JP4800860B2 - 微細構造体の製造方法および微細構造体 - Google Patents

微細構造体の製造方法および微細構造体 Download PDF

Info

Publication number
JP4800860B2
JP4800860B2 JP2006167540A JP2006167540A JP4800860B2 JP 4800860 B2 JP4800860 B2 JP 4800860B2 JP 2006167540 A JP2006167540 A JP 2006167540A JP 2006167540 A JP2006167540 A JP 2006167540A JP 4800860 B2 JP4800860 B2 JP 4800860B2
Authority
JP
Japan
Prior art keywords
treatment
micropore
film
aluminum
micropores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006167540A
Other languages
English (en)
Other versions
JP2007332437A (ja
Inventor
優介 畠中
忠文 冨田
吉則 堀田
彰男 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006167540A priority Critical patent/JP4800860B2/ja
Priority to US11/808,502 priority patent/US7722754B2/en
Priority to EP20070011664 priority patent/EP1867757A3/en
Publication of JP2007332437A publication Critical patent/JP2007332437A/ja
Application granted granted Critical
Publication of JP4800860B2 publication Critical patent/JP4800860B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/045Anodisation of aluminium or alloys based thereon for forming AAO templates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • ing And Chemical Polishing (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Materials For Photolithography (AREA)

Description

本発明は、微細構造体およびその製造方法に関する。
金属および半導体の薄膜、細線、ドット等の技術領域では、ある特徴的な長さより小さいサイズにおいて自由電子の動きが閉じ込められることにより、電気的、光学的および化学的に特異な現象が見られることが知られている。このような現象は「量子力学的サイズ効果(量子サイズ効果)」と呼ばれている。このような特異な現象を応用した機能性材料の研究開発が、現在、盛んに行なわれている。具体的には、数百nmより微細な構造を有する材料が、「微細構造体」または「ナノ構造体」と称されており、材料開発の対象の一つとされている。
こうした微細構造体の作製方法としては、例えば、フォトリソグラフィ、電子線露光、X線露光等の微細パターン形成技術を初めとする半導体加工技術によって直接的にナノ構造体を作製する方法が挙げられる。
中でも、規則的な微細構造を有する微細構造体を作製する方法についての研究が注目され、多く行われている。
例えば、自己規制的に規則的な構造が形成される方法として、電解液中でアルミニウムに陽極酸化処理を施して得られる陽極酸化アルミナ膜(陽極酸化皮膜)が挙げられる。陽極酸化皮膜には、数nm程度から数百nm程度の直径を有する複数の微細孔(マイクロポア)が規則的に形成されることが知られている。この陽極酸化皮膜の自己規則化を用い、完全に規則的な配列を得ると、理論的には、マイクロポアを中心に底面が正六角形である六角柱のセルが形成され、隣接するマイクロポアを結ぶ線が正三角形を成すことが知られている。
このようなマイクロポアを有する陽極酸化皮膜の用途例としては、光機能性ナノデバイス、磁気デバイス、発光担体、触媒担持体等が知られている。例えば、特許文献1には、ポアを金属で封孔し局在プラズモン共鳴を発生させてラマン分光分析用装置へ応用する旨が記載されている。
また、特許文献2には、表面に細孔を有し、該細孔に、陽極酸化と孔径拡大処理を組み合わせることで、連続的に細孔径が変化するテーパー形状を付与した陽極酸化ポーラスアルミナを製造することが記載されている。
このようなマイクロポアを形成させる陽極酸化処理の前には、陽極酸化処理のマイクロポアの生成の起点となる窪みを形成させておく方法が知られている。このような窪みを形成させることにより、マイクロポアの配列およびポア径のばらつきを所望の範囲に制御することが容易となる。
窪みを形成させる一般的な方法として、陽極酸化皮膜の自己規則性を利用した自己規則化法が知られている。これは陽極酸化皮膜のマイクロポアが規則的に配列する性質を利用し、規則的な配列をかく乱する要因を取り除くことで、規則性を向上させる方法である。
この自己規則化法は、特許文献1に記載されているように、一度陽極酸化処理した後、リン酸および6価クロム酸の混合水溶液への浸せき処理を施し、再度陽極酸化処理を順に行うのが一般的である。
特開2005−307341号公報 特開2005−156695号公報
しかしながら、リン酸および6価クロム酸の混合水溶液を用いた脱膜工程は、陽極酸化皮膜の厚さによっても異なるが、通常、数時間から十数時間という長時間をかけて行う必要があった。
したがって、本発明は、短時間で、規則的な配列の窪みを有する構造体を得ることができる構造体の製造方法およびそれにより得られる構造体を提供することを目的とする。
本発明者は、上記目的を達成すべく鋭意研究した結果、リン酸および6価クロム酸の混合水溶液を用いた脱膜工程の代わりに、陽極酸化皮膜を少量溶解させる第1皮膜溶解処理と、陽極酸化処理と、陽極酸化皮膜を溶解させる第2皮膜溶解処理とをこの順に施すことにより、短時間で、規則的な配列の窪みを有する構造体を得ることができることを見出し、本発明を完成させた。
すなわち、本発明は、以下の(i)〜(v)を提供する。
(i)アルミニウム基板と、前記アルミニウム基板の表面に存在する、マイクロポアを有する陽極酸化皮膜とを有するアルミニウム部材に、少なくとも、
陽極酸化皮膜を、バリア層の厚さが3〜50nmとなるまで溶解させる第1皮膜溶解処理と、前記第1皮膜溶解処理後の陽極酸化処理とを含む工程を1回以上行う規則化処理と、
陽極酸化皮膜を、マイクロポアの開口部の径aと、マイクロポアの底からa/2の高さの部分の径bとの比が、a/b=0.9〜1.1の範囲となるように溶解させる、第2皮膜溶解処理と
をこの順に施して、表面にマイクロポアを有する微細構造体を得る、微細構造体の製造方法。
(ii)前記アルミニウム部材の前記陽極酸化皮膜と前記アルミニウム基板との界面において、前記マイクロポアについて下記式(1)により定義される規則化度が10%以上である、上記(i)に記載の微細構造体の製造方法。
規則化度(%)=B/A×100 (1)
上記式(1)中、Aは、測定範囲におけるマイクロポアの全数を表す。Bは、一のマイクロポアの重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円を描いた場合に、その円の内部に前記一のマイクロポア以外のマイクロポアの重心を6個含むことになる前記一のマイクロポアの測定範囲における数を表す。
(iii)前記規則化処理において、前記工程を2回以上行い、2回以上の前記工程の前記陽極酸化処理において、電圧を異なったものとする、上記(i)または(ii)に記載の微細構造体の製造方法。
(iv)上記(i)〜(iii)のいずれかに記載の微細構造体の製造方法により得られる微細構造体。
(v)表面のマイクロポアについて上記式(1)により定義される規則化度が50%以上である、上記(iv)に記載の微細構造体。
規則化度(%)=B/A×100 (1)
上記式(1)中、Aは、測定範囲におけるマイクロポアの全数を表す。Bは、一のマイクロポアの重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円を描いた場合に、その円の内部に前記一のマイクロポア以外のマイクロポアの重心を6個含むことになる前記一のマイクロポアの測定範囲における数を表す。
本発明の微細構造体の製造方法によれば、短時間で、規則的な配列の窪みを有する微細構造体を得ることができる。
以下に、本発明を詳細に説明する。
本発明の微細構造体の製造方法は、
アルミニウム基板と、前記アルミニウム基板の表面に存在する、マイクロポアを有する陽極酸化皮膜とを有するアルミニウム部材に、少なくとも、
陽極酸化皮膜を、バリア層の厚さが3〜50nmとなるまで溶解させる第1皮膜溶解処理と、前記第1皮膜溶解処理後の陽極酸化処理とを含む工程を1回以上行う規則化処理と、
陽極酸化皮膜を、マイクロポアの開口部の径aと、マイクロポアの底からa/2の高さの部分の径bとの比が、a/b=0.9〜1.1の範囲となるように溶解させる、第2皮膜溶解処理と
をこの順に施して、表面にマイクロポアを有する微細構造体を得る、微細構造体の製造方法である。
<アルミニウム部材>
本発明に用いられるアルミニウム部材は、アルミニウム基板と、前記アルミニウム基板の表面に存在する、マイクロポアを有する陽極酸化皮膜とを有する。このアルミニウム部材は、アルミニウム基板の少なくとも一方の表面に陽極酸化処理を施して得ることができる。
図1は、本発明の微細構造体の製造方法を説明するためのアルミニウム部材および微細構造体の模式的な端面図である。
図1(A)に示されるように、アルミニウム部材10aは、アルミニウム基板12aとアルミニウム基板12aの表面に存在する、マイクロポア16aを有する陽極酸化皮膜14aとを有する。陽極酸化皮膜14aのアルミニウム基板12a側には、バリア層18aが存在する。
<アルミニウム基板>
アルミニウム基板は、特に限定されず、例えば、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハー、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板が挙げられる。
アルミニウム基板のうち、陽極酸化処理により陽極酸化皮膜を設ける表面は、アルミニウム純度が、99.5質量%以上であるのが好ましく、99.9質量%以上であるのがより好ましく、99.99質量%以上であるのが更に好ましい。アルミニウム純度が上記範囲であると、ポア配列の規則性が十分となる。
アルミニウム基板の形状は、特に限定されない。例えば、アルミニウムウェブであってもよく、枚葉状シートであってもよい。
<ロールによるウエブの搬送>
アルミニウム基板がアルミニウムウェブである場合は、後述する規則化処理における第1皮膜溶解処理および陽極酸化処理ならびに第2皮膜溶解処理を、アルミニウムウェブを搬送しつつ施すのが好ましい。
アルミニウムウェブの搬送においては、大量かつ安定に搬送を行う観点から、それに用いられる搬送ロールの曲率半径が50mm以上であるのが好ましく、70mm以上であるのがより好ましく、100mm以上であるのが更に好ましい。上記範囲であると、搬送ロールに強い圧がかかってアルミニウムウェブが切れるおそれが小さい。
アルミニウムウェブの幅は、大量搬送の観点から、50mm以上であるのが好ましく、100mm以上であるのがより好ましく、150mm以上であるのが更に好ましい。上記範囲であると、張力によりアルミニウムウェブが切れてしまうおそれが小さい。
搬送速度は、大量搬送の観点から、1mm/min〜150m/minであるのが好ましく、10mm/min〜100m/minであるのがより好ましく、50mm/min〜50m/minであるのが更に好ましい。上記範囲であると、搬送速度が速すぎてアルミニウムウェブが切れてしまうおそれが小さく、また、搬送速度が遅すぎて生産性が低くなりすぎることがない。
搬送の方法は、連続的および非連続的のいずれであってもよい。
アルミニウム基板の表面は、あらかじめ脱脂処理および鏡面仕上げ処理を施されるのが好ましい。
また、本発明により得られる微細構造体を、光透過性を利用する用途に用いる場合は、あらかじめアルミニウム基板が熱処理を施されるのが好ましい。熱処理により、ポア配列の規則性が高い領域が広くなる。
<熱処理>
熱処理を施す場合は、200〜350℃で30秒〜2分程度施すのが好ましい。これにより、後述する陽極酸化処理により生成するマイクロポアの配列の規則性が向上する。
熱処理後のアルミニウム基板は、急速に冷却するのが好ましい。冷却する方法としては、例えば、水等に直接投入する方法が挙げられる。
<脱脂処理>
脱脂処理は、酸、アルカリ、有機溶剤等を用いて、アルミニウム表面に付着した、ほこり、脂、樹脂等の有機成分等を溶解させて除去し、有機成分を原因とする後述の各処理における欠陥の発生を防止することを目的として行われる。
脱脂処理には、従来公知の脱脂剤を用いることができる。具体的には、例えば、市販されている各種脱脂剤を所定の方法で用いることにより行うことができる。
中でも、以下の各方法が好適に例示される。
アルコール(例えば、メタノール)、ケトン、ベンジン、揮発油等の有機溶剤を常温でアルミニウム表面に接触させる方法(有機溶剤法);石けん、中性洗剤等の界面活性剤を含有する液を常温から80℃までの温度でアルミニウム表面に接触させ、その後、水洗する方法(界面活性剤法);濃度10〜200g/Lの硫酸水溶液を常温から70℃までの温度でアルミニウム表面に30〜80秒間接触させ、その後、水洗する方法;濃度5〜20g/Lの水酸化ナトリウム水溶液を常温でアルミニウム表面に30秒間程度接触させつつ、アルミニウム表面を陰極にして電流密度1〜10A/dm2の直流電流を流して電解し、その後、濃度100〜500g/Lの硝酸水溶液を接触させて中和する方法;各種公知の陽極酸化処理用電解液を常温でアルミニウム表面に接触させつつ、アルミニウム表面を陰極にして電流密度1〜10A/dm2の直流電流を流して、または、交流電流を流して電解する方法;濃度10〜200g/Lのアルカリ水溶液を40〜50℃でアルミニウム表面に15〜60秒間接触させ、その後、濃度100〜500g/Lの硝酸水溶液を接触させて中和する方法;軽油、灯油等に界面活性剤、水等を混合させた乳化液を常温から50℃までの温度でアルミニウム表面に接触させ、その後、水洗する方法(乳化脱脂法);炭酸ナトリウム、リン酸塩類、界面活性剤等の混合液を常温から50℃までの温度でアルミニウム表面に30〜180秒間接触させ、その後、水洗する方法(リン酸塩法)。
脱脂処理は、アルミニウム表面の脂分を除去しうる一方で、アルミニウムの溶解がほとんど起こらない方法が好ましい。この点で、有機溶剤法、界面活性剤法、乳化脱脂法、リン酸塩法が好ましい。
<鏡面仕上げ処理>
鏡面仕上げ処理は、アルミニウム基板の表面の凹凸をなくして、電着法等による粒子形成処理の均一性や再現性を向上させるために行われる。アルミニウム部材の表面の凹凸としては、例えば、アルミニウム部材が圧延を経て製造されたものである場合における、圧延時に発生した圧延筋が挙げられる。
本発明において、鏡面仕上げ処理は、特に限定されず、従来公知の方法を用いることができる。例えば、機械研磨、化学研磨、電解研磨が挙げられる。
機械研磨としては、例えば、各種市販の研磨布で研磨する方法、市販の各種研磨剤(例えば、ダイヤ、アルミナ)とバフとを組み合わせた方法が挙げられる。具体的には、研磨剤を用いる方法を、用いる研磨剤を粗い粒子から細かい粒子へと経時的に変更して行う方法が好適に例示される。この場合、最終的に用いる研磨剤としては、#1500のものが好ましい。これにより、光沢度を50%以上(圧延アルミニウムである場合、その圧延方向および幅方向ともに50%以上)とすることができる。
化学研磨としては、例えば、「アルミニウムハンドブック」,第6版,(社)日本アルミニウム協会編,2001年,p.164−165に記載されている各種の方法が挙げられる。
また、リン酸−硝酸法、Alupol I法、Alupol V法、Alcoa R5法、H3PO4−CH3COOH−Cu法、H3PO4−HNO3−CH3COOH法が好適に挙げられる。中でも、リン酸−硝酸法、H3PO4−CH3COOH−Cu法、H3PO4−HNO3−CH3COOH法が好ましい。
化学研磨により、光沢度を70%以上(圧延アルミニウムである場合、その圧延方向および幅方向ともに70%以上)とすることができる。
電解研磨としては、例えば、「アルミニウムハンドブック」,第6版,(社)日本アルミニウム協会編,2001年,p.164−165に記載されている各種の方法が挙げられる。
また、米国特許第2708655号明細書に記載されている方法が好適に挙げられる。
また、「実務表面技術」,vol.33,No.3,1986年,p.32−38に記載されている方法も好適に挙げられる。
電解研磨により、光沢度を70%以上(圧延アルミニウムである場合、その圧延方向および幅方向ともに70%以上)とすることができる。
これらの方法は、適宜組み合わせて用いることができる。例えば、研磨剤を用いる方法を、用いる研磨剤を粗い粒子から細かい粒子へと経時的に変更して行い、その後、電解研磨を施す方法が好適に挙げられる。
鏡面仕上げ処理により、例えば、平均表面粗さRa0.1μm以下、光沢度50%以上の表面を得ることができる。平均表面粗さRaは、0.03μm以下であるのが好ましく、0.02μm以下であるのがより好ましい。また、光沢度は70%以上であるのが好ましく、80%以上であるのがより好ましい。
なお、光沢度は、圧延方向に垂直な方向において、JIS Z8741−1997の「方法3 60度鏡面光沢」の規定に準じて求められる正反射率である。具体的には、変角光沢度計(例えば、VG−1D、日本電色工業社製)を用いて、正反射率70%以下の場合には入反射角度60度で、正反射率70%を超える場合には入反射角度20度で、測定する。
<陽極酸化処理>
陽極酸化処理としては、従来公知の方法を用いることができる。具体的には、後述する自己規則化法を用いるのが好ましい。
自己規則化法は、陽極酸化皮膜のマイクロポアが規則的に配列する性質を利用し、規則的な配列をかく乱する要因を取り除くことで、規則性を向上させる方法である。具体的には、高純度のアルミニウムを使用し、電解液の種類に応じた電圧で、長時間(例えば、数時間から十数時間)かけて、低速で陽極酸化皮膜を形成させる。
この方法においては、ポア径は電圧に依存するので、電圧を制御することにより、ある程度所望のポア径を得ることができる。
陽極酸化処理をする際の平均流速は、0.5〜20.0m/minであるのが好ましく、1.0〜15.0m/minであるのがより好ましく、2.0〜10.0m/minであるのが更に好ましい。上記範囲の流速で陽極酸化処理を行うことにより、均一かつ高い規則性を有することができる。
また、電解液を上記条件で流動させる方法は、特に限定されないが、例えば、スターラーのような一般的なかくはん装置を使用する方法が用いられる。かくはん速度をデジタル表示でコントロールできるようなスターラーを用いると、平均流速が制御できるため、好ましい。そのようなかくはん装置としては、例えば、AS ONE社製のマグネティックスターラーHS−50Dが挙げられる。
陽極酸化処理は、例えば、酸濃度1〜10質量%の溶液中で、アルミニウム基板を陽極として通電する方法を用いることができる。陽極酸化処理に用いられる溶液としては、酸溶液であることが好ましく、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸等がより好ましく、中でも硫酸、リン酸、シュウ酸が特に好ましい。これらの酸は単独でまたは2種以上を組み合わせて用いることができる。
陽極酸化処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には電解液濃度0.1〜20質量%、液温−10〜30℃、電流密度0.01〜20A/dm2、電圧3〜300V、電解時間0.5〜30時間であるのが好ましく、電解液濃度0.5〜15質量%、液温−5〜25℃、電流密度0.05〜15A/dm2、電圧5〜250V、電解時間1〜25時間であるのがより好ましく、電解液濃度1〜10質量%、液温0〜20℃、電流密度0.1〜10A/dm2、電圧10〜200V、電解時間2〜20時間であるのが更に好ましい。
陽極酸化皮膜の厚さは、1〜300μmであるのが好ましく、5〜150μmであるのがより好ましく、10〜100μmであるのが更に好ましい。
陽極酸化皮膜のアルミニウム基板側には、緻密なバリア層が存在する。
陽極酸化皮膜のアルミニウム基板側に存在するバリア層の厚さ(図1(a)中のd)は、5〜100nmであるのが好ましく、10〜70nmであるのがより好ましい。
なお、本明細書において、「バリア層の厚さ」は、マイクロポアの最深部における、バリア層のアルミニウム基板との界面からマイクロポア側表面までの長さを意味する。
バリア層の厚さは、例えば、アルミニウム部材の破断面を形成し、FE−SEMで観察することにより、測定することができる。
陽極酸化処理の処理時間は、0.5分〜16時間であるのが好ましく、1分〜12時間であるのがより好ましく、2分〜8時間であるのが更に好ましい。
陽極酸化処理は、一定電圧下で行う以外に、電圧を断続的または連続的に変化させる方法も用いることができる。この場合は電圧を順次低くしていくのが好ましい。これにより、陽極酸化皮膜の抵抗を下げることが可能になり、後に電着処理を行う場合に、均一化することができる。
平均ポア密度は50〜1500個/μm2であるのが好ましい。
マイクロポアの占める面積率は、20〜50%であるのが好ましい。なお、マイクロポアの占める面積率は、アルミニウム表面の面積に対するマイクロポアの開口部の面積の合計の割合で定義される。
また、アルミニウム部材の陽極酸化皮膜とアルミニウム基板との界面において、マイクロポアについて下記式(1)により定義される規則化度が10%以上であるのが好ましく、15%以上であるのがより好ましく、20%以上であるのが更に好ましい。上記範囲であると、規則化処理の処理時間を短くすることができ、ひいては、総処理時間を短くすることができる。
規則化度(%)=B/A×100 (1)
上記式(1)中、Aは、測定範囲におけるマイクロポアの全数を表す。Bは、一のマイクロポアの重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円を描いた場合に、その円の内部に前記一のマイクロポア以外のマイクロポアの重心を6個含むことになる前記一のマイクロポアの測定範囲における数を表す。
アルミニウム部材のポアの規則化度を算出する方法は、陽極酸化皮膜とアルミニウム基板との界面における規則化度である以外は、後述する微細構造体のポアの規則化度を算出する方法と同様である。陽極酸化皮膜とアルミニウム基板との界面における規則化度は、例えば、陽極酸化皮膜の大部分をリン酸およびクロム酸の混合水溶液により溶解させることにより、マイクロポアの底部を露出させてから算出することができる。
<規則化処理>
規則化処理は、陽極酸化皮膜を、バリア層の厚さが3〜50nmとなるまで溶解させる第1皮膜溶解処理と、前記第1皮膜溶解処理後の陽極酸化処理とを含む工程を1回以上行う処理である。
<第1皮膜溶解処理>
第1皮膜溶解処理は、上述したアルミニウム部材の陽極酸化皮膜を、バリア層の厚さが3〜50nmとなるまで溶解させる処理である。
この第1皮膜溶解処理により、陽極酸化皮膜の表面の配列が不規則な部分が一部溶解するため、マイクロポアの配列の規則性が高くなる。一方、陽極酸化皮膜のマイクロポア内部も同様に一部溶解するが、上述した量のバリア層を残存させると、後述する陽極酸化処理の起点が残ったままとすることができる。
図1(B)に示されるように、第1皮膜溶解処理により、図1(A)に示される陽極酸化皮膜14aの表面およびマイクロポア16aの内部(バリア層18aおよび多孔質層)が溶解し、アルミニウム基板12a上に、マイクロポア16bを有する陽極酸化皮膜14bを有するアルミニウム部材10bが得られる。マイクロポア16bの底面部には、厚さが3〜50nmのバリア層18bが残存している。
第1皮膜溶解処理は、アルミニウム部材を酸水溶液またはアルカリ水溶液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。
第1皮膜溶解処理に酸水溶液を用いる場合は、硫酸、リン酸、硝酸、塩酸等の無機酸またはこれらの混合物の水溶液を用いることが好ましい。中でも、クロム酸を含有しない水溶液が安全性に優れる点で好ましい。酸水溶液の濃度は1〜10質量%であるのが好ましい。酸水溶液の温度は、25〜60℃であるのが好ましい。
第1皮膜溶解処理にアルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1〜5質量%であるのが好ましい。アルカリ水溶液の温度は、20〜35℃であるのが好ましい。
