WO2019172274A1 - 処理装置、排気システム、半導体装置の製造方法 - Google Patents

処理装置、排気システム、半導体装置の製造方法 Download PDF

Info

Publication number
WO2019172274A1
WO2019172274A1 PCT/JP2019/008692 JP2019008692W WO2019172274A1 WO 2019172274 A1 WO2019172274 A1 WO 2019172274A1 JP 2019008692 W JP2019008692 W JP 2019008692W WO 2019172274 A1 WO2019172274 A1 WO 2019172274A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
processing
unit
gas
processing apparatus
Prior art date
Application number
PCT/JP2019/008692
Other languages
English (en)
French (fr)
Inventor
奥野 正則
利彦 米島
坂田 雅和
正導 谷内
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to SG11202007978PA priority Critical patent/SG11202007978PA/en
Priority to CN201980013166.8A priority patent/CN111712904B/zh
Priority to KR1020237030295A priority patent/KR20230130775A/ko
Priority to KR1020207023789A priority patent/KR20200108467A/ko
Priority to JP2020505059A priority patent/JP6992156B2/ja
Priority to CN202311487185.9A priority patent/CN117536862A/zh
Publication of WO2019172274A1 publication Critical patent/WO2019172274A1/ja
Priority to US17/000,518 priority patent/US20200392620A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/4554Plasma being used non-continuously in between ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67303Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements

Definitions

  • the present disclosure relates to a processing apparatus, an exhaust system, and a method for manufacturing a semiconductor device.
  • a processing device in which an exhaust device is installed on a lower floor (for example, the first floor) of a floor (for example, the third floor) where a processing furnace is installed, and the same floor as the floor in which the processing furnace is installed There is a processing device for installing an exhaust device.
  • Japanese Patent Laid-Open No. 2006-190812 discloses a processing apparatus in which an exhaust device is installed on the same floor as the floor on which a processing furnace is installed.
  • an exhaust device is connected to the transfer chamber instead of the processing furnace, and in order to improve exhaust efficiency, it is necessary to communicate the processing furnace and the transfer chamber during the process, which is not realistic.
  • an exhaust unit and an exhaust device must be disposed on the side of the processing furnace due to the layout of the processing apparatus. There is. In this case, if an exhaust unit and an exhaust device are arranged in the vicinity of the processing furnace, the maintenance area may not be secured, and some countermeasure is required.
  • This disclosure is intended to provide a configuration in which a maintenance area can be provided even if an exhaust device is installed on the same floor where a processing furnace is installed.
  • a processing unit for processing an object to be processed with gas is provided inside the casing, and a processing unit in which an opening that enables maintenance is formed in the rear portion of the casing;
  • An exhaust unit that is installed to provide a maintenance region in a region facing the opening, and exhausts the gas from the processing furnace;
  • An exhaust device installed so as to provide a maintenance region in a region facing the opening, and disposed adjacent to a side opposite to the processing unit side of the exhaust unit;
  • a configuration is provided.
  • the maintenance area can be provided, so that the maintenance of the device can be performed.
  • FIG. 6 is a block diagram for demonstrating the controller for substrate processing apparatuses with which the processing apparatus which concerns on embodiment of this indication was equipped.
  • 6 is a flowchart showing the operation timing of each unit in a film forming sequence executed by a processing apparatus according to an embodiment of the present disclosure. It is drawing which showed the graph for understanding the effect
  • the arrow F direction indicates the front direction of the processing apparatus 10
  • the arrow B direction indicates the rear surface direction of the processing apparatus 10
  • the arrow R direction indicates the right direction (viewed from the front) of the processing apparatus 10
  • the arrow L The direction indicates the left direction of the processing apparatus 10 (as viewed from the front)
  • the arrow U direction indicates the upward direction of the processing apparatus 10
  • the arrow D direction indicates the downward direction of the processing apparatus 10.
  • the processing apparatus 10 is installed on a floor 124 (in this embodiment, a floor on the third floor as an example).
  • the processing apparatus 10 includes a processing unit 11 including each component constituting the inside of the housing 12.
  • the front wall facing the arrow F direction side of the housing 12 is provided with an opening provided for maintenance, and a pair of front maintenance doors 14 are provided as opening mechanisms for opening and closing the opening. Is provided.
  • a pod (substrate container) 18 that stores a substrate (wafer) 16 as a processing object such as silicon, which will be described later, is used as a carrier for transporting the substrate 16 into and out of the housing 12.
  • the substrate 16 is used for a semiconductor device, for example.
  • a pod loading / unloading port (not shown) is opened on the front wall of the housing 12 of the processing unit 11 so as to communicate between the inside and outside of the housing 12.
  • a load port 20 is installed at the pod loading / unloading exit.
  • a pod 18 is placed on the load port 20 and the pod 18 is positioned.
  • a rotary pod shelf 22 is installed at the upper portion of the central portion of the housing 12.
  • a plurality of pods 18 are stored on the rotary pod shelf 22.
  • the rotary pod shelf 22 includes a column that is vertically set and rotated in a horizontal plane, and a plurality of shelf plates that are radially supported by the column at each of the upper, middle, and lower levels.
  • a pod transfer device 24 is installed between the load port 20 and the rotary pod shelf 22 in the housing 12.
  • the pod transfer device 24 moves the pod 18 between the load port 20, the rotary pod shelf 22, and the pod opener 26 by continuous operation of the pod elevator 24a and the pod transfer mechanism 24b that can be moved up and down while holding the pod 18. It is comprised so that it may convey mutually.
  • a sub-housing 28 is provided at a lower portion in the housing 12 from the substantially central portion to the rear end in the housing 12.
  • a pair of pod openers 26 for transporting the substrate 16 into and out of the sub casing 28 are installed on the front wall of the sub casing 28.
  • Each pod opener 26 includes a mounting table for mounting the pod 18 and a cap attaching / detaching mechanism 30 for attaching / detaching the cap of the pod 18.
  • the pod opener 26 is configured to open and close the wafer loading / unloading port of the pod 18 by attaching / detaching the lid of the pod 18 placed on the placing table by the cap attaching / detaching mechanism 30.
  • a transfer chamber 32 that is fluidly isolated from the space in which the pod transfer device 24, the rotary pod shelf 22, and the like are installed is configured in the sub-case 28 that is configured in the case 12.
  • a wafer transfer mechanism (substrate transfer mechanism) 34 is installed in the front region of the transfer chamber 32.
  • the substrate transfer mechanism 34 includes a substrate transfer device 34a that can rotate or linearly move the substrate 16 in a horizontal direction, and a substrate transfer device elevator 34b that moves the substrate transfer device 34a up and down.
  • the substrate transfer device elevator 34b is installed between the right end of the front region of the transfer chamber 32 of the sub-housing 28 and the right end of the housing 12.
  • the substrate transfer device 34 a includes a tweezer as a holding unit for the substrate 16.
  • a boat elevator 38 for raising and lowering the boat 36 is installed in the sub housing 28 (transfer chamber 32).
  • An arm is connected to the lifting platform of the boat elevator 38.
  • a lid 40 is horizontally installed on the arm. The lid 40 is configured to support the boat 36 vertically and to close the lower end of the processing furnace 42.
  • the rotary pod shelf 22, the boat elevator 38, the pod transfer device 24, the substrate transfer mechanism 34, the boat 36, and the rotation mechanism 44 constitute a transfer mechanism.
  • the rotary pod rack 22, the boat elevator 38, the pod transfer device 24, the substrate transfer mechanism 34, the boat 36, and the rotation mechanism 44 are electrically connected to a transfer controller 46.
  • a processing furnace 42 is provided above the standby unit 48 that houses and waits for the boat 36.
  • a clean unit 50 is installed at the left end of the transfer chamber 32 opposite to the substrate transfer apparatus elevator 34b side.
  • the clean unit 50 is configured to supply clean air 52 that is a cleaned atmosphere or an inert gas.
  • the clean air 52 blown out from the clean unit 50 circulates around the boat 36 in the substrate transfer device 34a and the standby unit 48, and then is sucked by a duct (not shown) and exhausted to the outside of the housing 12. Alternatively, it is circulated to the primary side (supply side) that is the suction side of the clean unit 50 and is blown out again into the transfer chamber 32 by the clean unit 50.
  • the processing unit 11 includes, for example, a processing furnace 42, a rotary pod shelf 22, a pod transfer device 24, a substrate transfer mechanism 34, a boat 36, and other components constituting the inside of the housing 12. Components configured and constituting the sub-case 28 are also included in the processing unit 11. Further, the pod 18 and the substrate 16 may be included in the processing unit 11.
  • the gas supply unit 54 includes a processing gas supply source (not shown), an on-off valve (not shown), a mass flow controller (hereinafter abbreviated as MFC) 64a as a gas flow rate controller, and a processing gas.
  • a processing gas supply system including a supply pipe 66a, a purge gas supply source (not shown), an open / close valve (not shown), an MFC 64b, and a purge gas supply system including a purge gas supply pipe 66b are stored.
  • a pressure sensor 70 as a pressure detection unit, for example, a gas exhaust mechanism configured by a pressure adjustment unit 72 configured as an APC (Auto Pressure Controller) valve. Stored. Details of the exhaust unit 56 will be described later.
  • an exhaust device 74 is disposed adjacent to the exhaust unit 56. Details of the exhaust device 74 will be described later.
  • the substrate processing apparatus controller 76 as a control unit is connected to the transfer controller 46, the temperature controller 78, the pressure controller 80, and the gas supply controller 82.
  • the processing furnace 42 includes a reaction tube 84.
  • the reaction tube 84 includes an internal reaction tube 86 and an external reaction tube 88 provided outside thereof.
  • the internal reaction tube 86 is formed in a cylindrical shape, and a processing chamber 90 for processing the substrate 16 is formed in a cylindrical hollow portion in the internal reaction tube 86.
  • the processing chamber 90 is configured to accommodate the boat 36.
  • a cylindrical heater 92 is provided outside the reaction tube 84 so as to surround the side wall surface of the reaction tube 84.
  • the heater 92 is vertically installed by being supported by the heater base 94.
  • a cylindrical furnace port 96 is disposed below the external reaction tube 88 so as to be concentric with the external reaction tube 88.
  • the furnace port portion 96 is provided so as to support the lower end portion of the internal reaction tube 86 and the lower end portion of the external reaction tube 88, and engages with the lower end portion of the internal reaction tube 86 and the lower end portion of the external reaction tube 88, respectively. doing.
  • An O-ring 98 as a seal member is provided between the furnace port portion 96 and the external reaction tube 88. Since the furnace port portion 96 is supported by the heater base 94, the reaction tube 84 is in a vertically installed state.
  • a reaction vessel is formed by the reaction tube 84 and the furnace port portion 96.
  • a processing gas nozzle 100 a and a purge gas nozzle 100 b are connected to the furnace port portion 96 so as to communicate with the inside of the processing chamber 90.
  • a processing gas supply pipe 66a is connected to the processing gas nozzle 100a.
  • a processing gas supply source (not shown) or the like is connected to the upstream side of the processing gas supply pipe 66a via the MFC 64a.
  • a purge gas supply pipe 66b is connected to the purge gas nozzle 100b.
  • a purge gas supply source (not shown) or the like is connected to the upstream side of the purge gas supply pipe 66b via the MFC 64b.
  • a gas supply controller 82 is electrically connected to the MFCs 64a and 64b.
  • An exhaust pipe 68 for exhausting the atmosphere of the processing chamber 90 is connected to the furnace port portion 96.
  • the exhaust pipe 68 is disposed at the lower end of the cylindrical space 102 formed by the gap between the internal reaction tube 86 and the external reaction tube 88.
  • the exhaust pipe 68 communicates with the cylindrical space 102.
  • a lid 40 capable of airtightly closing the lower end opening of the furnace port portion 96 is provided below the furnace port portion 96.
  • an O-ring 104 is provided as a seal member that comes into contact with the lower end of the furnace port portion 96.
  • a rotating mechanism 44 that rotates the boat 36 is installed near the center of the lid 40 and on the side opposite to the processing chamber 90.
  • the rotation shaft 106 of the rotation mechanism 44 passes through the lid body 40 and supports the boat 36 from below.
  • the rotation mechanism 44 is configured to rotate the substrate 16 by rotating the boat 36.
  • the lid 40 is configured to be raised and lowered in the vertical direction by a boat elevator 38 provided outside the reaction tube 84.
  • the boat 36 can be transported into and out of the processing chamber 90 by moving the lid 40 up and down.
  • a conveyance controller 46 is electrically connected to the rotation mechanism 44 and the boat elevator 38.
  • the boat 36 is configured to hold a plurality of substrates 16 in a horizontal posture and in multiple stages.
  • a plurality of heat insulating plates 107 as heat insulating members are arranged in multiple stages in a horizontal posture.
  • the heat insulating plate 107 is provided to make it difficult to transfer the heat from the heater 92 to the furnace port portion 96 side.
  • a temperature sensor 108 is installed as a temperature detector.
  • a temperature controller 78 is electrically connected to the heater 92 and the temperature sensor 108.
  • the exhaust unit 56 is formed in a box shape with a metal plate as an example, and includes a housing 120 whose longitudinal direction (direction of the maximum dimension) is the vertical direction. Inside the housing 120, a pipe 122 with a gate valve is connected in the middle of the pipe on the downstream side of the exhaust pipe 68.
  • the pipe 122 opens and closes when a valve body 128 as a plate-like gate valve housed in a box pipe 126 as a block pipe moves at right angles (up and down) to the flow path.
  • the box pipe 126 is formed in a rectangular box shape, and includes an inlet 130 at the top and an outlet 132 at the side, so that the exhaust pipe 68 and the outlet 132 to the inlet 130 (in the vertical direction) and the outlet 132 are exhausted.
  • the positional deviation from the exhaust pipe 68 (in the horizontal direction) toward 74 is absorbed.
  • the tube axis of the inlet 130 and the tube axis of the outlet 132 do not intersect but are offset in the horizontal direction.
  • the box pipe 126 for connecting the vertical exhaust pipe 68 and the horizontal exhaust pipe 68 is formed in a box shape, so even if a slight positional deviation occurs. It can be adjusted by the position of the inlet 130 and the outlet 132. Further, by making the box pipe 126 into a box shape, the valve body 128 can be provided inside, and when the valve body 128 is closed regardless of the position of the outflow port 132, the outflow of exhaust gas can be suppressed, and the outside air or It can be shielded from back diffusion from the exhaust device 74. For example, when an abnormality occurs, the valve body 128 disposed on the outflow port 132 side slides in the vertical direction to open and close.
  • valve body 1208 By closing the valve body 128, the outflow of exhaust gas can be suppressed. Further, by closing the valve body 128, the exhaust device 74 can be disconnected and maintenance can be performed.
  • the valve body 128 may be slid manually or may be slid by the actuator 134. Further, the valve body 128 may be omitted.
  • the valve body 128 may be arranged on the inlet 130 side so as to open and close by horizontal movement with respect to the flow path, or may be provided on both the inlet 130 side and the outlet 132 side. Good.
  • a pressure sensor 70 in the housing 120 of the exhaust unit 56, a pressure sensor 70, a pressure adjusting unit 72, and a box pipe 126 are connected to the exhaust pipe 68 in order from the upstream side. Since it is such a structure, the housing
  • a pressure controller 80 is electrically connected to the pressure adjustment unit 72 and the pressure sensor 70.
  • the exhaust device 74 accommodates a booster pump 138 inside the housing 136.
  • the casing 136 is formed in a rectangular box shape with a metal plate as an example, and is fixed to the same floor 124 on which the exhaust unit 56 is installed using an anchor or the like (not shown).
  • the booster pump 138 of the present embodiment is a pump having a function of increasing the exhaust speed, and the two mayu-shaped rotors 142 in the oval casing 140 are moved at an angle of 90 degrees to each other.
  • This is a mechanical pump that rotates at high speed.
  • This booster pump 138 can be combined with a main pump (dry pump) 144 as a roughing pump, which will be described later, to greatly increase the exhaust speed in a pressure region where the exhaust speed of the main pump 144 falls. It is.
  • the booster pump 138 is supported inside the housing 136 via a vibration isolator (not shown).
  • measures anti-vibration measures
  • measures such as suppressing the vibration of the booster pump 138 from being transmitted to the housing 136 and absorbing vibrations such as earthquakes are taken.
  • the booster pump 138 is arranged inside the casing 136 with the longitudinal direction (maximum dimension) oriented in the vertical direction, that is, in the longitudinal direction.
  • the casing 136 is also formed vertically in accordance with the arrangement of the booster pump 138, and the installation area on the floor 124 is reduced.
  • the intake port 146 and the exhaust port 148 are oriented in the horizontal direction.
  • the end of the exhaust pipe 68 of the exhaust unit 56 is connected to the intake port 146 of the booster pump 138 via a tubular vibration absorption connecting member 150.
  • the vibration absorbing connecting member 150 is formed with a bellows-like bellows 152 at an intermediate portion and can be elastically deformed, and can absorb vibration transmitted from one side in the longitudinal direction to the other side.
  • vibrations of the exhaust pipe 68 of the exhaust device 74 and the intake port 146 of the booster pump 138 of the exhaust unit 56 can be absorbed by the vibration absorbing connection member 150.
  • Flanges 154 and 156 are formed at both ends of the vibration absorbing connecting member 150, respectively.
  • One side of the vibration absorbing connecting member 150 is fixed to the side wall of the casing 136 of the exhaust device 74 via the mounting flange 158.
  • the mounting flange 158 is fixed to the side wall of the housing 136 using a bolt 160 and a nut 162.
  • One flange 154 of the vibration absorbing connection member 150 is fixed to the mounting flange 158 using a bolt 166 together with the flange 164 formed at the end of the exhaust pipe 68.
  • a through hole 168 is formed in the side wall of the casing 120 of the exhaust unit 56 so as to penetrate the vibration absorbing connecting member 150 and have a larger diameter than the mounting flange 158. 4 and 5, the casing 120 of the exhaust unit 56 and the casing 136 of the exhaust device 74 can be adjacent to each other.
  • a gap may be provided between the casing 120 of the exhaust unit 56 and the casing 136 of the exhaust device 74. In the present embodiment, it is defined as adjacent even if there is a slight gap (for example, about the gap between adjacent casings 120).
  • one end of the exhaust pipe 170 is connected to the exhaust port 148 of the booster pump 138, and the exhaust discharged from the booster pump 138 passes through the exhaust pipe 170 to the lower floor (for example, 1F ) Is sent to the main pump 144 installed on the floor.
  • the booster pump 138 and the main pump 144 are connected to the pump control unit 171, and driving is controlled by the pump control unit 171.
  • the processing apparatus 10 of this embodiment includes the processing unit 11, the gas supply unit 54, the exhaust unit 56, and the exhaust apparatus 74.
  • the exhaust unit 56 and / or the gas supply unit 54 is not limited to a configuration provided outside the housing 12 (provided as a separate body), but may be a configuration provided inside the housing 12 (that is, a housing).
  • the body 12 and the housing 120 may be integrated. And you may comprise so that the exhaust apparatus 74 may be provided in the housing
  • an opening 172 is provided in the center in the width direction on the back surface 12 ⁇ / b> B as a rear portion facing the arrow B direction side of the housing 12 so that maintenance can be performed.
  • the opening 172 is provided with a maintenance door 174 that opens and closes the opening 172.
  • the gas supply unit 54 is arranged on the arrow L direction side of the opening 172 on the arrow B direction side of the housing 12, and on the arrow R direction side of the opening 172.
  • An exhaust unit 56 is arranged. Further, an exhaust device 74 is arranged in the direction of arrow B of the exhaust unit 56.
  • FIG. 6 is a diagram illustrating a case where the processing apparatuses 10 are installed in the apparatus width direction (arrow L direction and arrow R direction).
  • the gap between adjacent housings 120 is several cm or more (for example, 2 cm or more and 5 cm or less).
  • the area indicated by the diagonally upward slanting line is the main maintenance area 176A.
  • the width W2 of the main maintenance region 176A of the present embodiment is set wider than the width W3 of the opening 172.
  • the opening 172 is formed to a size that allows the components of the processing apparatus 10 (processing furnace 42, reaction tube 84, boat 36, etc.) to be taken out of the apparatus for maintenance. Yes.
  • the width W3 of the opening 172 is set to be wider than at least the width of the processing furnace 42.
  • the area indicated by the oblique line rising to the right in FIG. 6 indicates the maximum area of the maintenance area 176 that can be used by one processing apparatus 10.
  • the width W1 of the maintenance area 176 of the present embodiment is the same width as the maximum width (arrow L direction and arrow R direction) of the processing apparatus 10.
  • the length L (the direction of the arrow F and the direction of the arrow B) of the maintenance region 176 is not particularly determined, and is determined in relation to other devices installed on the floor.
  • the space provided on the arrow B direction side of the main maintenance area 176A conveys the parts of the processing apparatus 10 (for example, the reaction tube 84, the boat 36, the processing furnace 42, etc.) in the arrow L direction and the arrow R direction.
  • the width (W4) of the maintenance region 176 facing the exhaust device 74 in the direction of arrow B is determined so that it can be performed.
  • the width W4 can be equal to or greater than the width W2.
  • a space for example, a maintenance region
  • Possible spaces can be provided. As a result, maintenance work such as replacement of the components constituting the processing apparatus 10 can be performed without delay, and reduction in the apparatus operating rate can be reduced.
  • the center of the intake port 146 of the booster pump 138 and the center of the exhaust pipe 68 on the exhaust unit 56 side of the vibration absorbing connection member 150 are shifted to the horizontal outside of the exhaust unit 56 (arrow R direction side). It is configured to be connected with. Thereby, for example, the inner surface of the exhaust device 74 is prevented from protruding (projecting) from the inner surface of the exhaust unit 56 toward the main maintenance region 176A.
  • the exhaust device 74 does not protrude (protrude) from the inner surface of the gas supply unit 54 of another processing apparatus 10 adjacent to the arrow R direction side to the main maintenance region 176A of the other processing apparatus 10. Is arranged.
  • each part constituting the processing apparatus 10 will be described with reference to FIGS. 1 and 2.
  • the operation of each part constituting the processing apparatus 10 is controlled by the substrate processing apparatus controller 76.
  • the pod 18 When the pod 18 is supplied to the load port 20 by an in-process transfer device (not shown), the pod 18 is detected by the substrate detection sensor 178, and the pod loading / unloading opening is opened by the front shutter. Then, the pod 18 on the load port 20 is carried into the housing 12 from the pod carrying-in / out opening by the pod carrying device 24.
  • the pod 18 carried into the housing 12 is automatically transported onto the shelf plate of the rotary pod shelf 22 by the pod transport device 24 and temporarily stored. Thereafter, the pod 18 is transferred from the shelf board onto the mounting table of one pod opener 26.
  • the lid of the pod 18 mounted on the mounting table is removed by the cap attaching / detaching mechanism 30 and the wafer loading / unloading opening is opened. Thereafter, the substrate 16 is picked up from the pod 18 through the wafer loading / unloading port by the tweezer of the substrate transfer device 34a, is loaded into the standby section 48 behind the transfer chamber 32, and is loaded into the boat 36 (charging). Is done.
  • the substrate transfer device 34 a loaded with the substrate 16 on the boat 36 returns to the mounting table on which the pod 18 is mounted, takes out the next substrate 16 from the pod 18, and loads it into the boat 36.
  • the lower end of the processing furnace 42 is opened by the furnace port shutter. Subsequently, the boat 36 holding the substrate 16 group is loaded into the processing furnace 42 when the lid body 40 is lifted by the boat elevator 38.
  • the lid 40 is in a state where the lower end of the furnace port portion 96 is sealed via the O-ring 104. It becomes.
  • the processing chamber 90 is evacuated by the booster pump 138 and the main pump 144 so that a desired pressure (degree of vacuum) is obtained.
  • the pressure adjustment unit 72 (opening degree of the APC valve) is feedback-controlled based on the pressure value measured by the pressure sensor 70.
  • the processing chamber 90 is heated by the heater 92 so as to have a desired temperature.
  • the energization amount to the heater 92 is feedback-controlled based on the temperature value detected by the temperature sensor 108.
  • the boat 36 loaded with the substrate 16 is rotated by the rotation mechanism 44.
  • the processing gas supplied from the processing gas supply source and controlled to have a desired flow rate by the MFC 64a is circulated through the processing gas supply pipe 66a and introduced into the processing chamber 90.
  • the introduced processing gas rises in the processing chamber 90, flows out from the upper end opening of the internal reaction tube 86 into the cylindrical space 102, and is exhausted from the exhaust pipe 68.
  • the processing gas contacts the surface of the substrate 16 when passing through the processing chamber 90, and at this time, a thin film is deposited on the surface of the substrate 16 by a thermal reaction.
  • the purge gas supplied from the purge gas supply source and controlled to have a desired flow rate by the MFC 64b is supplied to the processing chamber 90, and the inside of the processing chamber 90 is replaced with an inert gas. At the same time, the pressure in the processing chamber 90 is returned to normal pressure.
  • the lid 40 is lowered by the boat elevator 38 to open the lower end of the furnace port portion 96, and the boat 36 holding the processed substrate 16 is moved from the lower end of the furnace port portion 96 to the outside of the reaction tube 84. Unloaded. Thereafter, the processed substrate 16 is taken out from the boat 36 and stored in the pod 18 (discharge).
  • the pod 18 storing the processed substrate 16 is carried out of the housing 12 by a procedure almost opposite to the above procedure except for the alignment process in the notch alignment device.
  • the substrate processing apparatus controller 76 mainly includes an arithmetic control unit 110 such as a CPU (Central Processing Unit), a storage unit 114 including a RAM 111, a ROM 112, an HDD (not shown), an input unit 116 such as a mouse and a keyboard, and a monitor. And the like.
  • the calculation control unit 110, the storage unit 114, the input unit 116, and the display unit 118 are configured so that each data can be set.
  • the arithmetic control unit 110 constitutes the center of the substrate processing apparatus controller 76, executes a control program stored in the ROM 112, and is stored in the storage unit 114 that also constitutes a recipe storage unit in accordance with an instruction from the display unit 118.
  • a recipe (for example, a process recipe as a substrate processing recipe) is executed.
  • the ROM 112 stores an operation program of the arithmetic control unit 110 that controls the operation of each unit (booster booster 138, main pump 144, etc.).
  • the memory (RAM) functions as a work area (temporary storage unit) of the arithmetic control unit 110.
  • an optical drive 115 is connected to the arithmetic control unit 110.
  • the optical drive 115 can read information such as a program recorded in a CD-ROM 117 as a recording medium, for example, and the read information such as a program is recorded in the ROM 112.
  • information such as a program may be read from a USB memory by connecting a USB port or the like to the arithmetic control unit 110.
  • the substrate processing recipe is a recipe in which processing conditions and processing procedures for processing the substrate 16 are defined.
  • set values (control values) to be transmitted to the transfer controller 46, the temperature controller 78, the pressure controller 80, the gas supply controller 82, the transmission timing, and the like are set for each step of the substrate processing.
  • the arithmetic control unit 110 is configured such that the temperature and pressure in the processing chamber 90 and the flow rate of the processing gas introduced into the processing chamber 90 so that predetermined processing is performed on the substrate 16 loaded in the processing chamber 90. It has a function to control.
  • the transfer controller 46 controls the transfer operations of the rotary pod shelf 22, the boat elevator 38, the pod transfer device 24, the substrate transfer mechanism 34, the boat 36, and the rotation mechanism 44 that constitute the transfer mechanism for transferring the substrate. It is configured.
  • the rotary pod rack 22, the boat elevator 38, the pod transfer device 24, the substrate transfer mechanism 34, the boat 36, and the rotation mechanism 44 each have a built-in sensor.
  • the transport controller 46 is configured to notify the substrate processing apparatus controller 76 when these sensors indicate predetermined values or abnormal values, respectively.
  • the storage unit 114 includes a data storage area 180 for storing various data and the like, and a program storage area 182 for storing various programs including a substrate processing recipe.
  • the data storage area 180 stores various parameters related to the recipe file.
  • the program storage area 182 stores various programs necessary for controlling the apparatus including the above-described substrate processing recipe.
  • the display unit 118 of the substrate processing apparatus controller 76 is provided with a touch panel (not shown).
  • the touch panel is configured to display an operation screen that receives an input of an operation command to the above-described substrate transport system and substrate processing system.
  • the substrate processing apparatus controller 76 may be configured to include at least the display unit 118 and the input unit 116 like an operation terminal (terminal device) such as a personal computer or a mobile.
  • the temperature controller 78 controls the temperature of the heater 92 of the processing furnace 42 to adjust the temperature in the processing furnace 42, and when the temperature sensor 108 indicates a predetermined value, an abnormal value, or the like, it is for the substrate processing apparatus.
  • the controller 76 is configured to notify that effect.
  • the pressure controller 80 controls the pressure adjustment unit 72 based on the pressure value detected by the pressure sensor 70 so that the pressure in the processing chamber 90 becomes a desired pressure at a desired timing, and the pressure sensor 70.
  • a notification to that effect is sent to the substrate processing apparatus controller 76.
  • the gas supply controller 82 is configured to control the MFC 64a so that the flow rate of the gas supplied into the processing chamber 90 becomes a desired flow rate at a desired timing.
  • the gas supply controller 82 is configured to notify the substrate processing apparatus controller 76 when a sensor (not shown) included in the MFC 64a or the like indicates a predetermined value or an abnormal value.
  • This substrate processing step is, for example, one step for manufacturing a semiconductor device (eg, IC, LSI, etc.).
  • the operation and processing of each part constituting the processing apparatus 10 are controlled by the substrate processing apparatus controller 76.
  • the substrate processing step will be described with reference to FIG.
  • SiN silicon nitride
  • HCDS hexachlorodisilane
  • NH 3 ammonia
  • substrate carrying-in process S102 In the substrate carrying-in step S102, the substrate 16 is loaded into the boat 36 and carried into the processing chamber 90.
  • Step 1 In the film forming step S104, the following four steps are sequentially executed. During steps 1 to 4, the substrate 16 is heated to a predetermined temperature by the heater 92. [Step 1] In step 1, an open / close valve (not shown) provided in the processing gas supply pipe 66 a and a pressure adjusting unit 72 (APC valve) provided in the exhaust pipe 68 are both opened to supply the HCDS gas into the processing chamber 90, and the exhaust pipe. 68 is exhausted. Thereby, a silicon thin film is formed on the surface of the substrate 16.
  • APC valve pressure adjusting unit 72
  • Step 2 the open / close valve of the processing gas supply pipe 66a is closed to stop the supply of HCDS gas, the pressure adjusting portion 72 (APC valve) of the exhaust pipe 68 is kept open, and the processing chamber is operated by the booster pump 138 and the main pump 144.
  • the inside of 90 is evacuated, and residual gas is removed from the inside of the processing chamber 90.
  • an inert gas such as N 2 is supplied into the processing chamber 90 to purge the processing chamber 90, and the residual gas in the processing chamber 90 is discharged out of the processing chamber 90.
  • an open / close valve provided in the gas pipe 64b of the purge gas supply system is opened, and an inert gas such as N 2 whose flow rate is adjusted by the MFC 64b is supplied into the processing chamber 90.
  • step 3 the NH 3 gas is exhausted from the exhaust pipe 68 while being supplied into the processing chamber 90.
  • the silicon thin film formed on the surface of the substrate 16 reacts with the NH 3 gas on the surface, and a SiN film is formed on the substrate 16.
  • Step 4 the supply of NH 3 gas is stopped.
  • the pressure adjusting unit 72 (APC valve) of the exhaust pipe 68 is kept open, the inside of the processing chamber 90 is exhausted by the booster pump 138 and the main pump 144, and the residual gas is removed from the processing chamber 90. Further, an inert gas such as N 2 is supplied into the processing chamber 90 to purge the processing chamber 90.
  • the above steps 1 to 4 are defined as one cycle, and a SiN film having a predetermined thickness is formed on the substrate 16 by repeating this cycle a plurality of times.
  • substrate unloading step S106 In the substrate unloading step S106, the boat 36 on which the substrate 16 on which the SiN film is formed is loaded is unloaded from the processing chamber 90.
  • FIG. 9 shows an example of the process recipe of the conventional substrate processing apparatus executed in the substrate processing step shown in FIG. 8, and shows the ratio of each processing step for each step.
  • the conventional substrate processing apparatus has a configuration in which the exhaust unit 56 and the exhaust apparatus 74 are installed on the third floor, and the booster pump 138 and the main pump 144 are installed on the first floor.
  • the source gas is described as process gas A
  • the reaction gas is described as process gas B.
  • the ratio of the exhaust process processes shown as exhaust purge 1 and exhaust purge 2 in the figure
  • the entire process recipe process reaches 74%.
  • the booster pump 138 is disposed in the vicinity of the processing furnace 42 on the same floor 124, the booster pump 138 is compared with the case where the booster pump 138 is disposed on the floor of another floor together with the main pump 144.
  • the exhaust capacity is improved, and the time required for the exhaust process can be shortened.
  • the throughput in substrate processing can be improved.
  • the rear surface side (arrow B direction side) of the housing 12 is closer to the front side of the opening 172 than the opening 172.
  • a wide maintenance area 176 is provided, and on the rear surface side of the processing apparatus 10, the exhaust device 74 is installed so as to provide the maintenance area 176 in an area facing the opening 172.
  • parts inside the apparatus for example, the processing furnace 42, the reaction tube 84, the boat 36, etc.
  • the main maintenance area 176A does not have to be secured.
  • the opening 172 is located on the rear surface side (arrow B direction side) of the housing 12 on the front side of the opening 172.
  • a wider main maintenance area 176A is provided.
  • an exhaust device 74 is installed so as not to protrude into the main maintenance region 176 ⁇ / b> A, and this exhaust device 74 is a gas of another processing apparatus 10 adjacent to the arrow R direction side. It arrange
  • the main maintenance area 176A for maintenance work of the processing apparatus 10 can be reduced in the opening 172.
  • components inside the apparatus for example, the processing furnace 42, the reaction tube 84, the boat 36, etc.
  • the exhaust device 74 may be configured to protrude into the main maintenance area 176A.
  • the width (W4) of the exhaust device 74 and the maintenance area 176 in the direction of arrow B is a component of the processing apparatus 10 (for example, reaction The tube 84, the boat 36, the processing furnace 42, etc.) are held to have a width W2 or more so that they can be transported in the direction of the arrow L and the direction of the arrow R.
  • the replacement parts (reaction tube 84, boat 36, etc.) inside the apparatus taken out can be transported.
  • the booster pump 138 is vibrated by the drive of the booster pump 138.
  • the booster pump 138 is supported by the casing 136 through the vibration isolator, Transmission of vibration of the pump 138 to the housing 136 is suppressed.
  • the booster pump 138 and the exhaust pipe 68 of the exhaust unit 56 are connected via the vibration absorption connecting member 150, and the end of the vibration absorption connecting member 150 on the exhaust pipe 68 side is the casing 136 of the exhaust device 74. Since the vibration of the booster pump 138 is suppressed from being transmitted to the exhaust pipe 68, the casing 120 of the exhaust unit 56 and the casing 136 of the exhaust device 74 can be made adjacent to each other. Therefore, the maintenance area 176 on the rear side of the exhaust device 74 can be secured.
  • vibration absorbing connecting member 150 is made as short as possible and bent portions are reduced in consideration of exhaust efficiency (exhaust conductance).
  • the booster pump 138 When maintaining the booster pump 138, the booster pump 138 can be taken out and easily replaced by removing the vibration absorbing connecting member 150.
  • the gate valve 122 can close the flow path at the time of maintenance or abnormal stop. Thereby, particles generated by back diffusion from the booster pump 138 to the processing furnace 42 can be prevented.
  • the gate valve 122 and the booster pump 138 are connected using the exhaust pipe 68 and the vibration absorption connecting member 150. However, the gate valve 122 and the booster pump 138 are connected only by the vibration absorbing connecting member 150. May be.
  • the present disclosure is not limited to such an aspect.
  • the present invention can be suitably applied to a case where a film or the like formed on the substrate 16 is subjected to a process such as an oxidation process, a diffusion process, an annealing process, or an etching process.
  • the present disclosure is applied not only to a semiconductor manufacturing apparatus that processes the substrate 16 of the semiconductor device such as the processing apparatus 10 according to the above-described embodiment, but also to an LCD (Liquid Crystal Display) manufacturing apparatus that processes a glass substrate. be able to.
  • a semiconductor manufacturing apparatus that processes the substrate 16 of the semiconductor device such as the processing apparatus 10 according to the above-described embodiment
  • LCD Liquid Crystal Display
  • the end of the exhaust device 74 on the arrow R direction side protrudes from the end of the exhaust unit 56 on the arrow R direction side, but the small booster pump By using 138, it is possible to prevent the end of the exhaust device 74 on the arrow R direction side from projecting to the arrow R direction side of the end of the exhaust unit 56 on the arrow R direction side.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本実施形態によれば、基板をガスで処理する処理炉を筐体の内部に備え、筐体の側壁部にメンテナンスを可能とする開口部が形成されている処理ユニットと、開口部と対向する領域にメンテナンス領域を設けるように設置され、処理炉からガスを排気する排気ユニットと、開口部と対向する領域にメンテナンス領域を設けるように設置されると共に排気ユニットの処理ユニット側とは反対側に隣接して配置された排気装置、を有する構成が提供される。

Description

処理装置、排気システム、半導体装置の製造方法
 本開示は、処理装置、排気システム、及び半導体装置の製造方法に関する。
 従来の処理装置として、処理炉の設置されているフロア(例えば3階)の下層階のフロア(例えば1階)に排気装置を設置した処理装置、処理炉の設置されているフロアと同じフロアに排気装置を設置する処理装置がある。
 特開2006-190812号公報には、処理炉の設置されているフロアと同じフロアに排気装置を設置する処理装置が開示されている。しかしながら、処理炉ではなく移載室に排気装置が接続されており、排気効率の向上のためにはプロセス中に処理炉と移載室を連通する必要があり、現実的ではない。
 処理炉と排気装置とを別のフロアに設置する処理装置では、同一フロアに多くの処理炉を配置することができるが、処理炉と排気装置とを長い配管で接続しなければならず、排気のコンダクタンス(排気効率)が小さくなる問題がある。
 一方、処理炉の設置されているフロアと同じフロアに排気装置を設置する処理装置では、処理装置のレイアウトの関係で、処理炉の側面側に排気ユニット、及び排気装置を配置しなければならない場合がある。この場合、処理炉の近傍に排気ユニット、及び排気装置を配置するとメンテナンス領域を確保できなくなることがあり、何らかの対策が必要となる。
 本開示は、処理炉が設置されているフロアと同じフロアに排気装置を設置しても、メンテナンス領域を設けることができる構成を提供することを目的とする。
 本開示の一態様によれば、
被処理物をガスで処理する処理炉を筐体の内部に備え、前記筐体の後方部にメンテナンスを可能とする開口部が形成されている処理ユニットと、
 前記開口部と対向する領域にメンテナンス領域を設けるように設置され、前記処理炉から前記ガスを排気する排気ユニットと、
 前記開口部と対向する領域にメンテナンス領域を設けるように設置されると共に、前記排気ユニットの処理ユニット側とは反対側に隣接して配置された排気装置と、
 を有する構成が提供される。
  本開示によれば、処理炉が設置されているフロアと同じフロアに排気装置を設置しても、メンテナンス領域を設けることができるので、装置のメンテナンスを行うことができる。
本開示の実施形態に係る処理装置の概略構成を示した斜視図である。 本開示の実施形態に係る処理装置の後面図である。 本開示の実施形態に係る処理装置の一部を示す断面図である。 本開示の実施形態に係る処理装置の内部構成の一部を示した側面図である。 本開示の実施形態に係る処理装置の排気装置に用いられるブースターポンプを示す断面図である。 本開示の実施形態に係る処理装置の排気ユニットに用いられるゲートバルブを示す斜視図である。 本開示の実施形態に係る処理装置の排気ユニットと排気装置との一部を示す断面図である。 本開示の実施形態に係る複数の処理装置を示す平面図である。 本開示の実施形態に係る処理装置に備えられた基板処理装置用コントローラを説明するためのブロック図である。 本開示の実施形態に係る処理装置で実行される成膜シーケンスにおける各部の稼動タイミングを示したフローチャートである。 本開示の実施形態に係る処理装置に備えられた排気システム構成の作用を理解するためのグラフを示した図面である。
 本開示の一実施形態に係る処理装置10の構成について、図1乃至図9を参照しながら説明する。なお、図中、矢印F方向は処理装置10の正面方向を示し、矢印B方向は処理装置10の後面方向を示し、矢印R方向は処理装置10の右方向(正面から見て)、矢印L方向は処理装置10の左方向(正面から見て)を示し、矢印U方向は処理装置10の上方向を示し、矢印D方向は処理装置10の下方向を示している。
(1)処理装置の全体構成
 図1B、及び図3Aに示すように、処理装置10は、フロア124(本実施形態では、一例として3階のフロア)の上に設置されている。処理装置10は、筐体12内を構成する各部品を含む処理ユニット11を備えている。筐体12の矢印F方向側を向く正面壁には、メンテナンス可能なように設けられた開口部が開設され、この開口部には、開口部を開閉する立ち入り機構として一対の正面メンテナンス扉14が設けられている。なお、この処理装置10では、後述するシリコン等の被処理物としての基板(ウエハ)16を収納したポッド(基板収容器)18が、筐体12内外へ基板16を搬送するキャリアとして使用される。基板16は、例えば、半導体装置に用いられるものである。
 図1Aに示されるように、処理ユニット11の筐体12の正面壁には、ポッド搬入搬出口(図示せず)が、筐体12内外を連通するように開設されている。ポッド搬入搬出口には、ロードポート20が設置されている。ロードポート20上にはポッド18が載置されると共に、該ポッド18の位置合わせが行われるように構成されている。
 筐体12内の略中央部における上部には、回転式ポッド棚22が設置されている。回転式ポッド棚22上には、複数個のポッド18が保管されるように構成されている。回転式ポッド棚22は、垂直に立設されて水平面内で回転される支柱と、支柱に上中下段の各位置において放射状に支持された複数枚の棚板と、を備えている。
 筐体12内におけるロードポート20と回転式ポッド棚22との間には、ポッド搬送装置24が設置されている。ポッド搬送装置24は、ポッド18を保持したまま昇降可能なポッドエレベータ24aとポッド搬送機構24bとの連続動作により、ロードポート20、回転式ポッド棚22、ポッドオープナ26との間で、ポッド18を相互に搬送するように構成されている。
 筐体12内の下部には、サブ筐体28が筐体12内の略中央部から後端にわたって設けられている。サブ筐体28の正面壁には、基板16をサブ筐体28内外に搬送する一対のポッドオープナ26がそれぞれ設置されている。
 各ポッドオープナ26は、ポッド18を載置する載置台と、ポッド18のキャップを着脱するキャップ着脱機構30とを備えている。ポッドオープナ26は、載置台上に載置されたポッド18の蓋をキャップ着脱機構30によって着脱することにより、ポッド18のウエハ出し入れ口を開閉するように構成されている。
 筐体12に構成されるサブ筐体28内には、ポッド搬送装置24や回転式ポッド棚22等が設置された空間から流体的に隔絶された移載室32が構成されている。移載室32の前側領域にはウエハ移載機構(基板移載機構)34が設置されている。基板移載機構34は、基板16を水平方向に回転ないし直動可能な基板移載装置34aと、基板移載装置34aを昇降させる基板移載装置エレベータ34bとで構成されている。基板移載装置エレベータ34bは、サブ筐体28の移載室32の前方領域右端部と筐体12右側の端部との間に設置されている。基板移載装置34aは、基板16の保持部としてのツイーザを備えている。これら基板移載装置エレベータ34b及び基板移載装置34aの連続動作により、基板16を基板保持具としてのボート36に対して装填(チャージング)及び脱装(ディスチャージング)することが可能に構成されている。
 図1B及び図2に示すように、サブ筐体28(移載室32)内には、ボート36を昇降させるボートエレベータ38が設置されている。ボートエレベータ38の昇降台には、アームが連結されている。アームには、蓋体40が水平に据え付けられている。蓋体40は、ボート36を垂直に支持し、処理炉42の下端部を閉塞可能なように構成されている。
 図1B、及び図2に示す回転式ポッド棚22,ボートエレベータ38,ポッド搬送装置24,基板移載機構34,ボート36及び回転機構44により搬送機構が構成されている。これら回転式ポッド棚22,ボートエレベータ38,ポッド搬送装置24,基板移載機構34,ボート36及び回転機構44は、それぞれ搬送コントローラ46に電気的に接続されている。
 図1Aに示すように、ボート36を収容して待機させる待機部48の上方には、処理炉42が設けられている。
 移載室32の基板移載装置エレベータ34b側とは反対側である左側端部には、クリーンユニット50が設置されている。クリーンユニット50は、清浄化した雰囲気もしくは不活性ガスであるクリーンエア52を供給するよう構成されている。クリーンユニット50から吹き出されたクリーンエア52は、基板移載装置34a、待機部48にあるボート36の周囲を流通した後、図示しないダクトにより吸い込まれて筐体12の外部に排気されるか、もしくはクリーンユニット50の吸い込み側である一次側(供給側)にまで循環されてクリーンユニット50によって移載室32内に再び吹き出されるように構成されている。
 このように、図1Aに示すように処理ユニット11は、例えば、処理炉42、回転式ポッド棚22,ポッド搬送装置24,基板移載機構34,ボート36等筐体12内を構成する部品から構成され、サブ筐体28を構成する部品についても処理ユニット11に含まれる。また、ポッド18や基板16を処理ユニット11に含めてもよい。
 図2に示すように、ガス供給ユニット54には、処理ガス供給源(図示しない)、開閉バルブ(図示しない)、ガス流量制御器としてのマスフローコントローラ(以下、MFCと略する)64a、処理ガス供給管66aを含む処理ガス供給系、パージガス供給源(図示しない)、開閉バルブ(図示しない)、MFC64b、パージガス供給管66bを含むパージガス供給系が格納されている。
 排気ユニット56の筐体56Aの内部には、排気配管68、圧力検知部としての圧力センサ70、例えばAPC(Auto Pressure Controller)バルブとして構成された圧力調整部72により構成されるガス排気機構等が格納されている。なお、排気ユニット56の詳細については後述する。
 図2に示すように、排気ユニット56には、排気装置74が隣接して配置されている。なお、排気装置74の詳細については後述する。
 図2に示すように、制御部としての基板処理装置用コントローラ76は、搬送コントローラ46、温度コントローラ78、圧力コントローラ80、ガス供給コントローラ82にそれぞれ接続されている。
(2)処理炉の構成
 図2に示すように、処理炉42は、反応管84を備えている。反応管84は、内部反応管86と、その外側に設けられた外部反応管88と、を備えている。内部反応管86は、円筒形状に形成されており、内部反応管86内の筒中空部には、基板16を処理する処理室90が形成されている。処理室90は、ボート36を収容可能なように構成されている。
 反応管84の外側には、反応管84の側壁面を囲うように、円筒形状のヒータ92が設けられている。ヒータ92は、ヒータベース94に支持されることにより垂直に据え付けられている。
 外部反応管88の下方には、外部反応管88と同心円状になるように、円筒形状の炉口部96が配設されている。炉口部96は、内部反応管86の下端部と外部反応管88の下端部とを支持するように設けられ、内部反応管86の下端部と外部反応管88の下端部とにそれぞれ係合している。なお、炉口部96と外部反応管88との間には、シール部材としてのOリング98が設けられている。炉口部96がヒータベース94に支持されることにより、反応管84は垂直に据え付けられた状態となっている。反応管84と炉口部96とにより反応容器が形成される。
 炉口部96には、処理ガスノズル100a及びパージガスノズル100bが処理室90内に連通するように接続されている。処理ガスノズル100aには、処理ガス供給管66aが接続されている。処理ガス供給管66aの上流側には、MFC64aを介して、図示しない処理ガス供給源等が接続されている。また、パージガスノズル100bには、パージガス供給管66bが接続されている。パージガス供給管66bの上流側には、MFC64bを介して、図示しないパージガス供給源等が接続されている。MFC64a,64bには、ガス供給コントローラ82が電気的に接続されている。
 炉口部96には、処理室90の雰囲気を排気する排気配管68が接続されている。排気配管68は、内部反応管86と外部反応管88との隙間によって形成される筒状空間102の下端部に配置されている。排気配管68は、筒状空間102に連通している。
 炉口部96の下方には、炉口部96の下端開口を気密に閉塞可能な蓋体40が設けられている。蓋体40の上面には、炉口部96の下端と当接するシール部材としてのOリング104が設けられている。
 蓋体40の中心部付近であって処理室90と反対側には、ボート36を回転させる回転機構44が設置されている。回転機構44の回転軸106は、蓋体40を貫通してボート36を下方から支持している。回転機構44は、ボート36を回転させることで基板16を回転させるように構成されている。
 蓋体40は、反応管84の外部に設けられたボートエレベータ38によって、垂直方向に昇降されるように構成されている。蓋体40を昇降させることにより、ボート36を処理室90内外へ搬送することが可能に構成されている。回転機構44及びボートエレベータ38には、搬送コントローラ46が電気的に接続されている。
 ボート36は、複数枚の基板16を水平姿勢でかつ多段に保持するように構成されている。ボート36の下部には、断熱部材としての断熱板107が水平姿勢で多段に複数枚配置されている。断熱板107は、ヒータ92からの熱を炉口部96側に伝えにくくするために設けられている。
 反応管84内には、温度検知器としての温度センサ108が設置されている。ヒータ92と温度センサ108とには、温度コントローラ78が電気的に接続されている。
(排気ユニット) 
 図3Aに示すように、排気ユニット56は、一例として金属板で箱状に形成され、長手方向(最大寸法の方向)を上下方向とした筐体120を有している。筐体120の内部には、排気配管68の下流側における配管途中にゲートバルブ付きの配管122が接続されている。
 配管122は、図4に示すように、ブロック配管としての箱配管126に収納された板状のゲートバルブとしての弁体128が流路に対して直角(上下)に移動して、開閉を行うものである。箱配管126は、矩形の箱状に形成され、上部に流入口130、側部に流出口132を備えることで、流入口130までの(上下方向の)排気配管68と流出口132から排気装置74へ向かう(水平方向の)排気配管68との位置ズレを吸収するよう構成されている。言い換えれば、流入口130の管軸と流出口132の管軸は交わらず、水平方向にオフセットしている。このように、本実施形態では、上下方向の排気配管68と水平方向の排気配管68との接続のための箱配管126を箱状に形成しているので、多少の位置ずれが生じていても流入口130、流出口132の位置により調整することができる。また、箱配管126を箱状にすることで弁体128を内部に設けることができ、流出口132の位置によらず弁体128を閉にすると、排ガスの流出を抑制でき、且つ、外気もしくは排気装置74からの逆拡散から遮断することができる。例えば、異常が発生した場合、流出口132側に配置された弁体128が上下方向にスライドして開閉を行うようになっている。弁体128を閉にすることにより、排ガスの流出を抑制することができる。また、弁体128を閉にすることにより、排気装置74を切り離し、メンテナンスが行える。この弁体128は、手動でスライドさせてもよく、アクチュエータ134によってスライドさせてもよい。また、弁体128は、無くても構わない。なお、弁体128は流入口130側に配置して流路に対して水平移動により、開閉するように構成してもよく、流入口130側と流出口132側の両方に設けるようにしてもよい。
 また、図3Aに示すように、排気ユニット56の筐体120の内部において、排気配管68には、圧力センサ70、圧力調整部72、箱配管126が上流側から順に接続されている。このような構成であるので、排気ユニット56の筐体120と排気装置74の筐体136は後述するように隣接される。なお、圧力調整部72及び圧力センサ70には、圧力コントローラ80が電気的に接続されている。
(排気装置)
 図3Aに示すように、排気装置74は、筐体136の内部に、ブースターポンプ138を収容している。筐体136は、一例として金属板で矩形の箱状に形成され、図示しないアンカー等を用いて排気ユニット56が設置されている同一のフロア124に固定されている。
 図3Bに示すように、本実施形態のブースターポンプ138は、排気速度を増大させる働きをもったポンプであり、長円形のケーシング140内にある2個のマユ型ロータ142を互いに90度の角度で高速で回転させるタイプのメカニカルなポンプである。そして、このブースターポンプ138は、後述する粗引きポンプとしてのメインポンプ(ドライポンプ)144と組み合わせて、メインポンプ144の排気速度が落ち込む圧力領域において、その排気速度を大幅にアップさせることができるものである。なお、ブースターポンプ138は、図示しない防振装置を介して筐体136の内部に支持されている。これにより、排気装置74においては、ブースターポンプ138の振動が筐体136へ伝達することを抑制したり、地震などの振動を吸収したりする等の対策(防振対策)が施されている。
 ブースターポンプ138は、長手方向(最大寸法)を鉛直方向に向けて、即ち、縦長にして筐体136の内部に配置されている。筐体136も、ブースターポンプ138の配置に合わせて縦長に形成されており、フロア124における設置面積を小さくしている。
 長手方向(最大寸法)を鉛直方向に向けたブースターポンプ138においては、吸気口146、及び排気口148が水平方向を向いている。
 図5に示すように、ブースターポンプ138の吸気口146には、排気ユニット56の排気配管68の端部が管状の振動吸収接続部材150を介して接続されている。振動吸収接続部材150は、中間部に蛇腹状のベローズ152が形成されて弾性変形可能となっており、長手方向一方側から他方側へ伝達する振動を吸収することができる。これにより、排気装置74の排気配管68と、排気ユニット56のブースターポンプ138の吸気口146との振動を振動吸収接続部材150で吸収することができる。
 振動吸収接続部材150の両端部には、各々フランジ154、156が形成されている。振動吸収接続部材150の一方側は、取付フランジ158を介して排気装置74の筐体136の側壁に固定されている。なお、取付フランジ158は、ボルト160、及びナット162を用いて筐体136の側壁に固定されている。
 振動吸収接続部材150の一方のフランジ154は、排気配管68の端部に形成されたフランジ164と共に、ボルト166を用いて取付フランジ158に固定されている。排気ユニット56の筐体120の側壁には、振動吸収接続部材150を貫通させ、かつ取付フランジ158よりも大径とされた貫通孔168が形成されている。このように、図4及び図5において、排気ユニット56の筐体120と、排気装置74の筐体136を隣接することができる。なお、排気ユニット56の筐体120と排気装置74の筐体136との間に隙間が設けられていてもよい。本実施形態において、多少の隙間(例えば、隣り合う筐体120の隙間程度)があっても隣接すると定義する。
 図3Bに示すように、ブースターポンプ138の排気口148には、排気管170の一端が接続されており、ブースターポンプ138から排出された排気は、排気管170を介して下層階(一例として1F)のフロアに設置されたメインポンプ144に送られるようになっている。なお、ブースターポンプ138、及びメインポンプ144は、ポンプ制御部171に接続されており、ポンプ制御部171によって駆動が制御される。
 このように、本実施形態の処理装置10は、処理ユニット11、ガス供給ユニット54、排気ユニット56、排気装置74を含んで構成されている。ここで、排気ユニット56および/またはガス供給ユニット54は、筐体12の外側に設ける(別体として設ける)構成に限定されるのではなく、例えば、筐体12の内部に設ける構成(つまり筐体12と筐体120を一体とする構成)にしてもよい。そして、筐体12に直接排気装置74を設けるよう構成してもよい。
 図1Bに示すように、処理装置10において、筐体12の矢印B方向側を向く後方部としての背面12Bには、メンテナンス可能なように設けられた開口部172が幅方向中央部に開設され、この開口部172には、開口部172を開閉するメンテナンス扉174が設けられている。
 図1B、及び図6に示すように、筐体12の矢印B方向側において、開口部172の矢印L方向側にはガス供給ユニット54が配置されており、開口部172の矢印R方向側には排気ユニット56が配置されている。さらに、排気ユニット56の矢印B方向には排気装置74が配置されている。
 図6は、処理装置10を装置幅方向(矢印L方向、及び矢印R方向)多連に設置したときを示す図である。隣り合う筐体120の隙間は、数cm以上(例えば、2cm以上5cm以下)である。図6に示すように、本実施形態において、ガス供給ユニット54と排気ユニット56との間の領域、及び該領域の矢印B方向側に続いて排気装置74の矢印B方向の端部に至るまでの左上がりの斜線で示す領域は、主メンテナンス領域176Aとされている。
 図1B、及び図6に示すように、本実施形態の主メンテナンス領域176Aの幅W2は、開口部172の幅W3よりも幅広に設定されている。なお、本実施形態の処理装置10では、開口部172は、メンテナンスのために処理装置10の部品(処理炉42、反応管84、ボート36等)を装置外へ取り出し可能なサイズに形成されている。本実施形態では、開口部172の幅W3は、少なくとも処理炉42の幅よりも幅広に設定されている。
 また、図6に示す右上がりの斜線で示す領域は、一つの処理装置10で利用可能なメンテナンス領域176の最大領域を示している。本実施形態のメンテナンス領域176の幅W1は、処理装置10の最大幅(矢印L方向、及び矢印R方向)と同一幅である。なお、メンテナンス領域176の長さL(矢印F方向、及び矢印B方向)は、特に決められた寸法はなく、フロアに設置した他の機器との関係で決められる。なお、主メンテナンス領域176Aの矢印B方向側に設けられるスペースが、処理装置10の部品(一例として、反応管84、ボート36、処理炉42等)を矢印L方向、及び矢印R方向に運搬することが可能なように、排気装置74に対向するメンテナンス領域176の矢印B方向の幅(W4)が決定される。本実施形態では、排気ユニット56と排気装置74が隣接して設けられるので、例えば、幅W4は幅W2と同等若しくは同等以上の長さを有することができる。このように、本実施形態では、開口部172に対向する領域にスペース(例えば、メンテナンス領域)を設けることができ、少なくとも処理装置10を構成する部品(反応管84、ボート36等)の運搬が可能なスペースを設けることができる。これにより、処理装置10を構成する部品の交換などの保守作業が遅滞なく行えるので、装置稼働率の低下の軽減が可能となる。
 本実施形態では、ブースターポンプ138の吸気口146の中心と振動吸収接続部材150の排気ユニット56側の排気配管68の中心が、排気ユニット56の水平方向外側(矢印R方向側)にずれた状態で接続されるよう構成されている。これにより、例えば、排気装置74の内側面が排気ユニット56の内側面から主メンテナンス領域176A側へはみ出さない(突出しない)ようにしている。
 また、例えば、排気装置74は、矢印R方向側に隣接した他の処理装置10のガス供給ユニット54の内側面から、他の処理装置10の主メンテナンス領域176Aへはみ出さない(突出しない)ように配置されている。
(3)基板処理装置の動作
 続いて、図1及び図2を参照しながら、処理装置10を構成する各部の動作について説明する。尚、処理装置10を構成する各部の動作は基板処理装置用コントローラ76により制御される。
 ポッド18が工程内搬送装置(図示せず)によってロードポート20に供給されると、基板検知センサ178によりポッド18が検知され、ポッド搬入搬出口がフロントシャッタによって開放される。そして、ロードポート20の上のポッド18が、ポッド搬送装置24によってポッド搬入搬出口から筐体12内部へと搬入される。
 筐体12内部へと搬入されたポッド18は、ポッド搬送装置24によって回転式ポッド棚22の棚板上へ自動的に搬送されて一時的に保管される。その後、ポッド18は、棚板上から一方のポッドオープナ26の載置台上に移載される。
 載置台上に載置されたポッド18は、その蓋がキャップ着脱機構30によって取り外され、ウエハ出し入れ口が開放される。その後、基板16は、基板移載装置34aのツイーザによってウエハ出し入れ口を通じてポッド18内からピックアップされ、移載室32の後方にある待機部48内へ搬入され、ボート36内に装填(チャージング)される。ボート36に基板16を装填した基板移載装置34aは、ポッド18が載置された載置台に戻り、ポッド18内から次の基板16を取り出して、ボート36内に装填する。
 この一方(上段または下段)のポッドオープナ26における基板移載機構34による基板16のボート36への装填作業中に、他方(下段または上段)のポッドオープナ26の載置台上には、別のポッド18が回転式ポッド棚22上からポッド搬送装置24によって搬送されて、載置台に移載され、ポッドオープナ26によるポッド18の開放作業が同時進行される。
 予め指定された枚数の基板16がボート36内に装填されると、処理炉42の下端部が、炉口シャッタによって開放される。続いて、基板16群を保持したボート36は、蓋体40がボートエレベータ38によって上昇されることにより処理炉42内へ搬入(ローディング)されていく。
 上述のように、複数枚の基板16を保持したボート36が処理室90内に搬入(ローディング)されると、蓋体40は、Oリング104を介して炉口部96の下端をシールした状態となる。
 処理室90内が所望の圧力(真空度)となるように、ブースターポンプ138、及びメインポンプ144によって真空排気される。この際、圧力センサ70が測定した圧力値に基づき、圧力調整部72(APCバルブの弁の開度)がフィードバック制御される。また、処理室90が所望の温度となるように、ヒータ92によって加熱される。この際、温度センサ108が検知した温度値に基づき、ヒータ92への通電量がフィードバック制御される。続いて、回転機構44により、基板16を装填したボート36が回転させられる。
 次いで、処理ガス供給源から供給されてMFC64aにて所望の流量となるように制御された処理ガスは、処理ガス供給管66a内を流通して処理室90内に導入される。導入された処理ガスは処理室90を上昇し、内部反応管86の上端開口から筒状空間102に流出して排気配管68から排気される。処理ガスは、処理室90を通過する際に基板16の表面と接触し、この際に熱反応によって基板16の表面上に薄膜が堆積される。
 予め設定された処理時間が経過すると、パージガス供給源から供給されてMFC64bにて所望の流量となるように制御されたパージガスが処理室90に供給され、処理室90内が不活性ガスに置換されるとともに、処理室90の圧力が常圧に復帰される。
 その後、ボートエレベータ38により蓋体40が下降されて炉口部96の下端が開口されるとともに、処理済の基板16を保持するボート36が炉口部96の下端から反応管84の外部へと搬出(アンローディング)される。その後、処理済の基板16はボート36より取り出され、ポッド18内へ格納される(ディスチャージ)。
 ディスチャージ後は、ノッチ合わせ装置での整合工程を除き、上述の手順とほぼ反対の手順で、処理後の基板16を格納したポッド18が筐体12外へと搬出される。
(4)基板処理装置用コントローラの構成
 図7を参照して、操作部としての基板処理装置用コントローラ76について説明する。
 該基板処理装置用コントローラ76は、主にCPU(Central Processing Unit)等の演算制御部110と、RAM111、ROM112、図示しないHDD等を備える記憶部114と、マウスやキーボード等の入力部116及びモニタ等の表示部118とから構成されている。尚、演算制御部110と、記憶部114と、入力部116と、表示部118とで各データを設定可能に構成されている。
 演算制御部110は、基板処理装置用コントローラ76の中枢を構成し、ROM112に記憶された制御プログラムを実行し、表示部118からの指示に従って、レシピ記憶部も構成する記憶部114に記憶されているレシピ(例えば、基板処理レシピとしてのプロセス用レシピ等)を実行する。
 ROM112には、装置各部(ブースターポンプ138、メインポンプ144、その他)の動作の制御を行う演算制御部110の動作プログラム等が記憶されている。メモリ(RAM)は、演算制御部110のワークエリア(一時記憶部)として機能する。
 なお、演算制御部110には、光学ドライブ115が接続されている。光学ドライブ115は、例えば、記録媒体としてのCD-ROM117に記録されたプログラム等の情報を読み取ることができ、読み取ったプログラム等の情報がROM112に記録されるようになっている。なお、演算制御部110にUSBポート等を接続し、USBメモリからプログラム等の情報を読み取ってもよい。
 ここで、基板処理レシピは、基板16を処理する処理条件や処理手順等が定義されたレシピである。また、レシピファイルには、搬送コントローラ46、温度コントローラ78、圧力コントローラ80、ガス供給コントローラ82等に送信する設定値(制御値)や送信タイミング等が、基板処理のステップ毎に設定されている。
 演算制御部110は、処理室90内にローディングされた基板16に対し、所定の処理がなされる様、処理室90内の温度や圧力、該処理室90内に導入される処理ガスの流量等を制御する機能を有している。
 搬送コントローラ46は、基板を搬送する搬送機構を構成する回転式ポッド棚22、ボートエレベータ38、ポッド搬送装置24、基板移載機構34、ボート36及び回転機構44の搬送動作をそれぞれ制御するように構成されている。また、回転式ポッド棚22、ボートエレベータ38、ポッド搬送装置24、基板移載機構34、ボート36及び回転機構44には、それぞれセンサが内蔵されている。搬送コントローラ46は、これらのセンサがそれぞれ所定の値や異常な値等を示した際に、基板処理装置用コントローラ76にその旨の通知を行うように構成されている。
 記憶部114は、各種データ等が格納されるデータ格納領域180と、基板処理レシピを含む各種プログラムが格納されるプログラム格納領域182を備えている。
 データ格納領域180は、レシピファイルに関連する各種パラメータが格納される。また、プログラム格納領域182には、上述の基板処理レシピを含む装置を制御するのに必要な各種プログラムが格納されている。
 基板処理装置用コントローラ76の表示部118には、タッチパネル(図示せず)が設けられている。タッチパネルは、上述の基板搬送系、基板処理系への操作コマンドの入力を受け付ける操作画面を表示するように構成されている。なお、基板処理装置用コントローラ76は、パソコンやモバイル等の操作端末(端末装置)のように、少なくとも表示部118と入力部116を含む構成であればよい。
 温度コントローラ78は、処理炉42のヒータ92の温度を制御することで処理炉42内の温度を調節すると共に、温度センサ108が所定の値や異常な値等を示した際、基板処理装置用コントローラ76にその旨の通知を行うように構成されている。
 圧力コントローラ80は、圧力センサ70により検知された圧力値に基づいて、処理室90内の圧力が所望のタイミングにて所望の圧力となるように、圧力調整部72を制御すると共に、圧力センサ70が所定の値や異常な値等を示した際、基板処理装置用コントローラ76にその旨の通知を行うように構成されている。
 ガス供給コントローラ82は、ガス供給コントローラ82は、処理室90内に供給するガスの流量が所望のタイミングにて所望の流量となるように、MFC64aを制御するように構成されている。ガス供給コントローラ82は、MFC64a等が備えるセンサ(図示せず)が所定の値や異常な値等を示した際、基板処理装置用コントローラ76にその旨の通知を行うように構成されている。
[基板処理装置の作用、効果]
 本実施形態における基板処理工程
 先ず、半導体製造装置としての処理装置10を使用して、基板16を処理する基板処理工程の概略について説明する。この基板処理工程は、例えば、半導体装置(例えば、IC、LSI等)を製造するための一工程である。なお、以下の説明において、処理装置10を構成する各部の動作や処理は、基板処理装置用コントローラ76により制御される。以下、基板処理工程について図8を用いて説明する。
ここでは、原料ガスとしてヘキサクロロジシラン(Si2Cl6、略称:HCDS)ガスを用い、反応ガスとしてNH(アンモニア)を用いて基板16上にSiN(シリコン窒化)膜を形成する例について説明する。
(基板搬入工程S102)
基板搬入工程S102では、基板16をボート36に装填し、処理室90内へ搬入する。
 (成膜工程S104)
 成膜工程S104では、次の4つのステップを順次実行する。なお、ステップ1~4の間は、ヒータ92により、基板16を所定の温度に加熱しておく。
[ステップ1]
 ステップ1では、処理ガス供給管66aに設けた図示しない開閉バルブと排気配管68に設けた圧力調整部72(APCバルブ)を共に開けて、HCDSガスを処理室90内に供給しつつ、排気配管68から排気する。これにより、基板16の表面にシリコン薄膜を形成する。
[ステップ2]
 ステップ2では、処理ガス供給管66aの開閉バルブを閉めてHCDSガスの供給を止め、排気配管68の圧力調整部72(APCバルブ)は開いたままにし、ブースターポンプ138、メインポンプ144により処理室90内を排気し、残留ガスを処理室90内から排除する。また、N等の不活性ガスを処理室90内に供給して処理室90内のパージを行い、処理室90内の残留ガスを処理室90外に排出する。ここでは、パージガス供給系のガス配管64bに設けられた開閉バルブを開けて、MFC64bにより流量調節されたN等の不活性ガスを処理室90内に供給する。
[ステップ3]
 ステップ3では、NHガスを処理室90内に供給しつつ、排気配管68から排気する。NHガスの供給により、基板16の表面に形成したシリコン薄膜とNHガスが表面で反応して、基板16上にSiN膜が形成される。
[ステップ4]
 ステップ4では、NHガスの供給を止める。排気配管68の圧力調整部72(APCバルブ)は開いたままにし、ブースターポンプ138、メインポンプ144により処理室90内を排気し、残留ガスを処理室90内から排除する。また、N等の不活性ガスを処理室90内に供給して処理室90内のパージを行う。
 上記ステップ1~4を1サイクルとし、このサイクルを複数回繰り返すことにより基板16上に所定膜厚のSiN膜を形成する。
 (基板搬出工程S106)
 基板搬出工程S106では、SiN膜が形成された基板16が載置されたボート36を、処理室90から搬出する。
 図9は、図8に示す基板処理工程で実行された従来の基板処理装置のプロセスレシピの一例を表示するものであり、ステップ毎に各処理工程の占める割合を表したものである。従来の基板処理装置は、排気ユニット56、及び排気装置74が3階のフロアに設置され、ブースターポンプ138、及びメインポンプ144が1階のフロアに設置された構成のものである。なお、図9において、原料ガスはプロセスガスAとして、反応ガスはプロセスガスBとして記載している。従来の基板処理装置では、プロセスレシピの全行程に占める排気工程(図では、排気パージ1と排気パージ2と示される工程)の割合が74%にも達している。
 本実施形態の処理装置10によれば、ブースターポンプ138を同じフロア124の処理炉42の近傍に配置しているので、ブースターポンプ138をメインポンプ144と共に他の階のフロアに配置した場合に比較して排気能力が向上し、排気工程にかかる時間を短縮することができる。これにより、基板処理におけるスループットの向上を図ることができる。
 本実施形態の処理装置10によれば、図1B、及び図6に示すように、筐体12の後面側(矢印B方向側)には、開口部172の正面側に、開口部172よりも幅広のメンテナンス領域176が設けられており、処理装置10の後面側においては、開口部172に対向する領域にメンテナンス領域176を設けるように排気装置74が設置されるように構成されている。これにより、開口部172から装置内部の部品(一例として処理炉42、反応管84、ボート36等)をメンテナンス領域176に取り出してメンテナンス作業を容易に行うことができる。つまり、本実施形態では、メンテナンス作業が十分に行えるスペースをメンテナンス領域176として確保できればよく、主メンテナンス領域176Aを確保しなければならないわけではない。
 例えば、図1B、及び図6に示すように、本実施形態の処理装置10によれば、筐体12の後面側(矢印B方向側)には、開口部172の正面側に、開口部172よりも幅広の主メンテナンス領域176Aが設けられている。処理装置10の後面側においては、主メンテナンス領域176Aにはみ出さないように排気装置74が設置されており、しかも、この排気装置74は、矢印R方向側に隣接した他の処理装置10のガス供給ユニット54の内側面から、他の処理装置10の主メンテナンス領域176Aへはみ出さないように配置されている。これにより、処理装置10を装置幅方向(矢印L方向、及び矢印R方向)多連に設置したときであっても、処理装置10のメンテナンス作業のための主メンテナンス領域176Aを、開口部172の正面側に設けることができ、例えば、開口部172から装置内部の部品(一例として処理炉42、反応管84、ボート36等)をメンテナンス領域176(特に主メンテナンス領域176A)に取り出してメンテナンス作業を容易に行うことができる。なお、処理装置10の後面側に十分なスペース(例えば、十分なメンテナンス領域176)を確保できるのであれば、排気装置74を主メンテナンス領域176Aにはみ出させるように構成してもよい。
 更に、本実施形態では、排気ユニット56と排気装置74が隣接して設けられるので、排気装置74とメンテナンス領域176の矢印B方向の幅(W4)は、処理装置10の部品(一例として、反応管84、ボート36、処理炉42等)を矢印L方向、及び矢印R方向に運搬することが可能なように幅W2以上保持されており、開口部172からメンテナンス領域176(特に主メンテナンス領域176A)に取り出した装置内部の交換部品(反応管84、ボート36等)を運搬することができる。
 さらに、本実施形態の処理装置10によれば、ブースターポンプ138の駆動により、ブースターポンプ138に振動が生ずるが、ブースターポンプ138は防振装置を介して筐体136に支持されているため、ブースターポンプ138の振動が筐体136に伝達されることが抑制される。
 さらに、ブースターポンプ138と排気ユニット56の排気配管68とが、振動吸収接続部材150を介して接続されており、振動吸収接続部材150の排気配管68側の端部が排気装置74の筐体136内に固定されているので、ブースターポンプ138の振動が排気配管68に伝達されることが抑制されると共に排気ユニット56の筐体120と排気装置74の筐体136とを隣接させることができる。したがって、排気装置74の後方側のメンテナンス領域176を確保することができる。
 なお、振動吸収接続部材150は、排気効率(排気のコンダクタンス)を考慮し、できるだけ短くすることや曲げ箇所を少なくすることが望ましい。
 本実施形態の処理装置10では、ブースターポンプ138を立置きにして配置しているので、ブースターポンプ138を横置き配置した場合に比較して、排気装置74のフットプリントを小さくすることができる。これにより、処理装置10の設置面積を小さくすることができる。これにより、一つのフロアに出来るだけ多くの処理装置10を設置することができ、基板16の処理効率(=生産効率)を向上させることができる。
 ブースターポンプ138をメンテナンスする際には、振動吸収接続部材150を取り外すことで、ブースターポンプ138を取り出して、容易に交換をすることができる。
 また、ゲートバルブ122は、メンテナンス時、異常停止時等に流路を閉止することが出来る。これにより、ブースターポンプ138からの処理炉42への逆拡散により生じるパーティクルを防止することができる。
 本実施形態では、ゲートバルブ122とブースターポンプ138とを、排気配管68、及び振動吸収接続部材150を用いて接続したが、ゲートバルブ122とブースターポンプ138とを振動吸収接続部材150のみで接続してもよい。
[その他の実施形態]
 以上、本開示の実施形態を具体的に説明したが、本開示は上述の実施形態及び実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 また、上述の実施形態では、基板16上に膜を堆積させる例について説明した。しかしながら、本開示は、このような態様に限定されない。例えば、基板16上に形成された膜等に対して、酸化処理、拡散処理、アニール処理、エッチング処理等の処理を行う場合にも、好適に適用可能である。
 また、上述の実施形態では、一度に複数枚の基板16を処理するバッチ式の縦型装置である処理装置10を用いて成膜する例について説明したが、本開示はこれに限定されない。また、上述の実施形態では、ホットウォール型の処理炉を有する処理装置10を用いて薄膜を成膜する例について説明したが、本開示はこれに限定されず、コールドウォール型の処理炉を有する処理装置を用いて薄膜を成膜する場合にも、好適に適用できる。
 また、上述の実施形態に係る処理装置10のような半導体装置の基板16を処理する半導体製造装置などに限らず、ガラス基板を処理するLCD(Liquid Crystal Display)製造装置にも本開示を適用することができる。
 上述の実施形態の処理装置10では、排気装置74の矢印R方向側の端部が、排気ユニット56の矢印R方向側の端部よりも矢印R方向側に突出していたが、小型のブースターポンプ138を用いることで、排気装置74の矢印R方向側の端部が、排気ユニット56の矢印R方向側の端部よりも矢印R方向側に突出しないようにすることもできる。
 2018年3月6日に出願された日本国特許出願2018-040194号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載されたすべての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (13)

  1.  被処理物をガスで処理する処理炉を筐体の内部に備え、前記筐体の後方部にメンテナンスを可能とする開口部が形成されている処理ユニットと、
     前記開口部と対向する領域にメンテナンス領域を設けるように設置され、前記処理炉から前記ガスを排気する排気ユニットと、
     前記開口部と対向する領域にメンテナンス領域を確保するように設置されると共に、前記排気ユニットの処理ユニット側とは反対側に隣接して配置された排気装置と、
     を有する処理装置。
  2.  前記筐体の後方部に形成される前記開口部を挟んで前記排気ユニットとは反対側に配置され、前記処理炉内に前記ガスを供給するガス供給ユニットと、
     を備え、
     前記排気装置は、前記ガス供給ユニットの前記開口部に対向するメンテナンス領域側の端部から前記メンテナンス領域へ突出しないように配置されるように構成されている、
     請求項1に記載の処理装置。
  3.  前記排気ユニットは、前記処理炉内から排出される前記ガスが流れる排気配管と、前記処理炉内の圧力を検出する圧力検知器と、前記圧力検知器で検出した前記処理炉内の圧力値に基づいて前記排気配管に流れる前記排気の流量を調整して前記処理炉内の圧力を制御する圧力調整器と、を有するように構成されている、
     請求項1に記載の処理装置。
  4.  前記ガス供給ユニットは、前記処理炉内へ供給される前記ガスが流れるガス供給配管と、前記ガス供給配管に流れる前記ガスの流量を調整するガス流量制御器と、を有するように構成されている、
     請求項2に記載の処理装置。
  5.  前記排気ユニットは、前記ガスの流出を阻止可能なゲートバルブを有する配管を含むよう構成されている、
     請求項1に記載の処理装置。
  6.  前記ゲートバルブは、上下方向に移動するように構成されている、
    請求項5に記載の処理装置。
  7.  前記排気装置は、メカニカルブースターポンプを有するように構成されている、
     請求項1に記載の処理装置。
  8.  前記処理ユニット、前記排気ユニット、前記排気装置は、それぞれ同じフロアに配置されるように構成されている、
     請求項1に記載の処理装置。
  9.  前記開口部と対向する領域に設けられた前記メンテナンス領域または前記排気装置の後方側のメンテナンス領域は、装置を構成する部品の運搬が可能な幅を有するように構成されている、
    請求項1に記載の処理装置。
  10.  装置を構成する部品は、前記処理炉、前記処理炉内に処理室を構成する反応管、前記被処理物を保持するボートから選択されるいずれか一つ以上である、
     請求項9に記載の処理装置。
  11.  前記排気ユニットは、前記開口部に対向しない位置に設置されるよう構成されている請求項1に記載の処理装置。
  12.  被処理物をガスで処理する処理炉を内部に備えた筐体の後方部に形成された開口部と対向する領域にメンテナンス領域を設けるように設置され、前記処理炉から前記ガスを排気する排気ユニットと、
     前記開口部と対向する領域にメンテナンス領域を設けるように設置されると共に、前記排気ユニットの筐体側とは反対側に隣接して配置された排気装置と、
     を有する排気システム。
  13.  被処理物をガスで処理する処理炉を内部に備えた筐体の後方部に形成された開口部と対向する領域にメンテナンス領域を設けるように設置され、前記処理炉から前記ガスを排気する排気ユニットと、前記開口部と対向する領域にメンテナンス領域を設けるように設置されると共に、前記排気ユニットの筐体側とは反対側に隣接して配置された排気装置と、を用いて、前記処理炉内から前記ガスを排気しつつ、前記被処理物を処理する半導体装置の製造方法。
PCT/JP2019/008692 2018-03-06 2019-03-05 処理装置、排気システム、半導体装置の製造方法 WO2019172274A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG11202007978PA SG11202007978PA (en) 2018-03-06 2019-03-05 Processing apparatus, exhaust system and method of manufacturing semiconductor device
CN201980013166.8A CN111712904B (zh) 2018-03-06 2019-03-05 处理装置、排气系统、半导体器件的制造方法
KR1020237030295A KR20230130775A (ko) 2018-03-06 2019-03-05 처리 장치, 배기 시스템 및 반도체 장치의 제조 방법
KR1020207023789A KR20200108467A (ko) 2018-03-06 2019-03-05 처리 장치, 배기 시스템, 반도체 장치의 제조 방법
JP2020505059A JP6992156B2 (ja) 2018-03-06 2019-03-05 処理装置、排気システム、半導体装置の製造方法
CN202311487185.9A CN117536862A (zh) 2018-03-06 2019-03-05 泵、处理装置、排气系统、半导体器件的制造方法
US17/000,518 US20200392620A1 (en) 2018-03-06 2020-08-24 Processing apparatus and exhaust system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018040194 2018-03-06
JP2018-040194 2018-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/000,518 Continuation US20200392620A1 (en) 2018-03-06 2020-08-24 Processing apparatus and exhaust system

Publications (1)

Publication Number Publication Date
WO2019172274A1 true WO2019172274A1 (ja) 2019-09-12

Family

ID=67847190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008692 WO2019172274A1 (ja) 2018-03-06 2019-03-05 処理装置、排気システム、半導体装置の製造方法

Country Status (6)

Country Link
US (1) US20200392620A1 (ja)
JP (1) JP6992156B2 (ja)
KR (2) KR20230130775A (ja)
CN (2) CN111712904B (ja)
SG (1) SG11202007978PA (ja)
WO (1) WO2019172274A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021158351A (ja) * 2020-03-27 2021-10-07 株式会社Kokusai Electric 基板処理装置及び半導体装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240382A (ja) * 1994-02-25 1995-09-12 Tokyo Electron Ltd 真空排気システム直結型真空処理装置
JP2002170781A (ja) * 2000-11-30 2002-06-14 Tokyo Electron Ltd 熱処理装置
JP2012099763A (ja) * 2010-11-05 2012-05-24 Hitachi Kokusai Electric Inc 基板処理装置及び基板処理装置の保守点検方法
WO2018003072A1 (ja) * 2016-06-30 2018-01-04 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および記録媒体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222656A (ja) * 2010-04-07 2011-11-04 Hitachi Kokusai Electric Inc 基板処理装置
JP5549552B2 (ja) * 2010-11-12 2014-07-16 東京エレクトロン株式会社 真空処理装置の組み立て方法及び真空処理装置
JP2016157725A (ja) * 2015-02-23 2016-09-01 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム
JP6484601B2 (ja) * 2016-11-24 2019-03-13 株式会社Kokusai Electric 処理装置及び半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240382A (ja) * 1994-02-25 1995-09-12 Tokyo Electron Ltd 真空排気システム直結型真空処理装置
JP2002170781A (ja) * 2000-11-30 2002-06-14 Tokyo Electron Ltd 熱処理装置
JP2012099763A (ja) * 2010-11-05 2012-05-24 Hitachi Kokusai Electric Inc 基板処理装置及び基板処理装置の保守点検方法
WO2018003072A1 (ja) * 2016-06-30 2018-01-04 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および記録媒体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021158351A (ja) * 2020-03-27 2021-10-07 株式会社Kokusai Electric 基板処理装置及び半導体装置の製造方法
KR20210120901A (ko) 2020-03-27 2021-10-07 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치 및 반도체 장치의 제조 방법
US11450536B2 (en) 2020-03-27 2022-09-20 Kokusai Electric Corporation Substrate processing apparatus and method of manufacturing semiconductor device
JP7228612B2 (ja) 2020-03-27 2023-02-24 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法、基板処理方法及びプログラム
KR20240029008A (ko) 2020-03-27 2024-03-05 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치 및 반도체 장치의 제조 방법
US11935762B2 (en) 2020-03-27 2024-03-19 Kokusai Electric Corporation Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium

Also Published As

Publication number Publication date
SG11202007978PA (en) 2020-09-29
CN111712904A (zh) 2020-09-25
KR20200108467A (ko) 2020-09-18
JP6992156B2 (ja) 2022-01-13
JPWO2019172274A1 (ja) 2021-01-14
KR20230130775A (ko) 2023-09-12
CN117536862A (zh) 2024-02-09
CN111712904B (zh) 2023-11-28
US20200392620A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
US7198447B2 (en) Semiconductor device producing apparatus and producing method of semiconductor device
US9911635B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
JP6688850B2 (ja) 基板処理装置、半導体装置の製造方法、および、プログラム
US20110179717A1 (en) Substrate processing apparatus
US10825697B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
US11404291B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
KR20210127738A (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
CN111668134B (zh) 半导体器件的制造方法、衬底处理装置及程序
WO2019172274A1 (ja) 処理装置、排気システム、半導体装置の製造方法
JP4880408B2 (ja) 基板処理装置、基板処理方法、半導体装置の製造方法、メインコントローラおよびプログラム
US10763137B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP2013062271A (ja) 基板処理装置
JP6680895B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP6906559B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
WO2004057656A1 (ja) 基板処理装置および半導体装置の製造方法
JP2012043978A (ja) 基板処理装置及び基板移載方法
JP2012119557A (ja) 基板処理装置
JP2005093928A (ja) 基板処理装置
JP2012216703A (ja) 基板処理装置
JP2014216413A (ja) 基板処理装置
JP2007258255A (ja) 基板処理装置
JP2008078218A (ja) 基板処理装置
JP2009044039A (ja) 基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505059

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207023789

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764175

Country of ref document: EP

Kind code of ref document: A1