CN105486638B - 一种超分辨阵列扫描结构光照明成像装置及其成像方法 - Google Patents

一种超分辨阵列扫描结构光照明成像装置及其成像方法 Download PDF

Info

Publication number
CN105486638B
CN105486638B CN201510867976.3A CN201510867976A CN105486638B CN 105486638 B CN105486638 B CN 105486638B CN 201510867976 A CN201510867976 A CN 201510867976A CN 105486638 B CN105486638 B CN 105486638B
Authority
CN
China
Prior art keywords
illumination
light
scanning
super
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510867976.3A
Other languages
English (en)
Other versions
CN105486638A (zh
Inventor
邹丽敏
张甦
王宝凯
谭久彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201510867976.3A priority Critical patent/CN105486638B/zh
Publication of CN105486638A publication Critical patent/CN105486638A/zh
Application granted granted Critical
Publication of CN105486638B publication Critical patent/CN105486638B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation

Abstract

一种超分辨阵列扫描结构光照明成像装置及其成像方法,它涉及一种成像装置及其成像方法。本发明为了解决现有技术中的显微成像技术只能测量较薄的生物样品,平行光入射的衍射光受散射效应影响明显,测量效率低的问题。本发明包括LED光源,沿LED光源光线传播方向依次放置光强调制器,准直扩束器,扫描系统,微透镜阵列,准直透镜,分光棱镜,1/4波片,照明物镜,样品,收集透镜,CCD光强探测器以及数据采集卡;每次扫描得到的探测光斑直接在像面进行叠加得到最初的探测数据,每个方向进行三次不同相位照明的扫描,经过图像重构得到超分辨图像。本发明拓宽空间频域带宽,适用于工业形貌及厚生物样品成像的测量领域。

Description

一种超分辨阵列扫描结构光照明成像装置及其成像方法
技术领域
本发明涉及一种成像装置及其成像方法,具体涉一种超分辨阵列扫描结构光照明成像装置及其成像方法,属于光学紧密测量技术领域。
背景技术
光学显微术是一种历史悠久且十分重要的无破坏性技术,被广泛应用于生物和材料科学等领域。结构光照明技术(Structured Illumination Microscopy,SIM)由美国科学家Gustafsson于2000年提出,其原理类似于莫尔条纹原理,通过调制宽场显微镜的照明函数,使得整个光学系统的光强传递函数(OTF)得到平移与叠加,从而使得系统频域带宽增加,截止频率提高。通常采用一个正弦光栅改变宽场显微镜的照明强度分布,照明光场在光栅方向上被调制,经过旋转光栅实现整个横向的调制。相比于光瞳滤波技术,结构光技术注重考虑光学系统频域的变化与影响,只要满足光栅周期等于宽场显微镜空间截止频率,结构光照明技术即可使系统OTF带宽变为原来的2倍,即分辨率提高为原来的2倍。
通常宽场结构光照明显微镜只能测量比较薄的生物样品,当测量较厚的样品时,随入射距离的增加,平行光入射的衍射光受散射效应影响明显。
发明内容
本发明的目的是为了解决现有技术中的显微成像技术只能测量较薄的生物样品,当测量较厚的样品时,随入射距离的增加,平行光入射的衍射光受散射效应影响明显,测量效率低的问题。
本发明的技术方案是:一种超分辨阵列扫描结构光照明成像装置,包括LED光源,沿LED光源光线传播方向依次放置光强调制器、准直扩束器、扫描系统、微透镜阵列、准直透镜、分光棱镜、1/4波片、照明物镜,样品、收集透镜、CCD光强探测器以及数据采集卡;所述光强调制器是声光调制器,光束经过调制后光强与时间成正弦关系,经过扫描系统,在样品表面可以得到空间上光强按正弦分布的照明光场;所述数据采集卡可以同步控制光强调制与扫描。
采用CCD探测,成像过程需要逐点扫描,那么整个图像采集过程效率大大降低。因此,在光路中加入微透镜阵列,同时对多点进行扫描可以极大提高测量效率。
所述的LED光源为非相干光源,对样品的照明为非相干照明,整个成像过程均为非相干成像。
所述扫描系统包括扫描振镜,扫描振镜改变光束偏转角。
基于所述一种超分辨阵列扫描结构光照明成像装置的成像方法,包括以下步骤:
步骤一、通过AOM声光调制器对照明光束的光强在时域内进行调制成正弦函数,调制探测面探测灵敏度系数,得到等效扫描照明光场;
步骤二、对照明光透过样品并经过物镜再次成像得到探测面上的光强分布,对所述探测面上的光强分布在扫描时间上进行积分,得到样品表面照明光的强度分布;
步骤三、对样品表面照明光光强分布进行超分辨图像重构处理,得到清晰图像。
所述步骤一具体包括:
通过对探测面灵敏度系数进行调试,得到照明光场的不同扫描位置的光强最大值,进而得到扫描后的照明光场光强分布;
对扫描后的照明光场光强分布进行时间积分得到等效照明光场。
所述步骤二包括:
得到照明光透过样品后光强分布,进而得到经过物镜再次成像到探测面上的光强分布;
对探测面上的光强分布在扫描时间上进行积分,得到积分图像的光强分布;
对积分图像的光强分布进行傅里叶变换得到积分图像的图像频谱。
步骤三所述超分辨图像重构处理包括对样品表面照明光的光强分布引入不同的调制相位并进行解调。
所述对样品表面照明光的光强分布引入不同的调制相位并进行解调的过程包括:
根据引入不同的调制相位得到照明光场的不同扫描位置的光强最大值,进而得到引入相位后的积分图像的光强分布;
对引入相位后的积分图像的光强分布进行傅里变换,得到带有相位的积分图像频谱;
通过构造相位矩阵、像频谱矩阵和物频谱矩阵,得到物频谱的三部分的频率信息。
所述的声光调制器AOM的调制周期T与扫描点在样品表面的扫描速度v的乘积
通过微透镜阵列在物面产生的照明光斑中,相邻照明光斑中心距离为照明光场空间周期的整数倍。
为了增加光学成像的穿透深度,结构光照明原理被引入到扫描显微镜中,由于扫描显微镜采用聚焦照明,能量集中,受厚样品散射影响小。2009年,美国哈佛大学谢晓亮课题组提出一种应用于荧光激光扫描显微镜的结构光照明超分辨,利用同步完成激光扫描显微镜中的空间扫描与照明光强调制,在非相干系统中,获得了一个在时间域上不同位置光强调制分布的结构光照明,从而改善系统分辨力,原理仿真表明,激光扫描显微镜的分辨力提高为原来的2倍。此外,该系统亦可用于双光子荧光显微镜。
本发明与现有技术相比具有以下效果:本发明的装置设置有声光调制器和与其同步的振镜扫描系统,能在扫描的同时改变扫描光斑的光强。本发明的方法利用调制经过样品之前的光束,完成同步扫描,得到不同扫描点的瞬时光强信号,最后时间不同的每次扫描得到的像叠加。这种不同扫描点照明光强不同,且照明光强与样品被扫描点位置成正弦关系的设计,可以把样品结构中的高频分量向低频方向平移并且与低频成分叠加,系统探测到普通显微成像系统中无法探测到的高频信息,从而显著改善系统横向分辨力。
本发明在物面通过时域累计得到光强按正弦分布的照明光场。照明光场对样品物函数进行调制,使其高频信息移向低频段,进而能被探测光路探测并参与成像。改变照明光场方向可以对物函数进行不同方向的调制。每个照明方向通过改变照明光场相位,对探测频谱中的高低频成分加以区分,最后进行图像重构得到超分辨图像。为了提高测量效率,在光路中加入微透镜阵列,可以同时实现多路照明与多路探测,成像速率随微透镜阵列中微透镜数量成倍提高。该装置与方法可以提高扫描显微系统的空间截止频率,拓宽空间频域带宽,从而显著改善系统横向分辨力,并且同时具有高测量效率,可适用于工业形貌及厚生物样品成像的测量领域。
附图说明
图1是本发明超分辨阵列扫描结构光照明成像装置结构示意图;
图2是NA=0.1,λ=660nm时普通扫描显微成像系统的OTF归一化仿真图;
图3是NA=0.1,λ=660nm时阵列扫描结构光照明显微成像系统的OTF归一化仿真图;
图4是x方向上间隔为3.3um的条纹样品仿真图;
图5是样品的频谱分布仿真图;
图6是条纹样品在NA=0.1,λ=660nm的普通扫描显微系统中所探测到的频谱仿真图;
图7是条纹样品在NA=0.1,λ=660nm的普通扫描显微系统中所成像光强归一化仿真图;
图8是条纹样品在NA=0.1,λ=660nm,照明光场光强分布为的阵列扫描结构光照明系统中所探测到的频谱仿真图;
图9是图7中数据经过图像重构后的到的超分辨图像的频谱;
图10是条纹样品在NA=0.1,λ=660nm,照明光场光强分布为的阵列扫描结构光照明系统中经过图像重构后所得超分辨图像的光强归一化仿真图;
图11是条纹样品与其在普通扫描显微系统和阵列扫描结构光照明系统中所成像在x方向光强归一化仿真图。
图1中:1、LED光源,2、AOM声光调制器,3、准直扩束器,4、扫描系统,5、微透镜阵列,6、准直透镜,7、收集透镜,8、分光棱镜,9、CCD探测器,10、1/4波片,11、照明物镜,12、样品。
具体实施方式
结合附图说明本发明的具体实施方式,本发明的一种超分辨阵列扫描结构光照明成像装置包括LED光源1,其特征在于:沿LED光源1光线传播方向依次放置AOM声光调制器2、准直扩束器3、扫描系统4、微透镜阵列5、准直透镜6、分光棱镜8、1/4波片10、照明物镜11、样品12、收集透镜7、CCD探测器9以及数据采集卡;所述的声光调制器AOM的调制周期T与扫描点在样品表面的扫描速度v的乘积且相邻照明光斑中心距离为照明光场空间周期的整数倍。
所述的LED光源为非相干光源,对样品的照明为非相干照明,整个成像过程均为非相干成像。
所述扫描系统3包括扫描振镜,扫描振镜改变光束偏转角。
本实施例的超分辨扫描结构光照明成像方法,利用AOM声光调制器对系统中经过样品前的照明光进行时间调制,同步完成扫描,得到样品表面扫描点瞬时光强信号I(xs,ys;t),再对时间积分,可以得到样品表面的照明光场光强分布I(xs,ys)。
基于所述一种超分辨阵列扫描结构光照明成像装置的成像方法,具体包括以下步骤:
步骤一、非相干照明扫描显微系统中,省略放大倍数以及常数系数,照明光强点扩展函数hil(r)与探测光强点扩展函数hde(r)相同,表示如式(1):
式中,J1(x)表示第一类一阶贝塞尔函数;NA为数值孔径;r为径向坐标;λ为光源波长。
假设t既表示扫描时间又表示扫描位置,那么在普通扫描显微系统中照明光场的不同扫描位置的光强最大值,如式(2)所示:
进而得到扫描后的照明光场光强分布,如式(3)所示:
对扫描后的照明光场光强分布进行时间积分得到等效扫描照明光场,如式(4):
步骤二、计算照明光透过样品后光强分布,如式(5):
进而得到经过物镜再次成像到探测面上的光强分布,如式(6):
对探测面上的光强分布在扫描时间上进行积分,得到积分图像的光强分布,如式(7);
对积分图像的光强分布进行傅里叶变换得到积分图像的图像频谱,如式(8):
图2是在物镜数值孔径NA=0.1照明光波长λ=660nm时扫描显微系统OTF即的归一化仿真图。
图4和图5分别是x方向上间隔为3.3um的被测样品及其频谱分布仿真图。
图6是在普通扫描显微系统中,系统探测到样品的频谱信息对应所成像p(x)如图7所示。
步骤三、对样品表面照明光光强分布进行超分辨图像重构处理,得到清晰图像。
在本实施例中,改变探测面灵敏度系数,等效于改变照明光场的不同扫描位置的光强最大值,如式(9):
经过扫描后的照明光场光强分布是一个由艾里斑形成的阵列,可表示为如式(10):
最终得到积分图像,其光强分布如式(11):
对其进行傅里叶变换,得到积分图像频谱,如式(12):
可以看出,扫描结构光照明超分辨方法成功地把样品在普通显微系统中无法探测到的高频信息移到了显微系统的OTF通带内,使其能被探测。
由于结构照明方法所得的探测结果均含有基频与高频信息的相位混叠,本实施例中通过引入不同的调制相位进行解调,即超分辨图像重构。
在照明光强调制函数中引入相位,照明光场的不同扫描位置的光强最大值变如式(13):
那么,积分图像光强分布变如式(14):
对其进行傅里叶变换,得到带有相位的积分图像频谱如式(15):
构造一个相位矩阵Ψ,像频谱矩阵P,假设物频谱矩阵为O;
那么可以得到
由此可以得到物频谱的三部分频率信息。
图3是在物镜数值孔径NA=0.1照明光波长λ=660nm时扫描结构光照明显微系统等效OTF即的归一化仿真图。
对比图2和图3可以看出,扫描结构光照明显微成像系统的OTF空间频域带宽明显大于普通扫描显微系统OTF。
图8是扫描结构光照明系统探测结果的频谱信息,图9是解调后积分图像的频谱信息,图10是经过图像恢复后的积分图像。
图11是样品以及其在普通扫描显微系统中所成像和扫描结构光照明系统中经过图像重构得到的积分图像,在x方向光强分布的归一化仿真图。
通过对比图6和图9可看出本实施例能探测到的最高样品频率明显高于普通扫描显微系统。
通过对比图7和图10,并结合图11,可看出扫描结构光照明超分辨方法得到的积分图像分辨力明显高于普通扫描显微系统,本实施例实现了扫描显微系统的二维超分辨,扫描显微系统的等效OTF带宽得到拓展。

Claims (7)

1.一种超分辨阵列扫描结构光照明成像装置的成像方法,所述成像装置包括LED光源(1),沿LED光源(1)光线传播方向依次放置AOM声光调制器 (2)、准直扩束器(3)、扫描系统(4)、微透镜阵列(5)、准直透镜(6)、分光棱镜(8)、1/4波片(10)、照明物镜(11)、样品(12)、收集透镜(7)、CCD探测器 (9)和数据采集卡,收集透镜(7)与分光棱镜(8)连接,CCD探测器(9)连接收集透镜(7),所述扫描系统(4)包括扫描振镜,扫描振镜改变光束偏转角在样品(12)的物面进行扫描,特征在于以下步骤:
步骤一、通过AOM声光调制器(2)对照明光束的光强在时域内进行调制成正弦函数,调制探测面探测灵敏度系数,得到等效扫描照明光场;
步骤二、对照明光透过样品并经过物镜再次成像得到探测面上的光强分布,对所述探测面上的光强分布在扫描时间上进行积分,得到样品表面照明光的强度分布;
步骤三、对样品表面照明光光强分布进行超分辨图像重构处理,得到清晰图像。
2.根据权利要求1所述一种超分辨阵列扫描结构光照明成像装置的成像方法,其特征在于:所述步骤一具体包括:
通过对CCD探测器探测面灵敏度系数进行调试,得到照明光场的不同扫描位置的光强最大值,进而得到扫描后的照明光场光强分布;
对扫描后的照明光场光强分布进行时间积分得到等效照明光场。
3.根据权利要求1所述一种超分辨阵列扫描结构光照明成像装置的成像方法,其特征在于:所述步骤二包括:
得到照明光透过样品后光强分布,进而得到经过物镜再次成像到CCD探测器探测面上的光强分布;
对CCD探测器探测面上的光强分布在扫描时间上进行积分,得到积分图像的光强分布;
对积分图像的光强分布进行傅里叶变换得到积分图像的图像频谱。
4.根据权利要求1所述一种超分辨阵列扫描结构光照明成像装置的成像方法,其特征在于:步骤三所述超分辨图像重构处理包括对样品表面照明光的光强分布引入不同的调制相位并进行解调。
5.根据权利要求4所述一种超分辨阵列扫描结构光照明成像装置的成像方法,其特征在于:所述对样品表面照明光的光强分布引入不同的调制相位并进行解调的过程包括:
根据引入不同的调制相位得到照明光场的不同扫描位置的光强最大值,进而得到引入相位后的积分图像的光强分布;
对引入相位后的积分图像的光强分布进行傅里变换,得到带有相位的积分图像频谱;
通过构造相位矩阵、像频谱矩阵和物频谱矩阵,得到物频谱的三部分的频率信息。
6.根据权利要求1所述一种超分辨阵列扫描结构光照明成像装置的成像方法,其特征在于:所述的声光调制器AOM的调制周期T与扫描点在样品表面的扫描速度v的乘积,λ为照明光波长,NA为照明物镜(11)的数值孔径。
7.根据权利要求1所述一种超分辨阵列扫描结构光照明成像装置的成像方法,其特征在于:通过微透镜阵列(5)在物面产生的照明光斑中,相邻照明光斑中心距离为照明光场空间周期的整数倍。
CN201510867976.3A 2015-11-30 2015-11-30 一种超分辨阵列扫描结构光照明成像装置及其成像方法 Active CN105486638B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510867976.3A CN105486638B (zh) 2015-11-30 2015-11-30 一种超分辨阵列扫描结构光照明成像装置及其成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510867976.3A CN105486638B (zh) 2015-11-30 2015-11-30 一种超分辨阵列扫描结构光照明成像装置及其成像方法

Publications (2)

Publication Number Publication Date
CN105486638A CN105486638A (zh) 2016-04-13
CN105486638B true CN105486638B (zh) 2019-02-05

Family

ID=55673763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510867976.3A Active CN105486638B (zh) 2015-11-30 2015-11-30 一种超分辨阵列扫描结构光照明成像装置及其成像方法

Country Status (1)

Country Link
CN (1) CN105486638B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106296585B (zh) * 2016-08-12 2019-12-03 浙江大学 基于表面波照明的傅里叶域迭代拼接超分辨显微方法及装置
CN107389631B (zh) * 2017-04-28 2020-07-07 中国科学院生物物理研究所 高速多色多模态结构光照明超分辨显微成像系统及其方法
CN109324019B (zh) * 2018-12-11 2022-04-12 北京航空航天大学 一种用于轴对称燃烧场监测的激光吸收光谱层析成像系统
CN110440712B (zh) * 2019-08-26 2021-03-12 英特维科技(苏州)有限公司 自适应大景深三维扫描方法与系统
CN111458318B (zh) * 2020-05-12 2021-06-22 西安交通大学 利用正方晶格结构光照明的超分辨成像方法及系统
CN113484296A (zh) * 2021-09-02 2021-10-08 清华大学 基于结构光照明的超分辨扫描光场成像系统和方法
CN114113019B (zh) * 2021-11-30 2023-07-14 哈尔滨工业大学 一种基于多重信号分类算法的阵列扫描超分辨显微成像装置、方法、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284136A1 (en) * 1987-03-13 1988-09-28 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Confocal laser scanning microscope
CN102540446A (zh) * 2011-12-28 2012-07-04 中国科学院西安光学精密机械研究所 一种基于数字微镜器件的高速结构照明光学显微系统及方法
CN102735617A (zh) * 2012-06-29 2012-10-17 浙江大学 一种超分辨显微方法和装置
CN103245292A (zh) * 2013-05-09 2013-08-14 哈尔滨工业大学 一种超分辨声光调制共焦成像装置与方法
CN103256888A (zh) * 2013-05-09 2013-08-21 哈尔滨工业大学 一种超分辨移动光栅共焦成像装置与方法
CN103278093A (zh) * 2013-06-09 2013-09-04 哈尔滨工业大学 一种差动双区域共焦轴向测量装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011017078B4 (de) * 2011-04-15 2019-01-31 Leica Microsystems Cms Gmbh Weitfeld-Mikroskop-Beleuchtungssystem, Verwendung desselben und Weitfeld-Beleuchtungsverfahren

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284136A1 (en) * 1987-03-13 1988-09-28 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Confocal laser scanning microscope
CN102540446A (zh) * 2011-12-28 2012-07-04 中国科学院西安光学精密机械研究所 一种基于数字微镜器件的高速结构照明光学显微系统及方法
CN102735617A (zh) * 2012-06-29 2012-10-17 浙江大学 一种超分辨显微方法和装置
CN103245292A (zh) * 2013-05-09 2013-08-14 哈尔滨工业大学 一种超分辨声光调制共焦成像装置与方法
CN103256888A (zh) * 2013-05-09 2013-08-21 哈尔滨工业大学 一种超分辨移动光栅共焦成像装置与方法
CN103278093A (zh) * 2013-06-09 2013-09-04 哈尔滨工业大学 一种差动双区域共焦轴向测量装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Two-photon-based structured illumination microscopy applied for superresolution optical biopsy;Chia Hua Yeh et al;《SPIE》;20130228;全文
光栅时空调制式共焦显微系统超分辨特性研究;陈彦均;《中国优秀硕士学位论文全文数据库工程科技II辑》;20150215(第2期);第36-52页
基于微透镜阵列的多光束共焦成像系统若干问题的研究;尹可;《中国优秀硕士学位论文全文数据库工程科技II辑》;20140315(第3期);第9页
阵列式共焦显微系统超分辨特性的研究;黄向东等;《光电子激光》;20060131;第17卷(第1期);全文

Also Published As

Publication number Publication date
CN105486638A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
CN105486638B (zh) 一种超分辨阵列扫描结构光照明成像装置及其成像方法
CN105758799B (zh) 一种超分辨阵列虚拟结构光照明成像装置及其成像方法
CN107490562B (zh) 利用波面整形器的超高速三维折射率影像拍摄和荧光结构光照明显微镜系统及其使用方法
US9581548B2 (en) Methods for resolving positions in fluorescence stochastic microscopy using three-dimensional structured illumination
CN102540446B (zh) 一种基于数字微镜器件的高速结构照明光学显微系统及方法
EP3065001B1 (en) Holographic microscope and data processing method for high-resolution hologram image
CN105510229B (zh) 一种超分辨虚拟结构光照明成像装置及其成像方法
US10976532B2 (en) Structured illumination microscopy system using digital micromirror device and time-complex structured illumination, and operation method therefor
Feldkhun et al. Doppler encoded excitation pattern tomographic optical microscopy
EP3184956B1 (en) Optical distance measuring apparatus
Chen et al. Full-field chromatic confocal surface profilometry employing digital micromirror device correspondence for minimizing lateral cross talks
Lee et al. Color-coded LED microscopy for quantitative phase imaging: Implementation and application to sperm motility analysis
JP2022165355A (ja) 撮像装置
CN108918465A (zh) 光学三维成像系统及光学三维成像方法
Xue et al. Quantitative interferometric microscopy cytometer based on regularized optical flow algorithm
CN104931481A (zh) 激光双轴差动共焦诱导击穿-拉曼光谱成像探测方法与装置
CN113466187B (zh) 对荧光各向异性进行偏振超分辨成像的系统及方法
CN105547145B (zh) 一种超分辨结构探测共焦相干成像装置及其成像方法
CN105319196B (zh) 一种超分辨结构探测共焦荧光成像装置及其成像方法
JP6194404B2 (ja) 光学的距離計測装置
CN114324245B (zh) 基于部分相干结构光照明的定量相位显微装置和方法
CN103411560B (zh) 角谱扫描照明荧光随动针孔探测微结构测量装置与方法
CN105547144B (zh) 一种超分辨结构探测阵列共焦相干成像装置及其成像方法
WO2020037837A1 (zh) 基于k空间变换的三维成像装置及其成像方法
WO2021155378A1 (en) Systems and methods for performing multiple-wavelength quantitative phase imaging (qpi)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant