WO2013176042A1 - 受信局装置、送信局装置、通信システム、受信方法、送信方法及びプログラム - Google Patents

受信局装置、送信局装置、通信システム、受信方法、送信方法及びプログラム Download PDF

Info

Publication number
WO2013176042A1
WO2013176042A1 PCT/JP2013/063746 JP2013063746W WO2013176042A1 WO 2013176042 A1 WO2013176042 A1 WO 2013176042A1 JP 2013063746 W JP2013063746 W JP 2013063746W WO 2013176042 A1 WO2013176042 A1 WO 2013176042A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving station
unit
station apparatus
data signal
control information
Prior art date
Application number
PCT/JP2013/063746
Other languages
English (en)
French (fr)
Inventor
直紀 草島
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201380026231.3A priority Critical patent/CN104321990A/zh
Priority to EP13794077.1A priority patent/EP2858281A4/en
Priority to US14/401,068 priority patent/US20150171983A1/en
Publication of WO2013176042A1 publication Critical patent/WO2013176042A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • H04J11/004Interference mitigation or co-ordination of multi-user interference at the receiver using regenerative subtractive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/0048Decoding adapted to other signal detection operation in conjunction with detection of multiuser or interfering signals, e.g. iteration between CDMA or MIMO detector and FEC decoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to a receiving station device, a transmitting station device, a communication system, a receiving method, a transmitting method, and a program for communicating data signals for a plurality of receiving stations using the same radio resource.
  • a multiple access method (multiple access method) is used.
  • the multiple access method is, for example, SCDMA (Code Division Multiple Access, Code Division Multiple Access), which performs orthogonal multiplexing using orthogonal spreading codes, or SDMA, which performs orthogonal multiplexing in space using MIMO (Multiple-Input Multiple-Output) technology. Space Division, Multiple Access, and Space Division Multiple Access).
  • a transmitting station transmits using the same radio frequency band and the same data transmission time as the data signal for each receiving station
  • the transmitting station Those data signals are orthogonally multiplexed and transmitted. Therefore, each receiving station can decode the data signal even when the same radio frequency band and the same data transmission time are used. That is, in these communication technologies, data signals for a plurality of receiving stations can be communicated using the same radio frequency band and the same data transmission time by performing a prior orthogonal separation process on the transmitting station side. .
  • a radio transmission propagation environment using each of a radio frequency band, a data transmission time, a spatial stream, and an orthogonal spreading code is defined as a radio resource, and further, all four elements have the same radio transmission propagation environment. Defined as the same radio resource.
  • code multiplexing using spreading codes and spatial multiplexing using MIMO technology have an upper limit on the number of receiving stations that can be multiplexed, and at this stage, it is difficult to further improve spectral efficiency using only these technologies.
  • a method of separating a data signal addressed to another receiving station that causes interference on the receiving station side can be used.
  • the receiving station can use interference cancellation processing or interference reduction processing such as successive interference cancellation (SIC), parallel interference cancellation (Parallel Interference Cancellation; PIC), and turbo SIC.
  • SIC successive interference cancellation
  • PIC Parallel Interference Cancellation
  • turbo SIC turbo SIC
  • Non-Patent Document 1 describes a communication system using such interference cancellation technology or interference reduction technology in a receiving station.
  • the conventionally assumed interference cancellation technique or interference reduction technique at the receiving station is considered to be a system that performs error correction decoding on the interference signal or a system that does not perform error correction decoding at the time of replica generation of the interference signal.
  • the method of performing error correction decoding on the interference signal can efficiently obtain the effect of the interference removal processing or interference reduction processing because the replica signal of the interference signal can obtain the coding gain by the error correction decoding processing. A large processing delay or load is generated by the correction decoding process.
  • a method that does not perform error correction decoding on an interference signal is relatively easy to process, but many bit errors occur in a replica signal generated by a receiving station. When the interference cancellation process or the interference reduction process is performed using a replica signal including many bit errors, the effect of the interference cancellation process or the interference reduction process is reduced, which is a factor that hinders efficient data communication.
  • the present invention has been made in view of the above points, and efficiently generates a replica signal for a data signal addressed to another receiving station and performs interference removal processing or interference reduction processing using the replica signal. It is an object of the present invention to provide a receiving station device, a transmitting station device, a communication system, a receiving method, a transmitting method, and a program that can be used.
  • a first aspect of the present invention is a receiving station apparatus of a communication system that performs communication using radio resources at least partially overlapping between a transmitting station apparatus and a plurality of receiving station apparatuses, and the desired addressing to the receiving station itself
  • a demodulator that demodulates a data signal or an interference data signal addressed to another receiving station, and a decoding process on the demodulated desired data signal addressed to its own receiving station or an interference data signal addressed to another receiving station
  • a decoding unit that performs the processing, a data signal processing selection unit that selects a desired data signal processing addressed to the receiving station from the received signal and an interference data signal processing addressed to another receiving station, and processing by the data signal processing selection unit
  • a replica generation unit that performs modulation processing on the output signal of the demodulation unit for the selected interference data signal, or performs encoding processing and modulation processing on the output signal of the decoding unit to generate a replica signal;
  • An interference cancellation unit that performs reception data signal processing for subtracting the replica signal from the received data signal, and
  • the second aspect of the present invention is the receiving station apparatus according to the first aspect of the present invention, wherein the decoding unit performs a plurality of error correction decoding processes on the signal input from the demodulation unit, and the replica generation unit includes: A plurality of error correction encoding processes and modulation processes are performed on the signal subjected to the error correction decoding process, and the error correction decoding process is completed in the middle when the decoding unit receives the interference data signal, and then the replica The generation unit performs a process of generating a replica signal by performing an encoding process and a modulation process.
  • the third aspect of the present invention is the receiving station apparatus according to the first aspect of the present invention, wherein a signal input from the demodulation unit is output to the replica generation unit without performing error correction decoding processing; A process of performing a correction decoding process and then outputting to the replica generation unit performs a process of switching according to a branch condition when receiving an interference data signal, and the replica generation unit performs a modulation process corresponding to the switching process.
  • the replica signal is generated by switching between the encoding process and the modulation process.
  • the 4th aspect of this invention is a receiving station apparatus of 3rd this invention, Comprising:
  • the said decoding part has two or more error detection parts which perform an error detection process in one data signal reception process,
  • the said some error One of the detection units is configured to perform error detection on a data signal sequence included in a determined radio resource range, and the error detection result is used as the branch condition.
  • the 5th this invention is the receiving station apparatus of 4th this invention, Comprising:
  • the said branch condition is the relationship between the number of errors in the determined radio
  • the error detection unit when the number of errors is less than a threshold, performs a demodulation process at the demodulation unit and then performs a modulation process at the replica generation unit; and, when the error number is equal to or greater than the threshold,
  • the demodulating process is performed by the unit, and the decoding process is performed by the decoding unit, and then the process of performing the encoding process and the modulation process by the replica generation unit is switched.
  • the sixth aspect of the present invention is the receiving station apparatus according to the third aspect of the present invention, wherein a power ratio between interference data signal power during reception data signal processing and data signal power other than the interference data signal in the reception data signal. Is included in the determined radio resource range, and the power ratio is set as the branch condition.
  • a seventh aspect of the present invention is the receiving station apparatus of the sixth aspect of the present invention, wherein the branch condition is a relationship between a power ratio and a threshold value in a determined radio resource range, and the power ratio is higher than the threshold value.
  • the branch condition is a relationship between a power ratio and a threshold value in a determined radio resource range, and the power ratio is higher than the threshold value.
  • the eighth aspect of the present invention is the receiving station apparatus according to any one of the first to seventh aspects of the present invention, wherein the control signal processing unit is configured to determine, from the received signal, the radio control information addressed to the own receiving station and the radio addressed to the own receiving station.
  • a control information acquisition unit that acquires one or more radio control information addressed to other receiving stations related to the control information, and a data signal processing selection unit that outputs the radio control information of the selected signal processing
  • a ninth aspect of the present invention is the receiving station apparatus according to the eighth aspect of the present invention, wherein the control information acquisition unit acquires information on a reception data signal processing order from a configuration order of the radio control information. To do.
  • a tenth aspect of the present invention is the receiving station apparatus according to the eighth aspect of the present invention, wherein, from the resource map information included in the acquired plurality of pieces of radio control information, a radio resource on which the receiving station apparatus performs reception processing of an interference data signal is determined. Resource map information to be monitored is generated.
  • comparison map information for determining the branch condition is generated from the resource map information, and the branch condition is determined based on the comparison map information. It is characterized in that the processing is switched depending on the situation.
  • a twelfth aspect of the present invention is a transmission station apparatus of a communication system that performs communication using radio resources at least partially overlapping between a transmission station apparatus and a plurality of reception station apparatuses, and each of the plurality of reception station apparatuses
  • a transmission processing unit that multiplexes and transmits the data signals addressed to the plurality of receiving stations by using a radio resource that overlaps at least a part of the radio resources used by the transmission resource, and the transmission processing unit performs a single data signal transmission process. It has the code
  • a thirteenth aspect of the present invention is the transmitting station apparatus according to the twelfth aspect of the present invention, wherein the transmission processing unit includes a non-orthogonal multiplexing transmission configuration having a superimposing / synthesizing unit that superimposes a plurality of data signals addressed to receiving stations It is characterized by having at least one of a partial spatial orthogonal multiplexing transmission configuration having a multi-user precoding unit that performs spatial separation processing on a data signal addressed to a receiving station using a multi-user precoding weight.
  • a fourteenth aspect of the present invention is the transmitting station apparatus according to the thirteenth aspect of the present invention, wherein the transmission processing unit is one or more associated with radio control information of the receiving station apparatus and radio control information of the receiving station apparatus. And a radio control information addressed to the receiving station to be multiplexed.
  • a fifteenth aspect of the present invention is the transmitting station apparatus according to the twelfth aspect of the present invention, wherein the transmission processing unit is addressed to another cell receiving station existing in the other cell from another transmitting station apparatus constituting the other cell.
  • Inter-station cooperative transmission that acquires radio control information and transmits from the transmitting station apparatus in cooperation with the transmitting station apparatus of the other cell using a radio resource that overlaps at least a part of radio resources used by each of the plurality of receiving station apparatuses.
  • a configuration, a radio control information of a receiving station device of the own cell, and a radio control information addressed to a receiving station of one or more other cells linked to the radio control information of the receiving station device of the own cell It is characterized by having.
  • a sixteenth aspect of the present invention is a communication system that performs communication using radio resources at least partially overlapping between a transmitting station apparatus and a plurality of receiving station apparatuses, and the receiving station apparatus of the second aspect of the present invention And any one of the twelfth to fifteenth inventions of the transmission station apparatus.
  • a seventeenth aspect of the present invention is a transmission station apparatus of a communication system that performs communication using radio resources at least partially overlapping between a transmission station apparatus and a plurality of reception station apparatuses, and each of the plurality of reception station apparatuses
  • a transmission processing unit that multiplexes and transmits the data signals addressed to the plurality of receiving stations using a radio resource that overlaps at least a part of the radio resources used by the transmission, and the transmission processing unit is performing one data signal transmission process.
  • An eighteenth aspect of the present invention is the transmitting station apparatus according to the seventeenth aspect of the present invention, wherein the transmission processing section includes a non-orthogonal multiplexing transmission configuration having a superposition combining section that superimposes a plurality of data signals addressed to receiving stations, It is characterized by having at least one of a partial spatial orthogonal multiplexing transmission configuration having a multi-user precoding unit that performs spatial separation processing on a data signal addressed to a receiving station using a multi-user precoding weight.
  • a nineteenth aspect of the present invention is the transmitting station apparatus according to the eighteenth aspect of the present invention, wherein the radio control information of the receiving station apparatus and one or more multiplexed receiving stations associated with the radio control information of the receiving station apparatus And a radio control information addressed thereto.
  • a twentieth aspect of the present invention is the transmitting station apparatus according to the seventeenth aspect of the present invention, wherein the transmission processing unit is addressed to another cell receiving station existing in the other cell from another transmitting station apparatus constituting the other cell.
  • Inter-stations that acquire radio control information and transmit from the transmitting station apparatus in cooperation with the transmitting station apparatus of the other cell using all or a part of the radio resources used by each of the plurality of receiving station apparatuses using the same radio resource Transmitting the cooperative transmission configuration, the radio control information of the receiving station device of the own cell, and the radio control information addressed to the receiving station of one or more other cells linked to the radio control information of the receiving station device of the own cell It is characterized by having.
  • a twenty-first aspect of the present invention is a communication system that performs communication using radio resources at least partially overlapping between a transmitting station apparatus and a plurality of receiving station apparatuses, and the reception of the fourth or fifth aspect of the present invention. And a transmitting station device according to any of the 17th to 20th aspects of the present invention.
  • a twenty-second aspect of the present invention is a transmission station apparatus of a communication system that performs communication using radio resources that at least partially overlap between a transmission station apparatus and a plurality of reception station apparatuses, and each of the plurality of reception station apparatuses
  • a transmission processing unit that multiplexes and transmits the data signals addressed to the plurality of reception stations using a radio resource that overlaps at least a part of the radio resources used by the transmission resource, and the transmission processing unit includes the data addressed to the plurality of reception stations.
  • Each of the signal transmission power value information is notified by each of the plurality of receiving station-addressed radio control information.
  • a twenty-third aspect of the present invention is the transmitting station apparatus according to the twenty-second aspect of the present invention, wherein a value for reporting transmission power information of the data signal addressed to the receiving station is a data signal transmission addressed to the receiving station between 0 and a reference power value.
  • the power value is a quantized value.
  • the 24th aspect of the present invention is the transmitting station apparatus according to the 23rd aspect of the present invention, wherein the reference power value is a maximum allowable transmission power value.
  • a twenty-fifth aspect of the present invention is the transmitting station apparatus according to the twenty-fourth aspect of the present invention, wherein the reference power value is a data signal transmission power value for the receiving station multiplexed in the immediately preceding order than the receiving station apparatus, When there is no receiving station apparatus that multiplexes in order, the maximum allowable transmission power value is used.
  • a twenty-sixth aspect of the present invention is the receiving station apparatus according to the sixth, seventh or eighth aspect of the present invention, which is addressed to a plurality of receiving stations transmitted by any one of the transmitting station apparatuses according to the fifteenth to seventeenth aspects of the present invention. It is characterized in that the data range transmission power value information addressed to the receiving station is acquired by acquiring a quantization range from the data signal transmission power value information addressed to the receiving station and the reference power value included in the radio control information.
  • a twenty-seventh aspect of the present invention is a communication system in which radio resources used when communication is performed between a transmitting station apparatus and a plurality of receiving station apparatuses, the receiving station apparatus of the twenty-sixth aspect of the present invention, A transmitter station apparatus according to any one of the twenty-fifth aspects of the present invention.
  • a twenty-eighth aspect of the present invention is a transmitting station apparatus of a communication system that performs communication using radio resources at least partially overlapping between a transmitting station apparatus and a plurality of receiving station apparatuses, and each of the plurality of receiving station apparatuses
  • a transmission processing unit that multiplexes and transmits the data signals addressed to the plurality of reception stations using a radio resource that overlaps at least a part of the radio resources used by the transmission resource. It has a configuration for transmitting a reference signal addressed to a receiving station to be transmitted with a transmission power obtained by adding the data signal transmission power addressed to the receiving station and the sum of the receiving station data signal transmission powers multiplexed in the order in front of the receiving station device. It is characterized by that.
  • the 29th aspect of the present invention is the receiving station apparatus according to the 6th, 7th or 8th aspect of the present invention, which receives the reference signal addressed to each receiving station transmitted by the 28th transmitting station apparatus, and is addressed to each receiving station.
  • the reference signal reception power is subtracted from the reception power of the reference signal in the order of the reception station apparatus that performs the interference data signal processing to obtain data signal reception power value information addressed to each reception station.
  • a thirtieth aspect of the present invention is a communication system in which radio resources used when communication is performed between a transmitting station apparatus and a plurality of receiving station apparatuses, wherein the receiving station apparatus of the twenty-ninth aspect of the present invention, And a transmitting station apparatus according to the present invention.
  • a thirty-first aspect of the present invention is a transmission station apparatus of a communication system that performs communication using radio resources that at least partially overlap between a transmission station apparatus and a plurality of reception station apparatuses, and each of the plurality of reception station apparatuses
  • a transmission processing unit that multiplexes and transmits the data signals addressed to the plurality of reception stations using the same radio resource, all or a part of the radio resources used by the transmission processing unit, and the transmission processing unit includes the plurality of reception stations.
  • the sum of the data signal predicted received power addressed to one receiving station of the device, the sum of the data signal predicted received power addressed to the receiving station multiplexed in the one receiving station device, and the interference noise power of the one receiving station device And a process for calculating the power ratio within a determined radio resource range.
  • a thirty-second aspect of the present invention is a receiving method for a communication system that performs communication using radio resources that at least partially overlap between a transmitting station apparatus and a plurality of receiving station apparatuses, from a received signal to an own receiving station.
  • a step of performing a process of discriminating between the desired data signal and an interference data signal addressed to another receiving station, and performing a modulation process after performing a demodulation process on the interference data signal, or a demodulation process and a decoding process After performing the encoding process and the modulation process, generating a replica signal and subtracting the replica signal from the received data signal, and performing a demodulation process and a decoding process on the desired data signal And performing received data signal processing to complete reception processing.
  • the 33rd aspect of the present invention is a program for causing a receiving station apparatus to execute each step in the reception method of the 32nd aspect of the present invention.
  • a thirty-fourth aspect of the present invention is a transmission method of a communication system for performing communication using radio resources at least partially overlapping between a transmitting station apparatus and a plurality of receiving station apparatuses, wherein each of the plurality of receiving station apparatuses A step of multiplexing and transmitting the data signals addressed to the plurality of receiving stations using a radio resource in which at least some of the radio resources to be used overlap, and a step of performing a plurality of different error correction code processes in one data signal transmission process; It is characterized by having.
  • the 35th aspect of the present invention is a program for causing a transmitting station apparatus to execute each step in the transmission method of the 34th aspect of the present invention.
  • a thirty-sixth aspect of the present invention is a transmission station apparatus of a communication system that performs communication using radio resources at least partially overlapping between a transmission station apparatus and a plurality of reception station apparatuses, and each of the plurality of reception station apparatuses A step of multiplexing and transmitting the data signals addressed to the plurality of receiving stations using a radio resource that overlaps at least a part of the radio resources used by the receiver, and performing a plurality of error detection encoding processes during one data signal transmission process And a step of performing error detection coding processing on a data signal included in a radio resource range in which one of a plurality of error detection coding processing is determined.
  • the thirty-seventh aspect of the present invention is a program for causing a transmitting station apparatus to execute each step in the transmission method of the thirty-sixth aspect of the present invention.
  • the present invention it is possible to efficiently generate a replica signal for a data signal addressed to another receiving station and perform an interference removal process or an interference reduction process using the replica signal.
  • FIG. 3 is a constellation diagram of signals transmitted by the non-orthogonal multiplexing method in the transmission / reception station configuration 1 according to the first embodiment of the present invention.
  • FIG. 3 is a first schematic diagram of radio resource allocation and power allocation of reference signals in the transmission / reception station configuration 1 according to the first embodiment of the present invention.
  • FIG. 4 is a second schematic diagram of radio resource allocation and power allocation of reference signals in the transceiver station configuration 1 according to the first embodiment of the present invention. It is a figure which shows the outline of the multi-cell radio
  • the communication line is a downlink (downlink, downlink)
  • the number of receiving stations that perform communication using the same radio resource is described as two.
  • the present embodiment is not limited to this, and the number of receiving stations may be three or more.
  • transmission is performed from one transmission station
  • communication may be performed using the same radio resource from two or more transmission stations.
  • the spatial resources used by the transmitting stations are different.
  • the same radio resources are used. Therefore, “the same radio resource from two or more transmitting stations” means that the receiving station is the same radio resource when receiving a carrier wave from two or more transmitting stations.
  • a communication system using a multiple access scheme in which a transmitting station transmits data signals to a plurality of receiving stations using the same radio resource without performing pre-separation processing on the transmitting station side is a non-orthogonal multiple access. This is called a method.
  • One of the transmission methods supported by the non-orthogonal multiple access scheme is a partial spatial orthogonal multiplexing scheme.
  • a transmission data signal is transmitted by multiplying a transmission data signal by a multi-user precoding matrix that is an upper triangular matrix of a plurality of inter-receiving-station channel matrices, and transmitting a precoded signal from a plurality of antennas. It is a method.
  • Another transmission method supported by the non-orthogonal multiple access scheme is a non-orthogonal multiplexing scheme.
  • data signals addressed to a plurality of receiving stations among the multiplexed receiving stations are combined as a single modulated symbol using techniques such as superposition coding and hierarchical modulation.
  • this is a transmission method for transmitting a composite signal from one or a plurality of antennas.
  • the receiving station in the non-orthogonal multiple access scheme has interference cancellation technology or interference reduction technology.
  • the interference cancellation technique or interference reduction technique efficiently generates a replica signal for a data signal addressed to another receiving station, and performs interference cancellation processing or interference reduction processing using the replica signal.
  • the receiving station can detect the data signal even in a spatially non-orthogonal or partially orthogonal state. That is, the non-orthogonal multiple access scheme can improve the spectrum efficiency with a smaller number of antennas than the MIMO communication scheme using a plurality of antennas. Further, the non-orthogonal multiple access scheme can be combined with a conventional multiple access scheme such as CDMA or SDMA. Therefore, it becomes possible to increase the number of simultaneous receiving stations (the number of multiplexing) and achieve high spectral efficiency.
  • CDMA Code Division Multiple Access
  • SDMA Space Division Multiple Access
  • FIG. 1 is a conceptual diagram showing a communication system according to the present embodiment.
  • the communication system includes a transmission station eNB1, a reception station UE1, and a reception station UE2.
  • the receiving station UE1 is located farther than the receiving station UE2 with respect to the transmitting station eNB1. Therefore, the signal-to-noise power ratio (SNR) of the received signal at the receiving station UE1 is lower than the signal-to-noise power ratio of the received signal at the receiving station UE2 due to signal distance attenuation.
  • SNR signal-to-noise power ratio
  • FIG. 2, FIG. 3, and FIG. 4 are diagrams showing an example of radio resource allocation of the receiving station according to the present embodiment.
  • the receiving station UE1 and the receiving station UE2 share the same radio resource and are multiplexed by the non-orthogonal multiplexing scheme. Further, the signal addressed to the receiving station UE1 and the signal addressed to the receiving station UE2 are transmitted so that their transmission powers are different. That is, the signal power addressed to the receiving station UE1 is made higher than the signal power addressed to the receiving station UE2. Thereby, each receiving station in the non-orthogonal multiple access scheme can acquire a data signal addressed to the own receiving station.
  • the receiving station UE1 when the signal power addressed to the receiving station UE2 is approximately equal to or less than the noise power, the receiving station UE1 has a larger signal than the signal addressed to the receiving station UE2 Since the power is transmitted, the reception process can be performed without being aware of the signal addressed to the receiving station UE2. That is, the receiving station UE1 can acquire the data signal addressed to the receiving station UE1 by the same receiving method as before. On the other hand, since the signal addressed to the receiving station UE1 causes large interference, it is difficult for the receiving station UE2 to extract the signal addressed to the receiving station UE2.
  • the receiving station UE2 When extracting a signal addressed to the receiving station UE2, the receiving station UE2 first detects the signal of the receiving station UE1, and removes the signal from the received signal of the receiving station UE2, so that the receiving station UE2 is addressed to the receiving station UE2. It is possible to acquire the data signal.
  • the multiple relationship of the above non-orthogonal multiple access method was defined in multiple layers.
  • Receiving stations assigned to multiple layers are all assigned to the lower layer because the signals addressed to the lower layer receiving station are transmitted with a large amount of transmission power when other receiving stations are assigned to the lower layer. It is necessary to perform interference removal or interference reduction of the signal addressed to the receiving station using an interference removal mechanism.
  • a receiving process assigned to the upper layer can be performed without being aware of it. That is, the receiving station UE1 is assigned to the first layer, and the receiving station UE2 is assigned to the second layer.
  • the assigned radio frequency bandwidth of the receiving station is defined as a transport block, and error correction decoding is performed using a signal included in the transport block.
  • the minimum allocated radio frequency bandwidth is defined as a resource block, and each resource block is represented by one radio resource number.
  • FIG. 3 is a diagram illustrating an example of radio resource allocation of the receiving station according to the present embodiment when there are many upper layer resource allocation units.
  • the receiving station assigned to the upper layer must decode the signals addressed to other receiving stations in the lower layer to eliminate interference. For example, to decode the signal addressed to the receiving station UE3 assigned to the third layer, It is necessary to decode and remove signals addressed to the receiving stations UE11, 12, 13, 14, 21, 22 and the six receiving stations.
  • FIG. 4 is a diagram illustrating an example of radio resource allocation of the receiving station according to the present embodiment when there are many lower-layer resource allocation units.
  • ⁇ Received signal model> a partial space orthogonal multiplexing method and a non-orthogonal multiplexing method applicable to the receiving station apparatus of this embodiment will be described using a received signal model. Although the description will be made assuming that the number of receiving stations is 2, even if the number of receiving stations is 3 or more, the same reception signal model is used.
  • propagation path information is defined.
  • the propagation path matrix between the transmission antenna group j allocated to transmission to the reception station UEi and the reception antenna group i of the reception station UEi is H ij
  • the propagation path matrix H is expressed by the following equation (1). Define.
  • H i [H i1 , H i2 ] is a propagation path matrix between all the transmitting antennas of the transmitting station and the receiving antennas of the receiving station UEi.
  • the propagation path matrix H can be decomposed as shown in the following equation (2) using QR decomposition.
  • the reception signal model of the partial spatial orthogonal multiplexing method is expressed as the following equation (3).
  • n i is the additive white noise receiving station UEi is subjected.
  • the receiving station UE1 transmits the desired data signal L 11 x 1 of the receiving station UE1 without receiving interference.
  • the receiving station UE2 receives the interference data signal L 21 x 1 of the receiving station UE1, and transmits the desired data signal L 22 x 2 of the receiving station UE2.
  • Receiving station apparatus of the receiving station UE2 is by mounting a mechanism for removing the interference data signal L 21 x 1 reception station UE1, it is possible to identify the desired data signal L 22 x 2.
  • FIG. 5 shows an example of a constellation synthesized by the non-orthogonal multiplexing method.
  • the QPSK symbol addressed to the receiving station UE1 and the QPSK symbol addressed to the receiving station UE2 transmitted with half the amplitude of the symbol addressed to the receiving station UE1 the combined symbols are expressed in 16 ways. It is possible to transmit the data signals of the two receiving stations together.
  • the received signal model of the non-orthogonal multiplex system is expressed as the following equation (5).
  • the interference data signal ⁇ 2 H 1 x 2 since the interference data signal ⁇ 2 H 1 x 2 has a lower reception power than the desired data signal ⁇ 1 H 1 x 1 , it can be demodulated and decoded as noise.
  • the interference data signal ⁇ 1 H 2 x 1 since the interference data signal ⁇ 1 H 2 x 1 has higher reception power than the desired data signal ⁇ 2 H 2 x 2 , the data signal ⁇ 1 H 2 x addressed to the receiving station UE1 A mechanism for removing 1 is required.
  • Transmission / reception station configuration 1 First, transmission / reception station configuration 1 that performs error correction decoding on an interference signal will be described. By performing error correction decoding on the interference signal, the replica signal of the interference signal obtains a coding gain.
  • FIG. 6 is a schematic diagram illustrating a configuration of a transmission station apparatus that transmits in the partial spatial orthogonal multiplexing scheme according to the present embodiment.
  • the transmitting station apparatus eNB1-A includes an encoding unit 101 (101-1 to 101-4), a modulation unit 102 (102-1 to 102-4), a layer mapping unit 103 (103-1, 103-2), precoding Unit 104 (104-1, 104-2), multi-user precoding unit 105, frequency mapping unit 106 (106-1 to 106-4), IFFT unit 107 (107-1 to 107-4), GI insertion unit 108 (108-1 to 108-4), a wireless transmission unit 109 (109-1 to 109-4), an antenna unit 110 (110-1 to 110-4), and a control information determination unit 111.
  • XXX-1 and 2 of the encoding unit 101, the modulation unit 102, the frequency mapping unit 106, the IFFT unit 107, the GI insertion unit 108, the radio transmission unit 109, and the antenna unit 110 process the data signal addressed to the receiving station UE1.
  • XXX-3, 4 processes the data signal addressed to the receiving station UE2.
  • XXX-1 of the layer mapping unit 103 and the precoding unit 104 processes a data signal addressed to the receiving station UE1
  • XXX-2 processes a data signal addressed to the receiving station UE2.
  • the portion composed of the encoding unit 101, the modulation unit 102, the layer mapping unit 103, the precoding unit 104, the multiuser precoding unit 105, the frequency mapping unit 106, the IFFT unit 107, the GI insertion unit 108, and the radio transmission unit 109 is A transmission processing unit, which functions to multiplex and transmit the data signals addressed to the plurality of receiving stations using radio resources that overlap at least part of radio resources used by the plurality of receiving stations.
  • chord part 101 is comprised by the schematic of FIG.
  • the encoder 101 includes an error detection encoder 121 and an error correction encoder 122.
  • the error detection coding unit 121 adds a check bit to the data signal using an error detection coding method for the data signal input from the upper layer.
  • Examples of the error detection encoding method include a CRC (Cyclic Redundancy Check) code.
  • the data signal to which the check bit is added is divided for each code block which is a coded bit unit, and is then subjected to error correction coding by the error correction coding unit 122.
  • An encoded bit string is generated using an error correction encoding method according to control information (radio control information, control information) determined by the control information determination unit 111.
  • Examples of the error correction coding method include turbo coding and LDPC (Low Density Parity Check) coding.
  • the encoding unit 101 punctures the encoded bit string generated based on the input encoding rate information.
  • the encoding unit 101 generates an encoded bit string corresponding to the encoding rate indicated by the input encoding rate information by omitting a part of the generated encoded bit sequence (for example, check bits).
  • the encoding unit 101 outputs encoded bits generated by performing puncturing to the modulation unit 102.
  • the encoding method used by the encoding unit 101 is determined based on the control information.
  • the control information may be received and stored in the control information determining unit 111 from the outside, or may be transmitted.
  • An encoding method set in advance in the station device and the receiving station device may be set.
  • the control information determination unit 111 outputs control information for instructing processing to each unit, but this control information may be received from the outside in the same manner or may be set in advance.
  • the modulation unit 102 modulates the coded bit string input from the coding unit 101 using a modulation scheme according to control information corresponding to the channel condition of the receiving station, and generates a modulation symbol string.
  • Modulation section 102 outputs the generated modulation symbol sequence to layer mapping section 103.
  • the modulation scheme performed by the modulation unit 102 includes, for example, BPSK (Binary Phase Shift Keying; two-phase shift keying), QPSK (Quadrature Phase Shift Keying; four-phase shift keying), 16QAM (16-ary QuadratureAmplitude value; Modulation), 64QAM (64-ary Quadrature Amplitude Modulation) and the like.
  • BPSK Binary Phase Shift Keying; two-phase shift keying
  • QPSK Quadrature Phase Shift Keying; four-phase shift keying
  • 16QAM (16-ary QuadratureAmplitude value; Modulation
  • 64QAM 64-ary Quadrature Amplitude Modulation
  • the layer mapping unit 103 rearranges the symbol sequence input from the modulation unit 102 into a symbol sequence for each layer for each receiving station based on transmission rank information corresponding to the control information.
  • a layer is a unit for transmitting a data signal.
  • the number of rearranged layers is the number of layers indicated by the transmission rank information.
  • the layer mapping unit 103 outputs the rearranged symbol sequence to the precoding unit 104.
  • the precoding unit 104 receives a symbol string for each layer from the layer mapping unit 103, and configures a vector having symbols of each layer as elements.
  • the precoding unit 104 multiplies the configured vector by a precoding matrix corresponding to the state of the propagation path to configure a vector including a number of elements equal to the number of transmission antennas allocated to the receiving station.
  • a symbol sequence including symbols of each included element is generated, and the generated symbol sequence is output to multiuser precoding section 105 corresponding to each transmission antenna 110.
  • the precoding matrix is determined by the control information determination unit 111 in correspondence with the multiuser precoding matrix.
  • the multi-user precoding unit 105 configures a frequency domain signal input from the precoding unit 104 addressed to each receiving station as a vector having the signal of each receiving station as an element.
  • a vector including a number of elements equal to the number of transmission antennas included in the transmitting station is configured by multiplying the configured vector by a precoding matrix corresponding to the state of the propagation path so that the receiving stations are spatially orthogonal to each other.
  • the precoding matrix is determined by the control information determination unit 111.
  • a symbol string composed of symbols of each element included in the configured vector is generated, and the generated symbol string is output to the frequency mapping unit 106 corresponding to each transmission antenna.
  • the frequency mapping unit 106 allocates symbols included in the symbol sequence input from the multiuser precoding unit 105 based on band allocation information corresponding to control information, and generates a frequency domain signal.
  • the frequency mapping unit 106 outputs the generated frequency domain signal to the IFFT unit 107.
  • the IFFT unit 107 performs IFFT (Inverse Fast Fourier Transform) on the superimposed encoded signal input for each block from the frequency mapping unit 106 and converts it into the time domain. IFFT unit 107 outputs the converted time domain signal to GI insertion unit 108.
  • IFFT Inverse Fast Fourier Transform
  • the GI insertion unit 108 inserts a CP (Cyclic Prefix) as a GI (Guard Interval) for each block in the multiplexed signal input for each block from the IFFT unit 107 to generate an output signal.
  • the CP inserted into the multiplexed signal by the GI insertion unit 108 is, for example, a predetermined portion of the multiplexed signal input immediately before.
  • the GI insertion unit 108 outputs the generated output signal to the wireless transmission unit 109.
  • the wireless transmission unit 109 performs D / A (Digital to Analog) conversion on the output signal and control information input from the GI insertion unit 108 and converts them into an analog signal.
  • the converted analog signal is up-converted to a radio frequency band to generate a radio frequency band signal, and the generated radio frequency band signal is amplified and output to the antenna 110.
  • the antenna 110 transmits the input radio frequency band signal on a carrier wave such as a radio wave to the receiving station apparatus.
  • an RF (Radio Frequency; radio frequency band) unit configured by the radio transmission unit 109 and the antenna 110 is configured from the encoding unit 101 to the GI insertion unit 108 as an RRH (Remote Radio Head). It may be separated from the baseband part and installed in a different place. At that time, the RF unit and the baseband unit are connected by wire.
  • RRH Remote Radio Head
  • the transmitting station apparatus has been described as a data processing configuration of two streams per receiving station, the present embodiment is not limited to this, and the number of streams is 2 if the correspondence between the number of transmission streams and the number of antennas is satisfied. It may be the above.
  • FIG. 8 is a schematic diagram showing a configuration of a transmitting station apparatus that transmits by the non-orthogonal multiplexing method according to this embodiment.
  • this transmission station apparatus eNB1-B is the same as that of the partial spatial orthogonal multiplexing transmission station apparatus eBN1-A in FIG.
  • the superposition / synthesis unit 131 is arranged between the frequency mapping unit 106 and the IFFT unit 107.
  • the superposition synthesizing unit 131 receives a frequency domain signal from the frequency mapping unit 106, and superimposes the same frequency domain signal between the receiving stations by adding a power difference according to the power allocation information inputted from the control information determining unit 111 (superposition). coding).
  • the power difference between the receiving stations is determined by, for example, the propagation path condition of the receiving station.
  • the superimposed encoded signal synthesized between the receiving stations is output to IFFT section 107 corresponding to each transmitting antenna. Note that the superimposing / combining unit 131 is also referred to as a power control unit.
  • the transmitting station apparatus has one of the configurations of eNB1-A in FIG. 6 and eNB1-B in FIG. 8, but may have both configurations.
  • the receiving station apparatus according to the present embodiment has a receiving station configuration corresponding to both the partial spatial orthogonal multiplexing scheme and the non-orthogonal multiplexing scheme.
  • FIG. 9 is a schematic diagram illustrating a device configuration of the receiving station UE1 according to the present embodiment.
  • the receiving station apparatus UE1 includes an antenna 201 (201-1 and 201-2), a radio signal processing unit 202 (202-1 and 202-2), a GI removal unit 203 (203-1 and 203-2), and an FFT unit 204. (204-1, 204-2), frequency demapping unit 205 (205-1, 205-2), signal separating unit 206, layer demapping unit 207, demodulating unit 208 (208-1, 208-2), decoding Unit 209 (209-1, 209-2), a control signal processing unit 210a, and a propagation path estimation unit 211.
  • the antenna 201 receives the radio frequency band signal transmitted from the transmitting station, and outputs the received radio frequency band signal to the radio signal processing unit 202.
  • the radio signal processing unit 202 down-converts the radio frequency band signal input from the antenna 201 to a baseband frequency band to generate an analog signal.
  • the radio signal processing unit 202 performs A / D (Analog to Digital, analog / digital) conversion on the generated analog signal to convert it into a digital signal.
  • the wireless signal processing unit 202 outputs the converted digital signal to the GI removal unit 203.
  • the GI removal unit 203 removes the CP from the digital signal input from the wireless signal processing unit 202 to obtain a multiplexed signal.
  • the data signal separated by the GI removal unit 203 is output to the FFT unit 204.
  • the FFT unit 204 performs FFT (Fast Fourier Transform) on the data signal input from the GI removal unit 203 to obtain a frequency domain data signal.
  • the FFT unit 204 outputs the obtained frequency domain signal to the frequency demapping unit 205.
  • the frequency demapping unit 205 extracts a symbol string of a band indicated by the band allocation information input from the control signal processing unit 210a from the frequency domain signal input from the FFT unit 204.
  • the frequency demapping unit 205 outputs the extracted symbol sequence to the signal separation unit 206.
  • the signal separation unit 206 performs a spatial separation process on the vectors having the symbols included in the symbol sequences input from the frequency demapping unit 205 as elements, and constructs a symbol sequence for each layer. Output to the mapping unit 207.
  • Spatial separation processing includes, for example, MMSE (Minimum Mean Square Error) detection, V-BLAST (Vertical-Bell Laboratories layered space-time architecture) detection, and ML (Minimum Likelihood) detection.
  • MMSE Minimum Mean Square Error
  • V-BLAST Very-Bell Laboratories layered space-time architecture
  • ML Minimum Likelihood
  • the layer demapping unit 207 converts the symbol string for each layer input from the signal demultiplexing unit 206 for each codeword that is a coding unit based on transmission rank information RI (Rank Indicator) input from the control signal processing unit 210a. Sort by the symbol sequence. Therefore, the rearrangement performed by the layer demapping unit 207 is the reverse of the rearrangement performed by the layer mapping unit 103 of the transmitting station apparatus. Layer demapping section 207 outputs the rearranged symbol sequences to demodulation section 208.
  • RI Rank Indicator
  • the demodulator 208 demodulates the symbol sequence input from the layer demapping unit 207 using a demodulation method corresponding to the modulation method information input from the control information acquisition unit 210 to generate an encoded bit sequence.
  • Demodulation section 208 outputs the generated encoded bit string to decoding section 209. Note that either the hard decision value or the soft decision value is sent as the encoded bit string in accordance with the decoding method.
  • the decoding unit 209 is configured by the schematic diagram shown in FIG.
  • the decoding unit 209 includes an error correction decoding unit 221 and an error detection unit 222.
  • the error correction decoding unit 221 performs error correction decoding corresponding to the coding rate information input from the control signal processing unit 210a on the encoded bit string input from the demodulation unit 208 to obtain a data signal.
  • the error detection unit 222 performs, for example, a cyclic redundancy check (CRC) on the data bits included in the data signal obtained by the error correction decoding unit 221 to check whether there is an error.
  • Decoding section 209 determines ACK as transmission confirmation information when no error is detected and NACK when error is detected.
  • the error detection unit 222 outputs a data signal obtained when no error is detected to the outside.
  • control signal processing unit 210a acquires control information addressed to its own receiving station and multiplexed control information addressed to other receiving stations from the frequency domain signal input from the FFT unit 204. 215.
  • the propagation path estimation unit 211 obtains propagation path estimation information related to propagation path characteristics for each propagation path from the frequency domain signal input from the FFT unit 204.
  • the receiving station UE2 device is premised on a configuration in which a SIC (Successive Interference Cancellation) circuit is mounted.
  • the configuration of the receiving station UE2 apparatus may be used for the receiving station UE1 apparatus.
  • FIG. 12 is a schematic diagram showing a device configuration of the receiving station UE2-A device according to the present embodiment.
  • the receiving station UE2-A apparatus shown in FIG. 12 has a configuration including an interference removing unit 231 and a replica generating unit 232 from the configuration example of the receiving station UE1 apparatus shown in FIG.
  • the interference removal unit 231 is disposed between the FFT unit 204 and the frequency demapping unit 205.
  • the configuration is not limited to this depending on the frequency mapping method, for example, as illustrated in FIG. If the frequency resources of the multiplexed receiving stations are on the same band, an interference canceling unit 231 may be arranged between the frequency demapping unit 205 and the signal separating unit 206.
  • control signal processing unit 210b includes a control information acquisition unit 215 of the control signal processing unit 210a of the receiving station UE1 apparatus, and a data signal processing selection unit 216 that selects data signal processing of each unit.
  • the data signal processing selection unit 216 selects one of processing of a desired data signal addressed to its own receiving station and processing of interference data signals of other receiving stations, and sends control information for performing the processing to each unit. Output.
  • the data signal processing selection unit 216 performs selection using the selection information acquired from the radio control information acquired by the control signal processing unit 215.
  • the selection is not limited to this. It is also assumed that data signal processing is selected based on the result of maximum likelihood estimation from the error detection result of the received data signal.
  • the replica generation unit 232 returns the interference data signal input from the decoding unit 209 to the symbol string before frequency demapping processing generated by the transmission station.
  • the generated replica symbol sequence is output to the interference removal unit 231. As an initial value, a symbol string with zero power is output.
  • the interference cancellation unit 231 performs subtraction on the frequency domain signal input from the FFT unit 204 with the replica frequency domain signal input from the replica generation unit 232, and removes an undesired receiving station signal.
  • the subtraction result symbol string is output to the signal separation unit 206. In the initial process, the process in the interference removal unit 231 is skipped or subtracted with a symbol string of zero power.
  • FIG. 14 shows a schematic diagram of processing in the replica generation unit.
  • the replica generation unit 232 includes a re-encoding unit 241 (241-1, 241-2), a re-modulation unit 242 (242-1, 242-2), a re-layer mapping unit 243, a re-precoding unit 244, and a re-frequency mapping unit. 245 (245-1, 245-2) and a propagation processing unit 246.
  • the re-encoding unit 241 includes an error correction encoding unit 251 as shown in FIG.
  • the error correction code unit 251 in FIG. 15 is the same as the error correction code unit 122 in FIG.
  • the data signal input from the decoding unit 209 is input to the error correction code unit 251, and error correction coding corresponding to the coding rate information input from the control information acquisition unit 210 is performed to generate a replica encoded bit string.
  • the re-encoding unit 241 uses an error correction encoding method equivalent to that on the transmission side.
  • the remodulation unit 242 performs modulation equivalent to that on the transmission side using the modulation scheme corresponding to the modulation method information input from the control signal processing unit 210b with respect to the encoded bit string input from the recoding unit 241; A replica modulation symbol sequence is generated.
  • the re-layer mapping unit 243 rearranges the modulation symbol sequence input from the re-modulation unit 242 into a replica symbol sequence for each layer based on the transmission rank information RI input from the control signal processing unit 210b.
  • the re-precoding unit 244 multiplies the symbol sequence for each layer input from the re-layer mapping unit 243 using a precoding matrix corresponding to the precoding information PMI (Precoding Matrix Indicator) input from the control signal processing unit 210b. To generate a replica symbol string for each transmission antenna.
  • the re-precoding unit 244 outputs to the re-frequency mapping unit 245.
  • the re-frequency mapping unit 245 allocates the replica symbol sequence for each transmission antenna input from the re-precoding unit 244 based on the frequency mapping information input from the control signal processing unit 210b, and generates a replica frequency domain signal.
  • the propagation processing unit 246 multiplies the replica symbol sequence for each transmission antenna input from the re-frequency mapping unit 245 by the frequency map input from the channel estimation unit 211 and the channel estimation information corresponding to the transmission / reception antenna, and receives A replica frequency domain signal is generated.
  • the configuration example of the receiving station UE1 apparatus shown in FIG. 9 or the configuration example of the receiving station UE2-A apparatus shown in FIG. 12 is to receive data transmitted by the transmitting station apparatus shown in FIG. 6 or FIG. Although presupposed, in this embodiment, it is not restricted to this.
  • FIG. 16 shows a flowchart of processing in which the receiving station UE2-A acquires a data signal in the present embodiment.
  • control information acquisition unit 215 of the control signal processing unit 210b acquires control information addressed to the own receiving station and multiplexed control information addressed to other receiving stations from the frequency domain signal input from the FFT unit 204 (step S11).
  • a control information configuration for simultaneously acquiring control information addressed to the own receiving station and multiplexed control information addressed to other receiving stations will be described later.
  • the data signal processing selection unit 216 of the control signal processing unit 210b selects to perform interference data signal processing. Information necessary for reception processing is sent to each processing unit.
  • the receiving station UE2-A performs demapping (step S13), demodulation (step S14), and decoding (step S15) on the received data signal using control information of other receiving stations. Then, the replica generation unit 232 performs re-encoding (step S16), re-modulation (step S17), and remapping (step S18) on the decoded data signal addressed to the other receiving station using the control information of the other receiving station.
  • the reception signal replica of the data signal addressed to the other reception station is generated, and the reception data signal addressed to the other reception station is removed from the reception data signal by the interference removing unit 231 (step S19).
  • step S12 When these steps are completed with all the acquired radio control information addressed to other receiving stations (step S12; No), the data signal processing selection unit 216 of the control signal processing unit information acquisition unit 210b selects the desired data signal processing. Then, demapping (step S20), demodulation (step S21), and decoding (step S22) are performed on the received data signal using the control information of the own receiving station, and a desired data signal addressed to the own receiving station is obtained.
  • ⁇ Data signal processing order> In the non-orthogonal multiplex system, there is a problem that normal decoding cannot be performed if the processing order of data signals is incorrect. For example, in FIG. 3, when the data signal addressed to the receiving station UE21 is demodulated and decoded before the data signal addressed to the receiving station UE11 is removed, many bit errors are generated due to the influence of the data signal addressed to the receiving station UE11. End up. Therefore, information on multiple layers is required. By notifying the information of multiple layers, the receiving station can grasp the relationship between the non-orthogonal multiplex radio resources and other receiving stations, and can remove interference in the correct reception processing order.
  • ⁇ Multilayer information includes absolute numbers and relative numbers.
  • the absolute number is a layer number as shown in FIGS.
  • the relative number is the number difference between the multi-layer to which the self-receiving station is assigned and the multi-layer of other receiving stations that communicate using the same radio resource as the self-receiving station.
  • data signal processing is performed in order from the data signal addressed to the receiving station having the largest relative number.
  • the configuration of the control information in this embodiment will be described as a configuration when two receiving stations are multiplexed.
  • the configuration of the control information in this embodiment is not limited to this, and the number of receiving stations is three or more. There may be.
  • FIG. 17 is an example of a bundled radio control information configuration acquired by the receiving station UE2.
  • the radio control information 301 addressed to the receiving station UE2 is configured to include the radio control information 302 addressed to the receiving station UE1, and is encoded using the information unique to the receiving station UE2.
  • the receiving station UE2 performs decoding using the receiving station UE1 specific information held in advance, and acquires the radio control information 301 addressed to the receiving station UE2.
  • the receiving station UE2 can also acquire the radio control information 302 addressed to the included receiving station UE1 simultaneously with the radio control information 301 addressed to the receiving station UE2.
  • the radio control information 302 addressed to the receiving station UE1 is configured independently of the radio control information 301 addressed to the receiving station UE2, and is encoded using the unique information of the receiving station UE1.
  • the receiving station UE1 decodes using the receiving station UE1 specific information held in advance, and acquires only the radio control information 302 addressed to the receiving station UE1.
  • this radio control information is not limited to this, as in multiple resource arrangements as shown in FIGS.
  • one radio control information is bundled with two or more control information addressed to other receiving stations.
  • the order information includes, for example, the absolute number of the multi-layer to which the multi-receiving station is assigned, the relative number of the multi-layer when the multi-layer of the self-receiving station is used as a reference, and the like.
  • the radio resource and the multi-layer resource map information as shown in FIGS. 3 and 4 are configured from the multi-layer number and the resource map information, and the receiving station performs interference removal processing and reception processing using this information.
  • FIG. 18 is an example of a connection-type control information configuration acquired by the receiving station UE2.
  • the control information addressed to each receiving station has a field in which link information for referring to the control information of other receiving stations is specified.
  • Each radio control information is encoded so that each receiving station can obtain it uniquely.
  • the control information 303 addressed to the receiving station UE2 is scrambled using the unique information of the receiving station UE2.
  • the receiving station UE2 can uniquely acquire the control information 303 addressed to the receiving station UE2 using the receiving station UE2 specific information held in advance.
  • control information addressed to the receiving station UE1 cannot be acquired. Therefore, in this radio control information configuration, only the link information 304 to the receiving station UE1 is included in the control information 303 addressed to the receiving station UE2.
  • the link information 304 to the receiving station UE1 includes, for example, information specific to the receiving station UE1, resource map address information where radio control information addressed to the receiving station UE1 exists. Based on the acquired link information, the receiving station UE2 can search for an address where control information addressed to the receiving station UE1 exists. The receiving station UE2 searches using the acquired link information, and acquires the radio control information 305 addressed to the receiving station UE1.
  • the radio control information 305 addressed to the receiving station UE1 since no receiving station is assigned to the lower layer, there is a field in which empty information 306 is set or a link information is specified in the field in which the link information is specified. It becomes the composition which does not.
  • this radio control information configuration is not limited to this, and there are two receiving stations in the lower layer as in a multiple resource arrangement as shown in FIGS. In the case of being assigned as described above, one radio control information is bundled with two or more pieces of link information.
  • FIG. 19 is a flowchart of the radio control information acquisition process according to this radio control information configuration. This is radio control information acquisition processing by the control information acquisition unit 215 of the control signal processing unit 210b for the connection type control information configuration of FIG.
  • the receiving station searches for an address where the radio control information addressed to the own receiving station exists using the own receiver station specific information (step S31), and acquires the radio control information addressed to the own receiving station (step S32).
  • link information for accessing the radio control information addressed to the other receiving station enclosed in the radio control information addressed to the own receiving station is acquired (step S33). If the link information can be acquired (step S34; Yes), using the link information to the acquired radio control information addressed to the other receiving station, the receiving station searches for an address where the radio control information addressed to the other receiving station exists. (Step S35), radio control information addressed to another receiving station is acquired (Step S32). If link information cannot be acquired (step S34; No), the link is interrupted and the receiving station ends the control information acquisition process. This process is repeated until all links are interrupted to search for and acquire radio control information.
  • the bundled wireless control information configuration method it is necessary to bundle the order information and explicitly notify the receiving station.
  • link information and links are provided. Since the number of times also serves as a relative number of the multiple layers, the order information is implicitly notified. Another feature is that there is no need to bundle order information.
  • resource map information necessary for monitoring when the reception station UE31 performs reception processing in FIG. 4 will be described.