具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液または0.5g/L、30℃の水酸化カリウム水溶液が好適に用いられる。
酸水溶液またはアルカリ水溶液への浸せき時間は、8〜120分であるのが好ましく、10〜90分であるのがより好ましく、15〜60分であるのが更に好ましい。
第1皮膜溶解処理において、陽極酸化皮膜の溶解量は、溶解後においてバリア層の厚さが3〜50nm、好ましくは5〜40nm、より好ましくは10〜30nmとなる量である。上記範囲であると、陽極酸化皮膜の表面の配列が不規則な部分を溶解させて、マイクロポアの配列の規則性を高くすることができるとともに、マイクロポアの底部分の陽極酸化皮膜を溶解させずに残存させて、後述する陽極酸化処理の起点を残すことができる。
<陽極酸化処理>
陽極酸化処理は、上述した第1皮膜溶解処理の後に行われる。これにより、アルミニウム基板の酸化反応が進行し、第1皮膜溶解処理により一部溶解した陽極酸化皮膜のバリア層が厚くなる。
図1(C)に示されるように、陽極酸化処理により、図1(B)に示されるアルミニウム基板12aの酸化反応が進行し、アルミニウム基板12b上に、マイクロポア16bよりも深くなったマイクロポア16cを有し、かつ、陽極酸化皮膜14bのバリア層18bよりも厚い陽極酸化皮膜14cのバリア層18cを有するアルミニウム部材10cが得られる。
陽極酸化処理は、従来公知の方法を用いることができるが、上述した自己規則化法と同一の条件で行われるのが好ましい。
また、直流電圧を一定としつつ、断続的に電流のオンおよびオフを繰り返す方法、直流電圧を断続的に変化させつつ、電流のオンおよびオフを繰り返す方法も好適に用いることができる。これらの方法によれば、陽極酸化皮膜に微細なマイクロポアが生成するため、特に電着処理により封孔処理する際に、均一性が向上する点で、好ましい。
上述した電圧を断続的に変化させる方法においては、電圧を順次低くしていくのが好ましい。これにより、陽極酸化皮膜の抵抗を下げることが可能になり、後に電着処理を行う場合に、均一化することができる。
陽極酸化皮膜の厚さの増加量は、0.1〜100μmであるのが好ましく、0.5〜50μmであるのがより好ましい。上記範囲であると、ポアの配列の規則性をより高くすることができる。
バリア層の厚さの増加量は、1〜90nmであるのが好ましく、5〜60nmであるのがより好ましい。
規則化処理は、上述した第1皮膜溶解処理とその後の陽極酸化処理とを含む工程を1回以上行う。繰り返しの回数が多いほど上述したポアの配列の規則性が高くなるため、この点で、この工程を2回以上繰り返して行うのが好ましく、3回以上繰り返して行うのがより好ましく、4回以上繰り返して行うのが更に好ましい。
規則化処理において、上記工程を2回以上繰り返して行う場合、各回の第1皮膜溶解処理および陽極酸化処理の条件はそれぞれ同じであっても、異なっていてもよい。中でも、規則化度向上性の観点から、2回以上の陽極酸化処理において、電圧を異なったものとするのが好ましい態様の一つである。その場合、徐々に高電圧の条件に変えていくのが、規則化度向上性の観点から、より好ましい。
<第2皮膜溶解処理>
第2皮膜溶解処理は、陽極酸化皮膜を、マイクロポアの開口部の径aと、マイクロポアの底からa/2の高さの部分の径bとの比が、a/b=0.9〜1.1の範囲となるように溶解させる処理であり、上述した規則化処理の後に行われる。これにより、陽極酸化皮膜の表面が溶解して、マイクロポアの配列の規則性が高い微細構造体が得られる。
図1(D)に示されるように、第2皮膜溶解処理により、図1(C)に示される陽極酸化皮膜14cの表面およびマイクロポア16cの内部が溶解し、アルミニウム基板12b上に、マイクロポア16dを有する陽極酸化皮膜14dを有する微細構造体20が得られる。
第2皮膜溶解処理は、基本的に、第1皮膜溶解処理と同様の条件で行うことができるので、以下に相違する点のみを説明する。
第2皮膜溶解処理においては、陽極酸化皮膜を、マイクロポアの開口部の径aと、マイクロポアの底からa/2の高さの部分の径bとの比が、a/b=0.9〜1.1の範囲となるように溶解させる。a/bが上記範囲であると、マイクロポアの形状が円柱に近くなり、例えば、微細構造体を応用用途例である触媒または触媒担持体として用いた場合、比表面積向上の観点から好ましい。
a/bは、例えば、アルミニウム部材の破断面を形成し、FE−SEMで観察することにより、測定することができる。
第2皮膜溶解処理においては、陽極酸化皮膜の溶解量は、特に限定されず、0.01〜30質量%であるのが好ましく、0.1〜15質量%であるのがより好ましい。
第2皮膜溶解処理においては、酸水溶液またはアルカリ水溶液への浸せき時間は、8〜90分であるのが好ましく、10〜60分であるのがより好ましく、15〜45分であるのが更に好ましい。
<微細構造体>
上述した本発明の微細構造体の製造方法により、本発明の微細構造体が得られる。
本発明の微細構造体は、平均ポア密度が50〜1500個/μm2であるのが好ましい。
また、本発明の微細構造体は、マイクロポアの占める面積率が20〜50%であるのが好ましい。
更に、本発明の微細構造体は、マイクロポアについて下記式(1)により定義される規則化度が50%以上であるのが好ましい。
規則化度(%)=B/A×100 (1)
上記式(1)中、Aは、測定範囲におけるマイクロポアの全数を表す。Bは、一のマイクロポアの重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円を描いた場合に、その円の内部に前記一のマイクロポア以外のマイクロポアの重心を6個含むことになる前記一のマイクロポアの測定範囲における数を表す。
図2は、ポアの規則化度を算出する方法の説明図である。図2を用いて、上記式(1)をより具体的に説明する。
図2(A)に示されるマイクロポア1は、マイクロポア1の重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円3(マイクロポア2に内接している。)を描いた場合に、円3の内部にマイクロポア1以外のマイクロポアの重心を6個含んでいる。したがって、マイクロポア1は、Bに算入される。
図2(B)に示されるマイクロポア4は、マイクロポア4の重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円6(マイクロポア5に内接している。)を描いた場合に、円6の内部にマイクロポア4以外のマイクロポアの重心を5個含んでいる。したがって、マイクロポア4は、Bに算入されない。また、図2(C)に示されるマイクロポア7は、マイクロポア7の重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円9(マイクロポア8に内接している。)を描いた場合に、円9の内部にマイクロポア7以外のマイクロポアの重心を7個含んでいる。したがって、マイクロポア7は、Bに算入されない。
<その他の処理>
また、必要に応じて、その他の処理を施すことができる。
例えば、本発明の微細構造体を試料台にして、水溶液を垂らして膜状にしたい場合には、水との接触角を小さくするために、親水化処理を施してもよい。親水化処理は、従来公知の方法により施すことができる。
また、本発明の微細構造体を試料台にして、酸で変性し、または分解されるタンパク質を対象とする場合には、ポアワイド処理に用いられ、アルミニウム表面に残留している酸を中和するために、中和処理を施してもよい。中和処理は、従来公知の方法により施すことができる。
また、本発明の微細構造体は、用途に応じて、アルミニウム基板を除去することもできる。
アルミニウム基板を除去する方法は、特に限定されないが、例えば、アルミナが難溶または不溶であり、アルミニウムが可溶である溶剤に浸せきさせる方法が好ましい。
溶剤の種類としては、臭素、ヨウ素等のハロゲン溶剤;希硫酸、リン酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸等の酸性溶剤;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ性溶剤が好適に例示される。中でも、臭素、ヨウ素が好ましい。
本発明の微細構造体は、用途に応じて、陽極酸化皮膜のマイクロポアに触媒を担持することもできる。
触媒は、触媒機能を有するものであれば特に限定されないが、例えば、以下のものが挙げられる。
AlCl3、AlBr3、Al23、SiO2、SiO2−Al23、Siゼオライト、SiO2−NiO、活性炭、PbO/Al23、LaCoO3、H3PO4、H427、Bi23−MoO3、Sb25、SbO5−Fe23、SnO2−Sb25、Cu、CuO2−Cr23、Cu−Cr23−ZnO、Cu/SiO2、CuCl2、Ag/α−Al23、Au、ZnO、ZnO−Cr23、ZnCl2、ZnO−Al23−CaO、TiO2、TiCl4・Al(C253、Pt/TiO2、V25、V25−P25、V25/TiO2、Cr23、Cr23/Al23、MoO3、MoO3−SnO2、Co・Mo/Al23、Ni・Mo/Al23、MoS2、Mo−Bi−O、MoO3−Fe23、H3PMo1240、WO3、H3PW1240、MnO2、Fe−K2O−Al23、Fe23−Cr23、Fe23−Cr23−K2O、Fe23、Co、Co/活性炭、Co34、Coカルボニル錯体、Ni、RaneyNi、Ni/担体、修飾Ni、Pt、Pt/Al23、Pt−Rh−Pd/担体、Pd、Pd/SiO2、Pd/Al23、PdCl2−CuCl2、Re、Re−Pt/Al23、Re27/Al23、Ru、Ru/Al23、Rh、Rh錯体。
担持の方法は、特に限定されず、従来公知の方法を用いることができる。
例えば、電着法;触媒粒子の分散液を、陽極酸化皮膜を有するアルミニウム部材に塗布し乾燥させる方法が好適に挙げられる。触媒は、単一粒子または凝集体であるのが好ましい。
電着法は、従来公知の方法を用いることができる。具体的には、例えば、金電着法の場合、1g/LのHAuCl4と7g/LのH2SO4を含有する30℃の分散液に、アルミニウム部材を浸せきさせ、11Vの定電圧(スライダックで調整)で、5〜6分間電着処理する方法が挙げられる。
電着法としては、現代化学,1997年1月号,p.51−54に銅、スズおよびニッケルを用いた例が詳細に記載されており、この方法を用いることもできる。
触媒粒子を用いる方法に用いられる分散液は、従来公知の方法により得ることができる。例えば、低真空蒸発法による微粒子の作製方法、触媒塩の水溶液を還元する触媒コロイド作製方法により得ることができる。
触媒コロイド粒子は、平均粒径が1〜200nmであるのが好ましく、1〜100nmであるのがより好ましく、2〜80nmであるのが更に好ましい。
分散液に用いられる分散媒としては、水が好適に用いられる。また、水と混合しうる溶剤、例えば、エチルアルコール、n−プロピルアルコール、i−プロピルアルコール、1−ブチルアルコール、2−ブチルアルコール、t−ブチルアルコール、メチルセロソルブ、ブチルセロソルブ等のアルコールと、水との混合溶媒も用いることができる。
触媒コロイド粒子を用いる方法において、塗布方法は特に限定されず、例えば、バーコーター塗布、回転塗布、スプレー塗布、カーテン塗布、浸せき塗布、エアーナイフ塗布、ブレード塗布、ロール塗布等が挙げられる。
触媒コロイド粒子を用いる方法に用いられる分散液としては、例えば、金コロイド粒子の分散液、銀コロイド粒子の分散液が好適に用いられる。
金コロイド粒子の分散液としては、例えば、特開平2001−89140号公報および特開平11−80647号公報に記載されているものを用いることができる。また、市販品を用いることもできる。
銀コロイド粒子の分散液は、陽極酸化皮膜から溶出する酸によって影響を受けない点で、銀とパラジウムの合金の粒子を含有するのが好ましい。この場合、パラジウムの含有量は、5〜30質量%であるのが好ましい。
分散液を塗布した後、水等の溶媒を用いて適宜洗浄する。これにより、マイクロポアに担持された触媒粒子のみ陽極酸化皮膜に残存し、マイクロポアに充填されなかった触媒粒子は除去される。
担持処理後の触媒の付着量は、10〜1000mg/m2であるのが好ましく、50〜800mg/m2であるのがより好ましく、100〜500mg/m2であるのが特に好ましい。
また、担持処理後の表面空隙率は、70%以下であるのが好ましく、50%以下であるのがさらに好ましく、30%以下であるのが特に好ましい。担持処理後の表面空隙率は、アルミニウム表面の面積に対する担持されていないマイクロポアの開口部の面積の合計の割合である。
分散液に用いられる触媒コロイド粒子は、通常、粒径分布のばらつきが変動係数で10〜20%程度である。本発明においては、ポア径のばらつきを特定の範囲にすることにより、粒径分布にばらつきのあるコロイド粒子を効率よく封孔に用いることができる。
ポア径が50nm以上である場合は、触媒コロイド粒子を用いる方法が好適に用いられる。また、ポア径が50nm未満である場合は、電着法が好適に用いられる。両者を組み合わせる方法も好適に用いられる。
本発明の微細構造体は、規則的な配列を有するマイクロポアを有するため、種々の用途に応用することができる。
以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。
1.微細構造体の作製
(実施例1〜6および比較例1〜3)
基板に、鏡面仕上げ処理を施した後、第1表に示されるように、プレ陽極酸化処理を施し、ついで、実施例1〜6ならびに比較例2および3については規則化処理、比較例1については脱膜処理およびその後の陽極酸化処理を施し、更に、第2皮膜溶解処理を施して、各微細構造体を得た。なお、第1表中、「−」は該当する処理を施していないことを示す。
以下、基板および各処理について説明する。
(1)基板
微細構造体の作製に用いた基板は、高純度アルミニウム基板(住友軽金属工業(株)製、純度99.99質量%、厚さ0.4mm)であった。この高純度アルミニウム基板を、陽極酸化処理を施す部分を一辺10cmの正方形にすることができるような大きさにカットして用いた。
(2)鏡面仕上げ処理
上記基板に鏡面仕上げ処理を施した。
<鏡面仕上げ処理>
研磨布を用いた研磨、バフ研磨および電解研磨をこの順に行うことにより、鏡面仕上げ処理を施した。バフ研磨後には水洗を行った。
研磨布を用いた研磨は、研磨盤(Struers Abramin、丸本工業社製)および耐水研磨布(市販品)を用い、耐水研磨布の番手を#200、#500、#800、、#1000および#1500の順に変更しつつ行った。
バフ研磨は、スラリー状研磨剤(FM No.3(平均粒径1μm)およびFM No.4(平均粒径0.3μm)、いずれもフジミインコーポレーテッド社製)を用いて行った。
電解研磨は、下記組成の電解液(温度70℃)を用いて、陽極を基板、陰極をカーボン電極とし、130mA/cm2の定電流で、2分間行った。電源としては、GP0110−30R(高砂製作所社製)を用いた。
<電解液組成>
・85質量%リン酸(和光純薬工業社製試薬) 660mL
・純水 160mL
・硫酸 150mL
・エチレングリコール 30mL
(3)プレ陽極酸化処理
鏡面仕上げ処理を施した基板の表面に、第1表に示される条件で、プレ陽極酸化処理を行った。
すなわち、電解液中に基板を浸せきさせ、第1表に示される電解液(種類および濃度)、電圧、温度、平均流速および処理時間で、自己規則化陽極酸化処理を行い、陽極酸化皮膜を形成させた。陽極酸化皮膜の厚さは、いずれも約12μmであり、陽極酸化皮膜のバリア層の厚さは、いずれも約50nmであった。
自己規則化陽極酸化処理においては、冷却装置としてNeoCool BD36(ヤマト科学社製)、かくはん加温装置としてペアスターラー PS−100(EYELA社製)、電源としてGP0650−2R(高砂製作所社製)を用いた。また、電解液の平均流速は、渦式フローモニターFLM22−10PCW(AS ONE製)を用いて測定した。
陽極酸化皮膜の厚さは、渦電流式膜厚計(EDY−1000、(株)サンコウ電子研究所製)を用いて測定した。バリア層の厚さは、アルミニウム部材の破断面を形成し、FE−SEMで観察することにより、測定した。
また、アルミニウム部材の陽極酸化皮膜とアルミニウム基板との界面におけるポアの規則化度を測定した。具体的には、アルミニウム部材を、JIS H8688(1998)−H8688に規定されている無水クロム酸/リン酸水溶液に50℃で12時間浸せきさせた後、FE−SEMにより表面写真(倍率20000倍)を撮影し、2μm×2μmの視野で、マイクロポアについて上記式(1)により定義される規則化度を測定した。規則化度の測定は、10箇所において行い、平均値を算出した。結果を第1表に示す。
第1表中、硫酸およびシュウ酸は、いずれも関東化学社製の試薬を用いた。
(4)脱膜処理
比較例1については、プレ陽極酸化処理後、陽極酸化皮膜を除去するため、第1表に示される条件で、脱膜処理を行った(便宜上、第1表中、「第1皮膜溶解処理−1」の欄に脱膜処理の条件を記載している。)。
すなわち、第1表に示される処理液(種類、濃度および温度)に、陽極酸化皮膜を有するアルミニウム部材を第1表に示される時間浸せきさせた。
第1表中、無水クロム酸およびリン酸は、いずれも関東化学社製の試薬を用いた。なお、脱膜処理に用いた処理液は、JIS H8688(1998)−H8688に規定されている組成である。
(5)陽極酸化処理
比較例1については、脱膜処理後、第1表に示される条件で、陽極酸化処理を施した。
すなわち、電解液中に脱膜処理後のアルミニウム部材を浸せきさせ、第1表に示される電解液(種類および濃度)、電圧、温度、平均流速および処理時間で、電解処理を行い、厚さ85μmの陽極酸化皮膜を形成させた。
陽極酸化皮膜の厚さは、上記と同様の方法により測定した。
(6)規則化処理
実施例1〜6ならびに比較例2および3については、プレ陽極酸化処理後、陽極酸化皮膜の一部を溶解させる第1皮膜溶解処理と、その後の陽極酸化処理とを含む工程を1回以上行う規則化処理を施した。
まず、第1表に示される処理液(種類、濃度および温度)に、アルミニウム部材を第1表に示される時間浸せきさせて、第1皮膜溶解処理を行った。
各第1皮膜溶解処理後のバリア層の厚さを上記と同様の方法により測定した。結果を第1表に示す。
ついで、第1表に示される電解液(種類および濃度)にアルミニウム部材を浸せきさせ、第1表に示される電圧、温度、平均流速および処理時間で、電解処理を行うことにより、陽極酸化処理を行った。
陽極酸化処理により、陽極酸化皮膜のバリア層が成長し、いずれも厚さ約50nmとなった。
(7)第2皮膜溶解処理
実施例1〜6ならびに比較例2および3については、規則化処理後、比較例1については、陽極酸化処理後、第2皮膜溶解処理を施し、微細構造体を得た。
具体的には、第1表に示される処理液(種類、濃度および温度)に、アルミニウム部材を第1表に示される時間浸せきさせて、第2皮膜溶解処理を行った。
第2皮膜溶解処理後、アルミニウム部材の破断面を形成し、FE−SEMで観察することにより、マイクロポアの開口部の径aと、マイクロポアの底からa/2の高さの部分の径bとの比a/bを測定した。結果を第1表に示す。
(実施例7)
アルミニウムウェブからなる基板に、電解研磨による鏡面仕上げ処理を施した後、プレ陽極酸化処理を施し、ついで、規則化処理を施し、更に、第2皮膜溶解処理を施して、微細構造体を得た。
以下、基板および各処理について説明する。
(1)基板
微細構造体の作製に用いた基板は、高純度アルミニウムウェブ(住友軽金属工業(株)製、純度99.99質量%、厚さ0.4mm、幅300mm)であった。
(2)電解研磨による鏡面仕上げ処理
上記基板に電解研磨を行うことにより、鏡面仕上げ処理を施した。
<電解研磨による鏡面仕上げ処理>
電解研磨による鏡面仕上げ処理は、図3に示される電解処理装置を用いて行った。図3中、31は電解槽、32はカソード電極、33は電解液取入れ口、34は電解液排出口、35は電解液、36はドラムローラー、37および38は搬送ローラー、39はコンダクターロール、40は電源、41は基板を表す。
具体的には、下記組成の電解液(温度70℃)を用いて、陽極を基板、陰極をカーボン電極とし、130mA/cm2の定電流で、電解液平均流速3m/min、基板搬送速度50mm/minの条件で、2分間電解研磨を行った。電解液の流れの向きと基板の搬送の向きとは、同じであった(図3参照。)。
<電解液組成>
・85質量%リン酸(和光純薬工業社製) 6.6L
・純水 1.6L
・硫酸 1.5L
・エチレングリコール 0.3L
(3)プレ陽極酸化処理、規則化処理および第2皮膜溶解処理
電解研磨による鏡面仕上げ処理を施した基板の表面に、以下のようにして陽極酸化処理および皮膜溶解処理の組合せを5回繰り返して行った。このうち、1回目の陽極酸化処理が「プレ陽極酸化処理」に該当し、5回目の皮膜溶解処理が「第2皮膜溶解処理」に該当し、その間の4回の皮膜溶解処理と陽極酸化処理との組合せが「規則化処理」に該当する。
陽極酸化処理および皮膜溶解処理は、図4に示される5組の電解槽および皮膜溶解処理槽の組合せからなる処理装置を用いて行った。図4中、42は電解槽、43はカソード電極、44は電解液取入れ口、45は電解液排出口、46は電解液、47はドラムローラー、48および49は搬送ローラー、50はコンダクターロール、51は電源、52は皮膜溶解処理槽、53は皮膜溶解処理液ガイド板、54は皮膜溶解処理液取入れ口、55は皮膜溶解処理液排出口、56は皮膜溶解処理液、57はドラムローラー、58および59は搬送ローラー、60は水洗部、61はエアー乾燥部、62は基板を表す。
<陽極酸化処理>
5回の陽極酸化処理は、具体的には、濃度0.3mol/Lの硫酸(和光純薬工業社製)水溶液(温度15℃)からなる電解液中に基板を浸せきさせ、電圧25V、電解液平均流速0.3m/min、基板搬送速度50mm/min、処理時間60分の条件で電解処理を行い、陽極酸化皮膜を形成させた。電解液の流れの向きと基板の搬送の向きとは、同じであった(図4参照。)。
陽極酸化処理後において、陽極酸化皮膜の厚さは、各回とも約12μmであり、陽極酸化皮膜のバリア層の厚さは、各回とも約50nmであった。陽極酸化皮膜の厚さおよびバリア層の厚さは、実施例1〜6および比較例1〜3と同様の方法により測定した。
また、1回目の陽極酸化処理後のアルミニウム部材の陽極酸化皮膜とアルミニウム基板との界面におけるポアの規則化度を実施例1〜6および比較例1〜3と同様の方法により測定した。その結果、規則化度は45%であった。
<皮膜溶解処理>
5回の皮膜溶解処理は、具体的には、濃度0.6mol/Lのリン酸(和光純薬工業社製)水溶液(温度40℃)からなる皮膜溶解処理液に、処理液平均流速2m/minの条件で、陽極酸化処理後の基板を10分間浸せきさせて行った。皮膜溶解処理液の流れの向きと基板の搬送の向きとは、同じであった(図4参照。)。
1回目から4回目までの皮膜溶解処理後のバリア層の厚さを上記と同様の方法により測定した。その結果、1回目から4回目までの皮膜溶解処理後のバリア層の厚さは、いずれも10nmであった。
5回目の皮膜溶解処理後、実施例1〜6および比較例1〜3と同様の方法により、マイクロポアの開口部の径aと、マイクロポアの底からa/2の高さの部分の径bとの比a/bを測定した。その結果、a/bは0.98であった。
2.微細構造体の性状
上記で得られた微細構造体についてFE−SEMにより表面写真(倍率20000倍)を撮影し、2μm×2μmの視野で、マイクロポアについて上記式(1)により定義される規則化度を測定した。規則化度の測定は、10箇所において行い、平均値を算出した。実施例1〜6および比較例1〜3についての結果を第1表に示す。実施例7についての結果は、90%であった。
第1表等から明らかなように、本発明の微細構造体の製造方法(実施例1〜7)は、リン酸およびクロム酸の混合水溶液による脱膜処理を行わないため、前記脱膜処理を行う場合(比較例1)に比べて、短時間で、かつ、ポアの配列の規則性が高い微細構造体を得ることができる。
Figure 0004800860
Figure 0004800860
Figure 0004800860
Figure 0004800860
本発明の微細構造体の製造方法を説明するためのアルミニウム部材および微細構造体の模式的な端面図である。 ポアの規則化度を算出する方法の説明図である。 実施例に用いた電解処理装置の模式図である。 実施例に用いた5組の電解槽および皮膜溶解処理槽の組合せからなる処理装置の模式図である。
符号の説明
1、2、4、5、7、8、16a、16b、16c、16d マイクロポア
3、6、9 円
10a、10b、10c アルミニウム部材
12a、12b、 アルミニウム基板
14a、14b、14c、14d 陽極酸化皮膜
18a、18b、18c、18d バリア層
20 微細構造体
31、42 電解槽
32、43 カソード電極
33、44 電解液取入れ口
34、45 電解液排出口
35、46 電解液
36、47、57 ドラムローラー
37、38、48、49、58、59 搬送ローラー
39、50 コンダクターロール
40、51 電源
41、62 基板
52 皮膜溶解処理槽
53 皮膜溶解処理液ガイド板
54 皮膜溶解処理液取入れ口
55 皮膜溶解処理液排出口
56 皮膜溶解処理液
60 水洗部
61 エアー乾燥部
d バリア層の厚さ

Claims (3)

  1. アルミニウム基板と、前記アルミニウム基板の表面に存在する、マイクロポアを有する陽極酸化皮膜とを有するアルミニウム部材に、少なくとも、
    陽極酸化皮膜を、バリア層の厚さが3〜50nmとなるまで溶解させる第1皮膜溶解処理と、前記第1皮膜溶解処理後の陽極酸化処理とを含む工程を1回以上行う規則化処理と、
    陽極酸化皮膜を、マイクロポアの開口部の径aと、マイクロポアの底からa/2の高さの部分の径bとの比が、a/b=0.9〜1.1の範囲となるように溶解させる、第2皮膜溶解処理と
    をこの順に施して、表面にマイクロポアを有する微細構造体を得る、微細構造体の製造方法。
  2. 請求項1に記載の微細構造体の製造方法により得られる微細構造体。
  3. 表面のマイクロポアについて下記式(1)により定義される規則化度が50%以上である、請求項2に記載の微細構造体。
    規則化度(%)=B/A×100 (1)
    上記式(1)中、Aは、測定範囲におけるマイクロポアの全数を表す。Bは、一のマイクロポアの重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円を描いた場合に、その円の内部に前記一のマイクロポア以外のマイクロポアの重心を6個含むことになる前記一のマイクロポアの測定範囲における数を表す。
JP2006167540A 2006-06-16 2006-06-16 微細構造体の製造方法および微細構造体 Active JP4800860B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006167540A JP4800860B2 (ja) 2006-06-16 2006-06-16 微細構造体の製造方法および微細構造体
US11/808,502 US7722754B2 (en) 2006-06-16 2007-06-11 Microstructure and method of manufacturing the same
EP20070011664 EP1867757A3 (en) 2006-06-16 2007-06-14 Microstructure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167540A JP4800860B2 (ja) 2006-06-16 2006-06-16 微細構造体の製造方法および微細構造体

Publications (2)

Publication Number Publication Date
JP2007332437A JP2007332437A (ja) 2007-12-27
JP4800860B2 true JP4800860B2 (ja) 2011-10-26

Family

ID=38595967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167540A Active JP4800860B2 (ja) 2006-06-16 2006-06-16 微細構造体の製造方法および微細構造体

Country Status (3)

Country Link
US (1) US7722754B2 (ja)
EP (1) EP1867757A3 (ja)
JP (1) JP4800860B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253961A1 (en) 2008-03-14 2010-11-24 FUJIFILM Corporation Probe guard
JP5155704B2 (ja) * 2008-03-18 2013-03-06 財団法人神奈川科学技術アカデミー 表面に微細構造を有するアルミニウムの製造方法およびポーラスアルミナの製造方法
JP5164878B2 (ja) * 2009-02-17 2013-03-21 富士フイルム株式会社 異方導電性部材およびその製造方法
KR101332422B1 (ko) * 2011-01-07 2013-12-02 건국대학교 산학협력단 전기화학성장을 이용한 단결정 산화구리 (i) 나노선 어레이 제조 방법
WO2012176794A1 (ja) * 2011-06-22 2012-12-27 三菱レイヨン株式会社 ロール状金型の製造方法、および微細凹凸構造を表面に有する物品の製造方法
TW201325884A (zh) * 2011-12-29 2013-07-01 Hon Hai Prec Ind Co Ltd 光學薄膜壓印滾輪及該滾輪之製作方法
JP5536287B1 (ja) * 2012-08-06 2014-07-02 三菱レイヨン株式会社 モールドの製造方法、および微細凹凸構造を表面に有する成形体の製造方法
EP3428955A1 (en) * 2017-07-10 2019-01-16 Murata Manufacturing Co., Ltd. Substrates employing surface-area amplification, for use in fabricating capacitive elements and other devices
CN110656366A (zh) * 2018-06-29 2020-01-07 深圳市裕展精密科技有限公司 铝合金的阳极氧化方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR208421A1 (es) * 1975-07-16 1976-12-27 Alcan Res & Dev Articulo de aluminio electroliticamente anodizado y coloreado y un metodo para producir el mismo
US20020145826A1 (en) * 2001-04-09 2002-10-10 University Of Alabama Method for the preparation of nanometer scale particle arrays and the particle arrays prepared thereby
JP2004217961A (ja) 2003-01-10 2004-08-05 Kanagawa Acad Of Sci & Technol 陽極酸化ポーラスアルミナ複合体及びその製造方法
JP4222861B2 (ja) * 2003-03-20 2009-02-12 財団法人神奈川科学技術アカデミー 陽極酸化ポーラスアルミナおよびその製造方法
JP4406553B2 (ja) * 2003-11-21 2010-01-27 財団法人神奈川科学技術アカデミー 反射防止膜の製造方法
JP4631047B2 (ja) * 2004-01-05 2011-02-16 国立大学法人広島大学 陽極酸化アルミナ膜を具備する構造体およびその製造方法並びにその利用
JP4445766B2 (ja) * 2004-02-10 2010-04-07 財団法人神奈川科学技術アカデミー 陽極酸化ポーラスアルミナの製造方法
EP1580305A3 (en) 2004-03-23 2008-01-16 FUJIFILM Corporation Fine structural body surface and method of producing the same
JP2005307341A (ja) 2004-03-23 2005-11-04 Fuji Photo Film Co Ltd 微細構造体およびその製造方法
JP2006124827A (ja) * 2004-10-01 2006-05-18 Canon Inc ナノ構造体の製造方法
US20070235342A1 (en) * 2004-10-01 2007-10-11 Canon Kabushiki Kaisha Method for manufacturing nanostructure
JP4813925B2 (ja) * 2006-02-28 2011-11-09 富士フイルム株式会社 微細構造体の製造方法および微細構造体
JP2007238988A (ja) * 2006-03-07 2007-09-20 Fujifilm Corp 微細構造体の製造方法および微細構造体
JP4768478B2 (ja) * 2006-03-17 2011-09-07 富士フイルム株式会社 微細構造体の製造方法および微細構造体

Also Published As

Publication number Publication date
EP1867757A3 (en) 2011-04-13
JP2007332437A (ja) 2007-12-27
US20070289945A1 (en) 2007-12-20
US7722754B2 (en) 2010-05-25
EP1867757A2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
JP4870544B2 (ja) 微細構造体の製造方法および微細構造体
JP4813925B2 (ja) 微細構造体の製造方法および微細構造体
JP4800860B2 (ja) 微細構造体の製造方法および微細構造体
US7824535B2 (en) Microstructure and method of manufacturing the same
JP4603402B2 (ja) 微細構造体およびその製造方法
JP4768478B2 (ja) 微細構造体の製造方法および微細構造体
US20110300400A1 (en) Metal member
JP4395038B2 (ja) 微細構造体およびその製造方法
JP2007238988A (ja) 微細構造体の製造方法および微細構造体
JP4800799B2 (ja) 微細構造体の製造方法および微細構造体
JP2006322067A (ja) 構造体の製造方法
JP2007204802A (ja) 構造体の製造方法
JP4884202B2 (ja) 微細構造体の製造方法および微細構造体
JP2007211306A (ja) ナノ構造体の製造方法
JP5274097B2 (ja) 微細構造体およびその製造方法
JP2006038506A (ja) 微細構造体
JP2008063643A (ja) 微細構造体の製造方法および微細構造体
WO2011034008A1 (ja) 微細構造体およびその製造方法
JP2008057018A (ja) 微細構造体の製造方法および微細構造体
JP2010168617A (ja) 微細構造体の製造方法
JP2009132959A (ja) アルミニウム除去処理方法及びアルミニウム除去処理液

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080717

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4800860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250