WO2014024563A1 - アンローダ - Google Patents

アンローダ Download PDF

Info

Publication number
WO2014024563A1
WO2014024563A1 PCT/JP2013/066246 JP2013066246W WO2014024563A1 WO 2014024563 A1 WO2014024563 A1 WO 2014024563A1 JP 2013066246 W JP2013066246 W JP 2013066246W WO 2014024563 A1 WO2014024563 A1 WO 2014024563A1
Authority
WO
WIPO (PCT)
Prior art keywords
unloader
energy
motor
load
chute
Prior art date
Application number
PCT/JP2013/066246
Other languages
English (en)
French (fr)
Inventor
治彦 続木
政樹 河原林
Original Assignee
住友重機械搬送システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012178423A external-priority patent/JP5940412B2/ja
Priority claimed from JP2012198468A external-priority patent/JP5936964B2/ja
Application filed by 住友重機械搬送システム株式会社 filed Critical 住友重機械搬送システム株式会社
Priority to KR1020157000490A priority Critical patent/KR101766774B1/ko
Priority to CN201380036356.4A priority patent/CN104507837B/zh
Publication of WO2014024563A1 publication Critical patent/WO2014024563A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G67/00Loading or unloading vehicles
    • B65G67/60Loading or unloading ships
    • B65G67/606Loading or unloading ships using devices specially adapted for bulk material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G67/00Loading or unloading vehicles
    • B65G67/60Loading or unloading ships
    • B65G67/603Loading or unloading ships using devices specially adapted for articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G11/00Chutes
    • B65G11/20Auxiliary devices, e.g. for deflecting, controlling speed of, or agitating articles or solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G11/00Chutes
    • B65G11/20Auxiliary devices, e.g. for deflecting, controlling speed of, or agitating articles or solids
    • B65G11/203Auxiliary devices, e.g. for deflecting, controlling speed of, or agitating articles or solids for articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/12Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface comprising a series of individual load-carriers fixed, or normally fixed, relative to traction element
    • B65G17/126Bucket elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/02Loading or unloading machines comprising essentially a conveyor for moving the loads associated with a device for picking-up the loads
    • B65G65/06Loading or unloading machines comprising essentially a conveyor for moving the loads associated with a device for picking-up the loads with endless scraping or elevating pick-up conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/30Methods or devices for filling or emptying bunkers, hoppers, tanks, or like containers, of interest apart from their use in particular chemical or physical processes or their application in particular machines, e.g. not covered by a single other subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/30Methods or devices for filling or emptying bunkers, hoppers, tanks, or like containers, of interest apart from their use in particular chemical or physical processes or their application in particular machines, e.g. not covered by a single other subclass
    • B65G65/34Emptying devices
    • B65G65/40Devices for emptying otherwise than from the top
    • B65G65/48Devices for emptying otherwise than from the top using other rotating means, e.g. rotating pressure sluices in pneumatic systems
    • B65G65/4881Devices for emptying otherwise than from the top using other rotating means, e.g. rotating pressure sluices in pneumatic systems rotating about a substantially horizontal axis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1853Rotary generators driven by intermittent forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2814/00Indexing codes relating to loading or unloading articles or bulk materials
    • B65G2814/03Loading or unloading means

Definitions

  • the present invention relates to an unloader that unloads an object.
  • an unloader disclosed in Patent Document 1 below is known as a technology in such a field.
  • This unloader is provided with a grab bucket for lifting a bulk material and a traverser for receiving the bulk material from the grab bucket and transporting it to a hopper.
  • the regenerative power generated when the grab bucket is lowered is used as a part of the traverser's moving power, thereby reducing the power consumption.
  • An object of the present invention is to provide an unloader with improved energy efficiency.
  • the unloader includes a loading unit for unloading an object, a conveying unit for conveying the object unloaded by the unloading unit, a dropping unit for dropping the object conveyed by the conveying unit, and a dropping unit. And a conversion unit that converts the falling energy of the object into electric energy.
  • the potential energy when the object is unloaded is converted into electrical energy when the object is dropped. Therefore, since the converted electric energy can be used, the energy generated by raising and lowering the load can be used effectively, and the energy efficiency can be improved.
  • the unloading unit may unload the object continuously.
  • the unloading unit since the unloading unit continuously unloads the object, the object continuously falls to the falling part, so that the falling energy can be continuously converted into electric energy, and a large amount and constantly. Electric energy can be obtained.
  • the conversion unit may have an impeller that rotates due to the collision of the object.
  • the structure for converting the fall energy into electric energy and effectively utilizing the energy can be realized with a simple structure.
  • the dropping unit may include a guide unit that guides the object so that the object collides with the blades of the impeller. In this case, since a larger amount of an object can be caused to collide with the blade, energy efficiency can be further improved.
  • the dropping part may be provided with a cylindrical chute and the object may fall inside the chute.
  • the diffusion of dust or the like generated from the object can be suppressed by the object falling inside the chute.
  • the impeller may be provided on the lower end side of the chute, and further, a hopper for storing the object is provided on the lower side of the chute, and the impeller has a high storage limit of the object in the hopper. It may be provided at a higher position. In this case, since the vertical distance between the upper end of the falling portion and the impeller can be increased, more electrical energy can be obtained by increasing the falling energy.
  • the chute may be provided with a viewing window through which the inside can be visually confirmed. In this case, since the impeller inside the chute becomes visible from the outside of the chute, maintenance of the impeller inside the chute can be easily performed.
  • the unloader of the present invention has a plurality of buckets for scraping and loading an object, and an endless chain for holding the plurality of buckets, and includes a bucket elevator for continuously conveying the object.
  • a converter connected to the power source, an inverter connected to the converter, and a load motor connected to the inverter, the converter and the inverter being connected via a DC bus,
  • the energy regeneration is performed from the energy generated by the braking operation of the load motor.
  • the load motor is a motor that drives and rotates an endless chain.
  • the endless chain rotates in the forward direction when conveying an object, and the converter regenerates energy when the endless chain rotates in the reverse direction. May be performed.
  • energy regeneration is performed using a braking operation when the chain rotates in the reverse direction, the energy efficiency can be increased by effectively using the energy during reverse rotation.
  • the unloader includes a main body that can be installed on the upper surface of the quay, and a boom that is pivotable with respect to the main body and is provided with a bucket elevator, and the load motor is a motor that rotates the boom. Also good.
  • the unloader may include a girder that can travel on the upper surface of the quay, and the load motor may be a motor that travels the girder.
  • an unloader with improved energy efficiency can be provided.
  • FIG. 1 It is a figure which shows the unloader which concerns on 1st Embodiment. It is a partially broken perspective view of the bucket elevator upper part of the unloader of FIG. It is a perspective view which shows the inside of the fall part in the unloader of FIG. It is a perspective view when the fall part in the unloader of FIG. 1 is seen from the opposite direction of FIG. It is a side view which shows the lower part of the chute
  • the unloader 1 is a bucket elevator type continuous unloader (CSU) for ships. It is a device that lands continuously.
  • the unloader 1 includes a girder 2 that can travel along the quay 101 by two rails 3 a laid in parallel to the quay 101.
  • the girder 2 is a main body that can be installed on the upper surface of the quay 101.
  • a swivel frame 5 is supported on the girder 2 so as to be capable of swiveling, and a bucket elevator 9 (unloading portion) is supported at a tip portion of a boom 7 projecting laterally from the swivel frame 5.
  • the bucket elevator 9 is configured to maintain the vertical position by the balancing lever 12 and the counterweight 13 regardless of the undulation angle of the boom 7.
  • the unloader 1 includes a cylinder 15 for adjusting the hoisting angle of the boom 7.
  • a cylinder 15 for adjusting the hoisting angle of the boom 7.
  • the bucket elevator 9 continuously excavates and scrapes the bulk load M in the hold 103 by the side surface excavation type scraper 11 provided at the lower part thereof, and conveys the scraped bulk load M upward. Unload the bulk M.
  • the bucket elevator 9 includes an elevator main body 23 that constitutes the elevator shaft 21 and a chain bucket 29 that rotates around the elevator main body 23.
  • the chain bucket 29 includes a chain (endless chain) 25 that is a pair of roller chains connected endlessly, and a plurality of buckets 27 that are supported at both ends by the pair of chains 25.
  • the two chains 25 are juxtaposed in a direction perpendicular to the paper surface of FIG. 1, and each bucket 27 is suspended between the two chains 25 as shown in FIG. In this manner, the chain 25 is attached to the chain 25 via a predetermined attachment.
  • the bucket elevator 9 includes drive rollers 31a, 31b, and 31c around which the chain 25 is bridged, and a turning roller 33 that guides the chain 25.
  • the driving roller 31 a is provided at the uppermost part 9 a of the bucket elevator 9, the driving roller 31 b is provided at the front part of the scraping part 11, and the driving roller 31 c is provided at the rear part of the scraping part 11.
  • the turning roller 33 is a driven roller located slightly below the driving roller 31a, and guides the chain 25 and changes the traveling direction of the chain 25. Further, a cylinder 35 is interposed between the driving roller 31b and the driving roller 31c.
  • the chain 25 revolves around the elevator body 23 in the direction of the arrow W (circular movement in the forward direction) along a predetermined locus, and the chain bucket 29 It circulates between the uppermost part 9a of the elevator 9 and the scraping part 11 while moving around.
  • the bucket 27 of the chain bucket 29 ascends with its opening 27a facing upward. And in the uppermost part 9a of the bucket elevator 9, when passing the drive roller 31a, the chain 25 changes direction from upward to downward, and the opening 27a of the bucket 27 turns downward.
  • a discharge chute 36 is formed below the opening 27a of the bucket 27 that faces downward as described above. The lower end of the discharge chute 36 is connected to a rotary feeder 37 disposed on the outer periphery of the bucket elevator 9.
  • the rotary feeder 37 conveys the loose load M carried out from the discharge chute 36 to the boom 7 side.
  • a boom conveyor 39 is disposed on the boom 7, which is a conveyance unit for conveying the bulk load M unloaded by the bucket elevator 9, and this boom conveyor 39 is transferred from the rotary feeder 37.
  • the loose load M is supplied to the drop unit 60 described later.
  • an in-machine belt feeder 43 and an in-machine conveyor 45 are arranged below the dropping unit 60.
  • the unloading of the loose load M using this unloader 1 is performed as follows.
  • the scraping part 11 at the lower end of the bucket elevator 9 is inserted into the hold 103, and the chain 25 is rotated in the direction of the arrow W in the figure. If it does so, the bucket 27 located in the scraping part 11 will excavate and scrape the bulk load M, such as a coke and an ore, continuously. Then, the loose load M scraped and loaded in these buckets 27 is conveyed vertically upward to the uppermost portion 9 a of the bucket elevator 9 as the chain 25 rises.
  • the bucket 27 passes through the position of the driving roller 31 a and the bucket 27 rotates, so that the loose load M falls from the bucket 27.
  • the bulk M dropped from the bucket 27 falls into the discharge chute 36 and is carried out to the rotary feeder 37 side, and is further transferred to the boom conveyor 39 and conveyed to the upper end of the dropping unit 60.
  • the loose load M falls on the dropping unit 60 and is carried out to the ground side equipment 49 via the belt feeder 43 and the in-machine conveyor 45.
  • the above operations are repeatedly performed using the plurality of buckets 27, so that the loose load M in the hold 103 is continuously landed.
  • the conventional unloader has a problem that the energy generated by raising and lowering the bulk load cannot be effectively utilized and the energy efficiency is low. Therefore, in the unloader 1 of the present embodiment, the falling energy when the loose load M falls on the dropping portion 60 is effectively used. Below, the detail of the dropping part 60 is demonstrated.
  • the dropping unit 60 includes a cylindrical chute 61 for dropping the loose load M and a hopper 68 for receiving the loose load M that has dropped inside the chute 61.
  • a cylindrical chute 61 for dropping the loose load M and a hopper 68 for receiving the loose load M that has dropped inside the chute 61.
  • an impeller 65 provided with a blade 65a that is rotated by the collision of the loose load M is provided.
  • the chute 61 is formed so that the area of the inner space becomes smaller as it goes downward. By forming the chute 61 in this way, the falling path of the loose load M falling inside is determined, and the chute 61 depends on the loose load M. Diffusion of dust and the like can be suppressed.
  • Guide plates 62 a and 62 b for receiving the bulk load M conveyed by the boom conveyor 39 and guiding the bulk load M so as to collide with the blade 65 a of the impeller 65 are provided on the upper portion of the chute 61. ing.
  • the guide plate 62 a is provided so as to extend vertically at a position facing the boom conveyor 39, and the guide plate 62 b is provided so as to extend obliquely from the lower part of the boom conveyor 39.
  • the guide plates 62a and 62b are provided so as to oppose each other, and the bulk load M conveyed by the boom conveyor 39 falls inside the chute 61 while colliding with the guide plates 62a and 62b, and the blade on one side of the impeller 65 Collide with 65a.
  • the guide plate 62a is preferably provided closer to the guide plate 62b than the center of the impeller 65.
  • the chute 61 is provided with a viewing window 63 through which the inside can be visually confirmed.
  • the observation window 63 is, for example, an opening. An operator or the like can see the impeller 65 inside the chute 61 from the viewing window 63, and can easily perform maintenance or the like of the impeller 65.
  • the structure, position, and number of the viewing windows 63 are not particularly limited. That is, the viewing window 63 may not be a simple opening as shown in FIGS. 3 and 4, and may be provided with a door that can be opened and closed, for example.
  • the impeller 65 includes eight blades 65a with respect to a shaft portion 65b that rotates about an axis extending in the horizontal direction so that the shaft portion 65b rotates when the falling bulk load M collides with the blade 65a. It has become.
  • a hole (not shown) for inserting the shaft part 65b is formed in the rear part of the impeller 65 of the chute 61, and as shown in FIG. 66 is provided.
  • a generator 67 is provided at a position adjacent to the speed increaser 66.
  • the shaft 65b is connected to the speed increaser 66, and the rotation of the shaft 65b is transmitted to the speed increaser 66.
  • the speed increaser 66 increases the number of rotations and transmits the rotation to the generator 67.
  • the rotation of the shaft portion 65b obtained by the collision of the loose load M with the blade 65a is transmitted to the generator 67 through the speed increaser 66 and is converted into electric energy by the generator 67. Yes.
  • the hopper 68 is for storing the loose load M, and is provided below the chute 61 as shown in FIG.
  • the hopper 68 has a cylindrical shape and is formed so that the area of the internal space becomes smaller as it goes downward.
  • the hopper 68 is provided with a limit switch 69 provided with blades 69a that rotate in the horizontal direction.
  • the height position of the blade 69 a of the limit switch 69 coincides with the storage limit height L of the loose load M in the hopper 68. Therefore, in a state where the bulk load M accumulated in the hopper 68 has not reached the storage limit height L, the blade 69a continues to rotate, and when the bulk load M reaches the storage limit height L, the rotation of the blade 69a M prevents the blade 69a from rotating.
  • the limit switch 69 detects that the rotation of the blade 69a has stopped, thereby detecting that the loose load M has reached the storage limit height L and outputs a signal to the control unit (not shown) of the unloader 1. To do
  • the control unit controls the operations of the bucket elevator 9 and the boom conveyor 39 so as to stop the unloading of the bulk load M by the bucket elevator 9 and the conveyance of the bulk load M by the boom conveyor 39. To do. Further, the control unit controls the bucket elevator 9 and the boom conveyor 39 so that the amount of the bulk load M falling on the dropping section 60 is constant, for example, the bucket elevator 9 unloads the bulk load M in large quantities. In this case, the moving speed of the bucket 27 and the boom conveyor 39 is slowed down, or when the unloading amount of the bulk load M of the bucket elevator 9 is small, the moving speed of the bucket 27 and the boom conveyor 39 is speeded up per unit time. The amount of the bulk load M that falls from the dropping portion 60 is made constant.
  • the power supply system 70 includes the load motor 75, a power supply 71, a transformer 72, an AC / AC converter 73, and an inverter 74.
  • the transformer 72, the AC / AC converter 73, and the inverter 74 are provided in the electric chamber E of the unloader 1.
  • the power source 71 is a ground power source and supplies AC power to the transformer 72.
  • the transformer 72 converts the voltage of the AC power supplied from the power source 71 into a predetermined voltage and supplies it to the inverter 74.
  • the inverter 74 supplies the power supplied from the transformer 72 to the load motor 75, and the load motor 75 is operated by the power from the inverter 74. By operating the load motor 75 in this way, the drive rollers 31a, 31b, 31c are driven, and the chain 25 rotates in the direction of the arrow W to drive the bucket elevator 9.
  • the generator 67 and the AC / AC converter 73 are provided as described above, and the generator 67 supplies power to the AC / AC converter 73.
  • the AC / AC converter 73 converts the frequency of the power from the generator 67 into a predetermined frequency and supplies the power to the inverter 74.
  • the inverter 74 functions to supply power supplied from the AC / AC converter 73 to the load motor 75 and to supplement supply of power from the power source 71 to the load motor 75.
  • the unloader 1 includes the impeller 65, the speed increaser 66, and the generator 67 that function as a conversion unit, so that the potential energy when the loose load M is unloaded is converted into electrical energy when falling.
  • the converted electric energy can be used, the energy generated by raising and lowering the loose load M can be used effectively, and the energy efficiency can be improved.
  • power can be supplied from the generator 67, power consumption from the power source 71 can be reduced, the capacity of the electrical equipment that supplies power from the power source 71 to the load motor 75 can be reduced, and the cost of the equipment can be reduced. It can also be reduced.
  • the unloader 1 is a bucket elevator type continuous unloader. As described above, the bucket elevator 9 continuously unloads the bulk load M, and continuously reduces the fall energy when the bulk load M falls on the dropping portion 60. Since it can be converted into electric energy, electric energy can be obtained in large quantities and constantly.
  • the impeller 65 is provided as a conversion unit, a configuration for effectively using energy efficiency can be realized with a simple structure, and further, by providing guide plates 62a and 62b that function as guide units, a larger amount Since the loose load M can be made to collide with the blade 65a, the energy efficiency can be further improved.
  • the impeller 65 is provided on the lower end side of the chute 61 and is provided at a position higher than the storage limit height L of the bulk load M in the hopper 68. For this reason, the vertical distance between the upper end of the dropping part 60 and the impeller 65 can be increased, and more electric energy can be obtained by increasing the falling energy of the bulk load M. Further, by causing the loose load M to collide with the blade 65a of the impeller 65, the impact when the loose load M falls into the hopper 68 can be reduced.
  • the unloader of 2nd Embodiment is a bucket elevator type continuous unloader (CSU) for ships like the unloader 1 of 1st Embodiment shown by FIG.1 and FIG.2.
  • CSU continuous unloader
  • the unloader of the second embodiment includes a bucket motor (not shown) that drives the drive rollers 31a, 31b, and 31c, a turning motor (not shown) that turns the turning frame 5, and a traveling motor (not shown) that runs on the girder 2. And a boom conveyor motor (not shown) for driving the boom conveyor 39.
  • the bucket motor, the turning motor, the traveling motor, and the boom conveyor motor operate by obtaining electric power from the power supply 171 of the power supply system 170 shown in FIG.
  • the bucket motor, the turning motor, and the traveling motor will be described as a load motor 175, and the boom conveyor motor will be described as a motor 185.
  • the power supply system 170 includes the power supply 171, the converter 172, the inverter 173, the load motor 175, the power switch 182, and the motor 185 described above.
  • the power source 171 is a commercial power source and supplies AC power to the converter 172.
  • Converter 172 converts AC power supplied from power supply 171 into DC power.
  • Converter 172 and inverter 173 are connected via DC bus B, and DC power converted by converter 172 is supplied to inverter 173 via DC bus B.
  • Inverter 173 converts the DC power from converter 172 into AC power having a predetermined frequency, and supplies this AC power to load motor 175.
  • the load motor 175 is operated by AC power from the inverter 173, and by the operation of the load motor 175, for example, driving of the driving rollers 31a, 31b, 31c, turning of the turning frame 5, and traveling of the girder 2 are performed.
  • the power source 171 supplies AC power to the motor 185 via the power switch 182.
  • the power switch 182 is a contactor and is turned ON / OFF by an external switch operation. When the power switch 182 is in the OFF state, AC power from the power source 171 to the motor 185 is cut off, and when the power switch 182 is in the ON state, AC power is supplied from the power source 171 to the motor 185.
  • the motor 185 is operated by AC power from the power source 171, and for example, the boom conveyor 39 is driven by the operation of the motor 185.
  • the unloader of this embodiment when the movement of the bucket 27, the turning of the turning frame 5, or the traveling of the girder 2 is braked by a brake (not shown), the energy at the time of braking is converted into electric energy.
  • a braking resistor is connected to the inverter, and when the above braking operation is performed, electric energy is further converted into heat energy by the braking resistor and released to the atmosphere.
  • the conventional unloader Since the weight of the unloader is very large, the amount of heat energy released to the atmosphere is also very large, and the conventional unloader has a problem that the energy efficiency at the time of braking cannot be effectively utilized while energy efficiency is low. Furthermore, the conventional unloader requires a large amount of electrical energy to prevent unintentional boom turning, for example, when a strong wind is generated, and a cooling device is provided in case a large amount of thermal energy is generated during braking. There is also a problem that it is necessary to provide a large amount of electric energy and may adversely affect the braking resistance.
  • the converter 172 performs energy regeneration even when the bucket 27 moves in the reverse direction of the arrow W due to gravity or the like in order to pay out the loose load M of the bucket 27.
  • the motor 185 operates by receiving power from the power source 171 and power regenerated by the converter 172.
  • An example of the converter 172 that operates in this manner is an IGBT converter.
  • the converter 172 performs energy regeneration from the energy generated by the braking operation of the load motor 175 as described above. Therefore, when braking operation is performed, energy is prevented from being released to the atmosphere as heat, and the above energy is regenerated into electric energy, so that consumption of power supplied from the power source 171 is suppressed and cost reduction is achieved. At the same time, energy efficiency can be improved. Furthermore, it is possible to improve the basic unit, which is the amount of energy required when lifting a certain amount of loose load M.
  • the energy consumption used by the entire unloader is energy C
  • the braking start time is time t 1
  • the braking end time is time t 2
  • the conventional unloader energy usage is used.
  • the amount L1 when the energy use of the unloader of the present embodiment and usage L2, usage L2 in the time between times t 1 and time t 2 becomes to fall below the amount L1 in the time, the present embodiment This unloader can reduce the energy C between time t 1 and time t 2 .
  • wing 65a may not be 8 pieces and the shape of the impeller 65 is not restricted to this example.
  • a configuration other than the impeller 65 may be adopted, and in short, any configuration that can convert the collision energy when the loose load M is dropped into electrical energy may be used.
  • the impeller 65 is provided on the lower end side of the chute 61 in the first embodiment, the example in which the impeller 65 is provided on the lower end side of the chute 61 has been described.
  • the impeller 65 is not limited to the lower end side of the chute 61, and may be provided near the center of the chute 61, for example.
  • the configuration of the conversion unit is not limited to this example. That is, a piezoelectric element may be provided in the chute 61 instead of the impeller 65, the speed increaser 66, and the generator 67. In this case, the same effect as in the first embodiment can be obtained by causing the bulk load M to collide with the piezoelectric element, converting the falling energy of the bulk load M into pressure energy, and converting the pressure energy into electrical energy.
  • the example using the limit switch 69 provided with the blade 69a rotating in the horizontal direction has been described.
  • the configuration of the switch that detects that the loose load M has reached the storage limit height L is also provided. It is not limited to this example.
  • the limit switch 69 it is also possible to use a balloon-like switch or a rod-like switch containing air inside, and each switch stores the loose load M by contacting the loose load M with the switch. It can be detected that the limit height L has been reached.
  • the limit switch 69 may not be provided, and an operator or the like may check the storage amount of the loose load M in the hopper 68 visually or with a camera.
  • the said electrical energy is the other in the unloader 1, such as the boom conveyor 39 and an electric lamp, for example. You may supply to apparatuses other than an apparatus or the unloader 1.
  • a capacitor may be provided to store the electrical energy.
  • the sight glass 63 may not be provided.
  • a camera may be provided inside the chute 61. In this case, the inside of the chute 61 can be visually recognized by an image from the camera.
  • the bucket motor, the swing motor, and the travel motor are exemplified as the load motor 175 that is a drive source that generates regenerative energy.
  • the drive source that generates regenerative energy is not limited thereto.
  • regenerative energy is supplied to the motor 185 that is a boom conveyor motor.
  • the regenerative energy is not limited to the motor 185, and is supplied to other devices in the unloader or other devices other than the unloader. May be.
  • a storage device may be provided to store regenerative energy.
  • the present invention can be used as an unloader with improved energy efficiency.

Abstract

 バラ荷(M)を荷揚げするバケットエレベータ(9)と、バケットエレベータ(9)が荷揚げしたバラ荷(M)を搬送するブームコンベヤ(39)と、ブームコンベヤ(39)が搬送したバラ荷(M)を落下させる落下部(60)と、落下部(60)を落下するバラ荷(M)の落下エネルギーを電気エネルギーに変換する羽根車(65)、増速機(66)及び発電機(67)とを備えている。こうして、バラ荷(M)を荷揚げしたときの位置エネルギーを落下時に電気エネルギーに変換し、変換後の電気エネルギーを利用可能とする。

Description

アンローダ
 本発明は、対象物を荷揚げするアンローダに関するものである。
 従来、このような分野の技術として、下記特許文献1のアンローダが知られている。このアンローダは、ばら物を吊り上げるグラブバケットと、グラブバケットのばら物を受け取りホッパに搬送するトラバーサとを備えたものである。このアンローダでは、グラブバケットの巻き下げ時に発生する回生電力をトラバーサの移動電力の一部として使用することにより、消費電力の低減を可能としている。
特開2011-213461号公報
 しかしながら、上記のアンローダは、グラブバケットが吊り上げたばら物を単にトラバーサが投下するものである。よって、エネルギーの有効利用の点において未だ改善の余地があり、エネルギー効率の向上が求められている。
 本発明は、エネルギー効率を向上させたアンローダを提供することを目的とする。
 本発明のアンローダは、対象物を荷揚げする荷揚げ部と、荷揚げ部によって荷揚げされた対象物を搬送する搬送部と、搬送部によって搬送された対象物を落下させる落下部と、落下部を落下する対象物の落下エネルギーを電気エネルギーに変換する変換部と、を備えることを特徴とする。
 このような変換部を備えた構成によれば、対象物を荷揚げしたときの位置エネルギーが対象物の落下時に電気エネルギーに変換されることとなる。よって、変換後の電気エネルギーを利用可能となるため、荷の上げ下げで生じるエネルギーを有効活用することができ、エネルギー効率を向上させることができる。
 また、荷揚げ部は、対象物を連続的に荷揚げするようにしてもよい。この場合、荷揚げ部が連続的に対象物を荷揚げすることにより、落下部に連続的に対象物が落下することとなるため、落下エネルギーを連続的に電気エネルギーに変換できることとなり、大量且つコンスタントに電気エネルギーを得ることができる。
 また、変換部は、対象物の衝突により回転する羽根車を有していてもよい。この場合、落下エネルギーを電気エネルギーに変換しエネルギーを有効活用するための構成を簡易な構造で実現できる。
 また、落下部は、対象物を羽根車の羽根に衝突させるように、対象物を案内する案内部を備えていてもよい。この場合、より大量の対象物を羽根に衝突させることができるため、エネルギー効率をより向上させることができる。
 また、落下部は、筒状のシュートを備え、対象物は、シュートの内部を落下するようにしてもよい。この場合、対象物がシュートの内部を落下することによって対象物から発生する粉塵等の拡散を抑制することができる。
 また、羽根車は、シュートの下端側に設けられていてもよく、更に、シュートの下側には対象物を貯蔵するホッパが設けられており、羽根車は、ホッパにおける対象物の貯蔵限界高さよりも高い位置に設けられていてもよい。この場合、落下部の上端と、羽根車との上下距離を長くすることができるため、落下エネルギーを大きくすることによってより多くの電気エネルギーを得ることができる。
 また、シュートには、内部を視認可能な覗き窓が設けられていてもよい。この場合、シュート内部の羽根車がシュートの外側から視認可能となるため、シュート内部の羽根車等のメンテナンスを容易に行うことができる。
 本発明のアンローダは、対象物を掻き取って積載する複数のバケットと、複数のバケットを保持する無端チェーンとを有し、対象物を連続的に搬送するバケットエレベータを備えたバケットエレベータ式のアンローダであって、電源に接続されたコンバータと、コンバータに接続されたインバータと、インバータに接続された負荷モータと、を備え、コンバータとインバータとは直流母線を介して接続されており、コンバータは、負荷モータの制動動作によって発生するエネルギーからエネルギー回生を行うことを特徴とする。
 このようなコンバータを備えた構成によれば、負荷モータの制動動作によって発生するエネルギーが電気エネルギーに変換されてエネルギー回生が行われる。よって、ブレーキによって制動動作が行われる際にエネルギーが熱として大気に放出されることがなくなり、上記のエネルギーは電気エネルギーに回生されるため、エネルギー効率を向上させることができる。
 また、負荷モータは、無端チェーンを駆動し周回させるモータであり、無端チェーンは、対象物を搬送する際に正方向に周回し、コンバータは、無端チェーンが逆方向に回転したときに、エネルギー回生を行うようにしてもよい。この場合、チェーンが逆方向に周回したときの制動動作を用いてエネルギー回生を行うため、逆回転時のエネルギーを有効利用してエネルギー効率を高めることができる。
 また、アンローダは、岸壁の上面に設置可能な本体部と、本体部に対して旋回可能に設けられバケットエレベータが設けられたブームと、を備え、負荷モータは、ブームを旋回させるモータであってもよい。また、アンローダは、岸壁の上面を走行可能なガーダを備え、負荷モータは、ガーダを走行させるモータであってもよい。
 本発明によれば、エネルギー効率を向上させたアンローダを提供することができる。
第1実施形態に係るアンローダを示す図である。 図1のアンローダのバケットエレベータ上部の一部破断斜視図である。 図1のアンローダにおける落下部の内部を示す斜視図である。 図1のアンローダにおける落下部を図3の反対方向から見たときの斜視図である。 図3の落下部におけるシュートの下部とホッパの内部とを示す側面図である。 図1のアンローダにおける電気系統の概略構成を示すブロック図である。 第2実施形態に係るアンローダにおける電気系統の構成を示すブロック図である。 第2実施形態に係るアンローダにおける時間経過と消費エネルギーとの関係を示すグラフである。
 以下、図面を参照しつつ本発明に係るアンローダの実施形態について詳細に説明する。
(第1実施形態)
 図1及び図2に示されるように、アンローダ1は、バケットエレベータ式の船舶用連続アンローダ(CSU)であり、船舶の船倉103から対象物であるバラ荷M(例えば、コークスや鉱石等)を連続的に陸揚げする装置である。アンローダ1は、岸壁101と平行に敷設された2本のレール3aにより、当該岸壁101に沿って走行可能なガーダ2を備えている。ガーダ2は、岸壁101の上面に設置可能な本体部である。ガーダ2の上には、旋回フレーム5が旋回可能に支持され、その旋回フレーム5から横方向に突設されたブーム7の先端部にバケットエレベータ9(荷揚げ部)が支持されている。バケットエレベータ9は、バランシングレバー12及びカウンタウエイト13によって、ブーム7の起伏角度に関係なく鉛直を保持するようになっている。
 アンローダ1は、ブーム7の起伏角度を調整するためのシリンダ15を備えている。このシリンダ15を伸ばすとブーム7は上向きとなってバケットエレベータ9が上昇し、シリンダ15を縮めるとブーム7は下向きとなってバケットエレベータ9が下降するようになっている。
 バケットエレベータ9は、その下部に設けられた側面掘削方式の掻き取り部11により、船倉103内のバラ荷Mを連続的に掘削し掻き取ると共に、掻き取ったバラ荷Mを上方に搬送して、バラ荷Mを荷揚げする。
 バケットエレベータ9は、エレベータシャフト21を構成するエレベータ本体23と、エレベータ本体23に対して周回運動するチェーンバケット29とを備えている。チェーンバケット29は、無端状に連結された一対のローラチェーンであるチェーン(無端チェーン)25と、当該一対のチェーン25に両持ち支持された複数のバケット27と、を備えている。具体的には、2本のチェーン25は、図1の紙面に直交する方向に並設されており、各バケット27は、図2に示されるように、2本のチェーン25の間に吊り下げられるようにして当該チェーン25,25に所定の取付具を介し取り付けられている。
 更に、バケットエレベータ9は、チェーン25が架け渡される駆動ローラ31a,31b,31cと、チェーン25をガイドする転向ローラ33と、を備えている。駆動ローラ31aはバケットエレベータ9の最上部9aに設けられ、駆動ローラ31bは掻き取り部11の前部に設けられ、駆動ローラ31cは掻き取り部11の後部に設けられている。転向ローラ33は、駆動ローラ31aのやや下方に位置する従動ローラであり、チェーン25をガイドすると共にチェーン25の進行方向を転換する。また、駆動ローラ31bと駆動ローラ31cとの間にはシリンダ35が介装され、このシリンダ35を伸縮することで両駆動ローラ31b,31cの配設軸間距離を変化させて、チェーンバケット29の移動周回軌跡を変えられるようになっている。なお、チェーン25が2本存在することに対応して、駆動ローラ31a,31b,31cと転向ローラ33も、各々2個ずつ存在し、図1の紙面に直交する方向に並設されている。
 駆動ローラ31a,31b,31cがチェーン25を駆動することで、チェーン25が、エレベータ本体23に対し所定の軌跡で矢印W方向に周回移動(正方向に周回運動)し、チェーンバケット29は、バケットエレベータ9の最上部9aと掻き取り部11との間を移動周回しながら循環する。
 チェーンバケット29のバケット27は、図2に示されるように、その開口部27aを上に向けた姿勢で上昇する。そして、バケットエレベータ9の最上部9aでは、駆動ローラ31aを通過するときにチェーン25が上向きから下向きに方向転換し、バケット27の開口部27aが下向きに転回する。このように下向きになったバケット27の開口部27aの下方に排出用シュート36が形成されている。この排出用シュート36の下端は、バケットエレベータ9の外周に配設された回転フィーダ37に接続されている。
 回転フィーダ37は、排出用シュート36から搬出されるバラ荷Mをブーム7側に搬送するものである。ブーム7には、図1に示されるように、バケットエレベータ9によって荷揚げされたバラ荷Mを搬送する搬送部であるブームコンベヤ39が配置されており、このブームコンベヤ39は、回転フィーダ37から乗り換えたバラ荷Mを後述する落下部60に供給する。落下部60の下方には機内のベルトフィーダ43や機内コンベヤ45が配置されている。
 このアンローダ1を用いたバラ荷Mの陸揚げは、以下のようにして行われる。バケットエレベータ9の下端部の掻き取り部11を船倉103内に挿し入れて、チェーン25を図中矢印Wの方向に周回させる。そうすると、掻き取り部11に位置するバケット27が、連続的にコークスや鉱石等のバラ荷Mの掘削及び掻き取りを行う。そして、これらのバケット27に掻き取られ積載されたバラ荷Mは、チェーン25の上昇に伴ってバケットエレベータ9の最上部9aまで鉛直上方に搬送される。
 その後、バケット27が駆動ローラ31aの位置を通過し、当該バケット27が転回することで、バラ荷Mがバケット27から落下する。バケット27から落下したバラ荷Mは、排出用シュート36内に落ち込んで回転フィーダ37側に搬出され、更にブームコンベヤ39に乗り継いで落下部60の上端に搬送される。そして、バラ荷Mは落下部60を落下し、ベルトフィーダ43及び機内コンベヤ45を介して地上側設備49に搬出される。以上のような動作が複数のバケット27を用いて繰り返し行われることで、船倉103内のバラ荷Mは連続的に陸揚げされる。
 ところで、従来のアンローダでは、バラ荷の上げ下げで生じるエネルギーを有効活用できておらず、エネルギー効率が低いという問題があった。そこで、本実施形態のアンローダ1では、落下部60にバラ荷Mが落下したときの落下エネルギーを有効活用している。以下では、落下部60の詳細について説明する。
 図3~図5に示されるように、落下部60は、バラ荷Mを落下させるための筒状のシュート61と、シュート61内部を落下したバラ荷Mを受け入れるホッパ68とを備えている。シュート61の下端側には、バラ荷Mの衝突により回転する羽根65aを備えた羽根車65が設けられている。シュート61は、下方に向かうに従って、その内部空間の領域が小さくなるように形成されており、このように形成されることによって内部を落下するバラ荷Mの落下経路が定まると共に、バラ荷Mによる粉塵等の拡散を抑止することができる。
 シュート61の上部には、ブームコンベヤ39によって搬送されたバラ荷Mを受け入れると共に、バラ荷Mを羽根車65の羽根65aに衝突させるようにバラ荷Mを案内するガイド板62a,62bが設けられている。ガイド板62aはブームコンベヤ39に対向する位置に上下に延在するように設けられており、ガイド板62bはブームコンベヤ39の下部から斜めに延在するように設けられている。ガイド板62a,62bは、互いに対向するように設けられており、ブームコンベヤ39によって搬送されたバラ荷Mはガイド板62a,62bに衝突しながらシュート61内を落下し羽根車65の片側の羽根65aに衝突する。なお、バラ荷Mを羽根車65の片側の羽根65aに衝突させるために、ガイド板62aは羽根車65の中心よりもガイド板62b側に設けられることが好ましい。
 また、シュート61には、その内部を視認可能な覗き窓63が設けられている。覗き窓63は、例えば開口である。操作者等は、この覗き窓63からシュート61内部の羽根車65を見ることができるようになっており、羽根車65のメンテナンス等を容易に行うことができる。なお、覗き窓63の構造、位置及び個数は、特に限定されない。すなわち、覗き窓63は、図3及び図4に示されるような単なる開口でなくてもよく、例えば開閉自在な扉が設けられていてもよい。
 羽根車65は、水平方向に延びる軸回りに回転する軸部65bに対して羽根65aを8枚備えており、落下するバラ荷Mが羽根65aに衝突することによって軸部65bが回転するようになっている。シュート61の羽根車65の背後の部分には軸部65bを挿通するための孔部(不図示)が形成されており、図4に示されるように、その孔部の外側には増速機66が設けられている。また、増速機66に隣接する位置には発電機67が設けられている。軸部65bは増速機66に接続されており、軸部65bの回転は増速機66に伝達され、増速機66はその回転を回転数を増加させて発電機67に伝達する。こうして、バラ荷Mの羽根65aへの衝突によって得られた軸部65bの回転は、増速機66を介して発電機67に伝達され、発電機67によって電気エネルギーに変換されるようになっている。
 ホッパ68は、バラ荷Mを貯蔵するためのものであり、図5に示されるように、シュート61の下側に設けられている。ホッパ68は、筒状になっており、下方に向かうに従って内部空間の領域が小さくなるように形成されている。また、ホッパ68には、水平方向に回転する羽根69aを備えたリミットスイッチ69が設けられている。リミットスイッチ69の羽根69aの高さ位置は、ホッパ68におけるバラ荷Mの貯蔵限界高さLに一致している。よって、ホッパ68内に蓄積されたバラ荷Mが貯蔵限界高さLに達していない状態では羽根69aは回転し続け、バラ荷Mが貯蔵限界高さLに達すると羽根69aの回転がバラ荷Mによって妨げられ、羽根69aの回転が停止する。リミットスイッチ69は、この羽根69aの回転が停止した状態を検出することによって、バラ荷Mが貯蔵限界高さLに達したことを検知し、アンローダ1の制御部(不図示)に信号を出力する。
 制御部は、リミットスイッチ69からの信号を受けると、バケットエレベータ9によるバラ荷Mの荷揚げ、及びブームコンベヤ39によるバラ荷Mの搬送を停止させるよう、バケットエレベータ9及びブームコンベヤ39の動作を制御する。また、制御部は、落下部60を落下するバラ荷Mの量が一定となるように、バケットエレベータ9及びブームコンベヤ39を制御し、例えばバケットエレベータ9が大量にバラ荷Mを荷揚げしている場合にはバケット27及びブームコンベヤ39の移動速度を遅くしたり、バケットエレベータ9のバラ荷Mの荷揚げ量が少ない場合はバケット27及びブームコンベヤ39の移動速度を速めたりして、単位時間あたりに落下部60を落下するバラ荷Mの量が一定となるようにしている。
 ところで、上記のように発電機67で変換された電気エネルギーは、図6に示されるように、アンローダ1の電源システム70において、上述した駆動ローラ31a,31b,31cを駆動する負荷モータ75に供給される。電源システム70は、この負荷モータ75と、電源71と、変圧器72と、AC/ACコンバータ73と、インバータ74とを備えている。変圧器72、AC/ACコンバータ73及びインバータ74は、アンローダ1の電気室Eに設けられている。
 電源71は、地上電源であり、交流電力を変圧器72に供給する。変圧器72は、電源71から供給された交流電力の電圧を所定の電圧に変換してインバータ74に供給する。インバータ74は変圧器72からの供給電力を負荷モータ75に供給し、負荷モータ75はインバータ74からの電力によって作動する。こうして負荷モータ75が作動することによって駆動ローラ31a,31b,31cが駆動し、チェーン25が矢印W方向に周回してバケットエレベータ9が駆動する。
 また、本実施形態では、上記のように発電機67及びAC/ACコンバータ73を備えており、発電機67は電力をAC/ACコンバータ73に供給する。AC/ACコンバータ73は、発電機67からの電力の周波数を所定の周波数に変換して電力をインバータ74に供給する。そして、インバータ74はAC/ACコンバータ73からの供給電力を負荷モータ75に供給し、電源71から負荷モータ75への電力の供給を補うように機能する。
 以上、本実施形態に係るアンローダ1では、変換部として機能する羽根車65、増速機66及び発電機67を備えることにより、バラ荷Mを荷揚げしたときの位置エネルギーが落下時に電気エネルギーに変換され、変換後の電気エネルギーを利用可能となるため、バラ荷Mの上げ下げで生じるエネルギーを有効活用することができ、エネルギー効率を向上させることができる。さらに、発電機67からの電力供給が可能となることから、電源71からの電力消費を低減でき、電源71から負荷モータ75に電力を供給する電気機器の容量を低減し、機器にかかるコストを低減させることもできる。
 また、アンローダ1はバケットエレベータ式の連続アンローダであり、上記のようにバケットエレベータ9はバラ荷Mを連続的に荷揚げし、落下部60にバラ荷Mが落下したときの落下エネルギーを連続的に電気エネルギーに変換できることとなるため、大量且つコンスタントに電気エネルギーを得ることができる。
 また、羽根車65を変換部として備えているため、エネルギー効率を有効活用するための構成を簡易な構造で実現でき、更に、案内部として機能するガイド板62a,62bを備えることにより、より大量のバラ荷Mを羽根65aに衝突させることができるため、エネルギー効率をより向上させることができる。
 また、羽根車65は、シュート61の下端側に設けられており、且つホッパ68におけるバラ荷Mの貯蔵限界高さLよりも高い位置に設けられている。このため、落下部60の上端と、羽根車65との上下距離を長くすることができ、バラ荷Mの落下エネルギーを大きくすることによってより多くの電気エネルギーを得ることができる。更に、羽根車65の羽根65aにバラ荷Mを衝突させることにより、バラ荷Mがホッパ68内へ落下するときの衝撃を緩和することもできる。
(第2実施形態)
 次に、図7及び図8を参照してアンローダの第2実施形態について説明する。第2実施形態のアンローダは、図1及び図2に示される第1実施形態のアンローダ1と同様、バケットエレベータ式の船舶用連続アンローダ(CSU)である。以下では、第2実施形態のアンローダについて、第1実施形態のアンローダ1と異なる部分について重点的に説明し、重複する説明を省略する。
 第2実施形態のアンローダは、駆動ローラ31a,31b,31cを駆動するバケット用モータ(不図示)と、旋回フレーム5を旋回する旋回モータ(不図示)と、ガーダ2を走行する走行モータ(不図示)と、ブームコンベヤ39を駆動するブームコンベヤ用モータ(不図示)とを備えている。バケット用モータ、旋回モータ、走行モータ、及びブームコンベヤ用モータは、図7に示す電源システム170の電源171から電力を得て動作する。以下では、バケット用モータ、旋回モータ、及び走行モータを負荷モータ175、ブームコンベヤ用モータをモータ185として説明する。
 電源システム170は、上述した電源171と、コンバータ172と、インバータ173と、負荷モータ175と、動力スイッチ182と、モータ185とを備えている。電源171は、商用電源であり、交流電力をコンバータ172に供給する。コンバータ172は、電源171から供給された交流電力を直流電力に変換する。コンバータ172とインバータ173とは直流母線Bを介して接続されており、コンバータ172が変換した直流電力は直流母線Bを介してインバータ173に供給される。インバータ173は、コンバータ172からの直流電力を所定の周波数の交流電力に変換してこの交流電力を負荷モータ175に供給する。負荷モータ175はインバータ173からの交流電力によって作動し、負荷モータ175の作動によって、例えば駆動ローラ31a,31b,31cの駆動、旋回フレーム5の旋回、及びガーダ2の走行が行われる。
 また、電源171は、動力スイッチ182を介して、モータ185に交流電力を供給する。動力スイッチ182は、接触器であり、外部からのスイッチ操作によりON/OFFされるようになっている。動力スイッチ182がOFF状態のときは電源171からモータ185への交流電力は遮断され、動力スイッチ182がON状態のときは電源171からモータ185へ交流電力が供給される。モータ185は電源171からの交流電力によって作動し、モータ185の作動によって、例えばブームコンベヤ39の駆動が行われる。
 ところで、本実施形態のアンローダでは、ブレーキ(不図示)によって、バケット27の移動、旋回フレーム5の旋回、あるいはガーダ2の走行が制動される際に、その制動時のエネルギーが電気エネルギーに変換される。また、従来のアンローダでは、インバータに制動抵抗が接続されており、上記の制動動作がなされると、この制動抵抗によって電気エネルギーがさらに熱エネルギーに変換されて大気に放出される。
 アンローダの重量は非常に大きいため大気に放出される熱エネルギーの量も非常に大きく、従来のアンローダでは、エネルギー効率が低い上に制動時のエネルギーを有効利用できていないという問題がある。さらに、従来のアンローダでは、例えば強風発生時等における意図しないブームの旋回等を防止するために大量の電気エネルギーが必要であると共に、制動時に大量に熱エネルギーが発生する場合に備えて冷却装置を設ける必要があり、また、大量の電気エネルギーを受けて制動抵抗に悪影響を及ぼすおそれがある、といった問題もある。
 そこで、本実施形態のアンローダでは、負荷モータ175の制動動作によって発生するエネルギーが電気エネルギーに変換されてエネルギー回生が行われる。具体的には、バケット27の移動、旋回フレーム5の旋回、あるいはガーダ2の走行が制動されると、負荷モータ175からインバータ173及び直流母線Bを介してコンバータ172に電気エネルギーが供給され、コンバータ172は供給された電気エネルギーを動力スイッチ182を介してモータ185に供給する。
 さらに、コンバータ172は、バケット27のバラ荷Mの払い出し等のために、バケット27が重力等で矢印Wの逆方向に移動したときにもエネルギー回生を行う。このとき、モータ185は、電源171からの電力とコンバータ172によって回生された電力を受けて作動する。このように動作するコンバータ172としては、例えばIGBTコンバータ等が挙げられる。
 本実施形態に係るアンローダでは、上述の通りコンバータ172が負荷モータ175の制動動作によって発生したエネルギーからエネルギー回生を行う。よって、制動動作が行われる際にエネルギーが熱として大気に放出されることを抑制し、上記のエネルギーは電気エネルギーに回生されるため、電源171から供給される電力の消費を抑えて、コスト削減と共にエネルギー効率を向上させることができる。さらに、一定量のバラ荷Mを揚げる際に必要なエネルギー量である原単位の向上を図ることもできる。
 具体的には、例えば、図8に示すように、アンローダ全体で用いられる消費エネルギーをエネルギーC、制動開始時刻を時刻t、制動終了時刻を時刻t、従来のアンローダのエネルギー使用量を使用量L1、本実施形態のアンローダのエネルギー使用量を使用量L2とすると、時刻tと時刻tとの間の時間における使用量L2は当該時間における使用量L1を下回ることとなり、本実施形態のアンローダでは時刻tと時刻tとの間のエネルギーCを減らすことができる。
 また、本実施形態のアンローダでは、チェーン25が逆方向に回転したときにもエネルギー回生を行うため、逆回転時のエネルギーを有効利用してエネルギー効率を高めることができる。
 また、本実施形態のアンローダでは、上述したように、負荷モータ175の制動動作によって発生するエネルギーが変換されてエネルギー回生が行われるため、従来のアンローダで用いられていた制動抵抗が不要となり、制動抵抗による熱エネルギーの発生を抑制できる。よって、大量の熱エネルギーの放出がなくなると共に、熱エネルギーが大きい場合に必要となる冷却装置が不要になり、さらに、制動抵抗に悪影響を及ぼす、といった問題を回避することができる。
 以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形したものであってもよい。例えば、第1実施形態では案内部として機能するガイド板62a,62bが互いに対向するように2枚設けられる例について説明したが、案内部の形状、個数、及び配置はこの例に限られない。また、ガイド板62a,62bの代わりに、例えばハンドル等によって角度を調整可能なガイド板を設けるようにしてもよい。
 また、第1実施形態では、8枚の羽根65aを有する羽根車65を用いた例について説明したが、羽根65aは8枚でなくてもよく、羽根車65の形状もこの例に限られない。さらに、羽根車65以外の構成を採用してもよく、要は、バラ荷Mの落下時の衝突エネルギーを電気エネルギーに変換可能な構成であればよい。
 また、第1実施形態では、羽根車65がシュート61の下端側に設けられる例について説明したが、シュート61の下端側に限られず、例えばシュート61の中央付近に設けられていてもよい。
 また、第1実施形態では、変換部として、羽根車65、増速機66及び発電機67が設けられる例について説明したが、変換部の構成もこの例に限られない。すなわち、羽根車65、増速機66及び発電機67の代わりに、シュート61内に圧電素子を設けるようにしてもよい。この場合、バラ荷Mを圧電素子に衝突させて、バラ荷Mの落下エネルギーを圧力エネルギーに変換し、圧力エネルギーを電気エネルギーに変換することにより、第1実施形態と同様の効果が得られる。
 また、第1実施形態では、水平方向に回転する羽根69aを備えたリミットスイッチ69を用いた例について説明したが、バラ荷Mが貯蔵限界高さLに達したことを検知するスイッチの構成もこの例に限られない。例えば、リミットスイッチ69の代わりに、内部に空気を含んだ風船状のスイッチや棒状のスイッチ等を用いることも可能であり、いずれのスイッチもバラ荷Mのスイッチへの接触によりバラ荷Mが貯蔵限界高さLに達したことを検知できる。さらに、このリミットスイッチ69は無くてもよく、ホッパ68内のバラ荷Mの貯蔵量を作業者等が目視やカメラで確認するようにしてもよい。
 また、第1実施形態では、リミットスイッチ69が、バラ荷Mが貯蔵限界高さLに達したことを検知した際、バラ荷Mの搬送を停止させる例について説明したが、バラ荷Mの搬送を停止させなくてもよい。具体的には、例えば、バラ荷Mの搬送を停止させる代わりに、バラ荷Mの荷揚げ等の速度を変更させてもよく、また、バラ荷Mが貯蔵限界高さLに達したことを運転室のモニタ等に出力させて運転者に手動で制御させるようにしてもよい。
 また、第1実施形態では、発電機67で変換された電気エネルギーを負荷モータ75の作動に用いる例について説明したが、上記電気エネルギーは、例えばブームコンベヤ39や電灯等、アンローダ1内の他の装置、あるいはアンローダ1以外の他の機器に供給されてもよい。さらに、蓄電器を設けて、上記電気エネルギーを蓄電させるようにしてもよい。
 また、第1実施形態では、バケットエレベータ9を備えたアンローダ1に対して本発明を適用した例について説明したが、バケットエレベータ9を備えていなくてもよく、例えば吸い込み式や挟み込み式等、バケットエレベータ式以外のアンローダに対しても本発明を適用させることができる。
 また、第1実施形態では、シュート61に覗き窓63が設けられる例について説明したが、この覗き窓63は無くてもよい。さらに、覗き窓63に代えて、シュート61内部にカメラを設けてもよく、この場合、カメラからの映像でシュート61内部を視認することができる。
 また、第2実施形態では、回生エネルギーを生じさせる駆動源である負荷モータ175として、バケット用モータ、旋回モータ、及び走行モータを例示したが、回生エネルギーを生じさせる駆動源としてはこれらに限られず、例えば風によるブームの旋回を防ぐためのブレーキを用いることも可能である。この場合、強風発生時に大量の回生エネルギーを得ることができる。
 また、第2実施形態では、回生エネルギーをブームコンベヤ用モータであるモータ185に供給していたが、モータ185に限られず、アンローダ内の他の装置あるいはアンローダ以外の他の機器に回生エネルギーを供給してもよい。さらに、蓄電器を設けて、回生エネルギーを蓄電させるようにしてもよい。
 本発明は、エネルギー効率を向上させたアンローダとして利用可能である。
 1…アンローダ、2…ガーダ(本体部)、7…ブーム、9…バケットエレベータ(荷揚げ部)、25…チェーン(無端チェーン)、27…バケット、39…ブームコンベヤ(搬送部)、60…落下部、61…シュート、62a,62b…ガイド板(案内部)、63…覗き窓、65…羽根車(変換部)、65a…羽根、66…増速機(変換部)、67…発電機(変換部)、68…ホッパ、171…電源、172…コンバータ、173…インバータ、175…負荷モータ、B…直流母線、L…貯蔵限界高さ、M…バラ荷(対象物)。

Claims (12)

  1.  対象物を荷揚げする荷揚げ部と、
     前記荷揚げ部によって荷揚げされた前記対象物を搬送する搬送部と、
     前記搬送部によって搬送された前記対象物を落下させる落下部と、
     前記落下部を落下する前記対象物の落下エネルギーを電気エネルギーに変換する変換部と、を備えることを特徴とするアンローダ。
  2.  前記荷揚げ部は、前記対象物を連続的に荷揚げすることを特徴とする請求項1に記載のアンローダ。
  3.  前記変換部は、前記対象物の衝突により回転する羽根車を有することを特徴とする請求項1又は2に記載のアンローダ。
  4.  前記落下部は、前記対象物を前記羽根車の羽根に衝突させるように、前記対象物を案内する案内部を備えることを特徴とする請求項3に記載のアンローダ。
  5.  前記落下部は、筒状のシュートを備え、
     前記対象物は、前記シュートの内部を落下することを特徴とする請求項1又は2に記載のアンローダ。
  6.  前記羽根車は、前記シュートの下端側に設けられていることを特徴とする請求項5に記載のアンローダ。
  7.  前記シュートの下側には前記対象物を貯蔵するホッパが設けられており、
     前記羽根車は、前記ホッパにおける前記対象物の貯蔵限界高さよりも高い位置に設けられていることを特徴とする請求項5に記載のアンローダ。
  8.  前記シュートには、内部を視認可能な覗き窓が設けられていることを特徴とする請求項5に記載のアンローダ。
  9.  対象物を掻き取って積載する複数のバケットと、前記複数のバケットを保持する無端チェーンとを有し、前記対象物を連続的に搬送するバケットエレベータを備えたバケットエレベータ式のアンローダであって、
     電源に接続されたコンバータと、
     前記コンバータに接続されたインバータと、
     前記インバータに接続された負荷モータと、を備え、
     前記コンバータと前記インバータとは直流母線を介して接続されており、
     前記コンバータは、前記負荷モータの制動動作によって発生するエネルギーからエネルギー回生を行うことを特徴とするアンローダ。
  10.  前記負荷モータは、前記無端チェーンを駆動し周回させるモータであり、
     前記無端チェーンは、前記対象物を搬送する際に正方向に周回し、
     前記コンバータは、前記無端チェーンが逆方向に回転したときに、前記エネルギー回生を行うことを特徴とする請求項9に記載のアンローダ。
  11.  岸壁の上面に設置可能な本体部と、前記本体部に対して旋回可能に設けられ前記バケットエレベータが設けられたブームと、を備え、
     前記負荷モータは、前記ブームを旋回させるモータであることを特徴とする請求項9に記載のアンローダ。
  12.  岸壁の上面を走行可能なガーダを備え、
     前記負荷モータは、前記ガーダを走行させるモータであることを特徴とする請求項9に記載のアンローダ。
PCT/JP2013/066246 2012-08-10 2013-06-12 アンローダ WO2014024563A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157000490A KR101766774B1 (ko) 2012-08-10 2013-06-12 언로더
CN201380036356.4A CN104507837B (zh) 2012-08-10 2013-06-12 卸载机

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-178423 2012-08-10
JP2012178423A JP5940412B2 (ja) 2012-08-10 2012-08-10 アンローダ
JP2012-198468 2012-09-10
JP2012198468A JP5936964B2 (ja) 2012-09-10 2012-09-10 連続アンローダ

Publications (1)

Publication Number Publication Date
WO2014024563A1 true WO2014024563A1 (ja) 2014-02-13

Family

ID=50067805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066246 WO2014024563A1 (ja) 2012-08-10 2013-06-12 アンローダ

Country Status (4)

Country Link
KR (1) KR101766774B1 (ja)
CN (1) CN104507837B (ja)
TW (1) TWI583611B (ja)
WO (1) WO2014024563A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6827151B1 (ja) * 2020-01-15 2021-02-10 Ihi運搬機械株式会社 ノズル用雨除け装置
IT201900025327A1 (it) * 2019-12-23 2021-06-23 Demetrio Branca Apparato per il trasporto di materiale inerte
CN115140250A (zh) * 2022-09-01 2022-10-04 山东金科星机电股份有限公司 一种利用蓄电装船的起重机

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110759065A (zh) * 2019-10-16 2020-02-07 安徽方园塑胶有限责任公司 一种带发电缓冲滚筒的物料转载点溜槽系统
CN110949939A (zh) * 2019-12-11 2020-04-03 枣庄鑫金山智能机械股份有限公司 一种砂石骨料开采用垂直运输结构
CN112591497B (zh) * 2020-12-09 2022-07-12 江苏祥瑞港机设备有限公司 自动化环保型伸缩变幅装船机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139173A (ja) * 1996-11-08 1998-05-26 Mitsubishi Heavy Ind Ltd 連続式アンローダの荷揚げ量制御方法
JPH1159916A (ja) * 1997-08-21 1999-03-02 Ishikawajima Harima Heavy Ind Co Ltd 連続アンローダ
JP2000344351A (ja) * 1999-05-31 2000-12-12 Kawasaki Steel Corp 連続式アンローダのバケットエレベータ駆動方法
JP2000351427A (ja) * 1999-06-09 2000-12-19 Satake Eng Co Ltd 発電機能付き粉粒体緩衝装置
JP2004250224A (ja) * 2003-02-21 2004-09-09 Tsubakimoto Chain Co 物品仕分け搬出装置
JP2005145702A (ja) * 2003-11-19 2005-06-09 Toshiba Elevator Co Ltd エレベータ
JP2010105757A (ja) * 2008-10-28 2010-05-13 Mitsubishi Electric Corp エレベーターの制御方法およびそのシステム
JP2012012149A (ja) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd クレーン制御装置、及びクレーン装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB591558A (en) * 1946-03-04 1947-08-21 Fredrich Gans Improvements in or relating to low power motors
US3987307A (en) * 1974-12-11 1976-10-19 Giconi Renell A Particulate material powered prime mover
JPS57173573A (en) * 1981-04-17 1982-10-25 Kiyoshi Okui Solid gravitational turbine
DE69508570T2 (de) * 1995-06-16 1999-10-21 Ishikawajima Harima Heavy Ind Gerät zum kontinuierlichen Entladen
CN2298233Y (zh) * 1997-05-09 1998-11-25 上海船舶设备研究所 斗式升降机
JP4369591B2 (ja) * 2000-03-14 2009-11-25 石川島運搬機械株式会社 連続アンローダ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139173A (ja) * 1996-11-08 1998-05-26 Mitsubishi Heavy Ind Ltd 連続式アンローダの荷揚げ量制御方法
JPH1159916A (ja) * 1997-08-21 1999-03-02 Ishikawajima Harima Heavy Ind Co Ltd 連続アンローダ
JP2000344351A (ja) * 1999-05-31 2000-12-12 Kawasaki Steel Corp 連続式アンローダのバケットエレベータ駆動方法
JP2000351427A (ja) * 1999-06-09 2000-12-19 Satake Eng Co Ltd 発電機能付き粉粒体緩衝装置
JP2004250224A (ja) * 2003-02-21 2004-09-09 Tsubakimoto Chain Co 物品仕分け搬出装置
JP2005145702A (ja) * 2003-11-19 2005-06-09 Toshiba Elevator Co Ltd エレベータ
JP2010105757A (ja) * 2008-10-28 2010-05-13 Mitsubishi Electric Corp エレベーターの制御方法およびそのシステム
JP2012012149A (ja) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd クレーン制御装置、及びクレーン装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900025327A1 (it) * 2019-12-23 2021-06-23 Demetrio Branca Apparato per il trasporto di materiale inerte
JP6827151B1 (ja) * 2020-01-15 2021-02-10 Ihi運搬機械株式会社 ノズル用雨除け装置
WO2021144884A1 (ja) * 2020-01-15 2021-07-22 Ihi運搬機械株式会社 ノズル用雨除け装置
CN115140250A (zh) * 2022-09-01 2022-10-04 山东金科星机电股份有限公司 一种利用蓄电装船的起重机
CN115140250B (zh) * 2022-09-01 2022-11-18 山东金科星机电股份有限公司 一种能够蓄电装船的起重机

Also Published As

Publication number Publication date
KR20150021999A (ko) 2015-03-03
KR101766774B1 (ko) 2017-08-09
TW201408572A (zh) 2014-03-01
TWI583611B (zh) 2017-05-21
CN104507837A (zh) 2015-04-08
CN104507837B (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2014024563A1 (ja) アンローダ
EP3215408B1 (en) Material transport and distribution consist with controlled gated hopper cars and conveyor systems
CN103449204B (zh) 一种链斗式连续卸船机
CN206377982U (zh) 一种废钢预热型电弧炉的废钢升降输送装置
CN107512526A (zh) 一种移动式连续给料链板输送装置
CN107032142A (zh) 散粮卸船机及其操作方法
JP5940412B2 (ja) アンローダ
CN105151652B (zh) 一种斗式提升机
CN106081951B (zh) 一种高效带斗门机
CN108328364B (zh) 一种高效节能卸船机
CN206955257U (zh) 散粮卸船机
KR200191051Y1 (ko) 유압식 그래브 버킷
JP5936964B2 (ja) 連続アンローダ
WO2014024564A1 (ja) 連続アンローダ
CN204150734U (zh) 适用于带多点分料装置的抓斗卸船机
CN205687442U (zh) 一种高效带斗门机
CN213293702U (zh) 一种可连续作业的建筑施工用上料装置
US1397561A (en) Apparatus for conveying, delivering, and gathering material
JP3211761B2 (ja) ばら物用アンローダ
CN112660772B (zh) 具有防扬尘的下料装置
JP4230335B2 (ja) コンベヤ装置
CN208150759U (zh) 一种轿厢式升降货梯
CN213923236U (zh) 一种用于散装物料的牵引式前后双向溜槽装置
CN216402732U (zh) 一种环料提升机剔料机构
CN217349844U (zh) 斜槽式粉料提升机构以及集装箱拆箱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157000490

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201501372

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13828256

Country of ref document: EP

Kind code of ref document: A1