WO2014017354A1 - 光電変換装置 - Google Patents

光電変換装置 Download PDF

Info

Publication number
WO2014017354A1
WO2014017354A1 PCT/JP2013/069411 JP2013069411W WO2014017354A1 WO 2014017354 A1 WO2014017354 A1 WO 2014017354A1 JP 2013069411 W JP2013069411 W JP 2013069411W WO 2014017354 A1 WO2014017354 A1 WO 2014017354A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
photoelectric conversion
film
oxygen
layer
Prior art date
Application number
PCT/JP2013/069411
Other languages
English (en)
French (fr)
Inventor
山本 晃生
祐介 宮道
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2014526873A priority Critical patent/JPWO2014017354A1/ja
Publication of WO2014017354A1 publication Critical patent/WO2014017354A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/065Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the graded gap type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • the present invention relates to a photoelectric conversion device including an I-III-VI group compound having a chalcopyrite structure.
  • I-III-VI group compounds having a chalcopyrite structure such as CIGS as a light absorption layer (see, for example, JP-A-8-330614) ).
  • I-III-VI group compounds have a high light absorption coefficient, and are suitable for thinning, increasing the area and reducing the cost of photoelectric conversion devices, and research and development of next-generation solar cells using them are being promoted.
  • a lower electrode layer such as a metal electrode, a light absorption layer, a buffer layer, and a transparent conductive film are laminated in this order on a substrate such as glass.
  • a plurality of photoelectric conversion cells are arranged side by side in a plan view. The plurality of photoelectric conversion cells are electrically connected in series by connecting the transparent conductive film of one adjacent photoelectric conversion cell and the other lower electrode layer with a connection conductor.
  • This photoelectric conversion efficiency indicates the rate at which sunlight energy is converted into electric energy in the photoelectric conversion device.
  • the value of the electric energy output from the photoelectric conversion device is the energy of sunlight incident on the photoelectric conversion device. It is derived by dividing by the value of and multiplied by 100.
  • One object of the present invention is to improve the photoelectric conversion efficiency of a photoelectric conversion device.
  • a photoelectric conversion device includes an electrode layer and a first semiconductor layer having a chalcopyrite structure including a group 11 element, a group 13 element, a chalcogen element, and an oxygen element, which are disposed over the electrode layer And a second semiconductor layer formed on the first semiconductor layer and forming a pn junction with the first semiconductor layer, and the atomic concentration of the oxygen element in the first semiconductor layer is The upper surface portion on the second semiconductor layer side is lower than the central portion of the thickness of the first semiconductor layer.
  • FIG. 1 is a perspective view of a photoelectric conversion device according to a first embodiment of the present invention. It is sectional drawing of the photoelectric conversion apparatus of FIG. It is a graph which shows distribution of oxygen concentration of the 1st semiconductor layer. It is a graph which shows distribution of oxygen concentration of the 1st semiconductor layer in a photoelectric conversion device concerning a 2nd embodiment. It is a graph which shows the ratio of the gallium element with respect to the sum total of the gallium element and indium element of the 1st semiconductor layer in the photoelectric conversion apparatus which concerns on 3rd Embodiment.
  • FIG. 1 is a perspective view of the photoelectric conversion device according to the first embodiment, and FIG. 2 is an XZ sectional view thereof. 1 and 2 have a right-handed XYZ coordinate system in which the arrangement direction of the photoelectric conversion cells 10 (the horizontal direction in the drawing in FIG. 1) is the X-axis direction.
  • the photoelectric conversion device 11 a plurality of photoelectric conversion cells 10 are arranged on the substrate 1 and are electrically connected to each other. In FIG. 1, only two photoelectric conversion cells 10 are shown for convenience of illustration.
  • the horizontal direction in the drawing (X-axis direction) or a direction perpendicular to this (A large number of photoelectric conversion cells 10 may be arranged in a plane (two-dimensionally) in the Y-axis direction).
  • a plurality of lower electrode layers 2 are arranged in a plane on a substrate 1.
  • the plurality of lower electrode layers 2 include lower electrode layers 2a to 2c arranged at intervals in one direction (X-axis direction).
  • a first semiconductor layer 3 is provided from the lower electrode layer 2a through the substrate 1 to the lower electrode layer 2b.
  • a second semiconductor layer 4 having a conductivity type different from that of the first semiconductor layer 3 is provided on the first semiconductor layer 3.
  • the connection conductor 7 is provided along the surface (side surface) of the first semiconductor layer 3 or penetrating (dividing) the first semiconductor layer 3. The connection conductor 7 electrically connects the second semiconductor layer 4 and the lower electrode layer 2b.
  • the lower electrode layer 2, the first semiconductor layer 3, the second semiconductor layer 4, and the upper electrode layer 5 constitute one photoelectric conversion cell 10, and the adjacent photoelectric conversion cells 10 are connected to each other through the connection conductor 7. By being connected in series, the high-power photoelectric conversion device 11 is obtained.
  • the photoelectric conversion apparatus 11 in this embodiment assumes what enters light from the 2nd semiconductor layer 4 side, it is not limited to this, Light enters from the board
  • the substrate 1 is for supporting the photoelectric conversion cell 10.
  • Examples of the material used for the substrate 1 include glass, ceramics, resin, and metal.
  • the lower electrode layer 2 (lower electrode layers 2a, 2b, 2c) is a conductor such as Mo (molybdenum), Al (aluminum), Ti (titanium), or Au (gold) provided on the substrate 1.
  • the lower electrode layer 2 is formed to a thickness of about 0.2 ⁇ m to 1 ⁇ m using a known thin film forming method such as sputtering or vapor deposition.
  • the first semiconductor layer 3 has a thickness of about 1 ⁇ m to 3 ⁇ m, for example, and mainly contains a chalcopyrite structure I-III-VI group compound.
  • the group I-III-VI compound is a compound of a group 11 element (also referred to as a group IB element), a group 13 element (also referred to as a group III-B element), and a chalcogen element.
  • the chalcogen element refers to S (sulfur), Se (selenium), or Te (tellurium) among group 16 elements (also referred to as group VI-B elements).
  • the group I-III-VI compound for example, CuInSe 2 (copper indium diselenide, also referred to as CIS), Cu (In, Ga ) Se 2 ( copper indium diselenide, gallium, also called CIGS), Cu ( In, Ga) (Se, S) 2 (also referred to as diselene / copper indium / gallium / CIGSS).
  • the first semiconductor layer 3 may be composed of a multi-component compound semiconductor thin film such as copper indium selenide / gallium having a thin film of selenite / copper indium sulfide / gallium layer as a surface layer.
  • the first semiconductor layer 3 further contains an oxygen (O) element, and the atomic concentration of the oxygen element is set to be higher than that of the central portion in the thickness direction (Z-axis direction) of the first semiconductor layer 3. It is lower on the upper surface portion on the semiconductor layer 4 side.
  • the photoelectric conversion efficiency of the photoelectric conversion device 11 is increased. That is, by including an oxygen element in the first semiconductor layer 3, defects in the first semiconductor layer 3 are filled with the oxygen element, and carrier recombination can be reduced well.
  • the group 11 element tends to diffuse toward the second semiconductor layer 4 side and the acceptor site tends to increase.
  • the first semiconductor layer 3 and the second semiconductor layer 4 can be preferably pn-junctioned, and the photoelectric conversion efficiency can be increased.
  • the first semiconductor layer 3 includes at least an upper surface portion on the second semiconductor layer 4 side, a center portion, and a lower electrode by dividing the first semiconductor layer 3 into three equal parts in the thickness direction (Z-axis direction).
  • the atomic concentration of the oxygen element on the upper surface portion should be lower than the atomic concentration of the oxygen element on the central portion.
  • the atomic concentration of elemental oxygen is measured by, for example, energy dispersive X-ray analysis (EDS: Energy Dispersive X-ray Spectroscopy) in the cross section of each layer divided into three parts. Is required. Or you may measure using secondary ion mass spectrometry (SIMS: Secondary
  • EDS Energy Dispersive X-ray Spectroscopy
  • the atomic concentration of the oxygen element in the central portion of the first semiconductor layer 3 may be, for example, 2 ⁇ 10 20 to 3 ⁇ 10 21 atoms / cm 3 . Further, the atomic concentration of the oxygen element in the upper surface portion on the second semiconductor layer 4 side may be 0.1 to 0.9 times the atomic concentration of the oxygen element in the central portion, more preferably 0.1. It may be up to 0.5 times.
  • FIG. 3 shows an example of an atomic concentration distribution of oxygen elements in the thickness direction of the first semiconductor layer 3.
  • the upper surface portion of the first semiconductor layer 3 is a region whose distance from the second semiconductor layer 4 is 0 to 0.6 ⁇ m, and in this region, the atomic concentration of oxygen element is the second semiconductor layer 4. The closer it is, the lower it is.
  • the atomic concentration distribution of the oxygen element is measured using SIMS while the first semiconductor layer 3 is being cut in the depth direction by sputtering, and the horizontal axis is from the second semiconductor layer 4.
  • the vertical axis represents the atomic concentration of the oxygen element.
  • the second semiconductor layer 4 is a semiconductor layer having a second conductivity type different from that of the first semiconductor layer 3.
  • a photoelectric conversion layer from which charges can be favorably extracted is formed.
  • the first semiconductor layer 3 is p-type
  • the second semiconductor layer 4 is n-type.
  • the first semiconductor layer 3 may be n-type and the second semiconductor layer 4 may be p-type.
  • the second semiconductor layer 4 may be composed of a plurality of layers, and at least one of the plurality of layers may be a high resistance layer.
  • the second semiconductor layer 4 includes CdS, ZnS, ZnO, In 2 S 3 , In 2 Se 3 , In (OH, S), (Zn, In) (Se, OH), and (Zn, Mg) O. Etc.
  • the second semiconductor layer 4 is formed with a thickness of 10 to 200 nm by, for example, a chemical bath deposition (CBD) method or the like.
  • CBD chemical bath deposition
  • In (OH, S) refers to a mixed crystal compound containing In as a hydroxide and a sulfide.
  • Zn, In) (Se, OH) refers to a mixed crystal compound containing Zn and In as selenides and hydroxides.
  • (Zn, Mg) O refers to a compound containing Zn and Mg as oxides.
  • an upper electrode layer 5 may be further provided on the second semiconductor layer 4.
  • the upper electrode layer 5 is a layer having a lower resistivity than the second semiconductor layer 4, and it is possible to take out charges generated in the first semiconductor layer 3 and the second semiconductor layer 4 satisfactorily.
  • the resistivity of the upper electrode layer 5 may be less than 1 ⁇ ⁇ cm and the sheet resistance may be 50 ⁇ / ⁇ or less.
  • the upper electrode layer 5 is a 0.05 to 3 ⁇ m transparent conductive film made of, for example, ITO or ZnO.
  • the upper electrode layer 5 may be composed of a semiconductor having the same conductivity type as the second semiconductor layer 4.
  • the upper electrode layer 5 can be formed by sputtering, vapor deposition, chemical vapor deposition (CVD), or the like.
  • a collecting electrode 8 may be further formed on the upper electrode layer 5.
  • the current collecting electrode 8 is for taking out charges generated in the first semiconductor layer 3 and the second semiconductor layer 4 more satisfactorily.
  • the collector electrode 8 is formed in a linear shape from one end of the photoelectric conversion cell 10 to the connection conductor 7.
  • the current generated in the first semiconductor layer 3 and the fourth semiconductor layer 4 is collected to the current collecting electrode 8 via the upper electrode layer 5, and to the adjacent photoelectric conversion cell 10 via the connection conductor 7. It is energized well.
  • the collecting electrode 8 may have a width of 50 to 400 ⁇ m from the viewpoint of increasing the light transmittance to the first semiconductor layer 3 and having good conductivity.
  • the current collecting electrode 8 may have a plurality of branched portions.
  • the current collecting electrode 8 is formed, for example, by printing a metal paste in which a metal powder such as Ag is dispersed in a resin binder or the like in a pattern and curing it.
  • connection conductor 7 is a conductor provided in a groove that penetrates (divides) the first semiconductor layer 3, the second semiconductor layer 4, and the upper electrode layer 5.
  • the connection conductor 7 can be made of metal, conductive paste, or the like.
  • the collector electrode 8 is extended to form the connection conductor 7, but this is not limitative.
  • the upper electrode layer 5 may be stretched.
  • the photoelectric conversion device 11 having the above configuration.
  • the first semiconductor layer 3 is CIGS
  • the lower electrode layer 2 made of Mo or the like is formed in a desired pattern on the main surface of the substrate 1 made of glass or the like using a sputtering method or the like.
  • a raw material solution in which metal elements (Cu, In and Ga) constituting the I-III-VI group compound (CIGS) are dissolved in an organic complex or an organic acid salt in a solvent is prepared.
  • the first film is formed by film forming using a coating method or the like.
  • the first film is heated in an atmosphere containing water or oxygen, for example, at 150 to 350 ° C. to thermally decompose the organic components in the first film.
  • the process of forming the first film and thermally decomposing the organic component is referred to as the first process).
  • an atmosphere for thermally decomposing the first film an atmosphere in which water vapor or oxygen is contained in an inert gas such as nitrogen at a partial pressure ratio of about 10 to 1000 ppmv is used.
  • a second film is formed on the thermally decomposed first film using the raw material solution, and the organic components in the second film are heated.
  • Decompose hereinafter, the process of forming the second film and thermally decomposing the organic component is referred to as the second process).
  • a third film is formed on the thermally decomposed second film using the raw material solution.
  • coat is heated in the atmosphere containing water or oxygen of a density
  • a three-layered film laminate having an oxygen concentration lower on the upper surface portion than the central portion in the thickness direction is formed.
  • the coating is not limited to three layers, and may be two layers or four or more layers.
  • the oxygen concentration of each layer can be adjusted by changing the concentration of water or oxygen in the atmosphere during pyrolysis.
  • the laminate of this film is heated in an atmosphere containing selenium, for example, at 500 to 600 ° C.
  • an atmosphere containing selenium for example, at 500 to 600 ° C.
  • Layer 3 can be formed.
  • the second semiconductor layer 4 and the upper electrode layer 5 are sequentially formed on the first semiconductor layer 3 by a CBD method, a sputtering method, or the like. Then, the first semiconductor layer 3, the second semiconductor layer 4, and the upper electrode layer 5 are processed by mechanical scribing or the like to form a groove for the connection conductor 7.
  • the first semiconductor layer 3 to the collecting electrode 8 are removed by mechanical scribing at a position shifted from the connection conductor 7 and divided into a plurality of photoelectric conversion cells 10, as shown in FIGS. 1 and 2.
  • the photoelectric conversion device 11 can be obtained.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
  • the first semiconductor layer 3 instead of the first semiconductor layer 3 in the photoelectric conversion device 11 of the first embodiment, the first semiconductor layer 3 having a different atomic element concentration distribution may be employed.
  • the atomic concentration of the oxygen element in the first semiconductor layer 3 is lower in the upper surface portion than in the central portion of the thickness of the first semiconductor layer 3, and in addition, the first semiconductor layer 3.
  • the lower surface portion on the lower electrode layer 2 side may be lower than the central portion in the thickness direction.
  • the atomic concentration of the oxygen element in the lower surface portion of the first semiconductor layer 3 may be 0.1 to 0.9 times the atomic concentration of the oxygen element in the central portion, and more preferably is 0.8. It may be 1 to 0.5 times.
  • FIG. 4 shows an atomic concentration distribution of oxygen elements in the thickness direction of the first semiconductor layer 3 in the photoelectric conversion device 11 according to the second embodiment.
  • the lower surface portion of the first semiconductor layer 3 is a region whose distance from the second semiconductor layer 4 is 1.3 to 1.9 ⁇ m, and in this region, the atomic concentration of oxygen element is the lower electrode layer. The closer it is to 2, the lower it is.
  • FIG. 4 shows an atomic concentration distribution of oxygen elements in the thickness direction of the first semiconductor layer 3 in the photoelectric conversion device 11 according to the second embodiment.
  • the lower surface portion of the first semiconductor layer 3 is a region whose distance from the second semiconductor layer 4 is 1.3 to 1.9 ⁇ m, and in this region, the atomic concentration of oxygen element is the lower electrode layer. The closer it is to 2, the lower it is.
  • the distribution of the atomic concentration of the oxygen element is measured using SIMS while the first semiconductor layer 3 is cut in the depth direction by sputtering, and the horizontal axis is from the second semiconductor layer 4.
  • the vertical axis represents the atomic concentration of the oxygen element.
  • the first semiconductor layer 3 in which the atomic concentration of such an oxygen element is lower in the upper surface portion and the lower surface portion than in the central portion of the thickness can be produced as follows. First, similarly to the manufacturing method of the photoelectric conversion device 11 according to the first embodiment described above, a first film is formed on the lower electrode layer 2 using a raw material solution, and then the first film is washed with water or Heat in an atmosphere containing oxygen to thermally decompose the organic component in the first film.
  • a second film is formed on the thermally decomposed first film using a raw material solution, and the second film is heated in an atmosphere containing water or oxygen, so that the second film Thermal decomposition of organic components.
  • the concentration of water or oxygen in the atmosphere when pyrolyzing the organic component in the second film is higher than the concentration of water or oxygen in the atmosphere when pyrolyzing the organic component in the first film. Keep it. Thereby, the oxygen concentration of the second film is higher than that of the first film.
  • a third film is formed on the thermally decomposed second film by using a raw material solution, and the third film is heated in an atmosphere containing water or oxygen, Thermal decomposition of organic components.
  • the concentration of water or oxygen in the atmosphere when pyrolyzing the organic component in the third film is lower than the concentration of water or oxygen in the atmosphere when pyrolyzing the organic component in the second film. Keep it. Thereby, the oxygen concentration of the third film becomes lower than that of the second film.
  • a three-layered film stack in which the oxygen concentration is lower in the upper surface portion and the lower surface portion than in the central portion in the thickness direction is formed. Then, the laminate of this film is heated at, for example, 500 to 600 ° C. in an atmosphere containing selenium. As a result, as shown in FIG. 4, the first semiconductor layer 3 having a lower oxygen concentration at the upper surface portion than the central portion in the thickness direction and a lower oxygen concentration at the lower surface portion than the central portion can be produced.
  • the atomic concentration of the group 13 element may change in the thickness direction.
  • the first semiconductor layer 3 includes an indium (In) element and a gallium (Ga) element, such as CIGS
  • the atomic concentration ratio of the gallium element to the sum of the indium element and the gallium element (M Ga / ( M Ga + M In )) may be higher on the lower surface portion on the lower electrode layer 2 side than on the central portion of the first semiconductor layer 3.
  • the energy position of the conduction band of the first semiconductor layer 3 can be shifted to the negative potential side in the vicinity of the lower electrode layer 2.
  • M Ga / (M Ga + M In ) M Ga represents the atomic concentration of the gallium element, and M In represents the atomic concentration of the indium element.
  • FIG. 5 shows an example of the distribution of the atomic concentration ratio of the gallium element with respect to the sum of the indium element and the gallium element in the thickness direction of the first semiconductor layer 3.
  • the horizontal axis indicates the distance from the second semiconductor layer 4, and the vertical axis indicates M Ga / (M Ga + M In ).
  • the first semiconductor layer 3 having such an atomic concentration ratio (M Ga / (M Ga + M In )) different in the thickness direction is formed by stacking a film using a raw material in which the concentration ratio of indium element and gallium element is changed. Can be produced.
  • a raw material solution for forming the first semiconductor layer 3 was produced.
  • a solution obtained by dissolving a single source precursor prepared in accordance with US Pat. No. 6,992,202 in pyridine was used.
  • this single source precursor Cu, In, and phenyl selenol formed one complex molecule, and Cu, Ga, and phenyl selenol formed one complex molecule.
  • a single source precursor Cu, In, and phenyl selenol formed one complex molecule
  • Cu, Ga, and phenyl selenol formed one complex molecule.
  • a substrate 1 made of glass with a lower electrode layer 2 made of Mo is prepared, and a raw material solution is applied onto the lower electrode layer 2 by a blade method to form a first electrode.
  • a film was formed.
  • this first film was heated at 280 ° C. for 10 minutes in an atmosphere containing 200 ppmv of water (water vapor) in a nitrogen gas partial pressure ratio to thermally decompose the organic components contained in the first film.
  • the raw material solution was applied onto the thermally decomposed first film by a blade method to form a second film.
  • coat was heated for 10 minutes at 280 degreeC in the atmosphere where water (water vapor
  • the raw material solution was applied on the thermally decomposed second film by a blade method to form a third film.
  • this third film was heated at 280 ° C. for 10 minutes in an atmosphere containing water (steam) in nitrogen gas at a partial pressure ratio of 80 ppmv to thermally decompose the organic components contained in the third film.
  • the laminated body of the first film, the second film, and the third film is heated at 550 ° C. for 1 hour in an atmosphere in which hydrogen gas contains selenium vapor at a partial pressure ratio of 20 ppmv.
  • a first semiconductor layer 3 having a thickness of 2 ⁇ m was formed.
  • the substrate on which up to the first semiconductor layer 3 is formed is immersed in an aqueous solution in which indium chloride and thioacetamide are dissolved, whereby an In 2 S film having a thickness of 50 nm is formed on the first semiconductor layer 3.
  • a second semiconductor layer 4 including 3 was formed.
  • the upper electrode layer 5 made of AZO was formed on the second semiconductor layer 4 by the sputtering method, and the photoelectric conversion device 11 as the evaluation sample 1 was obtained.
  • the distribution of the oxygen element in the first semiconductor layer 3 was measured by performing SIMS measurement while etching the first semiconductor layer 3 of the evaluation sample 1 thus manufactured from the second semiconductor layer 4 side. The result is shown in FIG. From this, it was found that the oxygen concentration in the upper surface portion on the second semiconductor layer 4 side was lower than the central portion in the thickness direction of the first semiconductor layer 3.
  • evaluation sample 2 was prepared.
  • the evaluation sample 2 was manufactured in the same manner as the evaluation sample 1 except that the first semiconductor layer 3 was manufactured.
  • the conditions for thermal decomposition of the first film to the third film were as follows.
  • the conditions for the thermal decomposition of the first film were the conditions of heating at 280 ° C. for 10 minutes in an atmosphere containing 80 ppmv of water (water vapor) in a partial pressure ratio in nitrogen gas.
  • the conditions for the thermal decomposition of the second film were the conditions of heating at 280 ° C. for 10 minutes in an atmosphere containing 200 ppmv of water (water vapor) in a partial pressure ratio in nitrogen gas.
  • the conditions for the thermal decomposition of the third film were the conditions of heating at 280 ° C. for 10 minutes in an atmosphere containing 80 ppmv of water (water vapor) in a nitrogen gas partial pressure ratio.
  • the distribution of the oxygen element in the first semiconductor layer 3 was measured by performing SIMS measurement while etching the first semiconductor layer 3 of the evaluation sample 2 produced in this way from the second semiconductor layer 4 side. The result is shown in FIG. Accordingly, the oxygen concentration in the upper surface portion on the second semiconductor layer 4 side and the lower surface portion on the lower electrode layer 2 side is lower than the central portion in the thickness direction of the first semiconductor layer 3. I understood.
  • a comparative sample was produced.
  • the comparative sample was manufactured in the same manner as the evaluation sample 1 except that the first semiconductor layer was manufactured.
  • the first film to the third film were thermally decomposed in an atmosphere containing no water under the same conditions for each layer. That is, in each thermal decomposition step of the first film to the third film, each film was heated in a nitrogen gas atmosphere at 280 ° C. for 10 minutes to thermally decompose organic components contained in each film.
  • the distribution of the oxygen element in the first semiconductor layer was measured by performing SIMS measurement while etching the first semiconductor layer of the comparative sample thus fabricated from the second semiconductor layer side.
  • the comparative sample contained only a trace amount of oxygen element, and no difference in concentration in the thickness direction of the first semiconductor layer was observed.
  • the photoelectric conversion efficiency of the evaluation sample 1, the evaluation sample 2, and the comparative sample thus produced was measured as follows. Using a so-called steady light solar simulator, the photoelectric conversion efficiency was measured under the conditions where the light irradiation intensity on the light receiving surface of the photoelectric conversion device was 100 mW / cm 2 and AM (air mass) was 1.5. As a result, the photoelectric conversion efficiency of the comparative sample was 10.0%, whereas the photoelectric conversion efficiency of the evaluation sample 1 was 13.5%, and the photoelectric conversion efficiency of the evaluation sample 2 was 13.8%. It was found to be higher than the comparative sample.
  • first semiconductor layer 4 second semiconductor layer 7: connection conductor 10: photoelectric conversion cell 11: photoelectric conversion device

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、光電変換装置の光電変換効率を向上させることを目的とする。 光電変換装置11は、電極層2と、電極層2上に配置された、11族元素、13族元素、カルコゲン元素および酸素元素を含むカルコパイライト構造の第1の半導体層3と、第1の半導体層3上に配置された、第1の半導体層3とpn接合を形成する第2の半導体層4とを備えており、第1の半導体層3における酸素元素の原子濃度は、第1の半導体層3の厚みの中央部よりも第2の半導体層4側の上側表面部の方で低くなっている。

Description

光電変換装置
 本発明は、カルコパイライト構造を有するI-III-VI族化合物を含む光電変換装置に関する。
 太陽光発電などに使用される光電変換装置として、CIGSなどのカルコパイライト構造を有するI-III-VI族化合物を光吸収層として用いたものがある(例えば、特開平8-330614号公報を参照)。I-III-VI族化合物は光吸収係数が高く、光電変換装置の薄膜化や大面積化や低コスト化に適しており、これを用いた次世代太陽電池の研究開発が進められている。
 かかるI-III-VI族化合物を含む光電変換装置は、ガラスなどの基板の上に、金属電極などの下部電極層と、光吸収層と、バッファ層と、透明導電膜とをこの順に積層した光電変換セルを、平面的に複数並設した構成を有することによって構成される。複数の光電変換セルは、隣り合う一方の光電変換セルの透明導電膜と他方の下部電極層とを、接続導体で接続することで、電気的に直列接続されている。
 I-III-VI族化合物を含む光電変換装置には、光電変換効率の向上が常に要求される。この光電変換効率は、光電変換装置において太陽光のエネルギーが電気エネルギーに変換される割合を示し、例えば、光電変換装置から出力される電気エネルギーの値が、光電変換装置に入射する太陽光のエネルギーの値で除されて、100が乗じられることで導出される。
 本発明の1つの目的は、光電変換装置の光電変換効率を向上させることにある。
 本発明の一態様に係る光電変換装置は、電極層と、該電極層上に配置された、11族元素、13族元素、カルコゲン元素および酸素元素を含むカルコパイライト構造を有する第1の半導体層と、該第1の半導体層上に配置された、該第1の半導体層とpn接合を形成する第2の半導体層とを備えており、前記第1の半導体層における酸素元素の原子濃度は、前記第1の半導体層の厚みの中央部よりも前記第2の半導体層側の上側表面部の方で低くなっている。
本発明の第1実施形態に係る光電変換装置の斜視図である。 図1の光電変換装置の断面図である。 第1の半導体層の酸素濃度の分布を示すグラフである。 第2実施形態に係る光電変換装置における第1の半導体層の酸素濃度の分布を示すグラフである。 第3実施形態に係る光電変換装置における第1の半導体層のガリウム元素とインジウム元素との合計に対するガリウム元素の比率を示すグラフである。
 以下に本発明の一態様に係る光電変換装置について、図面を参照しながら詳細に説明する。
 <第1実施形態に係る光電変換装置の構成>
 図1は、第1実施形態に係る光電変換装置の斜視図であり、図2はそのXZ断面図である。なお、図1および図2には、光電変換セル10の配列方向(図1の図面視左右方向)をX軸方向とする右手系のXYZ座標系を付している。光電変換装置11は、基板1上に複数の光電変換セル10が並べられて互いに電気的に接続されている。なお、図1においては図示の都合上、2つの光電変換セル10のみを示しているが、実際の光電変換装置11においては、図面左右方向(X軸方向)、あるいはさらにこれに垂直な方向(Y軸方向)に、多数の光電変換セル10が平面的に(2次元的に)配設されていてもよい。
 図1、図2において、基板1上に複数の下部電極層2が平面配置されている。図1、図2において、複数の下部電極層2は、一方向(X軸方向)に間隔をあけて並べられた下部電極層2a~2cを具備している。この下部電極層2a上から基板1上を経て下部電極層2b上にかけて、第1の半導体層3が設けられている。また、第1の半導体層3上には、第1の半導体層3とは異なる導電型の第2の半導体層4が設けられている。さらに、下部電極層2b上において、接続導体7が、第1の半導体層3の表面(側面)に沿って、または第1の半導体層3を貫通(分断)して設けられている。この接続導体7は、第2の半導体層4と下部電極層2bとを電気的に接続している。これら下部電極層2、第1の半導体層3、第2の半導体層4および上部電極層5によって、1つの光電変換セル10が構成され、隣接する光電変換セル10同士が接続導体7を介して直列接続されることによって、高出力の光電変換装置11となる。なお、本実施形態における光電変換装置11は、第2の半導体層4側から光が入射されるものを想定しているが、これに限定されず、基板1側から光が入射されるものであってもよい。
 基板1は、光電変換セル10を支持するためのものである。基板1に用いられる材料としては、例えば、ガラス、セラミックス、樹脂および金属等が挙げられる。基板1としては、例えば、厚さ1~3mm程度の青板ガラス(ソーダライムガラス)を用いることができる。
 下部電極層2(下部電極層2a、2b、2c)は、基板1上に設けられた、Mo(モリブデン)、Al(アルミニウム)、Ti(チタン)またはAu(金)等の導電体である。下部電極層2は、スパッタリング法または蒸着法などの公知の薄膜形成手法を用いて、0.2μm~1μm程度の厚みに形成される。
 第1の半導体層3は、例えば1μm~3μm程度の厚みを有し、カルコパイライト構造のI-III-VI族化合物を主に有している。I-III-VI族化合物とは、11族元素(I-B族元素ともいう)と13族元素(III-B族元素ともいう)とカルコゲン元素との化合物である。なお、カルコゲン元素とは、16族元素(VI-B族元素ともいう)のうち、S(イオウ)、Se(セレン)、Te(テルル)をいう。I-III-VI族化合物としては、例えば、CuInSe(二セレン化銅インジウム、CISともいう)、Cu(In,Ga)Se(二セレン化銅インジウム・ガリウム、CIGSともいう)、Cu(In,Ga)(Se,S)(二セレン・イオウ化銅インジウム・ガリウム、CIGSSともいう)が挙げられる。あるいは、第1の半導体層3は、薄膜の二セレン・イオウ化銅インジウム・ガリウム層を表面層として有する二セレン化銅インジウム・ガリウム等の多元化合物半導体薄膜にて構成されていてもよい。
 また、第1の半導体層3は、さらに酸素(O)元素を含んでおり、酸素元素の原子濃度は、第1の半導体層3の厚み方向(Z軸方向)の中央部よりも第2の半導体層4側の上側表面部の方で低くなっている。このような構成により、光電変換装置11の光電変換効率が高くなる。つまり、第1の半導体層3中に酸素元素が含まれることによって、第1の半導体層3中の欠陥を酸素元素が埋めてキャリアの再結合を良好に低減できる。さらに、第1の半導体層3の第2の半導体層4側の上側表面部では、11族元素が第2の半導体層4側へ拡散してアクセプターサイトが増加する傾向があるが、この上側表面部において酸素濃度を低くすることによってドナーサイトとして機能する16族元素の空孔を増加させ、上記アクセプターサイトを低減させることができる。その結果、第1の半導体層3と第2の半導体層4とを良好にpn接合させることができ、光電変換効率を高めることができる。
 第1の半導体層3は、少なくとも、第1の半導体層3を厚み方向(Z軸方向)に3等分して、第2の半導体層4側の上側表面部と、中央部と、下部電極層2側の下側表面部とに分けた場合、上側表面部の酸素元素の原子濃度が、中央部の酸素元素の原子濃度よりも低ければよい。
 酸素元素の原子濃度は、例えば、上記3等分された各層の断面において、任意の結晶粒における酸素濃度を、エネルギー分散型X線分析法(EDS:Energy Dispersive x-ray Spectroscopy)を用いて測定することにより求められる。あるいはスパッタリングで第1の半導体層3を深さ方向に削りながら2次イオン質量分析法(SIMS:Secondary Ion Mass Spectroscopy)を用いて測定してもよい。
 光電変換効率を高めるという観点からは、第1の半導体層3の中央部における酸素元素の原子濃度は、例えば2×1020~3×1021atoms/cmであってもよい。また、第2の半導体層4側の上側表面部における酸素元素の原子濃度は、中央部の酸素元素の原子濃度の0.1~0.9倍であってもよく、より好ましくは0.1~0.5倍であってもよい。
 第1の半導体層3中での電荷移動をより良好にするという観点からは、第1の半導体層3の上側表面部における酸素元素の原子濃度は、第2の半導体層4に近づくほど漸次低くなっていてもよい。例えば、図3に第1の半導体層3の厚み方向における酸素元素の原子濃度の分布の一例が示されている。図3において、第1の半導体層3の上側表面部は第2の半導体層4からの距離が0~0.6μmの領域であり、この領域において酸素元素の原子濃度が第2の半導体層4に近づくほど漸次低くなっている。なお、図3においては、スパッタリングで第1の半導体層3を深さ方向に削りながらSIMSを用いて酸素元素の原子濃度の分布を測定したものであり、横軸は第2の半導体層4からの距離を示し、縦軸は酸素元素の原子濃度を示している。
 第2の半導体層4は、第1の半導体層3とは異なる第2導電型を有する半導体層である。第1の半導体層3および第2の半導体層4が電気的に接合することにより、電荷を良好に取り出すことが可能な光電変換層が形成される。例えば、第1の半導体層3がp型であれば、第2の半導体層4はn型である。第1の半導体層3がn型で、第2の半導体層4がp型であってもよい。なお、第2の半導体層4は、複数層から成るものであってもよく、複数層のうち少なくとも1層が高抵抗層であってもよい。
 第2の半導体層4としては、CdS、ZnS、ZnO、In、InSe、In(OH,S)、(Zn,In)(Se,OH)、および(Zn,Mg)O等が挙げられる。第2の半導体層4は、例えばケミカルバスデポジション(CBD)法等で10~200nmの厚みで形成される。なお、In(OH,S)とは、Inが水酸化物および硫化物として含まれる混晶化合物をいう。(Zn,In)(Se,OH)は、ZnおよびInがセレン化物および水酸化物として含まれる混晶化合物をいう。(Zn,Mg)Oは、ZnおよびMgが酸化物として含まれる化合物をいう。
 図1、図2に示すように、第2の半導体層4上にさらに上部電極層5が設けられていてもよい。上部電極層5は、第2の半導体層4よりも抵抗率の低い層であり、第1の半導体層3および第2の半導体層4で生じた電荷を良好に取り出すことが可能となる。光電変換効率をより高めるという観点からは、上部電極層5の抵抗率が1Ω・cm未満でシート抵抗が50Ω/□以下であってもよい。
 上部電極層5は、例えばITO、ZnO等の0.05~3μmの透明導電膜である。透光性および導電性を高めるため、上部電極層5は第2の半導体層4と同じ導電型の半導体で構成されてもよい。上部電極層5は、スパッタリング法、蒸着法または化学的気相成長(CVD)法等で形成され得る。
 また、図1、図2に示すように、上部電極層5上にさらに集電電極8が形成されていてもよい。集電電極8は、第1の半導体層3および第2の半導体層4で生じた電荷をさらに良好に取り出すためのものである。集電電極8は、例えば、図1に示すように、光電変換セル10の一端から接続導体7にかけて線状に形成されている。これにより、第1の半導体層3および第4の半導体層4で生じた電流が上部電極層5を介して集電電極8に集電され、接続導体7を介して隣接する光電変換セル10に良好に通電される。
 集電電極8は、第1の半導体層3への光透過率を高めるとともに良好な導電性を有するという観点から、50~400μmの幅を有していてもよい。また、集電電極8は、枝分かれした複数の分岐部を有していてもよい。
 集電電極8は、例えば、Ag等の金属粉を樹脂バインダー等に分散させた金属ペーストがパターン状に印刷され、これが硬化されることによって形成される。
 図1、図2において、接続導体7は、第1の半導体層3、第2の半導体層4および上部電極層5を貫通(分断)する溝内に設けられた導体である。接続導体7は、金属や導電ペースト等が用いられ得る。図1、図2においては、集電電極8を延伸して接続導体7が形成されているが、これに限定されない。例えば、上部電極層5が延伸したものであってもよい。
 <第1実施形態に係る光電変換装置の製造方法>
 次に、上記構成を有する光電変換装置11の製造方法について説明する。ここでは第1の半導体層3がCIGSの場合について説明する。まず、ガラス等から成る基板1の主面に、スパッタリング法等を用いてMo等から成る下部電極層2を所望のパターンに形成する。
 そして、この下部電極層2の上に、I-III-VI族化合物(CIGS)を構成する金属元素(Cu、InおよびGa)が有機錯体や有機酸塩として溶媒に溶解されて成る原料溶液を、塗布法等を用いて皮膜成形することによって第1の皮膜を形成する。そして、この第1の皮膜を水または酸素を含む雰囲気中で、例えば150~350℃で加熱して、第1の皮膜中の有機成分を熱分解する。この熱分解の際、第1の皮膜中の金属元素の一部が酸化される(以下、第1の皮膜を形成し、有機成分を熱分解する工程を第1の工程という)。なお、第1の皮膜を熱分解する際の雰囲気としては、窒素等の不活性ガス中に、水蒸気または酸素が例えば分圧比で10~1000ppmv程度含まれたものが用いられる。
 次に、この熱分解した第1の皮膜上に、第1の皮膜の作製と同様にして、上記原料溶液を用いて第2の皮膜を形成し、この第2の皮膜中の有機成分を熱分解する(以下、第2の皮膜を形成し、有機成分を熱分解する工程を第2の工程という)。
 次に、この熱分解した第2の皮膜上に、上記原料溶液を用いて第3の皮膜を形成する。そして、この第3の皮膜を、上記の第2の工程よりも低い濃度の水または酸素を含む雰囲気中で加熱して、第3の皮膜中の有機成分を熱分解する。これによって第3の皮膜の酸素濃度が上記第2の皮膜よりも低くなる。
 以上の工程により、厚み方向の中央部よりも上側表面部で酸素濃度が低くなった3層の皮膜の積層体が形成されたことになる。なお、皮膜は3層に限らず、2層あるいは4層以上であってもよい。各層の酸素濃度は、上述したように熱分解時の雰囲気中の水または酸素の濃度を変えることによって調整することができる。
 次に、この皮膜の積層体を、セレンを含む雰囲気中で、例えば500~600℃で加熱する。これによって、図3に示すような、I-III-VI族化合物(CIGS)および酸素元素を含み、厚み方向の中央部よりも上側表面部の方で酸素元素の原子濃度が低い第1の半導体層3を形成できる。
 第1の半導体層3を形成した後、第1の半導体層3の上に、第2の半導体層4および上部電極層5を、CBD法やスパッタリング法等で順次形成する。そして、第1の半導体層3、第2の半導体層4および上部電極層5をメカニカルスクライブ加工等によって加工し、接続導体7用の溝を形成する。
 その後、上部電極層5上および溝内に、例えば、Agなどの金属粉を樹脂バインダーなどに分散させた導電ペーストをパターン状に印刷し、これを加熱硬化させることで集電電極8および接続導体7を形成する。
 最後に、接続導体7からずれた位置で、第1の半導体層3~集電電極8をメカニカルスクライブ加工によって除去して複数の光電変換セル10に分割することによって、図1および図2に示した光電変換装置11を得ることができる。
 <第2実施形態に係る光電変換装置の構成>
 本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更が施されることは何等差し支えない。例えば、上記第1実施形態の光電変換装置11における第1の半導体層3に代えて、酸素元素の原子濃度の分布が異なる第1の半導体層3を採用してもよい。例えば、第1の半導体層3における酸素元素の原子濃度は、第1の半導体層3の厚みの中央部よりも上側表面部の方で低くなっていることに加え、さらに第1の半導体層3の厚み方向の中央部よりも下部電極層2側の下側表面部の方で低くなっていてもよい。これにより、下部電極層2の酸化によって高抵抗の異相が形成されるのを有効に抑制できる。また、第1の半導体層3の下部電極層2側の下側表面部では酸素濃度が低くなっていることによって、第1の半導体層3の価電子帯のエネルギー位置が下部電極層2の近傍で負電位側へずれる可能性もある。その結果、第1の半導体層3から下部電極層2への正孔の移動を良好にすることができる。
 この場合、第1の半導体層3の下側表面部における酸素元素の原子濃度は、中央部の酸素元素の原子濃度の0.1~0.9倍であってもよく、より好ましくは0.1~0.5倍であってもよい。
 また、第1の半導体層3中での電荷移動をより良好にするという観点からは、第1の半導体層3の下側表面部における酸素元素の原子濃度は、下部電極層2に近づくほど漸次低くなっていてもよい。例えば、図4は、第2実施形態に係る光電変換装置11における、第1の半導体層3の厚み方向の酸素元素の原子濃度の分布を示している。図4において、第1の半導体層3の下側表面部は第2の半導体層4からの距離が1.3~1.9μmの領域であり、この領域において酸素元素の原子濃度が下部電極層2に近づくほど漸次低くなっている。なお、図4においては、スパッタリングで第1の半導体層3を深さ方向に削りながらSIMSを用いて酸素元素の原子濃度の分布を測定したものであり、横軸は第2の半導体層4からの距離を示し、縦軸は酸素元素の原子濃度を示している。
 このような酸素元素の原子濃度が厚みの中央部よりも上側表面部および下側表面部の方で低くなっている第1の半導体層3は、以下のようにして作製することができる。まず、上述した第1実施形態に係る光電変換装置11の製造方法と同様に、下部電極層2の上に原料溶液を用いて第1の皮膜を形成した後、この第1の皮膜を水または酸素を含む雰囲気中で加熱して、第1の皮膜中の有機成分を熱分解する。
 次に、この熱分解した第1の皮膜上に原料溶液を用いて第2の皮膜を形成し、この第2の皮膜を水または酸素を含む雰囲気中で加熱して、第2の皮膜中の有機成分を熱分解する。ここで、第2の皮膜中の有機成分を熱分解する際の雰囲気の水または酸素の濃度を、第1の皮膜中の有機成分を熱分解する際の雰囲気の水または酸素の濃度よりも高くしておく。これによって、第2の皮膜の酸素濃度が上記第1の皮膜よりも高くなる。
 次に、この熱分解した第2の皮膜上に原料溶液を用いて第3の皮膜を形成し、この第3の皮膜を水または酸素を含む雰囲気中で加熱して、第3の皮膜中の有機成分を熱分解する。ここで、第3の皮膜中の有機成分を熱分解する際の雰囲気の水または酸素の濃度を、第2の皮膜中の有機成分を熱分解する際の雰囲気の水または酸素の濃度よりも低くしておく。これによって、第3の皮膜の酸素濃度が上記第2の皮膜よりも低くなる。
 以上の工程により、厚み方向の中央部よりも上側表面部および下側表面部で酸素濃度が低くなった3層の皮膜の積層体が形成されたことになる。そして、この皮膜の積層体を、セレンを含む雰囲気中で、例えば500~600℃で加熱する。これによって、図4に示すような、厚み方向の中央部よりも上側表面部で酸素濃度が低いとともに、中央部よりも下側表面部で酸素濃度が低い第1の半導体層3を作製できる。
 <第3実施形態に係る光電変換装置の構成>
 まだ、上記第1実施形態または第2実施形態の光電変換装置11における第1の半導体層3において、13族元素の原子濃度が厚み方向で変化していてもよい。例えば、第1の半導体層3が、CIGS等のようにインジウム(In)元素およびガリウム(Ga)元素を含む場合、インジウム元素とガリウム元素との合計に対するガリウム元素の原子濃度比(MGa/(MGa+MIn))が、第1の半導体層3の中央部よりも下部電極層2側の下側表面部の方で高くなっていてもよい。この場合、第1の半導体層3の伝導帯のエネルギー位置を下部電極層2の近傍で負電位側へずらすことができる。その結果、第1の半導体層3から第2の半導体層4への電子の移動を良好にすることができる。その結果、光電変換装置11の光電変換効率がさらに高くなる。なお、MGa/(MGa+MIn)において、MGaはガリウム元素の原子濃度を表わし、MInはインジウム元素の原子濃度を表わしている。
 この場合、第1の半導体層3の下側表面部において、インジウム元素とガリウム元素との合計に対するガリウム元素の原子濃度比(MGa/(MGa+MIn))が、下部電極層2に近づくほど漸次高くなっていると、第1の半導体層3中での電荷移動がさらに良好となる。例えば、図5に第1の半導体層3の厚み方向におけるインジウム元素とガリウム元素との合計に対するガリウム元素の原子濃度比の分布の一例が示されている。図5においては、横軸は第2の半導体層4からの距離を示し、縦軸はMGa/(MGa+MIn)を示している。
 このような原子濃度比(MGa/(MGa+MIn))が厚み方向で異なる第1の半導体層3は、インジウム元素とガリウム元素の濃度比を変えた原料を用いて皮膜を積層させることによって作製できる。
 次に、本発明の一実施形態に係る光電変換装置11について、具体例を示して説明する。
 (評価試料1の作製)
 まず、第1の半導体層3を形成するための原料溶液を作製した。原料溶液としては、米国特許第6992202号明細書に基づいて作製した単一源前駆体をピリジンに溶解したものを用いた。なお、この単一源前駆体としては、CuとInとフェニルセレノールとが1つの錯体分子を形成したものと、CuとGaとフェニルセレノールとが1つの錯体分子を形成したものとの混合体を用いた。
 次に、ガラスによって構成される基板1の表面にMoからなる下部電極層2が成膜されたものを用意し、この下部電極層2の上に原料溶液をブレード法によって塗布して第1の皮膜を形成した。そして、この第1の皮膜を、窒素ガス中に水(水蒸気)が分圧比で200ppmv含まれる雰囲気において、280℃で10分加熱して第1の皮膜に含まれる有機成分を熱分解した。
 次に、この熱分解した第1の皮膜上に上記原料溶液をブレード法によって塗布して、第2の皮膜を形成した。そして、この第2の皮膜を、窒素ガス中に水(水蒸気)が分圧比で200ppmv含まれる雰囲気において280℃で10分加熱して、第2の皮膜に含まれる有機成分を熱分解した。
 次に、この熱分解した第2の皮膜上に上記原料溶液をブレード法によって塗布して、第3の皮膜を形成した。そして、この第3の皮膜を、窒素ガス中に水(水蒸気)が分圧比で80ppmv含まれる雰囲気において280℃で10分加熱して、第3の皮膜に含まれる有機成分を熱分解した。
 次に、この第1の皮膜、第2の皮膜および第3の皮膜の積層体を、水素ガス中にセレン蒸気が分圧比で20ppmv含まれる雰囲気において550℃で1時間加熱して、主としてCIGSを含み、厚さが2μmの第1の半導体層3を形成した。
 次に、第1の半導体層3までが形成された基板を、塩化インジウムとチオアセトアミドが溶解された水溶液に浸漬することで、第1の半導体層3の上に厚さが50nmのInを含む第2の半導体層4を形成した。
 そして、第2の半導体層4上に、スパッタリング法によってAZOからなる上部電極層5を形成して、評価試料1としての光電変換装置11とした。
 このようにして作製した評価試料1の第1の半導体層3を第2の半導体層4側からエッチングしながらSIMS測定することにより、第1の半導体層3中の酸素元素の分布を測定した。その結果を図3に示す。これより、第1の半導体層3の厚み方向の中央部に比べて、第2の半導体層4側の上側表面部における酸素濃度が低くなっていることがわかった。
 (評価試料2の作製)
 次に、評価試料2を作製した。評価試料2は、第1の半導体層3の作製以外は上記評価試料1の作製と同様にして作製した。評価試料2の第1の半導体層3の作製では、第1の皮膜~第3の皮膜の熱分解の条件を以下のようにした。
 第1の皮膜の熱分解の条件は、窒素ガス中に水(水蒸気)が分圧比で80ppmv含まれる雰囲気において、280℃で10分加熱する条件とした。
 また、第2の皮膜の熱分解の条件は、窒素ガス中に水(水蒸気)が分圧比で200ppmv含まれる雰囲気において、280℃で10分加熱する条件とした。
 また、第3の皮膜の熱分解の条件は、窒素ガス中に水(水蒸気)が分圧比で80ppmv含まれる雰囲気において、280℃で10分加熱する条件とした。
 このようにして作製した評価試料2の第1の半導体層3を第2の半導体層4側からエッチングしながらSIMS測定することにより、第1の半導体層3中の酸素元素の分布を測定した。その結果を図4に示す。これより、第1の半導体層3の厚み方向の中央部に比べて、第2の半導体層4側の上側表面部および下部電極層2側の下側表面部における酸素濃度が低くなっていることがわかった。
 (比較試料の作製)
 次に、比較試料を作製した。比較試料は、第1の半導体層の作製以外は上記評価試料1の作製と同様にして作製した。比較試料の第1の半導体層の作製では、第1の皮膜~第3の皮膜の熱分解を、水を含まない雰囲気で、各層とも同じ条件で行なった。すなわち、第1皮膜~第3の皮膜のそれぞれの熱分解工程において、各皮膜を窒素ガス雰囲気において280℃で10分加熱して、各皮膜に含まれる有機成分を熱分解した。
 このようにして作製した比較試料の第1の半導体層を第2の半導体層側からエッチングしながらSIMS測定することにより、第1の半導体層中の酸素元素の分布を測定した。その結果、比較試料では、酸素元素は微量しか含まれておらず、第1の半導体層の厚み方向における濃度の違いは観察されなかった。
 (光電変換効率の測定)
 このようにして作製した評価試料1、評価試料2および比較試料の光電変換効率の測定を以下のように実施した。いわゆる定常光ソーラシミュレーターを用いて、光電変換装置の受光面に対する光の照射強度が100mW/cm2であり且つAM(エアマス)が1.5である条件下での光電変換効率を測定した。その結果、比較試料の光電変換効率は10.0%であったのに対し、評価試料1の光電変換効率は13.5%であり、評価試料2の光電変換効率は13.8%であり、比較試料よりも高くなっていることが分かった。
 1:基板
 2、2a、2b、2c:下部電極層
 3:第1の半導体層
 4:第2の半導体層
 7:接続導体
 10:光電変換セル
 11:光電変換装置

Claims (5)

  1.  電極層と、
    該電極層上に配置された、11族元素、13族元素、カルコゲン元素および酸素元素を含むカルコパイライト構造を有する第1の半導体層と、
    該第1の半導体層上に配置された、該第1の半導体層とpn接合を形成する第2の半導体層とを備えており、
    前記第1の半導体層における酸素元素の原子濃度は、前記第1の半導体層の厚みの中央部よりも前記第2の半導体層側の上側表面部の方で低くなっている光電変換装置。
  2.  前記第1の半導体層の前記上側表面部における酸素元素の原子濃度は、前記第2の半導体層に近づくほど漸次低くなっている、請求項1に記載の光電変換装置。
  3.  前記第1の半導体層における酸素元素の原子濃度は、さらに前記第1の半導体層の厚みの中央部よりも前記電極層側の下側表面部の方で低くなっている、請求項1または2に記載の光電変換装置。
  4.  前記第1の半導体層の前記下側表面部における酸素元素の原子濃度は、前記電極層に近づくほど漸次低くなっている、請求項3に記載の光電変換装置。
  5.  前記第1の半導体層は、前記13族元素としてインジウム元素およびガリウム元素を含み、インジウム元素とガリウム元素との合計に対するガリウム元素の原子濃度比が、前記第1の半導体層の中央部よりも前記電極層側の下側表面部の方で高くなっている、請求項1乃至4のいずれかに記載の光電変換装置。
PCT/JP2013/069411 2012-07-26 2013-07-17 光電変換装置 WO2014017354A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014526873A JPWO2014017354A1 (ja) 2012-07-26 2013-07-17 光電変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-166089 2012-07-26
JP2012166089 2012-07-26

Publications (1)

Publication Number Publication Date
WO2014017354A1 true WO2014017354A1 (ja) 2014-01-30

Family

ID=49997168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069411 WO2014017354A1 (ja) 2012-07-26 2013-07-17 光電変換装置

Country Status (2)

Country Link
JP (1) JPWO2014017354A1 (ja)
WO (1) WO2014017354A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114561A (ja) * 1998-10-09 2000-04-21 Agency Of Ind Science & Technol 太陽電池薄膜の作製方法
JP2010080761A (ja) * 2008-09-26 2010-04-08 Toshiba Corp 太陽電池
JP2011078964A (ja) * 2009-09-08 2011-04-21 Tokyo Ohka Kogyo Co Ltd 塗布装置及び塗布方法
JP2011078693A (ja) * 2009-10-09 2011-04-21 Twinbird Corp 清掃装置
JP2012033542A (ja) * 2010-07-28 2012-02-16 Kyocera Corp 光電変換装置および光電変換装置の製造方法
WO2012043431A1 (ja) * 2010-09-28 2012-04-05 京セラ株式会社 光電変換装置および光電変換装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102870223B (zh) * 2010-06-30 2015-06-10 京瓷株式会社 光电转换装置
JP5312692B2 (ja) * 2010-07-29 2013-10-09 京セラ株式会社 光電変換装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114561A (ja) * 1998-10-09 2000-04-21 Agency Of Ind Science & Technol 太陽電池薄膜の作製方法
JP2010080761A (ja) * 2008-09-26 2010-04-08 Toshiba Corp 太陽電池
JP2011078964A (ja) * 2009-09-08 2011-04-21 Tokyo Ohka Kogyo Co Ltd 塗布装置及び塗布方法
JP2011078693A (ja) * 2009-10-09 2011-04-21 Twinbird Corp 清掃装置
JP2012033542A (ja) * 2010-07-28 2012-02-16 Kyocera Corp 光電変換装置および光電変換装置の製造方法
WO2012043431A1 (ja) * 2010-09-28 2012-04-05 京セラ株式会社 光電変換装置および光電変換装置の製造方法

Also Published As

Publication number Publication date
JPWO2014017354A1 (ja) 2016-07-11

Similar Documents

Publication Publication Date Title
WO2013111443A1 (ja) 光電変換装置
JP2013098191A (ja) 光電変換装置
JP5918042B2 (ja) 光電変換装置の製造方法
WO2014017354A1 (ja) 光電変換装置
JP5566335B2 (ja) 光電変換装置の製造方法
JP5570650B2 (ja) 半導体層の製造方法および光電変換装置の製造方法
JP2014090009A (ja) 光電変換装置
JP6189604B2 (ja) 光電変換装置
JP5791802B2 (ja) 光電変換装置の製造方法
JP6162592B2 (ja) 光電変換装置の製造方法
JP6039695B2 (ja) 光電変換装置
JP2015191931A (ja) 光電変換装置の製造方法
JP5683377B2 (ja) 半導体層の製造方法および光電変換装置の製造方法
JP5832229B2 (ja) 光電変換装置
JP5813120B2 (ja) 光電変換装置の製造方法
JP2014127508A (ja) 光電変換装置および光電変換装置の製造方法
JP5618942B2 (ja) 光電変換装置の製造方法
JP2015142001A (ja) 光電変換装置の製造方法
JP2013239618A (ja) 光電変換装置の製造方法
JP2013012722A (ja) 光電変換装置の製造方法
JP2014187215A (ja) 光電変換装置
JP2015070020A (ja) 光電変換装置の製造方法
JP2014116585A (ja) 光電変換装置の製造方法
JP2015122394A (ja) 光電変換装置の製造方法
JP2015026711A (ja) 光電変換装置の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014526873

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823054

Country of ref document: EP

Kind code of ref document: A1