WO2014006759A1 - 車両の走行制御装置 - Google Patents

車両の走行制御装置 Download PDF

Info

Publication number
WO2014006759A1
WO2014006759A1 PCT/JP2012/067387 JP2012067387W WO2014006759A1 WO 2014006759 A1 WO2014006759 A1 WO 2014006759A1 JP 2012067387 W JP2012067387 W JP 2012067387W WO 2014006759 A1 WO2014006759 A1 WO 2014006759A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
travel
control
target
trajectory
Prior art date
Application number
PCT/JP2012/067387
Other languages
English (en)
French (fr)
Inventor
洋司 国弘
小城 隆博
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/067387 priority Critical patent/WO2014006759A1/ja
Priority to US14/412,530 priority patent/US9399464B2/en
Priority to CN201280074528.2A priority patent/CN104411558B/zh
Priority to JP2014523540A priority patent/JP5924508B2/ja
Priority to EP12880581.9A priority patent/EP2871107B1/en
Publication of WO2014006759A1 publication Critical patent/WO2014006759A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18154Approaching an intersection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18159Traversing an intersection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/112Roll movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0012Feedforward or open loop systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/215Selection or confirmation of options
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/12Lateral speed
    • B60W2720/125Lateral acceleration

Definitions

  • the present invention relates to a vehicle travel control device, and more particularly, to a vehicle travel control device that causes a vehicle to travel along a target trajectory (target travel line) by controlling a steering angle of a steered wheel.
  • the travel locus control device controls the travel locus so that the vehicle travels along the target locus, or the vehicle deviates from the lane by making the driver recognize the lateral deviation of the vehicle with respect to the lane.
  • Lane maintaining devices that prevent this are known.
  • JP 2006-264624 A describes an example of the latter lane keeping device.
  • the travel control device In the travel control device as described above, information ahead of the vehicle is acquired by an imaging device such as a CCD camera, a travel path ahead of the vehicle is identified based on the acquired image information, and the identified travel path is Based on this, the lane that the vehicle should travel and the target trajectory of the vehicle are set.
  • the travel path is specified by electronically processing the acquired image information and determining a travel path specifying target such as a white line, a guardrail, a central divider, a road shoulder, and the like.
  • the present invention has been made in view of the above-described problems in the conventional travel control device, and the main problem of the present invention is that even when the vehicle travels in the area of the branch point of the travel path, An object of the present invention is to provide an improved traveling control device that can continue traveling control. [Means for Solving the Problems and Effects of the Invention]
  • the above-mentioned main problem is that, according to the present invention, the target trajectory of the vehicle on the basis of the outside world information acquisition unit that acquires at least information ahead of the vehicle, and the travel path identification target included in the information acquired by the outside world information acquisition unit And a control means for controlling the trajectory of the vehicle so that the vehicle travels along the target trajectory.
  • the control means when the vehicle travels in a specific area, determines the travel path specifying target in the area adjacent to the specific area and the vehicle in the specific area.
  • a provisional target locus is obtained for a specific region based on a travel route to be traveled after traveling, and provisional travel locus control is performed so that the vehicle travels along the provisional target locus. To be achieved by running control apparatus for a vehicle.
  • the specific area based on the travel path specifying object in the area adjacent to the specific area and the travel path on which the vehicle should travel after traveling in the specific area.
  • a temporary target trajectory is obtained for.
  • provisional travel locus control is performed so that the vehicle travels along the provisional target locus. Therefore, even when the vehicle travels in a specific area, the travel control of the vehicle can be continued by provisional travel locus control.
  • the control unit when the travel route on which the vehicle is to travel is already selected from the plurality of travel routes, the control unit is configured to identify the travel route in a region adjacent to the specific region.
  • a virtual travel path identification target may be set based on the selected travel path, and a provisional target locus may be obtained based on the virtual travel path identification target.
  • the virtual route is determined based on the travel route identification target in the region adjacent to the specific region and the selected travel route.
  • the travel path identification target is set. Then, a provisional target trajectory is obtained based on the virtual travel path identification target. Therefore, when a travel route on which the vehicle is to travel is already selected, a provisional target trajectory in a specific region can be obtained so that the vehicle can travel on the selected travel route.
  • the control means is based on the traveling condition of the vehicle and the driving operation of the driver when the traveling path on which the vehicle is to travel is not selected from the plurality of traveling paths. Estimating the travel route on which the vehicle should travel among a plurality of travel routes, setting a virtual travel route specifying target based on the travel route specifying target in the region adjacent to the specific region and the estimated travel route, A temporary target trajectory may be obtained based on the travel path specifying target.
  • the vehicle when the travel route on which the vehicle should travel is not selected from the plurality of travel routes, the vehicle should travel among the plurality of travel routes based on the travel state of the vehicle and the driving operation of the driver.
  • the travel path is estimated.
  • a virtual travel path specifying target is set based on the travel path specifying target in the area adjacent to the specific area and the estimated travel path, and a provisional target trajectory is obtained based on the virtual travel path specifying target. Therefore, when a travel route on which the vehicle is to be traveled is not selected, a temporary target trajectory in a specific region can be obtained based on the travel state of the vehicle and the driving operation of the driver.
  • control means determines the travelable range of the vehicle in the specific area based on the virtual travel path specifying target, and the vehicle of which the travel locus control is being executed is determined.
  • a temporary target locus may be obtained based on the position and the travelable range.
  • the travelable range of the vehicle in the specific area is determined based on the virtual travel path identification target, and the provisional target is determined based on the position of the vehicle and the travelable range during the travel locus control.
  • a trajectory is required. Therefore, the provisional target locus can be obtained based on the position of the vehicle on which the travel locus control is being executed and the travelable range, and therefore, compared with the case where the position of the vehicle on which the travel locus control is being executed or the possible travel range is not considered.
  • the provisional target locus can be obtained appropriately.
  • the travel control device has map information acquisition means for acquiring map information of a specific area, and the control means is map information acquired by the map information acquisition means. Based on the above, a virtual travel path specifying target may be set.
  • the virtual travel path identification target is set based on the map information acquired by the map information acquisition means. Therefore, it is possible to set a virtual travel path specifying target even for a range that cannot be acquired when the outside world information acquiring unit is an imaging device, and thus it is possible to more reliably determine a provisional target trajectory for a specific area.
  • the control means determines the minimum turning radius and the maximum turning of the vehicle body based on the provisional target locus radius. Estimate the radius and reset the provisional target trajectory so that the minimum and maximum turning radii are within the vehicle's driving range when the minimum or maximum turning radius is not within the vehicle's driving range. It may be.
  • the minimum turning radius and the maximum turning radius of the vehicle body are estimated based on the radius of the provisional target trajectory, and when either turning radius is not within the travelable range of the vehicle, both turning radii are
  • the provisional target trajectory is reset so as to be within the travelable range of the vehicle. Therefore, it is possible to reset the provisional target locus as necessary so that the vehicle body turns in the travelable range of the vehicle.
  • control means minimizes at least one of the magnitude of the turning lateral acceleration of the vehicle and the magnitude of the change rate thereof in the trajectory passing through the travelable range of the vehicle.
  • the trajectory may be a temporary target trajectory.
  • a trajectory in which at least one of the magnitude of the turning lateral acceleration and the rate of change of the trajectory passing through the travelable range of the vehicle is the minimum is set as a provisional target trajectory. Accordingly, it is possible to obtain a provisional target locus that passes through the vehicle travelable range and at least one of the magnitude of the turning lateral acceleration of the vehicle and the rate of change thereof is minimized, thereby reducing the ride comfort of the vehicle. Can be suppressed.
  • the control means corrects the provisional target locus within the travelable range of the vehicle based on the driving operation of the driver after the provisional traveling locus control is started. It may be.
  • the provisional target trajectory is corrected within the travelable range of the vehicle based on the driving operation of the driver after the provisional travel trajectory control is started. Therefore, when the driving operation is performed by the driver, the provisional target locus can be corrected to reflect the driver's intention.
  • the control means is configured to change the target trajectory time when the magnitude of the driver's driving operation amount after starting the provisional travel trajectory control is equal to or greater than the reference value for changing the target trajectory.
  • the travel route on which the vehicle should travel is changed based on the driving operation of the driver, and the provisional route is determined based on the travel route identification target in the region adjacent to the specific region and the changed travel route.
  • the target locus may be obtained again.
  • the temporary target locus when the time during which the amount of the driving operation of the driver after starting the provisional traveling locus control is equal to or greater than the reference value for changing the target locus continues for the reference time for changing the target locus, The travel route on which the vehicle should travel is changed based on the driving operation. Then, the provisional target trajectory is obtained again based on the travel path specifying target in the area adjacent to the specific area and the changed travel path. Accordingly, when the temporary target locus is different from the route intended by the driver, such as when the driver tries to change the route, the temporary target locus can be obtained again according to the driver's intention. .
  • the control means in the provisional traveling locus control, is configured to change the vehicle locus into a provisional target locus by at least one of feedback control and feedforward control.
  • the provisional target rudder angle of the steered wheels may be calculated, and the rudder angle of the steered wheels may be controlled based on the provisional target rudder angle.
  • the provisional target rudder angle of the steered wheels for making the trajectory of the vehicle a provisional target locus is calculated by at least one of feedback control and feedforward control, and steering is performed based on the provisional target rudder angle.
  • the steering angle of the wheel is controlled. Therefore, the steering angle of the steered wheels can be controlled so that the vehicle travels along the provisional target locus.
  • control means may gradually shift the travel control from the travel locus control to the temporary travel locus control before the vehicle enters the specific area.
  • the traveling control gradually shifts from the traveling locus control to the temporary traveling locus control before the vehicle enters the specific area. Therefore, when the vehicle enters a specific area, the behavior of the vehicle changes suddenly or the occupant feels uncomfortable compared to the case where the travel control shifts from the travel track control to the provisional travel track control. It is possible to reliably reduce the risk of learning.
  • the control means gradually shifts the travel control from the provisional travel locus control to the travel locus control after the vehicle completes the travel in the specific region. It's okay.
  • the travel control is gradually shifted from the provisional travel locus control to the travel locus control after the vehicle completes traveling in the specific region. Therefore, when the vehicle completes traveling in a specific region, the behavior of the vehicle changes suddenly due to the transition of the control, compared with the case where the traveling control shifts from the temporary traveling locus control to the traveling locus control. It is possible to reliably reduce the possibility that the passenger feels uncomfortable.
  • the specific area may be any one of an intersection, a T-junction, and a branch road.
  • the specific region is one of an intersection, a T-junction, and a branch road. Therefore, when the vehicle travels, the provisional travel locus control is surely performed and the travel control is continued. can do. [Preferred embodiment of problem solving means]
  • the vehicle has a steering angle varying device that changes a relationship between the operation position of the steering input means and the steering angle of the steering wheel, and the steering wheel is controlled by controlling the steering angle varying device.
  • the steering angle may be controlled.
  • the vehicle may have a navigation device, and a travel route on which the vehicle should travel may be selected according to a travel route set by the navigation device.
  • the vehicle when the travel route on which the vehicle is to travel is not selected, the vehicle does not have a navigation device, and the vehicle has a navigation device.
  • the case where the travel route is not set by the navigation device may be included.
  • the range in which a vehicle can travel in a specific region is determined by setting margins on both sides of the travel route determined based on a virtual travel route specifying target. It may be like this.
  • the time during which the magnitude of the driving operation amount of the driver after starting the provisional traveling locus control is equal to or greater than the reference value for correcting the target locus continues for the reference time for correcting the target locus.
  • the provisional target trajectory may be corrected.
  • the traveling control is gradually shifted from the traveling locus control to the provisional traveling locus control by gradually changing the target locus from the normal target locus to the provisional target locus. It may be.
  • the travel control is gradually shifted from the temporary travel trajectory control to the travel trajectory control. It may be.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a travel control device for a vehicle according to the present invention that is applied to a vehicle equipped with a navigation device and configured as a travel locus control device. It is a general flowchart which shows the first half of the running locus control routine in 1st embodiment. It is a general flowchart which shows the second half of the traveling locus control routine in 1st embodiment. It is a flowchart which shows the setting routine of the temporary target locus
  • FIG. 4 is a flowchart showing a target locus setting routine for transition from normal locus control to temporary locus control executed in step 600 of FIG. 3.
  • FIG. 4 is a flowchart showing a target locus setting routine for transition from provisional locus control to normal locus control executed in step 800 of FIG. 3.
  • FIG. 10 is an explanatory diagram showing a procedure for resetting a provisional target locus in consideration of the turning radius of the vehicle body when the minimum turning locus of the vehicle body is not within the travelable range.
  • FIG. 10 is an explanatory diagram showing a procedure for re-setting the provisional target locus in consideration of the turning radius of the vehicle body when the minimum turning locus of the vehicle body is not within the travelable range even if the provisional target locus is reset.
  • FIG. 5 is a diagram showing a map for calculating a target rudder angle ⁇ t of left and right front wheels for temporary or transitional trajectory control based on a target lateral acceleration Gyt and a vehicle speed V of the vehicle.
  • trajectory is a locus
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a vehicle travel control device according to the present invention which is applied to a vehicle equipped with a navigation device and configured as a travel locus control device.
  • reference numeral 10 denotes a travel locus control device mounted on the vehicle 12, and the travel locus control device 10 has a front wheel steering control device 14.
  • the front wheel steering control device 14 constitutes a steering control means capable of steering the front wheels irrespective of the driver's steering operation.
  • the vehicle 12 is equipped with a braking force control device 16, and the braking force control device 16 can individually control the braking force of each wheel regardless of the driver's braking operation.
  • 18FL and 18FR indicate left and right front wheels which are steering wheels of the vehicle 12, respectively, and 18RL and 18RR indicate left and right rear wheels, respectively.
  • the left and right front wheels 18FL and 18FR, which are the steering wheels, are driven via a rack bar 24 and tie rods 26L and 26R by a rack and pinion type power steering device 22 driven in response to an operation of the steering wheel 20 by the driver. Steered.
  • the steering wheel 20 is drivingly connected to a pinion shaft 36 of the power steering device 22 through an upper steering shaft 28, a steering angle varying device 30, a lower steering shaft 32, and a universal joint 34.
  • the rudder angle varying device 30 is connected to the lower end of the upper steering shaft 28 on the housing 30A side and is connected to the upper end of the lower steering shaft 32 on the rotor 30B side.
  • an electric motor 38 for driving the auxiliary steering is provided to the auxiliary steering.
  • the steering angle varying device 30 rotationally drives the lower steering shaft 32 relative to the upper steering shaft 28, thereby driving the left and right front wheels 18FL and 18FR relative to the steering wheel 20 as auxiliary steering.
  • the steering angle varying device 30 is controlled by the steering control unit of the electronic control device 40.
  • the power steering device 22 is a rack coaxial type electric power steering device, and includes an electric motor 42 and, for example, a ball screw type conversion mechanism 44 that converts rotational torque of the electric motor 42 into force in the reciprocating direction of the rack bar 24.
  • the power steering device 22 is controlled by a steering assist torque control unit of the electronic control device 40, and generates a steering assist torque that drives the rack bar 24 relative to the housing 46.
  • the steering assist torque reduces the steering burden on the driver, and assists the steering drive of the left and right front wheels by the steering angle varying device 30 as necessary.
  • the steering angle varying device 30 cooperates with the power steering device 22 to change the relationship between the steering angles of the left and right front wheels with respect to the steering wheel 20 and to steer the front wheels regardless of the driver's steering operation.
  • the main part of the apparatus 14 is comprised.
  • the structures of the power steering device 22 and the rudder angle varying device 30 do not constitute the gist of the present invention, and these devices are known in the art as long as each of them fulfills the above-described functions. Any configuration may be used.
  • the hydraulic circuit 52 includes an oil reservoir, an oil pump, various valve devices, and the like, and the braking pressure of each wheel cylinder is normally driven according to the depression operation of the brake pedal 56 by the driver.
  • the master cylinder 58 is controlled.
  • the braking pressure of each wheel cylinder is individually controlled by the hydraulic circuit 52 being controlled by the braking force control unit of the electronic control unit 40 as necessary.
  • the braking device 50 can individually control the braking force of each wheel irrespective of the driver's braking operation, and functions as a main device of the braking force control device 16.
  • the upper steering shaft 28 is provided with a steering angle sensor 62 for detecting the rotation angle of the shaft as the steering angle ⁇ and a steering torque sensor 64 for detecting the steering torque Ts, and signals indicating the steering angle ⁇ and the steering torque Ts are as follows. Input to the electronic control unit 40. Further, the electronic control device 40 receives a signal indicating the relative rotation angle ⁇ re of the rudder angle varying device 30 detected by the rotation angle sensor 66, that is, the relative rotation angle of the lower steering shaft 32 with respect to the upper steering shaft 28.
  • a CCD camera 68 for photographing the front of the vehicle 12 is provided in the upper front part of the passenger compartment of the vehicle 12, and a signal indicating image information in front of the vehicle 12 is a CCD camera 68.
  • the electronic control unit 40 indicates a signal indicating the vehicle speed V detected by the vehicle speed sensor 70, a signal indicating the vehicle lateral acceleration Gy detected by the lateral acceleration sensor 72, and a vehicle yaw rate ⁇ detected by the yaw rate sensor 74.
  • a signal is also input.
  • the steering angle sensor 62, the steering torque sensor 64, and the rotation angle sensor 66 detect the steering angle ⁇ , the steering torque Ts, and the relative rotation angle ⁇ re, respectively, when the steering or turning in the left turn direction of the vehicle is positive.
  • a switch 78 is provided. Signals indicating the setting positions of the selection switch 76 and the permission switch 78 are also input to the electronic control unit 40.
  • a navigation device 80 is mounted on the vehicle 12, and the electronic control device 40 exchanges necessary information with the navigation device 80.
  • a signal indicating a master cylinder pressure Pm or the like detected by a pressure sensor not shown in FIG. 1 is input to the electronic control unit 40, and the electronic control unit 40 is informed to the vehicle occupant as in the state of travel locus control. Necessary information is displayed on the display device 82.
  • the display device 82 may be a part of the monitor of the navigation device 80 or may be a display device different from the monitor of the navigation device 80.
  • Each of the above-described control units of the electronic control device 40 includes a CPU, a ROM, a RAM, and an input / output port device, which are connected to each other via a bidirectional common bus.
  • the ROM stores a program and map for travel locus control, which will be described later, and a plurality of maps having different angles and the number of lanes formed by roads for each type of branching point such as an intersection, a Y-junction, and a T-junction. I remember it.
  • the steering control unit of the electronic control device 40 performs traveling locus control according to the flowcharts shown in FIGS.
  • the steering control unit calculates the target steering angle ⁇ t of the left and right front wheels for performing normal trajectory control when the selection switch 76 is on and normal travel trajectory control is possible. That is, the steering control unit specifies a travel path based on the image information ahead of the vehicle 12 acquired by the CCD camera 68, and the left and right for driving the vehicle 12 along the target locus based on the identified travel path.
  • the normal target rudder angle ⁇ tn of the front wheels is calculated as the target rudder angle ⁇ t for trajectory control.
  • the steering control unit of the electronic control device 40 can perform normal trajectory control in which the selection switch 76 is on but the vehicle travels in a specific region and the vehicle travels along a normal target trajectory.
  • provisional trajectory control is performed. That is, the steering control unit sets a provisional target locus for the vehicle to travel in a specific region, and performs trajectory control on the provisional target rudder angle ⁇ tp of the left and right front wheels for traveling the vehicle along the provisional target locus. Is calculated as a target steering angle ⁇ t.
  • the “specific region” is a so-called branch point region in which the travel path is divided into a plurality of travel paths, and a target trajectory is obtained based on a travel path identification target such as a white line. It means an area that cannot be done.
  • a travel path identification target such as a white line. It means an area that cannot be done.
  • specific areas are intersections, Y-shaped roads, and T-shaped roads, and “traveling path identification targets” determine the boundaries of the traveling path, such as white lines, guardrails, median strips, and shoulders. This is a target for specifying the travel path.
  • the “provisional target trajectory” means a target trajectory set for a specific area so that the vehicle can travel on a travel route after traveling in the specific area.
  • the steering control unit of the electronic control unit 40 determines the target locus so that the steering angle of the left and right front wheels does not change suddenly when the target locus switches between the normal target locus and the temporary target locus. Change gradually. That is, the steering control unit obtains a target trajectory of transition for gradually changing the target trajectory so that the position and orientation of the target trajectory in the width direction of the travel path do not change suddenly when the target trajectory is switched. Trajectory trajectory control is performed based on the target trajectory.
  • the steering control unit determines that it is necessary to switch the target locus from the normal target locus to the temporary target locus after that in a situation where the normal locus control is possible, the temporary control locus is temporarily changed from the normal target locus at that stage. Transition trajectory control for gradually shifting to the target trajectory is started.
  • the steering control unit changes the temporary trajectory from the temporary target trajectory to the normal target trajectory. Transition trajectory control for gradual transition is started.
  • the steering control unit of the electronic control device 40 calculates a target pinion angle ⁇ pt corresponding to the target steering angle ⁇ t of the left and right front wheels of the vehicle 12, and the steering angle varying device 30 so that the angle of the pinion 36 becomes the target pinion angle ⁇ pt. To control.
  • the calculation itself of the target rudder angle ⁇ t for causing the vehicle to travel along the target trajectory does not form the gist of the present invention, so that the target trajectory is a normal target trajectory, a temporary target trajectory, and a transition target trajectory. In any case, it may be performed in an arbitrary manner. However, as will be described in detail later, it is preferable that the lateral deviation of the vehicle with respect to the target locus, the yaw angle of the vehicle, and the radius of the target locus are estimated, and the target rudder angle of the steered wheels is calculated based on the estimated parameters. . ⁇ General flow of running track control>
  • the control according to the flowcharts shown in FIGS. 2 and 3 is started by closing an ignition switch not shown in the drawings, and is repeatedly executed every predetermined time.
  • the navigation device is abbreviated as a navigation device as needed, and the navigation information from the navigation device is abbreviated as navigation information.
  • step 10 it is determined whether or not the selection switch 76 is on and the trajectory control is permitted.
  • the control proceeds to step 30, and when a negative determination is made, the control according to the flowchart shown in FIG. 2 is once ended. Note that the control is stopped when the control of the steering angle of the left and right front wheels by the normal trajectory control, the transition trajectory control, or the provisional trajectory control is being executed.
  • step 30 it is determined whether or not normal trajectory control can be performed by obtaining a target trajectory based on a travel path specifying object such as a white line, when the vehicle is not traveling in a specific area. Done.
  • control proceeds to step 70, and when a negative determination is made, control proceeds to step 50.
  • step 50 a flag Fnp regarding whether or not the transition from the normal path control to the temporary path control is being performed, and a flag Fpn regarding whether or not the transition from the temporary path control to the normal path control is being performed. Is reset to 0, and then control proceeds to step 210.
  • step 70 a travel path is specified based on image information ahead of the vehicle 12 acquired by the CCD camera 68, and a target path for normal trajectory control is set based on the specified travel path.
  • step 90 it is determined whether or not provisional trajectory control is being performed. If a negative determination is made, the control proceeds to step 130. If an affirmative determination is made, the flag Fnp is reset to 0 and the flag Fpn is set to 1 in step 110. Proceed to step 210.
  • step 130 it is determined whether or not the transition control described later is being performed by determining whether or not the flag Fnp or Fpn is 1. When an affirmative determination is made, control proceeds to step 910, and when a negative determination is made, control proceeds to step 150.
  • step 150 it is determined whether or not there is a specific area in an area that is reached when a preset time elapses from the present time, or an area that is a predetermined distance ahead of the current location, that is, normal trajectory control. It is further determined whether or not a transition to temporary trajectory control is necessary. When an affirmative determination is made, the flag Fnp is set to 1 in step 160 and the flag Fpn is reset to 0. Thereafter, the control proceeds to step 210. On the other hand, if a negative determination is made, the flags Fnp and Fpn are reset to 0 in step 170, and then the control proceeds to step 190.
  • the navigation device 80 When the navigation device 80 is in operation, it may be determined whether or not a specific area exists based on information from the navigation device 80. Further, when the navigation device 80 is not in operation, it may be determined whether or not a specific area exists based on image information ahead of the vehicle 12 acquired by the CCD camera 68. Further, the preset time or preset distance may be constant, but the higher the vehicle speed V is, the more reliably the target trajectory is switched between the normal target trajectory and the temporary target trajectory. It may be variably set according to the vehicle speed so as to be longer.
  • step 190 the normal target rudder angle ⁇ tn of the left and right front wheels for driving the vehicle along the normal target locus set in step 70 described above is calculated, and the rudder angle of the left and right front wheels is determined as the target.
  • the steering angle varying device 30 is controlled so that the steering angle ⁇ tn is obtained.
  • the normal trajectory control does not form the gist of the present invention, and may be executed in an arbitrary manner. Therefore, further explanation of the normal trajectory control is omitted, but temporary trajectory control and the like. It is preferable to carry out similarly.
  • step 210 it is determined whether or not the permission switch 78 is on and provisional trajectory control is permitted. When an affirmative determination is made, control proceeds to step 250, and when a negative determination is made, control proceeds to step 230.
  • step 230 the trajectory control is once terminated, and the control returns to step 10. However, when the flag Fnp is 1, the control proceeds to step 190 until the flag Fnp becomes 0, and normal trajectory control is continued.
  • step 250 it is determined whether or not a provisional target locus has already been set. If an affirmative determination is made, control proceeds to step 510. If a negative determination is made, control proceeds to step 270. Proceed to
  • step 270 it is determined whether or not the navigation device 80 is in operation. When a negative determination is made, the control proceeds to step 400, and when an affirmative determination is made, the control proceeds to step 290. move on.
  • step 290 it is determined whether or not provisional trajectory control based on navigation information from the navigation device 80 is possible. If a negative determination is made, the control proceeds to step 400, where an affirmative determination is made. If so, control proceeds to step 300. For example, an affirmative determination is made when the destination is set in the navigation device 80 and thus the target travel route is set.
  • step 300 a provisional target locus is set based on the navigation information from the navigation device 80 in accordance with the flowchart shown in FIG.
  • step 400 a provisional target locus is set based on image information in front of the vehicle 12 acquired by the CCD camera 68 in accordance with the flowchart shown in FIG.
  • step 510 it is determined whether or not the flag Fnp is 1, that is, whether or not the transition from the normal trajectory control to the temporary trajectory control is in progress.
  • the control proceeds to step 600, and when a negative determination is made, the control proceeds to step 710.
  • step 600 provisional trajectory control rather than normal trajectory control is performed according to the flowchart shown in FIG. 6 so that the transition from normal trajectory control to provisional trajectory control is performed smoothly.
  • the target trajectory for transition to is set.
  • step 710 it is determined whether or not the flag Fpn is 1, that is, whether or not the transition from the temporary trajectory control to the normal trajectory control is in progress.
  • the control proceeds to step 910, and when an affirmative determination is made, the control proceeds to step 800.
  • step 800 the normal trajectory control is changed from the temporary trajectory control to the normal trajectory control according to the flowchart shown in FIG. 7, as will be described in detail later, so that the transition from the temporary trajectory control to the normal trajectory control is performed smoothly.
  • the target trajectory for transition to is set.
  • step 910 the host vehicle is based on the wheel speeds Vfl and Vfr of the left and right front wheels 18FL and 18FR, the wheel speeds Vrl and Vrr of the left and right rear wheels 18RL and 18RR, and the steering angle ⁇ of the left and right front wheels.
  • the current location of is estimated.
  • step 930 the target rudder of the left and right front wheels for driving the vehicle along the temporary target trajectory set in step 300 or 400 or the transition target trajectory set in step 600 or 800.
  • the angle ⁇ t is calculated.
  • the rudder angle varying device 30 is controlled so that the rudder angle ⁇ of the left and right front wheels becomes the target rudder angle ⁇ t, whereby provisional trajectory control or transition trajectory control is performed. Is executed.
  • a normal target trajectory, a transition trajectory control, or a provisional target trajectory is added to the driver's intention as necessary so that the travel route of the vehicle reflects the driver's intention. It is corrected or changed according to the steering operation.
  • step 305 it is determined whether or not the branch point to be passed is a branch point on the travel route set by the navigation device 80.
  • the trajectory control is stopped when the vehicle enters a specific area at step 310, and when an affirmative determination is made, the control proceeds to step 315.
  • step 305 the determination is made when there is a branch point within the range from the first distance D1 to the second distance D2 from the current location, or when the elapsed time from the present time is greater than the first time T1. This is performed when a branch point exists in a region passing through the time up to the second time T2.
  • the distances D1 and D2 and the times T1 and T2 may be constant. However, it is preferable that the distances D1 and D2 are variably set according to the vehicle speed so as to increase as the vehicle speed V increases, for example.
  • step 315 based on a white line or the like of the image information ahead of the vehicle 12 acquired by the CCD camera 68, a selection is made from a plurality of maps for the branch points stored in advance, so that the branch points are selected. A map is determined.
  • step 315 the distance to the two specific objects in the image information ahead, for example, the white lines at the two corners of the intersection, is estimated, so that the current location of the vehicle on the map is determined. Presumed.
  • the type of branch point (intersection, Y-junction, T-junction, etc.) is determined based on the white line of the image information, and the type of map (intersection, Y-junction) based on the determined type of branch point. , T-junction, etc.) are determined.
  • the map having the highest degree of coincidence between the white line of the image information and the white line on the map is selected from the determined types of maps.
  • the map used in this step is not a map stored in advance, but may be a map based on information supplied from the navigation device 80.
  • FIG. 10 is an explanatory diagram showing the point of determination of the map and estimation of the current location of the own vehicle when the type of branching point is an intersection.
  • 100 indicates a map
  • 102 and 104 indicate a white line at the center of the road and a white line at the shoulder, respectively
  • 106 and 108 indicate a pedestrian crossing and a vehicle stop line, respectively.
  • 110 indicates a specific area where the white lines 102 and 104 and the like do not exist
  • 112 indicates the boundary of the range of image information ahead of the vehicle 12 that can be acquired by the CCD camera 68.
  • a map of the intersection is determined by selecting from a plurality of previously stored maps on the basis of the white line 104 at the corner of the intersection. Further, the distance to the white line 104 etc. of the shoulder at the two corners is estimated based on the image information, and the current location of the own vehicle on the map is estimated based on the estimation result.
  • steps 320, 335, 350, and 365 on the basis of the travel route set by the navigation device 80, the travel tasks at the branching points go straight, turn left, turn right, It is determined which of the turns it is.
  • step 320 it is determined whether or not the traveling task at the branch point is straight ahead. When a negative determination is made, control proceeds to step 335, and when an affirmative determination is made, control proceeds to step 325.
  • step 325 the white line of the road on which the vehicle is currently traveling on the map and / or the white line of the road on which the vehicle travels after the vehicle has passed the branch point are extended to a specific area. As a result, a straight travelable range at the branch point is set.
  • FIG. 11 is an explanatory diagram showing a procedure for setting a straight traveling range when the branch point is an orthogonal cross road.
  • black circles indicate points where the white lines 102 and 104 disappear when viewed along the traveling direction of the vehicle 12, and white circles indicate points where the white lines 102 and 104 recover.
  • 114 indicates a road marking indicating a travelable direction written on the surface of the road.
  • white lines 102 and 104 of the travel path on which the vehicle 12 is currently traveling are extended as virtual white lines 102 ⁇ / b> A and 104 ⁇ / b> A to a specific area 110 in the traveling direction of the vehicle. Further, the white lines 102 and 104 of the travel path on which the vehicle travels after passing the intersection are extended as virtual white lines 102B and 104B to a specific area 110 in a direction opposite to the travel direction of the vehicle.
  • reference numerals 102C and 104C denote intersections of the virtual white lines 102A and 104A and the virtual white lines 102B and 104B, respectively.
  • the straight travel range of the straight line is set at a position displaced between the virtual white lines 102A and 104A and between the virtual white lines 102B and 104B by the margin set in advance from the corresponding white line.
  • the boundary lines 102m and 104m are set.
  • the straight traveling possible range is a range between the boundary lines 102m and 104m.
  • the setting of the above-described straight travelable range is not limited to the case where the branch point is an orthogonal crossroad, but, for example, when the branch point is a non-orthogonal crossroad as shown in FIG. Is the same.
  • the travelable range of the vehicle is not a complete straight line and is inclined at a certain angle at the branch point.
  • branch point when the branch point is a T-junction, it is the same as the case where there is no left-turn side traveling path or right-turn side traveling path in FIG. Similarly, when the branching point is a Y-shaped road and the travel route is on the side close to straight traveling, this is substantially the same as the case where there is no right-turn travel route in FIG.
  • the lane where the vehicle is currently traveling and the lane where the vehicle travels after passing through the intersection can travel straight ahead as described above. Is set.
  • a temporary target trajectory is set as a line passing through the center of the straight traveling range.
  • reference numeral 116 indicates a provisional target locus set as a line connecting intermediate points between the boundary lines 102m and 104m.
  • step 335 it is determined whether or not the traveling task at the branch point is a left turn, that is, a left turn. When a negative determination is made, the control proceeds to step 350, and when an affirmative determination is made, the control proceeds to step 340.
  • step 340 the white line of the road on which the vehicle is currently traveling on the map and the white line of the road on which the vehicle travels after the vehicle turns to the left at the branch point are specified. By extending to the region, a left turnable travelable range is set at the branch point.
  • FIG. 13 is an explanatory diagram showing the procedure for setting the left turnable travel range when the branch point is an orthogonal crossroad.
  • the white lines 102 and 104 of the travel path on which the vehicle 12 is currently traveling are extended to the specific area 110 as virtual white lines 102D and 104D. Further, the white lines 102 and 104 of the travel path on which the vehicle travels after the vehicle turns left at the intersection are extended to the specific area 110 as virtual white lines 102E and 104E.
  • reference numerals 102F and 104F denote intersections between the virtual white lines 102D and 104D and the virtual white lines 102E and 104E, respectively.
  • the left turn travelable range of the lane is between the imaginary white lines 102D and 104D and between the phantom white lines 102E and 104E by a predetermined margin from the corresponding white line to the center side of the travel path.
  • the boundary lines 102m and 104m are set. In this case, the size of the margin at the corner on the turning inner ring side is larger than that of other regions.
  • the left turnable travel range is a range between the boundary lines 102m and 104m.
  • the above setting of the left turnable travel range is not limited to the case where the branch point is an orthogonal crossroad, but, for example, when the branch point is a crossroad that is not orthogonal as shown in FIG. Is the same.
  • the travelable range of the vehicle is not a shape bent at a right angle, but a shape bent at an angle other than a right angle at a branch point.
  • branch point when the branch point is a T-junction, it is the same as the case where there is no right-turn traveling road in FIG. Similarly, the case where the branch point is a Y-shaped road is substantially the same as the case where there is no right-turn traveling road in FIG.
  • the left turn traveling range is set.
  • 118 indicates a white line separating the lanes
  • 118D and 118E indicate virtual white lines in which the white line 118 is extended to a specific area 110
  • 118F is an intersection of the virtual white lines 118D and 118E. Is shown. 15 and 16, the case where the vehicle travels in the right lane is illustrated, but the same applies to the case where the vehicle travels in the left lane.
  • the left turn travelable range is between the virtual white lines 102D and 118D and between the virtual white lines 102E and 118E at a position displaced from the corresponding white line to the center of the travel path by a preset margin.
  • the boundary lines 102m and 118m are set. In this case, the size of the margin at the corner on the turning inner ring side is larger than that of other regions.
  • the left turn travelable range is a range between the boundary lines 102m and 118m.
  • a temporary target trajectory is set as a line passing through the center of the left turn traveling range.
  • reference numeral 116 denotes a temporary target trajectory set as a line connecting intermediate points between the boundary lines 102m and 104m and having a corner having an arc shape.
  • reference numeral 116 denotes a temporary target trajectory set as a line connecting the intermediate points between the boundary lines 102m and 118m and having a corner having an arc shape.
  • step 350 it is determined whether or not the traveling task at the branch point is a right turn, that is, a right turn.
  • control proceeds to step 365, and when an affirmative determination is made, control proceeds to step 355.
  • step 355 the white line of the travel path on which the vehicle is currently traveling on the map and the white line of the travel path on which the vehicle travels after the vehicle turns right at the branch point are specified. By extending to the area, a right turnable traveling range at the branch point is set.
  • FIG. 17 is an explanatory diagram showing a procedure for setting a right turnable traveling range when the branch point is an orthogonal crossroad.
  • all white lines 102 and 104 on the road on which the vehicle 12 is currently traveling are extended to a specific area 110 as virtual white lines 102D and 104D.
  • all the white lines 102 and 104 of the road intersecting with the road on which the vehicle 12 is currently traveling are extended to the specific area 110 as virtual white lines 102E and 104E.
  • reference numerals 102F and 104F denote intersections of the virtual white lines 102D and 104D and the virtual white lines 102E and 104E, respectively.
  • a line connecting the intersections 102F, 104F, and 102F of the virtual white line is set as the virtual white line 120 outside the turn for setting the travelable range. Further, a line in which the virtual white line 120 is shifted inward by a distance D substantially the same as the distance between the white line 102 and the white line 104 is set as the virtual white line 122 inside the turn.
  • the right-turnable driving range is between the virtual white lines 102D and 104D and between the virtual white lines 120 and 122 at a position displaced from the corresponding white line to the center of the road by a preset margin.
  • the boundary lines 102m and 104m are set.
  • the right turn travelable range is a range between the boundary lines 102m and 104m.
  • the above setting of the right turn travelable range is not limited to the case where the branch point is an orthogonal crossroad, but, for example, when the branch point is a crossroad that is not orthogonal as shown in FIG. Is the same.
  • the travelable range of the vehicle is not a shape that is bent at a right angle as a whole, but a shape that is bent at an angle other than a right angle at a branch point as a whole.
  • branch point when the branch point is a T-shaped road, it is the same as the case where there is no left-turn side travel path in FIG. Similarly, when the branch point is a Y-shaped road, it is substantially the same as the case where there is no opposite road in FIG.
  • FIGS. 19 and 20 when there are a plurality of lanes, for example, as shown in FIGS. 19 and 20 corresponding to FIGS. 17 and 18, respectively, the lane in which the vehicle is currently traveling and the lane in which the vehicle travels after the right turn is made.
  • the right turn travelable range is set as described above.
  • 118 indicates a white line that separates lanes
  • 118 D and 118 E indicate virtual white lines in which the white line 118 is extended to a specific area 110.
  • Reference numeral 118F denotes an intersection of virtual white lines 118D and 118E.
  • FIGS. 19 and 20 the case where the vehicle travels in the left lane is illustrated, but the same applies to the case where the vehicle travels in the right lane.
  • a line connecting the intersections 104F, 118F, 102F, and 104F of the virtual white line is set as the virtual white line 120 outside the turn for setting the travelable range. Further, a line in which the virtual white line 120 is shifted inward by a distance D substantially the same as the distance between the white line 102 and the white line 104 is set as the virtual white line 122 inside the turn.
  • the right-turnable driving range is between the virtual white lines 102D and 104D and between the virtual white lines 120 and 122 at a position displaced from the corresponding white line to the center of the road by a preset margin.
  • the boundary lines 120m and 122m are set.
  • the travelable range of a right turn is a range between the boundary lines 120m and 122m.
  • a temporary target trajectory is set as a line passing through the center of the right turn traveling range.
  • reference numeral 116 denotes a substantially arc-shaped line passing between the boundary lines 102m and 104m, or a line connecting the intermediate points between the boundary lines 102m and 104m, and the corners are arc-shaped.
  • step 365 it is determined whether or not the traveling task at the branch point is a U-turn.
  • the trajectory control is stopped when the vehicle enters a specific region at step 370, and when an affirmative determination is made, the control proceeds to step 375.
  • step 375 the travelable range of the U-turn at the branch point is set by extending the white line of each travel route to a specific area on the map.
  • FIG. 21 is an explanatory diagram showing a procedure for setting the U-turn travelable range when the branch point is an orthogonal cross road.
  • all white lines 102 and 104 on the road on which the vehicle 12 is currently traveling are extended to a specific area 110 as virtual white lines 102D and 104D. Further, the white line 102 at the center of the road intersecting with the road on which the vehicle 12 is currently traveling and the white line 104 at the shoulder on the near side are extended to the specific area 110 as virtual white lines 102E and 104E, respectively.
  • reference numerals 102F and 104F denote intersections between the virtual white lines 102D and 104D and the virtual white lines 102E and 104E, respectively.
  • Reference numerals 104G and 104H denote intersections between the virtual white line 104D on the opposite lane side and the virtual white lines 102E and 104E, respectively.
  • the lines 124 and 104D connecting the intersections 104F, 102F, 104G, and 104H of the virtual white lines are set as virtual white lines outside the turn for setting the travelable range.
  • a virtual white line outside the turning may be set as a virtual white line inside the turning by shifting a line that is shifted to the inside of the turning by substantially the same distance as the distance between the white line 102 and the white line 104.
  • the white line may not be set.
  • the boundary line 124m of the U-turn travelable range is set at a position displaced from the virtual white lines 104D, 124, 104D to the inside of the turn by a preset margin.
  • the travelable range of the U-turn is a range in which traveling can be performed inside the turn from the boundary line 124m.
  • the setting of the U-turn travelable range is not limited to the case where the branch point is an orthogonal cross road, and is, for example, a cross road where the branch point is not orthogonal as shown in FIG.
  • the shape of the travelable range of the vehicle is different from that when the branch point is an orthogonal cross road.
  • the branch point when the branch point is a T-shaped road, it is the same as the case where there is no traveling path on the opposite side, the left turn side, or the right turn side in FIG. Similarly, when the branch point is a Y-shaped road, it is substantially the same as the case where there is no opposite or right-turn traveling path in FIG. Further, even when there are a plurality of lanes, the travelable range of the vehicle is set as in the case where the lane is a single lane. However, in this case, as in the case where the vehicle turns right at the crossroads, the boundary line of the travelable range inside the turn is also set.
  • a temporary target trajectory is set as a line passing inside the turn from the boundary line 124m of the U-turn travelable range.
  • reference numeral 116 is set as a substantially arcuate line passing inside the turn from the boundary line 124m, or a line along the boundary line 124m and having a corner having an arcuate shape.
  • the provisional target locus is shown.
  • a map of a branch point ahead of the vehicle is created based on the image information ahead of the vehicle 12 acquired by the CCD camera 68, and the current location of the vehicle on the map is determined. Identified.
  • the branch point map is created based on the image information acquired by the CCD camera 68 at the time when the transition from the normal trajectory control to the temporary trajectory control is started. The correction may be performed sequentially based on the acquired image information.
  • FIG. 23 shows a boundary 112 of a range imaged by the CCD camera 68 and a crossing range 126 recognized by the imaging when the vehicle 12 travels in front of an orthogonal crossing.
  • a crossroad map is first created for the range 126, and the current location of the vehicle on the map is specified.
  • 126F and 126N respectively indicate the time points when the trajectory control of the transition is started and the range of the crossroads recognized by the imaging at the current time point.
  • the region where the ranges 126F and 126N overlap each other is a region in which the map information is corrected as necessary so as to increase the accuracy of the map.
  • the area having only the range 126N is an area to which map information is added as necessary so that the range of the map becomes wider.
  • step 415 based on the white line etc. of the map created in step 410, the area between the white lines etc. is extracted for all roads around the specific area, so that the vehicle can pass. Region is extracted as a course.
  • FIG. 26 shows the created map 128 of the orthogonal crossroads.
  • step 415 all areas between the white lines 102 and 104 for all roads around the specific area 110 except for the road on which the vehicle 12 is currently traveling on the map 128 are courses. 130 is extracted.
  • selectable routes are identified from the routes extracted in step 415 based on the road signs and road markings included in the image information acquired by the CCD camera 68.
  • the road signs and signs used in this case are, for example, “only straight and left turn allowed”, “right turn prohibited”, “no U-turn”, “no entry”, “no vehicle traffic” This indicates whether or not.
  • a road sign or road marking of a course in which the top of the road sign or road marking can be reversed, that is, a course that will run backward may be used.
  • FIG. 27 there are road signs and road markings of “straight and left turn only” or “no right turn” and “no U-turn”, so that a selectable course among the courses 130 shown in FIG. 26 is a straight course.
  • the situation identified as 130A and the course 130B of the left turn is shown.
  • x indicates a path that cannot be selected.
  • step 425 it is determined whether or not one course to be advanced is specified, that is, whether or not one course is specified in step 420. When an affirmative determination is made, control proceeds to step 455, and when a negative determination is made, control proceeds to step 430.
  • step 430 changes in the curvature of the traveling locus, the steering angle of the front wheels, the lateral acceleration of the vehicle, and the magnitude of the yaw rate of the vehicle when the vehicle travels on each of the routes specified in step 420 are estimated. It is determined whether any maximum value exceeds the reference value (positive value). Then, it is determined that the path in which the maximum value of any one of the determination parameters does not exceed the reference value can be traveled.
  • FIG. 28 shows provisional target trajectories 132A and 132B in the case where the vehicle 12 travels a straight path 130A and a left-turn path 130B in the cross road shown in FIG. Then, a change in the absolute value of the determination parameter is estimated when the vehicle 12 travels along the temporary target trajectories 132A and 132B.
  • the solid line and the broken line in FIG. 29 show examples of changes in the absolute value of the determination parameter when the vehicle 12 travels along the temporary target trajectories 132A and 132B, respectively.
  • the absolute value of the determination parameter is equal to or less than the reference value, but the vehicle 12 follows the provisional target locus 132B. It is assumed that the absolute value of the determination parameter exceeds the reference value when traveling. In this case, the straight path 130A is determined to be a travelable path, but the left turn path 130B is determined to be a non-travelable path.
  • the determination parameter may be one or any combination of the curvature of the travel locus, the steering angle of the front wheels, the lateral acceleration of the vehicle, and the yaw rate of the vehicle.
  • the reference value may be a constant value for each determination parameter, but may be variably set according to the vehicle speed V so as to decrease as the vehicle speed V increases, for example, as shown in FIG. Good.
  • step 435 it is determined whether or not one course to be advanced is determined, that is, whether or not one course is determined in step 430.
  • control proceeds to step 455, and when a negative determination is made, control proceeds to step 440.
  • step 440 one course to be traveled from a plurality of selectable courses is determined based on the intention of the occupant regarding the course and / or a change in the running state when the vehicle travels in a specific area. Presumed.
  • the turn signal is operated, it is estimated that the route on which the turn signal is operated is one route that should proceed. Further, when the steering wheel is steered in the right turn direction or the left turn direction by the driver, it is estimated that the course on the side of the steered side should proceed. Further, when a voice indicating the desired course of the occupant is detected, such as “left”, “straight ahead”, and “right”, the course in the detected direction is estimated as one course that should proceed.
  • the determined traveling state may be, for example, a turning state amount such as the curvature of the traveling locus of the vehicle, the steering angle of the left and right front wheels, the yaw rate or the lateral acceleration of the vehicle.
  • working state it is estimated that one course which should go straight ahead or the course close
  • step 445 it is determined whether or not one course to be advanced is estimated, that is, whether or not one course is estimated in step 440. If an affirmative determination is made, the control proceeds to step 455. If a negative determination is made, the trajectory control is stopped at the stage where the vehicle enters a specific region in step 450 as in step 310.
  • a provisional target locus for causing the vehicle to travel along the course is set.
  • the provisional target locus setting itself may be performed in the same manner as the provisional target locus setting based on the navigation information described above.
  • step 610 it is determined whether or not the target trajectory of transition has already been set. If an affirmative determination is made, the control proceeds to step 910, and if a negative determination is made, the control is performed. Proceed to step 620.
  • step 620 the current location and traveling direction of the vehicle on the map are estimated, and a transition from normal trajectory control to temporary trajectory control is performed on the map based on the current location and traveling direction of the vehicle.
  • the coordinate system for is set.
  • FIG. 31 shows, as an example, a coordinate system set when the vehicle approaches an orthogonal crossroad.
  • the origin is located at the current location of the vehicle 12, for example, the center of gravity G of the vehicle, the x axis is aligned with the vehicle width direction of the vehicle (the right direction is positive), and the y axis is the longitudinal direction of the vehicle.
  • the coordinate system is set so as to match (the traveling direction is positive).
  • step 630 the end position of the normal target locus (coordinates (Xtne, Ytne) in the coordinate system set in step 620) and the inclination angle angle of the normal target locus at the end ( An angle ⁇ tne) with respect to the y-axis direction is calculated.
  • step 640 the position of the starting end of the temporary target locus (the coordinates (Xtps, Ytps) in the coordinate system set in step 620) and the inclination angle (y of the temporary target locus at the starting end) An angle ⁇ tps) with respect to the axial direction is calculated.
  • a transition target trajectory for smoothly connecting the normal target trajectory to the temporary target trajectory is set by correcting the normal target trajectory.
  • the target trajectory of transition is, for example, the coordinates (Xtne, Ytne) and (Xtps, Ytps), the angles ⁇ tne and ⁇ tps, the distance from the current location of the vehicle 12 to the position where the provisional target trajectory control is started, or the distance thereof. It may be set based on the time required for traveling.
  • FIG. 32 shows an example of a transition target locus when the y coordinate and the angles ⁇ tne and ⁇ tps of the end of the provisional target locus and the start of the normal target locus are the same, but the x coordinates Xtne and Xtps are different from each other. ing.
  • the normal target trajectory 134 is set such that the x coordinate Xtne of the end 134E of the normal target trajectory 134 and the x coordinate Xtps of the start end 116S of the temporary target trajectory 116 coincide. Is modified to set a target trajectory 136 for transition.
  • FIG. 33 shows an example of the target trajectory of transition when the x-coordinate and y-coordinate of the end of the temporary target trajectory and the starting end of the normal target trajectory are the same, but the angles ⁇ tne and ⁇ tps are different from each other. Yes.
  • the normal target trajectory 134 at the terminal end 134E and the temporary target trajectory 116 at the start end 116S have the same inclination angle as the normal target trajectory 116.
  • the target trajectory 136 for the transition is set by correcting the trajectory 134.
  • FIG. 34 shows an example of the target trajectory of transition when the y coordinate of the end of the provisional target trajectory is the same as the y coordinate of the start end of the normal target trajectory, but the x coordinates Xtne and Xtp and the angles ⁇ tne and ⁇ tps are different from each other. Show. In this case, as shown in FIG. 34, the x coordinate and the inclination angle of the normal target locus 134 at the end 134E and the x coordinate and the inclination angle of the temporary target locus 116 at the start end 116S are respectively obtained.
  • a target trajectory 136 for transition is set so as to match. Similarly, when the branch point is a branch point other than the orthogonal crossroads, the target trajectory 136 of the transition is set similarly.
  • the y coordinate Ytne of the end 134E of the normal target locus 134 and the y coordinate Ytp of the start end 116S of the temporary target locus 116 If they are different, the target trajectory 136 for the transition is set so that they match. ⁇ Setting of target trajectory for transition from temporary trajectory control to normal trajectory control>
  • step 810 it is determined whether or not the target trajectory of transition has already been set. If an affirmative determination is made, the control proceeds to step 910, and if a negative determination is made, the control is performed. Proceed to step 820.
  • step 820 the current location and traveling direction of the vehicle on the map are estimated, and a transition from temporary trajectory control to normal trajectory control on the map is performed based on the current location and traveling direction of the vehicle.
  • the coordinate system for is set.
  • FIG. 35 shows, as an example, a coordinate system set when the vehicle passes through an orthogonal cross road.
  • the origin is located at the current location of the vehicle 12, for example, the center of gravity of the vehicle, and the x-axis is the vehicle width direction (the right direction is the normal direction) as in the case where the vehicle approaches an orthogonal crossroad. ), And the coordinate system is set so that the y-axis is aligned with the longitudinal direction of the vehicle (the traveling direction is positive).
  • step 830 the position of the end of the provisional target locus (the coordinates (Xtpe, Ytpe) in the coordinate system set in step 820) and the inclination angle (y of the provisional target locus at the end) (y An angle ⁇ tpe) with respect to the axial direction is calculated.
  • step 840 the position of the starting end of the normal target locus (the coordinates (Xtns, Ytns) in the coordinate system set in step 820) and the inclination angle angle of the normal target locus at the starting end ( An angle ⁇ tns) with respect to the y-axis direction is calculated.
  • a transition target trajectory for smoothly connecting the provisional target trajectory to the normal target trajectory is set by correcting the normal target trajectory.
  • the target trajectory of transition may be set based on, for example, coordinates (Xtpe, Ytpe) and (Xtns, Ytns), angles ⁇ tpe and ⁇ tns, a preset transition time, or transition distance.
  • the transition time or the transition distance may be constant, but may be variably set according to the vehicle speed V.
  • FIG. 36 shows an example of the target trajectory of transition when the y coordinate and the angles ⁇ tpe and ⁇ tns of the end of the provisional target trajectory and the start end of the normal target trajectory are the same, but the x coordinates Xtpe and Xtns are different from each other.
  • the target trajectory 136 for transition is set by correcting the normal target trajectory 134 as shown in FIG. That is, the x-coordinate of the starting end of the transition target locus 136 coincides with the x-coordinate Xtpe of the end 116E of the provisional target locus 116, and the transition target locus 136 gradually approaches the normal target locus 134 and finally. Both trajectories are set to match.
  • FIG. 37 shows an example of the transition target locus when the x and y coordinates of the end of the provisional target locus and the starting end of the normal target locus are the same, but the angles ⁇ tne and ⁇ tps are different from each other.
  • the target trajectory 136 for transition is set by correcting the normal target trajectory 134 as shown in FIG. That is, the transition target trajectory 136 has its starting end angle coincident with the angle of the end 116E of the provisional target trajectory 116, and the direction of the transition target trajectory 136 gradually approaches the direction of the normal target trajectory 134.
  • the transition target trajectory 136 has its starting end angle coincident with the angle of the end 116E of the provisional target trajectory 116, and the direction of the transition target trajectory 136 gradually approaches the direction of the normal target trajectory 134.
  • FIG. 38 shows an example of the target trajectory for transition when the y coordinate of the end of the provisional target trajectory and the start coordinate of the normal target trajectory are the same, but the x coordinates Xtne and Xtp and the angles ⁇ tne and ⁇ tps are different from each other.
  • the target trajectory 136 for the transition is set by correcting the normal target trajectory 134 as shown in FIG.
  • the transition target trajectory 136 has its starting end angle coincident with the angle of the end 116E of the provisional target trajectory 116, and the transition target trajectory 136 gradually approaches the normal target trajectory 134 and finally both trajectories. Are set to match.
  • the y-coordinate Ytps of the start end 116S of the temporary target locus 116 and the y-coordinate Ytne of the end 134E of the normal target locus 134 If they are different, the target trajectory 136 for the transition is set so that they match. Similarly, when the branch point is a branch point other than the orthogonal crossroads, the target trajectory 136 of the transition is set similarly.
  • the temporary target trajectory may be a trajectory in which at least one of the magnitude of the lateral acceleration of the vehicle and the rate of change thereof is the smallest of the trajectories that pass through the travelable range. preferable.
  • the front and rear treads are respectively Trf and Trr
  • the vehicle body width is BW
  • the vehicle body front overhang length is Lovf.
  • the radius Rfo of the trajectory drawn by the tread center of the tire on the outer front wheel is defined as the minimum turning radius Rmin.
  • a straight line passing through the center Or of the rear wheel axle and the turning center Ov of the vehicle 12 is used as a reference line Lb
  • a straight line Lg passing through the center of gravity G of the vehicle 12 and the turning center Ov is used as a reference.
  • the angle formed with respect to the line Lb is ⁇ g.
  • Rfc L / sin ⁇ f (2)
  • Rrc L / tan ⁇ f (3)
  • the turning radius Rfo of the turning outer front wheel and the turning radius Rfi of the turning inner front wheel are expressed by the following equations 4 and 5, respectively.
  • Rfi Rfc ⁇ Trf / 2 * cos ⁇ f (5)
  • Rro Rrc + Trr / 2 (6)
  • Rri Rrc ⁇ Trr / 2 (7)
  • the turning radius of each part of the vehicle body of the vehicle 12 is the smallest at the point Pin where the reference line Lb intersects the outline of the vehicle body, and the minimum turning radius Rbi of the vehicle body, that is, the radius of the turning locus drawn by the point Pin. Is represented by Equation 8 below.
  • Rbi Rrc ⁇ BW / 2 (8)
  • the minimum turning radius Rbi of the vehicle body is expressed by the following equation 13
  • the maximum turning radius Rbo of the vehicle body is expressed by the following equation 14.
  • the angle ⁇ g is expressed by the following formula 15.
  • the specific area 110 is divided into a plurality of sections, and is a line that connects a middle point between the boundary line inside the turn and the boundary line outside the turn in the travelable range of each section, and the corner portion is a line having an arc shape.
  • a provisional target locus is set.
  • the temporary target trajectory of each section is set using a clothoid curve so that the change in the steering angle of the front wheels is small and the vehicle has good riding comfort.
  • the radius R at each position is obtained for the provisional target trajectory of each section, and the minimum turning radius Rbi and the maximum turning radius Rbo of the vehicle body are obtained according to the above formulas 13 and 14, whereby the vehicle body for each section is obtained. Minimum and maximum turning trajectories are obtained.
  • the provisional target locus is corrected so that the minimum turning locus and the maximum turning locus are within the travelable range.
  • FIG. 40 shows a procedure in which a specific area 110 is divided into two sections and a procedure in which a minimum turning locus and a maximum turning locus of a vehicle body are obtained when the vehicle turns to the left on an orthogonal crossroad.
  • a specific area 110 is divided into a first section 110A and a next section 110B with the corner position of the crossroads as a boundary.
  • 140Ain and 140Aout respectively indicate the minimum turning locus and the maximum turning locus of the vehicle body in the first section 110A
  • 140Bin and 140Bout respectively indicate the minimum turning locus and the maximum turning locus of the vehicle body in the next section 110B.
  • FIG. 41 (A) shows a case where the minimum turning trajectory of the vehicle body is not within the travelable range as an example.
  • the start point of the temporary target locus in the first section 110A and the end point of the temporary target locus in the next section 110B are moved to positions close to the center of the crossroads. Thereafter, provisional target trajectory setting is performed again in consideration of the turning radius of the vehicle body.
  • FIG. 42A shows a case where the minimum turning trajectory of the vehicle body does not move within the travelable range even if the start point and end point of the provisional target trajectory are moved to positions close to the center of the intersection.
  • the start point of the temporary target locus in the first section 110A and the end point of the temporary target locus in the next section 110B are moved to the position outside the turn.
  • the provisional target locus is set again in consideration of the turning radius of the vehicle body.
  • the provisional target trajectory becomes an arc trajectory so that the minimum turning trajectory of the vehicle body moves within the travelable range.
  • the specific area 110 is divided into three or more sections.
  • step 910 the “estimation of the current location of the vehicle” executed in step 910 described above will be described.
  • the normal trajectory control is performed in a state where the current location of the host vehicle is recognized, so that the current location of the host vehicle is estimated in the temporary trajectory control and the transition trajectory control.
  • the yaw rate ⁇ and the slip angle ⁇ of the vehicle are expressed by the following equations 16 and 17, respectively.
  • the vehicle speed V is a value detected by the vehicle speed sensor 70, but may be obtained as an average value of the wheel speeds of the four wheels.
  • the yaw rate ⁇ may be a value detected by the yaw rate sensor 74.
  • the change rates dX / dt and dY / dt of the x-coordinate and y-coordinate of the center of gravity G of the vehicle are expressed by the following equations 18 and 19, respectively. Therefore, the current location of the vehicle, that is, the coordinates (X, Y) of the center of gravity G are estimated as values represented by the following equations 20 and 21.
  • the yaw angle ⁇ of the vehicle (see FIG. 43) is expressed by the following equation 22.
  • dX / dt Vcos ( ⁇ + ⁇ ) (18)
  • dY / dt Vsin ( ⁇ + ⁇ ) (19)
  • the radius R of the target trajectory 150 at the center of gravity G of the vehicle 12, that is, the temporary target trajectory or the transition target trajectory is estimated. Further, the lateral deviation Dy of the center of gravity G of the vehicle 12 with respect to the target locus 150 is estimated, and the yaw angle ⁇ of the vehicle 12 with respect to the target locus 150 is estimated. (2) Calculation of the target lateral acceleration Gyt of the vehicle
  • the target yaw angle ⁇ t of the vehicle is calculated as a minute value that is greater as the radius R of the target trajectory is the same as the radius of the target trajectory.
  • the target lateral acceleration Gyt of the vehicle for causing the vehicle to travel along the target trajectory is calculated according to the following equation 26 using Kr, Ky, Kp, which are set in advance.
  • Dyt is a target value of the lateral deviation Dy and may be zero.
  • Gyt Kr ⁇ R + Ky (Dyt ⁇ Dy) + Kp ( ⁇ t ⁇ ) (26) (3) Calculation of target rudder angle ⁇ t and control of rudder angle of front wheels
  • the target rudder angle ⁇ t of the left and right front wheels for temporary or transitional trajectory control is calculated from the map shown in FIG. Then, the target angle ⁇ pt of the pinion 36 corresponding to the target rudder angle ⁇ t is calculated, and the rudder angle varying device 30 is controlled so that the angle of the pinion 36 becomes the target angle ⁇ pt, whereby the rudder angle of the front wheels is changed to the target rudder angle. It is controlled to ⁇ t.
  • the steering angle of the front wheels is controlled by at least one of feedback control and feedforward control based on the target steering angle ⁇ t.
  • the steering angle ⁇ at the start of the temporary trajectory control is set as the reference steering angle ⁇ 0, and the difference between the steering angle ⁇ during the temporary trajectory control and the reference steering angle ⁇ 0 is calculated as the steering operation amount ⁇ of the driver. Then, it is determined whether or not a situation where the absolute value of the steering operation amount ⁇ is larger than the first reference value ⁇ 1 and smaller than the second reference value ⁇ 2 continues for the reference time Td1 or more. When a negative determination is made, the provisional target trajectory is not corrected, but when an affirmative determination is made, the provisional target trajectory is corrected to a side reflecting the driver's steering operation.
  • the reference values ⁇ 1 and ⁇ 2 are positive values, and ⁇ 2 is larger than ⁇ 1.
  • the reference time Td1 is also a positive value.
  • FIG. 45 is an explanatory diagram showing the correction of the provisional target locus in the case where the provisional target locus is a locus that turns left on an orthogonal cross and the left turn direction steering angle is reduced by the driver.
  • 116 shows the original provisional target locus
  • 116A shows the provisional target locus after correction.
  • the temporary target trajectory is modified to reflect the driver's steering operation.
  • the absolute value of the steering operation amount ⁇ is larger than the third reference value ⁇ 3 and smaller than the fourth reference value ⁇ 4 continues for the reference time Td2 or more.
  • the task at the branch point is not changed, but when an affirmative determination is made, the task at the branch point is changed to a task that reflects the steering operation of the driver.
  • the reference values ⁇ 3 and ⁇ 4 are positive values greater than ⁇ 2, and ⁇ 4 is larger than ⁇ 3.
  • the reference time Td2 is also a positive value.
  • FIG. 46 shows that the task at the branch point is to turn left at an orthogonal crossroad, and the task is changed at the branch point when the steering angle ⁇ is changed so that the vehicle goes straight by the driver.
  • FIG. 46 116 indicates the original provisional target locus
  • 116B indicates the provisional target locus that is modified so that the task at the branch point goes straight.
  • the temporary target trajectory is corrected so that the task desired by the driver can be achieved.
  • the temporary target trajectory is straight, right turn, or U-turn
  • the temporary target trajectory is left turn, straight turn, right turn, respectively. It is changed to the provisional target locus of times.
  • the temporary target locus is a left turn, a straight turn, and a right turn
  • the temporary target locus is a straight turn, a right turn, It is changed to a temporary target trajectory of U-turn.
  • transition trajectory control for shifting from normal trajectory control to provisional trajectory control is executed. That is, an affirmative determination is made in steps 10 and 30, and a normal target locus is set in step 70. Further, a negative determination is made in steps 90 and 130, but an affirmative determination is made in step 150. In step 160, the flag Fnp is set to 1 and the flag Fpn is reset to 0. . Then, an affirmative determination is made in step 210, but a negative determination is made in step 250.
  • step 300 a provisional target locus is set based on the navigation information in accordance with the flowchart shown in FIG.
  • step 270 if the navigation device 80 is not in operation, a negative determination is made in step 270. If the navigation device 80 is in operation but provisional trajectory control based on the navigation information is impossible, an affirmative determination is made in step 270, but a negative determination is made in step 290. Is called. Therefore, in these cases, a temporary target trajectory is set in step 400 based on the imaging information by the CCD camera 68 in accordance with the flowchart shown in FIG.
  • step 510 an affirmative determination is made in step 510, and in step 600, the transition from the normal trajectory control to the temporary trajectory control is performed according to the flowchart shown in FIG. A target trajectory is set. Then, in step 910, the current location of the host vehicle is estimated, and in step 930, transition trajectory control is executed so that the vehicle travels along the transition target trajectory. (2-2) When the permission switch 78 is off
  • the transition trajectory control for shifting from the normal trajectory control to the temporary trajectory control is not executed. That is, an affirmative determination is made in steps 10 and 30, and a normal target locus is set in step 70. Further, a negative determination is made in steps 90 and 130, an affirmative determination is made in step 150, a flag Fnp is set to 1 and a flag Fpn is reset to 0 in step 160. Then, a negative determination is made in step 210, but since the flag Fnp is 1, the normal trajectory in step 190 is not performed until the trajectory control of the transition is performed immediately before the vehicle starts traveling at the branch point. Control continues. (3) When the vehicle is traveling in a specific area (3-1) When the permission switch 78 is on
  • the temporary trajectory control is executed. That is, an affirmative determination is made in step 10, but a negative determination is made in step 30, and flags Fnp and Fpn are reset to 0 in step 50.
  • step 910 the current location of the host vehicle is estimated, and in step 930, temporary trajectory control is performed so that the vehicle travels along the temporary target trajectory.
  • provisional trajectory control is not executed. That is, as in the case of (3-1), an affirmative determination is made in step 10, but a negative determination is made in step 30, and flags Fnp and Fpn are reset to 0 in step 50.
  • step 210 Since the flag Fnp is 0 and the trajectory control is stopped and maintained in step 230, temporary trajectory control and normal trajectory control are performed while the vehicle is traveling in a specific area. I will not. (4) When the vehicle finishes traveling in a specific area (4-1) When the permission switch 78 is on
  • the trajectory control of the transition from the temporary trajectory control to the normal trajectory control is executed. That is, an affirmative determination is made in steps 10 and 30, and a normal target locus is set in step 70. In step 90, an affirmative determination is made. In step 110, the flag Fnp is reset to 0 and the flag Fpn is set to 1.
  • step 800 a target trajectory for transition from temporary trajectory control to normal trajectory control is set according to the flowchart shown in FIG.
  • step 90 When the transition target locus is set, a negative determination is made in step 90 and an affirmative determination is made in step 130. Then, in step 910, the current location of the host vehicle is estimated, and in step 930, transition trajectory control is executed so that the vehicle travels along the transition target trajectory.
  • FIG. 8 shows a second half of the travel locus control routine in the second embodiment of the vehicle travel control device according to the present invention, which is applied to a vehicle equipped with a navigation device and configured not to perform temporary trajectory control based on imaging information. It is the general flowchart which shows. In FIG. 8, the same step numbers as those shown in FIG. 3 are assigned to the same steps as those shown in FIG. The same applies to FIG. 9 described later.
  • step 400 is not executed, and when a negative determination is made in step 270 or 290, the control proceeds to step 230. .
  • the trajectory control is temporarily terminated without performing the temporary trajectory control based on the imaging information, and the control returns to step 10.
  • the flag Fnp is 1, the control proceeds to step 190 until the flag Fnp becomes 0, and normal trajectory control is continued.
  • the second embodiment is the same as the above-described first embodiment except “(2-1) When the permission switch 78 is turned on” and “(3-1) When the permission switch 78 is turned on”. Operates on.
  • step 270 if the navigation device 80 is not in operation, a negative determination is made in step 270. If the navigation device 80 is in operation but provisional trajectory control based on the navigation information is impossible, an affirmative determination is made in step 270, but a negative determination is made in step 290. Is called. Therefore, in these cases, step 400 is not executed, and provisional target trajectory setting based on information captured by the CCD camera 68 is not performed.
  • FIG. 9 is a general flowchart showing the second half of a travel locus control routine in a third embodiment of the vehicle travel control device according to the present invention, which is applied to a vehicle not equipped with a navigation device and configured as a travel locus control device. It is.
  • steps 270, 290, and 300 are not executed, and when a negative determination is made in step 250, that is, it is determined that the provisional target locus has not yet been set. If so, control proceeds to step 400. Therefore, according to the flowchart shown in FIG. 5, a provisional target locus is set based on the image information ahead of the vehicle 12 acquired by the CCD camera 68.
  • the third embodiment operates in the same manner as the first embodiment described above except that a provisional target locus based on navigation information is not set.
  • step 400 is executed, and a provisional target locus is set based on the imaging information by the CCD camera 68.
  • the target trajectory of the vehicle is a line, but is set as a wide target travel range as a region where the vehicle can travel, and the vehicle is controlled to travel within that range. May be.
  • a partial travel path specifying target may be used as a temporary travel path specifying target for setting a temporary target trajectory.
  • the travel locus control gradually shifts from the normal locus control to the temporary locus control before the vehicle enters the specific area, and the vehicle travels in the specific area. After completion, the traveling locus control is gradually shifted from the temporary locus control to the normal locus control.
  • at least one of these transitions may be performed in a specific region, and at least one of these transitions may be performed in both a specific region and a region outside the specific region. .
  • the normal target locus is calculated when the temporary locus control is shifted to the normal locus control.
  • the normal target is determined at the stage when it is determined that it is necessary to shift from provisional trajectory control to normal trajectory control.
  • the trajectory may be modified to be calculated.
  • the target rudder angle of the steered wheels for making the trajectory of the vehicle the target trajectory is calculated as the target rudder angle of the feedforward control.
  • the target rudder angle of the steered wheel may be calculated as the target rudder angle for feedback control, and is calculated as the final target rudder angle based on the target rudder angle for feedback control and the target rudder angle for feedforward control. May be.
  • the control for making the vehicle trajectory the target trajectory is the control of the steering angle of the steered wheels.
  • the control for setting the vehicle trajectory to the target trajectory may be control of the braking / driving force difference between the left and right wheels, and a combination of control of the steering angle of the steering wheel and control of the braking / driving force difference between the left and right wheels. It may be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

 少なくとも車両前方の情報を取得する装置により取得された情報に含まれる走行路特定対象としての白線102、104に基づいて車両の目標軌跡を求め、車両が目標軌跡に沿って走行するよう走行軌跡制御を行う車両の走行制御装置。走行路が複数の走行路に分かれる領域であって白線に基づいて目標軌跡を求めることができない特定の領域110を車両が走行するときには、特定の領域に隣接する領域の走行路特定対象としての白線102、104及び車両が特定の領域を走行した後に走行すべき走行路に基づいて、特定の領域について暫定の目標軌跡116を求め、車両が暫定の目標軌跡に沿って走行するよう暫定の走行軌跡制御を行う。

Description

車両の走行制御装置
 本発明は、車両の走行制御装置に係り、更に詳細には操舵輪の舵角を制御することにより車両を目標軌跡(目標走行ライン)に沿って走行させる車両の走行制御装置に係る。
 自動車等の車両の走行制御装置として、車両が目標軌跡に沿って走行するよう走行軌跡を制御する走行軌跡制御装置や、車線に対する車両の横ずれ量を運転者に認識させることにより車両が車線より逸脱することを防止する車線維持装置が知られている。例えば特開2006-264624号公報には、後者の車線維持装置の一例が記載されている。
〔発明が解決しようとする課題〕
 上述の如き走行制御装置に於いては、CCDカメラの如き撮像装置により車両前方の情報が取得され、取得された画像情報に基づいて車両の前方の走行路が特定され、特定された走行路に基づいて車両が走行すべき車線や車両の目標軌跡が設定される。この場合、走行路の特定は、取得された画像情報を電子的に処理し、白線、ガードレール、中央分離帯、路肩等の走行路特定対象を判定することによって行われる。
 しかし、例えば交差点、Y字路、T字路の如く走行路が複数の走行路に分かれる所謂分岐点の領域に於いては、走行路の境界を判定するための白線の如き走行路特定対象が存在しない領域がある。かかる領域に於いては、走行路特定対象に基づいて走行路を特定することができないため、走行制御装置は走行路特定対象に基づく走行制御を継続することができない。
 本発明は、従来の走行制御装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、車両が走行路の分岐点の領域を走行する場合にも車両の走行制御を継続することができるよう改良された走行制御装置を提供することである。
〔課題を解決するための手段及び発明の効果〕
 上述の主要な課題は、本発明によれば、少なくとも車両前方の情報を取得する外界情報取得手段と、外界情報取得手段により取得された情報に含まれる走行路特定対象に基づいて車両の目標軌跡を求め、車両が目標軌跡に沿って走行するよう走行軌跡制御を行う制御手段と、を有する車両の走行制御装置に於いて、走行路が複数の走行路に分かれる領域であって走行路特定対象に基づいて目標軌跡を求めることができない領域を特定の領域として、制御手段は、車両が特定の領域を走行するときには、特定の領域に隣接する領域の走行路特定対象及び車両が特定の領域を走行した後に走行すべき走行路に基づいて特定の領域について暫定の目標軌跡を求め、車両が暫定の目標軌跡に沿って走行するよう暫定の走行軌跡制御を行うことを特徴とする車両の走行制御装置によって達成される。
 上記の構成によれば、車両が特定の領域を走行するときには、特定の領域に隣接する領域の走行路特定対象及び車両が特定の領域を走行した後に走行すべき走行路に基づいて特定の領域について暫定の目標軌跡が求められる。そして、車両が暫定の目標軌跡に沿って走行するよう暫定の走行軌跡制御が行われる。従って、車両が特定の領域を走行する場合にも暫定の走行軌跡制御によって車両の走行制御を継続することができる。
 また本発明によれば、上記の構成に於いて、制御手段は、複数の走行路より車両が走行すべき走行路が既に選択されているときには、特定の領域に隣接する領域の走行路特定対象及び選択されている走行路に基づいて仮想の走行路特定対象を設定し、仮想の走行路特定対象に基づいて暫定の目標軌跡を求めるようになっていてよい。
 上記の構成によれば、複数の走行路より車両が走行すべき走行路が既に選択されているときには、特定の領域に隣接する領域の走行路特定対象及び選択されている走行路に基づいて仮想の走行路特定対象が設定される。そして、仮想の走行路特定対象に基づいて暫定の目標軌跡が求められる。従って、車両が走行すべき走行路が既に選択されているときには、車両がその選択されている走行路を走行することができるよう、特定の領域に於ける暫定の目標軌跡を求めることができる。
 また本発明によれば、上記の構成に於いて、制御手段は、複数の走行路より車両が走行すべき走行路が選択されていないときには、車両の走行状況及び運転者の運転操作に基づいて複数の走行路のうち車両が走行すべき走行路を推定し、特定の領域に隣接する領域の走行路特定対象及び推定された走行路に基づいて仮想の走行路特定対象を設定し、仮想の走行路特定対象に基づいて暫定の目標軌跡を求めるようになっていてよい。
 上記の構成によれば、複数の走行路より車両が走行すべき走行路が選択されていないときには、車両の走行状況及び運転者の運転操作に基づいて複数の走行路のうち車両が走行すべき走行路が推定される。また、特定の領域に隣接する領域の走行路特定対象及び推定された走行路に基づいて仮想の走行路特定対象が設定され、仮想の走行路特定対象に基づいて暫定の目標軌跡が求められる。従って、車両が走行すべき走行路が選択されていない場合には、車両の走行状況及び運転者の運転操作に基づいて特定の領域に於ける暫定の目標軌跡を求めることができる。
 また本発明によれば、上記の構成に於いて、制御手段は、仮想の走行路特定対象に基づいて特定の領域に於ける車両の走行可能範囲を判定し、走行軌跡制御実行中の車両の位置及び走行可能範囲に基づいて暫定の目標軌跡を求めるようになっていてよい。
 上記の構成によれば、仮想の走行路特定対象に基づいて特定の領域に於ける車両の走行可能範囲が判定され、走行軌跡制御実行中の車両の位置及び走行可能範囲に基づいて暫定の目標軌跡が求められる。従って、走行軌跡制御実行中の車両の位置及び走行可能範囲に基づいて暫定の目標軌跡を求めることができ、よって、走行軌跡制御実行中の車両の位置又は走行可能範囲が考慮されない場合に比して、適正に暫定の目標軌跡を求めることができる。
 また本発明によれば、上記の構成に於いて、走行制御装置は、特定の領域の地図情報を取得する地図情報取得手段を有し、制御手段は、地図情報取得手段により取得された地図情報に基づいて仮想の走行路特定対象を設定するようになっていてよい。
 上記の構成によれば、地図情報取得手段により取得された地図情報に基づいて仮想の走行路特定対象が設定される。従って、外界情報取得手段が撮像装置である場合に取得できない範囲についても仮想の走行路特定対象を設定することができ、よって特定の領域についての暫定の目標軌跡を一層確実に求めることができる。
 また本発明によれば、上記の構成に於いて、制御手段は、車両が特定の領域に於いて旋回する必要があるときには、暫定の目標軌跡の半径に基づいて車体の最小旋回半径及び最大旋回半径を推定し、最小旋回半径又は最大旋回半径が車両の走行可能範囲内にないときには、最小旋回半径及び最大旋回半径が車両の走行可能範囲内になるよう、暫定の目標軌跡を設定し直すようになっていてよい。
 上記の構成によれば、暫定の目標軌跡の半径に基づいて車体の最小旋回半径及び最大旋回半径が推定され、何れかの旋回半径が車両の走行可能範囲内にないときには、両方の旋回半径が車両の走行可能範囲内になるよう、暫定の目標軌跡が設定し直される。従って、車体が車両の走行可能範囲内にて旋回移動するよう、必要に応じて暫定の目標軌跡を設定し直すことができる。
 また本発明によれば、上記の構成に於いて、制御手段は、車両の走行可能範囲を通る軌跡のうち車両の旋回横加速度の大きさ及びその変化率の大きさの少なくとも一方が最小になる軌跡を暫定の目標軌跡とするようになっていてよい。
 上記の構成によれば、車両の走行可能範囲を通る軌跡のうち車両の旋回横加速度の大きさ及びその変化率の大きさの少なくとも一方が最小になる軌跡が暫定の目標軌跡とされる。従って、車両の走行可能範囲を通ると共に車両の旋回横加速度の大きさ及びその変化率の大きさの少なくとも一方が最小になる暫定の目標軌跡を求めることができ、車両の乗り心地性の低下を抑制することができる。
 また本発明によれば、上記の構成に於いて、制御手段は、暫定の走行軌跡制御開始後の運転者の運転操作に基づいて車両の走行可能範囲内にて暫定の目標軌跡を修正するようになっていてよい。
 上記の構成によれば、暫定の目標軌跡は、暫定の走行軌跡制御開始後の運転者の運転操作に基づいて車両の走行可能範囲内にて修正される。従って、運転者により運転操作が行われた場合には、運転者の意思を反映するよう、暫定の目標軌跡を修正することができる。
 また本発明によれば、上記の構成に於いて、制御手段は、暫定の走行軌跡制御開始後の運転者の運転操作量の大きさが目標軌跡変更の基準値以上である時間が目標軌跡変更の基準時間以上継続したときには、運転者の運転操作に基づいて車両が走行すべき走行路を変更し、特定の領域に隣接する領域の走行路特定対象及び変更後の走行路に基づいて暫定の目標軌跡を求め直すようになっていてよい。
 上記の構成によれば、暫定の走行軌跡制御開始後の運転者の運転操作量の大きさが目標軌跡変更の基準値以上である時間が目標軌跡変更の基準時間以上継続したときには、運転者の運転操作に基づいて車両が走行すべき走行路が変更される。そして、特定の領域に隣接する領域の走行路特定対象及び変更後の走行路に基づいて暫定の目標軌跡が求め直される。従って、運転者が進路を変更しようとする場合の如く、暫定の目標軌跡が運転者が意図する進路と異なる場合には、運転者の意図に則して暫定の目標軌跡を求め直すことができる。
 また本発明によれば、上記の構成に於いて、制御手段は、暫定の走行軌跡制御に於いては、フィードバック制御及びフィードフォワード制御の少なくとも一方により車両の軌跡を暫定の目標軌跡にするための操舵輪の暫定の目標舵角を演算し、暫定の目標舵角に基づいて操舵輪の舵角を制御するようになっていてよい。
 上記の構成によれば、フィードバック制御及びフィードフォワード制御の少なくとも一方により車両の軌跡を暫定の目標軌跡にするための操舵輪の暫定の目標舵角が演算され、暫定の目標舵角に基づいて操舵輪の舵角が制御される。従って、車両が暫定の目標軌跡に沿って走行するよう、操舵輪の舵角を制御することができる。
 また本発明によれば、上記の構成に於いて、制御手段は、車両が特定の領域に進入する前に走行制御を走行軌跡制御より暫定の走行軌跡制御へ漸次移行させるようになっていてよい。
 上記の構成によれば、車両が特定の領域に進入する前に走行制御が走行軌跡制御より暫定の走行軌跡制御へ漸次移行する。従って、車両が特定の領域に進入するときに走行制御が走行軌跡制御より暫定の走行軌跡制御へ移行する場合に比して、制御の移行に起因して車両の挙動が急変したり乗員が違和感を覚えたりする虞れを確実に低減することができる。
 また本発明によれば、上記の構成に於いて、制御手段は、車両が特定の領域での走行を完了した後に走行制御を暫定の走行軌跡制御より走行軌跡制御へ漸次移行させるようになっていてよい。
 上記の構成によれば、車両が特定の領域での走行を完了した後に走行制御を暫定の走行軌跡制御より走行軌跡制御へ漸次移行する。従って、車両が特定の領域での走行を完了するときに走行制御が暫定の走行軌跡制御より走行軌跡制御へ移行する場合に比して、制御の移行に起因して車両の挙動が急変したり乗員が違和感を覚えたりする虞れを確実に低減することができる。
 また本発明によれば、上記の構成に於いて、特定の領域は、交差点、T字路、分岐路の何れかであってよい。
 上記の構成によれば、特定の領域は、交差点、T字路、分岐路の何れかであるので、車両がこれらを走行する際に確実に暫定の走行軌跡制御を行って、走行制御を継続することができる。
〔課題解決手段の好ましい態様〕
 本発明の一つの好ましい態様によれば、車両は操舵入力手段の操作位置と操舵輪の舵角との関係を変化させる舵角可変装置を有し、舵角可変装置を制御することにより操舵輪の舵角を制御するようになっていてよい。
 本発明の他の一つの好ましい態様によれば、車両はナビゲーション装置を有し、ナビゲーション装置によって設定された走行経路に従って車両が走行すべき走行路が選択されるようになっていてよい。
 本発明の他の一つの好ましい態様によれば、車両が走行すべき走行路が選択されていないときとは、車両がナビゲーション装置を有していない場合、及び車両がナビゲーション装置を有しているが、ナビゲーション装置により走行経路が設定されていない場合を含んでいてよい。
 本発明の他の一つの好ましい態様によれば、仮想の走行路特定対象に基づいて判定される走行路の両側部にマージンを設定することにより特定の領域に於ける車両の走行可能範囲を判定ようになっていてよい。
 本発明の他の一つの好ましい態様によれば、暫定の走行軌跡制御開始後の運転者の運転操作量の大きさが目標軌跡修正の基準値以上である時間が目標軌跡修正の基準時間以上継続したときに、暫定の目標軌跡を修正するようになっていてよい。
 本発明の他の一つの好ましい態様によれば、目標軌跡を通常の目標軌跡より暫定の目標軌跡へ漸次変化させることにより、走行制御を走行軌跡制御より暫定の走行軌跡制御へ漸次移行させるようになっていてよい。
 本発明の他の一つの好ましい態様によれば、目標軌跡を暫定の目標軌跡より通常の目標軌跡へ漸次変化させることにより、走行制御を暫定の走行軌跡制御より走行軌跡制御へ漸次移行させるようになっていてよい。
ナビゲーション装置搭載車に適用され、走行軌跡制御装置として構成された本発明による車両の走行制御装置の第一の実施形態を示す概略構成図である。 第一の実施形態に於ける走行軌跡制御ルーチンの前半を示すゼネラルフローチャートである。 第一の実施形態に於ける走行軌跡制御ルーチンの後半を示すゼネラルフローチャートである。 図3のステップ300に於けるナビゲーション情報に基づく暫定の目標軌跡の設定ルーチンを示すフローチャートである。 図3のステップ400に於ける撮像情報に基づく暫定の目標軌跡の設定ルーチンを示すフローチャートである。 図3のステップ600に於いて実行される通常の軌跡制御より暫定の軌跡制御への移行の目標軌跡の設定ルーチンを示すフローチャートである。 図3のステップ800に於いて実行される暫定の軌跡制御より通常の軌跡制御への移行の目標軌跡の設定ルーチンを示すフローチャートである。 ナビゲーション装置搭載車に適用され、撮像情報に基づく暫定の軌跡制御が行われないよう構成された本発明による車両の走行制御装置の第二の実施形態に於ける走行軌跡制御ルーチンの後半を示すゼネラルフローチャートである。 ナビゲーション装置が搭載されていない車両に適用され、走行軌跡制御装置として構成された本発明による車両の走行制御装置の第三の実施形態に於ける走行軌跡制御ルーチンの後半を示すゼネラルフローチャートである。 分岐点の種類が交差点である場合に於ける地図の決定及び自車の現在地の推定の要領を示す説明である。 分岐点が直交の十字路である場合について、直進の走行可能範囲が設定される要領を示す説明図である。 分岐点が直交していない十字路である場合について、直進の走行可能範囲が設定される要領を示す説明図である。 分岐点が直交の十字路である場合について、左折の走行可能範囲が設定される要領を示す説明図である。 分岐点が直交していない十字路である場合について、左折の走行可能範囲が設定される要領を示す説明図である。 車線が複数であり、分岐点が直交の十字路である場合について、左折の走行可能範囲が設定される要領を示す説明図である。 車線が複数であり、分岐点が直交していない十字路である場合について、左折の走行可能範囲が設定される要領を示す説明図である。 分岐点が直交の十字路である場合について、右折の走行可能範囲が設定される要領を示す説明図である。 分岐点が直交していない十字路である場合について、右折の走行可能範囲が設定される要領を示す説明図である。 車線が複数であり、分岐点が直交の十字路である場合について、右折の走行可能範囲が設定される要領を示す説明図である。 車線が複数であり、分岐点が直交していない十字路である場合について、右折の走行可能範囲が設定される要領を示す説明図である。 分岐点が直交の十字路である場合について、Uターンの走行可能範囲が設定される要領を示す説明図である。 分岐点が直交していない十字路である場合について、Uターンの走行可能範囲が設定される要領を示す説明図である。 車両が直交の十字路の手前を走行する際にCCDカメラにより撮像される範囲の境界及び撮像により認識される十字路の範囲を示す図である。 地図が作成された後に車両が直交の十字路を直進する場合を示す図である。 地図が作成された後に車両が直交の十字路を右折する場合を示す図である。 作成された直交の十字路の地図を示す図である。 道路標識や道路標示があることにより、図26に示された進路のうち選択可能な進路が直進の進路及び左折の進路に特定される状況を示す図である。 図27に示された直交の十字路に於いて、車両がそれぞれ直進の進路及び左折の進路を走行する場合の暫定の目標軌跡を示す図である。 車両が直進の暫定の目標軌跡及び左折の暫定の目標軌跡に沿って走行する場合に於ける判定用パラメータの絶対値の変化を示すグラフである。 車速Vと判定用パラメータの基準値との関係を示すグラフである。 車両が直交の十字路に差し掛かる際に設定される座標系を示す図である。 暫定の目標軌跡の終端及び通常の目標軌跡の始端のy座標及び角度は同一であるが、x座標が互いに異なる場合に於ける移行の目標軌跡の一例を示す図である。 暫定の目標軌跡の終端及び通常の目標軌跡の始端のx座標及びy座標は同一であるが、角度が互いに異なる場合に於ける移行の目標軌跡の一例を示す図である。 暫定の目標軌跡の終端及び通常の目標軌跡の始端のy座標は同一であるが、x座標及び角度がそれぞれ互いに異なる場合に於ける移行の目標軌跡の一例を示す図である。 車両が直交の十字路を通過する際に設定される座標系を示す図である。 暫定の目標軌跡の終端及び通常の目標軌跡の始端のy座標及び角度は同一であるが、x座標が互いに異なる場合に於ける移行の目標軌跡の一例を示す図である。 暫定の目標軌跡の終端及び通常の目標軌跡の始端のx座標及びy座標は同一であるが、角度が互いに異なる場合に於ける移行の目標軌跡の一例を示す図である。 暫定の目標軌跡の終端及び通常の目標軌跡の始端のy座標は同一であるが、x座標及び角度がそれぞれ互いに異なる場合に於ける移行の目標軌跡の一例を示す図である。 車両の重心Gに於ける目標軌跡の半径Rに基づいて車体の最小旋回半径Rbi及び車体の最大旋回半径Rboを求める要領を示す説明図である。 車両が直交の十字路を左折する場合について、特定の領域が二つの区間に区分される要領及び車体の最小旋回軌跡及び最大旋回軌跡が求められる要領を示す説明図である。 車体の最小旋回軌跡が走行可能範囲内にない場合について、車体の旋回半径を考慮して暫定の目標軌跡が設定し直される要領を示す説明図である。 暫定の目標軌跡が再設定されても車体の最小旋回軌跡が走行可能範囲内にない場合について、車体の旋回半径を考慮して暫定の目標軌跡が再度設定し直される要領を示す説明図である。 目標軌跡の半径R、目標軌跡対する車両の重心の横偏差Dy、目標軌跡に対する車両のヨー角φを示す説明図である。 車両の目標横加速度Gyt及び車速Vに基づいて暫定又は移行の軌跡制御のための左右前輪の目標舵角δtを演算するためのマップを示す図である。 暫定の目標軌跡が直交の十字路を左折する軌跡であり、運転者により左折方向の操舵角が低減される場合に於ける暫定の目標軌跡の修正を示す説明図である。 分岐点でのタスクが直交の十字路を左折することであり、運転者により操舵角θが0に近づくよう変更される場合に於ける分岐点でのタスクの変更を示す説明図である。
 以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。尚、下記の各実施形態は車両が左側通行する場合に適用された実施形態であるが、本発明は右側通行する車両に適用されてもよい。
[第一の実施形態]
 図1はナビゲーション装置搭載車に適用され、走行軌跡制御装置として構成された本発明による車両の走行制御装置の第一の実施形態を示す概略構成図である。
 図1に於いて、10は車両12に搭載された走行軌跡制御装置を示しており、走行軌跡制御装置10は前輪用操舵制御装置14を有している。前輪用操舵制御装置14は運転者の操舵操作とは無関係に前輪を操舵可能な操舵制御手段を構成している。また、車両12には制動力制御装置16が搭載され、制動力制御装置16は運転者の制動操作とは無関係に各車輪の制動力を個別に制御可能である。
 また、図1に於いて、18FL及び18FRはそれぞれ車両12の操舵輪である左右の前輪を示し、18RL及び18RRはそれぞれ左右の後輪を示している。操舵輪である左右の前輪18FL及び18FRは、運転者によるステアリングホイール20の操作に応答して駆動されるラック・アンド・ピニオン型のパワーステアリング装置22によりラックバー24及びタイロッド26L及び26Rを介して転舵される。
 ステアリングホイール20はアッパステアリングシャフト28、舵角可変装置30、ロアステアリングシャフト32、ユニバーサルジョイント34を介してパワーステアリング装置22のピニオンシャフト36に駆動接続されている。図示の第一の実施形態に於いては、舵角可変装置30はハウジング30Aの側にてアッパステアリングシャフト28の下端に連結され、回転子30Bの側にてロアステアリングシャフト32の上端に連結された補助転舵駆動用の電動機38を含んでいる。
 かくして、舵角可変装置30はアッパステアリングシャフト28に対し相対的にロアステアリングシャフト32を回転駆動することにより、左右の前輪18FL及び18FRをステアリングホイール20に対し相対的に補助転舵駆動する。舵角可変装置30は電子制御装置40の操舵制御部により制御される。
 パワーステアリング装置22は、ラック同軸型の電動式のパワーステアリング装置であり、電動機42と、電動機42の回転トルクをラックバー24の往復動方向の力に変換する例えばボールねじ式の変換機構44とを有する。パワーステアリング装置22は、電子制御装置40の操舵アシストトルク制御部によって制御され、ハウジング46に対し相対的にラックバー24を駆動する操舵アシストトルクを発生する。操舵アシストトルクは、運転者の操舵負担を軽減し、また必要に応じて舵角可変装置30による左右前輪の転舵駆動を補助する。
 かくして、舵角可変装置30はパワーステアリング装置22と共働してステアリングホイール20に対する左右前輪の舵角の関係を変更すると共に、運転者の操舵操作とは無関係に前輪を操舵する前輪用操舵制御装置14の主要部を構成している。
 尚、パワーステアリング装置22及び舵角可変装置30の構造自体は、本発明の要旨を構成するものではなく、これらの装置はそれぞれ上述の機能を果たすものである限り、当技術分野に於いて公知の任意の構成のものであってよい。
 制動力制御装置16は制動装置50を含み、各車輪の制動力は制動装置50の油圧回路52によりホイールシリンダ54FL、54FR、54RL、54RR内の圧力Pi(i=fl、fr、rl、rr)、即ち制動圧が制御されることによって制御される。図1には示されていないが、油圧回路52はオイルリザーバ、オイルポンプ、種々の弁装置等を含み、各ホイールシリンダの制動圧は通常時には運転者によるブレーキペダル56の踏み込み操作に応じて駆動されるマスタシリンダ58により制御される。また、各ホイールシリンダの制動圧は必要に応じて油圧回路52が電子制御装置40の制動力制御部によって制御されることにより個別に制御される。かくして、制動装置50は運転者の制動操作とは無関係に各車輪の制動力を個別に制御可能であり、制動力制御装置16の主要な装置として機能する。
 アッパステアリングシャフト28には該シャフトの回転角度を操舵角θとして検出する操舵角センサ62及び操舵トルクTsを検出する操舵トルクセンサ64が設けられており、操舵角θ及び操舵トルクTsを示す信号は電子制御装置40へ入力される。また、電子制御装置40には回転角度センサ66により検出された舵角可変装置30の相対回転角度θre、即ち、アッパステアリングシャフト28に対するロアステアリングシャフト32の相対回転角度を示す信号が入力される。
 図示の実施形態に於いては、車両12の車室の上方前部には車両12の前方を撮影するCCDカメラ68が設けられており、車両12の前方の画像情報を示す信号がCCDカメラ68より電子制御装置40へ入力される。電子制御装置40には車速センサ70により検出された車速Vを示す信号、横加速度センサ72により検出された車両の横加速度Gyを示す信号、及びヨーレートセンサ74により検出された車両のヨーレートγを示す信号も入力される。尚、操舵角センサ62、操舵トルクセンサ64、回転角度センサ66はそれぞれ車両の左旋回方向への操舵又は転舵の場合を正として操舵角θ、操舵トルクTs、相対回転角度θreを検出する。
 車両12にはレーンキープアシスト制御(LKA制御)とも呼ばれる走行軌跡制御を行わせるか否かを選択するための選択スイッチ76と、暫定の走行軌跡制御を許可するか否かを選択するための許可スイッチ78とが設けられている。選択スイッチ76及び許可スイッチ78の設定位置を示す信号も電子制御装置40に入力される。また、車両12にはナビゲーション装置80が搭載されており、電子制御装置40はナビゲーション装置80と必要な情報の授受を行う。
 更に、電子制御装置40には図1には示されていない圧力センサにより検出されたマスタシリンダ圧力Pm等を示す信号が入力され、電子制御装置40は走行軌跡制御の状況の如く車両の乗員に必要な情報を表示装置82に表示する。表示装置82はナビゲーション装置80のモニタの一部であってもよく、また、ナビゲーション装置80のモニタとは別の表示装置であってもよい。
 尚、電子制御装置40の上述の各制御部は、それぞれCPUとROMとRAMと入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続されたマイクロコンピュータを含むものであってよい。特に、ROMは後述の走行軌跡制御のプログラムやマップを記憶すると共に、交差点、Y字路、T字路等の分岐点の種類毎に道路がなす角度や車線の数が互いに異なる複数の地図を記憶している。
 電子制御装置40の操舵制御部は図2及び図3に示されたフローチャートに従って走行軌跡制御を行う。特に、操舵制御部は、選択スイッチ76がオンであり通常の走行軌跡制御が可能であるときには、通常の軌跡制御を行うための左右前輪の目標舵角δtを演算する。即ち、操舵制御部は、CCDカメラ68により取得された車両12の前方の画像情報に基づいて走行路を特定し、特定された走行路に基づく目標軌跡に沿って車両12を走行させるための左右前輪の通常の目標舵角δtnを軌跡制御の目標舵角δtとして演算する。
 また、電子制御装置40の操舵制御部は、選択スイッチ76がオンであるが車両が特定の領域を走行し、車両を通常の目標軌跡に沿って走行させる通常の軌跡制御を行うことができないときには、後に詳細に説明する如く、暫定の軌跡制御を行う。即ち、操舵制御部は、車両が特定の領域を走行するための暫定の目標軌跡を設定し、暫定の目標軌跡に沿って車両を走行させるための左右前輪の暫定の目標舵角δtpを軌跡制御の目標舵角δtとして演算する。
 尚、本明細書に於いて、「特定の領域」とは、走行路が複数の走行路に分かれる所謂分岐点の領域であって白線の如き走行路特定対象に基づいて目標軌跡を求めることができない領域を意味する。具体的には、「特定の領域」は、交差点、Y字路、T字路であり、「走行路特定対象」は白線、ガードレール、中央分離帯、路肩の如く、走行路の境界を判定することによって走行路を特定するための対象である。また、「暫定の目標軌跡」とは、車両が特定の領域を走行した後に走行すべき走行路を走行することができるよう、特定の領域について設定される目標軌跡を意味する。
 また、電子制御装置40の操舵制御部は、目標軌跡が通常の目標軌跡と暫定の目標軌跡との間にて切り替わる際に左右前輪の舵角が急激に変化することがないよう、目標軌跡を徐々に変化させる。即ち、操舵制御部は、目標軌跡が切り替わる際に目標軌跡の走行路の幅方向の位置や向きが急激に変化しないよう、目標軌跡を徐々に変化させるための移行の目標軌跡を求め、移行の目標軌跡に基づいて移行の軌跡制御を行う。
 特に、操舵制御部は、通常の軌跡制御が可能な状況に於いてその後目標軌跡を通常の目標軌跡から暫定の目標軌跡へ切り替える必要があると判定したときには、その段階で通常の目標軌跡から暫定の目標軌跡へ漸次移行するための移行の軌跡制御を開始する。これに対し、操舵制御部は、目標軌跡が暫定の目標軌跡から通常の目標軌跡へ切り替わる際には、通常の軌跡制御が可能になった段階に於いて暫定の目標軌跡から通常の目標軌跡へ漸次移行するための移行の軌跡制御を開始する。
 更に、電子制御装置40の操舵制御部は、車両12を左右前輪の目標舵角δtに対応する目標ピニオン角度θptを演算し、ピニオン36の角度が目標ピニオン角度θptになるよう舵角可変装置30を制御する。
 尚、車両を目標軌跡に沿って走行させるための目標舵角δtの演算自体は、本発明の要旨をなすものではないので、目標軌跡が通常の目標軌跡、暫定の目標軌跡、移行の目標軌跡の何れである場合にも、任意の要領にて行われてよい。但し、後に詳細に説明する如く、目標軌跡に対する車両の横偏差及び車両のヨー角、目標軌跡の半径が推定され、推定されたパラメータに基づいて操舵輪の目標舵角が演算されることが好ましい。
<走行軌跡制御のゼネラルフロー>
 次に、図2及び図3に示されたゼネラルフローチャートを参照して第一の実施形態に於ける走行軌跡制御ルーチンについて説明する。尚、図2及び図3に示されたフローチャートによる制御は、図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰返し実行される。また、以下の説明に於いて参照される図面に於いては、必要に応じてナビゲーション装置をナビ装置と略称し、ナビゲーション装置よりのナビゲーション情報をナビ情報と略称する。
 まず、ステップ10に於いては、選択スイッチ76がオンであり軌跡制御が許可されているか否かの判別が行われる。そして、肯定判別が行われたときには制御はステップ30へ進み、否定判別が行われたときには図2に示されたフローチャートによる制御が一旦終了される。尚、通常の軌跡制御、移行の軌跡制御又は暫定の軌跡制御による左右前輪の舵角の制御が実行されているときには当該制御が中止される。
 ステップ30に於いては、車両が特定の領域を走行しておらず、白線の如き走行路特定対象に基づいて目標軌跡を求めることにより通常の軌跡制御を行うことができるか否かの判別が行われる。そして、肯定判別が行われたときには制御はステップ70へ進み、否定判別が行われたときには制御はステップ50へ進む。
 ステップ50に於いては、通常の軌跡制御より暫定の軌跡制御への移行中であるか否かに関するフラグFnp及び暫定の軌跡制御より通常の軌跡制御への移行中であるか否かに関するフラグFpnが0にリセットされ、しかる後制御はステップ210へ進む。
 ステップ70に於いては、CCDカメラ68により取得された車両12の前方の画像情報に基づいて走行路が特定されると共に、特定された走行路に基づいて通常の軌跡制御の目標軌跡が設定される。
 ステップ90に於いては、暫定の軌跡制御が行われているか否かの判別が行われる。そして、否定判別が行われたときには制御はステップ130へ進み、肯定判別が行われたときにはステップ110に於いてフラグFnpが0にリセットされると共に、フラグFpnが1にセットされ、しかる後制御はステップ210へ進む。
 ステップ130に於いては、フラグFnp又はFpnが1であるか否かの判別により、後述の移行の軌跡制御が行われているか否かの判別が行われる。そして、肯定判別が行われたときには制御はステップ910へ進み、否定判別が行われたときには制御はテップ150へ進む。
 ステップ150に於いては、現在より予め設定された時間が経過すると到達する領域、又は現在地より予め設定された距離前方の領域に特定の領域が存在するか否かの判別、即ち通常の軌跡制御より暫定の軌跡制御への移行が必要であるか否かの判別が行われる。そして、肯定判別が行われたときには、ステップ160に於いてフラグFnpが1にセットされると共に、フラグFpnが0にリセットされ、しかる後制御はステップ210へ進む。これに対し、否定判別が行われたときには、ステップ170に於いてフラグFnp及びFpnが0にリセットされ、しかる後制御はステップ190へ進む。
 尚、ナビゲーション装置80が作動中であるときには、ナビゲーション装置80よりの情報に基づいて特定の領域が存在するか否かが判定されてよい。また、ナビゲーション装置80が作動中でないときには、CCDカメラ68により取得された車両12の前方の画像情報に基づいて特定の領域が存在するか否かが判定されてよい。更に、予め設定された時間又は予め設定された距離は一定であってもよいが、目標軌跡が通常の目標軌跡と暫定の目標軌跡との間にて確実に切り替えられるよう、車速Vが高いほど長くなるよう、車速に応じて可変設定されてもよい。
 ステップ190に於いては、上述のステップ70に於いて設定された通常の目標軌跡に沿って車両を走行させるための左右前輪の通常の目標舵角δtnが演算され、左右前輪の舵角が目標舵角δtnになるよう、舵角可変装置30が制御される。尚、通常の軌跡制御は本発明の要旨をなすものではなく、また任意の要領にて実行されてよいので、通常の軌跡制御についてのこれ以上の説明を省略するが、暫定の軌跡制御等と同様に行われることが好ましい。
 ステップ210に於いては、許可スイッチ78がオンであり暫定の軌跡制御が許可されているか否かの判別が行われる。そして、肯定判別が行われたときには制御はステップ250へ進み、否定判別が行われたときには制御はステップ230へ進む。
 ステップ230に於いては、軌跡制御が一旦終了され、制御はステップ10へ戻る。但し、フラグFnpが1であるときには、フラグFnpが0になるまで制御はステップ190へ進み、通常の軌跡制御が継続される。
 ステップ250に於いては、暫定の目標軌跡が既に設定されているか否かの判別が行われ、肯定判別が行われたときには制御はステップ510へ進み、否定判別が行われたときには制御はステップ270へ進む。
 ステップ270に於いては、ナビゲーション装置80が作動中であるか否かの判別が行われ、否定判別が行われたときには制御はステップ400へ進み、肯定判別が行われたときには制御はステップ290へ進む。
 ステップ290に於いては、ナビゲーション装置80よりのナビゲーション情報に基づく暫定の軌跡制御が可能であるか否かの判別が行われ、否定判別が行われたときには制御はステップ400へ進み、肯定判別が行われたときには制御はステップ300へ進む。例えば、ナビゲーション装置80に於いて目的地が設定され、従って目標の走行経路が設定されている場合に肯定判別が行われる。
 ステップ300に於いては、後に詳細に説明する如く、図4に示されたフローチャートに従って、ナビゲーション装置80よりのナビゲーション情報に基づいて暫定の目標軌跡が設定される。
 ステップ400に於いては、後に詳細に説明する如く、図5に示されたフローチャートに従って、CCDカメラ68により取得された車両12の前方の画像情報に基づいて暫定の目標軌跡が設定される。
 ステップ510に於いては、フラグFnpが1であるか否かの判別、即ち通常の軌跡制御より暫定の軌跡制御への移行中であるか否かの判別が行われる。そして、肯定判別が行われたときには制御はステップ600へ進み、否定判別が行われたときには制御はステップ710へ進む。
 ステップ600に於いては、通常の軌跡制御より暫定の軌跡制御への移行が円滑に行われるよう、後に詳細に説明する如く、図6に示されたフローチャートに従って通常の軌跡制御より暫定の軌跡制御への移行の目標軌跡が設定される。ステップ600が完了すると、制御はステップ910へ進む。
 ステップ710に於いては、フラグFpnが1であるか否かの判別、即ち暫定の軌跡制御より通常の軌跡制御への移行中であるか否かの判別が行われる。そして、否定判別が行われたときには制御はステップ910へ進み、肯定判別が行われたときには制御はステップ800へ進む。
 ステップ800に於いては、暫定の軌跡制御より通常の軌跡制御への移行が円滑に行われるよう、後に詳細に説明する如く、図7に示されたフローチャートに従って暫定の軌跡制御より通常の軌跡制御への移行の目標軌跡が設定される。ステップ800が完了すると、制御はステップ910へ進む。
 ステップ910に於いては、後に詳細に説明する如く、左右前輪18FL、18FRの車輪速度Vfl、Vfr、左右後輪18RL、18RRの車輪速度Vrl、Vrr、左右前輪の舵角δに基づいて自車の現在地が推定される。
 ステップ930に於いては、ステップ300又は400に於いて設定された暫定の目標軌跡又はステップ600又は800に於いて設定された移行の目標軌跡に沿って車両を走行させるための左右前輪の目標舵角δtが演算される。そして、通常の軌跡制御の場合と同一の要領にて、左右前輪の舵角δが目標舵角δtになるよう舵角可変装置30が制御されることにより、暫定の軌跡制御又は移行の軌跡制御が実行される。
 ステップ950に於いては、後に詳細に説明する如く、車両の走行経路が運転者の意思を反映するよう、必要に応じて通常の目標軌跡、移行の軌跡制御又は暫定の目標軌跡が運転者の操舵操作に応じて修正又は変更される。
<ナビゲーション情報に基づく暫定の目標軌跡の設定>
 次に、図4に示されたフローチャートを参照して、上述のステップ300に於けるナビゲーション情報に基づく暫定の目標軌跡の設定について説明する。
 まず、ステップ305に於いては、これから通過する分岐点がナビゲーション装置80により設定された走行経路上の分岐点であるか否かの判別が行われる。そして、否定判別が行われたときにはステップ310に於いて車両が特定の領域に入った段階で軌跡制御が中止され、肯定判別が行われたときには制御はステップ315へ進む。
 尚、ステップ305の判別は、現在地からの距離が第一の距離D1より第二の距離D2までの範囲内に分岐点が存在する場合、又は現在からの経過時間が第一の時間T1より第二の時間T2までの時間に通過する領域内に分岐点が存在する場合に行われる。距離D1、D2及び時間T1、T2は定数あってもよい。但し、距離D1及びD2は、例えば車速Vが高いほど大きくなるよう、車速に応じて可変設定されることが好ましい。
 ステップ315に於いては、CCDカメラ68により取得された車両12の前方の画像情報の白線等に基づいて、予め記憶されている分岐点についての複数の地図より選択されることにより当該分岐点の地図が決定される。また、ステップ315に於いては、前方の画像情報中の二つの特定の対象物、例えば交差点の二つの角の白線までの距離が推定されることにより、地図上に於ける自車の現在地が推定される。
 例えば、画像情報の白線等に基づいて、分岐点の種類(交差点、Y字路、T字路等)が判定され、判定された分岐点の種類に基づいて地図の種類(交差点、Y字路、T字路等)が決定される。次いで、決定された種類の複数の地図より、画像情報の白線等と地図上の白線等との一致度合が最も高い地図が選択される。尚、このステップに於いて使用される地図は、予め記憶されている地図ではなく、ナビゲーション装置80より供給される情報に基づく地図であってもよい。
 図10は分岐点の種類が交差点である場合に於ける地図の決定及び自車の現在地の推定の要領を示す説明図である。尚、図10に於いて、100は地図を示し、102及び104はそれぞれ道路の中央の白線及び路肩の白線を示し、106及び108はそれぞれ横断歩道及び車両停止線を示している。また、図10に於いて、110は白線102及び104等が存在しない特定の領域を示し、112はCCDカメラ68により取得可能な車両12の前方の画像情報の範囲の境界を示している。
 図10に示されている如く、交差点の角の路肩の白線104等に基づいて、予め記憶されている交差点についての複数の地図より選択されることにより当該交差点の地図が決定される。また、二つの角の路肩の白線104等までの距離が画像情報に基づいて推定され、その推定結果に基づいて地図上に於ける自車の現在地が推定される。
 ステップ320、335、350、365に於いては、ナビゲーション装置80により設定された走行経路に基づいて、分岐点に於ける走行タスクがそれぞれ直進、左方向への旋回、右方向への旋回、Uターンの何れであるかが判定される。
 特に、ステップ320に於いては、分岐点に於ける走行タスクが直進であるか否かの判別が行われる。そして、否定判別が行われたときには制御はステップ335進み、肯定判別が行われたときには制御はステップ325へ進む。
 ステップ325に於いては、地図上に於いて現在車両が走行している走行路の白線等及び/又は車両が分岐点を通過した後に車両が走行する走行路の白線等が特定の領域に延長されることにより、分岐点に於ける直進の走行可能範囲が設定される。
 例えば、図11は分岐点が直交の十字路である場合について、直進の走行可能範囲が設定される要領を示す説明図である。尚、図11及び後述の他の図に於いて、黒丸は車両12の走行方向に沿って見て白線102及び104が消失する点を示し、白丸は白線102及び104が回復する点を示しており、114は道路の表面に表記された進行可能な方向を示す道路標示を示している。
 図11に於いて、現在車両12が走行している走行路の白線102及び104が車両の走行方向へ特定の領域110に仮想の白線102A及び104Aとして延長される。また、交差点通過後に車両が走行する走行路の白線102及び104が車両の走行方向とは逆の方向へ特定の領域110に仮想の白線102B及び104Bとして延長される。尚、図11に於いて、102C及び104Cはそれぞれ仮想の白線102A及び104Aと仮想の白線102B及び104Bとの交点を示している。
 また、仮想の白線102Aと104Aとの間及び仮想の白線102Bと104Bとの間に、対応する白線より予め設定されたマージンだけ走行路の中央側へ変位された位置に直進の走行可能範囲の境界線102m及び104mが設定される。直進の走行可能範囲は境界線102mと104mとの間の範囲である。
 尚、以上の直進の走行可能範囲の設定は、分岐点が直交の十字路である場合に限るものではなく、例えば図12に示されている如く、分岐点が直交していない十字路である場合にも同様である。但し、この場合には車両の走行可能範囲は完全な直線状ではなく、分岐点に於いて或る角度傾斜する。
 また、分岐点がT字路である場合には、図11に於いて左折側の走行路又は右折側の走行路が存在しない場合と同一である。同様に、分岐点がY字路であり、走行経路が直進に近い側である場合には、図12に於いて右折側の走行路が存在しない場合と実質的に同一である。
 更に、車線が複数である場合には、図には示されていないが、現在車両が走行している車線及び車両が交差点を通過した後に走行する車線について上述の要領にて直進の走行可能範囲が設定される。
 ステップ330に於いては、例えば直進の走行可能範囲の中央を通過する線として暫定の目標軌跡が設定される。図11及び図12に於いて、116は境界線102m及び104mの間の中間点を結ぶ線として設定された暫定の目標軌跡を示している。
 ステップ335に於いては、分岐点に於ける走行タスクが左方向への旋回、即ち左折であるか否かの判別が行われる。そして、否定判別が行われたときには制御はステップ350へ進み、肯定判別が行われたときには制御はステップ340へ進む。
 ステップ340に於いては、地図上に於いて現在車両が走行している走行路の白線等及び車両が分岐点に於いて左方向へ旋回した後に車両が走行する走行路の白線等が特定の領域に延長されることにより、分岐点に於ける左旋回の走行可能範囲が設定される。
 例えば、図13は分岐点が直交の十字路である場合について、左折の走行可能範囲が設定される要領を示す説明図である。
 図13に於いて、現在車両12が走行している走行路の白線102及び104が特定の領域110に仮想の白線102D及び104Dとして延長される。また、車両が交差点を左折した後に車両が走行する走行路の白線102及び104が特定の領域110に仮想の白線102E及び104Eとして延長される。尚、図13に於いて、102F及び104Fはそれぞれ仮想の白線102D及び104Dと仮想の白線102E及び104Eとの交点を示している。
 また、仮想の白線102Dと104Dとの間及び仮想の白線102Eと104Eとの間に、対応する白線より予め設定されたマージンだけ走行路の中央側へ変位された位置に左折の走行可能範囲の境界線102m及び104mが設定される。この場合、旋回内輪側の角部におけるマージンの大きさは他の領域よりも大きい。左折の走行可能範囲は境界線102mと104mとの間の範囲である。
 尚、以上の左折の走行可能範囲の設定は、分岐点が直交の十字路である場合に限るものではなく、例えば図14に示されている如く、分岐点が直交していない十字路である場合にも同様である。但し、この場合には車両の走行可能範囲は直角に折れた形状ではなく、分岐点に於いて直角以外の角度にて折れた形状をなす。
 また、分岐点がT字路である場合には、図13に於いて右折側の走行路が存在しない場合と同一である。同様に、分岐点がY字路である場合には、図14に於いて右折側の走行路が存在しない場合と実質的に同一である。
 更に、車線が複数である場合には、例えば図13及び図14にそれぞれ対応する図15及び図16に示されている如く、現在車両が走行している車線及び車両が左折した後に走行する車線について上述の要領にて左折の走行可能範囲が設定される。図15及び図16に於いて、118は車線を分離する白線を示し、118D及び118Eは白線118が特定の領域110に延長された仮想の白線を示し、118Fは仮想の白線118D及び118Eの交点を示している。尚、図15及び図16に於いては、車両が右側の車線を走行する場合が図示されているが、車両が左側の車線を走行する場合も同様である。
 また、仮想の白線102Dと118Dとの間及び仮想の白線102Eと118Eとの間に、対応する白線より予め設定されたマージンだけ走行路の中央側へ変位された位置に左折の走行可能範囲の境界線102m及び118mが設定される。この場合、旋回内輪側の角部におけるマージンの大きさは他の領域よりも大きい。左折の走行可能範囲は境界線102mと118mとの間の範囲である。
 ステップ345に於いては、例えば左旋回の走行可能範囲の中央を通過する線として暫定の目標軌跡が設定される。図13及び図14に於いて、116は境界線102m及び104mの間の中間点を結ぶ線であって角部が円弧状をなす線として設定された暫定の目標軌跡を示している。また、図15及び図16に於いて、116は境界線102m及び118mの間の中間点を結ぶ線であって角部が円弧状をなす線として設定された暫定の目標軌跡を示している。
 ステップ350に於いては、分岐点に於ける走行タスクが右方向への旋回、即ち右折であるか否かの判別が行われる。そして、否定判別が行われたときには制御はステップ365進み、肯定判別が行われたときには制御はステップ355へ進む。
 ステップ355に於いては、地図上に於いて現在車両が走行している走行路の白線等及び車両が分岐点に於いて右方向へ旋回した後に車両が走行する走行路の白線等が特定の領域に延長されることにより、分岐点に於ける右旋回の走行可能範囲が設定される。
 例えば、図17は分岐点が直交の十字路である場合について、右折の走行可能範囲が設定される要領を示す説明図である。
 図17に於いて、現在車両12が走行している道路の全ての白線102及び104が特定の領域110に仮想の白線102D及び104Dとして延長される。また、現在車両12が走行している道路と交差する道路の全ての白線102及び104が特定の領域110に仮想の白線102E及び104Eとして延長される。尚、図17に於いて、102F及び104Fはそれぞれ仮想の白線102D及び104Dと仮想の白線102E及び104Eとの交点を示している。
 また、仮想の白線の交点102F、104F、102Fを結ぶ線が走行可能範囲を設定するための旋回外側の仮想の白線120として設定される。また、白線102と白線104との間隔と実質的に同一の距離Dだけ仮想の白線120が旋回内側へシフトされた線が旋回内側の仮想の白線122として設定される。
 また、仮想の白線102Dと104Dとの間及び仮想の白線120と122との間に、対応する白線より予め設定されたマージンだけ走行路の中央側へ変位された位置に右折の走行可能範囲の境界線102m及び104mが設定される。右折の走行可能範囲は境界線102mと104mとの間の範囲である。
 尚、以上の右折の走行可能範囲の設定は、分岐点が直交の十字路である場合に限るものではなく、例えば図18に示されている如く、分岐点が直交していない十字路である場合にも同様である。但し、この場合には車両の走行可能範囲は全体として直角に折れた形状ではなく、全体として分岐点に於いて直角以外の角度にて折れた形状をなす。
 また、分岐点がT字路である場合には、図17に於いて左折側の走行路が存在しない場合と同一である。同様に、分岐点がY字路である場合には、図18に於いて向かい側の走行路が存在しない場合と実質的に同一である。
 更に、車線が複数である場合には、例えば図17及び図18にそれぞれ対応する図19及び図20に示されている如く、現在車両が走行している車線及び車両が右折した後に走行する車線について上述の要領にて右折の走行可能範囲が設定される。図15及び図16の場合と同様に、118は車線を分離する白線を示し、118D及び118Eは白線118が特定の領域110に延長された仮想の白線を示している。118Fは仮想の白線118D及び118Eの交点を示している。尚、図19及び図20に於いては、車両が左側の車線を走行する場合が図示されているが、車両が右側の車線を走行する場合も同様である。
 また、仮想の白線の交点104F、118F、102F、104Fを結ぶ線が走行可能範囲を設定するための旋回外側の仮想の白線120として設定される。また、白線102と白線104との間隔と実質的に同一の距離Dだけ仮想の白線120が旋回内側へシフトされた線が旋回内側の仮想の白線122として設定される。
 また、仮想の白線102Dと104Dとの間及び仮想の白線120と122との間に、対応する白線より予め設定されたマージンだけ走行路の中央側へ変位された位置に右折の走行可能範囲の境界線120m及び122mが設定される。右折の走行可能範囲は境界線120mと122mとの間の範囲である。
 ステップ360に於いては、例えば右旋回の走行可能範囲の中央を通過する線として暫定の目標軌跡が設定される。図17及び図18に於いて、116は境界線102m及び104mの間を通る実質的に円弧状の線、又は境界線102m及び104mの間の中間点を結ぶ線であって角部が円弧状をなす線として設定された暫定の目標軌跡を示している。また、図19及び図20に於いて、116は境界線120m及び122mの間の中間点を結ぶ線であって角部が円弧状をなす線として設定された暫定の目標軌跡を示している。
 ステップ365に於いては、分岐点に於ける走行タスクがUターンであるか否かの判別が行われる。そして、否定判別が行われたときにはステップ370に於いて車両が特定の領域に入った段階で軌跡制御が中止され、肯定判別が行われたときには制御はステップ375へ進む。
 ステップ375に於いては、地図上に於いて各走行路の白線等が特定の領域に延長されることにより、分岐点に於けるUターンの走行可能範囲が設定される。
 例えば、図21は分岐点が直交の十字路である場合について、Uターンの走行可能範囲が設定される要領を示す説明図である。
 図21に於いて、現在車両12が走行している道路の全ての白線102及び104が特定の領域110に仮想の白線102D及び104Dとして延長される。また、現在車両12が走行している道路と交差する道路の中央の白線102及び手前側の路肩の白線104が、特定の領域110にそれぞれ仮想の白線102E及び104Eとして延長される。尚、図21に於いて、102F及び104Fはそれぞれ仮想の白線102D及び104Dと仮想の白線102E及び104Eとの交点を示している。また、104G及び104Hはそれそれぞれ対向車線側の仮想の白線104Dと仮想の白線102E及び104Eとの交点を示している。
 また、仮想の白線の交点104F、102F、104G、104Hを結ぶ線124及び104Dが走行可能範囲を設定するための旋回外側の仮想の白線として設定される。また、旋回外側の仮想の白線が白線102と白線104との間隔と実質的に同一の距離だけ旋回内側へシフトされた線が旋回内側の仮想の白線として設定されてもよいが、この仮想の白線は設定されなくてもよい。
 また、仮想の白線104D、124、104Dより予め設定されたマージンだけ旋回内側へ変位された位置にUターンの走行可能範囲の境界線124mが設定される。Uターンの走行可能範囲は境界線124mより旋回内側で走行が可能な範囲である。
 尚、以上のUターンの走行可能範囲の設定は、分岐点が直交の十字路である場合に限るものではなく、例えば図22に示されている如く、分岐点が直交していない十字路である場合にも同様である。但し、この場合には車両の走行可能範囲の形状は分岐点が直交の十字路である場合とは異なる形状になる。
 また、分岐点がT字路である場合には、図21に於いて向かい側又は左折側又は右折側の走行路が存在しない場合と同一である。同様に、分岐点がY字路である場合には、図22に於いて向かい側又は右折側の走行路が存在しない場合と実質的に同一である。更に、車線が複数である場合にも、車線が一車線である場合と同様に車両の走行可能範囲が設定される。但し、この場合には、車両が十字路を右折する場合と同様に、旋回内側の走行可能範囲の境界線も設定される。
 ステップ380に於いては、Uターンの走行可能範囲の境界線124mよりも旋回内側を通る線として暫定の目標軌跡が設定される。図21及び図22に於いて、116は境界線124mよりも旋回内側を通る実質的に円弧状の線、又は境界線124mに沿う線であって角部が円弧状をなす線として設定された暫定の目標軌跡を示している。
<撮像情報に基づく暫定の目標軌跡の設定>
 次に、図5に示されたフローチャートを参照して、上述のステップ400に於ける撮像情報に基づく暫定の目標軌跡の設定について説明する。
 まず、ステップ410に於いては、CCDカメラ68により取得された車両12の前方の画像情報に基づいて車両の前方の分岐点の地図が作成されると共に、地図上に於ける自車の現在地が特定される。尚、分岐点の地図は、通常の軌跡制御より暫定の軌跡制御への移行が開始された時点に於いてCCDカメラ68により取得された画像情報に基づいて作成されるが、その後CCDカメラ68により取得された画像情報に基づいて逐次補正されてよい。
 図23は車両12が直交の十字路の手前を走行する際にCCDカメラ68により撮像される範囲の境界112及び撮像により認識される十字路の範囲126を示している。図23に示された十字路の場合には、まず範囲126について十字路の地図が作成されると共に、地図上に於ける自車の現在地が特定される。
 また、図24及び図25はそれぞれ地図が作成された後に車両12が直交の十字路を直進する場合及び右折する場合を示している。これらの図に於いて、126F及び126Nはそれぞれ移行の軌跡制御が開始された時点及び現時点に於いて撮像により認識される十字路の範囲を示している。これらの図に於いて、範囲126F及び126Nが互いに重なる領域は、地図の精度が高くなるよう必要に応じて地図の情報が修正される領域である。また、範囲126Nのみの領域は、地図の範囲が広くなるよう必要に応じて地図の情報が追加される領域である。
 ステップ415に於いては、ステップ410に於いて作成された地図の白線等に基づいて、特定の領域の周りの全ての道路について白線等の間の領域が抽出されることにより、車両が通行可能な領域が進路として抽出される。
 図26は作成された直交の十字路の地図128を示している。ステップ415に於いては、地図128に於いて、現在車両12が走行している走行路を除き、特定の領域110の周りの全ての道路について白線102と104との間の全ての領域が進路130として抽出される。
 ステップ420に於いては、CCDカメラ68により取得された画像情報に含まれる道路標識や道路標示に基づいて、ステップ415に於いて抽出された進路のうち選択可能な進路が特定される。この場合に使用される道路標識や道路標示は、例えば「直進及び左折のみ可」、「右折禁止」、「Uターン禁止」、「進入禁止」、「車両の通行禁止」の如く、車両の進行の可否を示すものである。また、自車が進行しようとすると、道路標識や道路標示の天地が逆に見える進路、即ち逆走することになる進路の道路標識や道路標示も使用されてよい。
 図27は「直進及び左折のみ可」又は「右折禁止」及び「Uターン禁止」の道路標識や道路標示があることにより、図26に示された進路130のうち選択可能な進路が直進の進路130A及び左折の進路130Bに特定される状況を示している。尚、図27及び後述の図28に於いて、×は選択不可能な進路であることを示している。
 ステップ425に於いては、進行すべき一つの進路が特定されたか否かの判別、即ち、ステップ420に於いて進路が一つに特定されたか否かの判別が行われる。そして、肯定判別が行われたときには制御はステップ455へ進み、否定判別が行われたときには制御はステップ430へ進む。
 ステップ430に於いては、車両がステップ420に於いて特定された各進路を走行する場合の走行軌跡の曲率、前輪の舵角、車両の横加速度、車両のヨーレートの大きさの変化が推定され、何れかの最大値が基準値(正の値)を越えるか否かが判定される。そして、上記判定用パラメータの何れかの大きさの最大値が基準値を越えない進路が進行可能な進路として判定される。
 図28は、図27に示された十字路に於いて、車両12がそれぞれ直進の進路130A及び左折の進路130Bを走行する場合の暫定の目標軌跡132A及び132Bを示している。そして、車両12がそれぞれ暫定の目標軌跡132A及び132Bに沿って走行する場合に於ける上記判定用パラメータの絶対値の変化が推定される。図29の実線及び破線は、それぞれ車両12がそれぞれ暫定の目標軌跡132A及び132Bに沿って走行する場合に於ける上記判定用パラメータの絶対値の変化の例を示している。
 図29に示されている如く、車両12が暫定の目標軌跡132Aに沿って走行する場合には判定用パラメータの絶対値は基準値以下であるが、車両12が暫定の目標軌跡132Bに沿って走行する場合に判定用パラメータの絶対値が基準値を越えるとする。この場合には、直進の進路130Aは進行可能な進路と判定されるが、左折の進路130Bは進行不可能な進路と判定される。
 尚、判定用パラメータは、走行軌跡の曲率、前輪の舵角、車両の横加速度、車両のヨーレートの一つ又は任意の組合せであってよい。また、基準値は、各判定用パラメータについて一定の値であってもよいが、例えば図30に示されている如く、車速Vが高いほど小さくなるよう、車速Vに応じて可変設定されてもよい。
 ステップ435に於いては、進行すべき一つの進路が判定されたか否かの判別、即ちステップ430に於いて進路が一つに判定されたか否かの判別が行われる。そして、肯定判別が行われたときには制御はステップ455へ進み、否定判別が行われたときには制御はステップ440へ進む。
 ステップ440に於いては、進路に関する乗員の意思表示及び/又は車両が特定の領域を走行する際の走行状態の変化に基づいて、選択可能な複数の進路の中から進行すべき一つの進路が推定される。
 まず、進路に関する乗員の意思表示があるか否かが判定される。例えば、ウインカが操作されていれば、ウインカが操作されている側の進路が進行すべき一つの進路と推定される。また、運転者によりステアリングホイールが右旋回方向又は左旋回方向へ転舵されているときには、その転舵されている側の進路が進行すべき一つの進路と推定される。更に、「左」、「直進」、「右」の如く乗員が希望する進路を示す音声を検出したときには、検出された方向の進路が進行すべき一つの進路と推定される。
 また、乗員に進路に関する意思表示がないと判定されたときには、車両が特定の領域を走行する際に生じる車両の走行状態の変化が推定され、その変化が最も少ない進路が進行すべき一つの進路と推定される。この場合、判定される走行状態は、例えば、車両の走行軌跡の曲率、左右前輪の舵角、車両のヨーレートや横加速度の如き旋回状態量であってよい。尚、走行状態の変化に差がない場合には、直進又は直進に近い進路が進行すべき一つの進路と推定される。
 ステップ445に於いては、進行すべき一つの進路が推定されたか否かの判別、即ちステップ440に於いて進路が一つに推定されたか否かの判別が行われる。そして、肯定判別が行われたときには制御はステップ455へ進み、否定判別が行われたときにはステップ450に於いてステップ310の場合と同様に車両が特定の領域に入った段階で軌跡制御が中止される。
 ステップ455に於いては、ステップ420、430又は440に於いて決定された進行すべき一つの進路に基づいて、車両を当該進路に沿って走行させるための暫定の目標軌跡が設定される。尚、暫定の目標軌跡の設定自体は、上述のナビゲーション情報に基づく暫定の目標軌跡の設定と同一の要領にて行われてよい。
<通常の軌跡制御より暫定の軌跡制御への移行の目標軌跡の設定>
 次に、図6に示されたフローチャートを参照して、図3に示されたフローチャートのステップ600に於いて実行される通常の軌跡制御より暫定の軌跡制御への移行の目標軌跡の設定について説明する。
 まず、ステップ610に於いては、移行の目標軌跡が既に設定されているか否かの判別が行われ、肯定判別が行われたときには制御はステップ910へ進み、否定判別が行われたときには制御はステップ620へ進む。
 ステップ620に於いては、地図上に於ける自車の現在地及び進行方向が推定されると共に、自車の現在地及び進行方向に基づいて地図上に通常の軌跡制御より暫定の軌跡制御への移行のための座標系が設定される。
 図31は例示として車両が直交の十字路に差し掛かる際に設定される座標系を示している。図30に示されている如く、原点が車両12の現在地、例えば車両の重心Gに位置し、x軸が車両の車幅方向(右方向が正)に整合し、y軸が車両の前後方向(進行方向が正)に整合するよう、座標系が設定される。
 ステップ630に於いては、通常の目標軌跡の終端の位置(ステップ620に於いて設定された座標系に於ける座標(Xtne,Ytne))及び終端に於ける通常の目標軌跡の傾斜角角度(y軸方向に対する角度αtne)が演算される。
 ステップ640に於いては、暫定の目標軌跡の始端の位置(ステップ620に於いて設定された座標系に於ける座標(Xtps,Ytps))及び始端に於ける暫定の目標軌跡の傾斜角(y軸方向に対する角度αtps)が演算される。
 ステップ650に於いては、通常の目標軌跡を暫定の目標軌跡に滑らかに接続するための移行の目標軌跡が通常の目標軌跡を修正することによって設定される。この場合、移行の目標軌跡は、例えば座標(Xtne,Ytne)及び(Xtps,Ytps)、角度αtne及びαtps、車両12の現在地から暫定の目標軌跡制御が開始される位置までの距離又はその距離を走行するに要する時間に基づいて設定されてよい。
 図32は暫定の目標軌跡の終端及び通常の目標軌跡の始端のy座標及び角度αtne及びαtpsは同一であるが、x座標Xtne及びXtpsが互いに異なる場合に於ける移行の目標軌跡の一例を示している。この場合には、図32に示されている如く、通常の目標軌跡134の終端134Eのx座標Xtneと暫定の目標軌跡116の始端116Sのx座標Xtpsとが一致するよう、通常の目標軌跡134が修正されることにより移行の目標軌跡136が設定される。
 また、図33は暫定の目標軌跡の終端及び通常の目標軌跡の始端のx座標及びy座標は同一であるが、角度αtne及びαtpsが互いに異なる場合に於ける移行の目標軌跡の一例を示している。この場合には、図33に示されている如く、終端134Eに於ける通常の目標軌跡134の傾斜角と始端116Sに於ける暫定の目標軌跡116の傾斜角とが一致するよう、通常の目標軌跡134が修正されることにより移行の目標軌跡136が設定される。
 図34は暫定の目標軌跡の終端及び通常の目標軌跡の始端のy座標は同一であるが、x座標Xtne、Xtp及び角度αtne、αtpsがそれぞれ互いに異なる場合に於ける移行の目標軌跡の一例を示している。この場合には、図34に示されている如く、終端134Eに於ける通常の目標軌跡134のx座標及び傾斜角と始端116Sに於ける暫定の目標軌跡116のx座標及び傾斜角とがそれぞれ一致するよう、移行の目標軌跡136が設定される。また、分岐点が直交の十字路以外の分岐点である場合にも、同様に移行の目標軌跡136が設定される。
 尚、図には示されていないが、図32乃至図34に示された状況に加えて通常の目標軌跡134の終端134Eのy座標Ytneと暫定の目標軌跡116の始端116Sのy座標Ytpとが異なる場合には、それらも一致するよう移行の目標軌跡136が設定される。
<暫定の軌跡制御より通常の軌跡制御への移行の目標軌跡の設定>
 次に、図7に示されたフローチャートを参照して、図3に示されたフローチャートのステップ800に於いて実行される暫定の軌跡制御より通常の軌跡制御への移行の目標軌跡の設定について説明する。
 まず、ステップ810に於いては、移行の目標軌跡が既に設定されているか否かの判別が行われ、肯定判別が行われたときには制御はステップ910へ進み、否定判別が行われたときには制御はステップ820へ進む。
 ステップ820に於いては、地図上に於ける自車の現在地及び進行方向が推定されると共に、自車の現在地及び進行方向に基づいて地図上に暫定の軌跡制御より通常の軌跡制御への移行のための座標系が設定される。
 図35は例示として車両が直交の十字路を通過する際に設定される座標系を示している。図35に示されている如く、車両が直交の十字路に差し掛かる場合と同様に、原点が車両12の現在地、例えば車両の重心に位置し、x軸が車両の車幅方向(右方向が正)に整合し、y軸が車両の前後方向(進行方向が正)に整合するよう、座標系が設定される。
 ステップ830に於いては、暫定の目標軌跡の終端の位置(ステップ820に於いて設定された座標系に於ける座標(Xtpe,Ytpe))及び終端に於ける暫定の目標軌跡の傾斜角(y軸方向に対する角度αtpe)が演算される。
 ステップ840に於いては、通常の目標軌跡の始端の位置(ステップ820に於いて設定された座標系に於ける座標(Xtns,Ytns))及び始端に於ける通常の目標軌跡の傾斜角角度(y軸方向に対する角度αtns)が演算される。
 ステップ850に於いては、暫定の目標軌跡を通常の目標軌跡に滑らかに接続するための移行の目標軌跡が通常の目標軌跡を修正することによって設定される。この場合、移行の目標軌跡は、例えば座標(Xtpe,Ytpe)及び(Xtns,Ytns)、角度αtpe及びαtns、予め設定された移行の時間又は移行の距離に基づいて設定されてよい。尚、移行の時間又は移行の距離は一定であってもよいが、車速Vに応じて可変設定されてもよい。
 図36は暫定の目標軌跡の終端及び通常の目標軌跡の始端のy座標及び角度αtpe及びαtnsは同一であるが、x座標Xtpe及びXtnsが互いに異なる場合に於ける移行の目標軌跡の一例を示している。この場合には、通常の目標軌跡134が図36に示されている如く修正されることにより移行の目標軌跡136が設定される。即ち、移行の目標軌跡136は、その始端のx座標が暫定の目標軌跡116の終端116Eのx座標Xtpeと一致し、移行の目標軌跡136が徐々に通常の目標軌跡134に近づいて最終的に両者の軌跡が一致するよう設定される。
 また、図37は暫定の目標軌跡の終端及び通常の目標軌跡の始端のx座標及びy座標は同一であるが、角度αtne及びαtpsが互いに異なる場合に於ける移行の目標軌跡の一例を示している。この場合には、通常の目標軌跡134が図37に示されている如く修正されることにより移行の目標軌跡136が設定される。即ち、移行の目標軌跡136は、その始端の角度が暫定の目標軌跡116の終端116Eの角度と一致し、移行の目標軌跡136の方向が徐々に通常の目標軌跡134の方向に近づいて最終的に両者の軌跡が一致するよう設定される。
 図38は暫定の目標軌跡の終端及び通常の目標軌跡の始端のy座標は同一であるが、x座標Xtne、Xtp及び角度αtne、αtpsがそれぞれ互いに異なる場合に於ける移行の目標軌跡の一例を示している。この場合には、通常の目標軌跡134が図38に示されている如く修正されることにより移行の目標軌跡136が設定される。即ち、移行の目標軌跡136は、その始端の角度が暫定の目標軌跡116の終端116Eの角度と一致し、移行の目標軌跡136が徐々に通常の目標軌跡134に近づいて最終的に両者の軌跡が一致するよう設定される。
 尚、図には示されていないが、図36乃至図38に示された状況に加えて暫定の目標軌跡116の始端116Sのy座標Ytpsと通常の目標軌跡134の終端134Eのy座標Ytneとが異なる場合には、それらも一致するよう移行の目標軌跡136が設定される。また、分岐点が直交の十字路以外の分岐点である場合にも、同様に移行の目標軌跡136が設定される。
<旋回を伴う暫定の目標軌跡の設定>
(1)車体の最小旋回半径及び最大旋回半径
 上述のステップ345、360、380、455に於いては、旋回を伴う暫定の目標軌跡が設定される。これらのステップに於いては、暫定の目標軌跡は走行可能範囲内を通る軌跡のうち車両の旋回横加速度の大きさ及びその変化率の大きさの少なくとも一方が最小になる軌跡とされることが好ましい。
 また、周知の如く、車両が旋回する場合には、旋回半径の内輪差及び外輪差が発生する。旋回半径の内輪差及び外輪差は車両が交差点等に於いて旋回する場合の如く、車両の旋回半径が小さいほど大きくなるため、旋回を伴う暫定の目標軌跡は内輪差及び外輪差を考慮して設定される必要がある。
 図39に示されている如く、車両12の重心Gと前輪車軸及び後輪車軸との間の距離をそれぞれLf及びLrとし、車両のホイールベースをL(=Lf+Lr)とする。また、前輪及び後輪のトレッドをそれぞれTrf及びTrrとし、車体の幅をBWとし、車体のフロントオーバハング長さをLovfとする。更に、ステアリングホイール20を最大限転舵した状態にて車両が旋回する場合に旋回外側前輪のタイヤのトレッドセンタが描く軌跡の半径Rfoを最小回転半径Rminと定義する。
 また、図39に示されている如く、後輪車軸の中心Orと車両12の旋回中心Ovとを通る直線を基準線Lbとし、車両12の重心Gと旋回中心Ovとを通る直線Lgが基準線Lbに対しなす角度をαgとする。車両12の重心Gの旋回半径Rgは下記の式1により表される。
 Rg=Lr/sinαg …(1)
 また、前輪車軸の中心Ofと車両12の旋回中心Ovとを通る直線が基準線Lbに対しなす角度をαfとすると、前輪車軸の中心Ofの旋回半径Rfc及び後輪車軸の中心Orの旋回半径Rrcはそれぞれ下記の式2及び3により表される。
 Rfc=L/sinαf …(2)
 Rrc=L/tanαf …(3)
 旋回外側前輪の旋回半径Rfo及び旋回内側前輪の旋回半径Rfiはそれぞれ下記の式4及び5により表され、旋回外側後輪の旋回半径Rro及び旋回内側後輪のRriはそれぞれ下記の式6及び7により表される。
 Rfo=Rfc+Trf/2*cosαf …(4)
 Rfi=Rfc-Trf/2*cosαf …(5)
 Rro=Rrc+Trr/2 …(6)
 Rri=Rrc-Trr/2 …(7)
 車両12の車体の各部のうち旋回半径が最小になるのは、基準線Lbと車体の外形線とが交差する点Pinであり、車体の最小旋回半径Rbi、即ち点Pinが描く旋回軌跡の半径は、下記の式8により表される。
 Rbi=Rrc-BW/2 …(8)
 また、車両12の車体の各部のうち旋回半径が最大になるのは、車体の旋回外側の前端角部の点Poutであり、点Poutと前輪車軸の中心Ofと間の距離Loutは下記の式9により表される。よって、車体の最大旋回半径Rbo、即ち点Poutが描く旋回軌跡の半径は、実質的に下記の式10により表される値になる。
 Lout={(BW/2)+Lof1/2 …(9)
 Rbo=Rfc+Lout …(10)
 また、車両12の重心G、前輪車軸の中心Of、後輪車軸の中心Or、車両12の旋回中心Ovの間の距離の関係から、下記の式11が成立するので、角度をαgは下記の式12により表される。
 tanαg=Lr/Rrc
    =Lr/(L/tanαf)
    =(Lr/L)*tanαf …(11)
 αf=tan-1{tanαg/(Lr/L)} …(12)
 上記式3及び8より、車体の最小旋回半径Rbiは下記の式13により表され、上記式2及び10より、車体の最大旋回半径Rboは下記の式14により表される。但し、角度αgは下記の式15により表される。
 Rbi=Rrc-BW/2
   =L/tanαf-BW/2
   =L/tan[tan-1{tanαg/(Lr/L)}]-BW/2
   =L/tanαg/(Lr/L)-BW/2
   =(L/Lr)tanαg-BW/2 …(13)
 Rbo=Rfc+Lout
   =L/sinαf+{(BW/2)+Lof1/2
   =L/[sin{tan-1(tanαg/(Lr/L))}]+{(BW/2)+Lof1/2
   =L/[sin{tan-1(tanαg/(Lr/L))}]+{(BW/2)+Rfc1/2
    …(14)
 αg=sin-1(Lr/Rg) …(15)
 以上の説明より解る如く、車両12の重心Gの旋回半径Rgが求まれば、換言すれば重心Gに於ける目標軌跡の半径Rが求まれば、上記式13及び14に従って車体の最小旋回半径Rbi及び車体の最大旋回半径Rboを求めることができる。
(2)車体の旋回半径を考慮した暫定の目標軌跡の設定
 特定の領域110が複数の区間に区分され、各区間の走行可能範囲の旋回内側の境界線及び旋回外側の境界線の間の中間点を結ぶ線であって角部が円弧状をなす線として暫定の目標軌跡が設定される。この場合、各区間の暫定の目標軌跡は、前輪の舵角の増減変化が少なく、車両の良好な乗り心地性を確保することができるよう、クロソイド曲線を使用して設定されることが好ましい。
 次いで、各区間の暫定の目標軌跡について、各位置に於ける半径Rが求められ、上記式13及び14に従って車体の最小旋回半径Rbi及び車体の最大旋回半径Rboを求めることにより、各区間について車体の最小旋回軌跡及び最大旋回軌跡が求められる。そして、車体の最小旋回軌跡又は最大旋回軌跡が走行可能範囲内にない場合には、最小旋回軌跡及び最大旋回軌跡が走行可能範囲内になるよう、暫定の目標軌跡が修正される。
 例えば、図40は車両が直交の十字路を左折する場合について、特定の領域110が二つの区間に区分される要領及び車体の最小旋回軌跡及び最大旋回軌跡が求められる要領を示している。図40に於いて、特定の領域110が十字路の角の位置を境にして最初の区間110Aと次の区間110Bとに区分されている。そして、140Ain及び140Aoutはそれぞれ最初の区間110Aの車体の最小旋回軌跡及び最大旋回軌跡を示し、140Bin及び140Boutはそれぞれ次の区間110Bの車体の最小旋回軌跡及び最大旋回軌跡を示している。
 図41(A)は、一例として車体の最小旋回軌跡が走行可能範囲内にない場合を示している。この場合には、図41(B)に示されている如く、最初の区間110Aの暫定の目標軌跡の始点及び次の区間110Bの暫定の目標軌跡の終点が十字路の中心に近い位置へ移動され、しかる後上述の車体の旋回半径を考慮した暫定の目標軌跡の設定が再度実行される。
 また、図42(A)は、暫定の目標軌跡の始点及び終点が交差点の中心に近い位置へ移動されても、車体の最小旋回軌跡が走行可能範囲内に移動しない場合を示している。この場合には、図42(B)に示されている如く、最初の区間110Aの暫定の目標軌跡の始点及び次の区間110Bの暫定の目標軌跡の終点が旋回外側の位置へ移動され、しかる後上述の車体の旋回半径を考慮した暫定の目標軌跡の設定が再度実行される。
 図42に示された処理によっても車体の最小旋回軌跡が走行可能範囲内に移動しない場合には、車体の最小旋回軌跡が走行可能範囲内に移動するよう、暫定の目標軌跡が円弧の軌跡に設定されるか、特定の領域110が三つ以上の区間に区分される。
 尚、図には示されていないが、車体の最大旋回軌跡が走行可能範囲内にない場合には、最初の区間110Aの暫定の目標軌跡の始点及び次の区間110Bの暫定の目標軌跡の終点が十字路の中心より遠い位置へ移動される。また、この移動によっても車体の最大旋回軌跡が走行可能範囲内に移動しない場合には、始点及び終点が旋回内側の位置へ移動される。
<自車の現在地の推定>
 次に上述のステップ910に於いて実行される「自車の現在地の推定」について説明する。尚、通常の軌跡制御は、自車の現在地が認識された状態にて行われるので、自車の現在地の推定は、暫定の軌跡制御及び移行の軌跡制御に於いて行われる。
 前輪の舵角(操舵角θをオーバオールステアリングギヤ比にて除算した値)をδとすると、車両のヨーレートγ及びスリップ角βはそれぞれ下記の式16及び17により表される。尚、車速Vは車速センサ70により検出された値であるが、四輪の車輪速度の平均値として求められてもよい。また、ヨーレートγはヨーレートセンサ74により検出された値であってもよい。
 γ=V/L*δ …(16)
 β=Lr/L*δ …(17)
 車両の重心Gのx座標及びy座標の変化率dX/dt及びdY/dtは、それぞれ下記の式18及び19により表される。よって、車両の現在地、即ち、重心Gの座標(X,Y)は下記の式20及び21により表される値として推定される。尚、車両のヨー角φ(図43参照)は下記の式22により表される。
 dX/dt=Vcos(β+φ) …(18)
 dY/dt=Vsin(β+φ) …(19)
Figure JPOXMLDOC01-appb-M000001
 尚、制御開始時の車両の重心Gの位置が座標の原点ではない場合には、制御開始時の車両の重心Gの座標を(X0,Y0)とし、車両のヨー角をφ0として、車両の現在地、即ち、重心Gの座標(X,Y)は下記の式23及び24により表され、車両のヨー角φは下記の式25により表される。
Figure JPOXMLDOC01-appb-M000002
<暫定又は移行の軌跡制御>
(1)目標軌跡の半径R等の推定
 まず、図43に示されている如く、車両12の重心Gに於ける目標軌跡150、即ち、暫定の目標軌跡又は移行の目標軌跡の半径Rが推定される。また、目標軌跡150に対する車両12の重心Gの横偏差Dyが推定されると共に、目標軌跡150に対する車両12のヨー角φが推定される。
(2)車両の目標横加速度Gytの演算
 まず、目標軌跡の半径Rと符号が同一で半径Rの大きさが大きいほど大きい微小な値として車両の目標ヨー角ψtが演算される。そして、Kr、Ky、Kpを予め設定されたゲイン使用して下記の式26に従って車両を目標軌跡に沿って走行させるための車両の目標横加速度Gytが演算される。尚、下記の式26に於いて、Dytは横偏差Dyの目標値であり、0であってよい。
 Gyt=Kr×R+Ky(Dyt-Dy)+Kp(ψt-ψ) …(26)
(3)目標舵角δtの演算及び前輪の舵角の制御
 車両の目標横加速度Gyt及び車速Vに基づいて図44に示されたマップより暫定又は移行の軌跡制御のための左右前輪の目標舵角δtが演算される。そして、目標舵角δtに対応するピニオン36の目標角度θptが演算され、ピニオン36の角度が目標角度θptになるよう、舵角可変装置30が制御され、これにより前輪の舵角が目標舵角δtに制御される。この場合、前輪の舵角は、目標舵角δtに基づいてフィードバック制御及びフィードフォワード制御の少なくとも一方により制御される。
<運転者協調制御>
 次に上述のステップ950に於いて運転者協調制御として実行される「目標軌跡修正制御」及び「分岐点タスク変更制御」について説明する。
(1)「目標軌跡修正制御」
 例えば、暫定の軌跡制御開始時の操舵角θを基準操舵角θ0として、暫定の軌跡制御中の操舵角θと基準操舵角θ0との差が運転者の操舵操作量Δθとして演算される。そして、操舵操作量Δθの絶対値が第一の基準値Δθ1よりも大きく第二の基準値Δθ2よりも小さい状況が基準時間Td1以上継続したか否かの判別が行われる。否定判別が行われたときには、暫定の目標軌跡は修正されないが、肯定判別が行われたときには、暫定の目標軌跡が運転者の操舵操作を反映する側へ修正される。尚、基準値Δθ1及びΔθ2は正の値であり、Δθ2はΔθ1よりも大きい。また基準時間Td1も正の値である。
 例えば、図45は暫定の目標軌跡が直交の十字路を左折する軌跡であり、運転者により左折方向の操舵角が低減される場合に於ける暫定の目標軌跡の修正を示す説明図である。図45に於いて、116は元の暫定の目標軌跡を示しており、116Aは修正後の暫定の目標軌跡を示している。二つの暫定の目標軌跡の比較より解る如く、暫定の目標軌跡が運転者の操舵操作を反映する側へ修正される。
 尚、車両が修正後の暫定の目標軌跡に沿って走行しようとすると、車両が障害物に接触する等により車両が修正後の暫定の目標軌跡に沿って走行することができないと判定される場合には、暫定の目標軌跡の修正が行われることなく暫定の軌跡制御が中止される。
(2)「分岐点タスク変更制御」
 例えば、操舵操作量Δθの絶対値が第三の基準値Δθ3よりも大きく第四の基準値Δθ4よりも小さい状況が基準時間Td2以上継続したか否かの判別が行われる。否定判別が行われたときには、分岐点でのタスクは変更されないが、肯定判別が行われたときには、分岐点でのタスクが運転者の操舵操作を反映するタスクへ変更される。尚、基準値Δθ3及びΔθ4はΔθ2以上の正の値であり、Δθ4はΔθ3よりも大きい。また基準時間Td2も正の値である。
 例えば、図46は分岐点でのタスクが直交の十字路を左折することであり、運転者により車両が直進するよう操舵角θが変更される場合に於ける分岐点でのタスクの変更を示す説明図である。図46に於いて、116は元の暫定の目標軌跡を示しており、116Bは分岐点でのタスクが直進になるよう修正された暫定の目標軌跡を示している。二つの暫定の目標軌跡の比較より解る如く、運転者の希望するタスクを達成することができるよう暫定の目標軌跡が修正される。
 尚、この場合にも車両が修正後の暫定の目標軌跡に沿って走行しようとすると、設定されたマージンを逸脱したり、車両が修正後の暫定の目標軌跡に沿って走行できないと判定される場合には、暫定の目標軌跡は変更されず、暫定の軌跡制御は中止される。
 また、暫定の目標軌跡が直進、右旋回、Uターンである場合に於いて、操舵角が運転者により左旋回方向へ変更されると、暫定の目標軌跡はそれぞれ左旋回、直進、右旋回の暫定の目標軌跡に変更される。また、暫定の目標軌跡が左旋回、直進、右旋回である場合に於いて、操舵角が運転者により右旋回方向へ変更されると、暫定の目標軌跡はそれぞれ直進、右旋回、Uターンの暫定の目標軌跡に変更される。
<第一の実施形態の作動>
 次に上述の如く構成された第一の実施形態の作動を車両の種々の走行状況について説明する。
(1)車両が分岐点のない道路を走行している場合
 この場合には暫定の軌跡制御は不要であるので、車両が通常の目標軌跡に沿って走行するよう通常の軌跡制御が実行される。即ち、ステップ10及び30に於いて肯定判別が行われ、ステップ70に於いて通常の目標軌跡が設定される。また、ステップ90、130及び150に於いて否定判別が行われ、ステップ170に於いてフラグFnp及びFpnが0にリセットされ、ステップ190に於いて車両が通常の目標軌跡に沿って走行するよう通常の軌跡制御が実行される。
(2)車両が分岐点に差し掛かった場合
(2-1)許可スイッチ78がオンの場合
 この場合には通常の軌跡制御から暫定の軌跡制御へ移行するための移行の軌跡制御が実行される。即ち、ステップ10及び30に於いて肯定判別が行われ、ステップ70に於いて通常の目標軌跡が設定される。また、ステップ90及び130に於いて否定判別が行われるが、ステップ150に於いて肯定判別が行われ、ステップ160に於いてフラグFnpが1にセットされると共に、フラグFpnが0にリセットされる。そして、ステップ210に於いて肯定判別が行われるが、ステップ250に於いて否定判別が行われる。
 ナビゲーション装置80が作動中であり、ナビゲーション情報に基づく暫定の軌跡制御が可能である場合には、ステップ270及び290に於いて肯定判別が行われる。よって、ステップ300に於いて図4に示されたフローチャートに従ってナビゲーション情報に基づいて暫定の目標軌跡が設定される。
 これに対し、ナビゲーション装置80が作動中でない場合には、ステップ270に於いて否定判別が行われる。また、ナビゲーション装置80が作動中であるが、ナビゲーション情報に基づく暫定の軌跡制御が不可能である場合には、ステップ270に於いて肯定判別が行われるが、ステップ290に於いて否定判別が行われる。よって、これらの場合には、ステップ400に於いて図5に示されたフローチャートに従ってCCDカメラ68による撮像情報に基づいて暫定の目標軌跡が設定される。
 また、フラグFnpが1にセットされているので、ステップ510に於いて肯定判別が行われ、ステップ600に於いて図6に示されたフローチャートに従って通常の軌跡制御より暫定の軌跡制御への移行の目標軌跡が設定される。そして、ステップ910に於いて自車の現在地が推定され、ステップ930に於いて車両が移行の目標軌跡に沿って走行するよう移行の軌跡制御が実行される。
(2-2)許可スイッチ78がオフの場合
 この場合には通常の軌跡制御から暫定の軌跡制御へ移行するための移行の軌跡制御は実行されない。即ち、ステップ10及び30に於いて肯定判別が行われ、ステップ70に於いて通常の目標軌跡が設定される。また、ステップ90及び130に於いて否定判別が行われ、ステップ150に於いて肯定判別が行われ、ステップ160に於いてフラグFnpが1にセットされると共に、フラグFpnが0にリセットされる。そして、ステップ210に於いて否定判別が行われるが、フラグFnpが1であるので、車両が分岐点での走行を開始する直前まで、移行の軌跡制御が行われることなくステップ190による通常の軌跡制御が継続される。
(3)車両が特定の領域を走行している場合
(3-1)許可スイッチ78がオンの場合
 この場合には通常の軌跡制御から暫定の軌跡制御への移行を完了した後であるので、暫定の軌跡制御が実行される。即ち、ステップ10に於いて肯定判別が行われるが、ステップ30に於いて否定判別が行われ、ステップ50に於いてフラグFnp及びFpnが0にリセットされる。
 そして、ステップ210及び250に於いて肯定判別が行われ、ステップ510及び710に於いて否定判別が行われる。そして、ステップ910に於いて自車の現在地が推定され、ステップ930に於いて車両が暫定の目標軌跡に沿って走行するよう暫定の軌跡制御が実行される。
(3-2)許可スイッチ78がオフの場合
 この場合には暫定の軌跡制御は実行されない。即ち、(3-1)の場合と同様に、ステップ10に於いて肯定判別が行われるが、ステップ30に於いて否定判別が行われ、ステップ50に於いてフラグFnp及びFpnが0にリセットされる。
 しかし、許可スイッチ78がオフであるので、ステップ210に於いて否定判別が行われる。そして、フラグFnpが0であり、ステップ230に於いて軌跡制御が中止されその状態が維持されるので、車両が特定の領域を走行している間は暫定の軌跡制御も通常の軌跡制御も行われない。
(4)車両が特定の領域での走行を終了する場合
(4-1)許可スイッチ78がオンの場合
 この場合には暫定の軌跡制御から通常の軌跡制御への移行が必要であるので、暫定の軌跡制御から通常の軌跡制御への移行の軌跡制御が実行される。即ち、ステップ10及び30に於いて肯定判別が行われ、ステップ70に於いて通常の目標軌跡が設定される。また、ステップ90に於いて肯定判別が行われ、ステップ110に於いてフラグFnpが0にリセットされると共に、フラグFpnが1にセットされる。
 また、ステップ210及び250に於いて肯定判別が行われ、ステップ510に於いて否定判別が行われるが、ステップ710に於いて肯定判別が行われる。よって、ステップ800に於いて図7に示されたフローチャートに従って暫定の軌跡制御より通常の軌跡制御への移行の目標軌跡が設定される。
 移行の目標軌跡が設定されると、ステップ90に於いて否定判別が行われる共に、ステップ130に於いて肯定判別が行われる。そして、ステップ910に於いて自車の現在地が推定され、ステップ930に於いて車両が移行の目標軌跡に沿って走行するよう移行の軌跡制御が実行される。
 尚、移行の軌跡制御が完了すると、即ち、移行の目標軌跡に沿う走行が完了すると、ステップ90、130及び150に於いて否定判別が行われる。よって、ステップ170に於いてフラグFnp及びFpnが0にリセットされ、ステップ190に於いて車両が通常の目標軌跡に沿って走行するよう通常の軌跡制御が実行される。
(4-2)許可スイッチ78がオフの場合
 この場合には暫定の軌跡制御は実行されていないので、移行の軌跡制御も実行されない。よって、通常の軌跡制御が可能になると、上記(1)の場合と同様の制御が行われる。即ち、ステップ10及び30に於いて肯定判別が行われ、ステップ70に於いて通常の目標軌跡が設定される。また、ステップ90、130及び150に於いて否定判別が行われ、ステップ170に於いてフラグFnp及びFpnが0にリセットされ、ステップ190に於いて車両が通常の目標軌跡に沿って走行するよう通常の軌跡制御が実行される。
[第二の実施形態]
 図8はナビゲーション装置搭載車に適用され、撮像情報に基づく暫定の軌跡制御が行われないよう構成された本発明による車両の走行制御装置の第二の実施形態に於ける走行軌跡制御ルーチンの後半を示すゼネラルフローチャートである。尚、図8に於いて、図3に示されたステップと同一のステップには図3に於いて付されたステップ番号と同一のステップ番号が付されている。このことは後述の図9についても同様である。
 図8と図3との比較より解る如く、この第二の実施形態に於いては、ステップ400は実行されず、ステップ270又は290に於いて否定判別が行われたときには制御はステップ230へ進む。即ち、撮像情報に基づく暫定の軌跡制御が行われることなく軌跡制御が一旦終了され、制御はステップ10へ戻る。但し、フラグFnpが1であるときには、フラグFnpが0になるまで制御はステップ190へ進み、通常の軌跡制御が継続される。
 第二の実施形態の他のステップは、上述の第一の実施形態と同一である。よって、第二の実施形態は上述の「(2-1)許可スイッチ78がオンの場合」及び「(3-1)許可スイッチ78がオンの場合」を除き上述の第一の実施形態と同様に作動する。
 第二の実施形態に於いては、ナビゲーション装置80が作動中でない場合には、ステップ270に於いて否定判別が行われる。また、ナビゲーション装置80が作動中であるが、ナビゲーション情報に基づく暫定の軌跡制御が不可能である場合には、ステップ270に於いて肯定判別が行われるが、ステップ290に於いて否定判別が行われる。よって、これらの場合には、ステップ400は実行されず、CCDカメラ68による撮像情報に基づく暫定の目標軌跡の設定は行われない。
 従って、第二の実施形態によれば、ナビゲーション装置80が作動中でない場合や、ナビゲーション情報に基づく暫定の軌跡制御が不可能である場合には、暫定の軌跡制御が行われない点を除き、上述の第一の実施形態と同様の作用効果を得ることができる。
[第三の実施形態]
 図9はナビゲーション装置が搭載されていない車両に適用され、走行軌跡制御装置として構成された本発明による車両の走行制御装置の第三の実施形態に於ける走行軌跡制御ルーチンの後半を示すゼネラルフローチャートである。
 この第三の実施形態に於いては、ステップ270、290、300は実行されず、ステップ250に於いて否定判別が行われたときには、即ち、暫定の目標軌跡がまだ設定されていないと判定されたときには、制御はステップ400へ進む。よって、図5に示されたフローチャートに従って、CCDカメラ68により取得された車両12の前方の画像情報に基づいて暫定の目標軌跡が設定される。
 第三の実施形態の他のステップは、上述の第一の実施形態と同一である。よって、第三の実施形態はナビゲーション情報に基づく暫定の目標軌跡が設定されない点を除き上述の第一の実施形態と同様に作動する。
 第二の実施形態に於いては、暫定の目標軌跡がまだ設定されていない場合には、ステップ250に於いて否定判別が行われる。よって、ステップ400が実行され、CCDカメラ68による撮像情報に基づいて暫定の目標軌跡が設定される。
 従って、第三の実施形態によれば、ナビゲーション情報に基づく暫定の軌跡制御が行われない点を除き、上述の第一の実施形態と同様の作用効果を得ることができる。
 以上に於いては本発明を特定の実施形態について詳細に説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであろう。
 例えば、上述の各実施形態に於いては、車両の目標軌跡は線であるが、車両が走行可能な領域として幅のある目標走行範囲として設定され、車両がその範囲内を走行するよう制御されてもよい。
 また、上述の各の実施形態の説明に於いては、特定の領域には走行路特定対象が存在しないが、分岐点が優先道路を含み、優先道路を示す白線などの部分的な走行路特定対象が存在していてもよい。その場合には、部分的な走行路特定対象が暫定の目標軌跡を設定するための暫定の走行路特定対象として使用されてよい。
 また、上述の各実施形態に於いては、車両が特定の領域に進入する前に走行軌跡制御が通常の軌跡制御より暫定の軌跡制御へ漸次移行させ、また車両が特定の領域での走行を完了した後に走行軌跡制御が暫定の軌跡制御より通常の軌跡制御へ漸次移行される。しかし、これらの移行の少なくとも一方が特定の領域に於いて行われてもよく、また、これらの移行の少なくとも一方が特定の領域及び特定の領域外の領域の両方に於いて行われてもよい。
 また上述の各実施形態に於いては、暫定の軌跡制御より通常の軌跡制御へ移行する際に通常の目標軌跡が演算される。しかし、暫定の軌跡制御が実行されている状況に於いて車両が所定の距離又は所定の時間走行すると暫定の軌跡制御より通常の軌跡制御へ移行する必要があると判定される段階で通常の目標軌跡が演算されるよう修正されてもよい。
 また上述の各実施形態に於いては、車両の軌跡を目標軌跡にするための操舵輪の目標舵角はフィードフォワード制御の目標舵角として演算される。しかし、操舵輪の目標舵角は、フィードバック制御の目標舵角として演算されてもよく、また、フィードバック制御の目標舵角及びフィードフォワード制御の目標舵角に基づいて最終的な目標舵角として演算されてもよい。
 また上述の各実施形態に於いては、車両の軌跡を目標軌跡にするための制御は操舵輪の舵角の制御である。しかし、車両の軌跡を目標軌跡にするための制御は、左右輪の制駆動力差の制御であってもよく、操舵輪の舵角の制御と左右輪の制駆動力差の制御との組合せであってもよい。

Claims (13)

  1.  少なくとも車両前方の情報を取得する外界情報取得手段と、前記外界情報取得手段により取得された情報に含まれる走行路特定対象に基づいて車両の目標軌跡を求め、車両が目標軌跡に沿って走行するよう走行軌跡制御を行う制御手段と、を有する車両の走行制御装置に於いて、走行路が複数の走行路に分かれる領域であって前記走行路特定対象に基づいて目標軌跡を求めることができない領域を特定の領域として、前記制御手段は、車両が特定の領域を走行するときには、前記特定の領域に隣接する領域の走行路特定対象及び車両が前記特定の領域を走行した後に走行すべき走行路に基づいて前記特定の領域について暫定の目標軌跡を求め、車両が前記暫定の目標軌跡に沿って走行するよう暫定の走行軌跡制御を行うことを特徴とする車両の走行制御装置。
  2.  前記制御手段は、前記複数の走行路より車両が走行すべき走行路が既に選択されているときには、前記特定の領域に隣接する領域の走行路特定対象及び選択されている走行路に基づいて前記仮想の走行路特定対象を設定し、前記仮想の走行路特定対象に基づいて暫定の目標軌跡を求めることを特徴とする請求項1に記載の車両の走行制御装置。
  3.  前記制御手段は、前記複数の走行路より車両が走行すべき走行路が選択されていないときには、車両の走行状況及び運転者の運転操作に基づいて前記複数の走行路のうち車両が走行すべき走行路を推定し、前記特定の領域に隣接する領域の走行路特定対象及び推定された走行路に基づいて前記仮想の走行路特定対象を設定し、前記仮想の走行路特定対象に基づいて暫定の目標軌跡を求めることを特徴とする請求項1に記載の車両の走行制御装置。
  4.  前記制御手段は、前記仮想の走行路特定対象に基づいて前記特定の領域に於ける車両の走行可能範囲を判定し、前記走行軌跡制御実行中の車両の位置及び前記走行可能範囲に基づいて暫定の目標軌跡を求めることを特徴とする請求項2又は3に記載の車両の走行制御装置。
  5.  前記走行制御装置は、前記特定の領域の地図情報を取得する地図情報取得手段を有し、前記制御手段は、前記地図情報取得手段により取得された地図情報に基づいて前記仮想の走行路特定対象を設定することを特徴とする請求項2又は3に記載の車両の走行制御装置。
  6.  前記制御手段は、車両が前記特定の領域に於いて旋回する必要があるときには、前記暫定の目標軌跡の半径に基づいて車体の最小旋回半径及び最大旋回半径を推定し、前記最小旋回半径又は前記最大旋回半径が前記車両の走行可能範囲内にないときには、前記最小旋回半径及び前記最大旋回半径が前記車両の走行可能範囲内になるよう、暫定の目標軌跡を設定し直すことを特徴とする請求項4に記載の車両の走行制御装置。
  7.  前記制御手段は、前記車両の走行可能範囲を通る軌跡のうち車両の旋回横加速度の大きさ及びその変化率の大きさの少なくとも一方が最小になる軌跡を暫定の目標軌跡とすることを特徴とする請求項4に記載の車両の走行制御装置。
  8.  前記制御手段は、暫定の走行軌跡制御開始後の運転者の運転操作に基づいて前記車両の走行可能範囲内にて前記暫定の目標軌跡を修正することを特徴とする請求項4に記載の車両の走行制御装置。
  9.  前記制御手段は、暫定の走行軌跡制御開始後の運転者の運転操作量の大きさが目標軌跡変更の基準値以上である時間が目標軌跡変更の基準時間以上継続したときには、運転者の運転操作に基づいて車両が走行すべき走行路を変更し、前記特定の領域に隣接する領域の走行路特定対象及び変更後の走行路に基づいて暫定の目標軌跡を求め直すことを特徴とする請求項1乃至8の何れか一つに記載の車両の走行制御装置。
  10.  前記制御手段は、暫定の走行軌跡制御に於いては、フィードバック制御及びフィードフォワード制御の少なくとも一方により車両の軌跡を暫定の目標軌跡にするための操舵輪の暫定の目標舵角を演算し、前記暫定の目標舵角に基づいて操舵輪の舵角を制御することを特徴とする請求項1乃至9の何れか一つに記載の車両の走行制御装置。
  11.  前記制御手段は、車両が前記特定の領域に進入する前に走行制御を走行軌跡制御より暫定の走行軌跡制御へ漸次移行させることを特徴とする請求項1乃至10の何れか一つに記載の車両の走行制御装置。
  12.  前記制御手段は、車両が前記特定の領域での走行を完了した後に走行制御を暫定の走行軌跡制御より走行軌跡制御へ漸次移行させることを特徴とする請求項1乃至11の何れか一つに記載の車両の走行軌跡制御装置。
  13.  前記特定の領域は、交差点、T字路、分岐路の何れかであることを特徴とする請求項1乃至12の何れか一つに記載の車両の走行制御装置。
PCT/JP2012/067387 2012-07-06 2012-07-06 車両の走行制御装置 WO2014006759A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2012/067387 WO2014006759A1 (ja) 2012-07-06 2012-07-06 車両の走行制御装置
US14/412,530 US9399464B2 (en) 2012-07-06 2012-07-06 Vehicle cruise control device
CN201280074528.2A CN104411558B (zh) 2012-07-06 2012-07-06 车辆的行驶控制装置
JP2014523540A JP5924508B2 (ja) 2012-07-06 2012-07-06 車両の走行制御装置
EP12880581.9A EP2871107B1 (en) 2012-07-06 2012-07-06 Traveling control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/067387 WO2014006759A1 (ja) 2012-07-06 2012-07-06 車両の走行制御装置

Publications (1)

Publication Number Publication Date
WO2014006759A1 true WO2014006759A1 (ja) 2014-01-09

Family

ID=49881546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067387 WO2014006759A1 (ja) 2012-07-06 2012-07-06 車両の走行制御装置

Country Status (5)

Country Link
US (1) US9399464B2 (ja)
EP (1) EP2871107B1 (ja)
JP (1) JP5924508B2 (ja)
CN (1) CN104411558B (ja)
WO (1) WO2014006759A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030500A (ja) * 2016-08-25 2018-03-01 トヨタ自動車株式会社 自動運転システム
CN108121339A (zh) * 2016-11-29 2018-06-05 本田技研工业株式会社 可行驶区域设定装置和可行驶区域设定方法
JP2018112989A (ja) * 2017-01-13 2018-07-19 本田技研工業株式会社 運転補助装置及び運転補助方法
WO2018179252A1 (ja) * 2017-03-30 2018-10-04 本田技研工業株式会社 車両制御装置及び車両制御方法
WO2018216177A1 (ja) * 2017-05-25 2018-11-29 本田技研工業株式会社 車両制御装置
JP2019077426A (ja) * 2017-10-26 2019-05-23 東軟集団股▲分▼有限公司 交差点を通過する車両を制御するための方法、装置およびシステム
JP2019123270A (ja) * 2018-01-12 2019-07-25 本田技研工業株式会社 走行軌道決定装置及び自動運転装置
JP2019159641A (ja) * 2018-03-12 2019-09-19 オムロン株式会社 運転評価装置、車載機、これらを備えた運転評価システム、運転評価方法、及び運転評価プログラム
JPWO2018173403A1 (ja) * 2017-03-22 2019-11-07 本田技研工業株式会社 車両制御装置及び車両制御方法
JP2019211434A (ja) * 2018-06-08 2019-12-12 日立オートモティブシステムズ株式会社 車載装置
JP2020109421A (ja) * 2020-03-30 2020-07-16 アイシン・エィ・ダブリュ株式会社 推奨領域特定システム、推奨領域特定プログラム、記録媒体および推奨領域特定方法
JP2020125026A (ja) * 2019-02-05 2020-08-20 本田技研工業株式会社 車両制御装置
WO2020217973A1 (ja) * 2019-04-25 2020-10-29 株式会社アドヴィックス 車両の制御装置
CN112533810A (zh) * 2018-08-03 2021-03-19 日产自动车株式会社 行驶轨迹校正方法、行驶控制方法、以及行驶轨迹校正装置
DE102021113136A1 (de) 2020-06-02 2021-12-02 Toyota Jidosha Kabushiki Kaisha Dämpfungssteuervorrichtung und dämpfungssteuerverfahren
JP2022069112A (ja) * 2020-10-23 2022-05-11 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP2022122393A (ja) * 2021-02-10 2022-08-23 本田技研工業株式会社 運転支援装置
RU2803428C2 (ru) * 2019-05-15 2023-09-13 Ниссан Мотор Ко., Лтд. Способ и устройство управления движением транспортного средства
WO2024089810A1 (ja) * 2022-10-26 2024-05-02 本田技研工業株式会社 移動体制御システム、その制御方法、プログラム、及び移動体

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6119634B2 (ja) * 2014-02-21 2017-04-26 トヨタ自動車株式会社 車両の自動運転制御方法
JP6176264B2 (ja) 2015-01-19 2017-08-09 トヨタ自動車株式会社 自動運転車両システム
CN104655872B (zh) * 2015-02-13 2017-12-19 盐城工学院 汽车车速测控方法及系统
DE102015214736A1 (de) * 2015-08-03 2017-02-09 Zf Friedrichshafen Ag Verfahren zum Parametrieren von Schaltungen und Verfahren zur Durchführung von Schaltungen
JP6055528B1 (ja) * 2015-09-25 2016-12-27 富士重工業株式会社 車両の操舵制御装置
DE112016004370T5 (de) * 2015-10-16 2018-06-07 Clarion Co., Ltd. Fahrzeugsteuerung und Fahrzeugsteuervorrichtung
DE112016005700T5 (de) * 2016-01-14 2018-09-27 Ford Global Technologies, Llc Wendeassistenz auf Grundlage der Manövrierschwierigkeit
US10144453B2 (en) * 2016-04-13 2018-12-04 Cnh Industrial America Llc System and method for controlling a vehicle
EP3254918B1 (en) * 2016-06-07 2023-05-24 Volvo Car Corporation Adaptive cruise control system and vehicle comprising an adaptive cruise control system
KR102560700B1 (ko) * 2016-07-19 2023-07-28 주식회사 에이치엘클레무브 차량의 주행 지원장치 및 방법
JP6493364B2 (ja) * 2016-11-18 2019-04-03 トヨタ自動車株式会社 運転支援装置
BR112020002069A2 (pt) * 2017-08-02 2020-07-21 Nissan Motor Co., Ltd. método de assistência à viagem e dispositivo de assistência à viagem
JP2019144691A (ja) * 2018-02-16 2019-08-29 本田技研工業株式会社 車両制御装置
US11203353B2 (en) * 2018-03-09 2021-12-21 Mitsubishi Heavy Industries, Ltd. Steering control system, steering system, car, steering control method and recording medium
JP7136043B2 (ja) * 2018-08-31 2022-09-13 株式会社デンソー 交差点内の走行軌道データ生成装置及び走行軌道データ生成プログラム
JP7014106B2 (ja) * 2018-09-04 2022-02-01 トヨタ自動車株式会社 車両制御システム
CN111174801B (zh) * 2018-11-09 2023-08-22 阿里巴巴集团控股有限公司 导航引导线的生成方法和装置以及电子设备
CN113348338A (zh) * 2018-11-26 2021-09-03 御眼视觉技术有限公司 车道建图和导航
JP7083306B2 (ja) * 2018-12-17 2022-06-10 本田技研工業株式会社 走行軌道決定処理及び自動運転装置
CN109815558B (zh) * 2019-01-04 2022-05-03 东南大学 一种大型车辆交叉口转向席卷路径的确定方法
JP7251294B2 (ja) * 2019-04-25 2023-04-04 株式会社アドヴィックス 車両の走行制御装置
CN113826153B (zh) * 2019-05-15 2024-01-02 日产自动车株式会社 车辆的行驶控制方法及行驶控制装置
US10915766B2 (en) * 2019-06-28 2021-02-09 Baidu Usa Llc Method for detecting closest in-path object (CIPO) for autonomous driving
CN110530390A (zh) * 2019-09-16 2019-12-03 哈尔滨工程大学 一种在狭窄环境下的非质点车辆路径规划方法
JP7389605B2 (ja) * 2019-10-01 2023-11-30 日立Astemo株式会社 操舵制御装置
US11754408B2 (en) * 2019-10-09 2023-09-12 Argo AI, LLC Methods and systems for topological planning in autonomous driving
EP4254381A4 (en) * 2020-11-27 2024-01-10 Nissan Motor Co., Ltd. TRAVEL CONTROL METHOD AND TRAVEL CONTROL DEVICE
CN112373472B (zh) * 2021-01-14 2021-04-20 长沙理工大学 一种自动驾驶交叉口车辆进入时刻与行驶轨迹控制方法
US11745726B2 (en) * 2021-06-30 2023-09-05 Zoox, Inc. Estimating angle of a vehicle wheel based on non-steering variables
US11794756B2 (en) 2021-06-30 2023-10-24 Zoox, Inc. Estimating vehicle velocity based on variables associated with wheels
US11872994B2 (en) * 2021-10-30 2024-01-16 Zoox, Inc. Estimating vehicle velocity
CN117058280B (zh) * 2023-10-11 2023-12-19 成都古河云科技有限公司 一种三维交通车辆实时轨迹还原拟合方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008199A (ja) * 2000-06-27 2002-01-11 Nissan Motor Co Ltd 車線追従走行制御装置
JP2006264624A (ja) 2005-03-25 2006-10-05 Daimler Chrysler Ag 車線維持支援装置
JP2006344133A (ja) * 2005-06-10 2006-12-21 Toyota Motor Corp 道路区画線検出装置
JP2007313978A (ja) * 2006-05-24 2007-12-06 Toyota Motor Corp 運転支援装置
JP2008197905A (ja) * 2007-02-13 2008-08-28 Aisin Aw Co Ltd レーン判定装置及びレーン判定方法
JP2009012672A (ja) * 2007-07-06 2009-01-22 Toyota Motor Corp 車両の走行制御装置
JP2009214786A (ja) * 2008-03-12 2009-09-24 Honda Motor Co Ltd 車両走行支援装置、車両、車両走行支援プログラム
JP2010019628A (ja) * 2008-07-09 2010-01-28 Honda Motor Co Ltd ナビゲーション装置および車両の走行安全装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2603523B2 (ja) 1988-08-10 1997-04-23 本田技研工業株式会社 自動走行装置
US5172317A (en) 1988-08-10 1992-12-15 Honda Giken Kogyo Kabushiki Kaisha Automatic travelling apparatus
JP3548459B2 (ja) * 1998-11-20 2004-07-28 富士通株式会社 案内情報提示装置,案内情報提示処理方法,案内情報提示プログラムを記録した記録媒体,案内用スクリプト生成装置,案内情報提供装置,案内情報提供方法および案内情報提供プログラム記録媒体
JP2005180986A (ja) * 2003-12-17 2005-07-07 Honda Motor Co Ltd ナビ装置及びナビサーバ
US7899617B2 (en) * 2005-02-17 2011-03-01 Denso Corporation Navigation system providing route guidance in multi-lane road according to vehicle lane position
JP2006273230A (ja) 2005-03-30 2006-10-12 Aisin Aw Co Ltd 車両制御装置及び車両制御方法
JP4779638B2 (ja) * 2005-12-20 2011-09-28 アイシン・エィ・ダブリュ株式会社 走行予測システム
JP4501879B2 (ja) * 2006-03-20 2010-07-14 株式会社デンソー 経路選択装置および経路選択用プログラム
JP4862630B2 (ja) * 2006-11-27 2012-01-25 株式会社デンソー 車間距離制御装置
JP2009075010A (ja) * 2007-09-21 2009-04-09 Denso It Laboratory Inc 経路長算出装置、経路長算出方法、経路長算出プログラム及び車両用空調装置ならびに移動物体搭載機器の制御装置
JP2009085613A (ja) 2007-09-27 2009-04-23 Aisin Aw Co Ltd ナビゲーション装置及びプログラム
US8498808B2 (en) * 2008-01-18 2013-07-30 Mitac International Corp. Method and apparatus for hybrid routing using breadcrumb paths
JP5200926B2 (ja) 2008-12-26 2013-06-05 トヨタ自動車株式会社 運転支援装置
JP5218667B2 (ja) * 2009-10-22 2013-06-26 トヨタ自動車株式会社 走行制御装置
US8825297B2 (en) * 2009-10-30 2014-09-02 Toyota Jidosha Kabushiki Kaisha Device for controlling vehicle travel
KR101406457B1 (ko) * 2009-11-27 2014-06-27 도요타지도샤가부시키가이샤 운전 지원 장치 및 운전 지원 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008199A (ja) * 2000-06-27 2002-01-11 Nissan Motor Co Ltd 車線追従走行制御装置
JP2006264624A (ja) 2005-03-25 2006-10-05 Daimler Chrysler Ag 車線維持支援装置
JP2006344133A (ja) * 2005-06-10 2006-12-21 Toyota Motor Corp 道路区画線検出装置
JP2007313978A (ja) * 2006-05-24 2007-12-06 Toyota Motor Corp 運転支援装置
JP2008197905A (ja) * 2007-02-13 2008-08-28 Aisin Aw Co Ltd レーン判定装置及びレーン判定方法
JP2009012672A (ja) * 2007-07-06 2009-01-22 Toyota Motor Corp 車両の走行制御装置
JP2009214786A (ja) * 2008-03-12 2009-09-24 Honda Motor Co Ltd 車両走行支援装置、車両、車両走行支援プログラム
JP2010019628A (ja) * 2008-07-09 2010-01-28 Honda Motor Co Ltd ナビゲーション装置および車両の走行安全装置

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030500A (ja) * 2016-08-25 2018-03-01 トヨタ自動車株式会社 自動運転システム
CN108121339B (zh) * 2016-11-29 2022-06-24 本田技研工业株式会社 可行驶区域设定装置和可行驶区域设定方法
CN108121339A (zh) * 2016-11-29 2018-06-05 本田技研工业株式会社 可行驶区域设定装置和可行驶区域设定方法
JP2018087763A (ja) * 2016-11-29 2018-06-07 アルパイン株式会社 走行可能領域設定装置および走行可能領域設定方法
JP7016214B2 (ja) 2016-11-29 2022-02-04 アルパイン株式会社 走行可能領域設定装置および走行可能領域設定方法
JP2018112989A (ja) * 2017-01-13 2018-07-19 本田技研工業株式会社 運転補助装置及び運転補助方法
JPWO2018173403A1 (ja) * 2017-03-22 2019-11-07 本田技研工業株式会社 車両制御装置及び車両制御方法
JPWO2018179252A1 (ja) * 2017-03-30 2019-11-21 本田技研工業株式会社 車両制御装置及び車両制御方法
WO2018179252A1 (ja) * 2017-03-30 2018-10-04 本田技研工業株式会社 車両制御装置及び車両制御方法
WO2018216177A1 (ja) * 2017-05-25 2018-11-29 本田技研工業株式会社 車両制御装置
US10928825B2 (en) 2017-10-26 2021-02-23 Neusoft Reach Automotive Technology (Shanghai) Co., Ltd. Method, device and system for controlling vehicle passing through intersection
JP2019077426A (ja) * 2017-10-26 2019-05-23 東軟集団股▲分▼有限公司 交差点を通過する車両を制御するための方法、装置およびシステム
JP2019123270A (ja) * 2018-01-12 2019-07-25 本田技研工業株式会社 走行軌道決定装置及び自動運転装置
JP2019159641A (ja) * 2018-03-12 2019-09-19 オムロン株式会社 運転評価装置、車載機、これらを備えた運転評価システム、運転評価方法、及び運転評価プログラム
JP7070827B2 (ja) 2018-03-12 2022-05-18 オムロン株式会社 運転評価装置、車載機、これらを備えた運転評価システム、運転評価方法、及び運転評価プログラム
WO2019235241A1 (ja) * 2018-06-08 2019-12-12 日立オートモティブシステムズ株式会社 車載装置
JP2019211434A (ja) * 2018-06-08 2019-12-12 日立オートモティブシステムズ株式会社 車載装置
CN112533810A (zh) * 2018-08-03 2021-03-19 日产自动车株式会社 行驶轨迹校正方法、行驶控制方法、以及行驶轨迹校正装置
JPWO2020025991A1 (ja) * 2018-08-03 2021-09-24 日産自動車株式会社 走行軌跡補正方法、走行制御方法、及び走行軌跡補正装置
JP7422661B2 (ja) 2018-08-03 2024-01-26 日産自動車株式会社 走行軌跡補正方法、走行制御方法、及び走行軌跡補正装置
US11526173B2 (en) 2018-08-03 2022-12-13 Nissan Motor Co., Ltd. Traveling trajectory correction method, traveling control method, and traveling trajectory correction device
JP2020125026A (ja) * 2019-02-05 2020-08-20 本田技研工業株式会社 車両制御装置
JP7310272B2 (ja) 2019-04-25 2023-07-19 株式会社アドヴィックス 車両の制御装置
CN113727896A (zh) * 2019-04-25 2021-11-30 株式会社爱德克斯 车辆的控制装置
WO2020217973A1 (ja) * 2019-04-25 2020-10-29 株式会社アドヴィックス 車両の制御装置
CN113727896B (zh) * 2019-04-25 2023-11-10 株式会社爱德克斯 车辆的控制装置
JP2020179778A (ja) * 2019-04-25 2020-11-05 株式会社アドヴィックス 車両の制御装置
RU2803428C2 (ru) * 2019-05-15 2023-09-13 Ниссан Мотор Ко., Лтд. Способ и устройство управления движением транспортного средства
JP2020109421A (ja) * 2020-03-30 2020-07-16 アイシン・エィ・ダブリュ株式会社 推奨領域特定システム、推奨領域特定プログラム、記録媒体および推奨領域特定方法
DE102021113136A1 (de) 2020-06-02 2021-12-02 Toyota Jidosha Kabushiki Kaisha Dämpfungssteuervorrichtung und dämpfungssteuerverfahren
JP7183237B2 (ja) 2020-10-23 2022-12-05 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
CN114475646A (zh) * 2020-10-23 2022-05-13 本田技研工业株式会社 车辆控制装置、车辆控制方法及存储介质
JP2022069112A (ja) * 2020-10-23 2022-05-11 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
CN114475646B (zh) * 2020-10-23 2024-06-04 本田技研工业株式会社 车辆控制装置、车辆控制方法及存储介质
JP2022122393A (ja) * 2021-02-10 2022-08-23 本田技研工業株式会社 運転支援装置
JP7411593B2 (ja) 2021-02-10 2024-01-11 本田技研工業株式会社 運転支援装置
US12097858B2 (en) 2021-03-17 2024-09-24 Nissan Motor Co., Ltd. Travel control method and travel control device for vehicle
WO2024089810A1 (ja) * 2022-10-26 2024-05-02 本田技研工業株式会社 移動体制御システム、その制御方法、プログラム、及び移動体

Also Published As

Publication number Publication date
CN104411558A (zh) 2015-03-11
EP2871107A4 (en) 2018-03-14
US20150134204A1 (en) 2015-05-14
JPWO2014006759A1 (ja) 2016-06-02
EP2871107A1 (en) 2015-05-13
CN104411558B (zh) 2017-09-22
US9399464B2 (en) 2016-07-26
EP2871107B1 (en) 2023-10-25
JP5924508B2 (ja) 2016-05-25

Similar Documents

Publication Publication Date Title
JP5924508B2 (ja) 車両の走行制御装置
US10717439B2 (en) Traveling control system and vehicle control method
JP6055525B1 (ja) 車両の走行制御装置
US9707996B2 (en) Vehicle drive-control device
CN107531280B (zh) 车辆用操舵辅助控制装置
JP5737197B2 (ja) 車両の走行軌跡制御装置
JP6185482B2 (ja) 車両の走行制御装置
CN111247045A (zh) 车辆控制装置
JP7371756B2 (ja) 車線変更支援装置
CN111527015A (zh) 车辆控制装置
WO2016110733A1 (ja) 目標経路生成装置およぴ走行制御装置
JPWO2013069099A1 (ja) 車両の走行軌跡制御装置
WO2018101254A1 (ja) 車両制御装置
JP6579699B2 (ja) 車両の走行制御装置
JP2017061264A (ja) 車両の操舵制御装置
JP6907304B2 (ja) 車両制御装置及び車両制御方法
JP6377942B2 (ja) 運転支援装置
CN111741881A (zh) 车辆控制装置
CN114901542B (zh) 车辆控制系统和方法
JP6381069B2 (ja) 車両の運転支援制御装置
WO2016110732A1 (ja) 目標経路生成装置および走行制御装置
JP2020023222A (ja) 車両制御装置および車両制御方法
JP5929597B2 (ja) 車両用走行制御装置及び方法
JP6365688B2 (ja) 前方注視点距離設定装置および走行制御装置
JP2013088409A (ja) 車両用走行支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880581

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014523540

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012880581

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14412530

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE