WO2013180010A1 - 基板処理装置、温度計測システム、処理装置の温度計測方法、搬送装置及び記録媒体 - Google Patents

基板処理装置、温度計測システム、処理装置の温度計測方法、搬送装置及び記録媒体 Download PDF

Info

Publication number
WO2013180010A1
WO2013180010A1 PCT/JP2013/064380 JP2013064380W WO2013180010A1 WO 2013180010 A1 WO2013180010 A1 WO 2013180010A1 JP 2013064380 W JP2013064380 W JP 2013064380W WO 2013180010 A1 WO2013180010 A1 WO 2013180010A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature measuring
processing
substrate
measuring device
Prior art date
Application number
PCT/JP2013/064380
Other languages
English (en)
French (fr)
Inventor
渡辺 明人
直也 宮下
克美 高島
本田 繁
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2014518416A priority Critical patent/JP6175432B2/ja
Priority to KR1020147032242A priority patent/KR101772546B1/ko
Priority to CN201380027921.0A priority patent/CN104364888B/zh
Publication of WO2013180010A1 publication Critical patent/WO2013180010A1/ja
Priority to US14/549,738 priority patent/US10340164B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • G01K1/146Supports; Fastening devices; Arrangements for mounting thermometers in particular locations arrangements for moving thermometers to or from a measuring position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a batch of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers
    • H01L21/67781Batch transfer of wafers

Definitions

  • the present invention relates to a substrate processing apparatus, a temperature measurement system, a temperature measurement method for the processing apparatus, a transport apparatus, and a recording medium.
  • the present invention relates to an effective substrate used for processing a substrate such as a semiconductor wafer (a wafer on which a semiconductor integrated circuit device is manufactured) and a glass substrate (a substrate on which a liquid crystal display device is manufactured).
  • the temperature of each region in the processing furnace is measured.
  • the soaking area in the processing furnace changes, so a method for measuring and correcting the temperature in the processing furnace is implemented. ing.
  • a method of measuring and correcting the temperature in the processing furnace is performed. Conventionally, the following operations have been performed when performing this processing furnace temperature correction method.
  • an operator individually prepares a temperature measurement lifting jig (auto profiler), attaches a temperature measuring device to the vertical (up / down) moving part of the jig, data logger (electronic measuring instrument), PC (personal) Computer), and obtain temperature data of the soaking area in the processing furnace when the temperature rises. From the acquired data, the operator calculates a temperature correction value.
  • a temperature correction value since an operator must prepare an auto profiler every time, the cost is increased and workability is reduced. Even with the same device, the calculation result of the temperature correction value may differ depending on the skill of each worker, and the performance and quality of the product vary.
  • a device for acquiring temperature data of a heater soaking region in a processing furnace without using an auto profiler is considered. For example, see Patent Document 1.
  • Patent Document 1 discloses that the soaking length of a heater is measured by using a transfer device as an alternative to a jig such as an auto profiler. It is not disclosed how to attach the thermocouple) and how to set the temperature measuring element (thermocouple) at the measurement start position. In this case, the setting at the measurement start position varies by each worker, and the workability deteriorates depending on the skill of the worker. As a result, variations in the measurement point of the soaking length of the heater occur by each worker, and as a result, there is a concern about reliability of temperature control performance and deterioration of substrate quality.
  • An object of the present invention is to improve the workability of measuring the temperature soaking area in the processing furnace, and to improve the reliability of the soaking length of the heater regardless of the skill of the operator, the temperature of the substrate processing apparatus
  • An object of the present invention is to provide a measurement system, a temperature measurement method for a processing apparatus, a transport apparatus, and a recording medium.
  • a processing chamber for processing a substrate loaded in a state of being held by a holder a temperature measuring instrument for measuring a temperature in the processing chamber, and transporting the substrate to at least the holder
  • the transfer device Before measuring the temperature in the processing chamber and the transfer device, the transfer device is moved to a preset position, and when the temperature in the processing chamber is measured, the temperature measuring instrument is attached.
  • a substrate processing apparatus having a controller that acquires a temperature from the temperature measuring instrument while raising and lowering the transfer apparatus.
  • a temperature measuring device that measures the temperature in a processing chamber that processes a target object, a transfer device that transfers the target object, and the temperature measuring device for attaching the temperature measuring device to the transfer device. And a controller that acquires the temperature from the temperature measuring device while moving the conveying device in a state where the temperature measuring device is attached to the conveying device via the jig. Provided.
  • a temperature measuring device that measures a temperature in a processing chamber that processes the object to be processed, a transfer device that transfers the object to be processed, the temperature measuring device, and the transfer device, respectively.
  • the transfer device can be moved up and down in a state in which a temperature measuring instrument for measuring the temperature in the processing chamber for processing the object to be processed is attached, and the fixing for attaching the temperature measuring instrument is performed.
  • a conveying device including a jig and a sensor for recognizing attachment or detachment of a temperature measuring device support mechanism that can be attached to and detached from the fixed jig.
  • a recording medium capable of reading by a controller a program having at least a process in which a temperature in a processing chamber is measured by a temperature measuring device attached to the transport apparatus, the transport apparatus comprising: The controller can read a program having a process of moving to a preset position and a process of acquiring the temperature from the temperature measuring device while moving the transfer device with the temperature measuring device attached.
  • a medium is provided.
  • FIG. 1 is a schematic plan view showing a substrate processing apparatus according to an embodiment of the present invention.
  • 1 is a schematic side view showing a substrate processing apparatus according to an embodiment of the present invention. It is a longitudinal cross-sectional view which shows the processing furnace of the substrate processing apparatus which concerns on one Embodiment of this invention.
  • the storage state of the temperature measuring device support mechanism in 1st embodiment of this invention is shown, (a) is a side view, (b) is a top view.
  • the protrusion state of the temperature measuring device support mechanism in 1st embodiment of this invention is shown, (a) is a side view, (b) is a top view.
  • the temperature meter attachment port is shown, (a) is a partially cut side view when closed, and (b) is a side view when attached.
  • the substrate processing apparatus is configured to handle a semiconductor wafer as an object to be processed, and is configured to perform processing such as oxide film formation, diffusion, and film formation on the semiconductor wafer.
  • a semiconductor wafer (hereinafter referred to as a wafer) 200 as a substrate which is an object to be processed is made of a semiconductor such as silicon, and a carrier (container) for storing and transporting the wafer 200 is FOUP (container). front opening unified pod) 110 is used.
  • a substrate processing apparatus (hereinafter referred to as a processing apparatus) 100 according to the present invention includes a casing 111.
  • a front maintenance port 103 as an opening provided for maintenance is opened at the front front portion of the front wall 111a of the housing 111, and front maintenance doors 104 and 104 for opening and closing the front maintenance port 103 are respectively provided. It is built.
  • a pod loading / unloading port (substrate container loading / unloading port) 112 for loading / unloading a FOUP (hereinafter referred to as a pod) 110 is opened on the front wall 111a of the housing 111 so as to communicate between the inside and the outside of the housing 111.
  • the pod loading / unloading port 112 is opened and closed by a front shutter (substrate container loading / unloading opening / closing mechanism) 113.
  • a load port (substrate container delivery table) 114 is installed on the front front side of the pod loading / unloading port 112, and the load port 114 is configured so that the pod 110 is placed and aligned.
  • the pod 110 is loaded onto the load port 114 by an in-process conveyance device (not shown), and is also unloaded from the load port 114.
  • a rotatable storage pod storage shelf (substrate container mounting shelf) 105 is installed in an upper portion of the housing 111 in the substantially central portion in the front-rear direction, and a plurality of substrate container mounting shelves 105 are provided.
  • the pod 110 is configured to be stored. That is, the substrate container mounting shelf 105 is erected vertically, and is provided with a column 116 and n (n is 1 or more) shelf plates (substrate container mounting table) 117 on the column 116.
  • the shelf plate 117 is configured to hold the pod 110 in a state where a plurality of the pods 110 are placed.
  • a pod transfer device (substrate container transfer device) 118 as a first transfer device is installed between the load port 114 and the substrate container mounting shelf 105 in the housing 111.
  • the pod transfer device 118 includes a pod elevator (substrate container lifting mechanism) 118a that can be moved up and down while holding the pod 110, and a pod transfer mechanism (substrate container transfer mechanism) 118b as a transfer mechanism.
  • the pod transfer device 118 is connected between the load port 114, the substrate container placement shelf 105, and the pod opener (substrate container lid opening / closing mechanism) 121 by the continuous operation of the pod elevator 118a and the pod transfer mechanism 118b. It is comprised so that it may convey.
  • the processing apparatus 100 includes a semiconductor manufacturing apparatus that performs processing such as oxide film formation.
  • the sub-housing 119 constituting the housing of the semiconductor manufacturing apparatus is constructed across the rear end at the lower part of the substantially central portion in the front-rear direction in the housing 111.
  • a pair of wafer loading / unloading ports (substrate loading / unloading ports) 120 for loading / unloading the wafer 200 into / from the sub-casing 119 are arranged on the front wall 119a of the sub-casing 119 in two vertical stages.
  • a pair of pod openers 121 and 121 are installed at the wafer loading / unloading ports 120 and 120 at the upper and lower stages, respectively.
  • the pod opener 121 includes mounting bases 122 and 122 on which the pod 110 is placed, and cap attaching / detaching mechanisms (lid attaching / detaching mechanisms) 123 and 123 for attaching and detaching caps (lids) of the pod 110.
  • the pod opener 121 is configured to open and close the wafer loading / unloading port of the pod 110 by attaching / detaching the cap of the pod 110 placed on the placing table 122 by the cap attaching / detaching mechanism 123.
  • the sub-housing 119 constitutes a transfer chamber 124 that is fluidly isolated from the installation space of the pod transfer device 118 and the substrate container mounting shelf 105.
  • a wafer transfer mechanism (substrate transfer mechanism) 125 as a second transfer device is installed in the front region of the transfer chamber 124.
  • the wafer transfer mechanism 125 includes a wafer transfer device (substrate transfer device) 125a and a wafer transfer device elevator (substrate transfer device lifting mechanism) 125b.
  • the wafer transfer device 125a holds the wafer 200 by a tweezer (substrate holder) 125c and rotates or linearly moves the wafer 200 in the horizontal direction.
  • the wafer transfer device elevator 125b moves the wafer transfer device 125a up and down.
  • the wafer transfer mechanism 125 is operated with respect to the boat (substrate holder) 217 using the tweezers 125c of the wafer transfer device 125a as a mounting portion of the wafer 200 by continuous operation of the wafer transfer device elevator 125b and the wafer transfer device 125a.
  • the wafer 200 is loaded (charging) and unloaded (discharged).
  • a clean unit 134 is installed at the right end of the transfer chamber 124 opposite to the wafer transfer device elevator 125b side.
  • the clean unit 134 includes a supply fan and a dustproof filter, and supplies clean air 133 that is a cleaned atmosphere or an inert gas.
  • a notch alignment device 135 is installed as a substrate alignment device for aligning the circumferential position of the wafer.
  • the clean air 133 blown out from the clean unit 134 is circulated through the notch aligning device 135 and the wafer transfer device 125a and then sucked in by a duct (not shown) to be exhausted to the outside of the casing 111 or clean. It is circulated to the primary side (supply side) that is the suction side of the unit 134 and is blown out again into the transfer chamber 124 by the clean unit 134.
  • the transfer chamber 124 is provided with a boat elevator (substrate holder lifting mechanism) 151 as a third transfer device.
  • the boat elevator 151 is configured to raise and lower the boat 217.
  • a seal cap 219 as a lid is horizontally installed on the arm 152 as a connecting tool connected to the boat elevator 151, and the seal cap 219 supports the boat 217 vertically, and the lower end of the processing furnace 202 is attached to the arm 152. It is configured to be occluded.
  • the boat 217 includes a plurality of holding members so that a plurality of (for example, about 50 to 125) wafers 200 are horizontally held in a state where their centers are aligned in the vertical direction. It is configured.
  • the operation of the processing apparatus 100 as a substrate processing process which is a process of performing a predetermined process on the wafer 200, will be described.
  • the pod 110 is supplied to the load port 114, the pod loading / unloading port 112 is opened by the front shutter 113, and the pod 110 above the load port 114 is connected to the pod transfer device. 118 is carried into the housing 111 from the pod loading / unloading port 112.
  • the loaded pod 110 is automatically transported and delivered by the pod transport device 118 to the designated shelf 117 of the substrate container mounting shelf 105, temporarily stored, and then one of the shelves 117 from the shelf 117.
  • the wafer loading / unloading port 120 of the pod opener 121 is closed by the cap attaching / detaching mechanism 123, and the transfer chamber 124 is filled with clean air 133.
  • the transfer chamber 124 is filled with nitrogen gas as clean air 133, so that the oxygen concentration is set to 20 ppm or less, which is much lower than the oxygen concentration inside the casing 111 (atmosphere).
  • the pod 110 mounted on the mounting table 122 has its opening-side end face pressed against the opening edge of the wafer loading / unloading port 120 on the front wall 119a of the sub-housing 119, and the cap is removed by the cap attaching / detaching mechanism 123.
  • the wafer loading / unloading port of the pod 110 is opened.
  • the wafer 200 is picked up from the pod 110 by the tweezer 125c of the wafer transfer device 125a through the wafer loading / unloading port, aligned with the wafer 200 by the notch alignment device 135, and then transferred to the boat 217 and loaded (wafer charging). .
  • the wafer transfer device 125 a that has transferred the wafer 200 to the boat 217 returns to the pod 110 and loads the next wafer 200 into the boat 217.
  • the other (lower or upper) pod opener 121 is loaded with the substrate container mounting shelf 105 or the load.
  • Another pod 110 is transported from the port 114 by the pod transport device 118, and the opening operation of the pod 110 by the pod opener 121 proceeds simultaneously.
  • the lower end portion of the processing furnace 202 is opened by the furnace port gate valve 147. Subsequently, the seal cap 219 is lifted by the elevator of the boat elevator 151, and the boat 217 supported by the seal cap 219 is loaded into the processing furnace 202.
  • the wafer 200 is processed in the processing furnace 202. After processing, the boat 217 is pulled out by the boat elevator 151. Thereafter, except for the wafer alignment process by the notch alignment device 135, the wafer 200 and the pod 110 are discharged to the outside of the casing 111 in a generally reverse procedure.
  • FIG. 3 is a schematic configuration diagram of the processing furnace 202 of the semiconductor manufacturing apparatus according to the present invention, which is shown as a longitudinal sectional view.
  • the processing furnace 202 has a heater 206 as a heating mechanism.
  • the heater 206 has a cylindrical shape and is vertically installed by being supported by a heater base 251 as a holding plate.
  • a heat equalizing tube (outer tube) 205 is disposed concentrically with the heater 206 inside the heater 206.
  • the heat equalizing tube 205 is made of a heat resistant material such as silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened.
  • a reaction tube (inner tube) 204 is disposed concentrically with the soaking tube 205 inside the soaking tube 205.
  • the reaction tube 204 is made of a heat-resistant material such as quartz (SiO 2 ) and is formed in a cylindrical shape with the upper end closed and the lower end opened.
  • a cylindrical hollow portion of the reaction tube 204 forms a processing chamber 201, and the processing chamber 201 is configured to be able to accommodate the wafers 200 in a state of being aligned in multiple stages in a horizontal posture and in a vertical direction by a boat 217.
  • a gas introduction unit 230 is provided at the lower end of the reaction tube 204, and a narrow tube 234 as a gas introduction tube is arranged along the outer wall of the reaction tube 204 from the gas introduction unit 230 to the ceiling 233 of the reaction tube 204. It is installed.
  • the gas introduced from the gas introduction unit 230 circulates in the narrow tube 234 and reaches the ceiling 233, and is introduced into the processing chamber 201 from a plurality of gas introduction ports 233 a provided in the ceiling 233.
  • a gas exhaust unit 231 for exhausting the atmosphere in the reaction tube 204 from the exhaust port 231a is provided at a position different from the gas introduction unit 230 at the lower end of the reaction tube 204.
  • a gas supply pipe 232 is connected to the gas introduction unit 230.
  • a processing gas supply source On the upstream side of the gas supply pipe 232 opposite to the connection side to the gas introduction unit 230, a processing gas supply source, a carrier gas supply source (not shown) via an MFC (mass flow controller) 241 as a gas flow rate controller, An inert gas source is connected.
  • a gas flow rate control unit 235 is electrically connected to the MFC 241 and is configured to control at a desired timing so that the flow rate of the supplied gas becomes a desired amount.
  • a water vapor generator (not shown) is provided on the downstream side of the MFC 241 of the gas supply pipe 232.
  • a gas exhaust pipe 229 is connected to the gas exhaust part 231.
  • An exhaust device 246 is connected to the downstream side of the gas exhaust pipe 229 opposite to the connection side with the gas exhaust part 231 via a pressure sensor 245 and a pressure adjustment device 242 as a pressure detector. It is comprised so that it can exhaust, so that the pressure in 201 may become predetermined pressure.
  • a pressure control unit 236 is electrically connected to the pressure adjustment device 242 and the pressure sensor 245, and the pressure control unit 236 is installed in the processing chamber 201 by the pressure adjustment device 242 based on the pressure detected by the pressure sensor 245. Control is performed at a desired timing so that the pressure becomes a desired pressure.
  • a base 257 as a holding body capable of airtightly closing the lower end opening of the reaction tube 204 and a seal cap 219 as a furnace port lid are provided.
  • the seal cap 219 is made of a metal such as stainless steel and has a disk shape.
  • the base 257 is made of, for example, quartz, is formed in a disk shape, and is attached on the seal cap 219.
  • An O-ring 220 is provided on the upper surface of the base 257 as a seal member that contacts the lower end of the reaction tube 204.
  • a rotation mechanism 254 for rotating the boat is installed on the side of the seal cap 219 opposite to the processing chamber 201.
  • the rotating shaft 255 of the rotating mechanism 254 passes through the seal cap 219 and the base 257 and is connected to the heat insulating cylinder 218 and the boat 217 so that the wafer 200 is rotated by rotating the heat insulating cylinder 218 and the boat 217. It is configured.
  • the seal cap 219 is configured to be vertically lifted by a boat elevator 151 as a lifting mechanism vertically installed outside the reaction tube 204, and thereby the boat 217 is carried into and out of the processing chamber 201. Is possible.
  • a drive control unit 237 is electrically connected to the rotation mechanism 254 and the boat elevator 151, and is configured to control at a desired timing so as to perform a desired operation.
  • a boat 217 as a substrate holder is made of a heat-resistant material such as quartz or silicon carbide, and is configured to hold a plurality of wafers 200 aligned in a horizontal posture with their centers aligned. .
  • a heat insulating cylinder 218 as a cylindrical heat insulating member made of a heat resistant material such as quartz or silicon carbide is provided to support the boat 217, and heat from the heater 206 reacts.
  • the tube 204 is configured to be difficult to be transmitted to the lower end side.
  • a temperature sensor 263 is installed as a temperature measuring instrument.
  • a temperature control unit 238 is electrically connected to the heater 206 and the temperature sensor 263, and the temperature in the processing chamber 201 is adjusted by adjusting the power supply to the heater 206 based on the temperature information detected by the temperature sensor 263. Is controlled at a desired timing so as to have a desired temperature distribution.
  • the gas flow rate control unit 235, the pressure control unit 236, the drive control unit 237, and the temperature control unit 238 also constitute an operation unit and an input / output unit, and are electrically connected to a main control unit 239 that controls the entire substrate processing apparatus. ing. These gas flow rate control unit 235, pressure control unit 236, drive control unit 237, temperature control unit 238, and main control unit 239 are configured as a controller 240.
  • the exhaust chamber 246 exhausts the processing chamber 201 to a desired pressure.
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the pressure regulator 242 is feedback-controlled based on the measured pressure.
  • the heater 206 is heated so that the inside of the processing chamber 201 has a desired temperature.
  • the power supply to the heater 206 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution.
  • the wafer 200 is rotated by rotating the heat insulating cylinder 218 and the boat 217 by the rotation mechanism 254.
  • the gas supplied from the processing gas supply source and the carrier gas supply source, and controlled to have a desired flow rate by the MFC 241 circulates from the gas supply pipe 232 through the gas introduction part 230 and the narrow pipe 234 to the ceiling part 233.
  • the gas is introduced into the processing chamber 201 from a plurality of gas inlets 233a in a shower shape.
  • the introduced gas flows down in the processing chamber 201, flows through the exhaust port 231a, and is exhausted from the gas exhaust unit 231.
  • the gas passes through the processing chamber 201, the gas contacts the surface of the wafer 200, and the wafer 200 is subjected to processing such as oxidation and diffusion.
  • the gas controlled so that it may become a desired flow volume by MFC241 is supplied to a water vapor generation apparatus, and the water vapor
  • an inert gas is supplied from an inert gas supply source, the inside of the processing chamber 201 is replaced with an inert gas, and the pressure in the processing chamber 201 is returned to normal pressure. .
  • the seal cap 219 is lowered by the boat elevator 151, the lower end of the reaction tube 204 is opened, and the processed wafer 200 is held by the boat 217 from the lower end of the reaction tube 204 to the outside of the reaction tube 204. Unload (boat unloading). Thereafter, the processed wafer 200 is taken out by the boat 217 (wafer discharging).
  • processing conditions for processing a wafer in the processing furnace of the present invention for example, in oxidation processing, processing temperature: room temperature to 1050 ° C., processing pressure: 101300 Pa or less, gas type: H 2 O, gas supply A flow rate: 20 sccm is exemplified.
  • the wafer is processed by keeping these processing conditions constant at certain values within the respective ranges.
  • the main controller 65 of the processing apparatus 100 includes an arithmetic control unit 66 represented by a CPU (Central Processing Unit), a storage unit 67 composed of a hard disk, etc.
  • a control unit 68 is provided.
  • a display unit 80 such as a display or a display panel is connected to the arithmetic control unit 66.
  • An operation unit 69 and a sub control unit 58 are connected to the input / output control unit 68.
  • the arithmetic control unit 66 as a CPU constitutes the center of the main control device 65, executes the control program stored in the storage unit 67, and from the operation unit 69 that is a display device 80 or an operation terminal as an operation panel.
  • various recipes for example, process recipes stored in the recipe storage unit 42 are executed.
  • the controller 240 described above may include at least the main control unit 65 and the sub control unit 58, and may include the display unit 80 and the operation unit 69.
  • the sub-control unit 58 individually controls each control unit such as the drive control unit 73 and the temperature control unit 74. Each control unit is connected to the main control device 65 via the input / output control unit 68. Although not shown here, it goes without saying that the sub-control unit 58 includes the temperature control unit 238, the gas flow rate 235, the pressure control unit 236, and the drive control unit 237 shown in FIG. Needless to say, the temperature control unit 238 and the temperature control unit 74, and the drive control unit 237 and the drive control unit 73 are the same.
  • the sub control unit 58 includes a drive control unit 73 that individually controls a drive unit of the wafer transfer mechanism 125 (for example, the wafer transfer device 125a and the wafer transfer device elevator 125b). .
  • the sub-control unit 58 drives the corresponding drive unit based on the command received from the calculation control unit 66, and feeds back the state of the drive unit (during command execution, command wait, execution completion, etc.) to the calculation control unit 66. Then, the position memory 40 and the like are stored in the storage unit 67.
  • the temperature control unit 74 calculates the temperature (measured value) measured by a temperature measuring device as a temperature sensor such as a thermocouple via the input / output control unit 68. Feedback is given to the controller 66. After the processing is performed by the arithmetic control unit 66, it is configured to be stored in the temperature correction value storage 41 or the like.
  • the storage section 67 as a ROM is a recording medium that includes an EEPROM, a flash memory, a hard disk, and the like, and stores a CPU operation program and the like.
  • the input / output control unit 68 as a RAM functions as a work area of the CPU.
  • the operation unit 69 can be arranged at a position separated from the processing apparatus 100. For example, even when the substrate processing apparatus 100 is installed in a clean room, the operation unit 69 can be disposed in an office or the like outside the clean room. Further, the main control device 65 is provided with a port as an attaching / detaching portion (not shown) for attaching and detaching a USB flash memory or the like as a recording medium as an external storage medium.
  • the main controller 65 can be realized using a normal computer system, not a dedicated system. For example, by installing the program from a recording medium (flexible disk, CD-ROM, USB, etc.) storing a program for executing the above-described processing in a general-purpose computer, the main control device 65 that executes the above-described processing. Can be configured.
  • a recording medium flexible disk, CD-ROM, USB, etc.
  • And means for supplying these programs is arbitrary.
  • it may be supplied via a communication line, a communication network, a communication system, or the like.
  • the program may be posted on a bulletin board of a communication network and provided by being superimposed on a carrier wave via the network. Then, the above-described processing can be executed by starting the program thus provided and executing it in the same manner as other application programs under the control of the OS.
  • Example 1 the substrate processing apparatus of FIG. 1 or 2 described above, the processing furnace of the substrate processing apparatus of FIG. 3, and the main controller 65 of the substrate processing apparatus of FIG. 7 are used. The Therefore, detailed description of these will be omitted in each embodiment.
  • the temperature measuring instrument support mechanism 10 shown in FIGS. 4 to 6 will be described below.
  • the temperature measuring device support mechanism 10 as a jig for attaching the temperature measuring device 18 is installed in the wafer transfer mechanism 125.
  • the temperature measuring instrument support mechanism 10 includes a wafer transfer mechanism connecting arm (hereinafter referred to as a first arm) 11 and a temperature measuring instrument support arm (hereinafter referred to as a second arm) 12.
  • One end of the first arm 11 is rotatably supported on the wafer transfer device 125a by a pivot 11a
  • the second arm 12 is rotatably connected to the other end of the first arm 11 by a pivot 12a. ing.
  • a pair of arm receivers 13A and 13B includes a position near the pivot 11a (hereinafter referred to as a front position) and a position separated from the pivot 11a by the length of the first arm 11 (hereinafter referred to as a rear position). ) And projecting respectively.
  • the pair of arm receivers 13 ⁇ / b> A and 13 ⁇ / b> B support the first arm 11 horizontally at the front position and the rear position by bringing the upper surface into contact with the lower surface of the first arm 11.
  • the first arm 11 that is horizontally supported by the arm receiver 13B at the rear position is stored in the side surface of the wafer transfer device 125a (see FIG.
  • a support shaft 14 that horizontally supports the second arm 12 is provided on the pivot 12 a of the second arm 12.
  • the support shaft 14 allows the second arm 12 to reciprocate in the range of 180 degrees with respect to the first arm 11 and horizontally supports the second arm 12 at the front position and the rear position of the first arm 11.
  • the second arm 12 parallel to the first arm 11 at the rear position is stored in the wafer transfer device 125a (see FIG. 4), and the second arm 12 parallel to the first arm 11 at the front position.
  • the arm 12 is projected from the wafer transfer device 125a (see FIG. 5).
  • a temperature measuring instrument support section (hereinafter referred to as a support section) 15 is installed at the free end of the second arm 12.
  • the support 15 is configured to detachably support the temperature measuring instrument 18 by a fixing screw 16 and a fixing spring 17.
  • the seal cap 219 is provided with a temperature measuring instrument insertion port (hereinafter referred to as an insertion port) 20 for inserting the temperature measuring instrument 18.
  • An ultra tall nut 21 is screwed into the insertion port 20, and the insertion port 20 is configured to be opened and closed by the ultra tall nut 21. With the ultra tall nut 21 opened, the temperature measuring device 18 is inserted into the attachment port 12 from the lower side in the vertical direction by the temperature measuring device support mechanism 10.
  • the temperature measurement support mechanism 10 is moved up and down in the vertical direction (perpendicular to the seal cap 219) by the wafer transfer device elevator 125b of the wafer transfer mechanism 125, so that the temperature measurement device 18 is properly placed in the insertion port 20. Inserted.
  • the temperature measuring device support mechanism 10 is maintained in the retracted state shown in FIG. That is, the first arm 11 is horizontally supported by the arm receiver 13B at the rear position, and the second arm 12 is horizontally supported by the support shaft 14 at the rear position. Therefore, the temperature measuring instrument mechanism 10 does not interfere with the implementation of the semiconductor device manufacturing method.
  • the temperature data correction method for the soaking area in the processing furnace will be described with reference to FIG.
  • the reaction tube 204 in the processing apparatus 100 is replaced with a new one
  • the soaking area in the processing furnace 202 changes. Therefore, the soaking area in the processing furnace 202 is measured again, and the temperature correction method is performed. I need it.
  • the temperature measuring device mechanism Before carrying out the process chamber temperature correction method such as when the reaction tube is replaced, the temperature measuring device mechanism is such that the support portion of the temperature measuring device mechanism 10 (described later) is positioned directly below the insertion port into which the temperature measuring device 18 is inserted. Ten position (position) definitions are implemented and stored in the storage unit 67 as the position storage 40 (step A1).
  • the position definition of the temperature measuring device support mechanism 10 includes the value of the encoder (position detector) of the rotation (turning) axis of the wafer transfer device 125a of the wafer transfer mechanism 125 and the encoder of the lift shaft of the wafer transfer device elevator 125b. This can be done by using the value.
  • the temperature measuring instrument support mechanism 10 is shifted from the retracted state shown in FIG. 4 to the protruding state shown in FIG. . That is, the first arm 11 is rotated 180 degrees upward and supported horizontally by the arm receiver 13A at the front position, and at the same time, the second arm 12 is also rotated 180 degrees and supported horizontally at the front position by the support shaft 14. Is done.
  • the temperature measuring device 18 is detachably attached to the support portion 15 at the tip of the protruding second arm 12 by a fixing screw 16 and a fixing spring 17 (see FIG. 5).
  • the insertion port 20 of the seal cap 219 is opened by the ultra tall nut 21.
  • the temperature measuring instrument support mechanism 10 is transported directly under the insertion port 20 of the seal cap 219 according to the position memory 40 set in advance and stored in the storage unit 60. Subsequently, the temperature measuring device support mechanism 10 is raised by the wafer transfer device elevator 125b, whereby the temperature measuring device 18 is inserted into the insertion port 20 as shown in FIG. Needless to say, the seal cap 219 is lifted by the boat elevator 151 and the lower end of the processing furnace 202 is closed by the seal cap 219.
  • the boat 217 raised by the boat elevator 151 may not be loaded with a substrate, but generally a dummy substrate is loaded in advance assuming an actual substrate processing step.
  • Step A2 After the lower end portion of the processing furnace 202 is closed by the seal cap 219, the insertion port 20 of the seal cap 219 is opened by the ultra tall nut 21 and the temperature measuring instrument 18 is inserted into the insertion port 20. 15 is preferably attached. (Step A2).
  • step A3 it waits until the temperature in the processing furnace 202 is raised to a predetermined temperature by the heater 206 and stabilized at the predetermined temperature (step A3).
  • the temperature in the processing furnace 202 is measured by the temperature measuring instrument 18 inserted in the processing furnace 202. That is, the temperature measuring device 18 attached to the temperature measuring device support mechanism 10 is lowered by the wafer transfer device elevator 125b, whereby the temperature in the soaking area of the heater is measured.
  • Heater soaking area acquisition is acquired by the operation unit 69 and the individual operation terminal.
  • Step A4 The operator calculates a temperature correction value based on the acquired temperature data and stores it in the temperature correction value storage 41 in the storage unit 67.
  • the calculation control unit 66 may automatically calculate the temperature correction value based on the acquired temperature data, and store the temperature correction value in the temperature correction value storage 41 after the calculation.
  • Step A5 The soaking area of the heater 206 in the processing furnace 202 is acquired again. That is, after the temperature measuring device 18 attached to the temperature measuring device support mechanism 10 is raised by the wafer transfer device elevator 125b and stabilized at a predetermined temperature, the temperature measuring device 18 is lowered by the wafer transfer device elevator 125b. Thus, the temperature of the soaking area of the heater is measured.
  • Step A6 The calculation control unit 66 repeats many times until each temperature (soaking temperature) of the soaking area of the heater acquired as described above falls within a specified value (step A7). And when the soaking temperature falls within the specified value, the acquisition of the temperature correction value is finished.
  • the positioning (position definition) of the temperature measuring device support mechanism can be simplified, and the starting position when measuring the soaking length in the processing furnace Is constant.
  • the temperature measuring instrument support mechanism is transferred by the wafer transfer mechanism when the method of measuring the temperature uniformity in the processing furnace is not performed. It is possible to prevent the work from being disturbed.
  • the measurement start position in the soaking length region is determined regardless of the skill of the operator, so the reliability of the measuring range in the soaking length region is improved (the variation in the measuring range). Is greatly reduced). Therefore, the temperature control performance and the quality of the processed substrate can be kept constant.
  • Data acquisition in the processing furnace soaking area can be performed in real time. Further, the position (position) to which each wafer (product wafer, dummy wafer, fill wafer, etc.) should be transported and the acquired data can be stored in the storage unit 67 of the main controller 65. Further, after the calculation of the temperature correction value in the processing furnace is performed by the arithmetic control unit 66, the temperature correction value and the like can be automatically saved in the same manner as the acquired data (actual measurement value). The time required for obtaining the soaking temperature region can be shortened.
  • Example 2 In Example 1, cost reduction was achieved rather than preparing an auto profiler individually, but since the temperature measuring device support mechanism 10 is fixed to the wafer transfer mechanism 125, the wafer transfer mechanism There is a problem that the unit price of 125 increases. That is, there is a problem of cost reduction of the processing apparatus 100. Therefore, in the present embodiment (Example 2), the temperature measuring device support mechanism 10 is added as an optional function of the vertical device, and further improvements are made for the purpose of maintaining the product sales price.
  • FIG. 9 shows a state in which a jig base unit as a fixing jig unit is fixed to the wafer transfer mechanism 125.
  • the temperature measurement support mechanism 10 can be attached as necessary.
  • the sensor for recognizing the presence or absence (attachment / detachment) of the temperature measurement support mechanism 10 was provided as a recognition part. As a result, the presence or absence of the temperature measurement support mechanism 10 can be recognized by the main control device or the operation unit of the processing apparatus.
  • the operator can recognize the presence or absence of the temperature measurement support mechanism 10 with the transfer chamber door closed, without bothering to enter the apparatus.
  • the illustrated jig base unit does not hinder the substrate transfer operation by the wafer transfer mechanism 125.
  • the temperature measurement support mechanism 10 is made an optional function, thereby reducing the cost.
  • the jig base unit may be the first jig and the temperature measuring instrument support mechanism 10 may be the second jig.
  • FIGS. 10A and 10B show the configuration of a temperature measurement tool as the temperature measurement support mechanism 10 attached to the jig base unit described above.
  • the temperature measurement tool in the present embodiment includes an arm 1, a slide guide, an arm 2, a base 1, a base 2, a slide plate, a spring, A column and a column base, and a quartz installation unit as the support unit 15 are provided.
  • the support unit 15 is provided with a temperature measuring device 18 such as a quartz thermocouple (TC).
  • the base 1 and the base 2 each function as a fine adjustment mechanism, the slide plate functions as a parallel movement mechanism, and the spring functions as an eccentricity / deflection mechanism. With such a function, the temperature measuring device 18 installed in the support portion 15 is configured not to be damaged.
  • a slide guide is provided between the arm 1 and the arm 2 so that the arm 2 can be expanded and contracted. Thereby, the length of the arm 2 can be adjusted.
  • the temperature measurement support mechanism 10 is an option, so that it is convenient to carry and store. As described above, the temperature measurement support mechanism 10 is configured to be attachable to the wafer transfer mechanism 125 via the jig base unit regardless of the apparatus specifications, the processing (for example, film type) applied to the substrate by the apparatus, and the like. ing.
  • FIG. 11 is a diagram for explaining the operation of the wafer transfer mechanism 125 in the transfer chamber when measuring the temperature soaking area in the processing furnace in the present embodiment (Example 2).
  • the board is fully charged in the boat 217 and the boat is loaded.
  • a dummy substrate is used for full charge with a predetermined number of substrates.
  • the configuration of the present embodiment is not limited.
  • the substrate may not be fully charged, there may be a gap, and there may be no substrate.
  • a quartz protective tube is inserted and fixed in the processing furnace (Ultra Toll section).
  • the temperature measurement support mechanism 10 as a measurement tool is attached to the wafer transfer mechanism 125.
  • a temperature measuring device 18 such as a quartz thermocouple (TC) is inserted into the quartz protective tube, and the temperature measuring device 18 is installed in the quartz installation portion of the temperature measurement support mechanism 10. Finally, the temperature measuring instrument 18 and the measuring instrument of the processing apparatus 100 are connected.
  • TC quartz thermocouple
  • the temperature measuring device 18 is lowered by the wafer transfer device elevator 125b and the heater is measured. The temperature in the soaking area is measured. Then, until the acquired temperature falls within a specified value, the wafer transfer device elevator 125b repeatedly raises the temperature measuring device 18 to the measurement start position and measures the temperature while lowering the temperature measuring device 18.
  • a recipe for measuring the temperature soaking area in the processing furnace is created by the operator, for example, using the display device 80 or the operation unit 69.
  • a recipe for measuring the temperature soaking area (hereinafter, soaking length measurement recipe) is stored in advance in the storage unit 67 of the main controller 65.
  • the soaking length recipe is started when a predetermined button on the operation unit 69 is pressed. Then, the number of times n for measuring the soaking length of the heater and the counter i are set. In the flowchart of FIG. However, it is needless to say that a predetermined threshold (natural number) set by the operator at the time of creating the recipe is actually set.
  • the wafer transfer mechanism 125 as a transfer machine is moved to a predetermined position. And it waits for completion of a desired jig attachment. Specifically, it waits until the attachment of the temperature measuring instrument support mechanism 10 to the jig base unit fixed to the wafer transfer mechanism 125 and the attachment of the temperature measuring instrument support mechanism 10 and the temperature measuring instrument 18 are completed.
  • the process proceeds to a comparison step, where the number n is compared with the size of the counter i. Since the counter i is not greater than the number n, the process proceeds to the next step, and soaking length measurement is started.
  • a moving step of moving to a position where the soaking length measurement is started is executed.
  • the process immediately shifts to the next position check process.
  • the position check of each axis is performed, and when a position error occurs, the soaking length recipe ends. If this position check is OK, the process proceeds to the next interference check.
  • it is checked whether the position of the Z-axis (the operation axis of the wafer transfer device elevator 125b) exceeds the furnace port shutter interference set value. When an interference error occurs, the soaking length recipe ends. If the check is OK, the process proceeds to the next start position check.
  • the measurement of soaking length is started. Specifically, the temperature measuring device 18 is lowered along with the lowering operation of the wafer transfer device elevator 125b. The temperature measuring device 18 measures the temperature of each measurement point in the processing furnace. As shown in FIG. 7, this temperature data is stored in the measured temperature value storage 43 in the storage unit 67 of the main controller 65 through the temperature control unit.
  • the operation control unit 66 may be configured to automatically calculate the temperature correction value based on the acquired temperature data.
  • a temperature correction value acquisition step may be included after the soaking length measurement.
  • the calculation control unit 66 may be configured to automatically calculate the temperature correction value from the temperature measured by the temperature measuring device while lowering the transport device to calculate the temperature correction value.
  • the soaking length measurement counter i is larger than the number n, the soaking length recipe ends. On the other hand, if the soaking length measurement counter i is not larger than the number n, the process proceeds to the next movement step, and soaking length measurement is started again. Then, when moving to the measurement start position, a position check, an interference check, a start position check, etc. are performed for each axis.
  • the position (position) check of each axis is always performed. Since it is performed at a predetermined cycle (for example, 1 second cycle), even if an abnormality occurs while the temperature measuring device 18 attached to the wafer transfer mechanism 125 is moved up and down via the jig base unit, It can be stopped immediately. Thereby, it is possible to prevent an accident such as occurrence of quartz cracking due to contact between the temperature measuring device 18 and the quartz protective tube.
  • a predetermined cycle for example, 1 second cycle
  • a plurality of soaking length recipes may be executed.
  • the soaking length measurement counter i and the number of times n are appropriately set to predetermined values
  • the first measurement is soaking length recipe A
  • the second measurement is soaking length recipe B
  • the third measurement is soaking temperature.
  • You may comprise so that the long recipe C and the recipe from which the temperature measurement conditions in a processing furnace each differ may be performed.
  • the temperature measuring instrument support mechanism 10 is attached to the jig base unit fixed to the wafer transfer mechanism 125.
  • the wafer transfer mechanism 125, the temperature measuring device support mechanism 10 and the temperature measuring device 18 are attached, the soaking length recipe may be started.
  • the wafer transfer mechanism 125 is moved manually when the temperature measuring device support mechanism 10 is attached to the wafer transfer mechanism 125. For example, it is operated by a dedicated terminal offline.
  • Example 2 in addition to the effects obtained in Example 1, the following effects can be obtained.
  • this detachable temperature measuring device support mechanism can be added as an option of the vertical device, the product sales price can be maintained. For example, since it can be used regardless of the substrate processing (process) of the vertical apparatus, the product sales price is not affected.
  • remodeling such as parts replacement and setup after replacement can be done to the skill of the operator. Regardless, it is possible easily.
  • a jig base unit is fixed to the wafer transfer mechanism 125 as a first jig, and a sensor is provided on the jig base unit.
  • the operator can recognize the presence or absence of the temperature measuring device support mechanism with the transfer chamber door closed, without bothering to enter the apparatus. Therefore, since it is not necessary for the operator to enter the transfer chamber as much as possible, safety is significantly improved.
  • the temperature soaking area in the processing furnace can be measured. Thereby, since it is not necessary for an operator to enter the transfer chamber as much as possible, safety is greatly improved.
  • the operator can measure the temperature soaking area in the processing furnace by creating a plurality of soaking length recipes and executing them.
  • the soaking length recipe A, the soaking length recipe B, the soaking length recipe C, and the recipe having different temperature measurement conditions in the processing furnace can be executed to measure the soaking length under various conditions.
  • the soaking length measurement start position and measurement end position can be kept constant regardless of the skill of the operator. Thereby, the reliability of the measurement result in the temperature soaking region in the processing furnace is maintained, and the temperature control performance and the substrate quality can be kept constant.
  • the soaking length recipe is not completed unless the soaking length measurement is always executed a predetermined number of times. On the other hand, even if the measurement of the soaking length does not fall within a preset temperature range, it ends when the set number of times is reached. Therefore, the number of times of soaking length measurement depends on the skill of the operator.
  • FIG. 14 shows that the soaking length measurement is completed if the flowchart of FIG. 12 falls within a predetermined specified value (preset temperature) range, similar to the flowchart of the first embodiment (see FIG. 8).
  • the flowchart is modified.
  • FIG. 14 shows a step (step 1) for confirming whether or not the measurement start position is reached, a step for waiting until the temperature in the processing furnace is stabilized (step 2), and a step for measuring the soaking length in the processing furnace (step 2).
  • this flow differs from the flowchart of the second embodiment in steps (and contents of this step) for determining repetition of the flowchart.
  • a moving step of moving to a position at which soaking length measurement is started is executed.
  • the process proceeds to the next position check process.
  • the position check of each axis is performed, and when a position error occurs, the soaking length recipe ends. If this position check is OK, the process proceeds to the next interference check.
  • it is checked whether the position of the Z-axis (the operation axis of the wafer transfer device elevator 125b) exceeds the furnace port shutter interference set value. In short, it is checked whether the wafer transfer mechanism 125 interferes with the furnace port shutter.
  • the soaking length recipe ends. If the check is OK, the process proceeds to the next start position check. Next, it is checked whether the Z axis is located at the measurement start position within a predetermined time (for example, 600 seconds).
  • a predetermined time for example, 600 seconds.
  • the wafer transfer mechanism 125 has been moved to the measurement start position in advance, and the process proceeds to the next temperature stability check process. Although it may move for fine adjustment as required, if it cannot move to the measurement start position within a predetermined time, a start position time-out error occurs and the soaking length recipe ends.
  • the temperature measuring device 18 ends moving to the measurement start position (STEP 1).
  • the measurement of soaking length is started.
  • the temperature measuring device 18 is lowered along with the lowering operation of the wafer transfer device elevator 125b.
  • the temperature measuring device 18 measures the temperature of each measurement point in the processing furnace. As shown in FIG. 7, this temperature data is stored in the measured temperature value storage 43 in the storage unit 67 of the main controller 65 through the temperature control unit.
  • the temperature in the processing path is measured until it reaches the soaking length measurement end position.
  • an end position time-out error occurs, and the soaking length recipe ends.
  • the temperature measuring device 18 is located at the soaking length measurement end position within the set time, the soaking length measurement is completed.
  • the operator calculates a temperature correction value based on the acquired temperature data and stores it in the temperature correction value storage 41 in the storage unit 67.
  • the calculation control unit 66 may automatically calculate the temperature correction value based on the acquired temperature data, and store the temperature correction value in the temperature correction value storage 41 after the calculation (STEP 3).
  • the calculation control unit 66 repeats many times until each temperature (soaking temperature) of the soaking area of the heater acquired as described above falls within a specified value.
  • the arithmetic control unit 66 determines whether a predetermined judgment criterion, for example, a temperature within a predetermined upper and lower limit value (within a specified value) is not less than a predetermined length. If this predetermined criterion is not satisfied, the soaking area of the heater 206 in the processing furnace 202 is acquired again. That is, the process moves to a moving step for moving to a position where the soaking length measurement of STEP 1 is started, and the temperature measuring device 18 attached to the temperature measuring device support mechanism 10 is raised by the wafer transfer device elevator 125b, and the measurement starting position.
  • the temperature measuring device 18 is lowered by the wafer transfer device elevator 125b, thereby measuring the temperature in the soaking area of the heater (STEP 3). . Then, when the soaking length measurement result enters the specified value (contains within the criterion), the arithmetic control unit 66 ends the soaking length measurement, and the acquisition of the temperature correction value is finished. (The above, STEP4).
  • the position (position) check of each axis is always performed in the same manner as in the flowchart (Embodiment 2) shown in FIG. In this way, by performing at a predetermined cycle (for example, 1 second cycle), even if an abnormality occurs while the temperature measuring device 18 attached to the wafer transfer mechanism 125 is being moved up and down, it is immediately stopped. It is possible to prevent the occurrence of an accident of quartz cracking due to contact between the temperature measuring device 18 and the quartz protective tube.
  • a predetermined cycle for example, 1 second cycle
  • FIGS. 15 and 16 show display examples of temperature data acquired by the temperature control unit 74 based on the soaking length measurement result.
  • FIG. 15 is a graph showing a temperature measurement result that satisfies a predetermined judgment criterion (specified value), and within a predetermined temperature upper and lower limit value (set temperature ⁇ upper and lower limit value), the predetermined temperature setting range is a predetermined value. The case where it is more than length is shown.
  • the set temperature is 700 ° C.
  • the upper and lower limit values are ⁇ 2 ° C.
  • the temperature flat zone is 900 mm or more.
  • the temperature flat zone is preferably 950 mm or more.
  • the limit value is about 1200 mm depending on the size of the processing furnace 202.
  • the set temperature ranges from 100 ° C. or lower (for example, room temperature) to about 1200 ° C. annealing furnace depending on the process and film type. Although details will be described later, in recent low-temperature processes, there is an increasing demand for measuring the soaking length at 400 ° C. or lower, and further at 100 ° C. or lower.
  • FIG. 16 shows that the results of four soaking length measurements are superimposed and displayed.
  • FIG. 16 shows that the first to third soaking length measurement results are out of the predetermined judgment standard (specified value), and the fourth soaking length measurement result is the predetermined judgment standard (prescribed value). Is shown.
  • the temperature measurement start position can always be made constant by using the wafer transfer mechanism 125.
  • the measurement range can be set, so that the temperature measurement start position and the temperature measurement end position can always be made constant.
  • the soaking length measurement performed at the time of setup or the like is an important process in terms of the characteristics of the processing apparatus 100, and the criteria for judgment are set strictly. Therefore, multiple measurements are required to fall within the specified value range. Further, the measurement of the soaking length in the processing furnace 202 is performed by attaching the temperature measuring device 18 to the wafer transfer mechanism 125 and constructing a system for moving the wafer transfer mechanism 125 up and down.
  • the soaking length recipe which is a recipe for measuring the soaking length can be executed in the same manner as when executing the process recipe which is a recipe.
  • the soaking length recipe is executed, and the temperature distribution in the processing furnace is within a predetermined temperature upper and lower limit value (set temperature ⁇ upper and lower limit value), and the predetermined temperature setting range is not less than the predetermined length. Can be confirmed.
  • a predetermined temperature upper and lower limit value set temperature ⁇ upper and lower limit value
  • the predetermined temperature setting range is not less than the predetermined length.
  • the measurement of the temperature soaking area in the processing furnace described in the first embodiment or the second embodiment (including the modifications) is performed at the time of setting up the substrate processing apparatus or replacing the boat 217 that is a component constituting the processing furnace. Performed during maintenance (maintenance).
  • Example 1 of Example 1 and Example 2 including Modification
  • the setup method of the processing apparatus 100 described above is Provided as follows.
  • a temperature correction step having a comparison step compared with a predetermined criterion, and a heating step of heating the processing chamber to a temperature higher than the substrate processing temperature after completion of the temperature correction step.
  • the heating process and the substrate processing process for processing the substrate are executed using the correction value.
  • a moving step is performed in which the transfer device is raised and moved to the temperature measurement start position. Then, the soaking length in the processing chamber is measured by lowering the transfer device again.
  • a temperature correction step having at least a comparison step in which the measured temperature is compared with a predetermined criterion.
  • the comparison step when the measured temperature falls within a predetermined criterion, a pre-coating process for protecting the replaced part and a substrate processing process for processing the substrate are executed using the correction value.
  • a moving step is performed in which the transfer device is raised and moved to the temperature measurement start position. Then, the soaking length in the processing chamber is measured by lowering the transfer device again.
  • Example 3 or Example 4 in addition to the effects obtained in Example 1 or Example 2, the following effects can be obtained. (12) By applying the method for measuring the temperature soaking area in the processing furnace according to Example 1 or Example 2 to the setup or maintenance of the substrate processing apparatus, as a result, the non-operation time (maintenance in the substrate processing apparatus) And the time required for setup and the like are reduced, so that the apparatus operating rate of the substrate processing apparatus is improved.
  • Example 3 In Example 1 or Example 2, the measurement range of the soaking length region of the heater was the substrate processing region (E section) as shown in FIG. Therefore, as shown in FIG. 14, since the measurement range of the soaking length of the heater was the substrate processing region (E portion), it was not necessary to measure the temperature of the heat insulating plate region (F portion). However, there is an increasing demand for acquiring information regarding the temperature of not only the substrate processing region (E portion) but also the heat insulating plate region (F portion). For example, when the heater is developed, the temperatures of both the substrate processing region and the heat insulating plate region are measured in order to confirm the maximum soaking length.
  • the heat radiation from the heat insulating plate region is large, it is necessary to check the temperature gradient between the substrate processing region and the heat insulating plate region. Even if the in-plane temperature at the lower part of the substrate processing region varies due to heat dissipation from the heat insulating plate region, the influence of the heat insulating plate region can be confirmed by checking this temperature gradient.
  • the conventional process temperature may have a slight effect of heat dissipation from the furnace port (insulation plate region), but has little effect on the substrate processing result (substrate quality).
  • the process temperature processing temperature
  • the influence on the substrate processing result cannot be ignored.
  • the process temperature is 400 ° C. or lower and further 100 ° C. or lower
  • the processing apparatus 100 reacts sensitively to temperature changes.
  • the demand for film formation at such a low temperature is increasing, and it is necessary to measure the temperature of the heat insulating plate region (F portion) in FIG.
  • the process gas introduction part is affected by the temperature change of the introduced gas due to the temperature change of the heat insulating plate region (F part).
  • Example 3 it can be adjusted by simply changing the length of the grasping part as a pillar.
  • the temperature measuring point is changed without changing the measurement position of the wafer transfer mechanism 125 as a transfer device by configuring the grasping unit with a short one.
  • Example 3 the procedure for measuring the temperature soaking length in the processing furnace is the same as that in Example 2 (including the modified example), and the description thereof is omitted.
  • Example 3 in addition to the effects obtained in Example 1 and Example 2, the following effects can be obtained. (13) Temperature measurement related to the heat insulating plate area, which has been impossible until now, is now possible. As a result, the substrate processing apparatus can cope with a process sensitive to a temperature change.
  • the temperature measuring device support mechanism is not limited to being constituted by a first arm and a second arm manipulator, but may be constituted by an articulated robot, a slide type manipulator, a linear actuator, or the like. .
  • a plurality of temperature measuring devices may be provided, and a plurality of temperature measuring device support mechanisms may be provided in accordance with the number of temperature measuring devices.
  • the operation unit 69 may be a management device such as a host computer that manages the plurality of processing devices 100.
  • the present invention can be applied to all substrate processing apparatuses for processing a substrate such as a glass substrate of a liquid crystal panel, a magnetic disk, or an optical disk.
  • the present invention is not limited to oxide film formation, and can be applied to all processes such as diffusion, CVD, annealing, and ashing.
  • the controller is configured to repeatedly measure the temperature in the processing chamber by changing a measurement condition by executing a predetermined sequence for measuring the temperature in the processing chamber.
  • a temperature measurement method for a substrate processing apparatus which acquires a temperature from the temperature measuring device while raising and lowering the transfer device with the temperature measuring device attached.
  • the temperature measurement step further includes a step of moving the transfer device to a preset position, and the transfer device with the temperature measuring instrument attached.
  • a method for manufacturing a semiconductor device comprising the step of acquiring the temperature from the temperature measuring instrument while moving the temperature.
  • a load port into which a carrier loaded with a substrate is loaded / unloaded, a storage shelf for storing the carrier, a mounting shelf for mounting the carrier stored in the storage shelf, and the carrier at the load port A first transport device that transports between the storage shelf and the placement shelf, a holder that holds the substrate, and the carrier and the holder placed on the placement shelf.
  • step 9 a step in which a carrier loaded with a substrate is carried into a load port; a step in which the carrier is transported from the load port to a storage shelf by a first transport device; and the carrier is placed from the storage shelf to a mounting shelf.
  • a step of transporting the substrate by the first transport device, a step of transporting the substrate of the carrier placed on the mounting shelf to the holder by a second transport device, and a step of transporting the substrate A step in which the holder is carried into a processing chamber; a step in which the substrate of the holder is processed in the processing chamber; a step in which the holder that has processed the substrate is unloaded from the processing chamber;
  • a step in which a temperature measuring device is provided in the second transfer device, a step in which the temperature in the processing chamber is measured by the temperature measuring device, and the temperature measuring device. Therefore a method of manufacturing a semiconductor device having the steps of the temperature is compared with a threshold value that is measured.
  • a temperature measuring device supporting mechanism for supporting a temperature measuring device for measuring temperature is provided, and the transfer mechanism is configured to be able to move up and down the temperature measuring device attached to the temperature measuring device supporting mechanism. apparatus.
  • An assembling step for assembling components including a heater and a reaction tube constituting the processing chamber, and a temperature measuring instrument detachably provided in a transfer device for transferring the substrate to the holder are provided to the processing chamber.
  • a temperature correction comprising: a step carried in by the transfer device; a step in which the temperature in the processing chamber is measured by the temperature measuring device; and a step in which each temperature measured by the temperature measuring device is compared with a threshold value.
  • a substrate processing apparatus setup method comprising at least a process and a heating process of heating the processing chamber to a temperature higher than the substrate processing temperature after the temperature correction process.
  • a step of exchanging components including a holder among components constituting the processing chamber, and a temperature measuring instrument detachably provided in a transfer device for transferring a substrate to the holder are provided to the processing chamber.
  • a temperature correction comprising: a step carried in by the transfer device; a step in which the temperature in the processing chamber is measured by the temperature measuring device; and a step in which each temperature measured by the temperature measuring device is compared with a threshold value.
  • a maintenance method of the substrate processing apparatus having at least a process.
  • a temperature measuring device for measuring the temperature in the processing chamber for processing the object to be processed, a conveying device for conveying the object to be processed, a jig for attaching the temperature measuring device to the conveying device, and the conveying device
  • a temperature measurement system comprising: a controller that acquires the temperature from the temperature measurement device while moving the transfer device in a state where the temperature measurement device is attached via the jig.
  • the conveying device is configured to be moved to a preset position before being attached to the temperature measuring device via the temperature measuring device support mechanism or before temperature measurement by the temperature measuring device.
  • a transfer device for transferring a substrate to a holder wherein the transfer device is provided with a temperature measuring device support mechanism for supporting a temperature measuring device for measuring a temperature in a processing chamber, and the temperature measuring device
  • the transfer apparatus comprised so that raising and lowering of the temperature measuring instrument attached via the support mechanism front was possible.
  • the transfer device is moved to a preset position before being attached to the temperature measuring device via the temperature measuring device support mechanism or before the temperature measurement by the temperature measuring device.
  • the transfer apparatus which is comprised and is comprised so that it may descend
  • a temperature measuring device that measures the temperature in the processing chamber that processes the object to be processed; a transport device that transports the target object; and a controller that is connected to each of the temperature measuring device and the transport device.
  • a method for measuring a temperature of a processing apparatus wherein the temperature measuring device is used to measure the temperature in the processing chamber by moving the transfer device to a preset position before measuring the temperature in the processing chamber.
  • a temperature measurement method for a processing apparatus which acquires the temperature from the temperature measuring device while moving the transfer device with the attached.
  • a transfer device capable of moving up and down in a state in which a temperature measuring instrument for measuring the temperature in the processing chamber for processing the object to be processed is attached, and a fixing jig part for attaching the temperature measuring instrument, and the fixing jig part And a sensor that recognizes attachment / detachment of a detachable temperature measuring device support mechanism.
  • a temperature measuring device support mechanism Before measuring the temperature in the processing chamber, a temperature measuring device support mechanism is attached to the fixed jig at a preset position, and when measuring the temperature in the processing chamber, the temperature measuring device support mechanism (21)
  • the transfer apparatus configured to move in a state where the temperature measuring instrument is attached to the apparatus.
  • a recording medium capable of reading by a controller a program having at least a process in which the temperature in the processing chamber is measured by a temperature measuring device attached to the transport apparatus, and the transport apparatus is moved to a preset position.
  • a program having at least a process in which the temperature in the processing chamber is measured by a temperature measuring instrument attached to the transfer apparatus, the process of moving the transfer apparatus to a preset position, and the temperature measuring instrument
  • the program which has a process which acquires the temperature from the said temperature measuring device, moving the said conveying apparatus in the state which attached.
  • the present invention relates to a technique for measuring the temperature soaking length of various heaters, and is not limited to a furnace used for manufacturing a semiconductor, and can be applied to each furnace.
  • SYMBOLS 10 Temperature measuring device support mechanism, 11 ... 1st arm (wafer transfer mechanism connection arm), 11a ... Pivot, 12 ... Second arm (temperature measurement device support arm), 12a ... Pivot, 13A, 13B ... Arm receiver, DESCRIPTION OF SYMBOLS 14 ... Support shaft, 15 ... Support tool (temperature measuring device support tool), 16 ... Fixing screw, 17 ... Fixing spring, 18 ... Temperature measuring device, 20 ... Insertion port, 21 ... Ultra tall nut, 40 ... Position memory, 41 ... temperature correction value storage, 58 ... drive sub-control unit, 65 ... main control device, 66 ... calculation control unit, 67 ... storage unit, 68 ...
  • Processing apparatus 110 ... Pod (carrier) 118 ... Pod transfer apparatus (first transfer apparatus) 125 ... Wafer transfer mechanism (second transfer apparatus) 125a ... Wafer transfer Device, 12 b ... wafer transfer device elevator, 151 ... boat elevator 200 ... wafer (substrate), 202 ... treatment furnace, 217 ... boat (holder), 219 ... seal cap.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

処理炉内の温度均熱領域の測定の作業性を向上し、且つ、ヒータの均熱長の信頼性を向上するために、保持具に保持した状態で装入された基板を処理する処理室と、前記処理室内の温度を計測する温度計測器と、少なくとも前記保持具に前記基板を搬送する搬送装置と、前記処理室内の温度を計測する前に、前記搬送装置を、予め設定された位置に移動させ、前記処理室内の温度を計測する際に、前記温度計測器を取り付けた状態で前記搬送装置を昇降させながら、前記温度計測器からの温度を取得するコントローラと、を有する基板処理装置が提供される。

Description

基板処理装置、温度計測システム、処理装置の温度計測方法、搬送装置及び記録媒体
 本発明は、基板処理装置、温度計測システム、処理装置の温度計測方法、搬送装置及び記録媒体に関する。例えば、半導体ウエハ(半導体集積回路装置が作り込まれるウエハ)およびガラス基板(液晶ディスプレイ装置が作り込まれる基板)等の基板を処理するのに利用して有効なものに関する。
 従来のこの種の基板処理装置においては、処理炉内各領域の温度を測定することが実施されている。 このような基板処理装置においては、例えば、反応炉内の構成部品を交換した場合には、処理炉内の均熱領域が変わるため、処理炉内の温度を計測して補正する方法が実施されている。また例えば、基板処理装置を初めて起動する際にも処理炉内の温度を計測して補正する方法が実施される。この処理炉内温度補正方法を実施する際には、従来、次のような作業が実施されていた。 先ず、作業者が、温度計測用昇降治具(オートプロファイラ)を個別に準備し、その治具の上下(昇降)移動部へ温度測定器を取り付け、データロガー(電子計測器)、PC(パーソナルコンピュータ)を接続し、昇温時の処理炉内ヒータ均熱領域の温度データを取得する。取得したデータから、作業者が温度補正値を算出する。ところが、作業者がオートプロファイラを毎回準備しなければならないため、コスト高と作業性の低下を招来する。また、同一の装置であっても、各作業者の技量によって温度補正値の算出結果が異なることがあり、製品の性能や品質がバラバラとなる。ここで、オートプロファイラを使用しないで、処理炉内のヒータ均熱領域の温度データを取得する工夫が考えられている。例えば特許文献1参照。
特開平9-5172号公報
 しかしながら、特許文献1には、オートプロファイラ等の冶具の代替として移載装置を利用してヒータの均熱長を測定することが開示されているが、実際に、移載装置に測温素子(熱電対)をどのようにして取付け、測定開始位置に測温素子(熱電対)をどのようにセッティングしているかは開示されていない。これでは、各作業者によって測定開始位置へのセッティングにバラツキが生じてしまい、作業者の技量によって作業性が低下してしまう。その結果、各作業者によってヒータの均熱長の測定ポイントにバラツキが生じ、結果として、温度制御性能の信頼性や基板品質の低下が懸念される。
 本発明の目的は、処理炉内の温度均熱領域の測定の作業性を向上し、作業者の技量に関係なく、ヒータの均熱長の信頼性を向上することができる基板処理装置、温度計測システム、処理装置の温度計測方法、搬送装置及び記録媒体を提供することにある。
 本発明の一態様によれば、保持具に保持した状態で装入された基板を処理する処理室と、前記処理室内の温度を計測する温度計測器と、少なくとも前記保持具に前記基板を搬送する搬送装置と、前記処理室内の温度を計測する前に、前記搬送装置を、予め設定された位置に移動させ、前記処理室内の温度を計測する際に、前記温度計測器を取り付けた状態で前記搬送装置を昇降させながら、前記温度計測器からの温度を取得するコントローラと、を有する基板処理装置が提供される。
 本発明の他の態様によれば、被処理体を処理する処理室内の温度を計測する温度計測器と、前記被処理体を搬送する搬送装置と、前記温度計測器を前記搬送装置に取り付けるための冶具と、前記搬送装置に前記冶具を介して前記温度計測器を取り付けた状態で、前記搬送装置を移動させながら、前記温度計測器からの温度を取得するコントローラと、を有する温度計測システムが提供される。
 本発明の更に他の態様によれば、被処理体を処理する処理室内の温度を計測する温度計測器と、前記被処理体を搬送する搬送装置と、前記温度計測器及び前記搬送装置にそれぞれ接続されるコントローラと、を有する処理装置の温度計測方法であって、前記コントローラは、前記処理室内の温度を計測する前に、前記搬送装置を、予め設定された位置に移動させ、前記処理室内の温度を計測する際に、前記温度計測器を取り付けた状態で前記搬送装置を移動させながら、前記温度計測器からの温度を取得する処理装置の温度計測方法が提供される。
 本発明の更に他の態様によれば、被処理体を処理する処理室内の温度を計測する温度計測器を取り付けた状態で昇降可能な搬送装置であって、前記温度計測器を取り付けるための固定冶具と、前記固定冶具と着脱可能な温度計測器支持機構の取付けまたは取外しを認識するセンサを備えた搬送装置が提供される。
 本発明の更に他の態様によれば、処理室内の温度が搬送装置に取り付けられた温度計測器によって計測される処理を少なくとも有するプログラムをコントローラで読み取り可能な記録媒体であって、前記搬送装置を、予め設定された位置に移動させる処理と、前記温度計測器を取り付けた状態で前記搬送装置を移動させながら、前記温度計測器からの温度を取得する処理を有するプログラムをコントローラで読み取り可能な記録媒体が提供される。
 前記した手段によれば、処理炉内温度測定の作業性の向上及び基板処理装置のヒータ均熱領域の測定結果の信頼性の向上を図ることができるとともに、基板処理装置の性能及び品質水準を一定にすることができる。
本発明の一実施形態に係る基板処理装置を示す概略の平面図である。 本発明の一実施形態に係る基板処理装置を示す概略の側面図である。 本発明の一実施形態に係る基板処理装置の処理炉を示す縦断面図である。 本発明の第一の実施形態における温度計測器支持機構の格納状態を示しており、(a)は側面図、(b)は平面図である。 本発明の第一の実施形態における温度計測器支持機構の突出状態を示しており、(a)は側面図、(b)は平面図である。 温度計測器取付口を示しており、(a)は閉鎖時の一部切断側面図、(b)は取付時の側面図である。 本発明の一実施形態に係る基板処理装置の制御装置の要部を示すブロック図である。 本発明の第一の実施形態における処理炉内温度補正方法を示すフローチャートである。 本発明の第二の実施形態における温度計測器支持機構をウェハ移載機構に取り付けるための冶具ベースユニットを説明するための図である。 本発明の第二の実施形態における温度計測器支持機構の構成を示す図である。 本発明の第二の実施形態における処理炉内の温度均熱長領域を測定する構成を示す図である。 本発明の第二の実施形態における処理炉内温度補正方法を示すフローチャートである。 本発明の第三の実施形態における処理炉内の断熱板領域を含む温度均熱長領域を測定する構成を示す図である。 本発明の第二の実施形態に係る処理炉内温度測定の変形例を示すフローチャートである。 本発明の第二の実施形態に係る処理炉内温度の測定結果を示すグラフ例である。 本発明の第二の実施形態に係る処理炉内温度の測定結果を示すグラフ例である。
 本発明に係る基板処理装置は、被処理体として半導体ウエハを扱うものとして構成されており、半導体ウエハに酸化膜形成や拡散および成膜のような処理を施すものとして構成されている。 本発明において、被処理体である基板としての半導体ウエハ(以下、ウエハという)200はシリコン等の半導体から作製されており、ウエハ200を収納して搬送するキャリア(収容器)としては、FOUP(front opening unified pod)110が使用されている。
 図1および図2に示されているように、本発明に係る基板処理装置(以下、処理装置という)100は筐体111を備えている。筐体111の正面壁111aの正面前方部には、メンテナンス可能なように設けられた開口部としての正面メンテナンス口103が開設され、この正面メンテナンス口103を開閉する正面メンテナンス扉104、104がそれぞれ建て付けられている。 筐体111の正面壁111aには、FOUP(以下、ポッドという)110を搬入搬出するためのポッド搬入搬出口(基板収容器搬入搬出口)112が筐体111の内外を連通するように開設されており、ポッド搬入搬出口112はフロントシャッタ(基板収容器搬入搬出口開閉機構)113によって開閉されるようになっている。 ポッド搬入搬出口112の正面前方側にはロードポート(基板収容器受渡し台)114が設置されており、ロードポート114はポッド110を載置されて位置合わせするように構成されている。ポッド110はロードポート114上に工程内搬送装置(図示せず)によって搬入され、かつまた、ロードポート114上から搬出される。
 筐体111内の前後方向の略中央部における上部には、回転可能なポッド保管用の収容棚(基板収容器載置棚)105が設置されており、基板収容器載置棚105は複数個のポッド110を保管するように構成されている。すなわち、基板収容器載置棚105は垂直に立設され、支柱116と、支柱116にn(nは1以上)段の棚板(基板収容器載置台)117とを備えており、複数枚の棚板117はポッド110を複数個宛それぞれ載置した状態で保持するように構成されている。 筐体111内におけるロードポート114と基板収容器載置棚105との間には、第一搬送装置としてのポッド搬送装置(基板収容器搬送装置)118が設置されている。ポッド搬送装置118はポッド110を保持したまま昇降可能なポッドエレベータ(基板収容器昇降機構)118aと、搬送機構としてのポッド搬送機構(基板収容器搬送機構)118bとで構成されている。ポッド搬送装置118はポッドエレベータ118aとポッド搬送機構118bとの連続動作により、ロードポート114、基板収容器載置棚105、ポッドオープナ(基板収容器蓋体開閉機構)121との間で、ポッド110を搬送するように構成されている。
 処理装置100は酸化膜形成等の処理を施す半導体製造装置を備えている。半導体製造装置の筐体を構成するサブ筐体119は、筐体111内の前後方向の略中央部における下部に後端にわたって構築されている。 サブ筐体119の正面壁119aにはウエハ200をサブ筐体119内に対して搬入搬出するためのウエハ搬入搬出口(基板搬入搬出口)120が一対、垂直方向に上下二段に並べられて開設されており、上下段のウエハ搬入搬出口120、120には一対のポッドオープナ121、121がそれぞれ設置されている。 ポッドオープナ121はポッド110を載置する載置台122、122と、ポッド110のキャップ(蓋体)を着脱するキャップ着脱機構(蓋体着脱機構)123、123とを備えている。ポッドオープナ121は載置台122に載置されたポッド110のキャップをキャップ着脱機構123によって着脱することにより、ポッド110のウエハ出し入れ口を開閉するように構成されている。
 サブ筐体119はポッド搬送装置118や基板収容器載置棚105の設置空間から流体的に隔絶された移載室124を構成している。移載室124の前側領域には第二搬送装置としてのウエハ移載機構(基板移載機構)125が設置されている。ウエハ移載機構125はウエハ移載装置(基板移載装置)125aとウエハ移載装置エレベータ(基板移載装置昇降機構)125bとで構成されている。ウエハ移載装置125aはツイーザ(基板保持体)125cによってウエハ200を保持して、ウエハ200を水平方向に回転ないし直動させる。ウエハ移載装置エレベータ125bはウエハ移載装置125aを昇降させる。ウエハ移載機構125はウエハ移載装置エレベータ125bおよびウエハ移載装置125aの連続動作により、ウエハ移載装置125aのツイーザ125cをウエハ200の載置部として、ボート(基板保持具)217に対してウエハ200を装填(チャージング)および脱装(ディスチャージング)する。
 図1に示されているように、移載室124のウエハ移載装置エレベータ125b側と反対側である右側端部には、クリーンユニット134が設置されている。クリーンユニット134は供給フアンおよび防塵フィルタで構成されており、清浄化した雰囲気もしくは不活性ガスであるクリーンエア133を供給する。ウエハ移載装置125aとクリーンユニット134との間には、ウエハの円周方向の位置を整合させる基板整合装置としてのノッチ合わせ装置135が設置されている。
 クリーンユニット134から吹き出されたクリーンエア133は、ノッチ合わせ装置135およびウエハ移載装置125aに流通された後に、図示しないダクトにより吸い込まれて、筐体111の外部に排気がなされるか、もしくはクリーンユニット134の吸い込み側である一次側(供給側)にまで循環され、再びクリーンユニット134によって、移載室124内に吹き出される。
 図1に示されているように、移載室124には第三搬送装置としてのボートエレベータ(基板保持具昇降機構)151が設置されている。ボートエレベータ151はボート217を昇降させるように構成されている。ボートエレベータ151に連結された連結具としてのアーム152には、蓋体としてのシールキャップ219が水平に据え付けられており、シールキャップ219はボート217を垂直に支持し、処理炉202の下端部を閉塞可能なように構成されている。ボート217は複数本の保持部材を備えており、複数枚(例えば、50枚~125枚程度)のウエハ200をその中心を揃えて垂直方向に整列させた状態で、それぞれ水平に保持するように構成されている。
 次に、ウエハ200に所定の処理を施す工程である基板処理工程としての処理装置100の動作について説明する。 図1および図2に示されているように、ポッド110がロードポート114に供給されると、ポッド搬入搬出口112がフロントシャッタ113によって開放され、ロードポート114の上のポッド110はポッド搬送装置118によって筐体111の内部へポッド搬入搬出口112から搬入される。 搬入されたポッド110は基板収容器載置棚105の指定された棚板117へポッド搬送装置118によって自動的に搬送されて受け渡され、一時的に保管された後、棚板117から一方のポッドオープナ121に搬送されて載置台122に移載されるか、もしくは直接ポッドオープナ121に搬送されて載置台122に移載される。この際、ポッドオープナ121のウエハ搬入搬出口120はキャップ着脱機構123によって閉じられており、移載室124にはクリーンエア133が流通され、充満されている。 例えば、移載室124にはクリーンエア133として窒素ガスが充満することにより、酸素濃度が20ppm以下と、筐体111の内部(大気雰囲気)の酸素濃度よりも遥かに低く設定されている。
 載置台122に載置されたポッド110はその開口側端面がサブ筐体119の正面壁119aにおけるウエハ搬入搬出口120の開口縁辺部に押し付けられるとともに、そのキャップがキャップ着脱機構123によって取り外され、ポッド110のウエハ出し入れ口が開放される。ウエハ200はポッド110からウエハ移載装置125aのツイーザ125cによってウエハ出し入れ口を通じてピックアップされ、ノッチ合わせ装置135にてウエハ200を整合した後、ボート217へ移載されて装填(ウエハチャージング)される。ボート217にウエハ200を受け渡したウエハ移載装置125aはポッド110に戻り、次のウエハ200をボート217に装填する。
 この一方(上段または下段)のポッドオープナ121におけるウエハ移載機構125によるウエハのボート217への装填作業中に、他方(下段または上段)のポッドオープナ121には基板収容器載置棚105ないしロードポート114から別のポッド110がポッド搬送装置118によって搬送され、ポッドオープナ121によるポッド110の開放作業が同時進行される。
 予め指定された枚数のウエハ200がボート217装填されると、処理炉202の下端部が炉口ゲートバルブ147によって開放される。続いて、シールキャップ219がボートエレベータ151の昇降台によって上昇されて、シールキャップ219に支持されたボート217が処理炉202内へ搬入(ローディング)されて行く。
 ローディング後は、処理炉202にてウエハ200に処理が実施される。 処理後は、ボートエレベータ151によりボート217が引き出される。その後は、ノッチ合わせ装置135でのウエハの整合工程を除き、概ね、前述と逆の手順で、ウエハ200およびポッド110は筐体111の外部へ払出される。
 図3は本発明に係る半導体製造装置の処理炉202の概略構成図であり、縦断面図として示されている。
 図3に示されているように、処理炉202は加熱機構としてのヒータ206を有する。ヒータ206は円筒形状であり、保持板としてのヒータベース251に支持されることにより垂直に据え付けられている。
 ヒータ206の内側には均熱管(外管)205がヒータ206と同心円に配設されている。均熱管205は炭化珪素(SiC)等の耐熱性材料が使用されて、上端が閉塞し下端が開口した円筒形状に形成されている。均熱管205の内側には反応管(内管)204が均熱管205と同心円に配設されている。反応管204は石英(SiO)等の耐熱性材料が使用されて、上端が閉塞し下端が開口した円筒形状に形成されている。反応管204の筒中空部は処理室201を形成しており、処理室201はウエハ200をボート217によって水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。
 反応管204の下端部にはガス導入部230が設けられており、ガス導入部230から反応管204の天井部233に至るまで反応管204の外壁に添ってガス導入管としての細管234が配設されている。ガス導入部230から導入されたガスは、細管234内を流通して天井部233に至り、天井部233に設けられた複数のガス導入口233aから処理室201内に導入される。また、反応管204の下端部のガス導入部230と異なる位置には、反応管204内の雰囲気を排気口231aから排気するガス排気部231が設けられている。
 ガス導入部230にはガス供給管232が接続されている。ガス供給管232のガス導入部230との接続側と反対側である上流側には、ガス流量制御器としてのMFC(マスフローコントローラ)241を介して図示しない処理ガス供給源、キャリアガス供給源、不活性ガス供給源が接続されている。MFC241には、ガス流量制御部235が電気的に接続されており、供給するガスの流量が所望の量となるよう所望のタイミングにて制御するように構成されている。 なお、処理室201内に水蒸気を供給する必要がある場合は、ガス供給管232のMFC241よりも下流側に、図示しない水蒸気発生装置が設けられる。
 ガス排気部231にはガス排気管229が接続されている。ガス排気管229のガス排気部231との接続側とは反対側である下流側には圧力検出器としての圧力センサ245および圧力調整装置242を介して排気装置246が接続されており、処理室201内の圧力が所定の圧力となるよう排気し得るように構成されている。 圧力調整装置242および圧力センサ245には、圧力制御部236が電気的に接続されており、圧力制御部236は圧力センサ245により検出された圧力に基づいて圧力調整装置242により処理室201内の圧力が所望の圧力となるよう所望のタイミングにて制御するように構成されている。
 反応管204の下端部には、反応管204の下端開口を気密に閉塞可能な保持体としてのベース257と、炉口蓋体としてのシールキャップ219とが設けられている。シールキャップ219は例えばステンレス等の金属からなり、円盤状に形成されている。ベース257は例えば石英からなり、円盤状に形成され、シールキャップ219の上に取付けられている。ベース257の上面には反応管204の下端と当接するシール部材としてのOリング220が設けられる。 シールキャップ219の処理室201と反対側にはボートを回転させる回転機構254が設置されている。回転機構254の回転軸255は、シールキャップ219およびベース257を貫通して、断熱筒218とボート217に接続されており、断熱筒218およびボート217を回転させることでウエハ200を回転させるように構成されている。 シールキャップ219は反応管204の外部に垂直に設備された昇降機構としてのボートエレベータ151によって垂直方向に昇降されるように構成されており、これによりボート217を処理室201に対し搬入搬出することが可能となっている。回転機構254およびボートエレベータ151には、駆動制御部237が電気的に接続されており、所望の動作をするよう所望のタイミングにて制御するように構成されている。
 基板保持具としてのボート217は、例えば石英や炭化珪素等の耐熱性材料からなり、複数枚のウエハ200を水平姿勢でかつ互いに中心を揃えた状態で整列させて保持するように構成されている。ボート217の下方には、例えば石英や炭化珪素等の耐熱性材料からなる円筒形状をした断熱部材としての断熱筒218がボート217を支持するように設けられており、ヒータ206からの熱が反応管204の下端側に伝わりにくくなるように構成されている。
 均熱管205と反応管204との間には、温度計測器としての温度センサ263が設置されている。ヒータ206と温度センサ263には、電気的に温度制御部238が接続されており、温度センサ263により検出された温度情報に基づきヒータ206への通電具合を調整することにより処理室201内の温度が所望の温度分布となるよう所望のタイミングにて制御するように構成されている。
 ガス流量制御部235、圧力制御部236、駆動制御部237、温度制御部238は、操作部、入出力部をも構成し、基板処理装置全体を制御する主制御部239に電気的に接続されている。これら、ガス流量制御部235、圧力制御部236、駆動制御部237、温度制御部238、主制御部239はコントローラ240として構成されている。
 次に、以上の構成に係る処理炉202を用いて、半導体装置の製造工程の一工程として、ウエハ200に酸化、拡散等の処理を施す方法(半導体装置の製造方法)について説明する。以下の説明において、処理装置を構成する各部の動作はコントローラ240により制御される。
 複数枚のウエハ200がボート217に装填(ウエハチャージング)されると、図3に示されているように、複数枚のウエハ200を保持したボート217は、ボートエレベータ151によって持ち上げられて処理室201に搬入(ボートローディング)される。この状態で、シールキャップ219はベース257、Oリング220を介して反応管204下端をシールした状態となる。
 処理室201内が所望の圧力となるように排気装置246によって排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力に基づき圧力調節器242が、フィードバック制御される。 また、処理室201内が所望の温度となるようにヒータ206によって加熱される。この際、処理室201内が所望の温度分布となるように温度センサ263が検出した温度情報に基づきヒータ206への通電具合がフィードバック制御される。 続いて、回転機構254により、断熱筒218、ボート217が回転されることで、ウエハ200が回転される。
 次いで、処理ガス供給源およびキャリアガス供給源から供給され、MFC241にて所望の流量となるように制御されたガスは、ガス供給管232からガス導入部230および細管234を流通し天井部233に至り、複数のガス導入口233aから処理室201内にシャワー状に導入される。 導入されたガスは処理室201内を流下し、排気口231aを流通してガス排気部231から排気される。ガスは処理室201内を通過する際にウエハ200の表面と接触し、ウエハ200に対して酸化、拡散等の処理がなされる。 なお、ウエハ200に対して水蒸気を用いた処理を行う場合は、MFC241にて所望の流量となるように制御されたガスは水蒸気発生装置に供給され、水蒸気発生装置にて生成された水蒸気(HO)を含むガスが処理室201に導入される。
 予め設定された処理時間が経過すると、不活性ガス供給源から不活性ガスが供給され、処理室201内が不活性ガスに置換されるとともに、処理室201内の圧力が常圧に復帰される。
 その後、シールキャップ219がボートエレベータ151によって下降されて、反応管204の下端が開口されるとともに、処理済ウエハ200がボート217に保持された状態で反応管204の下端から反応管204の外部に搬出(ボートアンローディング)される。その後、処理済ウエハ200はボート217よって取出される(ウエハディスチャージング)。
 なお、本発明の処理炉にてウエハを処理する際の処理条件としては、例えば、酸化処理においては、処理温度:室温~1050℃、処理圧力:101300Pa以下、ガス種:HO、ガス供給流量:20sccmが例示される。これらの処理条件を、それぞれの範囲内のある値で一定に維持することでウエハに処理がなされる。
図7に示されているように、本発明に係る処理装置100の主制御装置65は、CPU(CentralProcessing Unit)で代表される演算制御部66、ハードディスク等で構成される記憶部67および入出力制御部68を具備している。演算制御部66にはディスプレイ、表示パネル等の表示部80が接続されている。入出力制御部68には操作部69および副制御部58が接続されている。CPUとしての演算制御部66は、主制御装置65の中枢を構成し、記憶部67に記憶された制御プログラムを実行し、操作パネルとしての表示装置80又は操作端末等である操作部69からの指示に従って、レシピ記憶部42に記憶されている各種レシピ(例えば、プロセス用レシピ)を実行する。ここで、前述のコントローラ240は、主制御部65と、副制御部58とを少なくとも含み、表示部80及び操作部69を含むようにしても良い。
副制御部58は、駆動制御部73及び温度制御部74などの各制御部を個別に制御する。各制御部は、入出力制御部68を介して、主制御装置65にそれぞれ接続されている。ここでは、図示されていないが、副制御部58は、図3で示された温度制御部238、ガス流量235、圧力制御部236、駆動制御部237で構成されるのは言うまでもない。また、温度制御部238と温度制御部74、駆動制御部237と駆動制御部73がそれぞれ同一であるのはいうまでもない。特に、本願において、副制御部58は、ウエハ移載機構125の駆動部(例えば、ウエハ移載装置125aやウエハ移載装置エレベータ125b)を個別に制御する駆動制御部73等から構成されている。副制御部58は、演算制御部66から受けた指令に基づき対応する駆動部を駆動させるとともに、駆動部の状態(指令の実行中、指令待ち、実行完了等)を前記演算制御部66にフィードバックし、記憶部67にポジション記憶40等を保存する。また、後述する炉内温度均熱長測定によれば、温度制御部74は、熱電対等の温度センサとしての温度計測器が計測した温度(実測値)を入出力制御部68を介して前記演算制御部66にフィードバックする。前記演算制御部66により加工が行われた後、温度補正値記憶41等に保存されるように構成される。
 ROMとしての記憶部67は、EEPROM、フラッシュメモリ、ハードディスクなどから構成され、CPUの動作プログラム等を記憶する記録媒体である。RAMとしての入出力制御部68は、CPUのワークエリアなどとして機能する。
操作部69は、処理装置100から離間した位置に配置することが可能である。例えば、基板処理装置100がクリーンルーム内に設置されている場合であっても、操作部69はクリーンルーム外の事務所等に配置することが可能である。また、主制御装置65には、外部記憶媒体としての記録媒体であるUSBフラッシュメモリ等の装着及び取外しを行う着脱部(図示しない)としてのポートが設けられている。
本発明の実施の形態にかかる主制御装置65は、専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。例えば、汎用コンピュータに、上述の処理を実行するためのプログラムを格納した記録媒体(フレキシブルディスク、CD-ROM、USBなど)から当該プログラムをインストールすることにより、上述の処理を実行する主制御装置65を構成することができる。
 そして、これらのプログラムを供給するための手段は任意である。上述のように所定の記録媒体を介して供給できる他、例えば、通信回線、通信ネットワーク、通信システムなどを介して供給してもよい。この場合、例えば、通信ネットワークの掲示板に当該プログラムを掲示し、これをネットワークを介して搬送波に重畳して提供してもよい。そして、このように提供されたプログラムを起動し、OSの制御下で、他のアプリケーションプログラムと同様に実行することにより、上述の処理を実行することができる。
ここで、後述する実施例1以降において、上述した図1または図2の基板処理装置、図3の基板処理装置の処理炉、図7の基板処理装置の主制御装置65を使用して実施される。従い、これらについては、各実施例では、特に詳細説明を省略する。
<実施例1> 以下、図4~図6に示された温度計測器支持機構10について説明する。 温度計測器18を取り付けるための冶具としての温度計測器支持機構10はウエハ移載機構125に設置されている。温度計測器支持機構10はウエハ移載機構接続アーム(以下、第一アームという)11と、温度計測器支持アーム(以下、第二アームという)12とを備えている。第一アーム11は一端部をウエハ移載装置125aに枢軸11aで回転自在に支持されており、第二アーム12は一端部を第一アーム11の他端部に枢軸12aで回転自在に連結されている。 ウエハ移載装置125aには一対のアーム受け13A、13Bが、枢軸11a付近位置(以下、フロント位置という)と、枢軸11aから第一アーム11の長さ程度だけ離れた位置(以下、リア位置という)と、にそれぞれ突設されている。一対のアーム受け13A、13Bは上面を第一アーム11の下面にそれぞれ当接することにより、第一アーム11をフロント位置およびリア位置においてそれぞれ水平に支持する。リア位置のアーム受け13Bに水平に支持された第一アーム11はウエハ移載装置125aの側面に格納された状態になり(図4参照)、フロント位置のアーム受け13Aに水平に支持された第一アーム11はウエハ移載装置125aから突出した状態になる(図5参照)。 第二アーム12の枢軸12aには第二アーム12を水平に支持する支持軸14が設けられている。支持軸14は第二アーム12を第一アーム11に対して180度範囲の往復回動を許容するとともに、第二アーム12を第一アーム11のフロント位置およびリア位置においてそれぞれ水平に支持する。リア位置において第一アーム11と平行になった第二アーム12は、ウエハ移載装置125aに格納された状態になり(図4参照)、フロント位置において第一アーム11と平行になった第二アーム12は、ウエハ移載装置125aから突出した状態になる(図5参照)。
 第二アーム12の自由端部には温度計測器支持部(以下、支持部という)15が設置されている。支持具15は固定ねじ16および固定ばね17によって、温度計測器18を着脱自在に支持するように構成されている。 図6に示されているように、シールキャップ219には温度計測器18を挿入するための温度計測器挿入口(以下、挿入口という)20が設けられている。挿入口20にはウルトラトールナット21が螺合されており、挿入口20はウルトラトールナット21によって開閉されるように構成されている。ウルトラトールナット21が開口された状態で、取付口12には温度計測器18が温度計測器支持機構10によって垂直方向下方から挿入されて設置される。この際、温度計測支持機構10はウエハ移載機構125のウエハ移載装置エレベータ125bによって鉛直方向(シールキャップ219に対して垂直)に昇降されるので、温度計測器18は挿入口20に適正に挿入される。
 なお、前述した半導体装置の製造方法の一工程が実施される際には、温度計測器支持機構10は図4に示された格納状態に維持される。すなわち、第一アーム11はリア位置でアーム受け13Bに水平に支持され、第二アーム12は支持軸14によってリア位置で水平に支持されている。したがって、温度計測器機構10は半導体装置の製造方法の実施を妨害することはない。
 次に、処理炉内均熱領域の温度データ補正方法について図8等を参照して説明する。 例えば、処理装置100内の反応管204を新品のものと交換した場合、処理炉202内の均熱領域が変わるため、処理炉202内の均熱領域を再度測定し、温度補正方法の実施が必要になる。
 反応管交換時等の処理室内温度補正方法を実施する以前に、(後述する)温度計測器機構10の支持部が温度計測器18を挿入する挿入ポートの真下の位置になるよう温度計測器機構10のポジション(位置)定義が実施され、記憶部67にポジション記憶40として保存される(ステップA1)。 温度計測器支持機構10のポジション定義は、ウエハ移載機構125のウエハ移載装置125aの回転(旋回)軸のエンコーダ(位置検出器)の値と、ウエハ移載装置エレベータ125bの昇降軸のエンコーダ値を使用することにより、実施することができる。
 反応管交換時のように、処理室内温度補正方法が必要になった場合に際しては、温度計測器支持機構10は図4に示された格納状態から図5に示された突出状態に移行される。すなわち、第一アーム11は上方に180度回動されてフロント位置のアーム受け13Aに水平に支持され、同時に、第二アーム12も180度回動されて支持軸14によってフロント位置で水平に支持される。 温度計測器18は突出した第二アーム12先端部の支持部15に固定ねじ16および固定ばね17によって着脱自在に取り付けられる(図5参照)。 他方、シールキャップ219の挿入口20はウルトラトールナット21によって開放される。 温度計測器支持機構10が予め設定されて記憶部60に記憶されたポジション記憶40に従ってシールキャップ219の挿入口20の真下に搬送される。続いて、温度計測器支持機構10がウエハ移載装置エレベータ125bによって上昇されることにより、図6(b)に示されているように、温度計測器18が挿入口20に挿入される。 尚、シールキャップ219は、ボートエレベータ151によって上昇されて、処理炉202の下端部がシールキャップ219によって閉塞されている状態であるのはいうまでもない。また、ボートエレベータ151により上昇されるボート217には基板が装填されていなくてもよいが、一般的に実際の基板処理工程を想定して、予めダミー基板が装填されている。また、処理炉202の下端部がシールキャップ219によって閉塞された後、シールキャップ219の挿入口20をウルトラトールナット21によって開放し、温度計測器18を挿入口20に挿入した状態で、支持具15に取り付けるようにするのが好ましい。以上、(ステップA2)。
 次に、処理炉202内の温度がヒータ206によって所定の温度に上昇されて、所定の温度に安定されるまで待機する(ステップA3)。 温度安定後に、処理炉202内の温度が処理炉202内に挿入された温度計測器18によって計測される。すなわち、温度計測器支持機構10に取り付けられた温度計測器18が、ウエハ移載装置エレベータ125bによって下降されることによりヒータの均熱領域の温度が計測される。操作部69および個別操作ターミナルによりヒータ均熱領域取得が取得される。(ステップA4)。 作業者は取得した温度データに基づいて温度補正値を算出し、記憶部67内の温度補正値記憶41に記憶する。ここで、演算制御部66が、取得した温度データに基づいて自動的に温度補正値を算出し、算出後、温度補正値記憶41に記憶するようにしてもよい。(ステップA5)。 処理炉202内のヒータ206の均熱領域が再度取得される。すなわち、温度計測器支持機構10に取り付けられた温度計測器18が、ウエハ移載装置エレベータ125bによって上昇され、所定の温度に安定後に、ウエハ移載装置エレベータ125bによって温度計測器18が、下降されることによりヒータの均熱領域の温度が計測される。(ステップA6)。 演算制御部66は、上記のように取得されたヒータの均熱領域の各温度(均熱温度)がそれぞれ規定値内に入るまで何度も繰り返す(ステップA7)。 そして、均熱温度が規定値に入ると、温度補正値の取得が終了する。
 以上の実施形態(実施例1)によれば、次の効果が得られる。
(1)個別にオートプロファイラを準備する必要がないため、処理炉内温度補正方法の作業性を向上させることができるとともに、コストを低減させることができる。
(2)ウエハ移載機構のエレベータを活用することにより、温度測定器支持機構の位置決め(ポジション定義)を簡易化することができ、また、処理炉内の均熱長を測定する際の開始位置が一定となる。
(3)温度計測器支持機構をウエハ移載機構に格納可能に設置することにより、処理炉内温度均熱長の測定方法を実施しない時に、温度計測器支持機構がウエハ移載機構による移載作業を妨害するのを防止することができる。
(4)処理装置の主制御装置や操作部および個別操作ターミナルを使用することにより、処理炉内均熱領域のデータ取得を実行することができ、取得されたデータを主制御装置の記憶部に保存することができ、各ウエハ(製品ウエハ、ダミーウエハ、フィルウエハ等)の搬送すべきポジション(位置)や温度補正値等も演算制御部で算出させた後、保存することができる。よって、各種搬送ウエハの位置や枚数設定や、温度補正値のような作業者による手入力を削減することができ、データロガーやPCの準備も不要とすることができる。
(5)全ての動作が自動で行われるため、作業者の技量に関係なく、均熱長領域の測定開始位置が決まるので、均熱長領域の測定範囲の信頼性が向上(測定範囲のバラツキが大幅に低減)する。よって、温度制御の性能や処理基板の品質を一定に保つことができる。
(6)全ての動作が自動で行われるため、移載室扉を閉めた状態での作業が可能であるので、作業者が極力移載室内に入る必要が無いため安全性が格段に向上する。
(7)処理炉内均熱領域のデータ取得をリアルタイムで実行することができる。また、各ウエハ(製品ウエハ、ダミーウエハ、フィルウエハ等)の搬送すべきポジション(位置)や取得されたデータを主制御装置65の記憶部67に保存することができる。また、処理炉内の温度補正値の算出が演算制御部66で行われた後、前記取得データ(実測値)と同様に、温度補正値等も自動的に保存することができるので、処理炉内の均熱温度領域の取得にかかる時間を短縮できる。
<実施例2>  実施例1において、個別にオートプロファイラを準備するよりコスト低減が図られたが、温度計測器支持機構10は、ウエハ移載機構125に固定されているため、ウエハ移載機構125の単価が上がってしまうという問題がある。つまり、処理装置100のコスト低減という問題がある。そこで、本実施の形態(実施例2)においては、この温度計測器支持機構10を縦型装置のオプション機能として付加し、製品販価を維持することを目的として更に改良を行った。
以下、図9及び図10に示された温度計測器支持機構10について説明する。図9は、それぞれ固定冶具部としての冶具ベースユニットをウエハ移載機構125に固定した状態を示している。このように、ウエハ移載機構125に治具ベースユニットを常設させておくことで、温度計測支持機構10を必要な場合に応じて取り付けができるようになっている。また、温度計測支持機構10の有無(取り付け・取外し)を認識するためのセンサを認識部として設けた。これにより、処理装置の主制御装置や操作部で温度計測支持機構10の有無が認識できるようになった。これにより、作業者が装置内にわざわざ入ることなく、移載室扉を閉めた状態で温度計測支持機構10の有無を認識できる。ここで、図示の治具ベースユニットが、ウエハ移載機構125による基板の搬送動作を妨げないことは言うまでもない。このような構成により、温度計測支持機構10をオプション機能とすることにより、コスト削減が図られる。尚、実施例2において、冶具ベースユニットを第一の冶具と、温度計測器支持機構10を第二の冶具としてもよい。
図10(a)(b)は、上述の冶具ベースユニットに取り付ける温度計測支持機構10としての温度測定用ツールの構成を示している。図10に示すように、本実施の形態(実施例2)における温度測定用ツールは、アーム1と、スライドガイドと、アーム2と、ベース1と、ベース2と、スライドプレートと、バネと、柱及び柱ベースと、支持部15としての石英設置部と、を備えている。
支持部15は、石英熱電対(TC)等の温度計測器18が設置される。また、ベース1、ベース2はそれぞれ微調整機構として機能し、スライドプレートは、平行移動機構として機能し、バネは、偏芯・偏角機構として機能する。このような機能により、支持部15に設置された温度計測器18が破損しないように構成されている。また、石英熱電対(TC)等の温度計測器18の挿入位置は、各装置により異なるため、アーム1とアーム2の間にスライドガイドを設け、アーム2を伸縮可能な構造としている。これにより、アーム2の長さを調整することができる。また、温度計測支持機構10はオプションのため、持運びや保管にも便利なようになっている。このように、温度計測支持機構10は、装置仕様、装置で基板に施される処理(例えば、膜種)等によらず、冶具ベースユニットを介してウエハ移載機構125に取付け可能に構成されている。
図11は、本実施の形態(実施例2)における処理炉内の温度均熱領域を測定するときの移載室内のウエハ移載機構125の動作を説明するための図である。
先ず、ボート217に基板をフルチャージし、ボートロードを行う。但し、基板処理を実施した状態と同じ場合を想定し、所定枚数の基板でフルチャージするため、ダミー基板が利用される。尚、本実施形態の構成に限定されないのは言うまでもない。例えば、基板はフルチャージでなくてもよく、隙間があってもよく、また、基板なしでも構わない。
次に、処理炉内(ウルトラトール部)に石英保護管を挿入し、固定する。そして、ウエハ移載機構125を所定の位置に移動後、ウエハ移載機構125に測定用ツールとしての温度計測支持機構10を取り付ける。この石英保護管に石英熱電対(TC)等の温度計測器18を挿入し、温度計測支持機構10の石英設置部に温度計測器18を設置する。最後に、温度計測器18と処理装置100の計測器を接続する。
処理路内の温度均熱領域の測定は、予め設定しておいた所定の温度で処理炉内の温度が安定したら、ウエハ移載装置エレベータ125bによって温度計測器18が、下降されることによりヒータの均熱領域の温度が計測される。そして、取得された温度が規定値内に入るまで、ウエハ移載装置エレベータ125bによる温度計測器18の測定開始位置への上昇と、下降させながらの温度計測と、が繰り返し行われる。
次に、本実施の形態(実施例2)における処理炉内の温度均熱領域を測定する方法について詳細を説明する。先ず、処理炉内の温度均熱領域を測定するレシピは、作業者により、例えば、表示装置80または操作部69で作成される。そして、温度均熱領域を測定するレシピ(以後、均熱長測定レシピ)を主制御装置65の記憶部67に予め格納される。
次に、図12のフローチャートを用いて、均熱長レシピを実行して処理炉内の温度均熱領域を測定する工程について説明する。
均熱長レシピが操作部69の所定のボタンを押下されて開始される。すると、ヒータの均熱長を測定する回数n、及びカウンタiがそれぞれ設定される。図12のフローチャートには、回数nの値が?と記されているが、実際はレシピ作成時に作業者が設定する所定の閾値(自然数)が設定されているのは言うまでも無い。
また、移載機としてのウエハ移載機構125が所定の位置に移動される。そして、所望の冶具取り付けが終了するのを待機する。具体的には、ウエハ移載機構125に固定されている冶具ベースユニットへの温度計測器支持機構10の取り付け、及び温度計測器支持機構10と温度計測器18の取り付けが終了するまで待機する。
取り付けが終了後、比較ステップに移行し、回数nとカウンタiの大きさが比較される。そして、カウンタiが回数nより大きくないので次のステップへ移行し、均熱長測定が開始される。
まず、均熱長測定を開始する位置へ移動する移動ステップが実行される。但し、均熱長レシピの開始時は、測定開始位置近傍にウエハ移載機構は移動しているので、次のポジションチェック工程に直ぐに移行する。次に、各軸のポジションチェックが行われ、ポジションエラーが発生すると、均熱長レシピは終了する。また、このポジションチェックがOKの場合、次の干渉チェックに移行する。次に、Z軸(ウエハ移載装置エレベータ125bの動作軸)のポジションが炉口シャッタ干渉設定値を超えていないかチェックされる。干渉エラーが発生すると、均熱長レシピは終了する。また、チェックOKの場合、次の開始位置チェックに移行する。次に、Z軸が所定時間(例えば、600秒)以内に測定開始位置に位置しているかチェックされる。所定時間内に測定開始位置まで移動できなかった場合、開始位置タイムアウトエラーが発生し、均熱長レシピは終了する。チェックOKの場合、温度計測器18が測定開始位置に移動終了となる。
そして、処理炉内が所定の温度に安定するまで待機する。
温度安定後、均熱長の測定が開始される。具体的には、ウエハ移載装置エレベータ125bの下降動作に伴い、温度計測器18が下降される。温度計測器18により処理炉内の各測定ポイントの温度が計測される。尚、この温度データは、図7に示すように、温度制御部を介して主制御装置65の記憶部67に温度実測値記憶43に格納される。
温度計測器18が下降しながら処理路内の温度計測を行うことにより、均熱長の測定が均熱長測定終了位置に到着するまで行われる。ここで、予め設定された時間内に終了位置にいないと判定されると、終了位置タイムアウトエラーが発生し、均熱長レシピが終了する。設定時間内に均熱長測定終了位置に温度計測器18が位置していれば、均熱長測定が終了となる。このとき、作業者は、取得した温度データに基づいて温度補正値を算出し、適宜温度補正値記憶41に記憶する。そして、温度補正値の変更を行う。尚、演算制御部66を取得した温度データに基づいて温度補正値を自動的に算出するように構成してもよいのはいうまでもない。図示していないが均熱長測定後に、温度補正値取得工程を含めても構わない。更に、演算制御部66が、温度補正値の算出を前記搬送装置を下降させると共に前記温度計測器により計測された温度から自動的に温度補正値を算出するよう構成されていても構わない。
均熱長測定が終了後、均熱長測定カウンタiに1が加えられる。そして、再度比較ステップへフィードバックされ、均熱長測定カウンタiと回数nの比較が行われる。
比較した結果、回数nより均熱長測定カウンタiが大きい場合、均熱長レシピが終了する。また、回数nより均熱長測定カウンタiが大きくない場合、次の移動ステップへ移行し、均熱長測定が再度開始される。そして、測定開始位置への移動の際、各軸のポジションチェック、干渉チェック、開始位置チェック等がそれぞれ実行される。
均熱長の再測定終了後、均熱長測定カウンタiに1が加えられる。そして、再度比較ステップへフィードバックされ、均熱長測定カウンタiと回数nの比較が行われる。ここで、カウンタiが回数n以上になると、均熱長レシピは終了する。
尚、各軸のポジション(位置)チェックは、常時行われている。所定の周期(例えば、1秒周期)で行われているので、ウエハ移載機構125に治具ベースユニットを介して取り付けられた温度計測器18を昇降させている途中に異常が発生しても即時に停止させることができる。これにより、温度計測器18と石英保護管との接触による石英割れの発生というような事故は起きないようにすることができる。
また、本実施の形態によれば、複数の均熱長レシピを実行するように構成しても良い。例えば、均熱長測定カウンタiと回数nを適宜所定の数値に設定して、1回目の測定は均熱長レシピA、2回目の測定は均熱長レシピB、3回目の測定は均熱長レシピCとそれぞれ処理炉内の温度測定条件の異なるレシピを実行するように構成しても良い。また、均熱長レシピAを3回繰り返したら次に均熱長レシピBを実行するというように回数毎にレシピを変更するようにしても良い。
また、本実施の形態によれば、図12のフローチャートのように均熱長レシピが開始されると、ウエハ移載機構125に固定されている冶具ベースユニットへの温度計測器支持機構10の取り付け、及び温度計測器支持機構10と温度計測器18の取り付けが終了するまで待機する工程があるが、この限りではない。ウエハ移載機構125と温度計測器支持機構10と温度計測器18のそれぞれの取り付けが終了すると、均熱長レシピが開始するように構成しても良い。但し、この場合、ウエハ移載機構125に温度計測器支持機構10を取り付ける際のウエハ移載機構125の移動は、手動で行われる。例えば、オフライン(Local)で専用の端末により操作される。
以上の実施形態(実施例2)によれば、実施例1で奏する効果に加え、次の効果が得られる。 (7)この着脱可能な温度計測器支持機構を縦型装置のオプションとして付加できるので、製品販価を維持することができる。たとえば、縦型装置の基板処理(プロセス)によらず、使用することができるので、製品販価に影響を及ぼさない。また、少なくとも上述の温度計測器支持機構と均熱長レシピとのセットで本縦型装置の温度測定システムを構成することにより、部品交換などの改造及び交換後のセットアップが、作業者の技量に関係なく容易に可能となる。 (8)第一の冶具として治具ベースユニットをウエハ移載機構125に固定し、これにセンサが設けられている。これにより、作業者が装置内にわざわざ入ることなく、移載室扉を閉めた状態で温度計測器支持機構の有無が認識できるようになった。よって、作業者が極力移載室内に入る必要が無いため安全性が格段に向上する。 (9)操作画面上で、均熱長レシピを作成し、これを実行することにより、処理炉内の温度均熱領域を測定することができる。これにより、よって、作業者が極力移載室内に入る必要が無いため安全性が格段に向上する。 (10)作業者は、均熱長レシピを複数作成し、これを実行することにより、処理炉内の温度均熱領域を測定することができる。例えば、均熱長レシピA、均熱長レシピB、均熱長レシピCとそれぞれ処理炉内の温度測定条件の異なるレシピを実行することにより、多種態様な条件で均熱長を測定できる。 (11)均熱長レシピを実行することにより、均熱長の測定開始位置及び測定終了位置が、作業者の技量に関係なく、一定に保つことができる。これにより、処理炉内の温度均熱領域を測定結果の信頼性が保たれ、温度制御の性能や基板品質を一定に保つことができる。
<実施例2の変形例>上述した図12のフローチャートでは、均熱長の測定が予め設定された回数を必ず実行されなければ、均熱長レシピは終了しなかった。また、反対に、均熱長の測定が予め設定された温度範囲内に収まらなくても、設定回数に到達したら終了してしまう。よって、均熱長測定の実行回数は、作業者の技量に依存するところがある。
 一方、図14は、図12のフローチャートを、実施例1のフローチャート(図8参照)と同様に、所定の規定値(予め設定された温度)範囲に収まっていれば、均熱長測定が終了するフローチャートに変形したものである。図14は、測定開始位置か否かを確認するステップ(ステップ1)と、処理炉内の温度が安定するまで待機するステップ(ステップ2)と、処理炉内の均熱長を測定するステップ(ステップ3)と、均熱長測定を終了するか判定するステップ(ステップ4)を有する均熱制御プログラムを示すフロー図である。このように、本フローは、実施例2のフローチャートとは、フローチャートの繰り返しを決定するステップ(また、このステップの内容)が異なる。
 次に、図14のフローチャートについて詳述する。
まず、均熱長レシピが実行開始されると、均熱長測定を開始する位置へ移動する移動ステップが実行される。但し、均熱長レシピの開始時は、予め測定開始位置にウエハ移載機構125は移動しているので、次のポジションチェック工程に移行する。次に、各軸のポジションチェックが行われ、ポジションエラーが発生すると、均熱長レシピは終了する。また、このポジションチェックがOKの場合、次の干渉チェックに移行する。次に、Z軸(ウエハ移載装置エレベータ125bの動作軸)の位置が炉口シャッタ干渉設定値を超えていないかチェックされる。要するにウエハ移載機構125と炉口シャッタが干渉するかどうかがチェックされる。干渉エラーが発生すると、均熱長レシピは終了する。また、チェックOKの場合、次の開始位置チェックに移行する。次に、Z軸が所定時間(例えば、600秒)以内に測定開始位置に位置しているかチェックされる。ここで、本チェック工程においても、均熱長レシピの開始時は、予め測定開始位置にウエハ移載機構125は移動しており、次の温度安定チェック工程に移行する。必要に応じて微調整のため移動することもあるが、尚、所定時間内に測定開始位置まで移動できなかった場合、開始位置タイムアウトエラーが発生し、均熱長レシピは終了する。チェックOKの場合、温度計測器18が測定開始位置に移動終了となる(以上、STEP1)。
そして、処理炉内が所定の温度に安定するまで待機する温度安定チェック工程が実行される(以上、STEP2)。
温度安定後、均熱長の測定が開始される。測定は、実施例2と同様に、ウエハ移載装置エレベータ125bの下降動作に伴い、温度計測器18が下降される。温度計測器18により処理炉内の各測定ポイントの温度が計測される。尚、この温度データは、図7に示すように、温度制御部を介して主制御装置65の記憶部67に温度実測値記憶43に格納される。
処理路内の温度計測は、均熱長測定終了位置に到着するまで行われる。ここで、予め設定された時間内に終了位置にいないと判定されると、終了位置タイムアウトエラーが発生し、均熱長レシピが終了する。設定時間内に均熱長測定終了位置に温度計測器18が位置していれば、均熱長測定が終了となる。このとき、作業者は取得した温度データに基づいて温度補正値を算出し、記憶部67内の温度補正値記憶41に記憶する。ここで、演算制御部66が、取得した温度データに基づいて自動的に温度補正値を算出し、算出後、温度補正値記憶41に記憶するようにしてもよい(以上、STEP3)。
演算制御部66は、上記のように取得されたヒータの均熱領域の各温度(均熱温度)がそれぞれ規定値内に入るまで何度も繰り返す。演算制御部66は、所定の判断基準、例えば、所定の上下限値内(規定値内)の温度が、所定の長さ以上、になっているかを判定する。この所定の判定基準を満たさない場合、処理炉202内のヒータ206の均熱領域が再度取得される。すなわち、STEP1の均熱長測定を開始する位置へ移動する移動ステップへ移行され、温度計測器支持機構10に取り付けられた温度計測器18が、ウエハ移載装置エレベータ125bによって上昇され、測定開始位置に戻される。そして、各チェック工程を経て、所定の温度に安定(STEP2)後に、ウエハ移載装置エレベータ125bによって温度計測器18が、下降されることによりヒータの均熱領域の温度が計測される(STEP3)。そして、均熱長測定結果が規定値に入る(判断基準内に収まる)と、演算制御部66は、均熱長測定を終了し、温度補正値の取得が終了する。(以上、STEP4)。
ここで、各軸のポジション(位置)チェックは、図12で示されるフローチャート(実施例2)と同様に常時行われている。このように、所定の周期(例えば、1秒周期)で行うことにより、ウエハ移載機構125に取り付けられた温度計測器18を昇降させている途中に、異常が発生しても即時に停止させることができ、温度計測器18と石英保護管との接触による石英割れの発生という事故が起きないようにすることができる。
<実施例1及び実施例2の計測結果の表示例>図15及び図16は、均熱長測定結果により温度制御部74が取得する温度データの表示例を示す。図15は、所定の判断基準(規定値)を満たした温度測定結果をグラフで示しており、所定の温度上下限値内(設定温度±上下限値)において、所定の温度設定範囲が所定の長さ以上である場合を示している。一例を挙げれば、設定温度700℃、上下限値±2℃、温度フラットゾーンが900mm以上である。また、設定温度にもよるが、温度フラットゾーンは、950mm以上が好ましい。但し、処理炉202の大きさにより、1200mm程度が限界値である。尚、設定温度は、プロセス及び膜種にもよるが、100℃以下(例えば、室温)から1200℃程度のアニール炉に及ぶ。詳細は後述するが、近年の低温プロセスでは、400℃以下、更には、100℃以下で均熱長を測定する要求が増えてきている。
 図16には、4回の均熱長測定結果が重ね合わせ表示されている。また、図16は、1回目~3回目の均熱長測定結果は、所定の判断基準(規定値)から外れており、4回目の均熱長測定結果は、所定の判断基準(規定値)を満たしている様子を示している。また、本発明では、均熱長を測定する際に、ウエハ移載機構125を利用することにより、温度計測開始位置を、常に一定とすることができる。更に、均熱長レシピによる測定を行うようにすれば、計測範囲を設定可能なため、温度計測開始位置及び温度計測終了位置を、常に一定とすることができる。
 セットアップ時などで実行される均熱長測定は、処理装置100の特性上、重要な工程であり、判断基準が厳しく設定されている。よって、規定値範囲内に入るには、複数回の測定が必要となる。更に、処理炉202内の均熱長の測定は、温度計測器18をウエハ移載機構125に取付け、このウエハ移載機構125を昇降させるシステムを構築しているため、基板を処理するためのレシピであるプロセスレシピを実行する場合と同様に均熱長を測定するためのレシピである均熱長レシピを実行することができる。これにより、均熱長レシピを実行して、処理炉内の温度分布が、所定の温度上下限値内(設定温度±上下限値)において、所定の温度設定範囲が所定の長さ以上であるかを確認することができる。このように、プロセスレシピと同様に、ガス流量、炉内圧力、ヒータ温度等の制御パラメータを設定することで、実際の基板処理と同様な処理条件で均熱長測定が可能となる。
尚、詳細は後述するが、設定温度により、基板処理領域内の均熱長だけでなく、基板処理領域の下部の温度が、断熱板領域の温度から受ける影響を考慮する必要がある。この場合、基板処理領域だけでなく断熱板領域も温度測定を行う。
上述の実施例1または実施例2(変形例を含む)で説明した処理炉内の温度均熱領域の測定は、基板処理装置のセットアップ時や処理炉を構成する部品であるボート217等の交換時などのメンテナンス(保守)時に実施される。
<実施例1及び実施例2(変形例を含む)の応用例1> つまり、上述の実施例1または実施例2(変形例を含む)によれば、前記した処理装置100のセットアップ方法が、次の通り提供される。処理室を構成する各部品を組立する組立工程と、基板を保持具に移載する移載装置に着脱自在に設けられた温度計測器が前記処理室に搬入されるステップと、前記移載装置を降下させることにより、前記処理室内の温度が前記温度計測器によって計測されるステップと、前記温度計測器によって計測された温度に基づいて補正値が算出されるステップと、前記計測された温度が所定の判定基準と比較される比較ステップと、を有する温度補正工程と、 前記温度補正工程終了後、前記処理室内を基板処理温度よりも大きい温度に加熱する加熱工程と、を少なくとも有する。
 上記比較ステップにおいて、計測された温度が所定の判定基準内に収まった場合、上記補正値を用いて上記加熱工程及び基板を処理する基板処理工程が実行される。一方、計測された温度が所定の判定基準から外れた場合、前記移載装置を上昇させて温度測定開始位置へ移動する移動ステップが実行される。そして、再度、前記移載装置を降下させることにより、前記処理室内の均熱長の測定が行われる。
<実施例1及び実施例2(変形例を含む)の応用例2> つまり、上述の実施例1または実施例2(変形例を含む)によれば、前記した処理装置100のメンテナンス(保守)をするための手段が、次の通り提供される。処理室内を構成する部品のうち保持具等の部品を交換する工程と、基板を前記保持具に移載する移載装置に着脱自在に設けられた温度計測器が前記処理室に搬入されるステップと、前記移載装置を降下させることにより、前記処理室内の温度が前記温度計測器によって計測されるステップと、前記温度計測器によって計測された温度に基づいて補正値が算出されるステップと、前記計測された温度が所定の判定基準と比較される比較ステップと、を有する温度補正工程と、を少なくとも有する。
 上記比較ステップにおいて、計測された温度が所定の判定基準内に収まった場合、上記補正値を用いて、前記交換した部品を保護するためのプリコート処理や基板を処理する基板処理工程が実行される。一方、計測された温度が所定の判定基準から外れた場合、前記移載装置を上昇させて温度測定開始位置へ移動する移動ステップが実行される。そして、再度、前記移載装置を降下させることにより、前記処理室内の均熱長の測定が行われる。
以上の実施形態(実施例3または実施例4)によれば、実施例1または実施例2で奏する効果に加え、次の効果が得られる。 (12)実施例1または実施例2にかかる処理炉内の温度均熱領域の測定方法を基板処理装置のセットアップやメンテナンスに適用することにより、結果的に、基板処理装置における非稼働時間(メンテナンスやセットアップ等の時間)が低減されるため、基板処理装置の装置稼働率が向上する。
<実施例3>  実施例1や実施例2において、ヒータの均熱長領域の測定範囲は、図14に示されるように基板処理領域(E部)が対象であった。よって、図14に示されるように、ヒータの均熱長の測定範囲は、基板処理領域(E部)であったため、断熱板領域(F部)の温度の測定は必要なかった。ところが、基板処理領域(E部)だけでなく、断熱板領域(F部)の温度に関する情報を取得する要求が高まっている。例えば、ヒータ開発時は、最大均熱長を確認するために、基板処理領域と断熱板領域の両方の温度を計測する。例えば、断熱板領域からの放熱が大きい場合に、基板処理領域と断熱板領域の温度勾配を確認する必要がある。断熱板領域からの放熱により、基板処理領域の下部の面内温度にバラツキが生じても、この温度勾配を確認することで断熱板領域の影響を確認することができる。
 従来のプロセス温度(処理温度)は、炉口部(断熱板領域)からの放熱の影響は、多少あったかもしれないが、基板処理結果(基板の品質)への影響はほとんど無かった。しかしながら、プロセス温度(処理温度)の低温化が進むにつれて、基板処理結果への影響が無視できなくなってきている。例えば、処理温度が400℃以下、更に、100℃以下のプロセスになると、処理装置100において温度変化に敏感に反応する。このような低温での成膜要求が高まっており、図14の断熱板領域(F部)を温度測定する必要がある。例えば、処理ガス導入部は、断熱板領域(F部)の温度変化により、導入するガスの温度が変化して影響を受ける。
 本実施例(実施例3)において、図14に示されるように、柱としての把握部の長さを変更するだけで調整できる。例えば、把握部を短いもので構成することにより、移載機としてのウエハ移載機構125の測定位置を変えずに温度測定ポイントを変更する。
 尚、本実施例(実施例3)において、処理炉内の温度均熱長の測定要領は実施例2(変形例を含む)と同様であるので説明は省略する。
 このように、柱としての把握部の長さを変えるだけで、処理炉内の温度測定ポイントを変更する(下側にシフトさせる)ことで断熱板領域(F部)を測定可能となった。また、測定冶具を使用しなくても、均熱長を測定する範囲を通常より大きくすることでも断熱板領域(F部)が測定可能であるのはいうまでも無い。
以上の実施形態(実施例3)によれば、実施例1および実施例2で奏する効果に加え、次の効果が得られる。 (13)これまで測定不可能だった断熱板領域に関する温度測定が可能になった。これにより、基板処理装置において温度変化に敏感なプロセスに対応できるようになった。
 なお、本発明は以上の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々に変更が可能であることはいうまでもない。 例えば、温度計測器支持機構は、第一アームおよび第二アームのマニピュレータによって構成するに限らず、多関節ロボットによって構成してもよいし、スライド式のマニピュレータやリニアアクチュエータ等々によって構成してもよい。また、温度計測器は複数設けても良く、温度測定器の数に合わせて温度測定器支持機構を複数設けても良い。
 また、操作部69は、複数の処理装置100を管理するホストコンピュータ等の管理装置であってもよい。
 前記実施形態においては、ウエハを処理する場合について説明したが、本発明は液晶パネルのガラス基板や磁気ディスクや光ディスク等の基板を処理する基板処理装置全般に適用することができる。
 また、酸化膜形成に限らず、拡散やCVDやアニールおよびアッシング等の処理全般に適用することができる。
 上述のように、本発明(本実施の形態)における好ましい態様を付記する。
(1)保持具に保持した状態で装入された基板を処理する処理室と、 前記処理室内の温度を計測する温度計測器と、 少なくとも前記保持具に前記基板を搬送する搬送装置と、少なくとも前記搬送装置と前記温度計測器とに接続されるコントローラと、を有し、前記コントローラは、前記処理室内の温度を計測する前に、前記搬送装置を、予め設定された位置に移動させた後、前記温度計測器を取り付けた状態で前記搬送装置を昇降させながら前記温度計測器からの温度を取得する基板処理装置。
(2)前記コントローラは、前記処理室内の温度を測定するための所定のシーケンスを実行することにより、計測条件を変更させて前記処理室内の温度を繰り返し計測可能に構成されている。
(3)前記コントローラは、前記搬送装置が所定の開始位置から外れている場合に、前記所定のシーケンスによる温度計測を実行しないで終了するように構成されている(2)の基板処理装置。
(4)前記コントローラは、前記搬送装置が所定の終了位置に、所定の時間内に到達していない場合に、前記所定のシーケンスによる温度計測を終了するように構成されている(2)の基板処理装置。
(5)前記コントローラは、前記搬送装置を下降させると共に前記温度計測器により計測された温度から温度補正値を算出するよう構成されている(1)の基板処理装置。
(6)保持具に保持した状態で装入された基板を処理する処理室と、 前記処理室内の温度を計測する温度計測器と、 少なくとも前記保持具に前記基板を搬送する搬送装置と、少なくとも前記搬送装置と前記温度計測器とに接続されるコントローラと、を有し、前記コントローラは、前記処理室内の温度を計測する前に、前記搬送装置を、予め設定された位置に移動させた後、前記温度計測器を取り付けた状態で前記搬送装置を昇降させながら前記温度計測器からの温度を取得する基板処理装置の温度計測方法。
(7)基板を保持した保持具を処理室に装入した状態で前記基板に処理する基板処理工程と、 前記処理室内の温度が搬送装置に取り付けられた温度計測器によって計測される温度計測工程と、を少なくとも有する半導体装置の製造方法であって、更に、前記温度計測工程は、前記搬送装置を、予め設定された位置に移動させる工程と、前記温度計測器を取り付けた状態で前記搬送装置を移動させながら、前記温度計測器からの温度を取得する工程を有する半導体装置の製造方法。
(8)基板が装填されたキャリアが搬入出されるロードポートと、 前記キャリアを収納する収納棚と、 前記収納棚に収納されたキャリアを載置する載置棚と、 前記キャリアを、前記ロードポートと前記収納棚と前記載置棚との間で搬送する第一搬送装置と、 前記基板を保持する保持具と、 前記載置棚に載置された前記キャリアと前記保持具との間で前記基板を搬送する第二搬送装置と、 前記保持具に保持された前記基板を処理する処理室と、 前記処理室内の温度を計測する温度計測器と、 前記温度計測器を前記第二搬送装置へ取り付ける温度計測器支持機構と、 前記第一搬送装置と前記第二搬送装置と前記収納棚と前記ロードポートと前記温度計測器と前記温度計測器支持機構とを制御するコントローラと、 を有する基板処理装置。
(9)基板が装填されたキャリアがロードポートへ搬入されるステップと、 前記キャリアが前記ロードポートから収納棚へ第一搬送装置によって搬送されるステップと、 前記キャリアが前記収納棚から載置棚へ前記第一搬送装置によって搬送されるステップと、 前記載置棚に載置された前記キャリアの前記基板が保持具へ第二搬送装置によって移載されるステップと、 前記基板を移載された前記保持具が処理室へ搬入されるステップと、 前記保持具の前記基板が前記処理室内で処理されるステップと、 前記基板を処理された前記保持具が前記処理室から搬出されるステップと、 温度計測器が前記第二搬送装置に設けられるステップと、 前記処理室内の温度が前記温度計測器によって計測されるステップと、 前記温度計測器によって計測された各温度が閾値と比較されるステップと、 を有する半導体装置の製造方法。
(10)基板を処理する処理室と、 前記基板を保持する保持具と、 前記基板を前記保持具に移載する移載装置と、を備えており、 前記移載装置には前記処理室内の温度を計測する温度計測器を支持する温度計測器支持機構が設けられており、前記移載機構は前記温度計測器支持機構に取り付けられた前記温度計測器を昇降可能に構成されている基板処理装置。
(11)基板を保持具に移載する移載装置に着脱自在に設けられた温度計測器が前記処理室に搬入されるステップと、 前記処理室内の温度が前記温度計測器によって計測されるステップと、 前記温度計測器によって計測された各温度が閾値と比較されるステップと、 を有する温度補正工程と、 複数の基板を保持した保持具を処理室内に挿入した状態で、前記基板を処理する基板処理工程と、を有する半導体装置の製造方法。
(12)処理室内を構成する、ヒータ及び反応管等を含む部品を組立する組立工程と基板を保持具に移載する移載装置に着脱自在に設けられた温度計測器が前記処理室へ前記移載装置によって搬入されるステップと、 前記処理室内の温度が前記温度計測器によって計測されるステップと、 前記温度計測器によって計測された各温度が閾値と比較されるステップと、 を有する温度補正工程と、 前記温度補正工程終了後、前記処理室内を基板処理温度よりも大きい温度に加熱する加熱工程と、を少なくとも有する基板処理装置のセットアップ方法。
(13)処理室内を構成する部品のうち保持具等を含む部品を交換する工程と基板を前記保持具に移載する移載装置に着脱自在に設けられた温度計測器が前記処理室へ前記移載装置によって搬入されるステップと、 前記処理室内の温度が前記温度計測器によって計測されるステップと、 前記温度計測器によって計測された各温度が閾値と比較されるステップと、 を有する温度補正工程と、 を少なくとも有する基板処理装置のメンテナンス(保守)方法。
(14)被処理体を処理する処理室内の温度を計測する温度計測器と、 前記被処理体を搬送する搬送装置と、 前記温度計測器を前記搬送装置に取り付けるための冶具と、前記搬送装置に前記冶具を介して前記温度計測器を取り付けた状態で、前記搬送装置を移動させながら、前記温度計測器からの温度を取得するコントローラと、を有する温度計測システム。
(15)更に、前記搬送装置には、前記温度計測器を支持する温度計測器支持機構が設けられ、 前記治具は、前記温度計測器支持機構に取り付けられる(14)の温度計測システム。
(16)更に、前記搬送装置には、センサが設けられ、 前記センサは、前記治具が前記温度計測器支持機構に取り付けられているかを検出する(15)の温度計測システム。
(17)前記搬送装置は、前記温度計測器支持機構を介して前記温度計測器に取り付ける前、または、前記温度測定器による温度計測を前に、予め設定された位置に移動されるように構成され、前記温度計測器により前記処理室内の温度を計測する際は、降下されるように構成されている(14)の温度計測システム。
(18)基板を保持具に移載する移載装置であって、 前記移載装置には処理室内の温度を計測する温度計測器を支持する温度計測器支持機構が設けられ、前記温度計測器支持機構前を介して取り付けられた記温度計測器を昇降可能に構成されている移載装置。
(19)前記移載装置は、前記温度計測器支持機構を介して前記温度計測器に取り付ける前、または、前記温度測定器による温度計測を前に、予め設定された位置に移動されるように構成され、前記温度計測器により前記処理室内の温度を計測する際は、降下されるように構成されている(18)の移載装置。
(20)被処理体を処理する処理室内の温度を計測する温度計測器と、 前記被処理体を搬送する搬送装置と、前記温度計測器及び前記搬送装置にそれぞれ接続されるコントローラと、を有する処理装置の温度計測方法であって、前記処理室内の温度を計測する前に、前記搬送装置を、予め設定された位置に移動させ、前記処理室内の温度を計測する際に、前記温度計測器を取り付けた状態で前記搬送装置を移動させながら、前記温度計測器からの温度を取得する処理装置の温度計測方法。
(21)被処理体を処理する処理室内の温度を計測する温度計測器を取り付けた状態で昇降可能な搬送装置であって、前記温度計測器を取り付けるための固定冶具部と、前記固定冶具部と着脱可能な温度計測器支持機構の取付けまたは取外しを認識するセンサを備えた搬送装置。
(22)前記処理室内の温度を計測する前に、予め設定された位置で前記固定冶具に温度計測器支持機構が取り付けられ、前記処理室内の温度を計測する際に、前記温度計測器支持機構に前記温度計測器を取り付けた状態で移動するように構成される(21)の搬送装置。
(23)処理室内の温度が搬送装置に取り付けられた温度計測器によって計測される処理を少なくとも有するプログラムをコントローラで読み取り可能な記録媒体であって、前記搬送装置を、予め設定された位置に移動させる処理と、前記温度計測器を取り付けた状態で前記搬送装置を移動させながら、前記温度計測器からの温度を取得する処理を有するプログラムをコントローラで読み取り可能な記録媒体。
(24)処理室内の温度が搬送装置に取り付けられた温度計測器によって計測される処理を少なくとも有するプログラムであって、前記搬送装置を、予め設定された位置に移動させる処理と、前記温度計測器を取り付けた状態で前記搬送装置を移動させながら、前記温度計測器からの温度を取得する処理を有するプログラム。
この出願は、2012年5月28日に出願された日本出願特願2012-121203を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。
各種ヒータの温度均熱長を測定する技術に係り、半導体を製造するのに用いられる炉に限られることなく、各炉に適用可能である。
 10…温度計測器支持機構、11…第一アーム(ウエハ移載機構接続アーム)、11a…枢軸、12…第二アーム(温度計測器支持アーム)、12a…枢軸、13A、13B…アーム受け、14…支持軸、15…支持具(温度計測器支持具)、16…固定ねじ、17…固定ばね、18…温度計測器、20…挿入口、21…ウルトラトールナット、40…ポジション記憶、41…温度補正値記憶、58…駆動サブ制御部、65…主制御装置、66…演算制御部、67…記憶部、68…入出力制御部、69…操作部、73…サブ制御部、80…表示部、100…処理装置(基板処理装置)、110…ポッド(キャリア)、118…ポッド搬送装置(第一搬送装置)、125…ウエハ移載機構(第二搬送装置)、125a…ウエハ移載装置、125b…ウエハ移載装置エレベータ、151…ボートエレベータ、200…ウエハ(基板)、202…処理炉、217…ボート(保持具)、219…シールキャップ。 

Claims (5)

  1. 保持具に保持した状態で装入された基板を処理する処理室と、 前記処理室内の温度を計測する温度計測器と、 少なくとも前記保持具に前記基板を搬送する搬送装置と、前記処理室内の温度を計測する前に、前記搬送装置を、予め設定された位置に移動させ、前記処理室内の温度を計測する際に、前記温度計測器を取り付けた状態で前記搬送装置を昇降させながら、前記温度計測器からの温度を取得するコントローラと、を有する基板処理装置。
  2. 被処理体を処理する処理室内の温度を計測する温度計測器と、 前記被処理体を搬送する搬送装置と、 前記温度計測器を前記搬送装置に取り付けるための冶具と、前記搬送装置に前記冶具を介して前記温度計測器を取り付けた状態で、前記搬送装置を移動させながら、前記温度計測器からの温度を取得するコントローラと、を有する温度計測システム。
  3. 被処理体を処理する処理室内の温度を計測する温度計測器と、 前記被処理体を搬送する搬送装置と、前記温度計測器及び前記搬送装置にそれぞれ接続されるコントローラと、を有する処理装置の温度計測方法であって、前記コントローラは、前記処理室内の温度を計測する前に、前記搬送装置を、予め設定された位置に移動させ、前記処理室内の温度を計測する際に、前記温度計測器を取り付けた状態で前記搬送装置を移動させながら、前記温度計測器からの温度を取得する処理装置の温度計測方法。
  4. 被処理体を処理する処理室内の温度を計測する温度計測器を取り付けた状態で昇降可能な搬送装置であって、前記温度計測器を取り付けるための固定冶具と、前記固定冶具と着脱可能な温度計測器支持機構の取付けまたは取外しを認識するセンサを備えた搬送装置。
  5. 処理室内の温度が搬送装置に取り付けられた温度計測器によって計測される処理を少なくとも有するプログラムをコントローラで読み取り可能な記録媒体であって、前記搬送装置を、予め設定された位置に移動させる処理と、前記温度計測器を取り付けた状態で前記搬送装置を移動させながら、前記温度計測器からの温度を取得する処理を有するプログラムをコントローラで読み取り可能な記録媒体。 
PCT/JP2013/064380 2012-05-28 2013-05-23 基板処理装置、温度計測システム、処理装置の温度計測方法、搬送装置及び記録媒体 WO2013180010A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014518416A JP6175432B2 (ja) 2012-05-28 2013-05-23 基板処理装置、温度計測システム、処理装置の温度計測方法、搬送装置及び記録媒体
KR1020147032242A KR101772546B1 (ko) 2012-05-28 2013-05-23 기판 처리 장치, 온도 계측 시스템, 처리 장치의 온도 계측 방법, 반송 장치 및 기록 매체
CN201380027921.0A CN104364888B (zh) 2012-05-28 2013-05-23 基板处理装置、温度计测系统、处理装置的温度计测方法、输送装置以及记录介质
US14/549,738 US10340164B2 (en) 2012-05-28 2014-11-21 Substrate processing apparatus, method of measuring temperature of substrate processing apparatus and non-transitory computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012121203 2012-05-28
JP2012-121203 2012-05-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/549,738 Continuation US10340164B2 (en) 2012-05-28 2014-11-21 Substrate processing apparatus, method of measuring temperature of substrate processing apparatus and non-transitory computer-readable recording medium

Publications (1)

Publication Number Publication Date
WO2013180010A1 true WO2013180010A1 (ja) 2013-12-05

Family

ID=49673208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064380 WO2013180010A1 (ja) 2012-05-28 2013-05-23 基板処理装置、温度計測システム、処理装置の温度計測方法、搬送装置及び記録媒体

Country Status (5)

Country Link
US (1) US10340164B2 (ja)
JP (1) JP6175432B2 (ja)
KR (1) KR101772546B1 (ja)
CN (1) CN104364888B (ja)
WO (1) WO2013180010A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056148A1 (ja) * 2015-09-28 2017-04-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
WO2021176879A1 (ja) * 2020-03-04 2021-09-10 株式会社Kokusai Electric 基板処理装置、治具、基板処理装置の校正方法および半導体装置の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10297481B2 (en) * 2013-03-21 2019-05-21 Tokyo Electron Limited Magnetic annealing apparatus
US9136243B2 (en) * 2013-12-03 2015-09-15 Kulicke And Soffa Industries, Inc. Systems and methods for determining and adjusting a level of parallelism related to bonding of semiconductor elements
JP6600408B2 (ja) * 2016-03-24 2019-10-30 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法および記録媒体
CN107424947A (zh) * 2017-08-16 2017-12-01 君泰创新(北京)科技有限公司 薄膜电池工艺设备的温度测试方法及系统
US10978322B2 (en) * 2017-08-30 2021-04-13 Tokyo Electron Limited Transfer device, substrate processing apparatus, and transfer method
CN113597663A (zh) * 2019-03-18 2021-11-02 株式会社国际电气 半导体装置的制造方法、基板处理装置以及程序
CN111755359B (zh) * 2019-03-26 2024-04-12 株式会社国际电气 基板处理装置、反应管以及半导体装置的制造方法
US11915960B2 (en) * 2019-07-31 2024-02-27 Asm Ip Holding B.V. Vertical batch furnace assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283163A (ja) * 1994-04-11 1995-10-27 Tokyo Electron Ltd 熱処理装置およびその温度制御方法
JPH095172A (ja) * 1995-06-15 1997-01-10 Kokusai Electric Co Ltd 温度測定方法
JP2004022943A (ja) * 2002-06-19 2004-01-22 Hitachi Kokusai Electric Inc 半導体製造装置
JP2008117810A (ja) * 2006-10-31 2008-05-22 Sharp Corp 熱処理装置および熱処理装置における加熱条件取得方法
JP2011090610A (ja) * 2009-10-26 2011-05-06 Yamatake Corp 温度制御装置および異常判定方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193506B1 (en) * 1995-05-24 2001-02-27 Brooks Automation, Inc. Apparatus and method for batch thermal conditioning of substrates
KR970017970A (ko) 1995-09-26 1997-04-30 김광호 반도체 제조공정의 화학반응장치
US5820366A (en) * 1996-07-10 1998-10-13 Eaton Corporation Dual vertical thermal processing furnace
KR100272245B1 (ko) 1997-09-30 2000-12-01 구자홍 번인 보드의 위치결정장치
JP4426024B2 (ja) * 1999-09-02 2010-03-03 東京エレクトロン株式会社 熱処理装置の温度校正方法
US20050067757A1 (en) * 2003-08-26 2005-03-31 Takeshi Suga Sheet feeding apparatus and image forming apparatus having the same
CN100367460C (zh) * 2003-10-30 2008-02-06 东京毅力科创株式会社 热处理装置及热处理方法
JP5273961B2 (ja) * 2007-07-20 2013-08-28 株式会社日立国際電気 基板処理システムおよび基板処理方法
JP2011109040A (ja) * 2009-11-20 2011-06-02 Nikon Corp 半導体基板ホルダ及び温度検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283163A (ja) * 1994-04-11 1995-10-27 Tokyo Electron Ltd 熱処理装置およびその温度制御方法
JPH095172A (ja) * 1995-06-15 1997-01-10 Kokusai Electric Co Ltd 温度測定方法
JP2004022943A (ja) * 2002-06-19 2004-01-22 Hitachi Kokusai Electric Inc 半導体製造装置
JP2008117810A (ja) * 2006-10-31 2008-05-22 Sharp Corp 熱処理装置および熱処理装置における加熱条件取得方法
JP2011090610A (ja) * 2009-10-26 2011-05-06 Yamatake Corp 温度制御装置および異常判定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056148A1 (ja) * 2015-09-28 2017-04-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JPWO2017056148A1 (ja) * 2015-09-28 2018-04-26 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
WO2021176879A1 (ja) * 2020-03-04 2021-09-10 株式会社Kokusai Electric 基板処理装置、治具、基板処理装置の校正方法および半導体装置の製造方法
JP2021141180A (ja) * 2020-03-04 2021-09-16 株式会社Kokusai Electric 基板処理装置、治具、半導体装置の製造方法および基板処理装置の校正方法

Also Published As

Publication number Publication date
CN104364888B (zh) 2017-02-22
US20150099235A1 (en) 2015-04-09
KR20150008128A (ko) 2015-01-21
KR101772546B1 (ko) 2017-08-29
JP6175432B2 (ja) 2017-08-02
CN104364888A (zh) 2015-02-18
US10340164B2 (en) 2019-07-02
JPWO2013180010A1 (ja) 2016-01-21

Similar Documents

Publication Publication Date Title
JP6175432B2 (ja) 基板処理装置、温度計測システム、処理装置の温度計測方法、搬送装置及び記録媒体
JP6403431B2 (ja) 基板処理装置、流量監視方法及び半導体装置の製造方法並びに流量監視プログラム
JP6545396B2 (ja) 基板処理装置、振動検出システム及びプログラム
JP6581718B2 (ja) 基板処理装置、コントローラ及び部品管理プログラム
JP5546197B2 (ja) 基板処理システム、群管理装置および基板処理装置の情報解析方法
KR101549435B1 (ko) 관리 장치, 기판 처리 시스템 및 기판 처리 장치의 파일 관리 방법
WO2015030047A1 (ja) 基板処理装置のメンテナンス方法、半導体装置の製造方法、基板処理装置、及び基板処理装置のメンテナンスプログラムを読取可能な記録媒体
JP4917660B2 (ja) 基板処理装置、基板処理装置の制御方法、半導体デバイスの製造方法、装置状態遷移方法、基板処理装置の保守方法及び状態遷移プログラム
JP2015106575A (ja) 基板処理装置、基板処理装置の制御方法、制御プログラム及び半導体装置の製造方法
WO2011021635A1 (ja) 基板処理システム、群管理装置及び基板処理システムにおける表示方法
KR102206194B1 (ko) 기판 처리 장치 및 반도체 장치의 제조 방법
JP2012099763A (ja) 基板処理装置及び基板処理装置の保守点検方法
JP7030772B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
US8948899B2 (en) Substrate processing system, substrate processing apparatus and display method of substrate processing apparatus
JP2011243677A (ja) 基板処理装置
JP6823575B2 (ja) 基板処理装置、反応管及び半導体装置の製造方法
JP2012119557A (ja) 基板処理装置
WO2019172274A1 (ja) 処理装置、排気システム、半導体装置の製造方法
JP5273961B2 (ja) 基板処理システムおよび基板処理方法
JP2019062191A (ja) 基板処理装置及び半導体装置の製造方法
JP2013074039A (ja) 群管理装置
JP5531003B2 (ja) 基板処理装置、基板処理装置のメンテナンス方法および半導体装置の製造方法
JP2014116453A (ja) データ取得方法及び基板処理装置の管理装置
JP2013239656A (ja) 基板処理装置
JP2011204865A (ja) 基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147032242

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014518416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13796931

Country of ref document: EP

Kind code of ref document: A1