹脂組成物を充填し、モールドの微細凹凸構造に活性エネルギー線硬化性樹脂組成物が接触した状態で、活性エネルギー線を照射して活性エネルギー線硬化性樹脂組成物を硬化させた後にモールドを離型する方法が好ましい。これによって、成形体本体の表面に、活性エネルギー線硬化性樹脂組成物の硬化物からなる微細凹凸構造が形成された成形体を製造できる。得られた成形体の微細凹凸構造は、モールドの微細凹凸構造の反転構造となる。
(成形体本体)
 成形体本体(透明基材)としては、活性エネルギー線の照射を、該成形体本体を介して行うため、活性エネルギー線の照射を著しく阻害しないものが好ましい。成形体本体の材料としては、例えば、ポリエステル樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリメタクリレート樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、ABS樹脂、スチレン樹脂、ガラス等が挙げられる。
(活性エネルギー線硬化性樹脂組成物)
 活性エネルギー線硬化性樹脂組成物を用いる方法は、熱硬化性樹脂組成物を用いる方法に比べて加熱や硬化後の冷却を必要としないため、短時間で微細凹凸構造を転写することができ、量産に好適である。
 活性エネルギー線硬化性樹脂組成物の充填方法としては、モールドと成形体本体(透明基材)の間に活性エネルギー線硬化性樹脂組成物を供給した後に圧延して充填する方法、活性エネルギー線硬化性樹脂組成物を塗布したモールド上に成形体本体をラミネートする方法、あらかじめ成形体本体上に活性エネルギー線硬化性樹脂組成物を塗布してモールドにラミネートする方法等が挙げられる。
 活性エネルギー線硬化性樹脂組成物は、重合反応性化合物と、活性エネルギー線重合開始剤とを含有する。上記の他に、用途に応じて非反応性のポリマーや活性エネルギー線ゾルゲル反応性成分が含まれていてもよく、増粘剤、レベリング剤、紫外線吸収剤、光安定剤、熱安定剤、溶剤、無機フィラー等の各種添加剤が含まれていてもよい。
 重合反応性化合物としては、分子中にラジカル重合性結合および/またはカチオン重合性結合を有するモノマー、オリゴマー、反応性ポリマー等が挙げられる。
 ラジカル重合性結合を有するモノマーとしては、単官能モノマー、多官能モノマーが挙げられる。
 ラジカル重合性結合を有する単官能モノマーとしては、(メタ)アクリレート誘導体(メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、アルキル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート等)、(メタ)アクリル酸、(メタ)アクリロニトリル、スチレン誘導体(スチレン、α-メチルスチレン等)、(メタ)アクリルアミド誘導体((メタ)アクリルアミド、N-ジメチル(メタ)アクリルアミド、N-ジエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド等)などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 ラジカル重合性結合を有する多官能モノマーとしては、二官能性モノマー(エチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、イソシアヌール酸エチレンオキサイド変性ジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシエトキシフェニル)プロパン、2,2-ビス(4-(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)フェニル)プロパン、1,2-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)エタン、1,4-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)ブタン、ジメチロールトリシクロデカンジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAのプロピレンオキサイド付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジビニルベンゼン、メチレンビスアクリルアミド等)、三官能モノマー(ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキシド変性トリアクリレート、トリメチロールプロパンエチレンオキシド変性トリアクリレート、イソシアヌール酸エチレンオキサイド変性トリ(メタ)アクリレート等)、四官能以上のモノマー(コハク酸/トリメチロールエタン/アクリル酸の縮合反応混合物、ジペンタエリストールヘキサ(メタ)アクリレート、ジペンタエリストールペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、テトラメチロールメタンテトラ(メタ)アクリレート等)、二官能以上のウレタンアクリレート、二官能以上のポリエステルアクリレートなどが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 カチオン重合性結合を有するモノマーとしては、エポキシ基、オキセタニル基、オキサゾリル基、ビニルオキシ基等を有するモノマーなどが挙げられ、エポキシ基を有するモノマーが特に好ましい。
 分子中にラジカル重合性結合および/またはカチオン重合性結合を有するオリゴマーまたは反応性ポリマーとしては、不飽和ジカルボン酸と多価アルコールとの縮合物等の不飽和ポリエステル類;ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリオール(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、カチオン重合型エポキシ化合物、側鎖にラジカル重合性結合を有する上述のモノマーの単独または共重合ポリマーなどが挙げられる。
 活性エネルギー線重合開始剤としては、公知の重合開始剤を用いることができ、活性エネルギー線硬化性樹脂組成物を硬化させる際に用いる活性エネルギー線の種類に応じて適宜選択することが好ましい。
 光硬化反応を利用する場合、光重合開始剤としては、カルボニル化合物(ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジル、ベンゾフェノン、p-メトキシベンゾフェノン、2,2-ジエトキシアセトフェノン、α,α-ジメトキシ-α-フェニルアセトフェノン、メチルフェニルグリオキシレート、エチルフェニルグリオキシレート、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等)、硫黄化合物(テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド等)、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ベンゾイルジエトキシフォスフィンオキサイドなどが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 電子線硬化反応を利用する場合、重合開始剤としては、ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、メチルオルソベンゾイルベンゾエート、4-フェニルベンゾフェノン、t-ブチルアントラキノン、2-エチルアントラキノン、チオキサントン(2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン等)、アセトフェノン(ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等)、ベンゾインエーテル(ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等)、アシルフォスフィンオキサイド(2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等)、メチルベンゾイルホルメート、1,7-ビスアクリジニルヘプタン、9-フェニルアクリジンなどが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 活性エネルギー線硬化性樹脂組成物における活性エネルギー線重合開始剤の含有量は、重合反応性化合物100質量部に対して、0.1~10質量部が好ましい。活性エネルギー線重合開始剤が0.1質量部未満では、重合が進行しにくい。一方、活性エネルギー線重合開始剤が10質量部を超えると、硬化樹脂が着色したり、機械強度が低下したりすることがある。
 非反応性のポリマーとしては、アクリル樹脂、スチレン系樹脂、ポリウレタン樹脂、セルロース樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、熱可塑性エラストマーなどが挙げられる。
 活性エネルギー線ゾルゲル反応性組成物としては、例えば、アルコキシシラン化合物、アルキルシリケート化合物などが挙げられる。
 アルコキシシラン化合物としては、RSi(OR’)で表されるものが挙げられる。RおよびR’は炭素数1~10のアルキル基を表し、xおよびyはx+y=4の関係を満たす整数である。具体的には、テトラメトキシシラン、テトラ-iso-プロポキシシラン、テトラ-n-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、トリメチルプロポキシシラン、トリメチルブトキシシランなどが挙げられる。
 アルキルシリケート化合物としては、RO[Si(OR)(OR)O]で表されるものが挙げられる。R~Rはそれぞれ炭素数1~5のアルキル基を表し、zは3~20の整数を表す。具体的にはメチルシリケート、エチルシリケート、イソプロピルシリケート、n-プロピルシリケート、n-ブチルシリケート、n-ペンチルシリケート、アセチルシリケートなどが挙げられる。
(製造装置)
 微細凹凸構造を表面に有する成形体は、例えば、図3に示す製造装置を用いて、下記のようにして製造される。
 微細凹凸構造(図示略)を表面に有するロール状モールド20と、ロール状モールド20の表面に沿って移動する帯状のフィルム42(成形体本体)との間に、タンク22から活性エネルギー線硬化性樹脂組成物38を供給する。
 ロール状モールド20と、空気圧シリンダ24によってニップ圧が調整されたニップロール26との間で、フィルム42および活性エネルギー線硬化性樹脂組成物38をニップし、活性エネルギー線硬化性樹脂組成物38を、フィルム42とロール状モールド20との間に均一に行き渡らせると同時に、ロール状モールド20の微細凹凸構造の凹部内に充填する。
 ロール状モールド20の下方に設置された活性エネルギー線照射装置28から、フィルム42を通して活性エネルギー線硬化性樹脂組成物38に活性エネルギー線を照射し、活性エネルギー線硬化性樹脂組成物38を硬化させることによって、ロール状モールド20の表面の微細凹凸構造が転写された硬化樹脂層44を形成する。
 剥離ロール30により、表面に硬化樹脂層44が形成されたフィルム42をロール状モールド20から剥離することによって、図4に示すような成形体40を得る。
 活性エネルギー線照射装置28としては、例えば、高圧水銀ランプ、メタルハライドランプ等が挙げられる。
 活性エネルギー線の照射量は、活性エネルギー線硬化性樹脂組成物の硬化が進行するエネルギー量であればよく、通常、100~10000mJ/cm程度である。
(成形体)
 このようにして製造された成形体40は、図4に示すように、フィルム42(成形体本体)の表面に硬化樹脂層44が形成されたものである。
 硬化樹脂層44は、活性エネルギー線硬化性樹脂組成物の硬化物からなる膜であり、表面に微細凹凸構造を有する。
 本発明により得られたモールドを用いた場合の成形体40の表面の微細凹凸構造は、酸化皮膜の表面の微細凹凸構造を転写して形成されたものであり、活性エネルギー線硬化性樹脂組成物の硬化物からなる複数の突起46を有する。
 微細凹凸構造としては、略円錐形状、角錐形状等の突起(凸部)が複数並んだ、いわゆるモスアイ構造が好ましい。突起間の間隔が可視光の波長以下であるモスアイ構造は、空気の屈折率から材料の屈折率へと連続的に屈折率が増大していくことで有効な反射防止の手段となることが知られている。
(用途)
 本発明により得られた、微細凹凸構造を表面に有する成形体は、表面の微細凹凸構造によって、反射防止性能、撥水性能等の種々の性能を発揮する。
 微細凹凸構造を表面に有する成形体がシート状またはフィルム状の場合には、反射防止膜として、例えば、画像表示装置(テレビ、携帯電話のディスプレイ等)、展示パネル、メーターパネル等の対象物の表面に貼り付けたり、インサート成形したりして用いることができる。また、撥水性能を活かして、風呂場の窓や鏡、太陽電池部材、自動車のミラー、看板、メガネのレンズ等、雨、水、蒸気等に曝されるおそれのある対象物の部材としても用いることができる。
 微細凹凸構造を表面に有する成形体が立体形状の場合には、用途に応じた形状の成形体本体(透明基材)を用いて反射防止物品を製造しておき、これを上記対象物の表面を構成する部材として用いることもできる。
 また、対象物が画像表示装置である場合には、その表面に限らず、その前面板に対して、微細凹凸構造を表面に有する成形体を貼り付けてもよいし、前面板そのものを、微細凹凸構造を表面に有する成形体から構成することもできる。例えば、イメージを読み取るセンサーアレイに取り付けられたロッドレンズアレイの表面、FAX、複写機、スキャナ等のイメージセンサーのカバーガラス、複写機の原稿を置くコンタクトガラス等に、微細凹凸構造を表面に有する成形体を用いても構わない。また、可視光通信等の光通信機器の光受光部分等に、微細凹凸構造を表面に有する成形体を用いることによって、信号の受信感度を向上させることもできる。
 また、微細凹凸構造を表面に有する成形体は、上述した用途以外にも、光導波路、レリーフホログラム、光学レンズ、偏光分離素子等の光学用途や、細胞培養シートとしての用途に展開できる。
(作用効果)
 以上説明した本発明の、微細凹凸構造を表面に有する成形体の製造方法にあっては、本発明のモールドの製造方法で得られたモールド表面の微細凹凸構造を、成形体本体の表面に転写しているため、ヘイズが低く(具体的には5%以下)、反射率が十分に低減された成形体を製造できる。
 また、本発明によれば、本発明のモールドの製造方法で得られたモールドを用いることによって、このモールドの微細凹凸構造の反転構造を表面に有する成形体を一工程で簡便に製造できる。
 なお、微細凹凸構造を表面に有する成形体は、図示例の成形体40に限定はされない。例えば、微細凹凸構造は、硬化樹脂層44を設けることなく、熱インプリント法によってフィルム42の表面に直接形成されていてもよい。ただし、ロール状モールド20を用いて効率よく微細凹凸構造を形成できる点から、硬化樹脂層44の表面に微細凹凸構造が形成されていることが好ましい。
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。
 各種測定、評価は、以下の方法にて行った。
(最終電圧までの到達時間の測定)
 工程(a)に相当する陽極酸化処理にて、時間変化における電圧の推移をデータロガー(オムロン株式会社製、「ZR-RX40」)にて1秒間隔で記録した。電圧の印可を開始してからから最終電圧(工程(a)を終了する直前の電圧(V[V]))に到達するまでの時間(t[秒])を測定し、V/tを求めた。
(モールドの細孔の測定)
 酸化皮膜が表面に形成されたモールドの一部を切り取って、表面に白金を1分間蒸着し、電解放出型走査電子顕微鏡(日本電子株式会社製、「JSM-6701F」)を用いて、加速電圧3.00kVで1万倍に拡大して観察した。細孔の平均間隔(ピッチ)は一直線上に並んだ6個の細孔の中心間距離を平均して求めた。
 また、モールドの一部を異なる2箇所から切り取って、その縦断面に白金を1分間蒸着し、同じく電解放出型走査電子顕微鏡を用いて加速電圧3.00kVで観察した。各断面サンプルを5万倍に拡大して観察し、観察範囲で10個の細孔の深さを測定し、平均した。この測定を2点で行い、各観察点の平均値をさらに平均して細孔の平均深さを求めた。
(成形体の突起の測定)
 成形体(フィルム)の表面および縦断面に白金を10分間蒸着し、電解放出型走査電子顕微鏡(日本電子株式会社製、「JSM-6701F」)を用いて、加速電圧3.00kVの条件で成形体の表面および断面を観察した。
 成形体の表面を1万倍に拡大して観察し、一直線上に並んだ6個の突起(凸部)の中心間距離を平均して突起の平均間隔(ピッチ)を求めた。また、成形体の断面を5万倍で観察し、10本の突起の高さを平均して突起の平均高さを求めた。
(外観評価)
 工程(a)終了後のアルミニウム基材表面の外観を目視で評価した。評価基準を以下に示す。
○:アルミニウム基材表面に周囲の光景がはっきりと写り込む。
△:アルミニウム基材表面に周囲の光景が写り込むが、写り込んだ物の輪郭が滲んでいる。
×:アルミニウム基材表面に光沢感がなく、周囲の光景が写り込まない。または写り込んだ物が判別できない。
(ヘイズの測定)
 成形体(フィルム)のヘイズは、JIS K 7361-1:1997(ISO 13468-1:1996)に準拠したヘイズメーター(スガ試験機株式会社製)を用いて測定した。
<実施例1>
(モールドの製造)
 純度99.97質量%の塊状アルミニウムを直径200mm、幅320mmのロール状に切断し、表面を切削加工して鏡面化し、これをアルミニウム基材として用いた。基材の材質を表1に示す。なお、表中の「Al」はアルミニウムであり、「3N7」はアルミニウムの純度を表し、純度99.97質量%を意味する。
工程(a):
 0.05Mのシュウ酸水溶液を15.7℃に温度調整し、これにアルミニウム基材を浸漬して、以下の条件にて陽極酸化した。
 電圧の印加開始から1分間の電流密度が2.5mA/cmとなるように電流制限しつつ、電圧40Vで陽極酸化を開始した。40Vの電圧を43分間維持して陽極酸化を行った後、続けて80Vまで電圧を上昇させ、80Vで2分間陽極酸化することで、細孔を有する酸化皮膜を形成した。
 工程(a)における電圧と時間、電圧の印加を開始してから1分間の電流密度と電流、最終電圧までの到達時間とV/t、工程(a)で用いた電解液の種類(以下、これらを「陽極酸化条件」という)を表1に示す。また、工程(a)終了後のアルミニウム基材表面の外観を評価した。結果を表1に示す。さらに、電圧の印加を開始してから5分経過するまでの間の電流の変化を図5に示す。
工程(b):
 酸化皮膜が形成されたアルミニウム基材を、6質量%のリン酸と1.8質量%のクロム酸を混合した70℃の水溶液中に3時間浸漬して酸化皮膜を溶解除去し、陽極酸化の細孔発生点となる窪みを露出させた。
工程(c):
 細孔発生点を露出させたアルミニウム基材を、15.7℃に温度調整した0.05Mのシュウ酸水溶液に浸漬し、80Vで14秒間陽極酸化して、酸化皮膜をアルミニウム基材の表面に再び形成した。
 なお、電圧の印加を開始してから10秒間の電流密度は、19.9mA/cmであった。また、80Vに到達するのに要した時間は13秒であった。すなわち、V/t=6.154であった。
工程(d):
 酸化皮膜が形成されたアルミニウム基材を、31.7℃に温度調整した5質量%リン酸水溶液中に17分間浸漬して、酸化皮膜の細孔を拡大する孔径拡大処理を施した。
工程(e):
 前記工程(c)と前記工程(d)をさらに交互に4回繰り返した。最後に工程(d)を行った。すなわち、工程(c)を合計で5回行い、工程(d)を合計で5回行った。
 その後、脱イオン水で洗浄し、さらに表面の水分をエアーブローで除去し、平均間隔180nm、平均深さ約230nmの略円錐形状の細孔を有する酸化皮膜が形成されたモールドを得た。
 このようにして得られたモールドを、TDP-8(日光ケミカルズ株式会社製)を0.1質量%に希釈した水溶液に10分間浸漬して、一晩風乾することによって離型処理した。
(成形体の製造)
 離型処理したモールドと、成形体本体(透明基材)であるアクリルフィルム(三菱レイヨン株式会社製、「アクリプレン HBS010」)との間に、下記の組成の活性エネルギー線硬化性樹脂組成物を充填して、高圧水銀ランプで積算光量1000mJ/cmの紫外線を照射することによって、活性エネルギー線硬化性樹脂組成物を硬化させた。その後、モールドを剥離し、成形体本体と硬化組成物の硬化物からなる成形体(フィルム)を得た。
 このようにして製造した成形体の表面には微細凹凸構造が形成されており、突起の平均間隔(ピッチ)は180nm、突起の平均高さは約220nmであった。
 得られた成形体のヘイズを測定した。結果を表1に示す。
活性エネルギー線硬化性樹脂組成物:
 ジペンタエリスリトールヘキサアクリレート(新中村化学工業株式会社製):25質量部、
 ペンタエリスリトールトリアクリレート(第一工業製薬株式会社製):25質量部、
 エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製):25質量部、
 ポリエチレングリコールジアクリレート(東亞合成株式会社製):25質量部、
 1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製):1質量部、
 ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(BASF社製):0.5質量、
 ポリオキシエチレンアルキル(12~15)エーテルリン酸(日本ケミカルズ販売株式会社製):0.1質量部。
<実施例2>
 工程(a)における陽極酸化条件を表1に記載のように変更した以外は、実施例1と同様にしてモールドを製造し、得られたモールドを用いて成形体を製造した。
 工程(a)の陽極酸化条件と、工程(a)終了後のアルミニウム基材表面の外観評価結果と、成形体のヘイズの測定結果を表1に示す。なお、表中の「シュウ酸/リン酸」は、0.3Mのシュウ酸水溶液にリン酸を添加し、リン酸濃度が0.1Mとなるよう調整した混合水溶液である。
<実施例3>
 純度99.996質量%のアルミニウムに、1質量%相当のマグネシウムが添加された塊状アルミニウムを直径200mm、幅320mmのロール状に切断し、表面を切削加工して鏡面化し、これをアルミニウム基材として用いた。
 このアルミニウム基材を用い、工程(a)における陽極酸化条件を表1に記載のように変更した以外は、実施例1と同様にしてモールドを製造し、得られたモールドを用いて成形体を製造した。
 工程(a)の陽極酸化条件と、工程(a)終了後のアルミニウム基材表面の外観評価結果と、成形体のヘイズの測定結果を表1に示す。なお、表中の「4N6」はアルミニウムの純度を表し、純度99.996質量%を意味する。また、「+Mg(1%)」は、アルミニウムに1質量%相当のマグネシウムを添加したことを意味する。
<実施例4>
 純度99.996質量%のアルミニウムに、1質量%相当のマグネシウムが添加された塊状アルミニウムを直径200mm、幅320mmのロール状に切断し、表面を切削加工して鏡面化し、これをアルミニウム基材として用いた。
 このアルミニウム基材を用い、電圧の印加を開始してから1分間の電流密度が19.9mA/cmとなるように電流制限した。工程(a)におけるその他の陽極酸化条件を表1に記載のように変更した以外は、実施例1と同様にしてモールドを製造し、得られたモールドを用いて成形体を製造した。
 工程(a)の陽極酸化条件と、工程(a)終了後のアルミニウム基材表面の外観評価結果と、成形体のヘイズの測定結果を表1に示す。
<実施例5>
 電圧の印加を開始してから1分間の電流密度が19.9mA/cmとなるように電流制限した。工程(a)におけるその他の陽極酸化条件を表1に記載のように変更した以外は、実施例1と同様にしてモールドを製造し、得られたモールドを用いて成形体を製造した。
 工程(a)の陽極酸化条件と、工程(a)終了後のアルミニウム基材表面の外観評価結果と、成形体のヘイズの測定結果を表1に示す。
<実施例6>
 電圧の印加を開始してから1分間の電流密度が19.9mA/cmとなるように電流制限した。工程(a)におけるその他の陽極酸化条件を表1に記載のように変更した以外は、実施例1と同様にしてモールドを製造し、得られたモールドを用いて成形体を製造した。
 工程(a)の陽極酸化条件と、工程(a)終了後のアルミニウム基材表面の外観評価結果と、成形体のヘイズの測定結果を表1に示す。
<実施例7>
 電圧の印加を開始してから1分間の電流密度が8mA/cmとなるように電流制限した。工程(a)におけるその他の陽極酸化条件を表1に記載のように変更した以外は、実施例1と同様にしてモールドを製造し、得られたモールドを用いて成形体を製造した。
 工程(a)の陽極酸化条件と、工程(a)終了後のアルミニウム基材表面の外観評価結果を表1に示す。
<比較例1>
 純度99.97質量%の塊状アルミニウムを直径200mm、幅320mmのロール状に切断し、表面を切削加工して鏡面化し、これをアルミニウム基材として用いた。
 このアルミニウム基材を用い、工程(a)において電流制限を行わずに80Vの電圧を印加し、5分間陽極酸化することで細孔を有する酸化皮膜を形成した以外は、実施例1と同様にしてモールドを製造し、得られたモールドを用いて成形体を製造した。
 工程(a)の陽極酸化条件と、工程(a)終了後のアルミニウム基材表面の外観評価結果と、成形体のヘイズの測定結果を表1に示す。また、工程(a)における電圧の印加開始から5分経過するまでの間の電流の変化を図5に示す。
Figure JPOXMLDOC01-appb-T000001
                  
 表1、および図5から明らかなように、工程(a)において、最終電圧をV[V]、最終電圧に到達するまでの時間をt[秒]としたときに、V/tが0.010超14未満であった実施例1の場合、電圧印加直後の電流の跳ね上がりを抑制することができた。また、各実施例における工程(a)終了後のアルミニウム基材表面には、周囲の光景が写り込み、白濁が抑制されていた。また、各実施例で得られたモールドの外観を目視で観察したところ、表面の白濁が抑制されていた。さらに、各実施例で得られたモールドからは、ヘイズの低い成形体(フィルム)を製造できた。
 また、最終的に陽極酸化を60V以上で行うことで(最終電圧を60V以上とすることで)、細孔の間隔が比較的大きいモールドを製造することができた。
 工程(a)において、V/tが14以上であった比較例1の場合、工程(a)終了後のアルミニウム基材表面は光沢感がなく、周囲の光景が写り込んでいなかった。また、比較例1で得られたモールドの外観を目視で観察したところ、表面が白濁していた。さらに、比較例1で得られたモールドを用いて製造した成形体(フィルム)のヘイズは、各実施例で得られた成形体のヘイズに比べて著しく高かった。
 本発明のモールドの製造方法によって得られたモールドは、反射防止物品、防曇性物品、防汚性物品、撥水性物品の効率的な量産にとって有用である。
 また、本発明の微細凹凸構造を表面に有する成形体の製造方法で得られた成形体は、反射防止物品、防曇性物品、防汚性物品、撥水性物品として好適である。
 10 アルミニウム基材、
 12 細孔、
 14 酸化皮膜、
 16 窪み、
 18 モールド、
 20 ロール状モールド、
 40 成形体、
 42 フィルム、
 44 硬化樹脂層、
 46 突起。

Claims (18)

  1.  アルミニウム基材の表面に複数の細孔を有する酸化皮膜が形成されたモールドを製造する方法であって、
     (a)機械加工されたアルミニウム基材に電圧を印加し、前記アルミニウム基材の表面を陽極酸化して酸化皮膜を形成する工程と、
     (b)前記工程(a)で形成された酸化皮膜の少なくとも一部を除去する工程と
    を有し、
     前記工程(a)において、工程(a)を終了する直前の電圧(V[V])と、電圧の印加を開始してから前記電圧(V[V])に到達するまでの時間(t[秒])とが下記式(i)を満たす、モールドの製造方法。
     0.010<V/t<14  ・・・(i)
  2.  前記工程(a)において、電圧印加直後の電流密度が20mA/cm以下である、請求項1に記載のモールドの製造方法。
  3.  前記工程(a)において、電圧印加直後の電流密度が10mA/cm以下である、請求項2に記載のモールドの製造方法。
  4.  前記工程(a)において、最終的に初期の陽極酸化よりも高い電圧、かつ60V以上で陽極酸化を行う、請求項1~3のいずれか一項に記載のモールドの製造方法。
  5.  前記工程(a)の陽極酸化において用いられる電解液が有機酸を含む、請求項1~4のいずれか一項に記載のモールドの製造方法。
  6.  前記電解液の主成分がシュウ酸である、請求項5に記載のモールドの製造方法。
  7.  前記工程(a)において、初期の陽極酸化を50V以下で行い、最終的に初期の陽極酸化よりも高い電圧で陽極酸化を行う、請求項1に記載のモールドの製造方法。
  8.  前記工程(a)において、最終的に60V以上で陽極酸化を行う、請求項7に記載のモールドの製造方法。
  9.  前記工程(a)において、初期の陽極酸化から最終の陽極酸化まで段階的に電圧を上昇させる、請求項7または8に記載のモールドの製造方法。
  10.  前記工程(a)の陽極酸化において用いられる電解液が有機酸を含む、請求項7~9のいずれか一項に記載のモールドの製造方法。
  11.  前記電解液の主成分がシュウ酸である、請求項10に記載のモールドの製造方法。
  12.  (c)前記工程(b)または下記工程(d)の後、アルミニウム基材を陽極酸化して、複数の細孔を有する酸化皮膜を形成する工程と、
     (d)前記工程(c)で形成された酸化皮膜の一部を除去する工程と、
     (e)前記工程(c)と前記工程(d)とを交互に繰り返す工程と
    をさらに有し、
     前記工程(c)において、工程(c)を終了する直前の電圧(V[V])と、電圧を印加してから前記電圧(V[V])に到達するまでの時間(t[秒])とが、下記式(ii)を満たす、請求項1に記載のモールドの製造方法。
     2<V/t<14  ・・・(ii)
  13.  前記工程(c)において、電圧印加直後の電流密度が20mA/cm以下である、請求項12に記載のモールドの製造方法。
  14.  前記工程(c)において、電圧印加直後の電流密度が10mA/cm以下である、請求項13に記載のモールドの製造方法。
  15.  前記工程(a)において、初期の陽極酸化を40V以下で行い、かつ前記工程(c)の陽極酸化において用いられる電解液が有機酸を含む、請求項12~14のいずれか一項に記載のモールドの製造方法。
  16.  前記工程(c)の陽極酸化において用いられる電解液の主成分がシュウ酸である、請求項15に記載のモールドの製造方法。
  17.  請求項1~16のいずれか一項に記載のモールドの製造方法で得られたモールドの表面に形成された複数の細孔からなる微細凹凸構造を、成形体本体の表面に転写する、微細凹凸構造を表面に有する成形体の製造方法。
  18.  請求項17に記載の微細凹凸構造を表面に有する成形体の製造方法により製造された微細凹凸構造を表面に有する成形体であって、
     ヘイズが5%以下である、微細凹凸構造を表面に有する成形体。
PCT/JP2013/071223 2012-08-06 2013-08-06 モールドの製造方法、および微細凹凸構造を表面に有する成形体とその製造方法 WO2014024868A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013537962A JP5536287B1 (ja) 2012-08-06 2013-08-06 モールドの製造方法、および微細凹凸構造を表面に有する成形体の製造方法
US14/419,293 US9908265B2 (en) 2012-08-06 2013-08-06 Method of manufacturing mold, and molded article having fine relief structure on surface and method of manufacturing the same
CN201380041521.5A CN104520087B (zh) 2012-08-06 2013-08-06 模具的制造方法和表面具有微细凹凸结构的成形体及其制造方法
KR1020157002887A KR101680495B1 (ko) 2012-08-06 2013-08-06 몰드의 제조 방법, 및 미세 요철 구조를 표면에 갖는 성형체와 그 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-174349 2012-08-06
JP2012174349 2012-08-06
JP2012174350 2012-08-06
JP2012-174350 2012-08-06

Publications (1)

Publication Number Publication Date
WO2014024868A1 true WO2014024868A1 (ja) 2014-02-13

Family

ID=50068092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071223 WO2014024868A1 (ja) 2012-08-06 2013-08-06 モールドの製造方法、および微細凹凸構造を表面に有する成形体とその製造方法

Country Status (6)

Country Link
US (1) US9908265B2 (ja)
JP (1) JP5536287B1 (ja)
KR (1) KR101680495B1 (ja)
CN (1) CN104520087B (ja)
TW (1) TWI564134B (ja)
WO (1) WO2014024868A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008345A (ja) * 2014-06-26 2016-01-18 三菱レイヨン株式会社 微細凹凸構造を表面に有するモールド及びその製造方法、並びに微細凹凸構造を表面に有する成形体
JP2016125129A (ja) * 2015-01-08 2016-07-11 三菱レイヨン株式会社 モールド製造用アルミニウム原型、モールドとその製造方法、および成形体
KR101840438B1 (ko) 2016-04-04 2018-03-20 강원대학교 산학협력단 나노 크기의 구조물이 표면에 형성된 마이크로 크기의 구조물 제작 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108289992B (zh) * 2015-08-14 2022-03-01 美酷有限公司 包括印刷电路板加热元件的输注流体加温器
KR102443973B1 (ko) * 2017-12-11 2022-09-16 (주)코미코 내부식성 및 절연특성이 우수한 양극산화된 알루미늄 또는 알루미늄 합금 부재의 제조방법 및 표면처리된 반도체 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171793A (ja) * 2001-12-06 2003-06-20 Fuji Kogyo Co Ltd アルミニウム合金上への陽極酸化皮膜の形成方法
JP2010253820A (ja) * 2009-04-24 2010-11-11 Kanagawa Acad Of Sci & Technol スタンパ製造用アルミニウム基材およびスタンパの製造方法
WO2012029570A1 (ja) * 2010-08-30 2012-03-08 シャープ株式会社 陽極酸化層の形成方法および型の製造方法
JP2012140001A (ja) * 2010-12-15 2012-07-26 Mitsubishi Rayon Co Ltd モールドおよびその製造方法と、微細凹凸構造を表面に有する物品の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3498335B2 (ja) 1993-10-22 2004-02-16 ソニー株式会社 ディジタルビデオ信号記録装置、再生装置及び記録再生装置
US6802951B2 (en) * 2002-01-28 2004-10-12 Medtronic, Inc. Methods of anodizing valve metal anodes
US7393391B2 (en) * 2003-10-24 2008-07-01 Stc.Unm Fabrication of an anisotropic super hydrophobic/hydrophilic nanoporous membranes
DE10361888B3 (de) * 2003-12-23 2005-09-22 Airbus Deutschland Gmbh Anodisierverfahren für Aluminiumwerkstoffe
JP4800860B2 (ja) * 2006-06-16 2011-10-26 富士フイルム株式会社 微細構造体の製造方法および微細構造体
JP4658129B2 (ja) 2006-06-30 2011-03-23 三菱レイヨン株式会社 鋳型、鋳型の製造方法及びシートの製造方法
CN101104945A (zh) * 2007-04-19 2008-01-16 上海交通大学 具有厚阻挡层的阳极氧化铝薄膜的制备方法
JP5347687B2 (ja) 2009-04-24 2013-11-20 株式会社リコー 画像形成装置
JP5506787B2 (ja) 2009-05-08 2014-05-28 シャープ株式会社 陽極酸化層の形成方法および型の製造方法
WO2011055757A1 (ja) * 2009-11-06 2011-05-12 シャープ株式会社 型の製造方法および型
JP5635419B2 (ja) * 2010-02-24 2014-12-03 株式会社神戸製鋼所 陽極酸化皮膜の形成方法
CN102892930B (zh) * 2010-03-25 2015-10-21 三菱丽阳株式会社 压印用辊状模具的制造方法
WO2011136229A1 (ja) * 2010-04-28 2011-11-03 シャープ株式会社 陽極酸化層の形成方法
WO2012095672A2 (en) * 2011-01-14 2012-07-19 Accentus Medical Plc Metal treatment
JP2012240001A (ja) * 2011-05-20 2012-12-10 Sharp Corp 液晶パネルの再資源化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171793A (ja) * 2001-12-06 2003-06-20 Fuji Kogyo Co Ltd アルミニウム合金上への陽極酸化皮膜の形成方法
JP2010253820A (ja) * 2009-04-24 2010-11-11 Kanagawa Acad Of Sci & Technol スタンパ製造用アルミニウム基材およびスタンパの製造方法
WO2012029570A1 (ja) * 2010-08-30 2012-03-08 シャープ株式会社 陽極酸化層の形成方法および型の製造方法
JP2012140001A (ja) * 2010-12-15 2012-07-26 Mitsubishi Rayon Co Ltd モールドおよびその製造方法と、微細凹凸構造を表面に有する物品の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008345A (ja) * 2014-06-26 2016-01-18 三菱レイヨン株式会社 微細凹凸構造を表面に有するモールド及びその製造方法、並びに微細凹凸構造を表面に有する成形体
JP2016125129A (ja) * 2015-01-08 2016-07-11 三菱レイヨン株式会社 モールド製造用アルミニウム原型、モールドとその製造方法、および成形体
KR101840438B1 (ko) 2016-04-04 2018-03-20 강원대학교 산학협력단 나노 크기의 구조물이 표면에 형성된 마이크로 크기의 구조물 제작 방법

Also Published As

Publication number Publication date
CN104520087B (zh) 2016-10-12
TWI564134B (zh) 2017-01-01
CN104520087A (zh) 2015-04-15
JP5536287B1 (ja) 2014-07-02
KR20150027301A (ko) 2015-03-11
US9908265B2 (en) 2018-03-06
TW201410429A (zh) 2014-03-16
US20150290844A1 (en) 2015-10-15
JPWO2014024868A1 (ja) 2016-07-25
KR101680495B1 (ko) 2016-11-28

Similar Documents

Publication Publication Date Title
JP5898719B2 (ja) スタンパの製造方法、成形体の製造方法
JP6391242B2 (ja) 陽極酸化ポーラスアルミナの製造方法、および微細凹凸構造を表面に有する成形体の製造方法、並びに微細凹凸構造を表面に有する成形体
JP4658129B2 (ja) 鋳型、鋳型の製造方法及びシートの製造方法
JP5283846B2 (ja) 成形体とその製造方法
JP6092775B2 (ja) モールドの製造方法および微細凹凸構造を表面に有する成形体の製造方法
JP5536287B1 (ja) モールドの製造方法、および微細凹凸構造を表面に有する成形体の製造方法
JP2009174007A (ja) 鋳型とその製造方法、および成形体の製造方法
JP5474401B2 (ja) スタンパ製造用アルミニウム基材およびスタンパの製造方法
JP5832066B2 (ja) 成形体とその製造方法
JP6308754B2 (ja) スタンパ用アルミニウム原型とその製造方法、スタンパとその製造方法、および転写物の製造方法
JP2012140001A (ja) モールドおよびその製造方法と、微細凹凸構造を表面に有する物品の製造方法
JP6874426B2 (ja) モールドの製造方法、物品の製造方法及び物品
JP2014051710A (ja) 陽極酸化ポーラスアルミナの製造方法、モールドの製造方法および微細凹凸構造を表面に有する成形体
JP2015101780A (ja) モールドの製造方法、および微細凹凸構造を表面に有する成形体とその製造方法
JP2013193415A (ja) フィルムの製造方法
JP6287628B2 (ja) 微細凹凸構造を表面に有するモールドの製造方法
JP5877006B2 (ja) モールドの製造方法、および微細凹凸構造を表面に有する成形体の製造方法
JP2014024240A (ja) モールドの製造方法および微細凹凸構造を表面に有する成形体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013537962

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157002887

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14419293

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827834

Country of ref document: EP

Kind code of ref document: A1