CN106767400B - 基于空间光调制器的结构探测共焦显微成像方法及装置 - Google Patents

基于空间光调制器的结构探测共焦显微成像方法及装置 Download PDF

Info

Publication number
CN106767400B
CN106767400B CN201611046803.6A CN201611046803A CN106767400B CN 106767400 B CN106767400 B CN 106767400B CN 201611046803 A CN201611046803 A CN 201611046803A CN 106767400 B CN106767400 B CN 106767400B
Authority
CN
China
Prior art keywords
light
sample
spatial light
light modulator
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611046803.6A
Other languages
English (en)
Other versions
CN106767400A (zh
Inventor
倪赫
邹丽敏
张鹏
郭清源
周梦姣
丁雪梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201611046803.6A priority Critical patent/CN106767400B/zh
Publication of CN106767400A publication Critical patent/CN106767400A/zh
Application granted granted Critical
Publication of CN106767400B publication Critical patent/CN106767400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Abstract

基于空间光调制器的结构探测共焦显微成像方法与装置。主要解决了以往共焦显微成像图片采集速率低、图像处理时间长的问题。该方法在共焦扫描显微系统中引入结构探测方法,采用空间光调制器模拟结构探测函数,对探测光斑进行调制,之后利用光电探测器测量调制后的光强,得到与待测样品采样点相对应的光强值,结合共焦显微系统的扫描机制,可实现对待测样品的三维成像;本发明还提供了一种适用于上述方法的测量装置,以透射式空间光调制器及光电探测器来实现结构探测,具备分辨率高,成像速度高的特点。

Description

基于空间光调制器的结构探测共焦显微成像方法及装置
技术领域
本发明属于共焦显微成像领域,具体涉及一种采用空间光调制器在共焦显微系统中实现结构探测超分辨成像的方法与装置。
背景技术
光学显微术是一种历史悠久且十分重要的无破坏性技术,被广泛应用于生物和材料科学等领域。共焦显微测量技术是一种适用于微米及亚微米尺度测量的三维光学显微技术。反射式共焦显微系统的层析能力使之在三维成像领域显得十分重要。
在20世纪50年代中后期,共焦显微镜由Minsky发明,1977年,C.J.R.Sheppard和A.Choudhury首次阐明共焦显微系统在点针孔掩模的作用下,以牺牲视场为代价,使横向分辨率提高到相同孔径普通显微镜的1.4倍。此后,共焦显微测量技术受到普遍关注,成为了显微科学领域的重要分支。
但是,传统共焦技术一直受到探测器尺寸的影响,共焦显微技术的分辨力难以提高。
专利号:ZL 201510867976.3描述的“一种超分辨阵列扫描结构光照明成像装置及其成像方法”,在该专利中,其探测器为CCD,CCD探测并输出的是一系列位置不变的艾里斑图像,图像数量对应样品上的扫描点数,对采集的每一幅光斑图像都进行结构探测函数的调制处理,最终可得到样品的成像结果图。
相似专利有:一种超分辨结构探测阵列共焦荧光成像装置及其成像方法(专利号:ZL 201510867993.7)、一种超分辨结构探测阵列共焦相干成像装置及其成像方法(专利号:ZL 201510868011.6)、一种超分辨结构探测共焦荧光成像装置及其成像方法(专利号:ZL201510868015.4)、一种超分辨结构探测共焦相干成像装置及其成像方法(专利号:ZL201510868029.6)、一种超分辨虚拟结构光照明成像装置及其成像方法(专利号:ZL201510867984.8)、一种超分辨阵列虚拟结构光照明成像装置及其成像方法(专利号:ZL201510867963.6)。
上述文件及其提到的对比文献中所描述的现有结构探测技术的不足之处在于:CCD由于受到曝光速度影响,图片采集速率低;后续图像处理即虚拟结构探测调制占用时间长。
发明内容
本发明的目的是针对上述现有技术存在的问题,设计提供一种基于空间光调制器的结构探测共焦显微成像方法及装置,不受CCD曝光速度影响,硬件上实现结构探测,达到快速实现结构探测共焦成像的目的。
本发明的目的是这样实现的:
一种基于空间光调制器的结构探测共焦显微成像方法,在激光共聚焦显微成像系统的探测光路上实现结构探测,其步骤如下:
激光器发出的光束经第一透镜会聚,会聚光束透射过分光镜聚焦至待测样品上一点,待测样品在该点的反射光从原光路返回,经分光镜反射至探测光路,该点样品反射光聚焦至空间光调制器的调制面,即样品单点成像在空间光调制器的调制面上,经振幅调制后的样品反射光经第二透镜会聚至光电探测器,被接收并转换为电信号输出,即可得到样品在该点的灰度值。其中,空间光调制器调制面上产生符合结构探测函数所描述的图像,实现反射光斑的光强分布与结构探测函数相乘后再求和。
进一步的,Ⅰ、从He-Ne激光器发出的线偏振光束经过准直扩束器,出射为平行光束;所述平行光束经过起偏器后变成线偏振光,经偏振分光镜后透射,经1/4波片后变成圆偏振光被扫描振镜系统反射,经扫描透镜,管镜和物镜后聚焦于被测样品表面,所述聚焦光斑借助于扫描振镜系统对被测样品进行二维扫描,借助于载物台沿光轴轴向移动进行轴向扫描,从而实现被测样品的三维测量,从被测样品反射的光信号经原光路返回,再次经过1/4波片后变成线偏振光,此时光束的偏振方向与经过起偏器后的光的偏振方向垂直,被偏振分光棱镜反射;
Ⅱ、反射光被第一收集透镜经10x镜头,10x镜头将反射光进一步放大,光束入射到空间光调制器表面,经振幅调制后的光束被第二收集透镜聚焦至光电探测器,调制光的光强被光电探测器所探测,可以获得与样品采样点一一对应的探测光强I(xs,ys),转换为电信号U(xs,ys)输出,转换成灰度值即得到被测图像,其中,空间光调制器调制面上产生符合结构探测函数所描述的图像,实现待探测光斑的光强分布与结构探测函数相乘后再求和。
进一步的,采用空间光调制器模拟针孔范围内的结构探测函数分布,对探测光信号进行空间频域调制,本实施例的探测函数采取如下形式:
其中,f0取系统的截止频率fc,初始相位取(0,0);
一种基于空间光调制器的结构探测共焦显微成像装置,包括He-Ne激光器、偏振分光棱镜、扫描振镜系统,在He-Ne激光器的出射光路上依次配置扩束器、起偏器、偏振分光镜、1/4波片、扫描振镜系统、在扫描振镜系统的反射光路上依次配置远心扫描透镜、管镜、物镜、被测样品、载物台、在偏振分光镜反射光路上依次配置第一收集透镜、10x镜头、空间光调制器、第二收集透镜、光电探测器;
本发明的优点是:通过采用本发明的技术方案,在共焦扫描显微系统中引入结构探测方法,采用空间光调制器模拟结构探测函数,对探测光斑进行调制,之后利用光电探测器测量调制后的光强,得到与待测样品采样点相对应的光强值,结合共焦显微系统的扫描机制,可实现对待测样品的三维成像,将结构探测函数利用空间光调制器模拟,配合光电探测器采集收集光强,在硬件上实现结构探测,由于不存在CCD和后续的软件处理,此时系统的成像速率得到极大提升。
附图说明
图1是基于空间光调制器的结构探测共焦显微成像方法原理图。
图2是基于空间光调制器的结构探测共焦显微成像装置结构示意图。
图3是基本共焦成像与基于空间光调制器的结构探测共焦成像的结果对比图。
图4是基本共焦成像与基于空间光调制器的结构探测共焦成像的结果线对分辨力成像对比图。
图1中:1.激光器,2.第一透镜,3.分光镜,4.待测样品,5.空间光调制器,6.第二透镜,7.光电探测器。
图2中:8.He-Ne激光器,9.扩束器,10.起偏器,11.偏振分光镜,12.1/4波片,13.扫描振镜系统,14.扫描透镜,15.管镜,16.物镜,17.被测样品,18.载物台,19.第一收集透镜,20.10x镜头,21.透射式空间光调制器,22.第二收集透镜,23.光电探测器。
具体实施方式
下面结合附图对本发明做进一步说明。
由图1所示一种基于空间光调制器的结构探测共焦显微成像方法,激光器1发出的光束经第一透镜2会聚,会聚光束透射过分光镜3聚焦至待测样品4上一点,待测样品在该点的反射光从原光路返回,经分光镜3反射至探测光路,该点样品反射光聚焦至空间光调制器的调制面,即样品单点成像在空间光调制器的调制面上,经振幅调制后的样品反射光经第二透镜6会聚至光电探测器7,被接收并转换为电信号输出,即可得到样品在该点的灰度值。其中,空间光调制器调制面上产生符合结构探测函数所描述的图像,实现反射光斑的光强分布与结构探测函数相乘后再求和。
由图2所示的,在激光共聚焦显微成像系统的探测光路上实现结构探测,在探测光路上,所探测的光斑经空间光调制器进行振幅调制,光斑经调制后由光电探测器探测光强,其中空间光调制器调制面上产生符合结构探测函数所描述的图像,该方法所实现的效果为待探测光斑的光强分布与结构探测函数相乘后再求和;
其具体步骤如下:
Ⅰ、从He-Ne激光器8发出的线偏振光束经过准直扩束器9,出射为平行光束;所述平行光束经过起偏器10后变成线偏振光,经偏振分光镜11后透射,经1/4波片12后变成圆偏振光被扫描振镜系统13反射,经扫描透镜14,管镜15和物镜16后聚焦于被测样品17表面,所述聚焦光斑借助于扫描振镜系统13对被测样品17进行二维扫描,借助于载物台18沿光轴轴向移动进行轴向扫描,从而实现被测样品的三维测量,从被测样品17反射的光信号经原光路返回,再次经过1/4波片12后变成线偏振光,此时光束的偏振方向与经过起偏器10后的光的偏振方向垂直,被偏振分光棱镜11反射;
Ⅱ、反射光被第一收集透镜19经10x镜头20,10x镜头20将反射光进一步放大,光束入射到空间光调制器21表面,经振幅调制后的光束被第二收集透镜22聚焦至光电探测器25,调制光的光强被光电探测器26所探测,可以获得与样品采样点一一对应的探测光强I(xs,ys),转换为电信号U(xs,ys)输出,转换成灰度值即得到被测图像,其中,空间光调制器25调制面上产生符合结构探测函数所描述的图像,实现待探测光斑的光强分布与结构探测函数相乘后再求和;
作为本发明的一个实施例,空间光调制器调制面上产生符合结构探测函数采用空间光调制器模拟针孔范围内的结构探测函数分布,对探测光信号进行空间频域调制,本实施例的探测函数采取如下形式:
其中,f0取系统的截止频率fc,初始相位取(0,0);
通过图3和图4中基本共焦和结构探测共焦的对比可以看出,成像的分辨率得到了有效的提升。
一种基于空间光调制器的结构探测共焦显微成像装置,包括He-Ne激光器8、偏振分光镜11、扫描振镜系统13,在He-Ne激光器1的出射光路上依次配置扩束器9、起偏器10,偏振分光镜11、1/4波片12、扫描振镜系统13、在扫描振镜系统13的反射光路上依次配置远心扫描透镜14、管镜15、物镜16、被测样品17、载物台18、在偏振分光棱镜3反射光路上依次配置第一收集透镜19、10x镜头20、空间光调制器21、第二收集透镜22、光电探测器23。
以上所述,仅为本发明较佳的具体实施方式,这些具体实施方式都是基于本发明整体构思下的不同实现方式,而且本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (4)

1.一种基于空间光调制器的结构探测共焦显微成像方法,在激光共聚焦显微成像系统的探测光路上实现结构探测,其特征在于:
激光器(1)发出的光束经第一透镜(2)会聚,会聚光束透射过分光镜(3)聚焦至待测样品(4)上一点,待测样品在该点的反射光从原光路返回,经分光镜(3)反射至探测光路,该点样品反射光聚焦至空间光调制器的调制面,即样品单点成像在空间光调制器的调制面上,经振幅调制后的样品反射光经第二透镜(6)会聚至光电探测器(7),被接收并转换为电信号输出,即可得到样品在该点的灰度值;其中,空间光调制器调制面上产生符合结构探测函数所描述的图像,实现反射光斑的光强分布与结构探测函数相乘后再求和。
2.根据权利要求1所述的基于空间光调制器的结构探测共焦显微成像方法,其步骤如下:
Ⅰ、从He-Ne激光器(8)发出的线偏振光束经过准直扩束器(9),出射为平行光束;所述平行光束经过起偏器(10)后变成线偏振光,经偏振分光镜(11)后透射,经1/4波片(12)后变成圆偏振光被扫描振镜系统(13)反射,经扫描透镜(14),管镜(15)和物镜(16)后聚焦于被测样品(17)表面,所述聚焦光斑借助于扫描振镜系统(13)对被测样品(17)进行二维扫描,借助于载物台(18)沿光轴轴向移动进行轴向扫描,从而实现被测样品的三维测量,从被测样品(17)反射的光信号经原光路返回,再次经过1/4波片(12)后变成线偏振光,此时光束的偏振方向与经过起偏器(10)后的光的偏振方向垂直,被偏振分光棱镜(11)反射;
Ⅱ、反射光被第一收集透镜(19)经10x镜头(20),10x镜头(20)将反射光进一步放大,光束入射到空间光调制器(21)表面,经振幅调制后的光束被第二收集透镜(22)聚焦至光电探测器(25),调制光的光强被光电探测器(26)所探测,可以获得与样品采样点一一对应的探测光强I(xs,ys),转换为电信号U(xs,ys)输出,转换成灰度值即得到被测图像,其中,空间光调制器(25)调制面上产生符合结构探测函数所描述的图像,实现待探测光斑的光强分布与结构探测函数相乘后再求和。
3.根据权利要求1所述的基于空间光调制器的结构探测共焦显微成像方法,其特征在于:采用空间光调制器模拟针孔范围内的结构探测函数分布,对探测光信号进行空间频域调制,探测函数采取如下形式:
其中,f0取系统的截止频率fc,初始相位取(0,0)。
4.一种权利要求1所述的基于空间光调制器的结构探测共焦显微成像方法使用的装置,其特征在于:在He-Ne激光器(8)的出射光路上依次配置扩束器(9)、起偏器(10),偏振分光镜(11)、1/4波片(12)、扫描振镜系统(13)、在扫描振镜系统(13)的反射光路上依次配置远心扫描透镜(14)、管镜(15)、物镜(16)、被测样品(17)、载物台(18)、在偏振分光镜(11)反射光路上依次配置第一收集透镜(19)、10x镜头(20)、空间光调制器(21)、第二收集透镜(22)、光电探测器(23)。
CN201611046803.6A 2016-11-23 2016-11-23 基于空间光调制器的结构探测共焦显微成像方法及装置 Active CN106767400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611046803.6A CN106767400B (zh) 2016-11-23 2016-11-23 基于空间光调制器的结构探测共焦显微成像方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611046803.6A CN106767400B (zh) 2016-11-23 2016-11-23 基于空间光调制器的结构探测共焦显微成像方法及装置

Publications (2)

Publication Number Publication Date
CN106767400A CN106767400A (zh) 2017-05-31
CN106767400B true CN106767400B (zh) 2019-05-10

Family

ID=58974412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611046803.6A Active CN106767400B (zh) 2016-11-23 2016-11-23 基于空间光调制器的结构探测共焦显微成像方法及装置

Country Status (1)

Country Link
CN (1) CN106767400B (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107085290B (zh) * 2017-06-12 2019-02-01 哈尔滨工业大学 一种基于扫描振镜与半导体激光器的共聚焦显微镜并行扫描装置及扫描方法
WO2019104461A1 (zh) * 2017-11-28 2019-06-06 苏州慧景光电科技有限公司 工件孔位成像检测系统
CN108088653B (zh) * 2017-11-30 2020-11-20 哈尔滨工业大学 共焦显微镜模式像差矫正方法
CN107991235B (zh) * 2017-11-30 2020-07-28 哈尔滨工业大学 共焦显微镜模式像差矫正装置
CN108037074A (zh) * 2017-11-30 2018-05-15 哈尔滨工业大学 共焦显微镜模式像差矫正方法
CN108089318A (zh) * 2017-11-30 2018-05-29 哈尔滨工业大学 共焦显微镜模式像差矫正方法
CN108037075A (zh) * 2017-11-30 2018-05-15 哈尔滨工业大学 共焦显微镜模式像差矫正方法
CN108169764A (zh) * 2018-03-20 2018-06-15 深圳市砝石激光雷达有限公司 高速激光3d成像装置及方法
CN108844926B (zh) * 2018-06-12 2020-10-16 中国科学院上海技术物理研究所 磁光光致发光光调制反射和光调制透射光谱联合测试系统
CN109269777B (zh) * 2018-10-25 2020-12-11 暨南大学 同时获取光响应图像和反射率图像的方法、装置、系统及存储介质
CN109445081A (zh) * 2018-12-07 2019-03-08 哈尔滨工业大学 一种高速追踪扫描共焦显微测量装置和数据处理方法
CN109557653B (zh) * 2018-12-20 2021-06-29 浙江大学 一种基于算法恢复的差分共聚焦显微成像方法和装置
CN109884056B (zh) * 2019-03-04 2021-10-08 哈尔滨工业大学 一种基于优化结构探测函数的显微成像方法
CN109883955B (zh) * 2019-03-04 2021-10-08 哈尔滨工业大学 获得结构探测显微成像系统的最优结构探测函数的装置及方法
CN110244446B (zh) * 2019-07-11 2021-06-29 中国科学院广州生物医药与健康研究院 一种超分辨率显微镜
CN110638424B (zh) * 2019-09-19 2022-05-13 哈尔滨工业大学 一种扫描光片谐波显微成像方法及装置
CN111257226B (zh) * 2020-01-18 2022-10-28 南京恒锐精密仪器有限公司 基于偏振自相关的暗场共焦显微测量装置和方法
CN111257227B (zh) * 2020-01-18 2023-01-31 南京恒锐精密仪器有限公司 基于偏振自相关的暗场共焦显微测量装置和方法
CN111913294A (zh) * 2020-09-07 2020-11-10 中国工程物理研究院机械制造工艺研究所 一种非机械扫描的结构光显微三维成像装置及成像方法
CN112378858B (zh) * 2020-11-11 2021-08-20 上海交通大学 一种手性探测系统
CN114047626B (zh) * 2021-10-22 2023-08-15 北京理工大学 一种基于dmd的双通道局部高分辨光学系统
CN114137713B (zh) * 2021-11-17 2022-11-25 华中科技大学 无标记厚样本的实时定量相位成像方法和系统
CN114706208B (zh) * 2022-02-18 2023-01-17 中国科学院化学研究所 受激辐射损耗光学显微镜及其显微成像系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2407918A1 (en) * 2002-05-13 2003-11-13 Juan Manuel Bueno Garcia Method and apparatus for imaging using polarimetry and matrix based image reconstruction
CN102466471A (zh) * 2010-11-18 2012-05-23 三星电机株式会社 表面形状测量设备
CN102735617A (zh) * 2012-06-29 2012-10-17 浙江大学 一种超分辨显微方法和装置
CN103226238A (zh) * 2013-05-14 2013-07-31 哈尔滨工业大学 基于反射式液晶空间光调制器的共焦横向扫描装置与方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2407918A1 (en) * 2002-05-13 2003-11-13 Juan Manuel Bueno Garcia Method and apparatus for imaging using polarimetry and matrix based image reconstruction
CN102466471A (zh) * 2010-11-18 2012-05-23 三星电机株式会社 表面形状测量设备
CN102735617A (zh) * 2012-06-29 2012-10-17 浙江大学 一种超分辨显微方法和装置
CN103226238A (zh) * 2013-05-14 2013-07-31 哈尔滨工业大学 基于反射式液晶空间光调制器的共焦横向扫描装置与方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Pavel Křížek等.Spatial light modulators in fluorescence microscopy.《Microscopy: Science, Technology, Applications and Education》.2010,第1366-1377页.
基于结构探测原理的共焦超分辨方法研究;王宝凯;《中国优秀硕士学位论文全文数据库 工程科技II辑》;20160215(第2期);正文第46-48页第5.2节及图5-1至图5-4