  • the non-orthogonal multiplexing method it is necessary to remove interference between the signal addressed to the receiving station UE1 and the signal addressed to the receiving station UE21 before decoding the signal addressed to the receiving station UE31.
  • ResourceMap 1 UE1 ⁇ 1, 2, 3, 4 ⁇ to which data signals addressed to the receiving station UE1 and the receiving station UE21 are allocated.
  • receiving station UE34 resource map information necessary for monitoring when one receiving station is assigned to the resources to which receiving stations UE32 and UE33 are assigned in FIG. 4 (hereinafter referred to as receiving station UE34).
  • ResourceMap 2 ResourceMap 2 UE21 during data signal processing addressed to the second layer receiving station.
  • ⁇ ResourceMap 2 UE22 ⁇ 1, 2, 3, 4 ⁇ must be monitored at least.
  • ⁇ Reference signal> In the non-orthogonal multiplexing system, the characteristics greatly depend on the transmission power of the data signal.
  • a method of notifying the power to the receiving station using the reference signal will be described.
  • FIG. 20 is a schematic diagram of resource vs. power of a reference signal.
  • Different orthogonal radio resources are allocated to the reference signals of the receiving station UE1 and the receiving station UE2, and the reference signal is transmitted with the same power as the transmission power allocated to each receiving station. Since each reference signal is transmitted using orthogonal resources, the reference signal can be received without interference between the reference signals.
  • the receiving station estimates the propagation path and power by receiving each reference signal.
  • FIG. 21 is another schematic diagram of resource versus power of the reference signal.
  • the transmission power of the reference signal addressed to the receiving station UE2 is transmitted by adding the transmission power addressed to the receiving station UE1.
  • the estimation accuracy of the receiving station UE2 is improved by obtaining the power gain corresponding to the transmission power of the receiving station UE1.
  • the propagation path and power of the receiving station UE2 are estimated by first calculating the transmission power of the receiving station UE1 from the reference signal addressed to the receiving station UE1, and subtracting the amount of power addressed to the receiving station UE1 from the reference signal addressed to the receiving station UE2. Can be calculated.
  • the reference signal has been described in the case where the number of receiving stations is 2, but this embodiment is not limited to this, and is similarly set in the case where the number of receiving stations is 3 or more.
  • One method is to explicitly notify the value by placing information obtained by quantizing each allocated transmission power in the range of 0 to the maximum allowable transmission power in the radio control information addressed to each multiple receiving station for each unit radio resource. It is. Since the range is fixed, processing on the transmission side and the reception side is easy.
  • Another method is to limit the quantization range of the power information using the data signal transmission power of the receiving station assigned to the upper layer.
  • the range of quantization is limited by using the feature that the data signal transmission power of the receiving station assigned to the upper layer is set smaller than the data signal transmission power of the receiving station assigned to the lower layer.
  • the data signal transmission power of the first-layer receiving station is quantized with the maximum allowable transmission power as a maximum value.
  • Quantization is performed with the data signal transmission power of the first-layer receiving station as the maximum value.
  • the quantization range is limited by performing the quantization with the data signal transmission power of the receiving station immediately below the third layer as the maximum value. As a result, the number of notification bits can be reduced or the quantization accuracy can be increased.
  • the transmission / reception station configuration 1 for decoding the interference signal and removing the interference in this embodiment has been described above. As a result, communication by a non-orthogonal multiple access scheme is possible, and spectrum efficiency is improved by further increasing the number of multiplexing.
  • FIG. 22 is a conceptual diagram showing interference between macro base stations.
  • FIG. 23 is a conceptual diagram showing interference between a pico base station, a femto base station, and a macro base station.
  • FIGS. 22 and 23 are configured to include a transmission station eNB1-A, a transmission station eNB2-B, a reception station UE1, and a reception station UE2.
  • the transmission station eNB1 has the same configuration as in FIG. 6, FIG. 8, the reception station UE1 has the same configuration as FIG. 9, and the reception station UE2 has the same configuration as FIG.
  • the receiving station UE1 in FIGS. 22 and 23 is connected to the transmitting station eNB1, and the receiving station UE2 is connected to the transmitting station eNB2. Since the receiving station UE1 and the receiving station UE2 use the same radio resource as shown in FIG. 2 and the receiving station UE2 is arranged near the cell edge, the receiving station UE2 is addressed to the receiving station UE1 from the transmitting station eNB1. The signal is received as strong interference between adjacent cells. At this time, the receiving station UE2 can remove the interference signal in the same process as the non-orthogonal multiple access scheme by receiving the radio control information addressed to the receiving station UE1 from the transmitting station eNB1 or the transmitting station eNB2.
  • the radio control information addressed to the receiving station UE1 When transmitting the radio control information addressed to the receiving station UE1 from the transmitting station eNB2, it is transmitted with the same configuration as the radio control information described above. At this time, the radio control information addressed to the receiving station UE1 is sent from the transmitting station eNB1 to the transmitting station eNB2 through a backhaul line connected between the transmitting stations.
  • transmission is performed only in the connection type among the radio control information configurations described above.
  • data transmission is not performed by the transmission station eNB2 in order to avoid radio control information interference to radio resources to which radio control information addressed to the reception station UE1 transmitted by the transmission station eNB1 is assigned. In order to perform the above processing, it is necessary to share radio resource map information to which radio control information addressed to the receiving station UE1 is allocated between the transmitting station eNB1 and the transmitting station eNB2.
  • Radio control information of the receiving station of the own cell and radio control information addressed to the receiving station of one or more other cells associated with the radio control information of the receiving station of the own cell are transmitted.
  • the configuration of the transmitting station apparatus according to this transmitting / receiving station configuration is the same as that shown in FIGS. However, since the replica generation unit and the interference removal unit in the configuration of the receiving station UE2 are different from those in the transmission / reception station configuration 1, the replica generation unit and the interference removal unit will be described below.
  • FIG. 24 is a schematic diagram of the configuration of the receiving station apparatus according to the transmitting / receiving station configuration 2 of the first embodiment.
  • the output bit string of the decoding unit 209 is input to the replica generation unit 232, and the output results of the replica generation unit 232 are the FFT unit 204 and the frequency demapping unit 205 The signal is input to the interference removing unit 231 inserted therebetween.
  • the replica generation unit 262 is connected to the demodulation unit 208 instead of the decoding unit 209, and the interference removal unit 261 Arranged between.
  • the transmission / reception station configuration 2 does not perform decoding, and therefore does not require interference removal in units of transport blocks. That is, it is possible to eliminate interference by processing only the radio resource to which the desired data signal is allocated without being affected by the radio resource mapping of the lower layer receiving station.
  • the code bit string hard-determined by the demodulation unit 208 is output and input to the replica generation unit 262.
  • FIG. 25 is a block diagram of a configuration in the replica generation unit according to the present embodiment.
  • the replica generation unit 262 also starts processing from re-modulation and has a configuration in which re-frequency mapping is removed.
  • the replica generation unit 232 in FIG. 14 since the signal from the demodulation unit 208 is input, the remodulation unit 242 and the refrequency mapping unit 245 are unnecessary.
  • FIG. 26 shows a flowchart of a process in which the non-orthogonal receiving station in the present embodiment acquires a desired data signal.
  • the control information acquisition unit 15 of the control signal processing unit 210b acquires control information addressed to its own receiving station and multiplexed control information addressed to other receiving stations (step S41).
  • Control information for notifying control information addressed to the own receiving station and multiplexed control information addressed to other receiving stations has the same configuration as the transmitting / receiving station configuration 1 of the present embodiment.
  • the frequency demapping unit 205 and the layer demapping unit 207 demap the frequency and layer in which the data signal addressed to the receiving station exists from the acquired control information addressed to the own receiving station (step S42).
  • the data signal processing selection unit 16 of the control signal processing unit 210b causes the interference data signal.
  • Information to be received is sent from the control information acquisition unit to each processing unit.
  • the demodulator 208 demodulates the received data signal (step S44).
  • the demodulated data signal addressed to the other receiving station is not subjected to decoding processing, but is remodulated by the remodulating unit 242 of the replica generating unit 262 using the control information of the other receiving station (step S45).
  • Step S46 a reception signal replica of the data signal addressed to the other reception station is generated, and the reception data signal addressed to the other reception station is removed from the reception data signal by the interference removal unit 261 (step S46).
  • the data signal processing selection unit 16 of the control signal processing unit 210b selects to perform desired data signal processing.
  • the received data signal is demodulated using the control information addressed to the own receiving station (step S47), decoded (step S48), and the desired data signal addressed to the own receiving station is acquired.
  • the transmission / reception station configuration 2 that eliminates interference using a signal from the demodulation unit 208 without performing error correction decoding processing on the interference signal in the present embodiment has been described above. This makes it possible to remove interference more easily than the transmission / reception station configuration 1.
  • (3) Transmission / reception station configuration 3 Finally, a transmission / reception station configuration 3 that combines the transmission / reception station configuration 1 and the transmission / reception station configuration 2 of the present embodiment will be described.
  • the error correction method used in the encoding unit of the transmission / reception station configuration 1 of this embodiment is a method having a high error correction capability but a large amount of calculation, such as a turbo code or an LDPC code.
  • the transmission / reception station configuration 2 of this embodiment does not perform error correction decoding processing on the interference cancellation signal, interference cancellation is performed using a replica signal having an error. Therefore, the symbol error of the replica propagates to the subsequent processing, and as a result, the bit error of the desired signal is increased.
  • the transmission / reception station configuration 3 of this embodiment described below adaptively controls the transmission / reception station configuration 1 that performs error correction decoding processing on a replica signal and the transmission / reception station configuration 2 that does not perform error correction decoding processing from the number of errors. It is the structure to perform.
  • the basic configuration of the transmitting station apparatus and the receiving station apparatus according to the transmitting / receiving station configuration 3 of the present embodiment is the same as the transmitting / receiving station configuration 1 of the present embodiment.
  • the processing of the encoding unit of the transmitting station device and the processing of the decoding unit of the receiving station device and the processing of the re-encoding unit in the replica generation unit are different from those of the transmission / reception station configuration 1 of the present embodiment. Processing of the decoding unit will be described.
  • error detection coding is performed in two stages by the encoder 101 of the transmission station apparatus.
  • the error detection coding method include a parity code and a CRC code.
  • the receiving station apparatus adaptively changes the decoding process during the removal process using the error detection result.
  • FIG. 27 is a configuration diagram in the encoding unit of the transmitting station apparatus in the present embodiment.
  • the code unit 101 includes a first error detection code unit 141, an error correction code unit 142, and a second error detection code unit 143.
  • the first error detection code unit 141 and the error correction code unit 142 perform the same processing as the error detection code unit 121 and the error correction code unit 122 in FIG.
  • the second error detection code unit 143 adds a check bit to the data signal using, for example, a CRC code.
  • the data length (code block) to which the encoding of the second error detection code unit 143 is applied may be different from that of the first error detection code unit 141 and the error correction code unit 142.
  • the first error detection encoding unit 141 may encode the transport block
  • the second error detection encoding unit 143 may encode the resource block unit.
  • the CRC code is performed on a resource block basis for the sake of simplicity.
  • FIG. 28 is a configuration diagram in the decoding unit of the receiving station apparatus in the present embodiment.
  • the decoding unit 209 includes a second error detection unit 271, an error correction decoding unit 272, and a first error detection unit 273.
  • the second error detection unit 271 performs, for example, a cyclic redundancy check on the input encoded bit string to check whether there is an error.
  • the number of bit errors is acquired from the error check result, and the output of the encoded bit string is switched between the error correction decoding unit 272 and the remodulation unit 242 of the replica generation unit 262 according to the conditions.
  • the check bits are removed from the input encoded bit string and output to the error correction decoding unit 272. If the input encoded bit string is a soft decision bit string, the second error detection unit 271 converts it into a hard decision bit string and detects an error.
  • the error correction decoding unit 272 performs the same processing as the error correction decoding unit 221 of FIG.
  • the first error detection unit 273 also performs the same processing as the error detection unit 222 in FIG.
  • FIG. 29 is a configuration diagram of the re-encoding unit in the replica generation unit of the receiving station apparatus in the present embodiment.
  • the re-encoding unit 241 of the replica generation unit 232 includes an error correction code unit 274 and a second error detection code unit 275.
  • the error correction code unit 274 performs the same processing as the error correction code unit 142 in FIG.
  • the second error detection code unit 275 also performs the same process as the second error detection code unit 143 in FIG.
  • FIG. 30 is a flowchart illustrating processing from demodulation of undesired signals to re-modulation in the signal removal processing according to the present embodiment.
  • the symbol sequence input from the layer demapping unit 207 is demodulated by the demodulation unit 208, and an encoded bit sequence is output (step S51).
  • the second error detection unit 271 of the decoding unit 209 detects a bit error for each code block (step S52), and compares the number of detected bit errors with a threshold value (step S53).
  • the relationship between the number of bit errors and the threshold is determined by whether a signal from the modulation unit 208 is sent to the replica generation unit 232 or a signal processed by the error correction decoding unit 272 of the decoding unit 209 is sent to the replica generation unit 232. It is.
  • a method for setting the threshold value for the number of bit errors for example, a fixed value is set in advance, and a variation value corresponding to a transmission environment such as reception SINR is set.
  • the comparison method includes, for example, comparison with the average of the number of bit errors output in plural, comparison with the minimum number of bit errors, comparison with the maximum number of bit errors, and the like.
  • the position of the resource map ResourceMap i u to which the demodulated i-th layer receiving station u is allocated, and the receiving station is allocated in the layer one level above resource ResourceMap i + 1 ⁇ ResourceMap i + 1 v is a position being monitored.
  • v is a receiving station number that uses the same radio resource as the radio resource to which the receiving station u is assigned in the i + 1 layer. That is, comparison processing is not performed for resources that are not likely to be demodulated or decoded in the upper layer, and comparison is performed for each unit resource of the resource map that satisfies the following equation (6).
  • the map generation process will be described as an example by taking the interference removal process in the reception process of the receiving station UE31 in FIG.
  • the resource map to which the data signal addressed to the receiving station UE1 is assigned is ⁇ 1, 2, 3, 4 ⁇
  • the resource map to which the data signal to the receiving station UE21 is assigned is ⁇ 1, 2 ⁇
  • interference removal processing for the first layer is performed.
  • this embodiment was demonstrated with the aggregate
  • step S53 When the number of detected errors obtained by the error detection process is less than the threshold (step S53; Yes), it is determined that data is normally transmitted, and the encoded bit string is sent to the remodulation unit 242 in the replica generation unit 232. Is output.
  • the encoded bit string input to the remodulator 242 is modulated by a modulation scheme corresponding to the demodulator 208 to generate a replica symbol string (step S54).
  • step S53 if the number of bit errors exceeds the threshold (step S53; No), it is determined that it is necessary to perform error correction processing because there are many bit errors, and the encoded bit string is stored in the error correction decoding unit 272. Is output.
  • the encoded bit string input to the error correction decoding unit 272 is decoded by a decoding method corresponding to the error correction encoding method on the transmitting station side, and a data bit string is generated (step S55).
  • the obtained data bit string is output to the replica generation unit 232.
  • the error correction coding unit 274 of the recoding unit 241 in the replica generation unit 232 performs error correction coding corresponding to the transmission side error correction coding method (step S56), and the second error detection of the recoding unit 241 is performed.
  • the encoder 275 adds check bits corresponding to the second error detection encoder 143 on the transmission side (step S57), and finally modulates with a modulation scheme corresponding to the demodulator 208 to generate a replica symbol string (step S57). S54).
  • the first embodiment has been described above.
  • the transmission station apparatus configuration in which the encoding unit that performs the two-stage error detection coding and the reception station apparatus configuration in which the corresponding decoding unit is mounted have been described.
  • the present embodiment is not limited to this. Instead, three or more stages of error detection coding may be performed.
  • the second embodiment will be described.
  • branch determination of replica signal generation processing is performed using an error detection code.
  • branch determination of replica signal generation processing is performed using the power ratio of the multiplexed signal.
  • the configuration of the transmitting station device and the configuration of the receiving station device according to this embodiment are the same as those of the first embodiment. However, since the process of the decoding unit 209 of the receiving station apparatus is different from that of the first embodiment, the process of the decoding unit 209 will be described below.
  • FIG. 31 is a configuration diagram in the decoding unit of the receiving station apparatus in the present embodiment.
  • the decoding unit 209 a includes a power ratio calculation unit 281, an error correction decoding unit 282, and an error detection unit 283.
  • the power ratio calculation unit 281 calculates the reception power ratio between the input data signal addressed to the receiving station and the multiplexed data signal addressed to another receiving station. Assuming that the data signal reception power per unit resource of the receiving station assigned to the i-th layer when the k-th unit radio resource is used is P i (k) , the reception power ratio ⁇ i (k) of the multiplexed signal Is expressed by the following equation (7).
  • ⁇ j> i P j (k) is the received data signal power for other reception and ⁇ is a noise term.
  • the noise power to be substituted into the noise term is obtained by transmitting a reference signal at power 0 on the transmitting station side and measuring the received power on the receiving station side.
  • is set to 0.
  • the signal power of the data signal received power P i (k) and ⁇ is calculated using a received signal such as a reference signal.
  • the signal power is not limited to this, and may be notified by radio control information.
  • Equation (7) is an effective calculation formula when the noise power is known or very small compared to the received power.
  • is not 0 due to inter-cell interference.
  • SNR i (k) is the received signal-to-noise ratio of the reference signal addressed to UE1, and SINR i (k) is addressed to UE2. It is the received signal-to-noise ratio of the signal. That is, by using the power notification method based on the reference signal, ⁇ i (k) can be accurately calculated without acquiring noise power.
  • the power ratio calculation unit remodulates the encoded bit string input according to the condition from the reception power ratio ⁇ i (k) calculated by the equation (7) or the equation (8), by the error correction decoding unit 282 and the replica generation unit 262. The output is switched to the unit 242.
  • the power ratio calculation unit is also called a branching unit.
  • the error correction decoding unit 282 and the error detection unit 283 perform the same processing as the error correction decoding unit 282 and the error detection unit 283 in FIG.
  • FIG. 32 is a flowchart of processing from demodulation of undesired signals to remodulation in the signal removal processing in the present embodiment.
  • the symbol sequence input from the layer demapping unit 207 is demodulated by the demodulation unit 208, and an encoded bit sequence is output (step S61).
  • the power ratio calculation unit 281 calculates the reception power ratio ⁇ i (k) of the multiplexed signal (step S62), and a branch determination of the decoding process is performed by comparing the calculation result with a threshold value (step S63).
  • the relationship between the received power ratio and the threshold is determined by whether the signal from the modulation unit 208 is sent to the replica generation unit 232 or the signal processed by the error correction decoding unit 282 of the decoding unit 209a is sent to the replica generation unit 232. It is a condition.
  • the map M i for comparing the received power ratio and the threshold is the same as the branch determination process based on the number of errors in the transmission / reception station configuration 3 of the first embodiment.
  • the threshold setting method is not defined in the present embodiment. For example, the threshold setting method may be set in advance or notified by radio control information.
  • step S63 When the received power ratio ⁇ i (k ⁇ Mi) assigned in the comparison map exceeds the threshold (step S63; Yes), it is assumed that transmission is performed by the power calculator 281 in an environment with good transmission conditions in the multi-layer. It is judged and the process is switched to the process without decoding.
  • the encoded bit string output from the demodulation unit 208 is not input to the error correction decoding unit 209, but is output to the remodulation unit 242 in the replica generation unit 232 (step S64).
  • the symbol sequence modulated by the remodulator 242 is used as a replica signal for interference cancellation.
  • the power calculation unit 281 performs transmission in an environment with poor transmission conditions in the multi-layer. It is determined that the error correction has been performed, and the error correction code is decoded. That is, the encoded bit string output from the demodulation unit 208 is input to the error correction decoding unit 282 in the decoding unit 209a to perform decoding corresponding to the error correction code (step S65), and the data bit string is converted to the replica generation unit 232. To the error correction code section 251.
  • the error correction code unit 251 generates an encoded bit string (step S66), and after re-modulation processing (step S64), a replica symbol string is generated.
  • the processing for calculating the reception power ratio is performed by the power calculation unit in the present embodiment, but may be calculated by the control information acquisition unit or the propagation path estimation unit in accordance with the transmission power notification method.
  • the processing for calculating the received power ratio is performed in the power calculation unit in the receiving station in this embodiment, but may be calculated on the transmitting station side and notified to the receiving station.
  • the propagation path attenuation information and noise power are measured in advance at the receiving station, the information is notified to the transmitting station, and the data signal transmission power and propagation path attenuation information are used on the transmitting station side to calculate the predicted data signal received power.
  • the received power ratio is calculated using equation (7).
  • the configuration of the transmitting station apparatus and the basic configuration of the receiving station apparatus according to the present embodiment are the same as those in FIGS. 6, 8, 9, and 12. However, the processing of the encoding unit 101 of the transmitting station device and the processing of the decoding unit 209 of the receiving station device and the processing of the re-encoding unit 241 in the replica generation unit are different from those of the first embodiment. The processing of H.241 and the decoding unit 209 will be described.
  • FIG. 33 is a configuration diagram in the encoding unit of the transmitting station apparatus in the present embodiment.
  • the code unit 101a includes an error detection code unit 151, a first error correction code unit 152, and a second error correction code unit 153.
  • the error detection code unit 151 performs the same process as the error detection code unit 121 in FIG.
  • the first error correction coding unit 152 performs error correction coding on the input data signal and outputs a first coded bit string.
  • the error correction coding method for example, a coding method having high error correction capability such as turbo coding or LDPC is used.
  • the second error correction encoding unit 153 performs further error correction encoding on the first encoded bit sequence input from the first error correction encoding unit 152, and converts the second encoded bit sequence into the modulation unit 102. Output to.
  • the error correction coding method is, for example, an error with a small amount of calculation compared to the error correction coding method set in the first error correction coding unit 152 such as RS (Reed Solomon) code, convolutional code, etc.
  • a correction coding method is used.
  • the data length (code block) to which the encoding of the second error correction encoding unit 153 is applied may be different from that of the first error correction encoding unit 152 and the error detection encoding unit 151.
  • FIG. 34 is a configuration diagram in the decoding unit 209b of the receiving station apparatus in the present embodiment.
  • the decoding unit 209b includes a second error correction decoding unit 291, a first error correction decoding unit 292, and an error detection unit 293.
  • the second error correction decoding unit 291 includes an encoded bit string input from the demodulation unit 208 (hereinafter, an encoded bit string input from the demodulation unit 208 to the second error correction decoding unit 291 is referred to as a second encoded bit string). Error correction decoding corresponding to the coding rate information input from the control information acquisition unit 210 is performed to obtain a first coded bit string.
  • the first error correction decoding unit 292 performs error correction decoding corresponding to the coding rate information input from the control information acquisition unit 210 with respect to the first encoded bit string input from the second error correction decoding unit 291. To obtain a data signal.
  • the error detection unit 293 performs the same processing as the error detection unit 222 in FIG.
  • FIG. 35 is a configuration diagram in the re-encoding unit mounted on the replica generation unit of the receiving station UE2 apparatus in the present embodiment.
  • the re-encoding unit 241a in the present embodiment includes a second error correction encoding unit 295.
  • the second error correction code unit 295 in FIG. 35 is the same process as the second error correction code unit 153 in FIG.
  • the first encoded bit string input from the decoding unit 209 is input to the second error correction encoding unit 295, and the error correction corresponding to the coding rate information input from the control information acquisition unit 215 of the control signal processing unit 210b. Encoding is performed to generate a replica encoded bit string.
  • the re-encoding unit 241a uses an error correction encoding method equivalent to that on the transmission side.
  • FIG. 36 shows a flowchart of a process in which the non-orthogonal multiplexed receiving station in the present embodiment acquires a desired data signal addressed to its own receiving station.
  • the process of this embodiment performs the same process as that of the first embodiment shown in FIG. 14, but as a difference from the process of the first embodiment, as shown in step S75, the interference data signal process is the second process.
  • the error correction decoding is performed, and the first error correction decoding is not performed.
  • the desired data signal processing is performed up to the second and first error correction decoding (steps S82 and S83).
  • Other processes are the same as those in FIG.
  • the transmission station configuration, reception station configuration, and reception process in the third embodiment have been described above.
  • the transmitting station apparatus configuration in which the encoding unit that performs two different types of error correction coding is mounted and the receiving station apparatus configuration in which the decoding unit corresponding to the transmitting station apparatus configuration is mounted have been described, Not limited to this, three or more different error correction encoding processes may be performed.
  • the program that operates in the transmitting station apparatus and the receiving station apparatus related to the present invention is a program (a program that causes a computer to function) that controls the CPU and the like so as to realize the functions of the above-described embodiments related to the present invention.
  • Information handled by these devices is temporarily accumulated in the RAM in terms of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary.
  • a recording medium for storing the program a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical storage medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient.
  • a semiconductor medium for example, ROM, nonvolatile memory card, etc.
  • an optical storage medium for example, DVD, MO, MD, CD, BD, etc.
  • a magnetic recording medium for example, magnetic tape, Any of a flexible disk etc.
  • the program when distributing to the market, can be stored in a portable recording medium for distribution, or transferred to a server computer connected via a network such as the Internet.
  • the recording apparatus of the server computer is also included in the present invention.
  • a part or all of the transmitting station apparatus and the receiving station apparatus in the above-described embodiments may be individually converted into a processor, or a part or all of them may be integrated into a processor.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, when an integrated circuit technology that replaces LSI is realized by the advancement of semiconductor technology, an integrated circuit according to the technology can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 他の受信局宛のデータ信号に対するレプリカ信号を効率的に生成し、そのレプリカ信号を用いた干渉除去処理または干渉低減処理を行うことができるようにする。レプリカ生成部232は、復号部209から入力された干渉データ信号を送信局で生成された周波数デマッピング処理前のシンボル列まで戻す。生成されたレプリカシンボル列は、干渉除去部231に出力する。干渉除去部231は、FFT部204から入力された周波数領域信号をレプリカ生成部232から入力されたレプリカ周波数領域信号で減算を行い、所望でない受信局信号を除去する。減算結果のシンボル列を信号分離部206に出力する。2種類以上のレプリカ信号生成処理を有し、伝搬路の状況やデータ信号受信処理内容に応じて前記レプリカ信号生成処理が選択され、選択レプリカ信号生成処理によりレプリカ信号を生成し、干渉除去を行う。

Description

受信局装置、送信局装置、通信システム、受信方法、送信方法及びプログラム
 本発明は、複数の受信局に対するデータ信号を同一の無線リソースを用いて通信を行う受信局装置、送信局装置、通信システム、受信方法、送信方法及びプログラムに関する。
 近年のセルラー無線通信では、データトラフィックの急増により更なる伝送速度向上が望まれている。伝送速度を向上させる手段として、多くの無線周波数帯域とデータ送信時間を用いて通信を行う手法が有効であるが、セルラー無線通信に使用可能な無線周波数帯域とデータ送信時間には限りがある。そのため、LTE(Long Term Evolution)またはLTE-A(LTE-Advanced)のようなセルラー無線通信規格をさらに進化させた次世代無線通信規格などでは、少ない無線周波数帯域やデータ送信時間でより多くの情報を送るスペクトル効率向上技術が望まれている。
 スペクトル効率向上技術の1つとして、複数の受信局(受信局装置、端末、移動局、UE(User Equipment))に対するデータ信号を同一の無線周波数帯域と同一のデータ送信時間を用いて通信を行うために多重アクセス方式(多元接続方式)が用いられる。その多重アクセス方式は、例えば、直交拡散符号による直交多重を行うCDMA(Code Division Multiple Access、符号分割多元接続)やMIMO(Multiple-Input Multiple-Output)技術を用いた空間による直交多重を行うSDMA(Space Division Multiple Access、空間分割多元接続)などがある。これらの多重アクセス方式では、送信局(送信局装置、基地局、eNodeB)が各々の受信局に対するデータ信号と同一の無線周波数帯域と同一のデータ送信時間を用いて送信する際に、送信局はそれらのデータ信号を互いに直交多重して送信する。そのため、同一の無線周波数帯域と同一のデータ送信時間を用いても各々の受信局は、データ信号を復号することができる。すなわち、これらの通信技術では、送信局側における事前の直交分離処理を行うことによって、複数の受信局に対するデータ信号を同一の無線周波数帯域と同一のデータ送信時間を用いて通信を行うことができる。以下、本明細書では、無線周波数帯域、データ送信時間、空間ストリーム、直交拡散符号の各々を用いる無線伝送の伝搬環境を無線リソースと定義し、更に4要素全てが同一の無線伝送の伝搬環境を同一の無線リソースと定義する。しかしながら、拡散符号による符号多重や、MIMO技術による空間多重には、多重可能な受信局数に上限があり、現段階ではこれらの技術のみによる更なるスペクトル効率の向上は困難である。
 一方、スペクトル効率向上技術の別の1つとして、受信局側において干渉となる他受信局宛データ信号を分離する手法を用いることができる。例えば、受信局は、逐次干渉除去(Successive Interference Cancellation; SIC)、並列干渉除去(Parallel Interference Cancellation; PIC)やターボSICなどの干渉除去処理または干渉低減処理を用いることができる。一般に、送信局側における事前分離処理を行わずに、送信局が同一の無線リソースを用いて複数の受信局に対するデータ信号を送信する場合、同一の無線リソースを使う受信局宛のデータ信号同士が干渉しあい、各々の受信局はデータ信号を復号することが困難となる。しかしながら、受信局が干渉信号を除去または低減することで、受信局は、送信局が事前分離処理を行わずに同一の無線リソースを用いて送信した複数の受信局に対するデータ信号から、自分宛のデータ信号を受信することが可能となる。例えば、受信局における干渉除去技術または干渉低減技術において、受信局は、受信信号の中から、干渉信号となる他の受信局宛のデータ信号のレプリカ信号を生成し、そのレプリカ信号を用いて、受信信号における干渉信号の除去処理または低減処理を行う。そのような受信局における干渉除去技術または干渉低減技術を用いた通信システムは、非特許文献1に記載されている。
富田,樋口,"下りリンクセルラにおける直交多元接続と重畳符号化およびSICを用いる非直交多元接続のユーザスループット特性の比較評価",信学技法 RCS2011-58,pp. 135-140,2011年6月.
 ここで、従来想定されている受信局における干渉除去技術または干渉低減技術は、干渉信号のレプリカ生成時において、干渉信号に対して誤り訂正復号を行う方式と誤り訂正復号を行わない方式が考えられる。干渉信号に対して誤り訂正復号を行う方式は、誤り訂正復号処理によって干渉信号のレプリカ信号は符号化利得が得られるため、干渉除去処理または干渉低減処理の効果を効率的に得られるが、誤り訂正復号処理によって大きな処理遅延または負荷が発生する。一方、干渉信号に対して誤り訂正復号を行わない方式は、比較的処理が簡易になるが、受信局が生成するレプリカ信号に多くのビット誤りが発生することになる。多くのビット誤りを含むレプリカ信号を用いて干渉除去処理または干渉低減処理を行うと、干渉除去処理または干渉低減処理による効果が低減するため、効率的なデータ通信を妨げる要因となる。
 本発明は、上記の点に鑑みてなされたものであり、他の受信局宛のデータ信号に対するレプリカ信号を効率的に生成し、そのレプリカ信号を用いた干渉除去処理または干渉低減処理を行うことができる受信局装置、送信局装置、通信システム、受信方法、送信方法及びプログラムを提供することを目的とする。
 第1の本発明は、送信局装置と複数の受信局装置との間で、少なくとも一部が重なる無線リソースを用いた通信を行う通信システムの受信局装置であって、自受信局宛の所望データ信号あるいは他の受信局宛の干渉データ信号に対して復調処理を行う復調部と、復調処理された自受信局宛の所望データ信号あるいは他の受信局宛の干渉データ信号に対して復号処理を行う復号部と、受信信号から自受信局宛の所望データ信号処理と他の受信局宛の干渉データ信号処理との選択を行うデータ信号処理選択部と、前記データ信号処理選択部により処理を選択された前記干渉データ信号に対して、前記復調部の出力信号に変調処理を行い、又は、前記復号部の出力信号に符号化処理と変調処理を行い、レプリカ信号を生成するレプリカ生成部と、受信データ信号から前記レプリカ信号を減算する受信データ信号処理を行う干渉除去部と、を備え、前記干渉除去部を出力した信号に対し、前記データ信号処理選択部が所望データ信号の処理を選択し、前記復号部により復調処理と前記復号部により復号処理を行うことを特徴とする。
 第2の本発明は、第1の本発明の受信局装置であって、前記復号部は、前記復調部から入力された信号に対し複数の誤り訂正復号処理を行い、前記レプリカ生成部は、誤り訂正復号処理を行った信号に対して複数の誤り訂正符号化処理と変調処理を行い、前記復号部で干渉データ信号を受信処理する際に途中で誤り訂正復号処理を終えてから、前記レプリカ生成部で符号化処理と変調処理を行ってレプリカ信号を生成する処理を行うことを特徴とする。
 第3の本発明は、第1の本発明の受信局装置であって、前記復調部から入力された信号に対し、誤り訂正復号処理を行わずに前記レプリカ生成部に出力する処理と、誤り訂正復号処理を行ってから前記レプリカ生成部に出力する処理を、干渉データ信号を受信処理する際に分岐条件によって切り替える処理を行い、前記レプリカ生成部は、前記切り替え処理に対応して、変調処理、又は、符号化処理と変調処理、を切り替えてレプリカ信号を生成することを特徴とする。
 第4の本発明は、第3の本発明の受信局装置であって、前記復号部は、一つのデータ信号受信処理中に誤り検出処理を行う誤り検出部を複数有し、前記複数の誤り検出部のうちの一つが決められた無線リソース範囲に含まれるデータ信号列に対して誤り検出を行う構成を有し、前記誤り検出の結果を前記分岐条件とすることを特徴とする。
 第5の本発明は、第4の本発明の受信局装置であって、前記分岐条件は、前記誤り検出部によって出力される決められた無線リソース範囲における誤り数と閾値との関係であり、前記誤り検出部は、前記誤り数が閾値より少ない場合は、前記復調部で復調処理を行ってから前記レプリカ生成部で変調処理を行う処理と、前記誤り数が閾値以上の場合は、前記復調部で復調処理と前記復号部で復号処理を行ってから前記レプリカ生成部で符号化処理と変調処理を行う処理と、を切り替えることを特徴とする。
 第6の本発明は、第3の本発明の受信局装置であって、受信データ信号処理中の干渉データ信号電力と受信データ信号のうちの前記干渉データ信号以外のデータ信号電力との電力比を、決められた無線リソース範囲で計算する処理を行う電力比計算部を有し、前記電力比を前記分岐条件とすることを特徴とする。
 第7の本発明は、第6の本発明の受信局装置であって、前記分岐条件は、決められた無線リソース範囲における電力比と閾値との関係であり、前記電力比が閾値より高い場合は、復調処理を行ってから変調処理を行い、前記電力比が閾値以下の場合は、復調処理と復号処理を行ってから符号化処理と変調処理を行うことを特徴とする。
 第8の本発明は、第1から第7の本発明のいずれかの受信局装置であって、前記制御信号処理部は、受信信号から自受信局宛無線制御情報と前記自受信局宛無線制御情報に関係付けられた1つ以上の他受信局宛無線制御情報とを取得する制御情報取得部と、選択した信号処理の無線制御情報を出力するデータ信号処理選択部とを有することを特徴とする。
 第9の本発明は、第8の本発明の受信局装置であって、前記制御情報取得部は、前記無線制御情報の構成順番から受信データ信号処理の順番の情報を取得することを特徴とする。
 第10の本発明は、第8の本発明の受信局装置であって、取得した複数の無線制御情報に含まれるリソースマップ情報から、受信局装置が干渉データ信号の受信処理を行う無線リソースをモニタリングするリソースマップ情報を生成することを特徴とする。
 第11の本発明は、第10の発明の受信局装置において、前記分岐条件の判断を行う比較マップ情報を、前記リソースマップ情報から生成し、前記比較マップ情報に基づいて前記分岐条件を判断することによって処理を切り替えることを特徴とすることを特徴とする。
 第12の本発明は、送信局装置と複数の受信局装置との間で、少なくとも一部が重なる無線リソースを用いた通信を行う通信システムの送信局装置であって、各複数の受信局装置が使用する無線リソースの少なくとも一部が重なる無線リソースを用いて前記複数の受信局宛データ信号を多重して送信する送信処理部を有し、前記送信処理部は、一つのデータ信号送信処理で複数の異なる誤り訂正符号処理を行う符号部を有することを特徴とする。
 第13の本発明は、第12の本発明の送信局装置であって、前記送信処理部は、複数の受信局宛データ信号を重畳する重畳合成部を有する非直交多重方式送信構成、複数の受信局宛データ信号をマルチユーザプリコーディングウェイトによって空間分離処理を行うマルチユーザプリコーディング部を有する一部空間直交多重方式送信構成、のうちの少なくとも一つを有することを特徴とする。
 第14の本発明は、第13の本発明の送信局装置であって、前記送信処理部は、受信局装置の無線制御情報と、前記受信局装置の無線制御情報と紐付けた1つ以上の多重される受信局宛の無線制御情報と、を送信する構成を有することを特徴とする。
 第15の本発明は、第12の本発明の送信局装置であって、前記送信処理部は、他セルを構成する他の送信局装置から前記他セル内に存在する他セル受信局宛の無線制御情報を取得し、各複数の受信局装置が使用する無線リソースの少なくとも一部が重なる無線リソースを用いて前記他セルの送信局装置と連携して送信局装置から送信する局間連携送信構成と、自セルの受信局装置の無線制御情報と、前記自セルの受信局装置の無線制御情報と紐付けた1つ以上の他セルの受信局宛の無線制御情報と、を送信する構成と、を有することを特徴とする。
 第16の本発明は、送信局装置と複数の受信局装置との間で、少なくとも一部が重なる無線リソースを用いた通信を行う通信システムであって、第2の本発明の受信局装置と、第12から第15の本発明のいずれかの送信局装置と、を有することを特徴とする。
 第17の本発明は、送信局装置と複数の受信局装置との間で、少なくとも一部が重なる無線リソースを用いた通信を行う通信システムの送信局装置であって、各複数の受信局装置が使用する無線リソースの少なくとも一部が重なる無線リソースを用いて前記複数の受信局宛データ信号を多重して送信する送信処理部を有し、前記送信処理部は、一つのデータ信号送信処理中に複数の誤り検出符号化処理を行い、複数の誤り検出符号化処理の内の一つが決まった無線リソース範囲の中に含まれるデータ信号に対して誤り検出符号化処理を行う符号部を有することを特徴とする。
 第18の本発明は、第17の本発明の送信局装置であって、前記送信処理部は、複数の受信局宛データ信号を重畳する重畳合成部を有する非直交多重方式送信構成、複数の受信局宛データ信号をマルチユーザプリコーディングウェイトによって空間分離処理を行うマルチユーザプリコーディング部を有する一部空間直交多重方式送信構成、のうちの少なくとも一つを有することを特徴とする。
 第19の本発明は、第18の本発明の送信局装置であって、受信局装置の無線制御情報と、前記受信局装置の無線制御情報と紐付けた1つ以上の多重される受信局宛の無線制御情報と、を送信する構成を有する。
 第20の本発明は、第17の本発明の送信局装置であって、前記送信処理部は、他セルを構成する他の送信局装置から前記他セル内に存在する他セル受信局宛の無線制御情報を取得し、各複数の受信局装置が使用する無線リソースの全部もしくは一部が同一の無線リソースを用いて前記他セルの送信局装置と連携して送信局装置から送信する局間連携送信構成と、自セルの受信局装置の無線制御情報と、前記自セルの受信局装置の無線制御情報と紐付けた1つ以上の他セルの受信局宛の無線制御情報と、を送信する構成と、を有することを特徴とする。
 第21の本発明は、送信局装置と複数の受信局装置との間で、少なくとも一部が重なる無線リソースを用いた通信を行う通信システムであって、第4又は第5の本発明の受信局装置と、第17から第20の本発明のいずれかの送信局装置と、を有することを特徴とする。
 第22の本発明は、送信局装置と複数の受信局装置との間で、少なくとも一部が重なる無線リソースを用いた通信を行う通信システムの送信局装置であって、各複数の受信局装置が使用する無線リソースの少なくとも一部が重なる無線リソースを用いて前記複数の受信局宛データ信号を多重して送信する送信処理部を有し、前記送信処理部は、前記複数の受信局宛データ信号送信電力値情報の夫々を前記複数の受信局宛無線制御情報の夫々で通知する構成を有することを特徴とする。
 第23の本発明は、第22の本発明の送信局装置であって、前記受信局宛データ信号の送信電力情報を通知する値は、0から基準電力値の間で受信局宛データ信号送信電力値を量子化した値であることを特徴とする。
 第24の本発明は、第23の本発明の送信局装置であって、前記基準電力値は、最大送信許容電力値であることを特徴とする。
 第25の本発明は、第24の本発明の送信局装置であって、前記基準電力値は、受信局装置よりも直前の順番で多重した受信局宛データ信号送信電力値であり、直前の順番で多重する受信局装置が存在しない場合は最大送信許容電力値であることを特徴とする。
 第26の本発明は、第6、第7又は第8の本発明の受信局装置であって、第15から第17の本発明のいずれかの送信局装置で送信された複数の受信局宛無線制御情報に含まれる受信局宛データ信号送信電力値情報と基準電力値から、量子化範囲を取得して受信局宛データ信号送信電力値情報を取得することを特徴とする。
 第27の本発明は、送信局装置と複数の受信局装置との間で通信を行う際に用いる無線リソースが重なる通信システムであって、第26の本発明の受信局装置と、第22から第25の本発明のいずれかの送信局装置と、を有することを特徴とする。
 第28の本発明は、送信局装置と複数の受信局装置との間で、少なくとも一部が重なる無線リソースを用いた通信を行う通信システムの送信局装置であって、各複数の受信局装置が使用する無線リソースの少なくとも一部が重なる無線リソースを用いて前記複数の受信局宛データ信号を多重して送信する送信処理部を有し、前記送信処理部は、受信局宛データ信号と同時に送信される受信局宛参照信号を、前記受信局宛データ信号送信電力と前記受信局装置の前の順番で多重した受信局データ信号送信電力の総和とを加算した送信電力で送信する構成を有することを特徴とする。
 第29の本発明は、第6、第7又は第8の本発明の受信局装置であって、第28の送信局装置で送信された各受信局宛参照信号を受信し、各受信局宛参照信号の受信電力から干渉データ信号処理を行う受信局装置の順番に参照信号受信電力を減算し、各受信局宛データ信号受信電力値情報を得ることを特徴とする。
 第30の本発明は、送信局装置と複数の受信局装置との間で通信を行う際に用いる無線リソースが重なる通信システムであって、第29の本発明の受信局装置と、第28の本発明の送信局装置と、を有することを特徴とする。
 第31の本発明は、送信局装置と複数の受信局装置との間で、少なくとも一部が重なる無線リソースを用いた通信を行う通信システムの送信局装置であって、各複数の受信局装置が使用する無線リソースの全部もしくは一部が同一の無線リソースを用いて前記複数の受信局宛データ信号を多重して送信する送信処理部を有し、前記送信処理部は、前記複数の受信局装置のうちの一つの受信局宛データ信号予測受信電力と、前記一つの受信局装置に多重される受信局宛データ信号予測受信電力の総和と前記一つの受信局装置の干渉雑音電力との和と、の電力比を決められた無線リソース範囲で計算する処理を行う構成を有することを特徴とする。
 第32の本発明は、送信局装置と複数の受信局装置との間で、少なくとも一部が重なる無線リソースを用いた通信を行う通信システムの受信方法であって、受信信号から自受信局宛の所望データ信号と他の受信局宛の干渉データ信号とを判別する処理を行うステップと、前記干渉データ信号に対しては復調処理を行ってから変調処理を行い、又は、復調処理と復号処理を行ってから符号化処理と変調処理を行い、レプリカ信号を生成して受信データ信号からレプリカ信号を減算する受信データ信号処理を行うステップと、所望データ信号に対しては復調処理と復号処理を行って受信処理を終了する受信データ信号処理を行うステップと、を有することを特徴とする。
 第33の本発明は、受信局装置に、第32の本発明の受信方法における各ステップを実行させるためのプログラムである。
 第34の本発明は、送信局装置と複数の受信局装置との間で、少なくとも一部が重なる無線リソースを用いた通信を行う通信システムの送信方法であって、各複数の受信局装置が使用する無線リソースの少なくとも一部が重なる無線リソースを用いて前記複数の受信局宛データ信号を多重して送信するステップと、一つのデータ信号送信処理で複数の異なる誤り訂正符号処理を行うステップと、を有することを特徴とする。
 第35の本発明は、送信局装置に、第34の本発明の送信方法における各ステップを実行させるためのプログラムである。
 第36の本発明は、送信局装置と複数の受信局装置との間で、少なくとも一部が重なる無線リソースを用いた通信を行う通信システムの送信局装置であって、各複数の受信局装置が使用する無線リソースの少なくとも一部が重なる無線リソースを用いて前記複数の受信局宛データ信号を多重して送信するステップと、一つのデータ信号送信処理中に複数の誤り検出符号化処理を行い、複数の誤り検出符号化処理の内の一つが決まった無線リソース範囲の中に含まれるデータ信号に対して誤り検出符号化処理を行うステップと、を有することを特徴とする。
 第37の本発明は、送信局装置に、第36の本発明の送信方法における各ステップを実行させるためのプログラムである。
 本発明によれば、他の受信局宛のデータ信号に対するレプリカ信号を効率的に生成し、そのレプリカ信号を用いた干渉除去処理または干渉低減処理を行うことができる。
本発明の第1の実施形態に係る無線通信システムの概略を示す図である。 本発明の第1の実施形態に係る受信局の無線リソース割当の例その1を示す図である。 本発明の第1の実施形態に係る受信局の無線リソース割当の例その2を示す図である。 本発明の第1の実施形態に係る受信局の無線リソース割当の例その3を示す図である。 本発明の第1の実施形態に係る送受信局構成1の非直交多重方式で送信する信号のコンスタレーション図である。 本発明の第1の実施形態に係る送受信局構成1の一部直交多重方式で送信する送信局装置の構成を示すブロック図である。 本発明の第1の実施形態に係る送受信局構成1の送信局装置内の符号部の構成を示すブロック図である。 本発明の第1の実施形態に係る送受信局構成1の非直交多重方式で送信する送信局装置の構成を示すブロック図である。 本発明の第1の実施形態に係る送受信局構成1の受信局UE1装置の構成を示すブロック図である。 本発明の第1の実施形態に係る送受信局構成1の受信局UE1装置内の復号部の構成を示すブロック図である。 本発明の第1の実施形態に係る送受信局構成1の受信局UE1装置内の制御信号処理部の構成を示すブロック図である。 本発明の第1の実施形態に係る送受信局構成1の受信局UE2装置の構成を示すブロック図である。 本発明の第1の実施形態に係る送受信局構成1の受信局装置UE2内の制御信号処理部の構成を示すブロック図である。 本発明の第1の実施形態に係る送受信局構成1のレプリカ生成部の装置構成を示すブロック図である。 本発明の第1の実施形態に係る送受信局構成1のレプリカ生成部内の再符号部の構成を示すブロック図である。 本発明の第1の実施形態に係る送受信局構成1の受信局UE2装置の所望データ信号取得処理のフローチャートである。 本発明の第1の実施形態に係る送受信局構成1の受信局UE2装置が取得する同梱型の制御情報構成の一例である。 本発明の第1の実施形態に係る送受信局構成1の受信局UE2装置が取得する接続型の制御情報構成の一例である。 本発明の第1の実施形態に係る送受信局構成1の受信局UE2装置が取得する接続型の制御情報構成の取得処理のフローチャートである。 本発明の第1の実施形態に係る送受信局構成1の参照信号の無線リソース割当と電力割当の概要図その1である。 本発明の第1の実施形態に係る送受信局構成1の参照信号の無線リソース割当と電力割当の概要図その2である。 本発明の第1の実施形態が適用可能なマルチセル無線通信システムの概略を示す図である。 本発明の第1の実施形態が適用可能なヘテロジニアスマルチセル無線通信システムの概略を示す図である。 本発明の第1の実施形態に係る送受信局構成2の受信局UE2装置の構成を示すブロック図である。 本発明の第1の実施形態に係る送受信局構成2のレプリカ生成部の装置構成を示すブロック図である。 本発明の第1の実施形態に係る送受信局構成2の受信局UE2装置の所望データ信号取得処理のフローチャートである。 本発明の第1の実施形態に係る送受信局構成3の送信局内の符号部の装置構成を示すブロック図である。 本発明の第1の実施形態に係る送受信局構成3の受信局UE2装置内の復号部の装置構成を示すブロック図である。 本発明の第1の実施形態に係る送受信局構成3の受信局UE2装置内のレプリカ生成部内の再符号部の装置構成を示すブロック図である。 本発明の第1の実施形態に係る送受信局構成3の受信局UE2装置内の再符号部の装置構成を示すブロック図である。 本発明の第2の実施形態に係る受信局UE2装置の所望データ信号取得処理のフローチャートである。 本発明の第2の実施形態に係る送信局内の符号部の装置構成を示すブロック図である。 本発明の第3の実施形態に係る受信局UE2装置内の復号部の装置構成を示すブロック図である。 本発明の第3の実施形態に係る受信局UE2装置の干渉除去処理における復号から再符号までの処理を示すフローチャートである。 本発明の第3の実施形態に係る受信局UE2装置内の復号部の装置構成を示すブロック図である。 本発明の第3の実施形態に係る受信局UE2装置の干渉除去処理における復号から再符号までの処理を示すフローチャートである。
 以下、図面を参照しながら本発明の実施形態について説明する。
(第1の実施形態)
 本実施形態では、通信回線はダウンリンク(下り回線、downlink)の場合について説明を行う。以下、同一の無線リソースを用いて通信を行う受信局の数が2として説明するが、本実施形態ではこれに限られず、受信局数が3以上であってもよい。また、1ヶ所の送信局から送信するとして説明するが、2ヶ所以上の送信局から同一の無線リソースを用いて通信を行ってもよい。なお、この場合は複数の送信局が異なる送信位置から送信を行うので送信局が用いる空間リソースは異なるが、受信局が用いる空間リソースが同一であれば、同一の無線リソースを用いる事になる。従って、「2ヶ所以上の送信局から同一の無線リソース」は、受信局が2ヶ所以上の送信局からの搬送波の受信時において同一の無線リソースであるという意味になる。
 ここで、送信局側における事前分離処理を行わずに、送信局が同一の無線リソースを用いて複数の受信局に対するデータ信号を送信する、多重アクセス方式を用いた通信システムは、非直交多元接続方式と呼称する。非直交多元接続方式が対応する送信方法は複数ある。非直交多元接続方式が対応する送信方法の一つは、一部空間直交多重方式である。一部空間直交多重方式では、複数の受信局間チャネル行列を上三角行列となるマルチユーザプリコーディング行列を送信データ信号に対して乗算を行い、複数のアンテナからプリコーディング後の信号を送信する送信方式である。非直交多元接続方式が対応する送信方法の別の一つは、非直交多重方式である。非直交多重方式では、多重される受信局のうちの複数の受信局宛に対するデータ信号を重畳符号(Superposition coding)化や階層変調(Hierarchal modulation)等の技術を用いて一つの変調後シンボルとして合成し、一つ又は複数のアンテナから合成信号を送信する送信方式である。
 また、非直交多元接続方式における受信局は、干渉除去技術または干渉低減技術を持つことが好ましい。また、干渉除去技術または干渉低減技術は、他の受信局宛のデータ信号に対するレプリカ信号を効率的に生成し、そのレプリカ信号を用いた干渉除去処理または干渉低減処理を行う。
 同一の無線リソースを共有する他の多元接続方式であるCDMA(Code Division Multiple Access;符号分割多元接続)やSDMA(Space Division Multiple Access;空間分割多元接続)と異なる点として、直交符号系列によるスペクトル拡散を行わず、空間的にも非直交若しくは一部直交の状態においても受信局はデータ信号を検出することができる。すなわち、非直交多元接続方式は複数アンテナを用いるMIMO通信方式と比較して、少ないアンテナ本数でスペクトル効率を向上させる事が可能となる。また、非直交多元接続方式は、CDMA、SDMA等の従来多元接続方式と組み合わせる事が可能である。よって、更なる受信局同時通信数(多重数)を増やすことが可能となり、高いスペクトル効率を達成できる。
 図1は、本実施形態に係る通信システムを示す概念図である。通信システムは、送信局eNB1、受信局UE1および受信局UE2を含んで構成される。図1で示す例では、受信局UE1は、送信局eNB1に対して、受信局UE2よりも遠い場所に位置している。そのため、受信局UE1における受信信号の信号対雑音電力比(SNR;Signal to Noise power Ratio)は、信号の距離減衰により、受信局UE2における受信信号の信号対雑音電力比よりも低い。
 図2、図3、図4は、本実施形態に係る受信局の無線リソース割当の一例を示す図である。
 図2で示す非直交多元接続方式では、受信局UE1と受信局UE2が同一の無線リソースを共有し、非直交多重方式で多重されている。また、受信局UE1宛の信号と受信局UE2宛の信号は各々の送信電力が異なるように送信される。すなわち、受信局UE1宛の信号電力は、受信局UE2宛の信号電力よりも高くする。これにより、非直交多元接続方式における各々の受信局は、自受信局宛のデータ信号を取得することができる。例えば、受信局UE1において、受信局UE2宛の信号電力が雑音電力と同程度かそれよりも小さい場合、受信局UE1は、受信局UE1宛の信号が受信局UE2宛の信号と比較して大きな電力で送信されているため、受信局UE2宛の信号を意識せずに受信処理を行うことができる。すなわち、受信局UE1は、従来と同様の受信方法で受信局UE1宛のデータ信号を取得することができる。一方、受信局UE2は、受信局UE1宛の信号が大きな干渉となるため、受信局UE2宛の信号は取り出すことが困難となる。受信局UE2宛の信号を取り出す場合は、受信局UE2は、初めに受信局UE1の信号を検出し、同信号を受信局UE2の受信信号から除去することで、受信局UE2は受信局UE2宛のデータ信号を取得することが可能となる。
 上記の非直交多元接続方式の多重関係を多重層で定義した。多重層に割り当てられた受信局は、下層に他の受信局が割り当てられた場合、下層受信局宛信号が大きな送信電力でリソースが重なって送信されている為、その下層に割り当てられている全ての受信局宛信号を干渉除去機構を用いて干渉除去若しくは干渉低減を行う必要がある。一方で、上層に割り当てられた受信局に対しては、意識せずに受信処理を行うことができる。すなわち、受信局UE1は第1層に、受信局UE2は第2層に割り当てられる。
 本実施形態では、受信局の割当無線周波数帯域幅をトランスポートブロックと定義され、トランスポートブロックに含まれる信号を用いて誤り訂正復号が行われる。又、最小割当無線周波数帯域幅をリソースブロックと定義され、各リソースブロックは一つの無線リソース番号で表される。
 割り当てられる無線リソース量が各多重層で独立に設定される場合を図3、図4に示す。図3は、上層のリソース割当単位が多い場合における本実施形態に係る受信局の無線リソース割当の一例を示す図である。上層に割り当てられた受信局は、下層の全ての他受信局宛信号を復号して干渉除去しなければならないため、例えば、第3層に割り当てられた受信局UE3宛信号を復号するには、受信局UE11、12、13、14、21、22と6局の受信局宛の信号を復号し、除去する必要がある。一方で、図4は、下層のリソース割当単位が多い場合における本実施形態に係る受信局の無線リソース割当の一例を示す図である。同様に、第3層に割り当てられた受信局UE31を復号するには、受信局UE1、21の2局の受信局宛の信号を復号し、除去するだけで良い。しかし、所望信号が割り当てられる無線リソース以上の帯域をモニタリングする必要があり、前記の例では、無線リソース番号1だけでなく無線リソース番号2、3、4までをモニタリングする。本実施形態は、図2、図3、図4のいずれの場合においても適用可能である。
 <受信信号モデル>
 ここで、本実施形態の受信局装置が適用可能な一部空間直交な多重法及び非直交な多重法について受信信号モデルを用いて説明する。なお、受信局の数が2として説明するが、受信局数が3以上であっても同様の受信信号モデルで表される。
 [1.一部空間直交多重方式の受信信号モデル]
 初めに、伝搬路情報について定義する。本実施形態において、受信局UEiに対する送信に割り当てた送信アンテナ群jと受信局UEiの受信アンテナ群i間の伝搬路行列をHijとすると、伝搬路行列Hを次式(1)のように定義する。
Figure JPOXMLDOC01-appb-M000001
 ここで、H=[Hi1,Hi2]は送信局の全送信アンテナと受信局UEiの受信アンテナ間の伝搬路行列である。伝搬路行列HはQR分解を用いて次式(2)のように分解可能となる。
Figure JPOXMLDOC01-appb-M000002
 受信局UEiが受信するデータ信号をy、送信局が受信局UEiに対して送信するデータ信号をx、QR分解で得られたユニタリ行列QをマルチユーザプリコーディングウェイトWとして用いるとすると、一部空間直交多重方式の受信信号モデルは次式(3)のように表される。
Figure JPOXMLDOC01-appb-M000003
 ここで、nは受信局UEiが受ける加法性白色雑音である。
 式(3)より、受信局UE1は干渉を受信することなく受信局UE1の所望データ信号L11が伝送される。一方で、受信局UE2は受信局UE1の干渉データ信号L21を受けて受信局UE2の所望データ信号L22が伝送される。受信局UE2の受信局装置は受信局UE1の干渉データ信号L21を除去する機構を搭載することで、所望データ信号L22を識別することが可能となる。
 [2.非直交多重方式の受信信号モデル]
 一方、同一の無線リソースで共有して多重する別の技術として、重畳符号(Superposition coding)や階層変調(Hierarchal modulation)がある。送信局が送信するシンボルを以下の式(4)のように設定する。
Figure JPOXMLDOC01-appb-M000004
 ここで、αは受信局UEiに割り当てられる電力分配係数である。図5に非直交多重方式で合成されたコンスタレーションの一例を示す。図5のように、受信局UE1宛のQPSKシンボルと受信局UE1宛シンボルに比べて半分の振幅で送信される受信局UE2宛のQPSKシンボルを合成すると、合成後のシンボルは16通りで表され、2受信局のデータ信号を纏めて送信することが可能となる。非直交多重方式の受信信号モデルは次式(5)のように表される。
Figure JPOXMLDOC01-appb-M000005
 受信局UE1では、干渉データ信号√αは所望データ信号√αよりも受信電力が小さいため、雑音とみなして復調・復号が可能となる。一方で、受信局UE2では、干渉データ信号√αが所望データ信号√αよりも受信電力が大きいため、受信局UE1宛のデータ信号√αを除去する機構が必要となる。
 <送受信局構成>
 次に、上記で説明した一部空間直交多重方式、若しくは、非直交多重方式、又は、一部空間直交多重方式と非直交多重方式を組み合わせた多重方式での信号伝送及び信号検出を可能とする送信局装置及び受信局装置の構成を図に沿って説明する。
(1)送受信構成1
 先ず、干渉信号に対して誤り訂正復号を行う送受信局構成1について説明する。干渉信号に対して誤り訂正復号を行うことで、干渉信号のレプリカ信号は符号化利得を得る。
 図6は、本実施形態に係る一部空間直交多重方式で送信する送信局装置の構成を示す概略図である。
 送信局装置eNB1-Aは、符号部101(101-1~101-4)、変調部102(102-1~102-4)、レイヤマッピング部103(103-1,103-2)、プリコーディング部104(104-1,104-2)、マルチユーザプリコーディング部105、周波数マッピング部106(106-1~106-4)、IFFT部107(107-1~107-4)、GI挿入部108(108-1~108-4)、無線送信部109(109-1~109-4)、アンテナ部110(110-1~110-4)、及び制御情報決定部111を含んで構成される。符号部101、変調部102、周波数マッピング部106、IFFT部107、GI挿入部108、無線送信部109、アンテナ部110の「○○○-1,2」は受信局UE1宛データ信号を処理し、「○○○-3,4」は受信局UE2宛データ信号を処理する。また、レイヤマッピング部103、プリコーディング部104の「○○○-1」は、受信局UE1宛データ信号を処理し、「○○○-2」は受信局UE2宛データ信号を処理する。
 符号部101、変調部102、レイヤマッピング部103、プリコーディング部104、マルチユーザプリコーディング部105、周波数マッピング部106、IFFT部107、GI挿入部108、無線送信部109で構成される部分は、送信処理部であり、各複数の受信局が使用する無線リソースの少なくとも一部が重なる無線リソースを用いて前記複数の受信局宛データ信号を多重して送信する機能を果たす。
 符号部101は、図7の概略図で構成される。符号部101は、誤り検出符号部121と誤り訂正符号部122を含んで構成される。誤り検出符号部121は、上位レイヤから入力されたデータ信号は誤り検出符号化方法を用いてデータ信号に検査ビットを付加する。この誤り検出符号化方法は、例えば、CRC(Cyclic Redundancy Check)符号、などがある。検査ビットを付加されたデータ信号は、符号化ビット単位であるコードブロック毎に分割された後、誤り訂正符号部122で誤り訂正符号化される。制御情報決定部111で決定された制御情報(無線制御情報、Control Information)に応じた誤り訂正符号化方法を用いて符号化ビット列を生成する。この誤り訂正符号化方法は、例えば、ターボ符号化、LDPC(Low Density Parity Check;低密度パリティ検査)符号化などである。符号部101は、入力された符号化率情報に基づいて生成した符号化ビット列にパンクチャ(puncture)を行う。
 これにより、符号部101は、生成した符号化ビット列(例えば、検査ビット)の一部を省略して入力された符号化率情報が示す符号化率に応じた符号化ビット列を生成する。符号部101は、パンクチャを行って生成した符号化ビットを変調部102に出力する。
 ここでは、本実施形態では、符号部101が用いる符号化方法を制御情報に基づいて定めるが、この制御情報は、制御情報決定部111に外部より受信して格納していてもよいし、送信局装置及び受信局装置で予め設定した符号化方法が設定されていてもよい。
 制御情報決定部111は、以降処理を指示する制御情報を各部に出力するが、この制御情報は同様に外部から受信してもよいし、予め設定されていても良い。
 変調部102は、符号部101から入力された符号化ビット列に対して、受信局のチャネル状況に対応した制御情報に応じた変調方式を用いて、変調を行って変調シンボル列を生成する。変調部102は、生成した変調シンボル列をレイヤマッピング部103に出力する。
 変調部102が行う変調方式は、例えば、BPSK(Binary Phase Shift Keying;二位相変移変調)、QPSK(Quadrature Phase Shift Keying;四位相変移変調)、16QAM(16-ary Quadrature Amplitude Modulation;16値直交振幅変調)、64QAM(64-ary Quadrature Amplitude Modulation;64値直交振幅変調)などである。
 レイヤマッピング部103は、変調部102から入力されたシンボル列を、制御情報に応じた送信ランク情報に基づいて受信局毎のレイヤ毎のシンボル列に並び替える。レイヤとは、データ信号を送信する単位である。ここで、並び替えたレイヤの数は、送信ランク情報が示すレイヤ数となる。レイヤマッピング部103は、並び替えたシンボル列をプリコーディング部104に出力する。
 プリコーディング部104は、レイヤマッピング部103からレイヤ毎のシンボル列が入力され、各レイヤのシンボルを要素とするベクトルを構成する。プリコーディング部104は、構成したベクトルに伝搬路の状況に対応したプリコーディングマトリックスを乗算して受信局に割り当てられた送信アンテナの数と等しい数の要素を含むベクトルを構成し、構成したベクトルに含まれる各要素のシンボルからなるシンボル列を生成し、生成したシンボル列を各送信アンテナ110に対応したマルチユーザプリコーディング部105に出力する。プリコーディングマトリックスは、マルチユーザプリコーディングマトリックスと対応して、制御情報決定部111で決定される。
 マルチユーザプリコーディング部105は、各受信局宛のプリコーディング部104から入力された周波数領域信号を各受信局の信号を要素とするベクトルを構成する。構成したベクトルに受信局同士が空間直交するように伝搬路の状況に対応したプリコーディングマトリックスを乗算して送信局が備える送信アンテナの数と等しい数の要素を含むベクトルを構成する。プリコーディングマトリックスは、制御情報決定部111で決定される。構成したベクトルに含まれる各要素のシンボルからなるシンボル列を生成し、生成したシンボル列を各送信アンテナに対応した周波数マッピング部106に出力する。
 周波数マッピング部106は、マルチユーザプリコーディング部105から入力されたシンボル列に含まれるシンボルを、制御情報に応じた帯域割当情報に基づいて割り当てて周波数領域信号を生成する。周波数マッピング部106は、生成した周波数領域信号をIFFT部107に出力する。
 IFFT部107は、周波数マッピング部106からブロック毎に入力された重畳符号化信号に対してIFFT(Inverse Fast Fourier Transform;逆高速フーリエ変換)を行って時間領域に変換する。IFFT部107は、変換した時間領域信号を、GI挿入部108に出力する。
 GI挿入部108は、IFFT部107からブロック毎に入力された多重化信号にブロック毎にGI(Guard Interval)としてCP(Cyclic Prefix;サイクリックプレフィックス)を挿入して出力信号を生成する。GI挿入部108が多重化信号に挿入するCPは、例えば直前に入力された多重化信号のうち予め定めた部分の信号である。GI挿入部108は、生成した出力信号を無線送信部109に出力する。
 無線送信部109は、GI挿入部108から入力された出力信号及び制御情報に対して、D/A(Digital to Analog;ディジタル・アナログ)変換してアナログ信号に変換する。変換したアナログ信号を無線周波数帯域にアップコンバートして無線周波数帯域信号を生成し、生成した無線周波数帯域信号を増幅してアンテナ110に出力する。
 アンテナ110は、入力された無線周波数帯域信号を電波などの搬送波に乗せて受信局装置に送信する。
 尚、無線送信部109とアンテナ110で構成されるRF(Radio Frequency;無線周波数帯域)部は、RRH(Remote Radio Head;張り出し無線装置)として、符号部101からGI挿入部108までで構成されるベースバンド部と分離され、異なる場所に設置してもよい。その際、RF部、ベースバンド部間は有線によって接続される。
 尚、送信局装置は受信局当たり2ストリームのデータ処理構成として説明したが、本実施形態はこの限りではなく、送信ストリーム数とアンテナ本数の対応が満たされているのであれば、ストリーム数が2以上であってもよい。
 図8は、本実施形態に係る非直交多重方式で送信する送信局装置の構成を示す概略図である。
 本送信局装置eNB1-Bの構成は、図6の一部空間直交多重方式の送信局装置eBN1-Aと同等の構成であるが、一部異なる点としてマルチユーザプリコーディング部105から重畳合成部131に変更され、又、前記重畳合成部131は周波数マッピング部106とIFFT部107の間に配置される構成となる。
 重畳合成部131は、周波数マッピング部106から周波数領域信号が入力され、受信局間の同周波数領域信号は制御情報決定部111から入力された電力割当情報によって電力差を付けて重畳符号化(superposition coding)として合成する。受信局間の電力差は、例えば、受信局の伝搬路状況によって決定される。受信局間で合成された重畳符号化信号は各送信アンテナに対応するIFFT部107に出力する。なお、重畳合成部131は、電力制御部とも呼称される。
 送信局装置は、図6のeNB1-Aと図8のeNB1-Bのうちいずれかの構成を有しているものとするが、両方の構成を有するものであってもよい。
 次に、本実施形態に係る受信局装置の構成について説明する。本実施形態に係る受信局装置は、上記の一部空間直交多重方式と非直交多重方式の両送信局装置に対応する受信局構成となる。図9は、本実施形態に係る受信局UE1の装置構成を示す概略図である。
 受信局装置UE1は、アンテナ201(201-1,201-2)、無線信号処理部202(202-1,202-2)、GI除去部203(203-1,203-2)、FFT部204(204-1,204-2)、周波数デマッピング部205(205-1,205-2)、信号分離部206、レイヤデマッピング部207、復調部208(208-1,208-2)、復号部209(209-1,209-2)、制御信号処理部210a、伝搬路推定部211を含んで構成される。
 アンテナ201は、送信局が送信した無線周波数帯域信号を受信し、受信した無線周波数帯域信号を無線信号処理部202に出力する。
 無線信号処理部202は、アンテナ201から入力された無線周波数帯域信号をベースバンド周波数帯域にダウンコンバートしてアナログ信号を生成する。無線信号処理部202は、生成したアナログ信号に対してA/D(Analog to Digital、アナログ・ディジタル)変換を行ってディジタル信号に変換する。無線信号処理部202は、変換したディジタル信号をGI除去部203に出力する。
 GI除去部203は無線信号処理部202から入力されたディジタル信号からCPを除去して多重化信号を得る。GI除去部203で分離したデータ信号はFFT部204に出力される。
 FFT部204は、GI除去部203から入力されたデータ信号に対してFFT(Fast Fourier Transform;高速フーリエ変換)を行い、周波数領域のデータ信号を得る。FFT部204は、得られた周波数領域信号を周波数デマッピング部205に出力される。
 周波数デマッピング部205は、FFT部204から入力された周波数領域信号から、制御信号処理部210aから入力された帯域割当情報が示す帯域のシンボル列を抽出する。周波数デマッピング部205は、抽出したシンボル列を信号分離部206に出力する。
 信号分離部206は、周波数デマッピング部205から入力されたシンボル列に各々含まれるシンボルを要素とするベクトルに、空間分離処理を行いレイヤ毎のシンボル列を構成し、構成したシンボル列をレイヤデマッピング部207に出力する。空間分離処理には、例えば、MMSE(Minimum Mean Square Error;最小平均二乗誤差)検出、V-BLAST(Vertical-Bell Laboratories layered space-time architecture)検出、ML(Minimum Likelihood)検出がある。空間分離処理は、伝搬路推定部211から入力された伝搬路毎の伝搬路特性に基づいて検出が行われる。
 レイヤデマッピング部207は、信号分離部206から入力されたレイヤ毎のシンボル列を、制御信号処理部210aから入力された送信ランク情報RI(Rank Indicator)に基づいて符号化単位であるコードワード毎のシンボル列に並び替える。従って、レイヤデマッピング部207が行う並び替えは、送信局装置のレイヤマッピング部103が行う並び替えとは逆の処理となる。レイヤデマッピング部207は、並び替えたシンボル列を各々復調部208に出力する。
 復調部208は、レイヤデマッピング部207から入力されたシンボル列に対して制御情報取得部210から入力された変調方法情報に対応する復調方法を用いて復調を行って符号化ビット列を生成する。復調部208は、生成した符号化ビット列を各々復号部209に出力する。尚、符号化ビット列は復号方法に対応して硬判定値と軟判定値のどちらかが送られる。
 復号部209は、図10に示す概略図で構成される。復号部209は、誤り訂正復号部221と誤り検出部222を含んで構成される。誤り訂正復号部221は、復調部208から入力された符号化ビット列に対して制御信号処理部210aから入力された符号化率情報に対応する誤り訂正復号を行ってデータ信号を得る。誤り検出部222は、誤り訂正復号部221で得られたデータ信号を構成するデータビットに対して、例えば巡回冗長検査(Cyclic Redundancy Check;CRC)を行って誤りの有無を検査する。復号部209は、誤りを検出しなかった場合にACKを、誤りを検出した場合にNACKを伝達確認情報として定める。誤り検出部222は、誤りを検出しなかった場合に得られたデータ信号を外部に出力する。
 制御信号処理部210aは、図11に示すように、FFT部204から入力された周波数領域信号から自受信局宛の制御情報及び多重された他受信局宛の制御情報を取得する制御情報取得部215である。
 また、伝搬路推定部211は、FFT部204から入力された周波数領域信号から伝搬路毎の伝搬路特性に関する伝搬路推定情報を求める。
 次に、受信局UE1装置と非直交多重された受信局UE2装置の構成例について説明する。受信局UE2装置はSIC(Successive Interference Cancellation、逐次干渉除去)回路が搭載された構成が前提となる。尚、受信局UE2装置の構成は受信局UE1装置に用いられてもよい。
 図12は、本実施形態に係る受信局UE2-A装置の装置構成を示す概略図である。
 図12に示す受信局UE2-A装置は、図9に示す受信局UE1装置の構成例から干渉除去部231とレプリカ生成部232を備えた構成となる。本実施形態では、FFT部204と周波数デマッピング部205の間に干渉除去部231を配置することを前提としたが、周波数マッピングの方式によって構成はこれに限らず、例えば、図2のように多重される受信局同士の周波数リソースが同帯域上であれば周波数デマッピング部205と信号分離部206の間に干渉除去部231を配置してもよい。
 また、制御信号処理部210bは、図13に示すように、受信局UE1装置の制御信号処理部210aの制御情報取得部215と、各部のデータ信号処理を選択するデータ信号処理選択部216とを備える。データ信号処理選択部216は、自受信局宛の所望データ信号の処理と、他の受信局の干渉データ信号の処理とのうちからいずれかを選択して、その処理を行う制御情報を各部に出力する。
 尚、データ信号処理選択部216は制御信号処理部215で取得した無線制御情報から取得した選択情報を用いて選択を行うが、本実施形態ではこれに限られず、例えば復号部209から出力された受信データ信号の誤り検出結果から最尤推定した結果に基づいてデータ信号処理の選択を行うことも想定する。
 レプリカ生成部232は、復号部209から入力された干渉データ信号を送信局で生成された周波数デマッピング処理前のシンボル列まで戻す。生成されたレプリカシンボル列は、干渉除去部231に出力する。初期値として、電力ゼロのシンボル列を出力する。
 干渉除去部231は、FFT部204から入力された周波数領域信号をレプリカ生成部232から入力されたレプリカ周波数領域信号で減算を行い、所望でない受信局信号を除去する。減算結果のシンボル列を信号分離部206に出力する。初回処理では、干渉除去部231での処理は飛ばされる、もしくは、電力ゼロのシンボル列で減算される。
 図14にレプリカ生成部内の処理の概略図を示す。レプリカ生成部232は、再符号部241(241-1,241-2)、再変調部242(242-1,242-2)、再レイヤマッピング部243、再プリコーディング部244、再周波数マッピング部245(245-1,245-2)、伝搬処理部246を含んで構成される。
 再符号部241は、図15に示すとおり、誤り訂正符号部251を含んで構成される。図15の誤り訂正符号部251は、図7の誤り訂正符号部122と同様である。復号部209から入力されたデータ信号は誤り訂正符号部251に入力され、制御情報取得部210から入力された符号化率情報に対応する誤り訂正符号化を行い、レプリカ符号化ビット列を生成する。再符号部241は、送信側と同等の誤り訂正符号化方法を用いる。
 再変調部242は、再符号部241から入力された符号化ビット列に対して制御信号処理部210bから入力された変調方法情報に対応する変調方式を用いて送信側と同等の変調を行って、レプリカ変調シンボル列を生成する。
 再レイヤマッピング部243は、再変調部242から入力された変調シンボル列を制御信号処理部210bから入力された送信ランク情報RIに基づいてレイヤ毎のレプリカシンボル列に並び戻す。
 再プリコーディング部244は、再レイヤマッピング部243から入力されたレイヤ毎のシンボル列を制御信号処理部210bから入力されたプリコーディング情報PMI(Precoding Matrix Indicator)と対応したプリコーディング行列を用いて乗算を行い、送信アンテナ毎のレプリカシンボル列を生成する。再プリコーディング部244は再周波数マッピング部245に出力する。
 再周波数マッピング部245は、再プリコーディング部244から入力された送信アンテナ毎のレプリカシンボル列を制御信号処理部210bから入力された周波数マッピング情報に基づいて割り当ててレプリカ周波数領域信号を生成する。
 伝搬処理部246は、再周波数マッピング部245から入力された送信アンテナ毎のレプリカシンボル列に伝搬路推定部211から入力された周波数マップと送受信アンテナに対応する伝搬路推定情報で乗算を行い、受信されたレプリカ周波数領域信号を生成する。
 尚、図9が示す受信局UE1装置の構成例、または、図12が示す受信局UE2-A装置の構成例は、図6若しくは図8に示す送信局装置が送信したデータを受信することを前提としたが、本実施形態ではこれに限らない。
 図16に本実施形態で受信局UE2-Aがデータ信号を取得する処理のフローチャートを示す。
 初めに、制御信号処理部210bの制御情報取得部215により、FFT部204から入力された周波数領域信号から自受信局宛の制御情報及び多重された他受信局宛の制御情報を取得する(ステップS11)。自受信局宛の制御情報及び多重された他受信局宛の制御情報を同時に取得する為の制御情報構成は後ほど説明する。多重された他受信局宛の制御情報を取得して保持している場合(ステップS12;Yes)、制御信号処理部210bのデータ信号処理選択部216は、干渉データ信号処理を行う事を選択し、各処理部に受信処理に必要な情報が送られる。受信局UE2-Aは、受信データ信号に対して他受信局の制御情報を用いてデマッピング(ステップS13)、復調(ステップS14)、復号(ステップS15)を行う。そして、レプリカ生成部232により、復号された他受信局宛データ信号に対して他受信局の制御情報を用いて再符号(ステップS16)、再変調(ステップS17)、再マッピング(ステップS18)が行われ、他受信局宛データ信号の受信信号レプリカが生成され、干渉除去部231により受信データ信号から他受信局宛受信データ信号が除去される(ステップS19)。取得した全ての他受信局宛無線制御情報でこれらの工程を終了した場合(ステップS12;No)、制御信号処理部情報取得部210bのデータ信号処理選択部216は、所望データ信号処理を選択し、受信データ信号に対して自受信局の制御情報を用いてデマッピング(ステップS20)、復調(ステップS21)、復号(ステップS22)を行い、自受信局宛の所望データ信号を取得する。
  《データ信号処理順番》
 非直交多重方式では、データ信号の処理順番を誤ると正常に復号できないという問題がある。例えば、図3において、受信局UE11宛のデータ信号を除去する前に受信局UE21宛のデータ信号を復調・復号を行うと、受信局UE11宛のデータ信号の影響により多くのビット誤りを発生させてしまう。そこで、多重層の情報が必要となる。多重層の情報を通知することで、受信局は非直交多重の割当無線リソースと他の受信局との関係を把握し、正しい受信処理順番で干渉を除去することができる。
 多重層の情報には、絶対番号と相対番号がある。絶対番号は、例えば、図3,4のような層番号である。多重層の絶対番号で通知された場合は、第1層に割当てられる受信局宛データ信号から順番にデータ信号処理を行う。相対番号は、自受信局が割当てられた多重層と自受信局と同じ無線リソースを用いて通信する他受信局の多重層との番号差となる。多重層の相対番号で通知された場合は、相対番号が最も大きい受信局宛データ信号から順番にデータ信号処理を行う。
  《無線制御情報の構成》
 非直交多元接続方式では、干渉除去工程時に他受信局宛のシンボルの復調や復号を行うため、他受信局宛の無線制御情報を通知する必要がある。以下では、多重された他受信局の無線制御情報を含めた受信局の制御情報構成の例を2つ挙げて説明する。
 本実施形態の制御情報の構成の説明は2つの受信局が多重されている時の構成として説明するが、本実施形態の制御情報の構成はこれに限らず、受信局の数が3以上であってもよい。
  [1.同梱型]
 図17は、受信局UE2が取得する同梱型の無線制御情報構成の一例である。受信局UE2宛の無線制御情報301は受信局UE1宛の無線制御情報302を同梱する構成となり、受信局UE2固有情報を用いて符号化される。受信局UE2は予め保有する受信局UE1固有情報を用いて復号し、受信局UE2宛の無線制御情報301を取得する。受信局UE2は受信局UE2宛の無線制御情報301と同時に、同梱された受信局UE1宛の無線制御情報302も取得することができる。
 受信局UE1宛の無線制御情報302は受信局UE2宛の無線制御情報301と独立に構成され、受信局UE1固有情報を用いて符号化される。受信局UE1は予め保有する受信局UE1固有情報を用いて復号し、受信局UE1宛の無線制御情報302のみを取得する。
 1つの無線制御情報内に1つの他受信局宛の無線制御情報が含まれる構成について説明したが、本無線制御情報はこれに限らず、図3、4のような多重のリソース配置のように下層に2受信局以上割り当てられる場合には、1つの無線制御情報に他受信局宛の制御情報が2つ以上を同梱する構成となる。
 尚、本無線制御情報構成法では、非直交多重受信処理を行う順序の情報を同梱する必要がある。順序の情報とは、例えば、多重受信局が割当てられた多重層の絶対番号、自受信局の多重層を基準とした時の多重層の相対番号、などである。多重層の番号とリソースマップ情報から図3、4のような無線リソースと多重層のリソースマップ情報を構成し、受信局はこの情報を用いて干渉除去処理、受信処理を行う。
  [2.接続型]
 図18は、受信局UE2が取得する接続型の制御情報構成の一例である。
 各受信局宛の制御情報の内部に、他受信局の制御情報へ参照するためのリンク情報が明示されるフィールドが存在する構成となる。
 各無線制御情報は各々の受信局が一意に取得できるように符号化処理されており、例えば、受信局UE2宛の制御情報303は受信局UE2の固有情報を用いてスクランブルされている。受信局UE2は予め保有する受信局UE2固有情報を用いて受信局UE2宛の制御情報303を一意に取得できる。しかしながら、受信局UE2は受信局UE1固有情報を保有していないため、受信局UE1宛の制御情報を取得できない。そこで本無線制御情報構成では、受信局UE2宛の制御情報303に受信局UE1へのリンク情報304のみを同梱する。受信局UE1へのリンク情報304は、例えば、受信局UE1固有情報、受信局UE1宛の無線制御情報が存在するリソースマップアドレス情報、などがある。取得したリンク情報により、受信局UE2は受信局UE1宛の制御情報が存在するアドレスを探索することが可能となる。受信局UE2は取得したリンク情報を用いて検索し、受信局UE1宛の無線制御情報305を取得する。
 一方、受信局UE1宛の無線制御情報305は、下層に受信局が割り当てられていないため、リンク情報が明示されるフィールドには空情報306が設定される若しくはリンク情報が明示されるフィールドが存在しない構成となる。
 1つの無線制御情報内に1つのリンク情報が含まれる構成について説明したが、本無線制御情報構成はこれに限らず、図3、4のような多重のリソース配置のように下層に2受信局以上割り当てられる場合には、1つの無線制御情報にリンク情報が2つ以上を同梱する構成となる。
 図19は、本無線制御情報構成による無線制御情報取得処理のフローチャート図である。これは図18の接続型の制御情報構成に対する制御信号処理部210bの制御情報取得部215による無線制御情報取得処理である。
 初めに、受信局は自受信局固有情報を用いて自受信局宛の無線制御情報が存在するアドレスを探索し(ステップS31)、自受信局宛の無線制御情報を取得する(ステップS32)。次に、自受信局宛の無線制御情報に同梱された他受信局宛の無線制御情報にアクセスするためのリンク情報を取得する(ステップS33)。リンク情報を取得できた場合(ステップS34;Yes)、取得した他受信局宛の無線制御情報へのリンク情報を用いて、受信局は他受信局宛の無線制御情報が存在するアドレスを探索し(ステップS35)、他受信局宛の無線制御情報を取得する(ステップS32)。リンク情報を取得できない場合は(ステップS34;No)、リンクが途切れて、受信局は制御情報取得処理を終える。この工程を、全てのリンクが途切れるまで繰り返し無線制御情報の探索と取得を行う。
 尚、同梱型の無線制御情報構成法では、順序の情報を同梱して受信局に明示的に通知する必要があったが、本無線制御情報構成法では、リンク情報やリンクされている回数が多重層の相対番号の役割も果たすために暗示的に順序の情報が通知されていることになる。順序の情報を同梱する必要がないことも特徴である。
  《モニタリング》
 非直交多重方式では、自受信局宛信号が含まれる無線リソースの他に非直交多重される受信局宛信号が含まれる無線リソースも受信し、データ信号を保持する必要がある。その為、予め受信処理される他受信局宛無線制御情報から、自受信局がモニタリングするリソースマップ情報を生成する方法について説明する。
 例えば、図4において受信局UE31が受信処理を行うにあたりモニタリングに必要なリソースマップ情報について説明する。直交多重方式であれば、受信局UE31宛の信号を復号するには、受信局UE31宛のデータ信号が割当てられているリソースマップResourceMap UE31={1}のみをモニタリングするだけで良い。しかしながら、非直交多重方式では、受信局UE31宛の信号を復号するまでに受信局UE1宛信号と受信局UE21宛信号の干渉除去が必要となる。受信局UE1宛信号と受信局UE21宛信号を復号するには、受信局UE1宛と受信局UE21宛のデータ信号が割当てられているリソースマップResourceMap UE1={1,2,3,4}、ResourceMap UE21={1,2}もモニタリングする必要がある。つまり、第1層目受信局宛データ信号処理中ではResourceMap=ResourceMap UE1={1,2,3,4}、第2層目受信局宛データ信号処理中ではResourceMap=ResourceMap UE21={1,2}を少なくともモニタリングしなければならない。
 次に、例えば、図4において受信局UE32、UE33が割当てられているリソースを1つの受信局が割当てられる(以下、受信局UE34と呼称する)が受信処理を行うにあたりモニタリングに必要なリソースマップ情報について説明する。受信局UE34宛データ信号が割当てられているリソースマップはResourceMap UE34={2,3}}となる。非直交多重方式では、第1,2層で無線リソース{2,3}を用いている受信局宛データ信号を干渉除去する必要があるため、受信局UE1、受信局UE21、受信局UE22宛のデータ信号が割当てられているリソースマップResourceMap UE1={1,2,3,4}、ResourceMap UE21={1,2}、ResourceMap UE22={3,4}もモニタリングする必要がある。つまり、第1層目受信局宛データ信号処理中ではResourceMap=∪ResourceMap UE1={1,2,3,4}、第2層目受信局宛データ信号処理中ではResourceMap=ResourceMap UE21∪ResourceMap UE22={1,2,3,4}を少なくともモニタリングしなければならない。
  《参照信号》
 非直交多重方式では、データ信号の送信電力によって特性が大きく依存する。ここでは参照信号による受信局への電力通知方法を説明する。
 図20は、参照信号のリソース対電力の概要図である。受信局UE1と受信局UE2の参照信号は異なる直交無線リソースが割り当てられ、また各々の受信局に割り当てられる送信電力と同じ電力で参照信号が送信される。各参照信号は直交リソースを用いて送信されるため、参照信号同士が混信すること無く、参照信号を受信することができる。受信局は各々の参照信号を受信することで伝搬路と電力を推定する。
 図21は、参照信号のリソース対電力の他の概要図である。図20と異なる点として、受信局UE2宛の参照信号の送信電力は受信局UE1宛の送信電力を加算して送信されている。これより、受信局UE1の送信電力分の電力ゲインを得ることで、受信局UE2の推定精度が上がる。受信局UE2の伝搬路や電力の推定は、先に受信局UE1の送信電力を受信局UE1宛の参照信号から算出し、受信局UE2宛の参照信号から受信局UE1宛の電力分を減算することで算出することができる。
 参照信号は、受信局数2の場合において説明したが、本実施形態はこれの限りではなく、受信局数3以上の場合においても同様に設定する。
  《無線制御情報による送信電力の通知》
 上記は参照信号を用いて送信電力を通知する方法について説明した。しかし、同一無線リソースを用いた参照信号を共有する方法では、参照信号で送信電力を通知することができないため、ここでは無線制御情報による送信電力の通知について説明する。
 方法の1つは、単位無線リソース毎の各多重受信局宛の無線制御情報に各割当送信電力を0から最大送信許容電力の範囲で量子化した情報を載せて明示的に値を通知する方法である。範囲が固定されるため、送信側及び受信側における処理は容易である。
 別の方法として、上層に割り当てられる受信局のデータ信号送信電力を用いて電力情報の量子化範囲を限定する方法である。量子化の範囲は、上層に割り当てられる受信局のデータ信号送信電力は下層に割り当てられる受信局のデータ信号送信電力よりも小さく設定される特徴を用いて限定する。具体的には、第1層目の受信局のデータ信号送信電力は、最大送信許容電力を最大値として量子化を行う。次に、第2層目の受信局のデータ信号送信電力は、非直交多元接続方式の特性より第1層目の受信局のデータ信号送信電力よりも高い電力で送信することは想定しないため、第1層目の受信局のデータ信号送信電力を最大値として量子化を行う。以下、第3層目以降も直下層の受信局のデータ信号送信電力を最大値として量子化を行うことで、量子化範囲を限定する。これにより、通知ビット数を軽減もしくは量子化精度を上げることが可能となる。
 尚、参照信号を用いて電力を通知する伝送の場合は無線制御情報で通知しなくてもよい。
 以上で、本実施形態における干渉信号を復号して干渉を除去する送受信局構成1について説明した。これより、非直交多元接続方式による通信が可能となり、更なる多重数増加によりスペクトル効率を向上させる。
 尚、本実施形態の受信局UE2装置構成はセル間干渉除去にも適用可能となる。図22はマクロ基地局間干渉を示す概念図である。また、図23はピコ基地局、フェムト基地局とマクロ基地局間干渉を示す概念図である。図22、図23はともに送信局eNB1-A、送信局eNB2-B、受信局UE1及び受信局UE2を含んで構成される。送信局eNB1は図6、図8、受信局UE1は図9、及び受信局UE2は図12と同等の構成である。図22の送信局eNB2は送信局eNB1と基本的には同構成であるが、図23の送信局eNB2は低送信電力として設定される。図22、図23の受信局UE1は送信局eNB1に接続され、受信局UE2は送信局eNB2に接続される。受信局UE1と受信局UE2は図2のように同一の無線リソースを利用し、また受信局UE2はセル端付近に配置されているため、受信局UE2は送信局eNB1からの受信局UE1宛の信号を強い隣接セル間干渉として受ける。このとき、受信局UE2は送信局eNB1若しくは送信局eNB2から受信局UE1宛の無線制御情報を受信することで、非直交多元接続方式と同様の工程で干渉信号を除去することができる。
 送信局eNB2から受信局UE1宛の無線制御情報を送信する場合は、上記記載の無線制御情報と同等の構成によって送信される。このとき、受信局UE1宛の無線制御情報は、送信局間で接続されるバックホール回線を通して送信局eNB1から送信局eNB2に送られる。送信局eNB1から受信局UE1宛の無線制御情報を送信する場合は、上記記載の無線制御情報構成のうち、接続型のみで送信が行われる。このとき、送信局eNB1が送信する受信局UE1宛の無線制御情報が割当てられた無線リソースには、無線制御情報の混信を避けるため、送信局eNB2でデータ送信を行わない。上記の処理を行うために、受信局UE1宛の無線制御情報が割当てられた無線リソースマップ情報を送信局eNB1と送信局eNB2間で共有する必要がある。
 こうして、他セルを構成する他の送信局から前記他セル内に存在する他セル受信局宛の無線制御情報を取得し、各複数の受信局が使用する無線リソースの少なくとも一部が重なる無線リソースを用いて前記他セルの送信局と連携して送信局から送信する。自セルの受信局の無線制御情報と、前記自セルの受信局の無線制御情報と紐付けた1つ以上の他セルの受信局宛の無線制御情報とを送信する。
(2)送受信構成2
 次に、本実施形態の干渉信号の復号を行わずに干渉を除去する送受信局構成2について説明する。
 本送受信局構成に係る送信局装置の構成は図6、図8と同じとなる。ただし、受信局UE2の構成におけるレプリカ生成部と干渉除去部については送受信局構成1と異なるため、以下では、レプリカ生成部と干渉除去部について説明する。
 図24は、第1の実施形態の送受信局構成2に係る受信局装置の構成の概略図である。図11の送受信局構成1の受信局UE2-B装置構成では、復号部209の出力ビット列がレプリカ生成部232に入力され、レプリカ生成部232の出力結果がFFT部204と周波数デマッピング部205の間に挿入されている干渉除去部231に入力された。一方、本送受信局構成では、図24に示すように、レプリカ生成部262は復号部209の代わりに復調部208と接続され、また干渉除去部261は周波数デマッピング部205と信号分離部206の間に配置される。これは、本送受信局構成2は復号を行わない為に、トランスポートブロック単位による干渉除去を必要としない。すなわち、下層受信局の無線リソースマッピングの影響を受けず、所望データ信号が割り当てられた無線リソースだけを処理することで干渉除去が可能となる。また、本送受信局構成2は復号を行わない為に、復調部208で硬判定された符号ビット列が出力され、レプリカ生成部262に入力される。
 図25は、本実施形態に係るレプリカ生成部内の構成のブロック図である。図14と対応して、レプリカ生成部262も再変調から処理が始まり、再周波数マッピングを取り除いた構成となる。ただし、図14のレプリカ生成部232と異なり、復調部208からの信号が入力されるので、再変調部242、再周波数マッピング部245が不要である。
 図26に本実施形態で非直交多重された受信局が所望データ信号を取得する処理のフローチャートを示す。初めに、制御信号処理部210bの制御情報取得部15により、自受信局宛の制御情報及び多重された他受信局宛の制御情報を取得する(ステップS41)。自受信局宛の制御情報及び多重された他受信局宛の制御情報を通知するための制御情報は、本実施形態の送受信局構成1と同様の構成である。取得した自受信局宛の制御情報から受信局宛データ信号が存在する周波数及びレイヤを周波数デマッピング部205及びレイヤデマッピング部207によりデマッピングする(ステップS42)。
 次に、自受信局宛の無線制御情報を取得すると同時に他受信局宛の無線制御情報を取得した場合(ステップS43;Yes)、制御信号処理部210bのデータ信号処理選択部16により干渉データ信号処理を行う事を選択し、制御情報取得部から各処理部に受信処理に必要な情報が送られる。復調部208により受信データ信号の復調を行う(ステップS44)。復調された他受信局宛データ信号は復号処理を行わずに、他受信局の制御情報を用いてレプリカ生成部262の再変調部242により再変調処理が行われ(ステップS45)、レプリカ生成部262により次々と処理が行われて、他受信局宛データ信号の受信信号レプリカが生成され、干渉除去部261で受信データ信号から他受信局宛受信データ信号が除去される(ステップS46)。取得した全ての他受信局宛の無線制御情報でこれらの工程を終了した後(ステップS43;No)、制御信号処理部210bのデータ信号処理選択部16により所望データ信号処理を行うことを選択し、自受信局宛制御情報を用いて受信データ信号を復調(ステップS47)、復号を行い(ステップS48)、自受信局宛の所望データ信号を取得する。
 以上で、本実施形態における干渉信号に対して誤り訂正復号処理を行わずに、復調部208からの信号を用いて干渉を除去する送受信局構成2について説明した。これにより、送受信局構成1よりも簡易に干渉除去が可能となる。
(3)送受信局構成3
 最後に、本実施形態の送受信局構成1と送受信局構成2を兼ね合わせた送受信局構成3について説明する。
 本実施形態の送受信局構成1の符号部で用いられる誤り訂正方式は、ターボ符号やLDPC符号など、高い誤り訂正能力を有するが計算量の多い方式を用いる事が想定される。一方、本実施形態の送受信局構成2は干渉除去信号に対して誤り訂正復号処理を行わないため、誤りを有したレプリカ信号を用いて干渉除去を行うことになる。その為、レプリカのシンボル誤りが後段の処理に伝搬し、その結果として所望信号のビット誤りを増大させる。以下に説明する本実施形態の送受信局構成3は、レプリカ信号に対して誤り訂正復号処理を行う送受信局構成1と誤り訂正復号処理を行わない送受信局構成2を誤り数から適応的に制御を行う構成である。
 本実施形態の送受信局構成3に係る送信局装置及び受信局装置の基本的な構成は本実施形態の送受信局構成1と同じとなる。ただし、送信局装置の符号部の処理及び受信局装置の復号部とレプリカ生成部内の再符号部の処理は本実施形態の送受信局構成1と異なるため、以下では、符号部、再符号部並びに復号部の処理について説明する。
 本実施形態では、送信局装置の符号部101で二段階に誤り検出符号化を行う例について説明する。誤り検出符号化方法は、例えば、パリティ符号やCRC符号などがある。受信局装置はこの誤り検出の結果を用いて、除去処理時における復号処理を適応的に変化させる。
 図27は、本実施形態での送信局装置の符号部内の構成図である。
 符号部101は、第一の誤り検出符号部141、誤り訂正符号部142、及び第二の誤り検出符号部143を含んで構成される。
 第一の誤り検出符号部141と誤り訂正符号部142は、図7の誤り検出符号部121と誤り訂正符号部122と同様の処理を行う。
 第二の誤り検出符号部143は、例えば、CRC符号を用いてデータ信号に検査ビットを付加する。第二の誤り検出符号部143の符号化が適用されるデータ長(コードブロック)は第一の誤り検出符号部141や誤り訂正符号部142と異なってもよい。例えば、第一の誤り検出符号部141がトランスポートブロックに対し、第二の誤り検出符号部143はリソースブロック単位で符号化してもよい。本実施形態では、説明の簡易化のためにリソースブロック単位でCRC符号を行う。
 図28は、本実施形態での受信局装置の復号部内の構成図である。
 復号部209は、第二の誤り検出部271、誤り訂正復号部272、第一の誤り検出部273を含んで構成される。
 第二の誤り検出部271は、入力された符号化ビット列に対して、例えば巡回冗長検査を行って誤りの有無を検査する。誤り検査結果からビット誤り数を取得し、条件によって符号化ビット列を誤り訂正復号部272とレプリカ生成部262の再変調部242に出力を切り替える。誤り訂正復号部272に出力する場合、入力された符号化ビット列から検査ビットを除去し、誤り訂正復号部272に出力する。尚、入力された符号化ビット列が軟判定ビット列の場合、第二の誤り検出部271で硬判定ビット列に変換し、誤り検出する。
 誤り訂正復号部272は、図10の誤り訂正復号部221と同様の処理を行う。また第一の誤り検出部273も、図10の誤り検出部222と同様の処理を行う。
 図29は、本実施形態での受信局装置のレプリカ生成部内の再符号部の構成図である。
 レプリカ生成部232の再符号部241は、誤り訂正符号部274、第二の誤り検出符号部275を含んで構成される。
 誤り訂正符号部274は、図27の誤り訂正符号部142と同様の処理を行う。また第二の誤り検出符号部275も、図27の第二の誤り検出符号部143と同様の処理を行う。
 図30は、本実施形態での信号除去処理における所望でない信号の復調から再変調までの処理をフローチャートにした図である。
 初めに、レイヤデマッピング部207から入力されたシンボル列は復調部208で復調され、符号化ビット列を出力する(ステップS51)。
 符号化ビット列は復号部209の第二の誤り検出部271によりコードブロック毎にビット誤りが検出され(ステップS52)、検出されたビット誤り数と閾値とを比較する(ステップS53)。このビット誤り数と閾値との関係は、変調部208からの信号をレプリカ生成部232に送るか、復号部209の誤り訂正復号部272で処理した信号をレプリカ生成部232に送るかの分岐条件である。ビット誤り数の閾値の設定方法は、例えば、予め固定値を設定、受信SINRなどの伝送環境に対応した変動値を設定、などがある。比較方法は、例えば、複数出力されたビット誤り数の平均と比較、最小ビット誤り数と比較、最大ビット誤り数と比較、などがある。
 誤り数と閾値を比較するマップMは、復調処理した第i層の受信局uが割り当てられているリソースマップResourceMap の位置、かつ、1つ上の層で受信局が割り当てられているリソースResourceMapi+1=∪ResourceMapi+1 がモニタリングされている位置となる。ここで、vはi+1層で受信局uが割当てられている無線リソースと同じ無線リソースを使う受信局番号である。つまり、1つ上の層で復調や復号される可能性の無いリソースでは比較処理を行わず、次式(6)を満たすリソースマップの各単位リソースで比較を行う。
Figure JPOXMLDOC01-appb-M000006
 ここで、このマップ生成処理を具体例として図4の受信局UE31の受信処理における干渉除去処理を挙げて説明する。受信局UE31宛の信号を復号するまでに受信局UE1宛信号と受信局UE21宛信号の干渉除去が必要となる。受信局UE1宛データ信号が割り当てられたリソースマップは{1,2,3,4}、受信局UE21データ信号が割り当てられたリソースマップは{1,2}であり、所望する受信局UE31データ信号が割り当てられたリソースマップは{1}であるので、ResourceMap={1,2,3,4}、ResourceMap={1,2}、ResourceMap UE31={1}となる。初めに、第1層目の干渉除去処理を行う。このときの実際に誤り数を比較するマップは、M={1,2,3,4}∩{1,2}={1,2}となり、無線リソース番号1、2で誤り数と閾値の比較を行う。次に、第1層目の干渉除去処理では、M={1,2}∩{1}={1}となり、無線リソース番号1で誤り数と閾値の比較を行う。尚、本実施形態は集合体で説明したが、実装する際にはビットマップ表記で表してもよい。
 誤り検出処理で得られた誤り検出数が閾値より下回る場合は(ステップS53;Yes)、正常にデータが伝送されていると判断され、符号化ビット列はレプリカ生成部232内の再変調部242に出力される。再変調部242に入力された符号化ビット列は、復調部208と対応した変調方式で変調されてレプリカシンボル列が生成される(ステップS54)。
 一方、ビット誤り数が閾値を上回る場合は(ステップS53;No)、多くのビット誤りを有している為に誤り訂正処理を行う必要があると判断され、符号化ビット列は誤り訂正復号部272に出力される。誤り訂正復号部272に入力された符号化ビット列は、送信局側の誤り訂正符号化方法に対応する復号方法によって復号され、データビット列が生成される(ステップS55)。得られたデータビット列はレプリカ生成部232に出力される。レプリカ生成部232内の再符号部241の誤り訂正符号部274で、送信側の誤り訂正符号化方法に対応した誤り訂正符号化を行い(ステップS56)、再符号部241の第二の誤り検出符号部275で送信側の第二の誤り検出符号部143に対応した検査ビットを付加し(ステップS57)、最後に復調部208と対応した変調方式で変調されてレプリカシンボル列を生成する(ステップS54)。
 以上、第1の実施形態について説明した。本実施形態では、二段階の誤り検出符号化を行う符号部が搭載された送信局装置構成及び、それに対応する復号部が搭載された受信局装置構成について説明したが、本実施形態はこの限りでなく、三段階以上の誤り検出符号化を行ってもよい。
(第2の実施形態)
 以下では、第2の実施形態を説明する。第1の実施形態では、誤り検出符号を用いてレプリカ信号生成処理の分岐判断を行った。しかしながら、誤り検出符号を追加すると検査ビットを更に付加することになり、送信信号の冗長度が増加して僅かながらもデータ伝送効率を劣化させる。本実施形態では、誤り率は伝搬路の状態と変調方式に大きく影響することに着目し、多重信号の電力比を用いてレプリカ信号生成処理の分岐判断を行う。
 本実施形態に係る送信局装置の構成及び受信局装置の構成は第1の実施形態と同じとなる。ただし、受信局装置の復号部209の処理は第1の実施形態と異なるため、以下では、復号部209の処理について説明する。
 図31は、本実施形態での受信局装置の復号部内の構成図である。
 復号部209aは、電力比計算部281、誤り訂正復号部282、誤り検出部283を含んで構成される。
 電力比計算部281は、入力された受信局宛データ信号と多重された他受信局宛データ信号との受信電力比を計算する。k番目の単位無線リソースを用いたときの第i層目に割当てられた受信局の単位リソース当たりのデータ信号受信電力をP (k)とすると、多重信号の受信電力比γ (k)は次式(7)のように表される。
Figure JPOXMLDOC01-appb-M000007
 ここで、Σj>i (k)は多重された他受信宛データ信号受信電力、βは雑音項である。雑音項に代入する雑音電力は、例えば、送信局側において電力0で参照信号を送信し、受信局側で受信電力を測定することで雑音電力を取得する。雑音電力を取得していない場合は、βは0とする。データ信号受信電力P (k)及びβは、参照信号等の受信信号を用いて信号電力が計算されるが、本実施形態ではこの限りでなく、無線制御情報で通知してもよい。
 式(7)は雑音電力が既知もしくは受信電力に比べて非常に小さい場合において有効な計算式である。しかし、セルラー通信方式は多くの場合にセル間干渉によりβは0ではない。また、電力0で参照信号を送信や雑音電力を通知するとオーバヘッドが増加する。そこで、SNR (k)=P (k)/β、SINR (k)=Σj≧i (k)/βと定義すると、式(7)は次式(8)のように変形することができる。
Figure JPOXMLDOC01-appb-M000008
 ここで、図19の参照信号による電力通知方法を用いた時を例に挙げて説明すると、SNR (k)はUE1宛参照信号の受信信号対雑音比、SINR (k)はUE2宛参照信号の受信信号対雑音比となる。つまり、参照信号による電力通知方法を用いることで、雑音電力を取得せずに正確にγ (k)を計算することが可能となる。
 電力比計算部は、式(7)もしくは式(8)により計算された受信電力比γ (k)から条件によって入力された符号化ビット列を誤り訂正復号部282とレプリカ生成部262の再変調部242に出力を切り替える。尚、電力比計算部は分岐部とも称される。
 誤り訂正復号部282と誤り検出部283は、図10の誤り訂正復号部282と誤り検出部283と同様の処理を行う。
 図32は、本実施形態での信号除去処理における所望でない信号の復調から再変調までの処理をフローチャートにした図である。
 初めに、レイヤデマッピング部207から入力されたシンボル列は復調部208で復調され、符号化ビット列を出力する(ステップS61)。
 次に、電力比計算部281で多重信号の受信電力比γ (k)が計算され(ステップS62)、計算結果と閾値の比較により復号処理の分岐判断が行なわれる(ステップS63)。つまり、受信電力比と閾値との関係は、変調部208からの信号をレプリカ生成部232に送るか、復号部209aの誤り訂正復号部282で処理した信号をレプリカ生成部232に送るかの分岐条件である。受信電力比と閾値を比較するマップMは第1の実施形態の送受信局構成3の誤り数による分岐判断処理と同様である。閾値の設定方法は、本実施形態では定めず、例えば、予め設定してもよいし、無線制御情報によって通知してもよい。
 比較マップで割り当てられた受信電力比γ (k∈Mi)が閾値を上回った場合(ステップS63;Yes)、電力計算部281により、その多重層において伝送条件の良い環境で送信が行われたと判断され、復号を行わない処理に切り替えられる。復調部208で出力された符号化ビット列は、誤り訂正復号部209には入力されず、レプリカ生成部232内の再変調部242へ出力される(ステップS64)。再変調部242で変調されたシンボル列はレプリカ信号として干渉除去に用いられる。
 一方、比較マップで割り当てられた受信電力比γ (k∈Mi)が閾値を下回った場合は(ステップS63;No)、電力計算部281により、その多重層において伝送条件の悪い環境で送信が行われたと判断され、誤り訂正符号の復号を行う処理となる。つまり、復調部208で出力された符号化ビット列は、復号部209a内の誤り訂正復号部282に入力されて誤り訂正符号に対応した復号を行って(ステップS65)、データビット列をレプリカ生成部232内の誤り訂正符号部251へ出力する。誤り訂正符号部251で符号化ビット列が生成され(ステップS66)、再変調処理を経て(ステップS64)、レプリカシンボル列が生成される。
 尚、受信電力比を計算する処理は、本実施形態では電力計算部で行うとしたが、送信電力の通知方法に対応して制御情報取得部や伝搬路推定部で計算しても良い。
 尚、受信電力比を計算する処理は、本実施形態では受信局内の電力計算部で行うとするが、送信局側で計算して受信局に通知しても良い。その場合は、受信局で予め伝搬路減衰情報と雑音電力を測定して、送信局に情報を通知し、送信局側でデータ信号送信電力と伝搬路減衰情報を用いて予測データ信号受信電力を計算し、式(7)を用いて受信電力比を計算する。
 以上、第2の実施形態について説明した。
(第3の実施形態)
 本実施形態では、送信局装置の符号部で二重符号化を行う例について説明する。
 本実施形態に係る送信局装置の構成及び受信局装置の基本構成は図6、図8、図9及び図12と同じとなる。ただし、送信局装置の符号部101の処理及び受信局装置の復号部209とレプリカ生成部内の再符号部241の処理は第1の実施形態と異なるため、以下では、符号部101、再符号部241並びに復号部209の処理について説明する。
 図33は、本実施形態での送信局装置の符号部内の構成図である。
 符号部101aは、誤り検出符号部151、第一の誤り訂正符号部152、第二の誤り訂正符号部153を含んで構成される。
 誤り検出符号部151は、図7の誤り検出符号部121と同様の処理を行う。
 第一の誤り訂正符号部152は、入力されたデータ信号に対して誤り訂正符号化を行い、第一の符号化ビット列を出力する。誤り訂正符号化方法は、例えば、ターボ符号化、LDPCなど、誤り訂正能力の高い符号化方法が用いられる。
 第二の誤り訂正符号部153は、第一の誤り訂正符号部152から入力された第一の符号化ビット列に対して更なる誤り訂正符号化を行い、第二の符号化ビット列を変調部102へ出力する。誤り訂正符号化方法は、例えば、RS(Reed Solomon、リード・ソロモン)符号、畳み込み符号、など第一の誤り訂正符号部152で設定される誤り訂正符号化方法と比較して計算量の少ない誤り訂正符号化方法が使用される。第二の誤り訂正符号部153の符号化が適用されるデータ長(コードブロック)は第一の誤り訂正符号部152や誤り検出符号部151と異なってもよい。
 図34は、本実施形態での受信局装置の復号部209b内の構成図である。
 復号部209bは、第二の誤り訂正復号部291、第一の誤り訂正復号部292、誤り検出部293を含んで構成される。
 第二の誤り訂正復号部291は、復調部208から入力された符号化ビット列(以下、復調部208から第二の誤り訂正復号部291に入力される符号化ビット列を第二の符号化ビット列とも称する)に対して制御情報取得部210から入力された符号化率情報に対応する誤り訂正復号を行って第一の符号部化ビット列を得る。
 第一の誤り訂正復号部292は、第二の誤り訂正復号部291から入力された第一の符号化ビット列に対して制御情報取得部210から入力された符号化率情報に対応する誤り訂正復号化を行ってデータ信号を得る。
 誤り検出部293は、図10の誤り検出部222と同様の処理を行う。
 図35は、本実施形態での受信局UE2装置のレプリカ生成部に搭載される再符号部内の構成図である。
 本実施形態での再符号部241aは第二の誤り訂正符号部295を含んで構成される。
 図35の第二の誤り訂正符号部295は図30の第二の誤り訂正符号部153と同様の処理である。復号部209から入力された第一の符号化ビット列は第二の誤り訂正符号部295に入力され、制御信号処理部210bの制御情報取得部215から入力された符号化率情報に対応する誤り訂正符号化を行い、レプリカ符号化ビット列を生成する。再符号部241aは、送信側と同等の誤り訂正符号化方法を用いる。
 図36で、本実施形態での非直交多重された受信局が自受信局宛の所望データ信号を取得する処理のフローチャートを示す。本実施形態の処理は図14に示す第1の実施形態と同等の処理を行うが、第1の実施形態の処理と異なる点として、ステップS75に示すように、干渉データ信号処理は第二の誤り訂正復号まで行い、第一の誤り訂正復号は行わない。一方で、所望データ信号処理は第二及び第一の誤り訂正復号まで行う(ステップS82,S83)。他の処理は、図14の処理と同様である。
 これにより、レプリカシンボルも誤り訂正を行いつつ、復号処理遅延を軽減させることができる。
 以上、第3の実施形態における送信局構成、受信局構成及び受信処理について説明した。尚、2種類の異なる誤り訂正符号化を行う符号部が搭載された送信局装置構成及び送信局装置構成に対応する復号部が搭載された受信局装置構成について説明したが、本実施形態はこの限りでなく、3種類以上の異なる誤り訂正符号化処理を行ってもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成は実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 本発明に関わる送信局装置および受信局装置で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理的に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記憶媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。また、ロードしたプログラムを実行することにより、上記した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。
 また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記録装置も本発明に含まれる。また、上述した実施形態における送信局装置および受信局装置の一部、または全部を典型機能ブロックは個別にプロセッサ化してもよいし、一部、または全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が実現した場合、該当技術による集積回路を用いることも可能である。
101 符号部
102 変調部
103 レイヤマッピング部
104 プリコーディング部
105 マルチユーザプリコーディング部
106 周波数マッピング部
107 IFFT部
108 GI挿入部
109 無線送信部
110 アンテナ部
111 制御情報決定部
121 誤り検出符号部
122 誤り訂正符号部
131 重畳合成部
141 第一の誤り検出符号部
142 誤り訂正符号部
143 第二の誤り検出符号部
151 誤り検出符号部
152 第一の誤り訂正符号部
153 第二の誤り訂正符号部
201 アンテナ
202 無線信号処理部
203 GI除去部
204 FFT部
205 周波数デマッピング部
206 信号分離部
207 レイヤデマッピング部
208 復調部
209 復号部
210 制御信号処理部
211 伝搬路推定部
215 制御情報取得部
216 データ信号処理選択部
221 誤り訂正復号部
222 誤り検出部
231 干渉除去部
232 レプリカ生成部
241 再符号部
242 再変調部
243 再レイヤマッピング部
244 再プリコーディング部
245 再周波数マッピング部
246 伝搬処理部
251 誤り訂正符号部
261 干渉除去部
262 レプリカ生成部
271 第二の誤り検出部
272 誤り訂正復号部
273 第一の誤り検出部
274 誤り訂正符号部
275 第二の誤り検出符号部
281 電力比計算部
282 誤り訂正復号部
283 誤り検出部
291 第二の誤り訂正復号部
292 第一の誤り訂正復号部
293 誤り検出部
295 第二の誤り訂正符号部

Claims (17)

  1.  送信局装置と通信する第1の受信局装置であって、
     該第1の受信局装置宛のデータ信号を制御する第1の制御情報と、第2の受信局装置のデータ信号を制御する第2の制御情報と、を前記送信局装置から取得することを特徴とする
     第1の受信局装置。
  2.  前記第1の制御情報は、前記第2の受信局装置の固有情報を含むことを特徴とする
     請求項1に記載の第1の受信局装置。
  3.  前記第2の制御情報は、前記第1の受信局装置の固有情報を用いて符号化されることを特徴とする
     請求項1に記載の第1の受信局装置。
  4.  該第1の受信局装置宛のデータ信号を含むリソースブロックと、前記第2の受信局装置宛のデータ信号を含むリソースブロックと、が少なくとも一部重なることを特徴とする
     請求項1に記載の第1の受信局装置。
  5.  2つ以上の誤り検出処理を行う復号部を有し、
     前記復号部は、該第1の受信局装置宛のデータ信号に対して前記2つ以上の誤り訂正検出処理、または、前記第2の受信局装置宛のデータ信号に対して少なくとも1つの前記誤り訂正検出処理、を行うことを特徴とする
     請求項1から4のいずれか1項に記載の第1の受信局装置。
  6.  2つ以上の誤り訂正復号処理を行う復号部を有し、
     前記復号部は、該第1の受信局装置宛のデータ信号に対して前記2つ以上の誤り訂正復号処理、または、前記第2の受信局装置宛のデータ信号に対して少なくとも1つの前記誤り訂正復号処理、を行うことを特徴とする
     請求項1から4のいずれか1項に記載の第1の受信局装置。
  7.  第1の受信局装置と通信する送信局装置であって、
     前記第1の受信局装置宛のデータ信号を制御する第1の制御情報と、第2の受信局装置宛のデータ信号を制御する第2の制御情報と、を前記第1の受信局装置に通知することを特徴とする
     送信局装置。
  8.  前記第1の制御情報は、前記第2の受信局装置の固有情報を含むことを特徴とする
     請求項7に記載の送信局装置。
  9.  前記第2の制御情報は、前記第1の受信局装置の固有情報を用いて符号化されることを特徴とする
     請求項7に記載の送信局装置。
  10.  前記第1の受信局装置宛のデータ信号を含むリソースブロックと、前記第2の受信局装置宛のデータ信号を含むリソースブロックと、が少なくとも一部重なる
     請求項7に記載の送信局装置。
  11.  2つ以上の誤り検出符号化処理を行う符号部を有し、
     前記符号部は、前記第1の受信局装置宛のデータ信号に対して前記2つ以上の誤り検出符号化処理を行うことを特徴とする
     請求項7から10のいずれか1項に記載の送信局装置。
  12.  2つ以上の誤り訂正符号化処理を行う符号部を有し、
     前記復号部は、前記第1の受信局装置宛のデータ信号に対して前記2つ以上の誤り訂正符号化処理を行うことを特徴とする
     請求項7から10のいずれか1項に記載の送信局装置。
  13.  送信局装置と第1の受信局装置が通信を行う通信システムであって、
     前記送信局装置は、前記第1の受信局装置宛のデータ信号を制御する第1の制御情報と、第2の受信局装置宛のデータ信号を制御する第2の制御情報と、を前記第1の受信局装置に通知し、
     前記第1の受信局装置は、前記第1の制御情報と、前記第2の制御情報と、を前記送信局装置から取得することを特徴とする
     通信システム。
  14.  送信局装置と通信する第1の受信局装置の通信方法であって、
     前記第1の受信局装置宛のデータ信号を制御する第1の制御情報と、第2の受信局装置宛のデータ信号を制御する第2の制御情報と、を前記送信局装置から取得することを特徴とする
     第1の受信局装置の通信方法。
  15.  第1の受信局装置と通信する送信局装置の通信方法であって、
     前記第1の受信局装置宛のデータ信号を制御する第1の制御情報と、第2の受信局装置宛のデータ信号を制御する第2の制御情報と、を前記第1の受信局装置に通知することを特徴とする
     送信局装置の通信方法。
  16.  送信局装置と通信する第1の受信局装置で実現される集積回路であって、
     前記第1の受信局装置宛のデータ信号を制御する第1の制御情報と、第2の受信局装置宛のデータ信号を制御する第2の制御情報と、を前記送信局装置から取得する機能を実現する
     集積回路。
  17.  第1の受信局装置と通信する送信局装置で実現される集積回路であって、
     前記第1の受信局装置宛のデータ信号を制御する第1の制御情報と、第2の受信局装置宛のデータ信号を制御する第2の制御情報と、を前記第1の受信局装置に通知する機能を実現する
     集積回路。
PCT/JP2013/063746 2012-05-25 2013-05-17 受信局装置、送信局装置、通信システム、受信方法、送信方法及びプログラム WO2013176042A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380026231.3A CN104321990A (zh) 2012-05-25 2013-05-17 接收站装置、发送站装置、通信系统、接收方法、发送方法及程序
EP13794077.1A EP2858281A4 (en) 2012-05-25 2013-05-17 RECEIVING STATION DEVICE, TRANSMISSION STATION DEVICE, COMMUNICATION SYSTEM, RECEIVING METHOD, TRANSMISSION METHOD, AND PROGRAM
US14/401,068 US20150171983A1 (en) 2012-05-25 2013-05-17 Reception station device, transmission station device, communication system, reception method, transmission method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-119975 2012-05-25
JP2012119975A JP6050028B2 (ja) 2012-05-25 2012-05-25 端末、基地局、通信方法及び集積回路

Publications (1)

Publication Number Publication Date
WO2013176042A1 true WO2013176042A1 (ja) 2013-11-28

Family

ID=49623736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063746 WO2013176042A1 (ja) 2012-05-25 2013-05-17 受信局装置、送信局装置、通信システム、受信方法、送信方法及びプログラム

Country Status (5)

Country Link
US (1) US20150171983A1 (ja)
EP (1) EP2858281A4 (ja)
JP (1) JP6050028B2 (ja)
CN (1) CN104321990A (ja)
WO (1) WO2013176042A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208158A1 (ja) * 2013-06-28 2014-12-31 株式会社Nttドコモ 無線基地局、ユーザ端末、無線通信方法、及び無線通信システム
CN104796243A (zh) * 2014-01-22 2015-07-22 电信科学技术研究院 一种数据传输、数据接收检测方法及基站、用户设备
CN104868983A (zh) * 2014-02-26 2015-08-26 电信科学技术研究院 一种数据传输、数据接收检测方法及基站、用户设备
WO2016054993A1 (en) 2014-10-07 2016-04-14 Mediatek Inc. Signaling of network-assisted intra-cell interference cancellation and suppression
CN105517658A (zh) * 2014-05-26 2016-04-20 华为技术有限公司 邻区干扰的消除方法、基站控制设备及基站
WO2016106724A1 (zh) * 2014-12-31 2016-07-07 华为技术有限公司 通信方法和装置
WO2016107572A1 (en) * 2014-12-30 2016-07-07 Mediatek Inc. Resource allocation for superposition coding
WO2016153250A1 (ko) * 2015-03-23 2016-09-29 엘지전자(주) 무선 통신 시스템에서 비-직교 다중 접속을 이용하여 데이터를 송수신하기 위한 방법 및 장치
WO2016185969A1 (ja) * 2015-05-15 2016-11-24 京セラ株式会社 無線基地局及び移動通信方法
US9680578B2 (en) 2014-12-30 2017-06-13 Mediatek Inc. Soft packet combining for superposition coding
JP2017523646A (ja) * 2014-06-02 2017-08-17 インテル アイピー コーポレイション 動的非直交多元接続通信のためのユーザ機器および方法
CN107113736A (zh) * 2014-12-31 2017-08-29 华为技术有限公司 通信方法和装置
CN107113824A (zh) * 2015-01-12 2017-08-29 华为技术有限公司 在无线局域网中使用半正交多址接入的系统和方法
CN107210838A (zh) * 2015-01-14 2017-09-26 夏普株式会社 基站装置及终端装置
WO2017170109A1 (ja) * 2016-03-30 2017-10-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置、受信装置、送信方法および受信方法
WO2017170110A1 (ja) * 2016-03-30 2017-10-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 受信装置および受信方法
US9893843B2 (en) 2014-12-30 2018-02-13 Mediatek Inc. Rate matching and soft channel bits storage for superposition coding
EP3280080A4 (en) * 2015-03-31 2018-12-05 Sony Corporation Device
TWI648974B (zh) * 2014-06-10 2019-01-21 美商高通公司 促進非正交無線通訊的設備和方法
TWI687076B (zh) * 2014-12-11 2020-03-01 日商新力股份有限公司 通訊控制裝置,無線電通訊裝置,及通訊控制方法
US11362757B2 (en) 2015-03-26 2022-06-14 Sony Corporation Apparatus including a transmission processing unit that generates transmission signal sequences of multiple power layers

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5830478B2 (ja) * 2013-02-06 2015-12-09 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
JP6018969B2 (ja) * 2013-05-13 2016-11-02 株式会社日立国際電気 無線通信装置および無線通信方法
CN105830530B (zh) * 2013-12-24 2019-09-10 索尼公司 无线电通信装置、通信控制装置、无线电通信方法和通信控制方法
US20160021515A1 (en) * 2014-07-18 2016-01-21 Samsung Electro-Mechanics Co., Ltd. Electronic shelf label gateway, electronic shelf label system and communications method thereof
WO2016027556A1 (ja) * 2014-08-21 2016-02-25 株式会社Nttドコモ 基地局、ユーザ装置および無線通信システム
CN105472745B (zh) * 2014-09-04 2020-09-08 北京三星通信技术研究有限公司 一种探测导频信号资源的分配方法及设备
US10356727B2 (en) 2014-09-11 2019-07-16 Ntt Docomo, Inc. User equipment and radio base station
US10123315B2 (en) * 2014-10-15 2018-11-06 Asustek Computer Inc. Method and apparatus for enhancing channel capacity and spectral efficiency in a wireless communication system
JP6296167B2 (ja) * 2014-11-06 2018-03-20 富士通株式会社 通信システムおよび通信方法
EP3223553B1 (en) 2014-11-19 2019-05-08 Sony Corporation Measurement reporting with respect to a cell in accordance with a timer value for a terminal device relating to interference cancellation, the value corresponding to a type of the cell
US10708941B2 (en) 2014-11-21 2020-07-07 Sony Corporation Apparatus for acquiring and reporting power allocation
JP6402623B2 (ja) * 2014-12-26 2018-10-10 富士通株式会社 基地局装置及び基地局装置制御方法
EP3249837A4 (en) * 2015-01-30 2018-02-21 Huawei Technologies Co. Ltd. Transmission method, base station, and user equipment (ue) in non-orthogonal multiple access
JP2016146554A (ja) * 2015-02-06 2016-08-12 Kddi株式会社 通知方法、基地局、端末及び無線通信システム
JP2018056603A (ja) * 2015-02-13 2018-04-05 シャープ株式会社 基地局装置、端末装置および通信方法
JP2018056604A (ja) * 2015-02-13 2018-04-05 シャープ株式会社 基地局装置、端末装置および通信方法
JP2018064128A (ja) * 2015-02-26 2018-04-19 シャープ株式会社 端末装置、基地局装置、および通信方法
US10448405B2 (en) * 2015-03-19 2019-10-15 Qualcomm Incorporated Methods and apparatus for mitigating resource conflicts between ultra low latency (ULL) and legacy transmissions
JP6586762B2 (ja) 2015-04-07 2019-10-09 ソニー株式会社 受信装置、送信装置、受信方法、送信方法及びプログラム
JP6420467B2 (ja) * 2015-04-09 2018-11-07 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
JP2018515022A (ja) * 2015-04-16 2018-06-07 富士通株式会社 非直交多元接続技術に基づく情報伝送方法、装置及びシステム
KR102534065B1 (ko) * 2015-05-14 2023-05-19 샤프 가부시키가이샤 기지국 장치 및 단말 장치
WO2016181718A1 (ja) * 2015-05-14 2016-11-17 ソニー株式会社 装置、方法及びプログラム
US10342003B2 (en) * 2015-05-20 2019-07-02 Sony Corporation Device and method and program for performing radio communication
CN104980389B (zh) * 2015-05-27 2019-03-08 哈尔滨工业大学 适用非正交多址系统的新用户差异性选择接入方法
JP6367154B2 (ja) * 2015-06-17 2018-08-01 日本電信電話株式会社 無線中継システム、無線中継方法および無線中継装置
US10285169B2 (en) * 2015-07-10 2019-05-07 Qualcomm Incorporated Downlink control information (DCI) enhancements for non-orthogonal multiple access
CN106374985B (zh) * 2015-07-20 2020-02-28 电信科学技术研究院 一种多用户数据的发送接收方法及装置
CN106452697B (zh) * 2015-08-04 2019-08-16 电信科学技术研究院 一种上行数据的发送方法、接收方法及装置
CN106470178B (zh) * 2015-08-11 2019-08-23 北京信威通信技术股份有限公司 一种下行多用户mimo发射系统
CN106712814B (zh) * 2015-08-11 2020-07-17 上海诺基亚贝尔股份有限公司 采用基于码本的闭环预编码的叠加传输方法和装置
CN106452664B (zh) * 2015-08-11 2019-08-27 北京信威通信技术股份有限公司 一种下行多用户mimo发射方法
CN113645012A (zh) 2015-08-14 2021-11-12 索尼公司 无线通信网络中的电子设备和方法
GB2541390B (en) * 2015-08-14 2021-10-20 Tcl Communication Ltd Systems and methods for multi-user communication
AU2016327482A1 (en) * 2015-09-24 2018-03-29 Sony Corporation Apparatus, method, and program
US10064217B2 (en) 2015-10-16 2018-08-28 Samsung Electronics Co., Ltd. Method and apparatus for enabling flexible numerology in multi-user MIMO system
JP6668686B2 (ja) * 2015-11-02 2020-03-18 ソニー株式会社 送信装置
CN106961319A (zh) * 2016-01-12 2017-07-18 中兴通讯股份有限公司 一种数据处理的方法和装置
CN107124771A (zh) * 2016-02-24 2017-09-01 株式会社Ntt都科摩 控制信息的发送、接收方法及装置
KR102616481B1 (ko) 2016-04-04 2023-12-21 삼성전자주식회사 수신 장치 및 그의 신호 처리 방법
CN113765552A (zh) * 2016-06-03 2021-12-07 松下电器(美国)知识产权公司 通信装置、终端装置以及通信方法
WO2017221352A1 (ja) * 2016-06-22 2017-12-28 富士通株式会社 無線通信システム、基地局、及び、無線端末
CN109417408B (zh) * 2016-07-13 2021-10-26 索尼公司 无线通信设备和无线通信方法
WO2018012216A1 (ja) 2016-07-15 2018-01-18 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置および送信方法
WO2018030205A1 (ja) * 2016-08-12 2018-02-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 受信装置および受信方法
US10736081B2 (en) * 2016-09-14 2020-08-04 Huawei Technologies Co., Ltd. Non-orthogonal multiple access transmission
JP6819693B2 (ja) 2016-11-02 2021-01-27 富士通株式会社 無線通信装置、無線通信システム及び送信方法
CN108123903B (zh) * 2016-11-29 2021-12-14 上海诺基亚贝尔股份有限公司 通信系统中的信号处理方法和设备
JP6970501B2 (ja) * 2016-12-19 2021-11-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信装置、送信方法、受信装置、及び受信方法
JP7267378B2 (ja) * 2016-12-19 2023-05-01 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置、及び受信装置
WO2018171323A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for uplink puncturing transmission
US10771105B2 (en) * 2018-02-22 2020-09-08 Qualcomm Incorporated Configuration of NOMA communication using multiple sets of spreading sequences
JP7226432B2 (ja) * 2018-03-29 2023-02-21 富士通株式会社 送信装置、受信装置、無線通信システム、及び無線通信方法
US10686502B1 (en) * 2019-04-29 2020-06-16 XCOM Labs, Inc. Downlink user equipment selection
JP2021082858A (ja) * 2019-11-14 2021-05-27 株式会社東芝 送信装置、送信方法、受信装置及び受信方法
CN111698786B (zh) * 2020-06-12 2023-09-22 中移雄安信息通信科技有限公司 功率分配方法、装置、设备及存储介质
WO2022137282A1 (ja) * 2020-12-21 2022-06-30 日本電信電話株式会社 無線通信システム、無線通信方法、送信装置、及び受信装置
US11539557B1 (en) * 2021-12-16 2022-12-27 Qualcomm Incorporated Multi-level coding for power efficient channel coding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178643A (ja) * 1982-04-13 1983-10-19 Matsushita Electric Ind Co Ltd 誤り検出訂正装置
WO2009081514A1 (ja) * 2007-12-25 2009-07-02 Panasonic Corporation 無線通信装置、無線通信システム及び無線通信方法
JP2011120190A (ja) * 2009-06-23 2011-06-16 Ntt Docomo Inc 無線基地局装置及び移動局装置、無線通信方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597705B1 (en) * 1998-09-10 2003-07-22 Qualcomm Incorporated Method and apparatus for distributed optimal reverse link scheduling of resources, such as a rate and power in a wireless communication system
CN1780458A (zh) * 2004-11-24 2006-05-31 北京三星通信技术研究有限公司 基于时频无线信道资源分配方法
JP5084952B2 (ja) * 2008-07-25 2012-11-28 エルジー エレクトロニクス インコーポレイティド 無線通信システムでの信号を伝送するための装置及びその方法
KR101547545B1 (ko) * 2009-04-20 2015-09-04 삼성전자주식회사 무선 통신 시스템의 기지국간 간섭 제거를 위한 방법 및 이를 위한 장치
US20140369336A1 (en) * 2009-05-08 2014-12-18 Qualcomm Incorporated Apparatus and method for distributed updating of a self organizing network
US9210586B2 (en) * 2009-05-08 2015-12-08 Qualcomm Incorporated Method and apparatus for generating and exchanging information for coverage optimization in wireless networks
US9264097B2 (en) * 2009-06-04 2016-02-16 Qualcomm Incorporated Interference mitigation for downlink in a wireless communication system
CN101925069B (zh) * 2009-06-15 2016-01-06 株式会社Ntt都科摩 无线蜂窝网络中的干扰抑制方法和装置
KR101383513B1 (ko) * 2009-07-17 2014-04-08 후지쯔 가부시끼가이샤 단말 장치, 통신 시스템 및 통신 방법
US8478342B2 (en) * 2009-11-19 2013-07-02 Texas Instruments Incorporated Inter-cell interference coordination
US8761117B2 (en) * 2009-11-30 2014-06-24 Telefonaktiebolaget L M Ericsson (Publ) Interference mitigation in downlink signal communication to a mobile terminal
WO2011068367A2 (ko) * 2009-12-03 2011-06-09 엘지전자 주식회사 무선 통신 시스템에서 셀간 간섭 저감 방법 및 장치
US8682313B2 (en) * 2009-12-08 2014-03-25 Electronics And Telecommunications Research Institute Over-the-air inter-cell interference coordination methods in cellular systems
US8868091B2 (en) * 2010-01-18 2014-10-21 Qualcomm Incorporated Methods and apparatus for facilitating inter-cell interference coordination via over the air load indicator and relative narrowband transmit power
US9065583B2 (en) * 2010-04-13 2015-06-23 Qualcomm Incorporated Method and apparatus for inferring user equipment interference suppression capability from measurements report
KR20120094239A (ko) * 2011-02-16 2012-08-24 삼성전자주식회사 무선 통신 시스템에서 상향링크 전력 제어 방법 및 장치
WO2014097766A1 (ja) * 2012-12-21 2014-06-26 京セラ株式会社 移動通信システム、通信制御方法、基地局、及びユーザ端末

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178643A (ja) * 1982-04-13 1983-10-19 Matsushita Electric Ind Co Ltd 誤り検出訂正装置
WO2009081514A1 (ja) * 2007-12-25 2009-07-02 Panasonic Corporation 無線通信装置、無線通信システム及び無線通信方法
JP2011120190A (ja) * 2009-06-23 2011-06-16 Ntt Docomo Inc 無線基地局装置及び移動局装置、無線通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2858281A4
TOMITA, HIGUCHI: "Comparison and evaluation of user throughput characteristics between orthogonal multiple access and non-orthogonal multiple access using superposition - coding and SIC in the downlink of cellular networks", IEICE TECHNICAL REPORT RCS, vol. 58, June 2011 (2011-06-01), pages 135 - 140

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208158A1 (ja) * 2013-06-28 2014-12-31 株式会社Nttドコモ 無線基地局、ユーザ端末、無線通信方法、及び無線通信システム
EP3098997A4 (en) * 2014-01-22 2017-08-23 China Academy Of Telecommunications Technology Data transmission and data receiving detection method, base station, and user equipment
CN104796243A (zh) * 2014-01-22 2015-07-22 电信科学技术研究院 一种数据传输、数据接收检测方法及基站、用户设备
WO2015110008A1 (zh) * 2014-01-22 2015-07-30 电信科学技术研究院 一种数据传输、数据接收检测方法及基站、用户设备
CN104796243B (zh) * 2014-01-22 2018-05-29 电信科学技术研究院 一种数据传输、数据接收检测方法及基站、用户设备
US10014995B2 (en) 2014-01-22 2018-07-03 China Academy Of Telecommunications Technology Data transmission method, data reception and detection method, base station and user equipment
CN104868983A (zh) * 2014-02-26 2015-08-26 电信科学技术研究院 一种数据传输、数据接收检测方法及基站、用户设备
WO2015127885A1 (zh) * 2014-02-26 2015-09-03 电信科学技术研究院 一种数据传输、数据接收检测方法及基站、用户设备
CN104868983B (zh) * 2014-02-26 2018-03-27 电信科学技术研究院 一种数据传输、数据接收检测方法及基站、用户设备
US10028287B2 (en) 2014-02-26 2018-07-17 China Academy Of Telecommunications Technology Method for detecting data transmission and data reception, and base station and user device
CN105517658A (zh) * 2014-05-26 2016-04-20 华为技术有限公司 邻区干扰的消除方法、基站控制设备及基站
US10361804B2 (en) 2014-06-02 2019-07-23 Intel IP Corporation User equipment and method for dynamic non-orthogonal multiple access communication
JP2017523646A (ja) * 2014-06-02 2017-08-17 インテル アイピー コーポレイション 動的非直交多元接続通信のためのユーザ機器および方法
EP3149873A4 (en) * 2014-06-02 2017-12-20 Intel IP Corporation User equipment and method for dynamic non-orthogonal multiple access communication
TWI648974B (zh) * 2014-06-10 2019-01-21 美商高通公司 促進非正交無線通訊的設備和方法
US10736111B2 (en) 2014-06-10 2020-08-04 Qualcomm Incorporated Devices and methods for facilitating non-orthogonal wireless communications
US10555314B2 (en) 2014-10-07 2020-02-04 Hfi Innovation Inc. Signaling of network-assisted intra-cell interference cancellation and suppression
EP3164947A4 (en) * 2014-10-07 2018-03-28 MediaTek Inc. Signaling of network-assisted intra-cell interference cancellation and suppression
WO2016054993A1 (en) 2014-10-07 2016-04-14 Mediatek Inc. Signaling of network-assisted intra-cell interference cancellation and suppression
US11006477B2 (en) 2014-12-11 2021-05-11 Sony Corporation Communication control device, radio communication device, communication control method, and radio communication method
TWI687076B (zh) * 2014-12-11 2020-03-01 日商新力股份有限公司 通訊控制裝置,無線電通訊裝置,及通訊控制方法
US9680578B2 (en) 2014-12-30 2017-06-13 Mediatek Inc. Soft packet combining for superposition coding
WO2016107572A1 (en) * 2014-12-30 2016-07-07 Mediatek Inc. Resource allocation for superposition coding
US9831958B2 (en) 2014-12-30 2017-11-28 Mediatek Inc. Resource allocation for superposition coding
US9893843B2 (en) 2014-12-30 2018-02-13 Mediatek Inc. Rate matching and soft channel bits storage for superposition coding
US9973305B2 (en) 2014-12-30 2018-05-15 Mediatek Inc. Soft buffer partition for superposition coding
CN107113788A (zh) * 2014-12-31 2017-08-29 华为技术有限公司 通信方法和装置
WO2016106724A1 (zh) * 2014-12-31 2016-07-07 华为技术有限公司 通信方法和装置
CN107113788B (zh) * 2014-12-31 2021-01-05 华为技术有限公司 通信方法和装置
CN107113736B (zh) * 2014-12-31 2020-12-15 华为技术有限公司 通信方法和装置
CN107113736A (zh) * 2014-12-31 2017-08-29 华为技术有限公司 通信方法和装置
US10368316B2 (en) 2014-12-31 2019-07-30 Huawei Technologies Co., Ltd. Communication method and apparatus
JP2018506898A (ja) * 2015-01-12 2018-03-08 華為技術有限公司Huawei Technologies Co.,Ltd. 無線ローカルエリアネットワークにおいて半直交多元接続を使用するためのシステムおよび方法
EP3231237A4 (en) * 2015-01-12 2018-01-24 Huawei Technologies Co., Ltd. System and method for using semi-orthogonal multiple access in wireless local area networks
US10615938B2 (en) 2015-01-12 2020-04-07 Huawei Technologies Co., Ltd. System and method for using semi-orthogonal multiple access in wireless local area networks
CN107113824A (zh) * 2015-01-12 2017-08-29 华为技术有限公司 在无线局域网中使用半正交多址接入的系统和方法
CN107113824B (zh) * 2015-01-12 2020-01-03 华为技术有限公司 在无线局域网中使用半正交多址接入的系统和方法
US10374771B2 (en) 2015-01-12 2019-08-06 Huawei Technologies Co., Ltd. System and method for using semi-orthogonal multiple access in wireless local area networks
CN107210838B (zh) * 2015-01-14 2019-12-06 夏普株式会社 基站装置及终端装置
CN107210838A (zh) * 2015-01-14 2017-09-26 夏普株式会社 基站装置及终端装置
US10432345B2 (en) 2015-03-23 2019-10-01 Lg Electronics Inc. Method and device for transmitting and receiving data using non-orthogonal multiple access in wireless communication system
WO2016153250A1 (ko) * 2015-03-23 2016-09-29 엘지전자(주) 무선 통신 시스템에서 비-직교 다중 접속을 이용하여 데이터를 송수신하기 위한 방법 및 장치
US11362757B2 (en) 2015-03-26 2022-06-14 Sony Corporation Apparatus including a transmission processing unit that generates transmission signal sequences of multiple power layers
US10645700B2 (en) 2015-03-31 2020-05-05 Sony Corporation Communication apparatus and a method for communication
EP3280080A4 (en) * 2015-03-31 2018-12-05 Sony Corporation Device
US10194447B2 (en) 2015-03-31 2019-01-29 Sony Corporation Communication apparatus and a method for communication
AU2016242223B2 (en) * 2015-03-31 2019-09-12 Sony Corporation Device
WO2016185969A1 (ja) * 2015-05-15 2016-11-24 京セラ株式会社 無線基地局及び移動通信方法
CN110086562B (zh) * 2016-03-30 2020-10-16 松下电器(美国)知识产权公司 发送装置、接收装置、发送方法和接收方法
US10778365B2 (en) 2016-03-30 2020-09-15 Panasonic Intellectual Property Corporation Of America Transmission device, reception device, transmission method, and reception method
CN110086562A (zh) * 2016-03-30 2019-08-02 松下电器(美国)知识产权公司 发送装置、接收装置、发送方法和接收方法
US10608783B2 (en) 2016-03-30 2020-03-31 Panasonic Intellectual Property Corporation Of America Reception device and reception method
WO2017170109A1 (ja) * 2016-03-30 2017-10-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置、受信装置、送信方法および受信方法
WO2017170110A1 (ja) * 2016-03-30 2017-10-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 受信装置および受信方法
US11349603B2 (en) 2016-03-30 2022-05-31 Panasonic Intellectual Property Corporation Of America Reception device and reception method
US10396938B2 (en) 2016-03-30 2019-08-27 Panasonic Intellectual Property Corporation Of America Reception device and reception method
US11515965B2 (en) 2016-03-30 2022-11-29 Panasonic Intellectual Property Corporation Of America Reception device and reception method
US11876610B2 (en) 2016-03-30 2024-01-16 Panasonic Intellectual Property Corporation Of America Transmission device, reception device, transmission method, and reception method

Also Published As

Publication number Publication date
EP2858281A4 (en) 2016-01-20
US20150171983A1 (en) 2015-06-18
EP2858281A1 (en) 2015-04-08
JP2013247513A (ja) 2013-12-09
JP6050028B2 (ja) 2016-12-21
CN104321990A (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
JP6050028B2 (ja) 端末、基地局、通信方法及び集積回路
Nikopour et al. SCMA for downlink multiple access of 5G wireless networks
CN103685101B (zh) 具有多层干扰抵消的接收器
AU2010274573B2 (en) Wireless communication device and wireless communication method
JP6280508B2 (ja) 送信装置、受信装置および通信システム
WO2012121153A1 (ja) 無線通信システム、基地局装置及び端末装置
WO2012060237A1 (ja) 無線送信装置、無線受信装置、無線通信システム、制御プログラムおよび集積回路
JP5319443B2 (ja) 基地局装置、端末装置および無線通信システム
US20130128820A1 (en) Method and apparatus for determining channel quality index in multiple user-mimo communication networks
JP5916507B2 (ja) 送信装置、受信装置、送信方法、プログラムおよび集積回路
US20100034310A1 (en) Transmit diversity schemes in OFDM systems
US20150304867A1 (en) Backhaul Communication in Wireless Networks
US9948483B2 (en) Base station apparatus, wireless communication system, and communication method for uplink coordinated multi-point transmission and reception with intra-phy split base station architecture
JPWO2017051583A1 (ja) 装置、方法及びプログラム
US10263672B2 (en) Integer forcing scheme for multi-user MIMO communication
KR101319878B1 (ko) Mimo 통신 시스템에서 코드워드와 스트림의 조합 표시방법
US9264266B2 (en) Successive interference cancellation system and method for MIMO horizontal encoding and decoding
JP5641787B2 (ja) 端末装置及びそれを用いた無線通信システム
WO2012063739A1 (ja) 無線制御装置、無線端末装置、無線通信システム、無線制御装置および無線端末装置の制御プログラムおよび集積回路
Miyamoto et al. Uplink joint reception with LLR forwarding for optical transmission bandwidth reduction in mobile fronthaul
KR101073921B1 (ko) 다중 안테나 시스템에 적용되는 신호 전송 방법
US8649251B2 (en) Multi-user multiplexing method and transmission device
JP2006140882A (ja) 無線基地局装置及び無線通信方法
Xue et al. Link adaptation scheme for uplink MIMO transmission with turbo receivers
JP5642572B2 (ja) 無線制御装置、無線端末装置、無線通信システム、制御プログラムおよび集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14401068

Country of ref document: US

Ref document number: 2013794077

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE