WO2014000351A1 - 一种超分辨显微方法和装置 - Google Patents

一种超分辨显微方法和装置 Download PDF

Info

Publication number
WO2014000351A1
WO2014000351A1 PCT/CN2012/083320 CN2012083320W WO2014000351A1 WO 2014000351 A1 WO2014000351 A1 WO 2014000351A1 CN 2012083320 W CN2012083320 W CN 2012083320W WO 2014000351 A1 WO2014000351 A1 WO 2014000351A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sample
super
resolution
scanning
Prior art date
Application number
PCT/CN2012/083320
Other languages
English (en)
French (fr)
Inventor
匡翠方
李帅
郝翔
顾兆泰
刘旭
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US14/411,373 priority Critical patent/US9568417B2/en
Publication of WO2014000351A1 publication Critical patent/WO2014000351A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0068Optical details of the image generation arrangements using polarisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/58Optics for apodization or superresolution; Optical synthetic aperture systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/064Stray light conditioning

Definitions

  • Field of the Invention relates to the field of super-resolution, and more particularly to a super-resolution microscopic method and apparatus capable of realizing the resolution of the super-diffraction limit in the far field.
  • the resolution that can be achieved with conventional far-field optical methods is limited.
  • the size of the spot formed by focusing the beam through the microscope objective is expressed as ⁇ 2 ⁇ district, which is the operating wavelength of the signfinder, and ⁇ 3 ⁇ 4 is used. 3 ⁇ 4 micro objective
  • the numerical aperture is therefore limited by the limit resolution of conventional far-field optical microscopes.
  • STED Stimulated Emission Depletion Microscopy, which uses the nonlinear relationship between fluorescence saturation and the fluorescence loss of the fluorescence, and reduces the size of the fluorescent spot by limiting the area where the stimulated radiation is attenuated.
  • SIM Structured Illumination Microscopy ; With the [STORM: Stochastic Optical Reconstruction Microscopy] and so on.
  • the present invention provides a super-resolution micro-method and apparatus that achieves super-diffraction-limited resolution in the far field.
  • the method and the device have the characteristics of fast imaging speed, simple device and resolution, and can be well applied to the detection of fluorescent and fluorescent samples.
  • a super-resolution. 3 ⁇ 4 levy method including the following steps:
  • the modulation function is . ?, ⁇ ): ⁇ , where p is the distance between the point of the beam h and the optical axis, and is the position polar coordinate vector and A in the vertical optical axis profile of the beam The angle of the shaft;
  • the signal light is fluorescence emitted by the circularly polarized light after being projected through the objective lens; when the sample to be tested is a non-fluorescent sample, the signal light is The circularly polarized light is projected through the microscope objective and reflected by the sample surface ⁇ .
  • the x and y axis directions of the sample h to be tested are determined by the two-dimensional scanning direction.
  • the present invention provides a super-resolution ui micro-device comprising a light source, a sample stage carrying a sample to be tested, and an iui micro objective lens for projecting light onto the sample, wherein the light source and the iui micro objective lens are sequentially set.
  • a polarizer for changing a light emitted by the light source to linearly polarized light
  • a spatial light modulator for phase-modulating said linearly polarized light
  • a scanning galvanometer system for deflecting said phase-modulated optical path; and sequentially arranged for said scanning a beam of light emitted from the mirror system for focusing and collimating the scanning lens and the field lens;
  • the circularly polarized light being projected through the microscope objective to the sample L to be tested;
  • a detection system for controlling the empty M light modulator and the scanning galvanometer system and a detection system for receiving the signal light emitted by the sample to be tested.
  • the detection system includes:
  • a beam splitter disposed between the spatial light modulator and the scanning galvanometer system, wherein the beam splitter should use a dichroic ray when the sample to be tested is a fluorescent sample, and a polarizing beam splitting prism when the sample to be tested is a non-fluorescent sample.
  • the band pass filter for the stray light of the letterhead pupil emitted by the beam splitter is filtered by the filter, and the band pass filter is a sample when the sample to be sampled is a fluorescent sample.
  • a detector for detecting the intensity of the signal beam by using a photomultiplier tube (CPMT) or a photodiode (APD);
  • CPMT photomultiplier tube
  • APD photodiode
  • the ⁇ is located at a focal plane of the focusing lens, and the inter-filter can be a pinhole or a multimode fiber, if a pinhole is used, pinhole diameter should be less than a diameter of an Airy disk s
  • a single mode fiber and a collimating lens for filtering and collimating the laser beam are sequentially disposed between the light source and the polarizer
  • the switching frequency of the null M light modulator ⁇ two functions is the same as the frame scanning frequency of the scanning galvanometer system, so that the scanning galvanometer system scans one frame of image, and the modulation function of the inter-optical modulator is switched once.
  • the present invention also provides a super-resolution device comprising a first light source, a second light source, a sample stage carrying a sample to be tested, and a micro objective lens for projecting light onto the sample stage, further comprising: a first light path h First polarizer
  • a scanning galvanometer system for deflecting light of the first optical path and the first optical path Vietnamese; sequentially arranged to focus and align the light emitted by the scanning vibrating system Straight scanning lens and field lens;
  • the circularly polarized light being projected to the sample to be tested by the 3 ⁇ 4 micro objective lens
  • a controller for controlling the first light source, the second light source and the scanning vibrating system, and a detecting system for collecting signal light emitted by the sample to be tested.
  • the detection system includes:
  • the dichroic mirror should use a dichroic mirror when the sample to be tested is a fluorescent sample, and a polarizing prism should be used when the sample to be tested is a fluorescent sample ;
  • the band pass filter for the stray light of the letterhead emitted by the beam splitter is filtered by the dicing filter, and the band pass filter may be omitted when the sample to be tested is a non-fluorescent sample;
  • a detector for detecting a light intensity signal of a signal beam the detector using a photomultiplier tube
  • CPMT CPMT
  • APD collapse photodiode
  • a focusing lens for focusing the filtered signal beam to the detector h
  • the filter may be used between the pinhole ⁇ or multimode optical fiber, the use of a pinhole, the pinhole diameter should be less than a diameter of an Airy disk s
  • the first light source and the first polarizer M are sequentially provided with a first single mode fiber and a first collimating lens, and the first light source and the second polarizer are sequentially disposed with the first single tax fiber and the first Second collimation
  • the modulation function of the phase plate is . ⁇ A , where ⁇ is the distance between the point of the beam t and the optical axis, and is the angle between the polar coordinate vector and the ⁇ axis in the vertical optical axis profile of the light.
  • the parallel incident illumination beam is focused by the objective lens, and the spot formed by the sample to be measured is an ideal point, but a one: ⁇ , the diffraction spot.
  • Samples within the diffraction spot illumination emit corresponding signal light, making the details of the sample in this range unresolvable, thereby limiting the resolution of the 3 ⁇ 4 microsystem. Therefore, to break through the limitations of the optical diffraction limit, to improve the resolution of the microscope system, how to reduce the light-emitting area of the effective signal light at the scanning point becomes the key
  • the size of the solid spot is the same as the size of the diffraction spot formed by the illumination beam used by the conventional optical microscopy.
  • the signal light emitted by the sample within the solid spot illumination range is collected by the detector to obtain the current scanning point.
  • the first signal light 3 ⁇ 4/ when the modulation function of the empty M-light modulator is .
  • the present invention has the following beneficial technical effects -
  • the resolution of the super-diffraction limit can be achieved at lower optical power conditions;
  • the imaging speed is fast.
  • the frame rate can reach 15 frames per second with h;
  • m 1 is a schematic diagram of a super-resolution micro-device of the present invention.
  • Figure 2 is a solid light distribution curve of the solid spot of the present invention.
  • Fig. 3 is a diagram showing the distribution of the light intensity of the doughnut type in the present invention.
  • Figure 4 is a comparison curve of the effective signal light spot of the present invention and the ⁇ ::: I light distribution of the signal light spot in conventional optical microscopy.
  • Fig. 5 is a graph showing a comparison of light intensity distribution in an image obtained by scanning the same sample from a conventional optical microscopy method of the present invention.
  • m 6 is a schematic representation of the apparatus for carrying out the method of the invention using two crystals.
  • a super-resolution ui micro device wrapped: crystallizer 1, single-tax fiber 2, collimating lens 3, polarizer 4, spatial light modulator 5, prism lens 6, scanning galvanometer System 7, scanning lens 8, field lens 9, quarter wave plate 10, .3 ⁇ 4 micro objective lens 11, sample stage 12, band pass filter 13, focus lens 14, pinhole 15, detector 16, controller 17.
  • ⁇ , single-projection fiber 2.
  • the collimator lens 3, the polarizer 4, and the empty M-light modulator 5 are sequentially located at the optical axis L of the outgoing beam of the optical device 1; the transmission axis of the polarizer 4 is The horizontal direction is parallel.
  • the scanning galvanometer system 7 is sequentially located on the optical axis of the beam modulated by the air M light modulator 5......... h,
  • the scanning lens 8, the field lens 9, the 1/4 wave plate 10, the .ki micro objective lens 11, and the sample stage 12 are sequentially located at the optical axis of the exiting light of the scanning galvanometer system 7 ; the sample stage 12 is located at the display The vicinity of the focal plane of the micro-object 11 is.
  • the band pass filter 13, the focus lens 14, the pinhole 15, the detector 16 are located in turn
  • the mirror 6 reflects the optical axis of the light;
  • the pinhole 15 is located at the focal plane of the focusing lens 14, and the controller 17 is connected to the spatial light modulator 5 and the scanning galvanometer system 7, respectively, to control the spatial light.
  • is the vertical axis of the beam, the internal polar coordinate vector of the position.
  • the angle of the axis; the switching frequency of the spatial light modulator 5 is the same as the frame scanning frequency of the scanning galvanometer system ,, thereby implementing the scanning galvanometer system ⁇ scanning one
  • the frame image, the modulation function of the spatial light modulator 5 is switched once.
  • the numerical aperture of the microscope objective 11 is N ⁇ 1.4 ; the diameter of the pinhole 15 used is 0.73 Airy disk diameter, and the detector 16 is an avalanche photodiode (APD).
  • N the numerical aperture of the microscope objective 11
  • the diameter of the pinhole 15 used is 0.73 Airy disk diameter
  • the detector 16 is an avalanche photodiode (APD).
  • the apparatus shown in Fig. 1 is used for super-resolution microscopy.
  • the method is as follows - the laser beam emitted from the laser 1 is first introduced into the single mode fiber 2, and the beam of light emitted from the single mode fiber 2 is passed through the collimator lens 3. Collimation. The collimated beam is incident on the polarizer 4 and converted into linearly polarized light, which is then incident on the spatial light modulator for phase modulation.
  • the inter-optical modulator 5 is controlled by the controller 17 to switch the phase modulation function into a distance between the optical axis and the optical axis, which is the position of the beam in the vertical optical axis profile. angle.
  • the electric y ⁇ intensity of the outgoing beam can be expressed by:
  • the light beam emitted by the spatial light modulator 5 passes through the beam splitter 6 and is then incident on the scanning galvanometer system 7.
  • the beam ⁇ emitted by the scanning galvanometer system 7 is focused and fieldd by the scanning lens 8
  • the mirror 9 is collimated and then converted by the quarter-wave plate 10 into circularly polarized light, which is projected through the expansive objective lens 11 to the sample to be tested at the sample stage 12 h.
  • P z type ⁇ , ⁇ ⁇ is the focus position of the objective lens u.
  • the cylindrical coordinate system of the origin, 2 ⁇ 2 ) represents the electric vector ⁇ intensity at 2 ⁇ 2 ), which is an imaginary unit, and C is !U-
  • is the beam aperture ⁇
  • is the angle between the polar coordinate vector and the _ in the vertical ⁇ axis profile of the beam
  • the signal light emitted by the sample to be tested is collected by the objective lens 11 and then sequentially passed through the 1/4 wave plate 10, the field lens 9, the scanning lens 8, the scanning galvanometer system 7, and finally reflected by the beam splitting mirror 6.
  • the signal beam reflected by the segmented mirror 6 is filtered through the bandpass filter 13 to remove 3 ⁇ 4 astigmatism, which is then focused by the focusing lens 14 and spatially filtered by the pinhole 15 and finally detected by the detector 16.
  • the signal intensity of the signal detected by the detector 16 is ⁇
  • the first signal light at the current scanning point is adjusted by the controller 17 to adjust the scanning galvanometer system 7 to realize two-dimensional scanning for the sample to be tested. Recording the first signal intensity / ⁇ at each scan point, where x, the two-dimensional coordinates of the scan point.
  • the inter-optical modulator 5 is controlled by the controller 17 to switch the phase modulation function to ⁇ , /7.
  • the distance between the beam L3 ⁇ 4 point and the optical axis is the position polar coordinate vector and the ⁇ axis in the vertical optical axis profile of the beam. The angle of the.
  • is the electric vector of the beam incident on the spatial light modulator 5 . . . h Intensity, £ 2 (A ⁇ is the electric vector strength of the outgoing light after phase modulation by the spatial light modulator 5, which is an imaginary unit.
  • the light beam emitted by the spatial light modulator 5 passes through the beam splitter 6 and is then incident on the scanning galvanometer system 7.
  • the beam ⁇ emitted by the scanning galvanometer system 7 is focused and fieldd by the scanning lens 8
  • the mirror 9 is collimated and then converted into circularly polarized light by the quarter-wave plate 10.
  • the circularly polarized beam is projected through the objective lens 11 to the sample to be tested at the sample stage 12....h
  • the light field distribution of the incident circularly polarized light near the focus of the objective lens 11 is also determined by the Debye integral. It can be found by calculation that the incident circularly polarized light is focused by the microscope objective 11 and the spot formed by the sample h to be tested is a bagel-shaped hollow spot, and its specific light field distribution! ⁇ :: I Shown.
  • the signal light emitted by the sample to be tested is received by the microscope objective 11, and then sequentially passed through the quarter-wave plate 10, the field lens 9, the scanning lens 8, the scanning galvanometer system 7, and finally reflected by the beam splitter 6.
  • the signal light reflected by the beam splitter 6 is filtered by the band pass filter 13 to filter out stray light, which is then focused by the focusing lens 14 and filtered by the pinhole 15 to be finally detected by the detector 16.
  • the signal intensity detector 16 detects a value referred obtained / 2, which is at the front as a second signal intensity of the scanning spot e
  • the scanning vibration system 7 is adjusted by the controller 17, and a two-dimensional scan for the sample to be tested is realized, and the second signal light intensity at each scanning point / 2 ( ⁇ , , ⁇ x, .y. is recorded as one of the scanning points). Dimensional coordinates.
  • the effective signal light spot is conventional: ⁇ Focusing microscopic method
  • the following is a comparison of the :::: I intensity distribution curve shown in Fig. 4. It can be seen from Fig. 4 ⁇ that the spot size ( ⁇ " of the effective signal light of the present invention has a full width value of 0.34 wavelengths.)
  • the scanned image is obtained by the method of the present invention and the conventional confocal ui micro method for the same sample to be tested, and the light intensity distribution curve of the body is as shown in Fig. 5.
  • the sample to be tested used was four closely arranged fluorescent particles, and the diameter of the fluorescent particles was 100 nm.
  • a super-resolution micro-device of the present invention can also be implemented by using two illuminators, as shown in Figure 6.
  • the device using two lasers replaces the spatial light modulator 5 with the mirror 19, while adding the second crystallizer lb, the second single mode fiber 2b, the second standard a straight lens 3b, a second polarizer 4b, a phase plate 18, and a polarization beam splitting prism 20;
  • the controller 17 is respectively connected to the first light modulator la, the second laser lb, and the scanning vibrating system 7, for controlling the first Start-up and turn-off of a laser la, a second laser lb, and scanning of a scanning galvanometer system
  • the second laser lb is identical to the first laser la.
  • the mirror 19 is folded by the optical path, and the reflected light beam is incident perpendicularly to the polarization beam splitting prism 20
  • the transmission axis of the first polarizer 4b is perpendicular to the horizontal direction.
  • the first laser la is activated by the controller 17, while the second laser lb is turned off.
  • the laser beam emitted from the first laser la is first introduced into the first single-tax fiber 2a, and the laser beam emitted from the first single-mode fiber 2a is collimated by the first collimating lens 3a to be collimated and collimated.
  • the first polarizer 4a converts to linearly polarized light, and then the optical path is folded by the mirror 19.
  • the light beam reflected by the mirror 19 is sequentially transmitted through the polarization beam splitting pour 20 and the beam splitter 6, and then incident on the scanning galvanometer system 1 . . . t:.
  • the beams emitted by the scanning galvanometer system 7 are sequentially scanned by the lens
  • the 8 focus, field lens 9 is collimated, and then converted to circularly polarized light by the 1/4 wave plate 10.
  • the circularly polarized beam is projected by the ui micro objective lens 11 onto the sample to be tested on the sample stage 12 . . .
  • the light field distribution of the incident circularly polarized light near the focus of the ui-excursion objective lens 11 is determined by Debye integral. It can be found from calculation that the incident circularly polarized light is focused by the microscope objective 11 Then, the spot formed by the sample h to be tested is a solid spot, and its light field distribution is the spot 111 l «J shown in FIG.
  • the signal light emitted from the sample to be tested is received by the display objective lens 11, and then sequentially passed through the 1/4 wave plate 10, the field lens 9, the scanning lens 8, the scanning galvanometer system 7, and finally reflected by the beam splitting mirror 6.
  • the signal beam reflected by the beam splitter 6 is filtered by the band pass filter 13 to filter out stray light, which is then focused by the focusing lens 14 and passed through the pinhole 15 for filtering, and finally detected by the detector 16.
  • the signal intensity value detected by the detector 16 is /,., and the first signal light at the current scanning point is adjusted by the controller 17 to adjust the scanning vibration system 7 to realize the second sample for the sample to be tested.
  • Dimension scanning recording the first signal light at each scanning point 3 ⁇ 4 / (x, where is the two-dimensional coordinates of the scanning point.
  • the first laser la is turned off by the controller 17, and the second laser lb is activated at the same time.
  • the laser light emitted from the second laser lb is first introduced into the second single mode fiber 2b, and the laser beam emitted from the first single mode fiber 2b is collimated by the second collimator lens 3b.
  • the collimated light beam is incident on the second polarizer 4b to be converted into linearly polarized light, and then phase-modulated by the phase plate 18.
  • the phase modulation function of the phase plate 18 is: where, the distance from the optical axis to the optical axis is the angle between the position of the vertical optical axis of the beam and the axis of the .3 ⁇ 4: axis.
  • A. is the electric vector ⁇ intensity of the beam incident on the phase plate 18 . . . h, the electric vector intensity at which the exiting light is phase-modulated by the phase plate 18, . is an imaginary unit.
  • the light beam emitted from the phase plate 18 is reflected by the polarization beam splitting prism 20, and then incident on the scanning galvanometer system 7 through the branch ⁇ 6 . . . h
  • the light beam emitted by the scanning galvanometer system 7 is sequentially scanned by the lens
  • the 8 focus, field lens 9 is collimated, and then converted to circularly polarized light by the 1/4 wave plate 10.
  • the circularly polarized beam is projected by the ui micro objective lens 1 1 onto the sample to be tested on the sample stage 12 . . .
  • the light field distribution of the incident circularly polarized light near the focus of the iui objective lens 11 is the same as the mouth J— Determined by Debye points. It can be found by calculation that the incident circularly polarized light is focused by the microscope objective 11 and then formed into a spot by the sample to be measured. h is a faceted hollow spot, the pupil field distribution - Figure 3 Spot phase J a
  • the signal light emitted by the sample to be tested is received by the iui micro objective lens 11, and then passes through the 1/4 wave plate 10, the field lens 9, the scanning lens 8, and the scanning galvanometer system 7, 3 ⁇ 4, and then the beam splitter 6 reflection.
  • the signal light reflected by the beam splitter 6 is filtered through the bandpass filter 13 to filter out stray light, which is then focused by the focusing lens 14 and spatially filtered by the pinhole 15 and finally detected by the detector 16.
  • the signal intensity detector 16 detects a value referred obtained / 2, which is at the front as a second signal intensity of the scanning spot e
  • the scanning vibration system 7 is adjusted by the controller 17, and a two-dimensional scan for the sample to be tested is realized, and the second signal light intensity at each scanning point / 2 ( ⁇ , , ⁇ x, .y. is recorded as one of the scanning points). Dimensional coordinates.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种超分辨显微方法和装置,所述方法包括:将激光器(1)发出的激光光束准直后转换为线偏振光:线偏振光经第一次相位调制后进行光路偏转;偏转后的光束经聚焦和准直后转换为圆偏振光投射到待测样品上,收集待测样品各扫描点发出的信号光,得到第一信号光强;切换调制函数,对线偏振光进行第二次相位调制后投射到待测样品上,收集待测样品各扫描点发出的信号光,得到第二信号光强;计算有效信号光强,并得到超分辨图像。所述装置简单,操作方便;可以在较低的光功率条件下实现超衍射极限的分辨率;成像速度快,在每一帧图像的扫描点数为512X512的情况下,帧频可达到每秒15帧以上。

Description

一种超分辨显徼方法和装置 技木领域
本发明属于超分辨领域,尤其涉及一种能在远场实现超衍射极限的分 辨率的超分辨显微方法和装置 背景技术
由于光学系统衍射的影响,常规远场光学. ¾徵方法可实现的分辨率存 在限制。 根据阿 . 衍射极限理论, 光束经显微物镜聚焦后所成光斑的尺寸 用 Ι^ί^!宽表示为 Δτ=~ 2ΝΑ„, 其中 为显徵镜的工作波长, Λ¾为所用 .¾微 物镜的数值孔径。 因此, 常规远场光学显微镜的极限分辨率一般被限制在 了、 波长左右。
近年来, 为了突破光学衍射极限的限制, 提高. ¾徵系统的分辩率, 科 研工作者们提出了多种超分辩光学 .¾徵方法
例如: 受 .激发射损耗显徵术 ( STED; Stimulated Emission Depletion Microscopy) , 即利用荧光饱和与澈发态荧光受激损耗的非线性关系,并通 过限制受激辐射衰减的区域, 减少荧光光斑大小, 获得小于衍射极限的发 光点来提高系统分辨率,从而突破远场光学显徵术的衍射极限分辨力限制 来实现无接触三维成像; 结构光照明荧光 iui微术 (SIM : Structured Illumination Microscopy ) ;随 |IL光场重建显徵术(STORM: Stochastic Optical Reconstruction Microscopy ) 等。
....... h述几种方法均 j-以在远场实现荧光超分辨显徵,在实际测试中也得 到了相应的应用, 但是都还仍然存在 ¾不足.。 其屮, STED 微术的分辨 率由所加损耗光的光功率决定, R此 实现高分辨率时, 其所耍求的光功 率很强, 容易导致荧光分子的漂白 此外, STED显徵术的系统较为复杂, 造价一般比较 SIM 微术对光功率的要求虽然不高, 但是 lil于其耑 耍光栅扫描, 成像速度较慢, 成像系统也较为复杂 STORM .¾微术的成 像速度也很慢, 目前还很难运用于活体细胞的实时检测 中 发明内容
本发明提供了一种超分辨 微方法和装置, 可以在远场实现超衍射极 限的分辨率。 该种方法和装置具^成像速度快、 装置简单、 分辨率 等特 点, 可以很好地应用于荧光及 ^荧光样品的检测之中。
一种超分辨. ¾徵方法, 包括以下歩骤:
1 ) 将澈光器发出的激光光束准直后转换为线偏振光;
2)对所述线偏振光进行相位调制, 调制函数为. ?,^):^ , 其中, p为 光束 h某点与光轴的距离, 为光束垂直光轴剖面内位置极坐标矢量与 A 轴的夹角;
3 ) 将所述相位调制后的线偏振光迸行光路偏转;
4)偏转后的光柬经聚焦和准直后转换为圆偏振光投射到待测样品 .......匕 以实现对待测样品的 维扫描;
5 ) 在二维扫描过程中收集所述待测样品各扫描点发出的信号光, 滤 去杂散光得到第一信号光强/^^ , 其中 ^为扫描点的二维坐标;
6) 将歩骤 2) 屮的调制函数切换为 ΑίΑ^: ^ 7为光束 ....... h某点与光 轴的距离, φ为光柬垂直光轴剖面内位置极坐标矢量. 轴的夹 Λ ;
7)盧 歩骤 3 )和步骤 4), 对步骤 5)屮的各扫描点进行第二次扫描, 收無得到的第—信号光强 /2(r, W;
8 ) 根据公式 /(χ^):/^^)- ^^^)计算有效信号光强 /(X,J , 并利用
/(x,W得到超分辨图像, 其中, = ^·, Γχ.为第一信号光强 AfeW中的
¾人值, / 为第二信号光强 ^ W屮的最大位。
当待测样品为荧光样品时,所述信号光为所述圓偏振光经. ¾微物镜投 射后在样品匕澈发出的荧光; 当待测样品为非荧光样品时, 所述信号光为 所述圆偏振光经显微物镜投射后经样品表 ι 的反射光束。 待测样品 h的 x, y轴方向由二维扫描方向决定
所述有效信号光强值 /(X, 为负时, 设置 /(X,J) = 0
本发明提供了一种超分辨ui微装置, 包括光源、 承载待测样品的样品 台和将光线投射到所述样 台的 iui微物镜,所述光源与 iui微物镜之 M依次 设
用于将所述光源发出的光柬改变为线偏振光的起偏器;
用于对所述线偏振光遗行相位调制的空间光调制器; 用于对所述相位调制后的光柬遗行光路偏转的扫描振镜系统; 依次布置的分别用于对所述扫描振镜系统出射的光束进行聚焦和准 直的扫描透镜和场镜;
用于将准直后的光束转换.为圆偏振光的 1/4波片, 所述圆偏振光通过 所述显微物镜投射到所述待测样品 L ;
并设有用于控制所述空 M光调制器和扫描振镜系统的控制器及收無 所述待测样品发出的信号光的探测系统。
探测系统包括:
布置在空间光调制器和扫描振镜系统之间的分束镜,所述分束镜在待 测样品为荧光样品时应选用二色镱, 待测样品为非荧光样品时应选用偏 振分光棱镜;
用丁滤去分束镜出射的信兮光屮的杂散光的带通滤波片,所述带通滤 波片在待测样 为 荧光样品时 nj.以哲略;
用丁探测信号光束的光强信兮的探测器,所述探测器选用光电倍增管 CPMT) 或 崩光电 极管 ( APD);
用丁将滤光后的信兮光束聚焦到探测器上的聚焦透镜;
用于对所述信兮光柬 ϋ行空间滤波的空间滤波器,艽位于所述聚焦透 镜的焦平面处, 所述^间滤波器可以采用针孔或多模光纤, 若采用针孔, 所用针孔的直径应小于一个艾里斑直径 s
所述光源与起偏器之间依次设有用于对所述激光光束进行滤波和准 直的单模光纤和准直透镜 所述 间光调制器具有可切换的第一调制函数 .;(/, = 0和第二调制 函数. Λ(Α ^ = , 艽中, 为光束 t某点与光轴的距离, ^为光束垂直光轴 剖 \ 内位置极坐标矢≤与 由的夹角。
空 M光调制器屮两函数的切换频率与扫描振镜系统的帧扫描频率相 同, 从而实现扫描振镜系统每扫描一帧图像, ^间光调制器的调制函数切 换一次。
优选的, 所述显微物镜的数值孔径 NA=1.4S
本发明还提供了一种超分辨 徵装置, 包括第一光源、 第二光源、 承 载待测样品的样品台和将光线投射到所述样品台的 微物镜, 还包括: 位于第一光路 h的第一起偏器;
沿第二光路依次布置的第一起偏器和位相板;
用于将所述第一光路和第一光路 ....... h的光线进行偏转的扫描振镜系统; 依次布置的分别用于对所述扫描振镱系统出射的光线进行聚焦和准 直的扫描透镜和场镜;
用于将准直后的光束转换.为圆偏振光的 1/4波片, 所述圆偏振光通过 所述. ¾微物镜投射到所述待测样品
并设有控制所述第一光源、 第二光源和扫描振镱系统的控制器及收集 所述待测样品发出的信号光的探测系统。
探测系统包括:
布置在空间光调制器和扫描振镜系统之间的分束镜,所述分柬镜在待 测样品为荧光样品时应选用二色镜, 当待测样品为 荧光样品时应选用偏 分光棱镜;
用丁滤去分束镜出射的信兮光屮的杂散光的带通滤波片,所述带通滤 波片在待测样品为非荧光样品时可以省略;
用于探测信号光束的光强信号的探测器,所述探测器选用光电倍增管
CPMT) 或霄崩光电二极管 (APD);
用于将滤光后的信号光束聚焦到探测器 h的聚焦透镜;
用于对所述信号光束遗行空间滤波的空间滤波器,其位于所述聚焦透 镜的焦平面处, 所述^间滤波器可以采用针孔或多模光纤, 若采用针孔, 所用针孔的直径应小于一个艾里斑直径 s
所述第一光源与第一起偏器之 M依次设有第一单模光纤和第一准直 透镜,所述第一光源和第二起偏器之间依次设冇第一单稅光纤和第二准直
所述位相板的调制函数为. ^A ,艽中, 为光束 t某点与光轴的 距离, 为光柬垂直光轴剖面内位置极坐标矢. 与^轴的夹角。
优选的, 所述显微物镜的数值孔径 NA= 1.4。
本发明原理如下:
由于光学系统衍射的影响, 平行入射的照明光束经显徵物镜聚焦之 后, 在待测样 ....... h所成的光斑并 ;一个理想的点, 而是一个 冇一: ^尺 ·、 的衍射斑。在衍射斑照射范闱内的样品均会发出相应的信号光, 从而使得 这一范围内样品的细节无法被分辨,由此限制了. ¾微系统的分辨率。因此, 要突破光学衍射极限的限制, 提 显微系统的分辨率, 如何减小在扫描点 处有效信号光的发光面积便成为了关键
在本发明方法屮, 当空间光调制器的调制函数为 . j(A ^ = 0时, 由德 拜积分计算可得, 调制后光柬经显微物镜聚焦后在样品 h所成光斑为一个 实心光斑。该实心光斑的尺寸 常规光学ui微术屮所用照明光束聚焦所成 衍射斑的尺寸相同。该实心光斑照射范围内的样品所发出的信号光被探测 器所收集, 得到当前扫描点处的第一信号光 ¾/ ; 当空 M光调制器的调制 函数.为. ^Α ^ ^^时, 由德拜积分计算可得, 调制后光束经 iui微物镜聚焦 后在样品 h所成光斑为一个面包圈型的^心光斑。该空心光斑照射范围内 的样品所发出的信号光被探测器所收無,得到当前扫描点处的第二信号光 强 /2。 利用公式 /(X, ·) = ΐ χ, γ)― γ!2{χ, y)计算得到 I(x.. y) ' 显然 I(x,y)所对应 的各扫描点处的^效信号光发光 l 积将小于 / , _ )所对应的各扫描点处的 第一信号光发光面积。 因此, 与常规光学. 微方法相比, 本发明减小了冇 效信号光的发光面积, 从而可以实现超衍射极限的分辨率。
相对于现有技术, 本发明具有以下有益的技术效果-
( 1 ) 可以在较低的光功率条件下实现超衍射极限的分辨率; (2 ) 成像速度快, 在每一帧图像的扫描点数为 512x512的情况下, 幀 频可达到每秒 15帧以 h ;
(3 ) 装置简单, 操作.方便。 附图说明
m 1为本发明一种超分辨 微装置的示意图。
图 2为本发明屮所成实心光斑的 !1: Ξ j—化光强分布曲线。
图 3为本发明中所成面包圈型^心光斑的 !ί:: I一化光强分布曲线。
图 4为本发明中有效信号光光斑与常规光学显微术中信号光光斑的 ^::: I 一化光 ¾分布比较曲线。
图 5为本发明与常规光学显微方法对同一样品扫描所得图像中的光强 分布比较曲线。
m 6为采用两个澈光器实现本发明.方法的装置示意图。
Α-体头施力 j¾
下 ι 结合实施例和附图来详细说明本发明, 但本发明并不仅限于此。 如图 1所示, 一种超分辨ui微装置, 纏: 澈光器 1, 单稅光纤 2, 准直透镜 3, 起偏器 4、 空间光调制器 5, 分柬镜 6, 扫描振镜系统 7, 扫 描透镜 8, 场镜 9, 1/4波片 10, .¾微物镜 11 , 样品台 12, 带通滤波片 13, 聚焦透镜 14, 针孔 15, 探测器 16, 控制器 17。
艽屮, 单投光纤: 2、 准直透镜 3、起偏器 4、 空 M光调制器 5依次位于 澈光器 1出射光束的光轴之 L; 所述起偏器 4的透光轴与水平方向平行。
艽屮, 分束镜 6、 扫描振镜系统 7依次位于经空 M光调制器 5调制后 光束的光轴之 ....... h,
艽屮, 扫描透镜 8、 场镜 9、 1/4波片 10、 .ki微物镜 11、 样品台 12依 次位于扫描振镜系统 7出射光柬的光轴之 h; 所述样品台 12位于显微物 镱 11的焦平面附近。
其中, 带通滤波片 13, 聚焦透镱 14 , 针孔 15, 探测器 16依次位于分 柬镜 6反射光柬的光轴之 h; 所述针孔 15位于聚焦透镜 14的焦平面处 其中, 控制器 17分别与空间光调制器 5以及扫描振镜系统 7相连, 用丁控制空间光调制器 5的切换以及扫描振镜系统 7的扫描; 所述空间光 调制器 5在控制器 17的控制下按照一: ^的切换频率在以下两种调制函数 之间切换: ^Α ί?) = 0和^ Α ?ϊ) =^ , 其中, p为光束 h某点与光轴的距离,
^为光束垂直光轴剖 l 内位置极坐标矢量 . 轴的夹角; 所述空间光调制 器 5的切换频率与扫描振镜系统 Ί的帧扫描频率相同,从而实现扫描振镜 系统 Ί 扫描一帧图像, 空间光调制器 5的调制函数切换一次。
h述装置中, 显微物镜 11的数值孔径 N^1.4 ; 所用针孔 15的直径 为 0.73个艾里斑直径, 探测器 16为雪崩光电二极管 (APD)
采用图 1所示的装置进行超分辨显微的.方法如下- 从激光器 1发出的激光光束, 首先被导入单模光纤 2 , 从单模光纤 2 出射的澈光光束, 经过准直透镜 3完成准直。经过准直后的光束入射到起 偏器 4转换为线偏振光, 之后入射到空间光调制器 5 h进行相位调制
利用控制器 17对 间光调制器 5进行控制, 使相位调制函数切换为 其中, 为光柬 h某点与光轴的距离, 为光束垂直光轴剖面内位置 极举标矢. 与 轴的夹角。
因此, 经空间光调制器 5进行相位调制之后, 出射光束的电矢≤强度 可由下式表示:
(β, φ) = 。 (A φ) ex.p[i/i (p, φ)\ = εϋ (p, φ)
其中, . (A 为入射到5 间光调制器 5 卜 光柬在 处的电矢≤ 强度, 为经过空间光调制器 5相位调制 ) 的出射光束在 处的 电矢量强度, 为虚数单位。
由空间光调制器 5出射的光束透过分束镜 6, 之后入射到扫描振镜系 统 7 .......匕 经扫描振镜系统 7出射的光束侬,次被扫描透镜 8聚焦、 场镜 9准 直, 之后通过 1/4波片 10转换.为圆偏振光, ΙΜ偏振光束经显徵物镜 11投 射到位于样品台 12 h的待测样品之 h
所述入射圆偏振光在显徵物镜 11的焦点附近所成的光场分布口 ί由德 拜积分确定, 具体如下: E(r2 , 2 , ζ2) = C J ]"Ω sin(6>) ' Αχ θ^ ) · A, (θ, ) Py ■e ^άθά
Pz 式屮, ^^ ^以^徵物镜 u 的焦点位置.为原点的柱坐标系, 2^2)代表了 2^2)处的电矢≤强度, 为虚数单位, C为 !U—化常 数, Θ .为光束孔径 Λ, .为光束垂直 Ζ轴剖面内位置极坐标矢量与 _ 由的 夹角, 是入射光的振幅分布, 表征了 iui微物镜 11 的结构, px
Figure imgf000010_0001
ill ....... h式计算可以发现, 此时入射的 ΙΜ偏振光经ui徵物镜 11 聚焦之后 在待测样品 h所成光斑为一个实心光斑,其具体光场分布 it Ξ i—化曲线如图 2所示
待测样品所出射的信号光被. ¾徵物镜 11收集,之后依次通过 1/4波片 10、 场镜 9、 扫描透镜 8、 扫描振镜系统 7, 最后被分束镜 6反射。 经分柬 镜 6反射的信号光束通过带通滤波片 13滤去 ¾散光, 之后经聚焦透镜 14 聚焦并通过针孔 15进行空间滤波, 最终被探测器 16所探测。 iB此时探测 器 16探测得到的信号光强位.为 ^,将其作为在当前扫描点处的第一信号光 通过控制器 17调节扫描振镜系 7,实现对于待测样品的二维扫描,记 录各扫描点处的第一信号光强 / ^ , 其中 x, 扫描点的二维坐标。
利用控制器 17对 间光调制器 5进行控制, 使相位调制函数切换为 艽屮, /7 .为光束 L¾点与光轴的距离, 为光束垂直光轴剖面内位置极坐 标矢量与 ·τ轴的夹角。
此时, 经空间光调制器 5进行相位调制之后, 出射光束的电矢≤强度 口」Ί··Ι』下式表示;
Ε2 β, φ) = Ε。 (ρ, φ) Qxp[if2 (ρ, φ)] = Ε0 (ρ, φ) &χρ(ΐφ)
艽屮, 为入射到空间光调制器 5 ....... h的光束在 处的电矢≤ 强度, £2(A^为经过空间光调制器 5相位调制后的出射光柬在 处的 电矢量强度, 为虚数单位。
由空间光调制器 5出射的光束透过分束镜 6, 之后入射到扫描振镜系 统 7 .......匕 经扫描振镜系统 7出射的光束侬,次被扫描透镜 8聚焦、 场镜 9准 直, 之后通过 1/4波片 10转换为圆偏振光。 圓偏振光束经 .¾徵物镜 11投 射到位于样品台 12 ....... h的待测样品之匕
所述入射圆偏振光在 徵物镜 11 的焦点附近所成的光场分布同样口 J— 由德拜积分确定。通过计算可以发现,此时入射的圓偏振光经显微物镜 11 聚焦之后在待测样品 h所成光斑为一个面包圈型空心光斑,其具体光场分 布 !ί:: I一化曲线如图 3所示。
til待测样品所出射的信号光被显微物镜 11 收無, 之后依次通过 1/4 波片 10、 场镜 9、 扫描透镜 8、 扫描振镜系统 7, 最后被分束镜 6反射。 经分束镜 6反射的信号光柬通过带通滤波片 13滤去杂散光, 之后经聚焦 透镱 14聚焦并通过针孔 15进行^间滤波, 最终被探测器 16所探测。 记 此时探测器 16探测得到的信号光强值为 /2 , 将其作为在 前扫描点处的 第二信号光强 e
通过控制器 17调节扫描振镱系统 7, 实现对于待测样品的二维扫描, 记录各扫描点处的第二信号光强 /2(χ, , 艽屮 x,.y .为扫描点的一维坐标。
利用公式 y) = /, (χ; y) γ!2 (χ, y)计算各扫描点处的有效信号光强 /(χ, ν) ,并最终得到超分辨. 微图像。
本发明中有效信号光光斑与常规: ^聚焦显微方法屮信兮光光斑的 ::: I 一化光强分布曲线比较如图 4所示。 由图 4 πί以看出, 本发明屮有效信号 光的光斑尺寸(^」全宽值为 0.34个波长)较常规:^聚焦 iui微方法中信号光 光斑尺寸(、 全宽值为 0.41个波 [ ¾冇所减小, 因此本发明.方法可以实现 超衍射极限的分辨率
为了验证本发明方法的分辨能力,针对同-一待测样 分别采用本发明 方法和常规共聚焦ui微.方法获得了扫描图像, 体的光强分布曲线比较如 图 5所示。所用的待测样品为 4颗紧密排列荧光颗粒, 荧光颗粒的直径.为 100纳米。
由图 5可以看出, 在常规共聚焦显微方法所获得的扫描图像中, 4颗 荧光颗粒所发出荧光的点扩散函数相互重叠, 无法被分辨。 而在本发明方 法所获得的扫描图像屮, 明显 nj.以看到 4个尖峰, 4颗荧光颗粒 nj.以被很 好地分辨。
本发明一种超分辨 微装置也可以采用两个澈光器来实现,具体装置 如图 6所示。 与使用单激光器时的装置相比, 使用两个激光器时的装置将 空间光调制器 5换成了反射镜 19, 同时增加了第二澈光器 lb, 第二单模 光纤 2b,第二准直透镜 3b,第二起偏器 4b,位相板 18,偏振分光棱镜 20; 此外,控制器 17分别与第一澈光器 la,第二激光器 lb以及扫描振镱系统 7相连, 用以控制第一激光器 la、 第二激光器 lb的启动与关闭以及扫描 振镜系统 Ί的扫描
其中, 所述第二激光器 lb与所述第一激光器 la完全相同。
艽屮, 所述反射镜 19用丁光路折转, 经其反射的光束垂直入射到所 述偏振分光棱镜 20之 ho
艽屮, 所述第一起偏器 4b的透光轴与水平方向垂直。
其中, 所述位相板 18为 0〜2 π涡旋位相板, 其相位调制函数为: ί,(ρ,φ) = φ
其中, 为光柬 h某点与光轴的距离, ^为光束垂直光轴剖面内位置 极坐标矢≤与 轴的夹角。
采用图 6所示的装置 ϋ行超分辨显微的.方法如下:
利用控制器 17启动第一激光器 la, 同时关闭第二激光器 lb。
从第一激光器 la发出的激光光束, 首先被导入第一单稅光纤 2a, 从 第一单模光纤 2a出射的激光光束, 经过第一准直透镜 3a完成准直 经过 准直后的光束入射到第一起偏器 4a转换.为线偏振光, 之后通过反射镜 19 ϋ行光路折转。
经反射镜 19反射的光束依次透过偏振分光梭镱 20和分束镜 6, 之后 入射到扫描振镜系统 1 ....... t:。经扫描振镜系统 7出射的光束依次被扫描透镜
8聚焦、 场镜 9准直, 之后通过 1/4波片 10转换为圆偏振光。 圓偏振光束 经ui微物镜 11投射到位丁样品台 12 ....... h的待测样品之上。
所述入射圆偏振光在ui徵物镜 11 的焦点附近所成的光场分布 由德 拜积分确定。 经计算可以发现, 此时入射的圆偏振光经显微物镜 11 聚焦 之后在待测样品 h所成光斑为一个实心光斑, 其光场分布与图 2所示光斑 111 l«J。
待测样品所出射的信兮光被显徵物镜 11收無,之后依次通过 1/4波片 10、 场镜 9、 扫描透镜 8、 扫描振镜系统 7, 最后被分束镜 6反射。 经分束 镜 6反射的信号光束通过带通滤波片 13滤去杂散光, 之后经聚焦透镜 14 聚焦并通过针孔 15遗行^间滤波, 最终被探测器 16所探测。 记此时探测 器 16探测得到的信号光强值.为 /,.,将其作为在当前扫描点处的第一信号光 通过控制器 17调节扫描振镱系统 7, 实现对于待测样品的二维扫描, 记录各扫描点处的第一信号光 ¾ / (x, , 其中 为扫描点的二维坐标。
利用控制器 17关闭第一激光器 la, 同时启动第二激光器 lb。
从第二激光器 lb发出的激光光柬, 首先被导入第二单模光纤 2b , 从 第一单模光纤 2b出射的激光光束, 经过第二准直透镜 3b完成准直。 经过 准直后的光束入射到第二起偏器 4b转换为线偏振光, 之后通过位相板 18 ϋ行相位调制。
位相板 18的相位调制函数为: 其中, 为光柬 h某点与光轴的距离, 为光束垂直光轴剖面内位置 极 矢. 与 .¾:轴的夹角。
因此, 经位相板 18进行相位调制之后, 出射光束的电矢 m强度 ^ Lll 1 V衣不:
¾ (ρ, φ)
Figure imgf000013_0001
艽屮, ¾(A .为入射到位相板 18 ....... h的光束在 处的电矢≤强度, 为经过位相板 18相位调制后的出射光柬在 处的电矢量强度, .为虛数单位。
由位相板 18出射的光束被偏振分光棱镜 20反射, 之后透过分柬镱 6 入射到扫描振镜系统 7 ....... h 经扫描振镜系统 7出射的光束依次被扫描透镜
8聚焦、 场镜 9准直, 之后通过 1/4波片 10转换为圆偏振光。 圓偏振光束 经ui微物镜 1 1投射到位于样品台 12 ....... h的待测样 之上。
所述入射圆偏振光在 iui徵物镜 11 的焦点附近所成的光场分布同样口 J— 由德拜积分确定。通过计算可以发现,此时入射的圓偏振光经显微物镜 11 聚焦之后在待测样 ....... h所成光斑.为一个面 圈型空心光斑, 艽光场分布- 图 3所示光斑相 J a
Li.1待测样品所出射的信号光被 iui微物镜 11 收無, 之后依次通过 1/4 波片 10、 场镜 9、 扫描透镜 8、 扫描振镜系统 7, ¾后被分束镜 6反射。 经分束镜 6反射的信号光柬通过带通滤波片 13滤去杂散光, 之后经聚焦 透镜 14聚焦并通过针孔 15进行空间滤波, 最终被探测器 16所探测。 记 此时探测器 16探测得到的信号光强值为 /2 , 将其作为在 前扫描点处的 第二信号光强 e
通过控制器 17调节扫描振镱系统 7, 实现对于待测样品的二维扫描, 记录各扫描点处的第二信号光强 /2(χ, , 艽屮 x, .y .为扫描点的一维坐标。
利用公式 /(χ, ·) = Λ (χ, y) - γΙ2 (χ, ·)计算各扫描点处的有效信号光 ¾ Kx.y) ,并最终得到超分辩显微图像。

Claims

-Jt jf ·¾| TBt -dfe Hh? 伙 利 安 水
1、 一种超分辨显徵方法, 其特征在丁, 包括以下歩骤:
1 ) 将澈光器发出的激光光束准直后转换为线偏振光;
2)对所述线偏振光进行相位调制, 调制函数为 (Α^ = 0, 其中, Ρ为 光束 ....... h某点与光轴的距离, ^为光束垂直光轴剖 l 内位置极坐标矢量与 轴的夹角;
3) 将所述相位调制后的线偏振光遗行光路偏转;
4)偏转后的光柬经聚焦和准直后转换为圓偏振光投射到待测样品 h, 以实现对待测样品的二维扫描;
5) 在一维扫描过程屮收集所述待测样品各扫描点发出的信号光, 滤 去杂散光得到第一信号光强 /^, y) , 艽中 X ^为扫描点的一维坐标;
6) 将步骤 2) 中的调制函数切换为 . (Α^ = , 为光束 h某点与光 轴的距离, 为光柬垂直光轴剖面内位置极坐标矢量与 轴的夹角;
7)盧 M歩骤 3)和歩骤 4),对歩骤 5)屮的各扫描点进行第二次扫描, 收無得到的第 信号光强 /2(x,W;
8) 根据公式
Figure imgf000015_0001
/2(x,_ )计算有效信号光强/ (χ,3 , 并利用
/max
/ .> 得到超分辨图像, 其中, ^τ, /皿.为第一信号光强 AfeW中的 最大值, / 为第二信号光强 /2(χ, 中的最大值。
2、 如权利要求 1 所述的超分辨 ii微.方法, 艽特征在于, 所述 ^效信 号光强值 /(X, .为负时, 设置 /(X, =0。
3、 一种超分辨显微装置, 括光源、 承载待测样品的样品台和将光 线投射到所述样品台的显微物镜, 其特征在于, 所述光源与显微物镜之间 依次设有:
用于将所述光源发出的光束改变.为线偏振光的起偏器;
用于对所述线偏振光 ϋ行相位调制的空间光调制器;
用于对所述相位调制后的光柬迸行光路偏转的扫描振镜系统; 依次布置的分别用于对所述扫描振镜系统出射的光束进行聚焦和准 直的扫描透镜和场镜;
用于将准直后的光束转换.为圆偏振光的 1/4波片, 所述圆偏振光通过 所述显微物镜投射到所述待测样品 L;
并设有用于控制所述空间光调制器和扫描振镜系统的控制器及收集 所述待测样品发出的信号光的探测系统。
4、 如权利要求 3 所述的超分辨 微装置, 艽特征在于, 所述光源与 起偏器之间依次设有用于对所述澈光光柬迸行滤波和准直的单模光纤和 准直透镜。
5、 如权利耍求 3所述的超分辩显徵装置, 其特征在于, 所述空间光 调制器具有可切换的第一调制函数 ( A = 0和第二调制函数. = , 其中, P为光柬 h某点与光轴的距离, ^为光束垂直光轴剖面内位置极坐 标矢量与 ^轴的夹角。
6、 如权利耍求 3 所示的超分辨显微装置, 其特征在于, 所述显微物 镜的数值孔径 NA=1.4。
7、 一种超分辨 微装置, 包括第一光源、 第二光源、 承载待测样品 的样品台和将光线投射到所述样品台的显徵物镜, 其特征在于, 还 括: 位于第一光路 h的第一起偏器;
沿第二光路依次布置的第一起偏器和位相板;
用于将所述第一光路和第一光路 ....... h的光线 ϋ行偏转的扫描振镜系统; 依次布置的分别用于对所述扫描振镜系统出射的光线进行聚焦和准 直的扫描透镜和场镜;
用于将准直后的光束转换为圓偏振光的 1/4波片, 所述圓偏振光通过 所述显微物镜投射到所述待测样 上;
并设有控制所述第一光源、 第 光源和扫描振镜系统的控制器及收集 所述待测样品发出的信号光的探测系统。
8、 如权利要求 7 所述的超分辨 iui微装置, 艽特征在于, 所述第一光 源 第一起偏器之间依次设^第一单模光纤和第一准直透镜,所述第二光 源与第二起偏器之间依次设有第二单模光纤和第二准直透镜
9、 如权利耍求 7所述的超分辨显徵装置, 其特征在于, 所述位相板 的调制函数为 ./3(A ^ = , 艽屮, 为光束 ....... h某点. 光轴的距离, ^为光束 垂直光轴剖面内位置极坐标矢量与 轴的夹角。
10、 如权利要求 7所述的超分辨 iui微装置, 其特征在于, 所述ui微物 镜的数值孔径 NA=1.4。
PCT/CN2012/083320 2012-06-29 2012-10-22 一种超分辨显微方法和装置 WO2014000351A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/411,373 US9568417B2 (en) 2012-06-29 2012-10-22 Super-resolution microscopy method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210227898.7 2012-06-29
CN201210227898.7A CN102735617B (zh) 2012-06-29 2012-06-29 一种超分辨显微方法和装置

Publications (1)

Publication Number Publication Date
WO2014000351A1 true WO2014000351A1 (zh) 2014-01-03

Family

ID=46991504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083320 WO2014000351A1 (zh) 2012-06-29 2012-10-22 一种超分辨显微方法和装置

Country Status (3)

Country Link
US (1) US9568417B2 (zh)
CN (1) CN102735617B (zh)
WO (1) WO2014000351A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889666A1 (en) * 2013-12-19 2015-07-01 Olympus Corporation Image generation system
CN107831589A (zh) * 2017-12-04 2018-03-23 中国计量大学 一种基于球形微纳液滴透镜的聚焦可控超分辨显微装置
CN109655812A (zh) * 2019-01-29 2019-04-19 湖北三江航天红峰控制有限公司 基于mems微振镜的固态激光雷达装调方法
CN114815282A (zh) * 2022-05-25 2022-07-29 中国计量大学 一种角向径向关联光源实现超分辨的装置
CN114895450A (zh) * 2022-05-10 2022-08-12 深圳大学 基于二次谐波的超分辨显微成像系统及成像方法
CN117270184A (zh) * 2023-11-22 2023-12-22 国科大杭州高等研究院 一种突破衍射极限分辨率的多模光纤显微成像系统和方法

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735617B (zh) * 2012-06-29 2014-06-04 浙江大学 一种超分辨显微方法和装置
CN103048299B (zh) * 2012-11-26 2015-01-21 浙江大学 基于荧光寿命差分的超分辨显微方法和装置
CN103048272B (zh) * 2013-01-08 2014-12-10 浙江大学 基于倏逝场照明的移频超分辨显微成像方法和装置
CN103257130B (zh) * 2013-05-31 2015-04-01 中国科学院苏州生物医学工程技术研究所 受激辐射损耗显微成像系统
CN103616330A (zh) * 2013-11-18 2014-03-05 中国科学院化学研究所 基于超连续产生的宽带激光光源激发的超分辨sted显微成像系统
CN103698309B (zh) * 2013-12-26 2016-07-27 中国科学院苏州生物医学工程技术研究所 基于可调谐激光的sted超分辨显微镜
CN103852458B (zh) * 2014-02-28 2016-02-03 浙江大学 一种基于宽场受激发射差分的显微方法和装置
CN105300934B (zh) * 2014-05-26 2018-09-25 中国科学院上海高等研究院 一种单通道光学超分辨成像仪器
CN104062750B (zh) * 2014-06-18 2016-07-06 浙江大学 一种双光子荧光受激发射微分超分辨率显微方法与装置
CN104614318A (zh) * 2015-01-28 2015-05-13 浙江大学 一种快速的超分辨显微成像方法和装置
DE102015105018A1 (de) * 2015-03-31 2016-10-06 Laser-Laboratorium Göttingen e.V. Verfahren und Rasterfluoreszenzlichtmikroskop zum mehrdimensional hochauflösenden Abbilden einer Struktur oder eines Wegs eines Partikels in einer Probe
CN104764729A (zh) * 2015-04-22 2015-07-08 华南师范大学 基于上转换纳米晶的受激损耗超分辨光学显微方法及系统
CN104991402B (zh) * 2015-07-23 2018-01-09 中国科学院广州生物医药与健康研究院 一种自动对焦的装置及方法
GB201515862D0 (en) 2015-09-08 2015-10-21 Univ Southampton Polarisation microscope
CN105466895B (zh) * 2015-11-19 2018-12-07 浙江大学 一种基于虚拟波矢调制的荧光超分辨显微装置及方法
CN105487214B (zh) * 2015-11-20 2018-02-13 浙江大学 一种快速三维超分辨率显微方法和装置
CN105486638B (zh) * 2015-11-30 2019-02-05 哈尔滨工业大学 一种超分辨阵列扫描结构光照明成像装置及其成像方法
CN105510229B (zh) * 2015-11-30 2018-11-02 哈尔滨工业大学 一种超分辨虚拟结构光照明成像装置及其成像方法
CN105548099B (zh) * 2015-12-04 2018-07-27 西北大学 基于双光子激发荧光的文物无损三维成像及成分鉴定方法
CN105486665B (zh) * 2016-01-26 2018-07-31 深圳大学 一种spr检测方法
EP3200002B1 (de) * 2016-01-27 2022-04-27 Abberior Instruments GmbH Verfahren zum verwenden eines hochauflösenden laser-scanning-mikroskops und hochauflösendes laser-scanning-mikroskop
CN105973853B (zh) * 2016-05-10 2018-11-09 浙江大学 一种基于双模式竞争激发的超分辨显微方法和装置
CN106124468B (zh) * 2016-06-20 2019-04-16 浙江大学 一种基于光激活及结构光照明的超分辨荧光显微方法及装置
CN106442445B (zh) * 2016-09-18 2019-04-30 中国计量大学 一种基于单通道的多色超分辨显微系统及方法
CN106767400B (zh) * 2016-11-23 2019-05-10 哈尔滨工业大学 基于空间光调制器的结构探测共焦显微成像方法及装置
CN106770095A (zh) * 2016-11-30 2017-05-31 浙江大学 一种基于非线性光斑调制的超分辨显微成像方法和装置
CN106770109A (zh) * 2016-12-13 2017-05-31 上海科源电子科技有限公司 一种生物荧光检测系统
CN107092086A (zh) * 2017-02-24 2017-08-25 浙江大学 基于相位调制的激光扫描饱和结构光照明的显微方法及装置
CN106841149B (zh) * 2017-03-17 2021-05-28 王富 受激辐射损耗显微装置
CN106932374A (zh) * 2017-04-17 2017-07-07 大连理工大学 基于锁相放大的显微镜
CN107014793B (zh) * 2017-04-21 2019-07-30 浙江大学 一种基于双振镜双物镜多模式宽场超分辨显微成像系统
CN106970055B (zh) * 2017-04-28 2019-08-27 浙江大学 一种三维荧光差分超分辨显微方法及装置
CN107219617B (zh) * 2017-05-09 2023-03-24 浙江大学 基于数字微镜器件的快速精准光学聚焦增强方法与系统
CN107907513B (zh) * 2017-10-27 2020-10-13 浙江大学 一种基于偏振解调的点扫描超分辨成像方法和装置
WO2019094627A1 (en) * 2017-11-08 2019-05-16 Arizona Board Of Regents On Behalf Of The University Of Arizona Imaging method and apparatus using circularly polarized light
CN108845408B (zh) * 2018-07-03 2020-07-14 上海理工大学 基于多面体棱镜及光束调频高分辨率高速成像方法与装置
CN108845410B (zh) * 2018-07-03 2021-01-22 上海理工大学 基于多面体棱镜的多光束共聚焦高速扫描成像方法与装置
CN108845411B (zh) * 2018-07-03 2023-09-01 苏州闻道电子科技有限公司 基于多面体棱镜及光束调频高分辨率高速成像方法与装置
CN108845407A (zh) * 2018-07-03 2018-11-20 苏州闻道电子科技有限公司 基于多面体棱镜和频率调制的高速扫描成像方法与装置
CN108982455B (zh) * 2018-07-31 2020-08-18 浙江大学 一种多焦点光切片荧光显微成像方法和装置
CN109212735B (zh) * 2018-10-10 2024-01-26 浙江大学 基于机器学习的高速自适应光学环形光斑校正系统和方法
CN109387496B (zh) * 2018-10-10 2021-07-09 深圳大学 高分辨率显微成像系统
CN109358004B (zh) * 2018-11-30 2021-02-26 浙江大学 双波长差分非标记显微成像的方法和装置
CN109632756B (zh) * 2019-01-18 2020-09-29 浙江大学 一种基于并行光斑扫描的实时荧光辐射微分超分辨显微方法与装置
CN109745010B (zh) * 2019-01-31 2024-05-14 北京超维景生物科技有限公司 定位式吸附显微镜探测装置及激光扫描显微镜
KR20210111246A (ko) * 2019-01-31 2021-09-10 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 레이저-가공 장치, 이의 작동 방법 및 이를 사용한 작업물 가공 방법
CN109981986B (zh) * 2019-04-01 2020-11-03 中国科学院长春光学精密机械与物理研究所 用于图像超分辨率复原的反射式红外微扫描光学成像系统
CN110118726A (zh) * 2019-04-12 2019-08-13 浙江大学 一种并行探测荧光发射差分显微成像的方法和装置
CN110146473B (zh) * 2019-04-16 2020-10-13 浙江大学 一种轴向超分辨的双光子荧光显微装置及方法
CN110261320B (zh) * 2019-06-28 2020-10-30 浙江大学 一种荧光交错差分显微成像的方法和装置
CN110596059B (zh) * 2019-09-05 2024-05-28 北京世纪桑尼科技有限公司 光学超分辨显微成像系统
CN110568731B (zh) * 2019-09-10 2020-10-30 浙江大学 一种超衍射极限焦斑阵列生成装置
CN112485230B (zh) * 2019-09-11 2022-03-18 复旦大学 基于主动时间调制混频激发照射的超分辨显微成像方法及装置
CN111024658A (zh) * 2019-11-27 2020-04-17 浙江大学 一种荧光分子定向定位方法和装置
CN111855639B (zh) * 2020-07-30 2021-08-13 中国科学技术大学 一种光谱采集系统和光谱采集方法
CN112326609B (zh) * 2020-10-16 2022-05-13 之江实验室 基于偏振复用的实时三维荧光差分超分辨成像方法和装置
CN112548326B (zh) * 2020-11-17 2023-10-13 华东师范大学重庆研究院 一种基于深度学习的山脊型表面5g芯片飞秒智能加工技术与装备
CN112798564B (zh) * 2020-12-22 2022-10-11 中国科学院苏州生物医学工程技术研究所 随机光学重建与结构光照明复合超分辨成像系统
CN113218635B (zh) * 2021-04-30 2023-02-28 重庆大学 一种非接触式矢量偏振光场测试系统
CN113281891B (zh) * 2021-05-19 2022-06-10 浙江大学 共聚焦扫描式暗场显微成像方法与装置
CN113433681B (zh) * 2021-06-25 2023-03-24 清华大学 结构光照明显微成像系统、方法
CN115165101A (zh) * 2022-07-14 2022-10-11 华中科技大学 一种单光子灵敏度超快光谱测量及光谱成像装置及方法
CN115308184A (zh) * 2022-09-05 2022-11-08 中国科学院苏州生物医学工程技术研究所 一种主动结构光照明的超分辨显微成像方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504490A (zh) * 2009-03-20 2009-08-12 上海理工大学 一种圆环形矢量光束聚焦系统
CN101852594A (zh) * 2010-05-10 2010-10-06 北京理工大学 超分辨激光偏振差动共焦成像方法与装置
CN102062572A (zh) * 2009-11-13 2011-05-18 中国科学院西安光学精密机械研究所 基于jtc的高精度光电混合像移测量装置及其方法
CN102735617A (zh) * 2012-06-29 2012-10-17 浙江大学 一种超分辨显微方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479252A (en) * 1993-06-17 1995-12-26 Ultrapointe Corporation Laser imaging system for inspection and analysis of sub-micron particles
JP2003097911A (ja) * 2001-09-21 2003-04-03 Citizen Watch Co Ltd 変位測定装置およびそれを用いた変位測定方法
EP1936423B1 (en) * 2005-10-11 2019-08-21 Nikon Corporation MICROSCOPE Apparatus AND OBSERVING METHOD
JP5484879B2 (ja) * 2009-12-11 2014-05-07 オリンパス株式会社 超解像顕微鏡
EP2565697B1 (en) * 2010-04-26 2020-07-01 Nikon Corporation Structural illumination microscope device
CN101907766B (zh) * 2010-07-09 2011-09-14 浙江大学 基于切向偏振的超分辨荧光显微方法及装置
CN102121819B (zh) * 2010-12-15 2012-07-04 浙江大学 一种纳米分辨全反射差分微位移测量的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504490A (zh) * 2009-03-20 2009-08-12 上海理工大学 一种圆环形矢量光束聚焦系统
CN102062572A (zh) * 2009-11-13 2011-05-18 中国科学院西安光学精密机械研究所 基于jtc的高精度光电混合像移测量装置及其方法
CN101852594A (zh) * 2010-05-10 2010-10-06 北京理工大学 超分辨激光偏振差动共焦成像方法与装置
CN102735617A (zh) * 2012-06-29 2012-10-17 浙江大学 一种超分辨显微方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAVANI, S. R. P. E ET AL.: "Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function", PNAS, vol. 106, no. 9, 3 March 2009 (2009-03-03), pages 2995 - 2999 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889666A1 (en) * 2013-12-19 2015-07-01 Olympus Corporation Image generation system
CN107831589A (zh) * 2017-12-04 2018-03-23 中国计量大学 一种基于球形微纳液滴透镜的聚焦可控超分辨显微装置
CN107831589B (zh) * 2017-12-04 2024-02-02 中国计量大学 一种基于球形微纳液滴透镜的聚焦可控超分辨显微装置
CN109655812A (zh) * 2019-01-29 2019-04-19 湖北三江航天红峰控制有限公司 基于mems微振镜的固态激光雷达装调方法
CN114895450A (zh) * 2022-05-10 2022-08-12 深圳大学 基于二次谐波的超分辨显微成像系统及成像方法
CN114895450B (zh) * 2022-05-10 2023-05-19 深圳大学 基于二次谐波的超分辨显微成像系统及成像方法
CN114815282A (zh) * 2022-05-25 2022-07-29 中国计量大学 一种角向径向关联光源实现超分辨的装置
CN114815282B (zh) * 2022-05-25 2023-12-29 中国计量大学 一种角向径向关联光源实现超分辨的装置
CN117270184A (zh) * 2023-11-22 2023-12-22 国科大杭州高等研究院 一种突破衍射极限分辨率的多模光纤显微成像系统和方法
CN117270184B (zh) * 2023-11-22 2024-03-29 国科大杭州高等研究院 一种突破衍射极限分辨率的多模光纤显微成像系统和方法

Also Published As

Publication number Publication date
CN102735617A (zh) 2012-10-17
CN102735617B (zh) 2014-06-04
US9568417B2 (en) 2017-02-14
US20150211986A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
WO2014000351A1 (zh) 一种超分辨显微方法和装置
CN107941763B (zh) 一种共轴三维受激辐射损耗超分辨显微成像方法和装置
JP5554965B2 (ja) 位相変調型空間光変調器を用いたレーザ顕微鏡
CN103257130B (zh) 受激辐射损耗显微成像系统
JP4315794B2 (ja) 共焦点顕微鏡
WO2017049752A1 (zh) 一种基于一阶贝塞尔光束的sted超分辨显微镜及调节方法
CN109632756B (zh) 一种基于并行光斑扫描的实时荧光辐射微分超分辨显微方法与装置
CN107014793A (zh) 一种基于双振镜双物镜多模式宽场超分辨显微成像系统
CN110118726A (zh) 一种并行探测荧光发射差分显微成像的方法和装置
CN102661938A (zh) 一种基于切向偏振光的受激发射损耗显微方法和装置
CN102841083A (zh) 一种激光扫描位相显微成像方法及系统
JP2005345614A (ja) レーザ顕微鏡
JP6000010B2 (ja) レーザー走査型顕微鏡
CN102798622A (zh) 一种基于强度差分的三维超分辨显微方法和装置
WO2022089578A1 (zh) 基于电光调制技术的相位调制荧光差分显微成像方法和装置
WO2022111602A1 (zh) 基于共路并行荧光辐射差分的超分辨显微成像方法和装置
JP2009109788A (ja) レーザー走査型顕微鏡
JP2018205069A (ja) 光計測装置
JP6253395B2 (ja) 画像生成システム
CN107991235A (zh) 共焦显微镜模式像差矫正装置
CN112485232B (zh) 基于一维暗斑分时照明的亚十纳米定位测向方法和装置
JP2014052476A (ja) レーザー走査蛍光顕微鏡装置
CN102866137B (zh) 一种二维超分辨显微方法和装置
CN109358004B (zh) 双波长差分非标记显微成像的方法和装置
CN107144951B (zh) 一种基于半球微结构的超分辨显微装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879734

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14411373

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879734

Country of ref document: EP

Kind code of ref document: A1