Also Published As

Publication number Publication date
CN106767400A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106767400B (zh) 基于空间光调制器的结构探测共焦显微成像方法及装置
WO2015135415A1 (zh) 分光瞳激光差动共焦布里渊-拉曼光谱测量方法及装置
CN105758799B (zh) 一种超分辨阵列虚拟结构光照明成像装置及其成像方法
CN110987817B (zh) 基于大数值孔径物镜整合暗场观察的椭偏仪及测量方法
JP5918658B2 (ja) 光学装置
CN107192702B (zh) 分光瞳激光共焦cars显微光谱测试方法及装置
CN105486638B (zh) 一种超分辨阵列扫描结构光照明成像装置及其成像方法
US11774354B2 (en) Interferometric optical photothermal infrared spectroscopy
CN102721673B (zh) 多光束阵列光诱导反射率成像装置及方法
CN102494623A (zh) 镜头中光学表面中心间距的非接触式测量方法及测量装置
CN102589428B (zh) 基于非对称入射的样品轴向位置跟踪校正的方法和装置
CN106052585B (zh) 一种面形检测装置与检测方法
CN104482881B (zh) 激光受激发射损耗三维超分辨差动共焦成像方法与装置
JP6000010B2 (ja) レーザー走査型顕微鏡
CN104990500A (zh) 一种检测金刚石对顶砧中物质体积和折射率的装置及方法
KR20210151709A (ko) 간섭-산란 현미경
WO2021155363A1 (en) Method and apparatus for high performance wide field photothermal infrared spectroscopy and imaging
CN104931481A (zh) 激光双轴差动共焦诱导击穿-拉曼光谱成像探测方法与装置
KR101987402B1 (ko) 편광픽셀어레이를 이용한 박막과 후막의 두께 및 삼차원 표면 형상 측정 광학 장치
CN203828901U (zh) 用于频域oct系统的光谱仪
CN103845039A (zh) 用于频域oct系统的光谱仪
CN209264563U (zh) 一种折射率显微测量系统
CN216771491U (zh) 一种偏振分辨二次谐波测试装置
TW201638628A (zh) 結構照明平行接收之螢光超光譜顯微系統
CN109142273A (zh) 一种折射率显微测量系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant