WO2016106724A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2016106724A1
WO2016106724A1 PCT/CN2014/095994 CN2014095994W WO2016106724A1 WO 2016106724 A1 WO2016106724 A1 WO 2016106724A1 CN 2014095994 W CN2014095994 W CN 2014095994W WO 2016106724 A1 WO2016106724 A1 WO 2016106724A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmit power
power
parameter
base station
processing unit
Prior art date
Application number
PCT/CN2014/095994
Other languages
English (en)
French (fr)
Inventor
程型清
吴海
吴强
龚政委
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480084394.1A priority Critical patent/CN107113788B/zh
Priority to EP14909531.7A priority patent/EP3229541B1/en
Priority to PCT/CN2014/095994 priority patent/WO2016106724A1/zh
Publication of WO2016106724A1 publication Critical patent/WO2016106724A1/zh
Priority to US15/637,343 priority patent/US10368316B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/286TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission during data packet transmission, e.g. high speed packet access [HSPA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications, and in particular, to a communication method and apparatus.
  • the downlink In the existing LTE (Long Term Evolution) system, the downlink generally employs OFDMA (Orthogonal Frequency Division Multiple Access) technology.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • NOMA Non-Orthogonal Multiple Access
  • the base station allocates different powers to different user equipments (UEs), but different UEs can use the same frequency resources.
  • paired UEs Two or more UEs that communicate with the base station using the same time-frequency resource block are referred to as paired UEs.
  • UE1 and UE2 use the same time-frequency resource block to communicate with the base station, and UE2 and UE1 are paired UEs.
  • the base station uses different transmit powers to transmit signals to UE1 and UE2.
  • Downstream usually refers to the direction of the base station to the UE.
  • UE1 needs to eliminate the interference of the downlink signal of UE2.
  • UE1 cannot obtain related information of downlink signals of UE2, and cannot implement communication by using NOMA technology.
  • Embodiments of the present invention provide a communication method and apparatus, which implement communication by using NOMA technology.
  • an embodiment of the present invention provides a base station, which is configured to serve the at least two user equipments, where the at least two UEs include a first UE and a second UE, and a power parameter of the first UE and an adjustment parameter ⁇ 1, ue1 of the first transmit power , where the power parameter of the first UE includes: a UE-specific parameter of the first UE Cell specific parameters of the first UE And a reference signal transmission power of the first UE, where the first transmit power is a transmit power of the downlink data of the first UE, and a sending unit, configured to send the power of the first UE to the first UE a parameter and an adjustment parameter ⁇ 1, ue1 of the first transmit power; the processing unit is further configured to determine a first transmit by using a power parameter of the first UE and an adjustment parameter ⁇ 1, ue1 of the first transmit power The sending unit is further configured to send downlink data of the first UE by using the first transmit power.
  • the embodiment of the present invention provides a communication method, which is applicable to a communication network that includes at least two user equipments, where the at least two UEs include the first UE and the second UE, including: the base station acquires the first user.
  • the power parameter of the first UE includes: a UE-specific parameter of the first UE Cell specific parameters of the first UE And a reference signal transmission power of the first UE, where the first transmit power is a transmit power of downlink data of the first UE; the base station sends a power parameter of the first UE to the first UE the first transmit power adjustment parameter ⁇ 1, ue1; adjustment parameter ⁇ according to the base station, the first UE power parameter and the first transmit power of 1, ue1 determining a first transmit power; the base station uses The first transmit power sends a downlink signal of the first UE.
  • the embodiment of the present invention provides a first user equipment UE, where the first UE communicates with a base station, the base station serves at least two UEs, and the at least two UEs include the first UE.
  • the second UE including:
  • a receiving unit configured to receive a power parameter of the first UE and an adjustment parameter ⁇ 1, ue1 of the first transmit power , where the power parameter of the first UE includes: Cell specific parameters of the first UE And a reference signal transmission power of the first UE, where the first transmit power is a transmit power of the downlink data of the first UE, and a processing unit, configured to use, according to the power parameter of the first UE, the first The adjustment parameter ⁇ 1, ue1 of the transmit power determines the first transmit power; and is used to determine the second transmit power according to the power parameter of the first UE and the first transmit power; the second transmit power is the second a transmitting unit of the downlink data of the UE; the receiving unit is further configured to receive a signal sent by the base station, where the received signal includes downlink data of the first UE, and the processing unit is further configured to perform according to the And obtaining, by the first transmit power and the second transmit power, downlink data of the first UE from a signal received by the receiving unit.
  • an embodiment of the present invention provides a communication method, which is applicable to a communication network that includes at least two user equipments, where the at least two UEs include a first UE and a second UE, including: a first user equipment UE.
  • the power parameter of the first UE includes: the first UE Cell specific parameters of the first UE And a reference signal transmission power of the first UE, where the first transmit power is a transmit power of downlink data of the first UE; and the first UE is configured according to a power parameter of the first UE and the first The adjustment parameter ⁇ 1, ue1 of the transmit power determines the first transmit power; the first UE determines the second transmit power according to the power parameter of the first UE and the first transmit power, where the second transmit power is Transmitting, by the first UE, a signal sent by the base station, where the received signal includes downlink data of the first UE, and the first UE is configured according to the first The power and the second transmit power are acquired from the received signal to obtain downlink data of the first UE.
  • an embodiment of the present invention provides a base station, where the at least two UEs are served by the UE, the at least two UEs include a first UE and a second UE, and the processing unit is configured to acquire the a power parameter of the first UE and a power parameter of the second UE, where the power parameter of the first UE includes: a UE-specific parameter of the first UE Cell specific parameters of the first UE And a reference signal transmission power of the first UE; the power parameter of the second UE includes: UE specific parameters of the second UE a cell-specific parameter P B, ue2 of the second UE and the second UE reference signal transmission power; a sending unit, configured to send the power parameter of the first UE and the second UE to the first UE The processing unit is further configured to determine, according to the power parameter of the first UE, a first transmit power, where the first transmit power is a transmit power of downlink data of the first UE; And transmitting, by using the first transmit power
  • the embodiment of the present invention provides a communication method, which is applicable to a communication network that includes at least two user equipments, where the at least two UEs include the first UE and the second UE, and the base station acquires the first user.
  • the power parameter of the first UE includes: a UE-specific parameter of the first UE Cell specific parameters of the first UE And a reference signal transmission power of the first UE;
  • the power parameter of the second UE includes: UE specific parameters of the second UE The cell-specific parameter P B, ue2 of the second UE and the second UE reference signal transmit power;
  • the base station sends the power parameter of the first UE and the power of the second UE to the first UE Determining, by the base station, a first transmit power according to a power parameter of the first UE, where the first transmit power is a transmit power of downlink data of the first UE; and the base station uses the first transmit power to Downlink data of the first UE.
  • the embodiment of the present invention provides a first user equipment UE, where the first UE communicates with a base station, the base station serves at least two UEs, and the at least two UEs include the first UE.
  • the second UE including: a receiving unit, configured to receive a power parameter of the first UE and a power parameter of the second UE, where the power parameter of the first UE includes: a UE-specific parameter of the first UE Cell specific parameters of the first UE And a reference signal transmission power of the first UE; the power parameter of the second UE includes: UE specific parameters of the second UE The cell-specific parameter P B, ue2 of the second UE and the second UE reference signal transmission power; the processing unit, configured to determine the first transmit power according to the power parameter of the first UE, the first The transmit power is the transmit power of the downlink data of the first UE; and the second transmit power is determined according to the power parameter of the second UE, where the second transmit power is the downlink data
  • an embodiment of the present invention provides a communication method, which is applicable to a communication network that includes at least two user equipments, where the at least two UEs include a first UE and a second UE, including: the first UE.
  • the base station acquires the adjustment parameter ⁇ 1, ue1 of the first transmit power and the power parameter of the first UE, and adjusts the first transmit power ⁇ 1, ue1 and the The power parameter of the first UE is sent to the first UE. Therefore, the first UE may obtain the first transmit power according to the power parameter of the first user equipment UE, and determine the second transmit power according to the adjustment parameter ⁇ 1, ue1 of the first transmit power and the first transmit power. The first UE can cancel the interference of the downlink data of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
  • FIG. 1 is a schematic structural diagram of a network architecture according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a base station according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a first UE according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural diagram of a first UE according to Embodiment 6 of the present invention.
  • FIG. 6 is a schematic flow chart of a communication method according to Embodiment 9 of the present invention.
  • FIG. 7 is a schematic flowchart diagram of a communication method according to Embodiment 10 of the present invention.
  • FIG. 8 is a schematic flowchart diagram of a communication method according to Embodiment 11 of the present invention.
  • FIG. 9 is a schematic flowchart diagram of a communication method according to Embodiment 14 of the present invention.
  • the UE in the embodiment of the present invention may be, for example, a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, or a PDA (Personal Digital Assistant, Personal digital processing), a handheld device with wireless communication capabilities, an in-vehicle device, a wearable device, a computing device, or other processing device connected to a wireless modem.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant, Personal digital processing
  • a base station in an embodiment of the invention may, for example, refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame and the network interconnection protocol (English: Internet Protocol, IP for short) into a router between the wireless terminal and the rest of the access network, where the access is performed.
  • the rest of the network may include an IP protocol network.
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (English: Base Transceiver Station, BTS for short) in GSM (English: Global System for Mobile Communication) or CDMA (Code Division Multiple Access).
  • NodeB Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • An embodiment of the present invention discloses a communication method and apparatus, where a base station notifies a first UE of information related to a first transmit power and a second transmit power, and the first UE acquires information related to the first transmit power and the second transmit power, thereby The first UE cancels the interference of the downlink data of the second UE according to the information related to the first transmit power and the second transmit power, and implements communication using NOMA.
  • the first transmit power is the transmit power of the downlink data of the first UE; the second transmit power is the transmit power of the downlink data of the second UE.
  • FIG. 1 is a schematic structural diagram of a network architecture according to an embodiment of the present invention.
  • the network includes a base station and a UE, and the UE may be two or more. Only the first UE and the second UE are shown in the figure.
  • the first UE and the second UE communicate with the base station by using the same time-frequency resource block, and the downlink data of the first UE and the downlink data of the second UE are different in transmit power.
  • the base station is any one of the base stations in the embodiment of the present invention
  • the first UE is any one of the first UEs in the embodiment of the present invention.
  • the first embodiment of the present invention discloses a base station, where the base station serves at least two UEs, and the at least two UEs include a first UE and a second UE.
  • FIG. 2 is a schematic structural diagram of a base station according to Embodiment 1 of the present invention.
  • the base station includes a processing unit 201 and a transmitting unit 202.
  • the processing unit may specifically be a processor, and the sending unit may specifically be a transmitter.
  • the processing unit 201 is configured to acquire a power parameter of the first UE and an adjustment parameter ⁇ 1, ue1 of the first transmit power;
  • the sending unit 202 is configured to send, to the first UE, a power parameter of the first UE and an adjustment parameter ⁇ 1, ue1 of the first transmit power;
  • the processing unit 201 is further configured to determine, by using a power parameter of the first UE and an adjustment parameter ⁇ 1, ue1 of the first transmit power, a first transmit power;
  • the sending unit 202 is further configured to send downlink data of the first UE by using the first transmit power.
  • the power parameter of the first UE includes: UE specific parameters of the first UE Cell specific parameters of the first UE Transmitting power with a reference signal of the first UE, where the first transmit power is a transmit power of downlink data of the first UE.
  • UE-specific parameters of the first UE provided by the first higher layer a cell-specific parameter of the first UE that is provided by the first layer;
  • the first layer is a higher layer of the first UE, and may be a base station of the first UE or another network entity.
  • the P A of different UEs in the same cell may be different, but the transmit power of P B and the reference signal are the same.
  • the sending unit 202 is specifically configured to: go to the first by using a downlink control information (DCI) in a higher layer signaling or a physical downlink control channel (PDCCH)
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the adjustment parameter ⁇ 1, ue1 of the first transmit power is an adjustment value of the first transmit power.
  • the processing unit 201 is specifically configured to determine, according to the power parameter of the first UE, a third transmit power, where the first transmit power is a third transmit power minus or plus an adjustment value of the first transmit power. .
  • the processing unit 201 is specifically configured to be used according to the And said Determining ⁇ ue1 ; and determining the third transmit power according to the ⁇ ue1 and the reference signal transmit power of the first UE; wherein the ⁇ ue1 represents each of the physical downlink shared channel PDSCH of the first UE a ratio of a resource unit energy EPRE and an EPRE of a cell-specific reference signal of the first UE, the ⁇ ue1 including ⁇ A, ue1 and ⁇ B, ue1 , the ⁇ A, ue1 and ⁇ B, ue1 corresponding to the Different orthogonal frequency division multiplexing OFDM symbol indices of the first UE.
  • the OFDM symbol index corresponding to the ⁇ A, ue1 and the ⁇ B, ue1 is as shown in Table 1 or Table 2:
  • n s represents a slot index in a radio frame.
  • the processing unit 201 when determining the third transmit power, is specifically configured to determine the ⁇ A, ue1 according to the following formula:
  • the processing unit 201 is specifically configured to determine the ⁇ B, ue1 according to the ⁇ A, ue1 and the third table:
  • the sending unit 202 is further configured to indicate a delta power-offset by using a downlink power offset field in a DCI of a PDCCH of the first UE.
  • the downlink power offset domain can occupy one bit.
  • the first UE learns the delta power-offset through the downlink power offset domain.
  • the downlink power offset domain can be as shown in Table 4 below:
  • the processing unit 201 is configured according to the Said Determining ⁇ ue1 with the adjustment parameter ⁇ 1, ue1 of the first transmit power; and determining the first transmit power according to the ⁇ ue1 and the reference signal transmit power of the first UE; wherein the ⁇ ue1 And a ratio of an EPRE of the resource-specific unit energy EPRE of the physical downlink shared channel PDSCH of the first UE to a cell-specific reference signal of the first UE, where ⁇ ue1 includes ⁇ A, ue1 and ⁇ B, ue1 , The ⁇ A, ue1 and ⁇ B, ue1 correspond to different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE.
  • processing unit 201 is specifically configured to: ⁇ A, ue1 according to the following formula:
  • the processing unit 201 is specifically configured to determine the ⁇ B, ue1 according to the ⁇ A, ue1 and the third table.
  • the processing unit 201 is further configured to determine, according to the power parameter of the first UE and the first transmit power, a second transmit power, where the second transmit power is the The transmit power of the downlink data of the UE.
  • the sending unit 202 is further configured to send a signal to the second UE by using the second transmit power.
  • the processing unit 201 is specifically configured to determine the second transmit power according to the third transmit power and the first transmit power.
  • the determining of the third transmit power is determined according to the power parameter of the first UE, and the specific implementation manner of determining may be referred to the foregoing description.
  • the second transmit power is a difference between the third transmit power and the first transmit power.
  • the processing unit 201 of the base station acquires the adjustment parameters ⁇ 1, ue1 of the first transmit power and the power parameters of the first UE, and adjusts the first transmit power by using the sending unit 202.
  • the parameter ⁇ 1, ue1 and the power parameter of the first UE are sent to the first UE. Therefore, the first UE may obtain the first transmit power according to the power parameter of the first user equipment UE, and determine the second transmit power according to the adjustment parameter ⁇ 1, ue1 of the first transmit power and the first transmit power.
  • the first UE can cancel the interference of the downlink data of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
  • the processing unit 201 in the base station acquires the adjustment parameter ⁇ 1, ue1 of the first transmit power, and sends the adjustment parameter ⁇ 1, ue1 of the first transmit power to the first UE by using the sending unit 202.
  • the base station schedules the first transmit power by using the first transmit power adjustment parameter ⁇ 1, ue1 to implement dynamic scheduling of the transmit power under the NOMA technology.
  • Embodiment 1 may apply the following scenario: first UE power parameter And power parameters of the second UE the same.
  • the second higher layer is a higher layer of the second UE, such as a base station that may be the second UE, for the UE-specific parameter of the second UE that is provided by the second upper layer.
  • the received power is the same according to the first UE power parameter and the power parameter of the second UE, respectively. Therefore, according to the first UE, the second transmit power can be obtained according to the first UE power parameter.
  • the base station sends the first UE power parameter to the first UE, and the first UE can cancel the interference of the signal of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
  • the second embodiment of the present invention further discloses a first UE.
  • the first UE communicates with a base station, the base station serves at least two UEs, and the at least two UEs include the first UE and the second UE.
  • FIG. 3 is a schematic structural diagram of a first UE according to Embodiment 2 of the present invention.
  • the first UE includes a receiving unit 301 and a processing unit 302.
  • the receiving unit may specifically be a receiver, and the processing unit may specifically be a processor.
  • the receiving unit 301 is configured to receive, by the base station, a power parameter of the first UE and an adjustment parameter ⁇ 1, ue1 of the first transmit power , where the power parameter of the first UE includes: Cell specific parameters of the first UE And a reference signal transmission power of the first UE, where the first transmit power is a transmit power of downlink data of the first UE;
  • the processing unit 302 is configured to determine a first transmit power according to the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power, and to use, according to the power parameter and location of the first UE Determining, by the first transmit power, a second transmit power; the second transmit power being a transmit power of downlink data of the second UE;
  • the receiving unit 301 is further configured to receive a signal sent by the base station, where the received signal includes downlink data of the first UE;
  • the processing unit 302 is further configured to acquire downlink data of the first UE according to the signal received from the receiving unit according to the first transmit power and the second transmit power.
  • the receiving unit 301 is specifically configured to receive, by the base station, the power parameter of the first UE and the adjustment parameter ⁇ 1 of the first transmit power, which are sent by the high layer signaling or the DCI in the PDCCH. , ue1 .
  • the adjustment parameter ⁇ 1, ue1 of the first transmit power is an adjustment value of the first transmit power.
  • the processing unit 302 is specifically configured to determine, according to the power parameter of the first UE, a third transmit power, where the first transmit power is a third transmit power minus or plus an adjustment value of the first transmit power. .
  • the processing unit 302 is specifically configured to be used according to the And said Determining ⁇ ue1 ; and determining the third transmit power according to the ⁇ ue1 and the reference signal transmit power of the first UE; wherein the ⁇ ue1 represents each of the physical downlink shared channel PDSCH of the first UE a ratio of a resource unit energy EPRE and an EPRE of a cell-specific reference signal of the first UE, the ⁇ ue1 including ⁇ A, ue1 and ⁇ B, ue1 , the ⁇ A, ue1 and ⁇ B, ue1 corresponding to the Different orthogonal frequency division multiplexing OFDM symbol indices of the first UE.
  • the first embodiment For a description of related parameters, refer to the first embodiment.
  • the processing unit 302 when determining the third transmit power, is specifically configured to determine the ⁇ A, ue1 according to the following formula:
  • the processing unit 302 is specifically configured to determine the ⁇ B, ue1 according to the ⁇ A, ue1 and the third table.
  • the receiving unit 301 is further configured to receive a ⁇ power-offset indication sent by the base station by using a downlink power offset field in a DCI of a PDCCH of the first UE.
  • the downlink power offset domain can occupy one bit.
  • the downlink power offset domain can be as shown in Table 4 below.
  • the processing unit 302 is further configured to Said Determining ⁇ ue1 with the adjustment parameter ⁇ 1, ue1 of the first transmit power; and determining the first transmit power according to the ⁇ ue1 and the reference signal transmit power of the first UE; wherein the ⁇ ue1 And a ratio of an EPRE of the resource-specific unit energy EPRE of the physical downlink shared channel PDSCH of the first UE to a cell-specific reference signal of the first UE, where ⁇ ue1 includes ⁇ A, ue1 and ⁇ B, ue1 , The ⁇ A, ue1 and ⁇ B, ue1 correspond to different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE.
  • processing unit 302 is specifically configured to: ⁇ A, ue1 according to the following formula:
  • the processing unit 302 is specifically configured to determine the ⁇ B, ue1 according to the ⁇ A, ue1 and the third table.
  • the processing unit 302 is further configured to determine a second transmit power according to the power parameter of the first UE and the first transmit power, where the second transmit power is the second UE The transmit power of the downlink data.
  • the processing unit 302 is specifically configured to determine the second transmit power according to the third transmit power and the first transmit power.
  • the determining of the third transmit power is determined according to the power parameter of the first UE, and the specific implementation manner of determining may be referred to the foregoing description.
  • the second transmit power is a difference between the third transmit power and the first transmit power.
  • the first UE when the first UE acquires downlink data of the first UE, the first UE needs to use an advanced receiver, such as a maximum likelihood (ML) receiver or a codeword level interference deletion (codeword). Interference cancellation, CWIC) receivers, etc.
  • an advanced receiver such as a maximum likelihood (ML) receiver or a codeword level interference deletion (codeword). Interference cancellation, CWIC) receivers, etc.
  • the possible candidate downlink signals of the first UE and the second UE are matched with the received signal, and the soft information of the corresponding bit of the downlink signal of the first UE is determined, in a general sense
  • the downlink signal of the second UE is an interference signal for the first UE, and the transmission constellation of the first UE and the second UE is effectively designed, which can increase the corresponding bit distance of the downlink signal of the first UE, thereby improving transmission.
  • the reliability such as the composite constellation of the first UE and the second UE, conforms to the Gray mapping and the like.
  • the downlink signal of the first UE carries downlink data of the first UE.
  • the downlink signal of the second UE is first demodulated, and then the downlink signal of the second UE is subtracted from the received signal to obtain a downlink signal of the first UE.
  • the second UE may use the downlink signal of the first UE as interference and directly use an existing conventional receiver.
  • the channel coefficient corresponding to the first UE is H 1 and the noise interference is ⁇ 1 .
  • the channel coefficient corresponding to the second UE is H 2 and the noise interference is ⁇ 2 .
  • the first transmit power of the downlink signal X 1 of the first UE sent by the base station is P 1
  • the second transmit power of the downlink signal X 2 of the second UE sent by the base station on the same time-frequency resource is P 2 .
  • the received signals of the first UE and the second UE are Y 1 and Y 2 respectively, which are respectively expressed as:
  • the received received signal Y 1 is obtained by channel estimation and noise estimation, respectively, by obtaining channel H 1 and interference ⁇ 1 according to powers P 1 and P 2 ; and then preferentially solving the downlink signal X of the second UE. 2.
  • the first UE may solve the downlink signal X 1 of the first UE.
  • the first UE can preferentially solve X 2 and then subtract X 2 to obtain a more accurate estimation of X 1 because the first The signal-to-noise ratio of the UE is higher than that of the second UE, so the first UE can correctly solve the downlink signal X 2 of the second UE. Therefore, for the second UE, since the downlink signal X 1 of the second UE cannot be correctly solved, X 2 can be directly solved according to the following formula:
  • the receiving unit 301 of the first UE receives the transmitted power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power , and the processing unit 302 of the first UE is configured according to the first user equipment.
  • the power parameter of the UE acquires the first transmit power, and determines the second transmit power according to the power parameter of the first UE and the first transmit power.
  • the first UE can eliminate the interference of the signal of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
  • the second embodiment of the present invention can be applied to the following scenario: the first UE power parameter And power parameters of the second UE the same.
  • the second higher layer is a higher layer of the second UE, such as a base station that may be the second UE, for the UE-specific parameter of the second UE that is provided by the second upper layer.
  • the received power is the same according to the first UE power parameter and the power parameter of the second UE, respectively. Therefore, according to the first UE, the second transmit power can be obtained according to the first UE power parameter.
  • the base station sends the first UE power parameter to the first UE, and the first UE can cancel the interference of the signal of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
  • FIG. 4 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention.
  • the base station includes a processing unit 401 and a transmitting unit 402.
  • the processing unit may specifically be a processor, and the sending unit may specifically be a transmitter.
  • the processing unit 401 is configured to acquire a power parameter of the first UE and a power parameter of the second UE, where the power parameter of the first UE includes: a UE-specific parameter of the first UE Cell specific parameters of the first UE And a reference signal transmission power of the first UE; the power parameter of the second UE includes: UE specific parameters of the second UE a cell-specific parameter P B,ue2 of the second UE and the second UE reference signal transmission power;
  • the sending unit 402 is configured to send the power parameter of the first UE and the work of the second UE to the first UE Rate parameter
  • the processing unit 401 is further configured to determine, according to the power parameter of the first UE, a first transmit power, where the first transmit power is a transmit power of downlink data of the first UE;
  • the sending unit 402 is further configured to send downlink data of the first UE by using the first transmit power.
  • P B, ue2 is a cell-specific parameter of the second UE that is provided by the second upper layer; It may be a base station of the second UE or other network entity.
  • the P A of different UEs in the same cell may be different, but the transmit power of P B and the reference signal are the same.
  • the sending unit is specifically configured to send, by using the high layer signaling or the DCI in the PDCCH, the power parameter of the first UE and the power parameter of the second UE to the first UE.
  • the processing unit 401 is configured according to the And said Determining ⁇ ue1 ; and determining the first transmit power according to the ⁇ ue1 and the reference signal transmit power of the first UE; wherein the ⁇ ue1 represents each of the physical downlink shared channel PDSCH of the first UE a ratio of a resource unit energy EPRE and an EPRE of a cell-specific reference signal of the first UE, the ⁇ ue1 including ⁇ A, ue1 and ⁇ B, ue1 , the ⁇ A, ue1 and ⁇ B, ue1 corresponding to the Different orthogonal frequency division multiplexing OFDM symbol indices of the first UE.
  • the processing unit 401 determines the ⁇ A, ue1 according to the following formula:
  • the processing unit 401 is specifically configured to determine the ⁇ B, ue1 according to the ⁇ A, ue1 and the third table.
  • the sending unit 402 is further configured to indicate a delta power-offset by using a downlink power offset field in a DCI of a PDCCH of the first UE.
  • the downlink power offset domain can occupy one bit.
  • the first UE learns the delta power-offset through the downlink power offset domain.
  • the downlink power offset domain can be as shown in Table 4 below.
  • the processing unit 401 is further configured to determine, according to a power parameter of the second UE
  • the second transmit power is the transmit power of the downlink data of the second UE
  • the sending unit 402 is further configured to send the downlink data of the second UE by using the second transmit power.
  • the processing unit 402 is specifically configured to be used according to the Determining ⁇ ue2 with the P B, ue2 , and determining the second transmit power according to the ⁇ ue2 and the reference signal transmit power of the second UE; wherein the ⁇ ue2 represents the second UE a ratio of the resource-receiving EPRE of the physical downlink shared channel PDSCH to the EPRE of the cell-specific reference signal of the second UE, the ⁇ ue2 including ⁇ A, ue2 and ⁇ B, ue2 , the ⁇ A, ue2 and ⁇ B, ue2 corresponds to different orthogonal frequency division multiplexing OFDM symbol indexes of the second UE.
  • the OFDM symbol index corresponding to the ⁇ A, ue2, and ⁇ B, ue2 is as shown in Table 5 or Table 6:
  • n s represents a slot index in a radio frame.
  • the processing unit 402 is specifically configured to determine the ⁇ A, ue2 according to the following formula:
  • the processing unit 402 is specifically configured to determine the ⁇ B, ue2 according to the ⁇ A, ue2 and Table 3.
  • the processing unit 401 of the base station acquires the power parameter of the first UE and the power parameter of the second UE, and sends the power parameter of the first UE and the power parameter of the second UE to the first The UE, so that the first UE can obtain the first transmit power according to the power parameter of the first UE, and determine the second transmit power according to the power parameter of the second UE.
  • the first UE can eliminate the interference of the signal of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
  • the fourth embodiment of the present invention further discloses a base station.
  • the difference between the fourth embodiment and the third embodiment is that the processing unit 401 is further configured to acquire the adjustment parameter ⁇ 1, ue1 of the first transmit power , where the sending unit is The 402 is further configured to send the adjustment parameter ⁇ 1, ue1 of the first transmit power to the first UE.
  • the processing unit 401 is further configured to acquire the adjustment parameter ⁇ 1, ue1 of the first transmit power
  • the sending unit is
  • the 402 is further configured to send the adjustment parameter ⁇ 1, ue1 of the first transmit power to the first UE.
  • the sending unit 402 is specifically configured to send, by using the high layer signaling or the DCI in the PDCCH, the adjustment parameter ⁇ 1, ue1 of the first transmit power to the first UE.
  • the processing unit 401 is specifically configured to determine the first transmit power according to the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power.
  • the adjustment parameter ⁇ 1, ue1 of the first transmit power is an adjustment value of the first transmit power.
  • the processing unit 401 is specifically configured to determine, according to the power parameter of the first UE, a third transmit power, where the first transmit power is a third transmit power minus or plus an adjustment value of the first transmit power. .
  • the processing unit 401 determines the third transmit power refer to the processing of the processing unit 201 in the first embodiment. It will not be detailed here.
  • the processing unit 401 is specifically configured to be used according to the Said Determining ⁇ ue1 with the adjustment parameter ⁇ 1, ue1 of the first transmit power; and determining the first transmit power according to the ⁇ ue1 and the reference signal transmit power of the first UE; wherein the ⁇ ue1 And a ratio of an EPRE of the resource-specific unit energy EPRE of the physical downlink shared channel PDSCH of the first UE to a cell-specific reference signal of the first UE, where ⁇ ue1 includes ⁇ A, ue1 and ⁇ B, ue1 , The ⁇ A, ue1 and ⁇ B, ue1 correspond to different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE.
  • the processing unit 401 determines the processes of the ⁇ A, ue1 and ⁇ B, ue1 , and specifically refers to the description of the processing unit 201 in the first embodiment.
  • the processing unit 401 of the base station acquires the adjustment parameter ⁇ 1, ue1 of the first transmit power, and sends the adjustment parameter ⁇ 1, ue1 of the first transmit power to the first UE by using the sending unit 402. .
  • the base station schedules the first transmit power by using the first transmit power adjustment parameter ⁇ 1, ue1 to implement dynamic scheduling of the transmit power under the NOMA technology.
  • the fifth embodiment of the present invention further discloses that the base station is different from the third embodiment or the fourth embodiment.
  • the processing unit 401 is further configured to acquire the adjustment parameter ⁇ 1, ue2 of the second transmit power.
  • the sending unit 402 is further configured to send the adjustment parameter ⁇ 1, ue2 of the second transmit power to the first UE.
  • the sending unit 402 is specifically configured to send, by using the high layer signaling or the DCI in the PDCCH, the adjustment parameter ⁇ 1, ue2 of the second transmit power to the first UE.
  • the processing unit 401 is further configured to determine a second transmit power according to the power parameter of the second UE and the adjustment parameter ⁇ 1, ue2 of the second transmit power; the sending unit 402 And transmitting, by using the second transmit power, downlink data of the second UE.
  • the adjustment parameter ⁇ 1, ue2 of the second transmit power is an adjustment value of the second transmit power.
  • the processing unit 401 is specifically configured to determine, according to a power parameter of the second UE, a fourth transmit power, where the second transmit power is a fourth transmit power minus or an adjustment value of the second transmit power.
  • the processing unit 401 is specifically configured to determine ⁇ ue2 according to the P A, ue2 and the P B, ue2 , and transmit according to the reference signal of the ⁇ ue2 and the second UE Determining, according to the power, the fourth transmit power; wherein the ⁇ ue2 represents a ratio of a resource per unit resource EPRE of the physical downlink shared channel PDSCH of the second UE to an EPRE of a cell-specific reference signal of the second UE
  • the ⁇ ue2 includes ⁇ A, ue2 and ⁇ B, ue2 , and the ⁇ A, ue2 and ⁇ B, ue2 correspond to different orthogonal frequency division multiplexing OFDM symbol indexes of the second UE.
  • determining the meanings of the ⁇ A, ue2 and ⁇ B, ue2 of the fourth transmit power is referred to the third embodiment.
  • the determination manners of the ⁇ A, ue2 and ⁇ B, ue2 are described in the third embodiment, and are not repeated here.
  • the processing unit 401 is specifically configured to be used according to the Said Determining ⁇ ue2 with the adjustment parameter ⁇ 1, ue2 of the second transmit power, and determining the second transmit power according to the ⁇ ue2 and the reference signal transmit power of the second UE; wherein the ⁇ ue2 And a ratio of the EPRE of the resource-specific unit energy EPRE of the physical downlink shared channel PDSCH of the second UE to the cell-specific reference signal of the second UE, where ⁇ ue2 includes ⁇ A, ue2 and ⁇ B, ue2 , The ⁇ A, ue2 and ⁇ B, ue2 correspond to different orthogonal frequency division multiplexing OFDM symbol indexes of the second UE.
  • the processing unit 401 is specifically configured to determine the ⁇ A, ue2 according to the following formula:
  • the processing unit 401 is specifically configured to determine the ⁇ B, ue2 according to the ⁇ A, ue2 and the third table.
  • the processing unit 401 of the base station acquires the adjustment parameter ⁇ 1, ue2 of the second transmit power, and sends the adjustment parameter ⁇ 1, ue2 of the second transmit power to the first UE by using the sending unit 402. .
  • the base station schedules the transmit power by using the adjustment parameters ⁇ 1, ue2 of the second transmit power, thereby implementing dynamic scheduling of the transmit power under the NOMA technology.
  • the sixth embodiment of the present invention further discloses a first UE.
  • the first UE communicates with a base station, the base station serves at least two UEs, and the at least two UEs include the first UE and the second UE.
  • FIG. 5 is a schematic structural diagram of a first UE according to Embodiment 6 of the present invention.
  • the first UE includes a receiving unit 501 and a processing unit 502.
  • the receiving unit may specifically be a receiver, and the processing unit may specifically be a processor.
  • the receiving unit 501 is configured to receive a power parameter of the first UE and a power parameter of the second UE that are sent by the base station.
  • the power parameter of the first UE includes: UE specific parameters of the first UE Cell specific parameters of the first UE And a reference signal transmission power of the first UE.
  • the power parameter of the second UE includes: UE specific parameters of the second UE The cell-specific parameters P B, ue2 of the second UE and the second UE reference signal transmit power. For the specific meaning of the parameters, refer to the description of the third embodiment.
  • the processing unit 502 is configured to determine, according to the power parameter of the first UE, the first transmit power, where the first transmit The transmit power is the transmit power of the downlink data of the first UE; and the second transmit power is determined according to the power parameter of the second UE, where the second transmit power is the downlink data of the second UE power;
  • the receiving unit 501 is further configured to receive a signal sent by the base station, where the received signal includes downlink data of the first UE;
  • the processing unit 502 is further configured to acquire downlink data of the first UE according to the signal received from the receiving unit according to the first transmit power and the second transmit power.
  • the receiving unit 501 is specifically configured to receive, by the base station, a power parameter of the first UE and a power parameter of the second UE that are sent by using a high-level signaling or a DCI in a PDCCH.
  • the processing unit 502 is specifically configured to be used according to the And said Determining ⁇ ue1 ; and determining the first transmit power according to the ⁇ ue1 and the reference signal transmit power of the first UE; wherein the ⁇ ue1 represents the physical downlink shared channel PDSCH of the first UE a ratio of energy EPRE per resource unit to EPRE of a cell-specific reference signal of the first UE, the ⁇ ue1 including ⁇ A, ue1 and ⁇ B, ue1 , the ⁇ A, ue1 and ⁇ B, ue1 corresponding to Different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE are described.
  • the specific process is the same as the manner in which the processing unit 401 determines the first transmit power in the third embodiment. For a description of the correspondingness, refer to the third embodiment, which is not repeated here.
  • the processing unit 502 is further configured to determine the second transmit power according to a power parameter of the second UE.
  • the processing unit 502 is specifically configured to determine ⁇ ue2 according to the P A, ue2 and the P B, ue2 , and transmit according to the reference signal of the ⁇ ue2 and the second UE Determining the second transmit power, wherein the ⁇ ue2 represents a ratio of the resource element EPRE of the physical downlink shared channel PDSCH of the second UE to the EPRE of the cell-specific reference signal of the second UE.
  • the ⁇ ue2 includes ⁇ A, ue2 and ⁇ B, ue2 , and the ⁇ A, ue2 and ⁇ B, ue2 correspond to different orthogonal frequency division multiplexing OFDM symbol indexes of the second UE.
  • the specific process is the same as the manner in which the processing unit 401 determines the second transmit power in the third embodiment. For a description of the correspondingness, refer to the third embodiment, which is not repeated here.
  • the receiving unit of the first UE receives the power parameter of the first UE and the power parameter of the second UE, and the processing unit of the first UE may obtain the first transmit power according to the power parameter of the first UE. And determining a second transmit power according to a power parameter of the second UE.
  • the first UE can cancel the interference of the downlink data of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
  • the first UE is further disclosed in the seventh embodiment of the present invention.
  • the difference between the seventh embodiment and the sixth embodiment is that the receiving unit 501 is further configured to receive the adjustment parameter ⁇ 1, ue1 of the first transmit power sent by the base station.
  • the processing unit 502 is specifically configured to determine the first transmit power according to the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power.
  • the receiving unit 501 is specifically configured to receive, by the base station, the adjustment parameter ⁇ 1, ue1 of the first transmit power that is sent by the DCI through the downlink control or the downlink control in the physical downlink control channel PDCCH.
  • the adjustment parameter ⁇ 1, ue1 of the first transmit power is an adjustment value of the first transmit power.
  • the processing unit 502 is specifically configured to determine, according to the power parameter of the first UE, a third transmit power, where the first transmit power is a third transmit power minus or plus an adjustment value of the first transmit power. .
  • the processing unit 502 determines the third transmit power refer to the processing of the processing unit 302 in the second embodiment. It will not be detailed here.
  • the processing unit 502 is specifically configured to be used according to the Said Determining ⁇ ue1 with the adjustment parameter ⁇ 1, ue1 of the first transmit power; and determining the first transmit power according to the ⁇ ue1 and the reference signal transmit power of the first UE; wherein the ⁇ ue1 And a ratio of an EPRE of the resource-specific unit energy EPRE of the physical downlink shared channel PDSCH of the first UE to a cell-specific reference signal of the first UE, where ⁇ ue1 includes ⁇ A, ue1 and ⁇ B, ue1 , The ⁇ A, ue1 and ⁇ B, ue1 correspond to different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE.
  • the processing unit 401 determines the processes of the ⁇ A, ue1 and ⁇ B, ue1 . For details, refer to the description of the processing unit 302 in the second embodiment. It is not repeated here.
  • the receiving unit of the first UE receives the adjustment parameter ⁇ 1, ue1 of the first transmit power sent by the base station.
  • the base station schedules the transmit power by using the first transmit power adjustment parameter ⁇ 1, ue1 to implement dynamic scheduling of the transmit power under the NOMA technology.
  • the eighth embodiment of the present invention further discloses that the first UE is different from the sixth embodiment or the seventh embodiment.
  • the receiving unit 501 is further configured to receive the adjustment parameter ⁇ 1 of the second transmit power sent by the base station. , ue2 .
  • the receiving unit 501 is specifically configured to receive the adjustment parameter ⁇ 1, ue2 of the second transmit power that is sent by the base station by using the high layer signaling or the DCI in the PDCCH.
  • the processing unit 502 is specifically configured to determine the second transmit power according to the power parameter of the second UE and the adjustment parameter ⁇ 1, ue2 of the second transmit power.
  • the adjustment parameter ⁇ 1, ue2 of the second transmit power is an adjustment value of the second transmit power.
  • the processing unit 502 is specifically configured to determine, according to a power parameter of the second UE, a fourth transmit power, where the second transmit power is a fourth transmit power minus or an adjustment value of the second transmit power.
  • the processing unit 502 determines the manner of the fourth transmit power. For details, refer to the processing of the processing unit 401 in the fifth embodiment. It will not be detailed here.
  • the processing unit 502 is specifically configured to be used according to the Said Determining ⁇ ue2 with the adjustment parameter ⁇ 1, ue2 of the second transmit power, and determining the second transmit power according to the ⁇ ue2 and the reference signal transmit power of the second UE; wherein the ⁇ ue2 And a ratio of the EPRE of the resource-specific unit energy EPRE of the physical downlink shared channel PDSCH of the second UE to the cell-specific reference signal of the second UE, where ⁇ ue2 includes ⁇ A, ue2 and ⁇ B, ue2 , The ⁇ A, ue2 and ⁇ B, ue2 correspond to different orthogonal frequency division multiplexing OFDM symbol indexes of the second UE.
  • the processing unit 502 determines the second transmit power refer to the processing of the processing unit 401 in the fifth embodiment. It will not be detailed here.
  • the receiving unit 501 of the first UE receives the adjustment parameter ⁇ 1, ue2 of the second transmit power sent by the base station.
  • the base station schedules the transmit power by using the adjustment parameters ⁇ 1, ue2 of the second transmit power, thereby implementing dynamic scheduling of the transmit power under the NOMA technology.
  • FIG. 6 is a schematic flowchart of a communication method according to Embodiment 9 of the present invention. As shown in FIG. 6, the communication method may include the following steps:
  • the base station acquires a power parameter of the first user equipment UE and an adjustment parameter ⁇ 1, ue1 of the first transmit power , where the power parameter of the first UE includes: the UE-specific parameter of the first UE. Cell specific parameters of the first UE And a reference signal transmission power of the first UE, where the first transmit power is a transmit power of downlink data of the first UE;
  • the base station sends, to the first UE, a power parameter of the first UE and an adjustment parameter ⁇ 1, ue1 of the first transmit power.
  • the base station determines, according to the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power, a first transmit power.
  • the base station sends the downlink signal of the first UE by using the first transmit power.
  • the base station sends the power parameter of the first UE and the parameter ⁇ 2, ue1 to the first UE by using high layer signaling or DCI in the PDCCH.
  • the adjustment parameter ⁇ 1, ue1 of the first transmit power is an adjustment value of the first transmit power. Determining, by the base station, the obtained third transmit power according to the power parameter of the first UE, where the first transmit power is a third transmit power minus or adding an adjustment value of the first transmit power.
  • the base station is according to the And said Determining ⁇ ue1 ; and determining the third transmit power according to the ⁇ ue1 and the reference signal transmit power of the first UE; wherein the ⁇ ue1 represents each of the physical downlink shared channel PDSCH of the first UE a ratio of a resource unit energy EPRE and an EPRE of a cell-specific reference signal of the first UE, the ⁇ ue1 including ⁇ A, ue1 and ⁇ B, ue1 , the ⁇ A, ue1 and ⁇ B, ue1 corresponding to the Different orthogonal frequency division multiplexing OFDM symbol indices of the first UE.
  • the base station determines the ⁇ A, ue1 according to the following formula:
  • the base station determines the ⁇ B, ue1 according to the ⁇ A, ue1 and the third table.
  • the base station indicates a delta power-offset through a downlink power offset field in a DCI of a PDCCH of the first UE.
  • the downlink power offset domain can occupy one bit.
  • the first UE learns the delta power-offset through the downlink power offset domain.
  • the downlink power offset domain can be as shown in Table 4 below.
  • the base station according to the Said Determining ⁇ ue1 with the adjustment parameter ⁇ 1, ue1 of the first transmit power; and determining the first transmit power according to the ⁇ ue1 and the reference signal transmit power of the first UE; wherein the meaning of the parameter is implemented Example one.
  • the base station is ⁇ A, ue1 according to the following formula:
  • the base station determines the ⁇ B, ue1 according to the ⁇ A, ue1 and Table 3.
  • the base station further determines a second transmit power according to the power parameter of the first UE and the first transmit power, where the second transmit power is downlink data of the second UE Transmit power.
  • the base station transmits a signal to the second UE using the second transmit power.
  • the base station determines the second transmit power according to the third transmit power and the first transmit power.
  • the determining of the third transmit power is determined according to the power parameter of the first UE, and the specific implementation manner of determining may be referred to the foregoing description.
  • the second transmit power is a difference between the third transmit power and the first transmit power.
  • the base station acquires the adjustment parameter ⁇ 1, ue1 of the first transmit power and the power parameter of the first UE, and adjusts the first transmit power ⁇ 1, ue1 and the The power parameter of the first UE is sent to the first UE. Therefore, the first UE may obtain the first transmit power according to the power parameter of the first user equipment UE, and determine the second transmit power according to the adjustment parameter ⁇ 1, ue1 of the first transmit power and the first transmit power. The first UE can cancel the interference of the downlink data of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
  • the first base station acquires the transmission power adjustment parameter ⁇ 1, ue1, and to adjust the transmit power of a first parameter ⁇ 1, ue1 sent to the first UE.
  • the base station schedules the first transmit power by using the first transmit power adjustment parameter ⁇ 1, ue1 to implement dynamic scheduling of the transmit power under the NOMA technology.
  • the adaptation scenario of the ninth embodiment is consistent with the application scenario of the first embodiment.
  • a tenth embodiment of the present invention discloses a communication method.
  • the communication network includes at least two user equipments, the at least two UEs include a first UE and a second UE, and
  • FIG. 7 is a schematic flowchart of a communication method according to Embodiment 10 of the present invention. As shown in FIG. 7, the communication method may include the following steps:
  • the first user equipment UE receives the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power , where the power parameter of the first UE includes: the first UE Cell specific parameters of the first UE And a reference signal transmission power of the first UE, where the first transmit power is a transmit power of downlink data of the first UE;
  • the first UE determines, according to the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power, a first transmit power.
  • the first UE determines a second transmit power according to the power parameter of the first UE and the first transmit power, where the second transmit power is a transmit power of downlink data of the second UE.
  • the first UE receives a signal sent by the base station, where the received signal includes downlink data of the first UE.
  • the first UE acquires and obtains downlink data of the first UE from the received signal according to the first transmit power and the second transmit power.
  • Embodiment 1 For the meaning of related parameters in the embodiment of the present invention, refer to Embodiment 1.
  • the first UE receives a power parameter of the first UE and an adjustment parameter ⁇ 1, ue1 of the first transmit power that are sent by the base station by using the high-level signaling or the DCI in the PDCCH.
  • the adjustment parameter ⁇ 1, ue1 of the first transmit power is an adjustment value of the first transmit power. Determining, by the first UE, the obtained third transmit power according to the power parameter of the first UE, where the first transmit power is a third transmit power minus or adding an adjustment value of the first transmit power.
  • the first UE is according to the And said Determining ⁇ ue1 ; and determining the third transmit power according to the ⁇ ue1 and the reference signal transmit power of the first UE; wherein the ⁇ ue1 represents each of the physical downlink shared channel PDSCH of the first UE a ratio of a resource unit energy EPRE and an EPRE of a cell-specific reference signal of the first UE, the ⁇ ue1 including ⁇ A, ue1 and ⁇ B, ue1 , the ⁇ A, ue1 and ⁇ B, ue1 corresponding to the Different orthogonal frequency division multiplexing OFDM symbol indices of the first UE.
  • the first embodiment For a description of related parameters, refer to the first embodiment.
  • the first UE determines the ⁇ A, ue1 according to the following formula:
  • the first UE determines the ⁇ B, ue1 according to the ⁇ A, ue1 and the third table.
  • the first UE receives a ⁇ power-offset indication sent by the base station by using a downlink power offset field in a DCI of a PDCCH of the first UE.
  • the downlink power offset domain can occupy one bit.
  • the downlink power offset domain can be as shown in Table 4 below.
  • the first UE is according to the Said Determining ⁇ ue1 with the adjustment parameter ⁇ 1, ue1 of the first transmit power; and determining the first transmit power according to the ⁇ ue1 and the reference signal transmit power of the first UE; wherein the ⁇ ue1 And a ratio of an EPRE of the resource-specific unit energy EPRE of the physical downlink shared channel PDSCH of the first UE to a cell-specific reference signal of the first UE, where ⁇ ue1 includes ⁇ A, ue1 and ⁇ B, ue1 , The ⁇ A, ue1 and ⁇ B, ue1 correspond to different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE.
  • the first UE is ⁇ A, ue1 according to the following formula:
  • the first UE determines the ⁇ B, ue1 according to the ⁇ A, ue1 and the third table.
  • the first UE determines a second transmit power according to the power parameter of the first UE and the first transmit power, where the second transmit power is downlink data of the second UE Transmit power.
  • the first UE determines the second transmit power according to the third transmit power and the first transmit power.
  • the determining of the third transmit power is determined according to the power parameter of the first UE, and the specific implementation manner of determining may be referred to the foregoing description.
  • the second transmit power is a difference between the third transmit power and the first transmit power.
  • the first UE receives the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power that are sent by the base station , and the first UE acquires the first transmission according to the power parameter of the first user equipment UE. Power, and determining a second transmit power according to a power parameter of the first UE and a first transmit power.
  • the first UE can eliminate the interference of the signal of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
  • a tenth embodiment of the present invention discloses a communication method.
  • the communication network includes at least two user equipments, the at least two UEs include a first UE and a second UE, and
  • FIG. 8 is a schematic flowchart of a communication method according to Embodiment 11 of the present invention. As shown in FIG. 8, the communication method may include the following steps:
  • the base station acquires a power parameter of the first user equipment UE and a power parameter of the second UE, where the power parameter of the first UE includes: the UE specific parameter of the first UE Cell specific parameters of the first UE And a reference signal transmission power of the first UE; the power parameter of the second UE includes: UE specific parameters of the second UE a cell-specific parameter P B,ue2 of the second UE and the second UE reference signal transmission power;
  • the base station sends, to the first UE, a power parameter of the first UE and a power parameter of the second UE.
  • the base station determines, according to a power parameter of the first UE, a first transmit power, where the first transmit power is a transmit power of downlink data of the first UE.
  • the base station uses downlink data of the first transmit power to the first UE.
  • the base station sends the power parameter of the first UE and the power parameter of the second UE to the first UE by using high layer signaling or DCI in the PDCCH.
  • the base station is according to the And said Determining ⁇ ue1 ; and determining the first transmit power according to the ⁇ ue1 and the reference signal transmit power of the first UE.
  • the base station determines the ⁇ A, ue1 according to the following formula:
  • the base station ⁇ A, ue1 and Table 3 determine the ⁇ B, ue1 .
  • the base station indicates a delta power-offset through a downlink power offset field in a DCI of a PDCCH of the first UE.
  • the downlink power offset domain can occupy one bit.
  • the first UE learns the delta power-offset through the downlink power offset domain.
  • the downlink power offset domain can be as shown in Table 4 below.
  • the base station determines a second transmit power according to the power parameter of the second UE, where the second transmit power is a transmit power of downlink data of the second UE;
  • the second transmit power sends downlink data of the second UE.
  • the base station according to the Determining ⁇ ue2 with the P B, ue2 , and determining the second transmit power according to the ⁇ ue2 and the reference signal transmit power of the second UE; wherein the ⁇ ue2 represents the second UE a ratio of the resource-receiving EPRE of the physical downlink shared channel PDSCH to the EPRE of the cell-specific reference signal of the second UE, the ⁇ ue2 including ⁇ A, ue2 and ⁇ B, ue2 , the ⁇ A, ue2 and ⁇ B, ue2 corresponds to different orthogonal frequency division multiplexing OFDM symbol indexes of the second UE.
  • the OFDM symbol index corresponding to the ⁇ A, ue2, and ⁇ B, ue2 is as shown in Table 5 or Table 6:
  • the base station determines the ⁇ A, ue2 according to the following formula:
  • the base station determines the ⁇ B, ue2 according to the ⁇ A, ue2 and Table 3.
  • the base station acquires the power parameter of the first UE and the power parameter of the second UE, and sends the power parameter of the first UE and the power parameter of the second UE to the first UE, so that the first UE can Obtaining a first transmit power according to a power parameter of the first UE, and determining a second transmit power according to a power parameter of the second UE.
  • the first UE can eliminate the interference of the signal of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
  • a twelfth embodiment of the present invention discloses a communication method.
  • Twelfth embodiment and the difference according to the eleventh embodiment is that the base station further acquires the first adjustment parameter ⁇ transmission power 1, ue1, the adjustment parameters of the first transmission power ⁇ 1, ue1 sent to the first UE .
  • the base station further acquires the first adjustment parameter ⁇ transmission power 1, ue1, the adjustment parameters of the first transmission power ⁇ 1, ue1 sent to the first UE .
  • the base station further acquires the first adjustment parameter ⁇ transmission power 1, ue1, the adjustment parameters of the first transmission power ⁇ 1, ue1 sent to the first UE .
  • the base station sends the adjustment parameter ⁇ 1, ue1 of the first transmit power to the first UE by using high layer signaling or DCI in the PDCCH.
  • the base station determines the first transmit power according to the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power.
  • the adjustment parameter ⁇ 1, ue1 of the first transmit power is an adjustment value of the first transmit power. Determining, by the base station, the obtained third transmit power according to the power parameter of the first UE, where the first transmit power is a third transmit power minus or adding an adjustment value of the first transmit power.
  • the base station determines the third transmit power refer to the process in Embodiment 9. It will not be detailed here.
  • the base station according to the Said Determining ⁇ ue1 with the adjustment parameter ⁇ 1, ue1 of the first transmit power; and determining the first transmit power according to the ⁇ ue1 and the reference signal transmit power of the first UE; wherein the ⁇ ue1 And a ratio of an EPRE of the resource-specific unit energy EPRE of the physical downlink shared channel PDSCH of the first UE to a cell-specific reference signal of the first UE, where ⁇ ue1 includes ⁇ A, ue1 and ⁇ B, ue1 , The ⁇ A, ue1 and ⁇ B, ue1 correspond to different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE.
  • the process by which the base station determines the ⁇ A, ue1 and ⁇ B, ue1 is specifically described in Embodiment 9.
  • the base station obtains a first adjustment parameter ⁇ transmit power of 1, ue1, and sends the adjustment parameter of the first transmission power ⁇ 1, ue1 UE to the first embodiment of the present invention.
  • the base station schedules the first transmit power by using the first transmit power adjustment parameter ⁇ 1, ue1 to implement dynamic scheduling of the transmit power under the NOMA technology.
  • a base station of the thirteenth embodiment of the present invention is further disclosed.
  • the difference between the thirteenth embodiment and the eleventh embodiment or the twelfth embodiment is that the base station further acquires the adjustment parameter ⁇ 1, ue2 of the second transmit power.
  • the adjustment parameter ⁇ 1, ue2 of the second transmit power is further sent to the first UE.
  • the base station sends the adjustment parameter ⁇ 1, ue2 of the second transmit power to the first UE by using high layer signaling or DCI in the PDCCH.
  • the base station determines a second transmit power according to the power parameter of the second UE and the adjustment parameter ⁇ 1, ue2 of the second transmit power; and is further used to use the second transmit power Sending downlink data of the second UE.
  • the adjustment parameter ⁇ 1, ue2 of the second transmit power is an adjustment value of the second transmit power. And determining, by the base station, the obtained fourth transmit power according to the power parameter of the second UE, where the second transmit power is an adjustment value of the fourth transmit power minus or adding the second transmit power.
  • the base station determines ⁇ ue2 according to the P A, ue2 and the P B, ue2 , and determines the according to the ⁇ ue2 and the reference signal transmit power of the second UE, a fourth transmit power, where the ⁇ ue2 represents a ratio of a resource per unit resource EPRE of the physical downlink shared channel PDSCH of the second UE to an EPRE of a cell-specific reference signal of the second UE, the ⁇ ue2 Include ⁇ A, ue2 and ⁇ B, ue2 , the ⁇ A, ue2 and ⁇ B, ue2 corresponding to different orthogonal frequency division multiplexing OFDM symbol indexes of the second UE.
  • determining the meanings of the ⁇ A, ue2 and ⁇ B, ue2 of the fourth transmit power is referred to Embodiment 11.
  • the manner of determining the ⁇ A, ue2 and ⁇ B, ue2 is as described in the eleventh embodiment, and is not repeated here.
  • the base station is according to the Said Determining ⁇ ue2 with the adjustment parameter ⁇ 1, ue2 of the second transmit power, and determining the second transmit power according to the ⁇ ue2 and the reference signal transmit power of the second UE; wherein the ⁇ ue2 And a ratio of the EPRE of the resource-specific unit energy EPRE of the physical downlink shared channel PDSCH of the second UE to the cell-specific reference signal of the second UE, where ⁇ ue2 includes ⁇ A, ue2 and ⁇ B, ue2 , The ⁇ A, ue2 and ⁇ B, ue2 correspond to different orthogonal frequency division multiplexing OFDM symbol indexes of the second UE.
  • the base station determines the ⁇ A, ue2 according to the following formula:
  • the base station determines the ⁇ B, ue2 according to the ⁇ A, ue2 and Table 3.
  • the base station acquires the second adjustment parameter ⁇ transmit power of 1, ue2, ⁇ and to adjust the parameters of the second transmission power 1, ue2 sent to the first UE.
  • the base station schedules the transmit power by using the adjustment parameters ⁇ 1, ue2 of the second transmit power, thereby implementing dynamic scheduling of the transmit power under the NOMA technology.
  • FIG. 9 is a schematic flowchart of a communication method according to Embodiment 14 of the present invention. As shown in FIG. 9, the communication method may include the following steps:
  • the first UE receives a power parameter of the first UE and a power parameter of the second UE that are sent by the base station, where the power parameter of the first UE includes: a UE-specific parameter of the first UE. Cell specific parameters of the first UE And a reference signal transmission power of the first UE; the power parameter of the second UE includes: UE specific parameters of the second UE a cell-specific parameter P B,ue2 of the second UE and the second UE reference signal transmission power;
  • the first UE determines the first transmit power according to the power parameter of the first UE, where the first transmit power is a transmit power of downlink data of the first UE.
  • the first UE receives a signal sent by the base station, where the received signal includes downlink data of the first UE.
  • the first UE acquires downlink data of the first UE from the received signal according to the first transmit power and the second transmit power.
  • the first UE receives a power parameter of the first UE and a power parameter of the second UE that are sent by the base station by using high layer signaling or DCI in a PDCCH.
  • the first UE is according to the And said Determining ⁇ ue1 ; and determining the first transmit power according to the ⁇ ue1 and the reference signal transmit power of the first UE; wherein the ⁇ ue1 represents the physical downlink shared channel PDSCH of the first UE a ratio of energy EPRE per resource unit to EPRE of a cell-specific reference signal of the first UE, the ⁇ ue1 including ⁇ A, ue1 and ⁇ B, ue1 , the ⁇ A, ue1 and ⁇ B, ue1 corresponding to Different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE are described.
  • the specific procedure is the same as the manner in which the base station in Embodiment 8 determines the first transmit power. For a description of the correspondingness, refer to the eighth embodiment, which is not repeated here.
  • the first UE determines the second transmit power according to a power parameter of the second UE.
  • the first UE determines ⁇ ue2 according to the P A, ue2 and the P B, ue2 , and determines, according to the ⁇ ue2 and the reference signal transmit power of the second UE, The second transmit power; wherein the ⁇ ue2 represents a ratio of a resource per unit resource EPRE of the physical downlink shared channel PDSCH of the second UE to an EPRE of a cell-specific reference signal of the second UE, ⁇ ue2 includes ⁇ A, ue2 and ⁇ B, ue2 , and the ⁇ A, ue2 and ⁇ B, ue2 correspond to different orthogonal frequency division multiplexing OFDM symbol indexes of the second UE.
  • the specific procedure is the same as the manner in which the base station in Embodiment 8 determines the second transmit power. For a description of the correspondingness, refer to the eighth embodiment, which is not repeated here.
  • the receiving unit of the first UE receives the power parameter of the first UE and the power parameter of the second UE, and the processing unit of the first UE may obtain the first transmit power according to the power parameter of the first UE. And determining a second transmit power according to a power parameter of the second UE.
  • the first UE can cancel the interference of the downlink data of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
  • a first UE is disclosed in the fifteenth embodiment of the present invention.
  • the difference between the fifteenth embodiment and the fourteenth embodiment is that the first UE receives the adjustment parameter ⁇ 1, ue1 of the first transmit power sent by the base station.
  • the first UE determines the first transmit power according to the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power.
  • the first UE receives the adjustment parameter ⁇ 1, ue1 of the first transmit power that is sent by the base station by using the downlink control in the high-layer signaling or the physical downlink control channel PDCCH.
  • the adjustment parameter ⁇ 1, ue1 of the first transmit power is an adjustment value of the first transmit power. Determining, by the first UE, the obtained third transmit power according to the power parameter of the first UE, where the first transmit power is a third transmit power minus or adding an adjustment value of the first transmit power.
  • the first UE determines the third transmit power refer to the process in the tenth embodiment. It will not be detailed here.
  • the first UE is according to the Said Determining ⁇ ue1 with the adjustment parameter ⁇ 1, ue1 of the first transmit power; and determining the first transmit power according to the ⁇ ue1 and the reference signal transmit power of the first UE; wherein the ⁇ ue1 And a ratio of an EPRE of the resource-specific unit energy EPRE of the physical downlink shared channel PDSCH of the first UE to a cell-specific reference signal of the first UE, where ⁇ ue1 includes ⁇ A, ue1 and ⁇ B, ue1 , The ⁇ A, ue1 and ⁇ B, ue1 correspond to different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE.
  • the process in which the first UE determines the ⁇ A, ue1 and ⁇ B, ue1 is specifically described in the implementation ten. It is not repeated here.
  • the receiving unit of the first UE receives the adjustment parameter ⁇ 1, ue1 of the first transmit power sent by the base station.
  • the base station schedules the transmit power by using the first transmit power adjustment parameter ⁇ 1, ue1 to implement dynamic scheduling of the transmit power under the NOMA technology.
  • the first UE that is disclosed in the sixteenth embodiment of the present invention is different from the fourteenth embodiment or the fifteenth embodiment.
  • the first UE receives the adjustment parameter ⁇ of the second transmit power sent by the base station. 1, ue2 .
  • the first UE receives the adjustment parameter ⁇ 1, ue2 of the second transmit power that is sent by the base station by using the high layer signaling or the DCI in the PDCCH.
  • the first UE determines the second transmit power according to the power parameter of the second UE and the adjustment parameter ⁇ 1, ue2 of the second transmit power.
  • the adjustment parameter ⁇ 1, ue2 of the second transmit power is an adjustment value of the second transmit power. And determining, by the first UE, the obtained fourth transmit power according to the power parameter of the second UE, where the second transmit power is a fourth transmit power minus or plus an adjustment value of the second transmit power.
  • the first UE determines the fourth transmit power refer to the process in Embodiment 13. It will not be detailed here.
  • the first UE is according to the Said Determining ⁇ ue2 with the adjustment parameter ⁇ 1, ue2 of the second transmit power, and determining the second transmit power according to the ⁇ ue2 and the reference signal transmit power of the second UE; wherein the ⁇ ue2 And a ratio of the EPRE of the resource-specific unit energy EPRE of the physical downlink shared channel PDSCH of the second UE to the cell-specific reference signal of the second UE, where ⁇ ue2 includes ⁇ A, ue2 and ⁇ B, ue2 , The ⁇ A, ue2 and ⁇ B, ue2 correspond to different orthogonal frequency division multiplexing OFDM symbol indexes of the second UE.
  • the first UE determines the second transmit power refer to the process in Embodiment 13. It will not be detailed here.
  • the first UE receives the adjustment parameter ⁇ 1, ue2 of the second transmit power sent by the base station.
  • the base station schedules the transmit power by using the adjustment parameters ⁇ 1, ue2 of the second transmit power, thereby implementing dynamic scheduling of the transmit power under the NOMA technology.
  • the disclosed apparatus and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium. , including a number of instructions to make a computer device (available All or part of the steps of the method of the various embodiments of the present invention are performed by a personal computer, server, or network device.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,方法包括:基站获取第一用户设备UE的功率参数和第一发射功率的调整参数δ1,ue1;所述基站向所述第一UE发送所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1;所述基站根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定第一发射功率;所述基站使用所述第一发射功率发送所述第一UE的下行信号;所述基站使用所述第一发射功率向所述第一UE发送信号。

Description

通信方法和装置 技术领域
本发明涉及通信领域,尤其涉及一种通信方法和装置。
背景技术
在现有的LTE(Long Term Evolution,长期演进)系统中,下行通常采用OFDMA(Orthogonal Frequency Division Multiple Access,正交频分多址)技术。为了有效提升小区中心和小区边缘的吞吐量,NOMA(Non-Orthogonal Multiple Access,非正交多址)技术是一种潜在的候选技术。采用NOMA进行通信时,基站给不同的用户设备(user equipment,UE)分配不同的功率,但不同的UE可以使用相同的频率资源。
使用相同的时频资源块跟基站通信的两个或多个UE,被称为配对UE。比如在采用NOMA技术时,UE1和UE2使用相同的时频资源块跟基站进行通信,UE2和UE1为配对UE。基站采用不同的发射功率,向UE1和UE2发送信号。UE1的下行信号和UE2的下行信号间会有干扰。下行,通常是指基站到UE的方向。为了有效地提取UE1的下行信号,UE1需要消除掉UE2的下行信号的干扰。现有技术中,UE1无法获取UE2下行信号的相关信息,不能实现采用NOMA技术进行通信。
发明内容
本发明实施例提供了一种通信方法和装置,实现采用NOMA技术进行通信。
第一方面,本发明实施例提供了一种基站,为所述至少两个用户设备UE服务,所述至少两个UE包括第一UE和第二UE,包括:处理单元,用于获取所述第一UE的功率参数和第一发射功率的调整参数δ1,ue1,所述第一UE的功率参数包括:所述第一UE的UE特定参数
Figure PCTCN2014095994-appb-000001
所述第一UE的小区特定参数
Figure PCTCN2014095994-appb-000002
和所述第一UE的参考信号发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;发送单元,用于向所述第一UE发送所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1;所述处理单元,还用于所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定第一发射功率;所述发送单元,还用于使用所述第一发射功率发送所述第一UE的下行数据。
第二方面,本发明实施例提供了一种通信方法,适用于包括至少两个用户设备UE的 通信网络,所述至少两个UE包括第一UE和第二UE,包括:基站获取第一用户设备UE的功率参数和第一发射功率的调整参数δ1,ue1,所述第一UE的功率参数包括:所述第一UE的UE特定参数
Figure PCTCN2014095994-appb-000003
所述第一UE的小区特定参数
Figure PCTCN2014095994-appb-000004
和所述第一UE的参考信号发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;所述基站向所述第一UE发送所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1;所述基站根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定第一发射功率;所述基站使用所述第一发射功率发送所述第一UE的下行信号。
第三方面,本发明实施例提供了一种第一用户设备UE,所述第一UE跟基站进行通信,所述基站为至少两个UE服务,所述至少两个UE包括所述第一UE和第二UE,包括:
接收单元,用于接收基站发送的第一UE的功率参数和第一发射功率的调整参数δ1,ue1;所述第一UE的功率参数包括:所述第一UE的
Figure PCTCN2014095994-appb-000005
所述第一UE的小区特定参数
Figure PCTCN2014095994-appb-000006
和所述第一UE的参考信号发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;处理单元,用于根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定第一发射功率;并用于根据所述第一UE的功率参数和所述第一发射功率确定第二发射功率;所述第二发射功率为所述第二UE的下行数据的发射功率;所述接收单元,还用于接收所述基站发送的信号,所述接收的信号包括所述第一UE的下行数据;所述处理单元,还用于根据根据所述第一发射功率和所述第二发射功率从所述接收单元接收的信号中获取所述第一UE的下行数据。
第四方面,本发明实施例提供了一种通信方法,适用于包括至少两个用户设备UE的通信网络,所述至少两个UE包括第一UE和第二UE,包括:第一用户设备UE接收基站发送的所述第一UE的功率参数和第一发射功率的调整参数δ1,ue1;所述第一UE的功率参数包括:所述第一UE的
Figure PCTCN2014095994-appb-000007
所述第一UE的小区特定参数
Figure PCTCN2014095994-appb-000008
和所述第一UE的参考信号发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;所述第一UE根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定第一发射功率;所述第一UE根据所述第一UE的功率参数和所述第一发射功率确定第二发射功率,所述第二发射功率为所述第二UE的下行数据的发射功率;所述第一UE接收所述基站发送的信号,所述接 收的信号包括所述第一UE的下行数据;所述第一UE根据所述第一发射功率和所述第二发射功率从所述接收的信号中获取获取所述第一UE的下行数据。
第五方面,本发明实施例提供了一种基站,为所述至少两个用户设备UE服务,所述至少两个UE包括第一UE和第二UE,包括:处理单元,用于获取所述第一UE的功率参数和所述第二UE的功率参数,所述第一UE的功率参数包括:所述第一UE的UE特定参数
Figure PCTCN2014095994-appb-000009
所述第一UE的小区特定参数
Figure PCTCN2014095994-appb-000010
和所述第一UE的参考信号发射功率;所述第二UE的功率参数包括:所述第二UE的UE特定参数
Figure PCTCN2014095994-appb-000011
所述第二UE的小区特定参数PB,ue2和所述第二UE参考信号发射功率;发送单元,用于向所述第一UE发送所述第一UE的功率参数和所述第二UE的功率参数;所述处理单元,还用于根据所述第一UE的功率参数确定第一发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;所述发送单元,还用于使用所述第一发射功率发送所述第一UE的下行数据。
第六方面,本发明实施例提供了一种通信方法,适用于包括至少两个用户设备UE的通信网络,所述至少两个UE包括第一UE和第二UE,包括:基站获取第一用户设备UE的功率参数和第二UE的功率参数,所述第一UE的功率参数包括:所述第一UE的UE特定参数
Figure PCTCN2014095994-appb-000012
所述第一UE的小区特定参数
Figure PCTCN2014095994-appb-000013
和所述第一UE的参考信号发射功率;所述第二UE的功率参数包括:所述第二UE的UE特定参数
Figure PCTCN2014095994-appb-000014
所述第二UE的小区特定参数PB,ue2和所述第二UE参考信号发射功率;所述基站向所述第一UE发送所述第一UE的功率参数和所述第二UE的功率参数;所述基站根据所述第一UE的功率参数确定第一发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;所述基站使用所述第一发射功率向所述第一UE的下行数据。
第七方面,本发明实施例提供了一种第一用户设备UE,所述第一UE跟基站进行通信,所述基站为至少两个UE服务,所述至少两个UE包括所述第一UE和第二UE,包括:接收单元,用于接收基站发送的第一UE的功率参数和所第二UE的功率参数;所述第一UE的功率参数包括:所述第一UE的UE特定参数
Figure PCTCN2014095994-appb-000015
所述第一UE的小区特定参数
Figure PCTCN2014095994-appb-000016
和所述第一UE的参考信号发射功率;所述第二UE的功率参数包括:所述第二UE的UE特定参数
Figure PCTCN2014095994-appb-000017
所述第二UE的小区特定参数PB,ue2和所述第二UE参考信号发射功率;处理单元,用于根据所述第一UE的功率参数确定所述第一发射功率,所述第一发射功率为所述 第一UE的下行数据的发射功率;并根据所述第二UE的功率参数确定所述第二发射功率,所述第二发射功率为所述第二UE的下行数据的发射功率;所述接收单元,还用于接收所述基站发送的信号,所述接收的信号包括所述第一UE的的下行数据;所述处理单元,还用于根据根据所述第一发射功率和所述第二发射功率从所述接收单元接收的信号中获取所述第一UE的下行数据。
第八方面,本发明实施例提供了一种通信方法,适用于包括至少两个用户设备UE的通信网络,所述至少两个UE包括第一UE和第二UE,包括:所述第一UE接收基站发送的所述第一UE的功率参数和所第二UE的功率参数;所述第一UE的功率参数包括:所述第一UE的UE特定参数
Figure PCTCN2014095994-appb-000018
所述第一UE的小区特定参数
Figure PCTCN2014095994-appb-000019
和所述第一UE的参考信号发射功率;所述第二UE的功率参数包括:所述第二UE的UE特定参数
Figure PCTCN2014095994-appb-000020
所述第二UE的小区特定参数PB,ue2和所述第二UE参考信号发射功率;所述第一UE根据所述第一UE的功率参数确定所述第一发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;并根据所述第二UE的功率参数确定所述第二发射功率,所述第二发射功率为所述第二UE的下行数据的发射功率;所述第一UE接收所述基站发送的信号,所述接收的信号包括所述第一UE的下行数据;所述第一UE根据根据所述第一发射功率和所述第二发射功率从接收的信号中获取所述第一UE的下行数据。
本发明实施例一中,基站获取所述第一发射功率的调整参数δ1,ue1和所述第一UE的的功率参数,并把该第一发射功率的调整参数δ1,ue1和所述第一UE的功率参数发送给所述第一UE。从而使第一UE可以根据第一用户设备UE的功率参数获取第一发射功率,并根据所述第一发射功率的调整参数δ1,ue1和第一发射功率确定第二发射功率。第一UE能够根据第二发射功率消除掉第二UE的下行数据的干扰,实现采用NOMA技术进行通信。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种网络架构的结构示意图;
图2是本发明实施例一公开的一种基站结构示意图;
图3是本发明实施例二公开的一种第一UE的结构示意图;
图4是本发明实施例三公开的一种基站的结构示意图;
图5是本发明实施例六公开的一种第一UE的结构示意图;
图6是本发明实施例九公开的一种通信方法的流程示意图;
图7是本发明实施例十公开的一种通信方法的流程示意图;
图8是本发明实施例十一公开的一种通信方法的流程示意图;
图9本发明实施例十四公开的一种通信方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的实施例中的UE,例如,可以为蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。
本发明的实施例中的基站,例如可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与网络之间互连的协议(英文:Internet Protocol,简称:IP)分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP协议网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM(英文:Global System for Mobile Communication,全球移动通信系统)或CDMA(英文:Code Division Multiple Access,码分多址)中的基站(英文:Base Transceiver Station,简称:BTS),也可以是WCDMA(Wideband CDMA,宽带码分多址)中的基站(简称:NodeB),还可以是LTE中的演进型基站(英文:evolutional Node B简称:NodeB或eNB或e-NodeB),本发明实施例中并不限定。
本发明实施例公开了一种通信方法和装置,基站向第一UE通知第一发射功率和第二发射功率相关的信息,第一UE获取第一发射功率和第二发射功率相关的信息,从而第一UE根据第一发射功率和第二发射功率相关的信息消除第二UE下行数据的干扰,实现采用NOMA的通信。第一发射功率为第一UE的下行数据的发射功率;第二发射功率为第二UE的下行数据的的发射功率。下边进行详细说明。
为了更好的理解本发明,下面先对本发明实施例使用的网络架构进行描述。请参阅图1,图1是本发明实施例公开的一种网络架构的结构示意图。如图1所示,该网络包括基站和UE,UE可以为两个或多个,图中只显示了第一UE和第二UE。第一UE和第二UE使用相同的时频资源块跟基站进行通信,第一UE的下行数据和第二UE的下行数据的发射功率不同。所述基站为本发明实施例中任一基站,所述第一UE为本发明实施例中任一第一UE。
基于图1所示的网络架构,本发明实施例一公开了一种基站,该基站为至少两个UE服务,所述至少两个UE包括第一UE和第二UE。请参阅图2,图2是本发明实施例一公开的一种基站的结构示意图。如图2所示,该基站包括处理单元201和发送单元202。其中,处理单元具体可以是处理器,发送单元具体可以是发射器。
所述处理单元201用于用于获取所述第一UE的功率参数和第一发射功率的调整参数δ1,ue1
发送单元202,用于向所述第一UE发送所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1
所述处理单元201,还用于所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定第一发射功率;
所述发送单元202,还用于使用所述第一发射功率发送所述第一UE的下行数据。
本发明实施例中,所述第一UE的功率参数包括:所述第一UE的UE特定参数
Figure PCTCN2014095994-appb-000021
所述第一UE的小区特定参数
Figure PCTCN2014095994-appb-000022
和所述第一UE的参考信号发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率。
一种可选的实施方式,所述
Figure PCTCN2014095994-appb-000023
第一高层提供的所述第一UE的UE特定的参数,所述
Figure PCTCN2014095994-appb-000024
为所述第一高层提供的所述第一UE的小区特定的参数;第一高层为第一UE的高层,可以为第一UE的基站或者其他网络实体。同一小区中不同UE的PA可能不相同,但是PB和参考信号发射功率相同。
一种可选的实施方式,所述发送单元202具体用于通过高层信令或物理下行控制信道(physical downlink control channel,PDCCH)中的下行控制指示(downlink control information,DCI)向所述第一UE发送所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1
一种可选的实施方式,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。所述处理单元201具体用于根据所述第一UE的功率参数确定得到的第三发射功率,所述第一发射功率为第三发射功率减去或加上所述第一发射功率的调整值。
作为一种可选的实施方式,所述处理单元201具体用于根据所述
Figure PCTCN2014095994-appb-000025
和所述
Figure PCTCN2014095994-appb-000026
确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第三发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。
一种可选的实施方式,所述ρA,ue1和所述ρB,ue1所对应的OFDM符号索引如表一或者表二:
表一
Figure PCTCN2014095994-appb-000027
表二
Figure PCTCN2014095994-appb-000028
其中,ns表示的是一个无线帧(radio frame)中的时隙索引(slot index)。
作为一种可选的实施方式,在确定所述第三发射功率时,所述处理单元201具体用于根据如下公式确定所述ρA,ue1
Figure PCTCN2014095994-appb-000029
所述处理单元201,具体用于根据所述ρA,ue1和表三,确定所述ρB,ue1
表三
Figure PCTCN2014095994-appb-000030
一种可选的实施方式,所述发送单元202还用于通过第一UE的PDCCH的DCI中的下行功率偏置域(downlink power offset field)来指示δpower-offset。该下行功率偏置域可以占用一个比特。第一UE通过该下行功率偏置域来获知δpower-offset。比如,下行功率偏置域可以如下表四:
表四
Downlink power offset field δpower-offset[dB]
0 -10log10(2)
1 0
一种可选的实施方式,所述处理单元201根据所述
Figure PCTCN2014095994-appb-000031
所述
Figure PCTCN2014095994-appb-000032
和所述第一发射功率的调整参数δ1,ue1确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源 单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。
一种可选的实施方式,所述处理单元201具体用于根据如下公式所述ρA,ue1
Figure PCTCN2014095994-appb-000033
所述处理单元201具体用于根据所述ρA,ue1和表三确定所述ρB,ue1
又一种可选的实施方式,所述处理单元201,还用于根据所述第一UE的功率参数和所述第一发射功率确定第二发射功率;所述第二发射功率为所述第二UE下行数据的发射功率。所述发送单元202,还用于使用所述第二发射功率向所述第二UE发送信号。
一种可选的实施方式,所述处理单元201具体用于根据所述第三发射功率和所述第一发射功率确定所述第二发射功率。其中,所述第三发射功率的确定是根据所述第一UE的功率参数确定的,确定的具体实施方式可以参见上述描述。
一种可选的实施方式,所述第二发射功率为所述所述第三发射功率和所述第一发射功率的差值。
本发明实施例一中,基站的处理单元201获取所述第一发射功率的调整参数δ1,ue1和所述第一UE的的功率参数,并通过发送单元202把该第一发射功率的调整参数δ1,ue1和所述第一UE的功率参数发送给所述第一UE。从而使第一UE可以根据第一用户设备UE的功率参数获取第一发射功率,并根据所述第一发射功率的调整参数δ1,ue1和第一发射功率确定第二发射功率。第一UE能够根据第二发射功率消除掉第二UE的下行数据的干扰,实现采用NOMA技术进行通信。基站中的所述处理单元201获取所述第一发射功率的调整参数δ1,ue1,并通过所述发送单元202把第一发射功率的调整参数δ1,ue1发送给第一UE。基站通过第一发射功率的调整参数δ1,ue1对第一发射功率进行调度,从而实现NOMA技术下发射功率的动态调度。
实施例一可以适用如下场景:第一UE功率参数
Figure PCTCN2014095994-appb-000034
和第二UE的功率参数
Figure PCTCN2014095994-appb-000035
相同。 所述
Figure PCTCN2014095994-appb-000036
为所述第二高层提供的所述第二UE的的UE特定的参数,第二高层为第二UE的高层,比如可以为第二UE的基站。在此场景下,由于第一UE功率参数
Figure PCTCN2014095994-appb-000037
和第二UE的功率参数
Figure PCTCN2014095994-appb-000038
相同,可以认为分别根据第一UE功率参数和第二UE的功率参数确定得到发射功率相同。因此根据第一UE可以根据第一UE功率参数获得第二发射功率。基站把第一UE功率参数发送给第一UE,第一UE能够根据第二发射功率消除掉第二UE的信号的干扰,实现采用NOMA技术进行通信。
基于图1所示的网络架构,本发明实施例二又公开了一种第一UE。所述第一UE跟基站进行通信,所述基站为至少两个UE服务,所述至少两个UE包括所述第一UE和第二UE。图3是本发明实施例二公开的一种第一UE的结构示意图。如图3所示,该第一UE包括接收单元301和处理单元302。其中接收单元具体可以为接收器,处理单元具体可以为处理器。
所述接收单元301用于接收基站发送的第一UE的功率参数和第一发射功率的调整参数δ1,ue1;所述第一UE的功率参数包括:所述第一UE的
Figure PCTCN2014095994-appb-000039
所述第一UE的小区特定参数
Figure PCTCN2014095994-appb-000040
和所述第一UE的参考信号发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;
所述处理单元302,用于根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定第一发射功率;并用于根据所述第一UE的功率参数和所述第一发射功率确定第二发射功率;所述第二发射功率为所述第二UE的下行数据的发射功率;
所述接收单元301,还用于接收所述基站发送的信号,所述接收的信号包括所述第一UE的下行数据;
所述处理单元302,还用于根据根据所述第一发射功率和所述第二发射功率从所述接收单元接收的信号中获取所述第一UE的下行数据。
本发明实施例中,相关参数的具体含义可以参见实施例一的描述。
作为一种可选的实施方式,所述接收单元301具体用于接收基站通过高层信令或PDCCH中的DCI发送的所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1
一种可选的实施方式,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。所述处理单元302具体用于根据所述第一UE的功率参数确定得到的第三发射功率,所 述第一发射功率为第三发射功率减去或加上所述第一发射功率的调整值。
又一种可选的实施方式,所述处理单元302具体用于根据所述
Figure PCTCN2014095994-appb-000041
和所述
Figure PCTCN2014095994-appb-000042
确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第三发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。其中相关参数的描述,可以参见第一实施例。
作为一种可选的实施方式,在确定所述第三发射功率时,所述处理单元302具体用于根据如下公式确定所述ρA,ue1
Figure PCTCN2014095994-appb-000043
所述处理单元302,具体用于根据所述ρA,ue1和表三,确定所述ρB,ue1
一种可选的实施方式,所述接收单元301还用于接收所述基站通过第一UE的PDCCH的DCI中的下行功率偏置域(downlink power offset field)发送的δpower-offset指示。该下行功率偏置域可以占用一个比特。比如,下行功率偏置域可以如下表四。
一种可选的实施方式,所述处理单元302还用于根据所述
Figure PCTCN2014095994-appb-000044
所述
Figure PCTCN2014095994-appb-000045
和所述第一发射功率的调整参数δ1,ue1确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。
一种可选的实施方式,所述处理单元302具体用于根据如下公式所述ρA,ue1
Figure PCTCN2014095994-appb-000046
Figure PCTCN2014095994-appb-000047
所述处理单元302具体用于根据所述ρA,ue1和表三确定所述ρB,ue1
一种可选的实施方式,所述处理单元302还用于根据所述第一UE的功率参数和所述第一发射功率确定第二发射功率,所述第二发射功率为所述第二UE下行数据的发射功率。
一种可选的实施方式,所述处理单元302具体用于根据所述第三发射功率和所述第一发射功率确定所述第二发射功率。其中所述第三发射功率的确定是根据所述第一UE的功率参数确定的,确定的具体实施方式可以参见上述描述。
一种可选的实施方式,所述第二发射功率为所述所述第三发射功率和所述第一发射功率的差值。
一种可选的实施方式,第一UE获取第一UE的下行数据时,第一UE需要使用先进接收机,如极大似然(maximum likehood,ML)接收机或码字级干扰删除(codeword interference cancellation,CWIC)接收机等。
第一UE使用最大似然接收机时,可以将第一UE和第二UE的可能候选下行信号与接收信号相匹配,确定出第一UE的下行信号对应比特的软信息,从一般意义上来讲,第二UE的下行信号对第一UE来说是干扰信号,有效的设计第一UE和第二UE的发送星座图,可以等效的增大第一UE下行信号对应比特距离,从而提高传输的可靠性,如第一UE和第二UE的合成星座图符合格雷映射等。所述第一UE的下行信号携带第一UE的下行数据。
第一UE使用CWIC接收机时,首先将第二UE的下行信号解调出来,然后从接收信号中将第二UE的下行信号减掉,得到第一UE的下行信号。
第二UE可以将第一UE的下行信号当成干扰,直接使用现有的常规接收机。
比如,假设第一UE对应的信道系数为H1,受到噪声干扰为σ1。第二UE对应的信道系数为H2,受到噪声干扰为σ2。基站发送的第一UE的下行信号X1的第一发射功率为P1,基站在相同的时频资源上发送第二UE的下行信号X2的第二发射功率为P2。则此时第一UE和第二UE接收信号分别为Y1和Y2,分别表示为:
Figure PCTCN2014095994-appb-000048
Figure PCTCN2014095994-appb-000049
对于第一UE而言,接收到的接收信号Y1,通过信道估计和噪声估计分别得到信道H1和干扰σ1,根据功率P1和P2;然后优先解出第二UE的下行信号X2,根据上述公式,第一UE 可以解出第一UE的下行信号X1
需要注意的是,在以上求解第一UE的下行信号X1过程中,第一UE之所以可以优先求解X2然后减掉X2以获得对X1的更精确的估计,原因是在于第一UE的信噪比高于第二UE,所以第一UE可以正确的解出第二UE的下行信号X2。所以对于第二UE而言,由于无法正确求解第二UE的下行信号X1,所以只能按照以下公式直接求解X2
Figure PCTCN2014095994-appb-000050
发明实施例二中,第一UE的接收单元301接收基站发送的发送的第一UE的功率参数和第一发射功率的调整参数δ1,ue1,第一UE的处理单元302根据第一用户设备UE的功率参数获取第一发射功率,并根据第一UE的功率参数和第一发射功率确定第二发射功率。第一UE能够根据第二发射功率消除掉第二UE的信号的干扰,实现采用NOMA技术进行通信。
本发明实施例二可以适用如下场景:第一UE功率参数
Figure PCTCN2014095994-appb-000051
和第二UE的功率参数
Figure PCTCN2014095994-appb-000052
相同。所述
Figure PCTCN2014095994-appb-000053
为所述第二高层提供的所述第二UE的的UE特定的参数,第二高层为第二UE的高层,比如可以为第二UE的基站。在此场景下,由于第一UE功率参数
Figure PCTCN2014095994-appb-000054
和第二UE的功率参数
Figure PCTCN2014095994-appb-000055
相同,可以认为分别根据第一UE功率参数和第二UE的功率参数确定得到发射功率相同。因此根据第一UE可以根据第一UE功率参数获得第二发射功率。基站把第一UE功率参数发送给第一UE,第一UE能够根据第二发射功率消除掉第二UE的信号的干扰,实现采用NOMA技术进行通信。
基于图1所示的网络架构,本发明实施例三又公开了一种基站,该基站为至少两个UE服务,所述至少两个UE包括第一UE和第二UE。请参阅图4,图4是本发明实施例三公开的一种基站的结构示意图。如图4所示,该基站包括处理单元401和发送单元402。处理单元具体可以为处理器,发送单元具体可以为发射器。
处理单元401,用于获取所述第一UE的功率参数和所述第二UE的功率参数,所述第一UE的功率参数包括:所述第一UE的UE特定参数
Figure PCTCN2014095994-appb-000056
所述第一UE的小区特定参数
Figure PCTCN2014095994-appb-000057
和所述第一UE的参考信号发射功率;所述第二UE的功率参数包括:所述第二UE的UE特定参数
Figure PCTCN2014095994-appb-000058
所述第二UE的小区特定参数PB,ue2和所述第二UE参考信号发射功率;
发送单元402,用于向所述第一UE发送所述第一UE的功率参数和所述第二UE的功 率参数;
所述处理单元401,还用于根据所述第一UE的功率参数确定第一发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;
所述发送单元402,还用于使用所述第一发射功率发送所述第一UE的下行数据。
本发明实施例中,所述第一UE的功率参数的含义,可以参见实施例一。
所述
Figure PCTCN2014095994-appb-000059
第二高层提供的所述第二UE的UE特定的参数,所述PB,ue2为所述第二高层提供的所述第二UE的小区特定的参数;第二高层为第二UE的高层,可以为第二UE的基站或者其他网络实体。同一小区中不同UE的PA可能不相同,但是PB和参考信号发射功率相同。
一种可选的实施方式,所述发送单元具体用于通过高层信令或PDCCH中的DCI向所述第一UE发送所述第一UE的功率参数和所述第二UE的功率参数。
作为一种可选的实施方式,所述处理单元401根据所述
Figure PCTCN2014095994-appb-000060
和所述
Figure PCTCN2014095994-appb-000061
确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。
作为一种可选的实施方式,所述处理单元401具体根据如下公式确定所述ρA,ue1
Figure PCTCN2014095994-appb-000062
所述处理单元401,具体用于根据所述ρA,ue1和表三,确定所述ρB,ue1
一种可选的实施方式,所述发送单元402还用于通过第一UE的PDCCH的DCI中的下行功率偏置域(downlink power offset field)来指示δpower-offset。该下行功率偏置域可以占用一个比特。第一UE通过该下行功率偏置域来获知δpower-offset。比如,下行功率偏置域可以如下表四。
一种可选的实施方式,所述处理单元401,还用于根据所述第二UE的功率参数确定第 二发射功率;,所述第二发射功率为所述第二UE的下行数据的发射功率;所述发送单元402,还用于使用所述第二发射功率发送所述第二UE的下行数据。
一种可选的实施方式,所述处理单元402具体用于根据所述
Figure PCTCN2014095994-appb-000063
和所述PB,ue2确定ρue2,并根据所述ρue2和所述第二UE的参考信号发射功率,确定所述第二发射功率;其中,所述ρue2表示所述第二UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同正交频分复用OFDM符号索引。
一种可选的实施方式,所述ρA,ue2和ρB,ue2所对应的OFDM符号索引如表五或者表六:
表五
Figure PCTCN2014095994-appb-000064
表六
Figure PCTCN2014095994-appb-000065
其中,ns表示的是一个无线帧(radio frame)中的时隙索引(slot index)。
作为一种可选的实施方式,所述处理单元402具体用于根据如下公式确定所述ρA,ue2
Figure PCTCN2014095994-appb-000066
所述处理单元402具体用于根据所述ρA,ue2和表三确定所述ρB,ue2
发明实施例三中,基站的处理单元401获取第一UE的功率参数和第二UE的功率参数,并通过发送单元402把该第一UE的功率参数和第二UE的功率参数发送给第一UE,从而使第一UE可以根据第一UE的功率参数获取第一发射功率,并根据第二UE的功率参数确定第二发射功率。第一UE能够根据第二发射功率消除掉第二UE的信号的干扰,实现采用NOMA技术进行通信。
本发明实施例四又公开的一种基站,实施例四和实施例三的区别在于,所述处理单元401进一步用于获取所述第一发射功率的调整参数δ1,ue1,所述发送单元402进一步用于把该第一发射功率的调整参数δ1,ue1发送给第一UE。相关参数的含义,可以参见实施例一。
一种可选的实施方式,所述发送单元402具体用于通过高层信令或PDCCH中的DCI向所述第一UE发送所述第一发射功率的调整参数δ1,ue1
在该实施例中,所述处理单元401具体用于根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。
一种可选的实施方式,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。所述处理单元401具体用于根据所述第一UE的功率参数确定得到的第三发射功率,所述第一发射功率为第三发射功率减去或加上所述第一发射功率的调整值。所述处理单元401确定第三发射功率的方式,可参见实施例一中处理单元201的处理。这里不再详述。
一种可选的实施方式,所述处理单元401具体用于根据所述
Figure PCTCN2014095994-appb-000067
所述
Figure PCTCN2014095994-appb-000068
和所述第一发射功率的调整参数δ1,ue1确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的 每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。所述处理单元401确定所述ρA,ue1和ρB,ue1的过程,具体参见实施一中处理单元201的描述。
本发明实施例四中,基站的处理单元401获取所述第一发射功率的调整参数δ1,ue1,并通过发送单元402把该第一发射功率的调整参数δ1,ue1发送给第一UE。基站通过第一发射功率的调整参数δ1,ue1对第一发射功率进行调度,从而实现NOMA技术下发射功率的动态调度。
本发明实施例五又公开的一种基站,实施例五跟实施例三或实施例四的区别在于,所述处理单元401进一步用于获取所述第二发射功率的调整参数δ1,ue2,所述发送单元402进一步用于把该所述第二发射功率的调整参数δ1,ue2发送给第一UE。
一种可选的实施方式,所述发送单元402具体用于通过高层信令或PDCCH中的DCI向所述第一UE发送所述第二发射功率的调整参数δ1,ue2
一种可选的实施方式,所述处理单元401还用于根据所述第二UE的功率参数和所述第二发射功率的调整参数δ1,ue2确定第二发射功率;所述发送单元402,还用于使用所述第二发射功率发送所述第二UE的下行数据。
一种可选的实施方式,所述第二发射功率的调整参数δ1,ue2为所述第二发射功率的调整值。所述处理单元401具体用于根据所述第二UE的功率参数确定得到的第四发射功率,所述第二发射功率为第四发射功率减去或加上第二发射功率的调整值。
一种可选的实施方式,所述处理单元401具体用于根据所述PA,ue2和所述PB,ue2确定ρue2,并根据所述ρue2和所述第二UE的参考信号发射功率,确定所述第四发射功率;其中,所述ρue2表示所述第二UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同正交频分复用OFDM符号索引。
一种可选的实施方式,确定所述第四发射功率的所述ρA,ue2和ρB,ue2的含义参考实施例三。其中,所述ρA,ue2和ρB,ue2的确定方式,参考实施例三的描述,这里不再重复。
另外一种可选的实施方式,所述处理单元401具体用于根据所述
Figure PCTCN2014095994-appb-000069
所述
Figure PCTCN2014095994-appb-000070
和所 述第二发射功率的调整参数δ1,ue2确定ρue2,并根据所述ρue2和所述第二UE的参考信号发射功率,确定所述第二发射功率;其中,所述ρue2表示所述第二UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同正交频分复用OFDM符号索引。
一种实施方式,所述处理单元401具体用于根据如下公式确定所述ρA,ue2
Figure PCTCN2014095994-appb-000071
所述处理单元401具体用于根据所述ρA,ue2和表三确定所述ρB,ue2
本发明实施例五中,基站的处理单元401获取所述第二发射功率的调整参数δ1,ue2,并通过发送单元402把该第二发射功率的调整参数δ1,ue2发送给第一UE。基站通过第二发射功率的调整参数δ1,ue2对发射功率进行调度,从而实现NOMA技术下发射功率的动态调度。
基于图1所示的网络架构,本发明实施例六又公开了一种第一UE。所述第一UE跟基站进行通信,所述基站为至少两个UE服务,所述至少两个UE包括所述第一UE和第二UE。图5是本发明实施例六公开的一种第一UE的结构示意图。如图7所示,该第一UE包括接收单元501和处理单元502。其中,接收单元具体可以是接收器,处理单元具体可以是处理器。
所述接收单元501用于接收基站发送的所述第一UE的功率参数和所第二UE的功率参数。
所述第一UE的功率参数包括:所述第一UE的UE特定参数
Figure PCTCN2014095994-appb-000072
所述第一UE的小区特定参数
Figure PCTCN2014095994-appb-000073
和所述第一UE的参考信号发射功率。所述第二UE的功率参数包括:所述第二UE的UE特定参数
Figure PCTCN2014095994-appb-000074
所述第二UE的小区特定参数PB,ue2和所述第二UE参考信号发射功率。其中参数的具体含义可以参见实施例三的描述。
处理单元502,用于根据所述第一UE的功率参数确定所述第一发射功率,所述第一发 射功率为所述第一UE的下行数据的发射功率;并根据所述第二UE的功率参数确定所述第二发射功率,所述第二发射功率为所述第二UE的下行数据的发射功率;
所述接收单元501,还用于接收所述基站发送的信号,所述接收的信号包括所述第一UE的的下行数据;
所述处理单元502,还用于根据根据所述第一发射功率和所述第二发射功率从所述接收单元接收的信号中获取所述第一UE的下行数据。
一种可选的实施方式,所述接收单元501具体用于接收所述基站通过高层信令或PDCCH中的DCI发送的所述第一UE的功率参数和所第二UE的功率参数。
一种可选的实施方式,所述处理单元502具体用于根据所述
Figure PCTCN2014095994-appb-000075
和所述
Figure PCTCN2014095994-appb-000076
确定确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。具体过程,跟实施例三中处理单元401确定第一发射功率的方式一样。相应性的描述可以参见实施例三,这里不再重复。
所述处理单元502还用于根据所述第二UE的功率参数确定所述第二发射功率。
一种可选的实施方式,所述处理单元502具体用于根据所述PA,ue2和所述PB,ue2确定ρue2,并根据所述ρue2和所述第二UE的参考信号发射功率,确定所述第二发射功率;其中,所述ρue2表示所述第二UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同正交频分复用OFDM符号索引。具体过程,跟实施例三中处理单元401确定第二发射功率的方式一样。相应性的描述可以参见实施例三,这里不再重复。
本发明实施例六中,第一UE的接收单元接收基站发送的第一UE的功率参数和第二UE的功率参数,第一UE的处理单元可以根据第一UE的功率参数获取第一发射功率,并根据第二UE的功率参数确定第二发射功率。第一UE能够根据第二发射功率消除掉第二UE的下行数据的干扰,实现采用NOMA技术进行通信。
本发明实施例七又公开的一种第一UE,实施例七和实施例六的区别在于,所述接收单元501还用于接收基站发送的第一发射功率的调整参数δ1,ue1。所述处理单元502具体用于 根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。
一种可选的实施方式,所述接收单元501具体用于接收基站通过高层信令或物理下行控制信道PDCCH中的下行控制指示DCI发送的所述第一发射功率的调整参数δ1,ue1
一种可选的实施方式,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。所述处理单元502具体用于根据所述第一UE的功率参数确定得到的第三发射功率,所述第一发射功率为第三发射功率减去或加上所述第一发射功率的调整值。所述处理单元502确定第三发射功率的方式,可参见实施例二中处理单元302的处理。这里不再详述。
一种可选的实施方式,所述处理单元502具体用于根据所述
Figure PCTCN2014095994-appb-000077
所述
Figure PCTCN2014095994-appb-000078
和所述第一发射功率的调整参数δ1,ue1确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。所述处理单元401确定所述ρA,ue1和ρB,ue1的过程,具体参见实施二中处理单元302的描述。这里不再重复。
本发明实施例七中,第一UE的接收单元接收基站发送的第一发射功率的调整参数δ1,ue1。基站通过第一发射功率的调整参数δ1,ue1对发射功率进行调度,从而实现NOMA技术下发射功率的动态调度。
本发明实施例八又公开的一种第一UE,实施例八跟实施例六或实施例七的区别在于,所述接收单元501还用于接收基站发送的第二发射功率的调整参数δ1,ue2
一种可选的实施方式,所述接收单元501具体用于接收基站通过高层信令或PDCCH中的DCI发送的所述第二发射功率的调整参数δ1,ue2
在该实施例中,所述处理单元502具体用于根据所述第二UE的功率参数和所述第二发射功率的调整参数δ1,ue2确定所述第二发射功率。
一种可选的实施方式,所述第二发射功率的调整参数δ1,ue2为所述第二发射功率的调整值。所述处理单元502具体用于根据所述第二UE的功率参数确定得到的第四发射功率,所述第二发射功率为第四发射功率减去或加上第二发射功率的调整值。所述处理单元502确 定第四发射功率的方式,可参见实施例五中处理单元401的处理。这里不再详述。
一种可选的实施方式,所述处理单元502具体用于根据所述
Figure PCTCN2014095994-appb-000079
所述
Figure PCTCN2014095994-appb-000080
和所述第二发射功率的调整参数δ1,ue2确定ρue2,并根据所述ρue2和所述第二UE的参考信号发射功率,确定所述第二发射功率;其中,所述ρue2表示所述第二UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同正交频分复用OFDM符号索引。所述处理单元502确定第二发射功率的方式,可参见实施例五中处理单元401的处理。这里不再详述。
本发明实施例八中,第一UE的接收单元501接收基站发送的第二发射功率的调整参数δ1,ue2。基站通过第二发射功率的调整参数δ1,ue2对发射功率进行调度,从而实现NOMA技术下发射功率的动态调度。
基于图1所示的网络架构,本发明实施例九公开了一种通信方法。适用于包括至少两个用户设备UE的通信网络,所述至少两个UE包括第一UE和第二UE,图6是本发明实施例九公开的一种通信方法的流程示意图。如图6所示,该通信方法可以包括以下步骤:
601、基站获取第一用户设备UE的功率参数和第一发射功率的调整参数δ1,ue1,所述第一UE的功率参数包括:所述第一UE的UE特定参数
Figure PCTCN2014095994-appb-000081
所述第一UE的小区特定参数
Figure PCTCN2014095994-appb-000082
和所述第一UE的参考信号发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;
602、所述基站向所述第一UE发送所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1
603、所述基站根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定第一发射功率;
604、所述基站使用所述第一发射功率发送所述第一UE的下行信号。
本发明实施例中的相关参数的含义,还请参见实施一中的相关描述。
作为一种可选的实施方式,所述基站通过高层信令或PDCCH中的DCI向所述第一UE发送所述第一UE的功率参数和所述参数δ2,ue1
作为一种可选的实施方式,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。所述基站根据所述第一UE的功率参数确定得到的第三发射功率,所述第一发射功率为第三发射功率减去或加上所述第一发射功率的调整值。
作为一种可选的实施方式,所述基站根据所述
Figure PCTCN2014095994-appb-000083
和所述
Figure PCTCN2014095994-appb-000084
确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第三发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。
作为一种可选的实施方式,在确定所述第三发射功率时,所述基站根据如下公式确定所述ρA,ue1
Figure PCTCN2014095994-appb-000085
所述基站根据所述ρA,ue1和表三,确定所述ρB,ue1
种可选的实施方式,所述基站通过第一UE的PDCCH的DCI中的下行功率偏置域(downlink power offset field)来指示δpower-offset。该下行功率偏置域可以占用一个比特。第一UE通过该下行功率偏置域来获知δpower-offset。比如,下行功率偏置域可以如下表四。
一种可选的实施方式,所述基站根据所述
Figure PCTCN2014095994-appb-000086
所述
Figure PCTCN2014095994-appb-000087
和所述第一发射功率的调整参数δ1,ue1确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中参数的含义参见实施例一。
一种可选的实施方式,所述基站根据如下公式所述ρA,ue1
Figure PCTCN2014095994-appb-000088
所述基站根据所述ρA,ue1和表三确定所述ρB,ue1
又一种可选的实施方式,所述基站还根据所述第一UE的功率参数和所述第一发射功率确定第二发射功率;所述第二发射功率为所述第二UE下行数据的发射功率。所述基站使用所述第二发射功率向所述第二UE发送信号。
一种可选的实施方式,所述基站根据所述第三发射功率和所述第一发射功率确定所述第二发射功率。其中,所述第三发射功率的确定是根据所述第一UE的功率参数确定的,确定的具体实施方式可以参见上述描述。
一种可选的实施方式,所述第二发射功率为所述所述第三发射功率和所述第一发射功率的差值。
本发明实施例一中,基站获取所述第一发射功率的调整参数δ1,ue1和所述第一UE的的功率参数,并把该第一发射功率的调整参数δ1,ue1和所述第一UE的功率参数发送给所述第一UE。从而使第一UE可以根据第一用户设备UE的功率参数获取第一发射功率,并根据所述第一发射功率的调整参数δ1,ue1和第一发射功率确定第二发射功率。第一UE能够根据第二发射功率消除掉第二UE的下行数据的干扰,实现采用NOMA技术进行通信。另外,基站获取所述第一发射功率的调整参数δ1,ue1,并把第一发射功率的调整参数δ1,ue1发送给第一UE。基站通过第一发射功率的调整参数δ1,ue1对第一发射功率进行调度,从而实现NOMA技术下发射功率的动态调度。
实施例九的适应场景和实施例一的适用场景一致。
基于图1所示的网络架构,本发明实施例十公开了一种通信方法。适用于包括至少两个用户设备UE的通信网络,所述至少两个UE包括第一UE和第二UE,图7是本发明实施例十公开的一种通信方法的流程示意图。如图7所示,该通信方法可以包括以下步骤:
701、第一用户设备UE接收基站发送的所述第一UE的功率参数和第一发射功率的调整参数δ1,ue1;所述第一UE的功率参数包括:所述第一UE的
Figure PCTCN2014095994-appb-000089
所述第一UE的小区特定参数
Figure PCTCN2014095994-appb-000090
和所述第一UE的参考信号发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;
702、所述第一UE根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确 定第一发射功率;
703、所述第一UE根据所述第一UE的功率参数和所述第一发射功率确定第二发射功率,所述第二发射功率为所述第二UE的下行数据的发射功率;
704、所述第一UE接收所述基站发送的信号,所述接收的信号包括所述第一UE的下行数据;
705、所述第一UE根据所述第一发射功率和所述第二发射功率从所述接收的信号中获取获取所述第一UE的下行数据。
本发明实施例中相关参数的含义参见实施例一。
作为一种可选的实施方式,所述第一UE接收基站通过高层信令或PDCCH中的DCI发送的所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1
一种可选的实施方式,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。所述第一UE根据所述第一UE的功率参数确定得到的第三发射功率,所述第一发射功率为第三发射功率减去或加上所述第一发射功率的调整值。
又一种可选的实施方式,所述第一UE根据所述
Figure PCTCN2014095994-appb-000091
和所述
Figure PCTCN2014095994-appb-000092
确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第三发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。其中相关参数的描述,可以参见第一实施例。
作为一种可选的实施方式,在确定所述第三发射功率时,所述第一UE根据如下公式确定所述ρA,ue1
Figure PCTCN2014095994-appb-000093
所述第一UE根据所述ρA,ue1和表三,确定所述ρB,ue1
一种可选的实施方式,所述第一UE接收所述基站通过第一UE的PDCCH的DCI中的下行功率偏置域(downlink power offset field)发送的δpower-offset指示。该下行功率偏置域可以占用一个比特。比如,下行功率偏置域可以如下表四。
一种可选的实施方式,所述第一UE根据所述
Figure PCTCN2014095994-appb-000094
所述
Figure PCTCN2014095994-appb-000095
和所述第一发射功率的调整参数δ1,ue1确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。
一种可选的实施方式,所述第一UE根据如下公式所述ρA,ue1
Figure PCTCN2014095994-appb-000096
所述第一UE根据所述ρA,ue1和表三确定所述ρB,ue1
一种可选的实施方式,所述第一UE根据所述第一UE的功率参数和所述第一发射功率确定第二发射功率,所述第二发射功率为所述第二UE下行数据的发射功率。
一种可选的实施方式,所述第一UE根据所述第三发射功率和所述第一发射功率确定所述第二发射功率。其中所述第三发射功率的确定是根据所述第一UE的功率参数确定的,确定的具体实施方式可以参见上述描述。
一种可选的实施方式,所述第二发射功率为所述所述第三发射功率和所述第一发射功率的差值。
发明实施例十中,第一UE接收基站发送的发送的第一UE的功率参数和第一发射功率的调整参数δ1,ue1,第一UE根据第一用户设备UE的功率参数获取第一发射功率,并根据第一UE的功率参数和第一发射功率确定第二发射功率。第一UE能够根据第二发射功率消除掉第二UE的信号的干扰,实现采用NOMA技术进行通信。
实施例十应用的场景,跟实施例二一致。
基于图1所示的网络架构,本发明实施例十一公开了一种通信方法。适用于包括至少两个用户设备UE的通信网络,所述至少两个UE包括第一UE和第二UE,图8是本发明实施例十一公开的一种通信方法的流程示意图。如图8所示,该通信方法可以包括以下步骤:
801、基站获取第一用户设备UE的功率参数和第二UE的功率参数,所述第一UE的功率参数包括:所述第一UE的UE特定参数
Figure PCTCN2014095994-appb-000097
所述第一UE的小区特定参数
Figure PCTCN2014095994-appb-000098
和所述第一UE的参考信号发射功率;所述第二UE的功率参数包括:所述第二UE的UE特定参数
Figure PCTCN2014095994-appb-000099
所述第二UE的小区特定参数PB,ue2和所述第二UE参考信号发射功率;
802、所述基站向所述第一UE发送所述第一UE的功率参数和所述第二UE的功率参数;
803、所述基站根据所述第一UE的功率参数确定第一发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;
804、所述基站使用所述第一发射功率向所述第一UE的下行数据。
本发明实施例中相关参数的含义,可以参见实施例三。
一种可选的实施方式,所述基站通过高层信令或PDCCH中的DCI向所述第一UE发送所述第一UE的功率参数和所述第二UE的功率参数。
作为一种可选的实施方式,所述基站根据所述
Figure PCTCN2014095994-appb-000100
和所述
Figure PCTCN2014095994-appb-000101
确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
作为一种可选的实施方式,所述基站根据如下公式确定所述ρA,ue1
Figure PCTCN2014095994-appb-000102
所述基站所述ρA,ue1和表三,确定所述ρB,ue1
一种可选的实施方式,所述基站通过第一UE的PDCCH的DCI中的下行功率偏置域(downlink power offset field)来指示δpower-offset。该下行功率偏置域可以占用一个比特。第一UE通过该下行功率偏置域来获知δpower-offset。比如,下行功率偏置域可以如下表四。
一种可选的实施方式,所述基站根据所述第二UE的功率参数确定第二发射功率;,所述第二发射功率为所述第二UE的下行数据的发射功率;所述基站使用所述第二发射功率发送所述第二UE的下行数据。
一种可选的实施方式,所述基站根据所述
Figure PCTCN2014095994-appb-000103
和所述PB,ue2确定ρue2,并根据所述ρue2和 所述第二UE的参考信号发射功率,确定所述第二发射功率;其中,所述ρue2表示所述第二UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同正交频分复用OFDM符号索引。
一种可选的实施方式,所述ρA,ue2和ρB,ue2所对应的OFDM符号索引如表五或者表六:
作为一种可选的实施方式,所述基站根据如下公式确定所述ρA,ue2
Figure PCTCN2014095994-appb-000104
所述基站根据所述ρA,ue2和表三确定所述ρB,ue2
本发明实施例中,基站获取第一UE的功率参数和第二UE的功率参数,并把该第一UE的功率参数和第二UE的功率参数发送给第一UE,从而使第一UE可以根据第一UE的功率参数获取第一发射功率,并根据第二UE的功率参数确定第二发射功率。第一UE能够根据第二发射功率消除掉第二UE的信号的干扰,实现采用NOMA技术进行通信。
实施例十一应用的场景,跟实施例一一致。
基于图1所示的网络架构,本发明实施例十二公开了一种通信方法。实施例十二和实施例十一的区别在于,所述基站进一步获取所述第一发射功率的调整参数δ1,ue1,把该第一发射功率的调整参数δ1,ue1发送给第一UE。相关参数的含义,可以参见实施例一。
一种可选的实施方式,所述基站通过高层信令或PDCCH中的DCI向所述第一UE发送所述第一发射功率的调整参数δ1,ue1
在该实施例中,所述基站根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。
一种可选的实施方式,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。所述基站根据所述第一UE的功率参数确定得到的第三发射功率,所述第一发射功率为第三发射功率减去或加上所述第一发射功率的调整值。所述基站确定第三发射功率的方式,可参见实施例九中的处理。这里不再详述。
一种可选的实施方式,所述基站根据所述
Figure PCTCN2014095994-appb-000105
所述
Figure PCTCN2014095994-appb-000106
和所述第一发射功率的调整参数δ1,ue1确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。所述基站确定所述ρA,ue1和ρB,ue1的过程,具体参见实施九中的描述。
本发明实施例中,基站获取所述第一发射功率的调整参数δ1,ue1,并把该第一发射功率的调整参数δ1,ue1发送给第一UE。基站通过第一发射功率的调整参数δ1,ue1对第一发射功率进行调度,从而实现NOMA技术下发射功率的动态调度。
本发明实施例十三又公开的一种基站,实施例十三跟实施例十一或实施例十二的区别在于,所述基站进一步获取所述第二发射功率的调整参数δ1,ue2,进一步把该所述第二发射功率的调整参数δ1,ue2发送给第一UE。
一种可选的实施方式,所述基站通过高层信令或PDCCH中的DCI向所述第一UE发送所述第二发射功率的调整参数δ1,ue2
一种可选的实施方式,所述基站根据所述第二UE的功率参数和所述第二发射功率的调整参数δ1,ue2确定第二发射功率;还用于使用所述第二发射功率发送所述第二UE的下行数据。
一种可选的实施方式,所述第二发射功率的调整参数δ1,ue2为所述第二发射功率的调整值。所述基站根据所述第二UE的功率参数确定得到的第四发射功率,所述第二发射功率为第四发射功率减去或加上第二发射功率的调整值。
一种可选的实施方式,所述基站根据所述PA,ue2和所述PB,ue2确定ρue2,并根据所述ρue2和所述第二UE的参考信号发射功率,确定所述第四发射功率;其中,所述ρue2表示所述第二UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同正交频分复用OFDM符号索引。
一种可选的实施方式,确定所述第四发射功率的所述ρA,ue2和ρB,ue2的含义参考实施例十一。其中,所述ρA,ue2和ρB,ue2的确定方式,参考实施例十一的描述,这里不再重复。
另外一种可选的实施方式,所述基站根据所述
Figure PCTCN2014095994-appb-000107
所述
Figure PCTCN2014095994-appb-000108
和所述第二发射功率的调整参数δ1,ue2确定ρue2,并根据所述ρue2和所述第二UE的参考信号发射功率,确定所述第二发射功率;其中,所述ρue2表示所述第二UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同正交频分复用OFDM符号索引。
一种实施方式,所述基站根据如下公式确定所述ρA,ue2
Figure PCTCN2014095994-appb-000109
所述基站根据所述ρA,ue2和表三确定所述ρB,ue2
本发明实施例十三中,基站获取所述第二发射功率的调整参数δ1,ue2,并把该第二发射功率的调整参数δ1,ue2发送给第一UE。基站通过第二发射功率的调整参数δ1,ue2对发射功率进行调度,从而实现NOMA技术下发射功率的动态调度。
基于图1所示的网络架构,本发明实施例十四公开了一种通信方法。适用于包括至少两个用户设备UE的通信网络,所述至少两个UE包括第一UE和第二UE,图9是本发明实施例十四公开的一种通信方法的流程示意图。如图9所示,该通信方法可以包括以下步骤:
901、所述第一UE接收基站发送的所述第一UE的功率参数和所第二UE的功率参数;所述第一UE的功率参数包括:所述第一UE的UE特定参数
Figure PCTCN2014095994-appb-000110
所述第一UE的小区特定参数
Figure PCTCN2014095994-appb-000111
和所述第一UE的参考信号发射功率;所述第二UE的功率参数包括:所述第二UE的UE特定参数
Figure PCTCN2014095994-appb-000112
所述第二UE的小区特定参数PB,ue2和所述第二UE参考信号发射功率;
902、所述第一UE根据所述第一UE的功率参数确定所述第一发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;
903、根据所述第二UE的功率参数确定所述第二发射功率,所述第二发射功率为所述第二UE的下行数据的发射功率;
904、所述第一UE接收所述基站发送的信号,所述接收的信号包括所述第一UE的下行数据;
905、所述第一UE根据根据所述第一发射功率和所述第二发射功率从接收的信号中获取所述第一UE的下行数据。
一种可选的实施方式,所述第一UE接收所述基站通过高层信令或PDCCH中的DCI发送的所述第一UE的功率参数和所第二UE的功率参数。
一种可选的实施方式,所述第一UE根据所述
Figure PCTCN2014095994-appb-000113
和所述
Figure PCTCN2014095994-appb-000114
确定确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。具体过程,跟实施例八中基站确定第一发射功率的方式一样。相应性的描述可以参见实施例八,这里不再重复。
所述第一UE根据所述第二UE的功率参数确定所述第二发射功率。
一种可选的实施方式,所述第一UE根据所述PA,ue2和所述PB,ue2确定ρue2,并根据所述ρue2和所述第二UE的参考信号发射功率,确定所述第二发射功率;其中,所述ρue2表示所述第二UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同正交频分复用OFDM符号索引。具体过程,跟实施例八中基站确定第二发射功率的方式一样。相应性的描述可以参见实施例八,这里不再重复。
本发明实施例六中,第一UE的接收单元接收基站发送的第一UE的功率参数和第二UE的功率参数,第一UE的处理单元可以根据第一UE的功率参数获取第一发射功率,并根据第二UE的功率参数确定第二发射功率。第一UE能够根据第二发射功率消除掉第二UE的下行数据的干扰,实现采用NOMA技术进行通信。
本发明实施例十五又公开的一种第一UE,实施例十五和实施例十四的区别在于,所述 第一UE接收基站发送的第一发射功率的调整参数δ1,ue1。所述第一UE根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。
一种可选的实施方式,所述第一UE接收基站通过高层信令或物理下行控制信道PDCCH中的下行控制指示DCI发送的所述第一发射功率的调整参数δ1,ue1
一种可选的实施方式,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。所述第一UE根据所述第一UE的功率参数确定得到的第三发射功率,所述第一发射功率为第三发射功率减去或加上所述第一发射功率的调整值。所述第一UE确定第三发射功率的方式,可参见实施例十中的处理。这里不再详述。
一种可选的实施方式,所述第一UE根据所述
Figure PCTCN2014095994-appb-000115
所述
Figure PCTCN2014095994-appb-000116
和所述第一发射功率的调整参数δ1,ue1确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。所述第一UE确定所述ρA,ue1和ρB,ue1的过程,具体参见实施十中的描述。这里不再重复。
本发明实施例十五中,第一UE的接收单元接收基站发送的第一发射功率的调整参数δ1,ue1。基站通过第一发射功率的调整参数δ1,ue1对发射功率进行调度,从而实现NOMA技术下发射功率的动态调度。
本发明实施例十六又公开的一种第一UE,实施例十六跟实施例十四或实施例十五的区别在于,所述第一UE接收基站发送的第二发射功率的调整参数δ1,ue2
一种可选的实施方式,所述第一UE接收基站通过高层信令或PDCCH中的DCI发送的所述第二发射功率的调整参数δ1,ue2
在该实施例中,所述第一UE根据所述第二UE的功率参数和所述第二发射功率的调整参数δ1,ue2确定所述第二发射功率。
一种可选的实施方式,所述第二发射功率的调整参数δ1,ue2为所述第二发射功率的调整值。所述第一UE根据所述第二UE的功率参数确定得到的第四发射功率,所述第二发射功 率为第四发射功率减去或加上第二发射功率的调整值。所述第一UE确定第四发射功率的方式,可参见实施例十三中的处理。这里不再详述。
一种可选的实施方式,所述第一UE根据所述
Figure PCTCN2014095994-appb-000117
所述
Figure PCTCN2014095994-appb-000118
和所述第二发射功率的调整参数δ1,ue2确定ρue2,并根据所述ρue2和所述第二UE的参考信号发射功率,确定所述第二发射功率;其中,所述ρue2表示所述第二UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同正交频分复用OFDM符号索引。所述第一UE确定第二发射功率的方式,可参见实施例十三中的处理。这里不再详述。
本发明实施例十六中,第一UE接收基站发送的第二发射功率的调整参数δ1,ue2。基站通过第二发射功率的调整参数δ1,ue2对发射功率进行调度,从而实现NOMA技术下发射功率的动态调度。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可 以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (48)

  1. 一种基站,为至少两个用户设备UE服务,所述至少两个UE包括第一UE和第二UE,其特征在于,其特征在于,包括:
    处理单元,用于获取所述第一UE的功率参数和第一发射功率的调整参数δ1,ue1,所述第一UE的功率参数包括:所述第一UE的UE特定参数
    Figure PCTCN2014095994-appb-100001
    所述第一UE的小区特定参数
    Figure PCTCN2014095994-appb-100002
    和所述第一UE的参考信号发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;
    发送单元,用于向所述第一UE发送所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1
    所述处理单元,还用于所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定第一发射功率;
    所述发送单元,还用于使用所述第一发射功率发送所述第一UE的下行数据。
  2. 根据权利要求1所述的基站,其特征在于,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。
  3. 根据权利要求1所述的基站,其特征在于,所述处理单元,具体用于根据所述
    Figure PCTCN2014095994-appb-100003
    所述
    Figure PCTCN2014095994-appb-100004
    和所述第一发射功率的调整参数δ1,ue1确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。
  4. 根据权利要求3所述的基站,其特征在于,所述处理单元,具体用于根据如下公式确定所述ρA,ue1
    Figure PCTCN2014095994-appb-100005
    Figure PCTCN2014095994-appb-100006
    所述处理单元,具体用于根据所述ρA,ue1和如下表格,确定所述ρB,ue1
    Figure PCTCN2014095994-appb-100007
  5. 根据权利要求1-4任一项所述的基站,其特征在于,所述处理单元,还用于根据所述第一UE的功率参数和所述第一发射功率确定第二发射功率,所述第二发射功率为所述第二UE的下行数据的发射功率;
    所述发送单元,还用于使用所述第二发射功率发送所述第二UE的下行数据。
  6. 一种通信方法,适用于包括至少两个用户设备UE的通信网络,所述至少两个UE包括第一UE和第二UE,其特征在于,包括:
    基站获取第一用户设备UE的功率参数和第一发射功率的调整参数δ1,ue1,所述第一UE的功率参数包括:所述第一UE的UE特定参数
    Figure PCTCN2014095994-appb-100008
    所述第一UE的小区特定参数
    Figure PCTCN2014095994-appb-100009
    和所述第一UE的参考信号发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;
    所述基站向所述第一UE发送所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1
    所述基站根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定第一发射功率;
    所述基站使用所述第一发射功率发送所述第一UE的下行信号。
  7. 根据权利要求6所述的方法,其特征在于,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。
  8. 根据权利要求6所述的方法,其特征在于,所述基站根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率包括:所述基站根据所述
    Figure PCTCN2014095994-appb-100010
    所述
    Figure PCTCN2014095994-appb-100011
    和所述第一发射功率的调整参数δ1,ue1确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。
  9. 根据权利要求8所述的方法,其特征在于,,:所述基站根据所述
    Figure PCTCN2014095994-appb-100012
    所述
    Figure PCTCN2014095994-appb-100013
    和所述第一发射功率的调整参数δ1,ue1确定ρue1包括:
    所述基站根据如下公式确定所述ρA,ue1
    Figure PCTCN2014095994-appb-100014
    Figure PCTCN2014095994-appb-100015
    所述基站根据所述ρA,ue1和如下表格,确定所述ρB,ue1
    Figure PCTCN2014095994-appb-100016
  10. 根据权利要求6-9任一项所述的方法,其特征在于,进一步包括:
    所述基站根据所述第一UE的功率参数和所述第一发射功率确定第二发射功率;所述第二发射功率为所述第二UE的下行数据的发射功率;
    所述基站使用所述第二发射功率发送所述第二UE的下行数据。
  11. 一种第一用户设备UE,所述第一UE跟基站进行通信,所述基站为至少两个UE服务,所述至少两个UE包括所述第一UE和第二UE,其特征在于,包括:
    接收单元,用于接收基站发送的第一UE的功率参数和第一发射功率的调整参数δ1,ue1; 所述第一UE的功率参数包括:所述第一UE的
    Figure PCTCN2014095994-appb-100017
    所述第一UE的小区特定参数
    Figure PCTCN2014095994-appb-100018
    和所述第一UE的参考信号发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;
    处理单元,用于根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定第一发射功率;并用于根据所述第一UE的功率参数和所述第一发射功率确定第二发射功率;所述第二发射功率为所述第二UE的下行数据的发射功率;
    所述接收单元,还用于接收所述基站发送的信号,所述接收的信号包括所述第一UE的下行数据;
    所述处理单元,还用于根据根据所述第一发射功率和所述第二发射功率从所述接收单元接收的信号中获取所述第一UE的下行数据。
  12. 根据权利要求11所述的第一UE,其特征在于,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。
  13. 根据权利要求11所述的第一UE,其特征在于,所述处理单元,具体用于根据所述
    Figure PCTCN2014095994-appb-100019
    所述
    Figure PCTCN2014095994-appb-100020
    和所述第一发射功率的调整参数δ1,ue1确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。
  14. 根据权利要求12所述的第一UE,其特征在于,所述处理单元,具体用于根据如下公式确定所述ρA,ue1
    Figure PCTCN2014095994-appb-100021
    Figure PCTCN2014095994-appb-100022
    所述处理单元,具体用于根据所述ρA,ue1和如下表格,确定所述ρB,ue1
    Figure PCTCN2014095994-appb-100023
    Figure PCTCN2014095994-appb-100024
  15. 根据权利要求11所述的第一UE,其特征在于,所述处理单元,具体用于根据所述第一UE的功率参数确定第三发射功率;并根据所述第三发射功率和所述第一发射功率确定所述第二发射功率。
  16. 根据权利要求15所述的第一UE,其特征在于,所述第二发射功率为所述所述第三发射功率和所述第一发射功率的差值。
  17. 根据权利要求15或16所述的第一UE,其特征在于,所述处理单元,具体用于根据所述
    Figure PCTCN2014095994-appb-100025
    和所述
    Figure PCTCN2014095994-appb-100026
    确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。
  18. 一种基站,为至少两个用户设备UE服务,所述至少两个UE包括第一UE和第二UE,其特征在于,包括:
    处理单元,用于获取所述第一UE的功率参数和所述第二UE的功率参数,所述第一UE的功率参数包括:所述第一UE的UE特定参数
    Figure PCTCN2014095994-appb-100027
    所述第一UE的小区特定参数
    Figure PCTCN2014095994-appb-100028
    和所述第一UE的参考信号发射功率;所述第二UE的功率参数包括:所述第二UE的UE特定参数
    Figure PCTCN2014095994-appb-100029
    所述第二UE的小区特定参数PB,ue2和所述第二UE参考信号发射功率;
    发送单元,用于向所述第一UE发送所述第一UE的功率参数和所述第二UE的功率参数;
    所述处理单元,还用于根据所述第一UE的功率参数确定第一发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;
    所述发送单元,还用于使用所述第一发射功率发送所述第一UE的下行数据。
  19. 根据权利要求18所述的基站,其特征在于,
    所述处理单元,还用于获取所述第一发射功率的调整参数δ1,ue1
    所述发送单元,还用于向所述第一UE发送所述第一发射功率的调整参数δ1,ue1
    所述处理单元,具体用于根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。
  20. 根据权利要求19所述的基站,其特征在于,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。
  21. 根据权利要求19所述的基站,其特征在于,所述处理单元,具体用于根据所述
    Figure PCTCN2014095994-appb-100030
    所述
    Figure PCTCN2014095994-appb-100031
    和所述第一发射功率的调整参数δ1,ue1确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。
  22. 根据权利要求21所述的基站,其特征在于,所述处理单元,具体用于根据如下公式确定所述ρA,ue1
    Figure PCTCN2014095994-appb-100032
    Figure PCTCN2014095994-appb-100033
    所述处理单元,具体用于根据所述ρA,ue1和如下表格,确定所述ρB,ue1
    Figure PCTCN2014095994-appb-100034
  23. 根据权利要求18所述的基站,其特征在于,所述处理单元,具体用于根据所述
    Figure PCTCN2014095994-appb-100035
    和所述
    Figure PCTCN2014095994-appb-100036
    确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。
  24. 根据权利要求18-23任一项所述的基站,其特征在于,所述处理单元,还用于根据所述第二UE的功率参数确定第二发射功率,所述第二发射功率为所述第二UE的下行数据的发射功率;
    所述发送单元,还用于使用所述第二发射功率发送所述第二UE的下行数据。
  25. 根据权利要求18-24任一项所述的基站,其特征在于,所述处理单元,进一步用于获取所述第二发射功率的调整参数δ1,ue2;所述发送单元,具体用于向所述第一UE发送所述第二发射功率的调整参数δ1,ue2
  26. 根据权利要求25所述的基站,其特征在于,所述处理单元,具体用于根据所述第二UE的功率参数和所述第二发射功率的调整参数δ1,ue2确定所述第二发射功率。
  27. 一种通信方法,适用于包括至少两个用户设备UE的通信网络,所述至少两个UE包括第一UE和第二UE,其特征在于,包括:
    基站获取第一用户设备UE的功率参数和第二UE的功率参数,所述第一UE的功率参数包括:所述第一UE的UE特定参数
    Figure PCTCN2014095994-appb-100037
    所述第一UE的小区特定参数
    Figure PCTCN2014095994-appb-100038
    和所述第一UE的参考信号发射功率;所述第二UE的功率参数包括:所述第二UE的UE特定参数
    Figure PCTCN2014095994-appb-100039
    所述第二UE的小区特定参数PB,ue2和所述第二UE参考信号发射功率;
    所述基站向所述第一UE发送所述第一UE的功率参数和所述第二UE的功率参数;
    所述基站根据所述第一UE的功率参数确定第一发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;
    所述基站使用所述第一发射功率向所述第一UE的下行数据。
  28. 根据权利要求27所述的方法,其特征在于,进一步包括:
    所述基站获取所述第一发射功率的调整参数δ1,ue1
    所述基站向所述第一UE发送所述第一发射功率的调整参数δ1,ue1
    所述基站根据所述第一UE的功率参数确定第一发射功率包括:所述基站根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。
  29. 根据权利要求28所述的方法,其特征在于,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。
  30. 根据权利要求28所述的方法,其特征在于,所述基站根据所述
    Figure PCTCN2014095994-appb-100040
    所述
    Figure PCTCN2014095994-appb-100041
    和所述第一发射功率的调整参数δ1,ue1确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。
  31. 根据权利要求30所述的方法,其特征在于,所述基站根据所述
    Figure PCTCN2014095994-appb-100042
    所述
    Figure PCTCN2014095994-appb-100043
    和所述第一发射功率的调整参数δ1,ue1确定ρue1包括:
    所述基站根据如下公式确定所述ρA,ue1:
    Figure PCTCN2014095994-appb-100044
    Figure PCTCN2014095994-appb-100045
    所述基站根据所述ρA,ue1和如下表格,确定所述ρB,ue1
    Figure PCTCN2014095994-appb-100046
  32. 根据权利要求27所述的方法,其特征在于,所述基站根据所述第一UE的功率参数确定第一发射功率包括:所述基站根据所述
    Figure PCTCN2014095994-appb-100047
    和所述
    Figure PCTCN2014095994-appb-100048
    确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。
  33. 根据权利要求27-32任一项所述的方法,其特征在于,进一步包括:
    所述基站根据所述第二UE的功率参数确定第二发射功率,所述第二发射功率为所述第二UE的下行数据的发射功率;
    所述基站使用所述第二发射功率发送所述第二UE的下行数据。
  34. 根据权利要求27-33任一项所述的方法,其特征在于,进一步包括:
    所述基站获取所述第二发射功率的调整参数δ1,ue2
    所述基站向所述第一UE发送所述第二发射功率的调整参数δ1,ue2
  35. 根据权利要求34所述的方法,其特征在于,所述基站根据所述第二UE的功率参数确定第二发射功率包括:
    所述基站根据所述第二UE的功率参数和所述第二发射功率的调整参数δ1,ue2确定第二发射功率。
  36. 一种第一用户设备UE,所述第一UE跟基站进行通信,所述基站为至少两个UE服务,所述至少两个UE包括所述第一UE和第二UE,其特征在于,包括:
    接收单元,用于接收基站发送的第一UE的功率参数和所第二UE的功率参数;所述第一UE的功率参数包括:所述第一UE的UE特定参数
    Figure PCTCN2014095994-appb-100049
    所述第一UE的小区特定参数
    Figure PCTCN2014095994-appb-100050
    和所述第一UE的参考信号发射功率;所述第二UE的功率参数包括:所述第二UE的UE特定参数
    Figure PCTCN2014095994-appb-100051
    所述第二UE的小区特定参数PB,ue2和所述第二UE参考信号发射功率;
    处理单元,用于根据所述第一UE的功率参数确定所述第一发射功率,所述第一发射功率为所述第一UE的下行数据的发射功率;并根据所述第二UE的功率参数确定所述第二发射功率,所述第二发射功率为所述第二UE的下行数据的发射功率;
    所述接收单元,还用于接收所述基站发送的信号,所述接收的信号包括所述第一UE的的下行数据;
    所述处理单元,还用于根据根据所述第一发射功率和所述第二发射功率从所述接收单元接收的信号中获取所述第一UE的下行数据。
  37. 根据权利要求36所述的第一UE,其特征在于,
    所述接收单元,还用于接收所述基站发送的所述第一发射功率的调整参数δ1,ue1
    所述处理单元,具体用于根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。
  38. 根据权利要求37所述的第一UE,其特征在于,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。
  39. 根据权利要求37所述的第一UE,其特征在于,所述处理单元,根据所述
    Figure PCTCN2014095994-appb-100052
    所述
    Figure PCTCN2014095994-appb-100053
    和所述第一发射功率的调整参数δ1,ue1确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。
  40. 根据权利要求39所述的第一UE,其特征在于,所述处理单元,所述处理单元,具体用于根据如下公式确定所述ρA,ue1
    Figure PCTCN2014095994-appb-100054
    Figure PCTCN2014095994-appb-100055
    所述处理单元,具体用于根据所述ρA,ue1和如下表格,确定所述ρB,ue1
    Figure PCTCN2014095994-appb-100056
    Figure PCTCN2014095994-appb-100057
  41. 根据权利要求36所述的第一UE,其特征在于,所述处理单元,具体用于根据所述
    Figure PCTCN2014095994-appb-100058
    和所述
    Figure PCTCN2014095994-appb-100059
    确定ρue1;并根据所述ρue1和所述第一UE的参考信号发射功率,确定所述第一发射功率;其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引。
  42. 根据权利要求36-41所述的第一UE,其特征在于,所述接收单元,具体用于接收所述基站发送的所述第二发射功率的调整参数δ1,ue2;所述处理单元,具体用于根据所述第二UE的功率参数和所述第二发射功率的调整参数δ1,ue2确定所述第二发射功率。
  43. 根据权利要求42所述的第一UE,其特征在于,所述第二发射功率的调整参数δ1,ue2为所述第二发射功率的调整值。
  44. 根据权利要求42所述的第一UE,其特征在于,所述处理单元,具体用于根据所述
    Figure PCTCN2014095994-appb-100060
    所述
    Figure PCTCN2014095994-appb-100061
    和所述第二发射功率的调整参数δ1,ue2确定ρue2,并根据所述ρue2和所述第二UE的参考信号发射功率,确定所述第二发射功率;其中,所述ρue2表示所述第二UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同正交频分复用OFDM符号索引。
  45. 根据权利要求42所述的第一UE,其特征在于,所述处理单元,具体用于根据如下公式确定所述ρA,ue2
    Figure PCTCN2014095994-appb-100062
    Figure PCTCN2014095994-appb-100063
    所述处理单元,具体用于根据所述ρA,ue2和如下表格,确定所述ρB,ue2
    Figure PCTCN2014095994-appb-100064
  46. 根据权利要求36所述的第一UE,其特征在于,所述处理单元,具体用于根据所述
    Figure PCTCN2014095994-appb-100065
    和所述PB,ue2确定ρue2,并根据所述ρue2和所述第二UE的参考信号发射功率,确定所述第二发射功率;其中,所述ρue2表示所述第二UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同正交频分复用OFDM符号索引。
  47. 一种通信系统,包括基站和至少两个用户设备UE,所述基站为所述至少两个UE服务,所述至少两个UE包括第一UE和第二UE,其特征在于,所述基站为根据权利要求1-5任一项所述的基站,所述的第一UE为根据权利要求11-18任一项所述的第一UE。
  48. 一种通信系统,包括基站和至少两个用户设备UE,所述基站为所述至少两个UE服务,所述至少两个UE包括第一UE和第二UE,其特征在于,所述基站为根据权利要求18-26任一项所述的基站,所述的第一UE为根据权利要求36-46任一项所述的第一UE。
PCT/CN2014/095994 2014-12-31 2014-12-31 通信方法和装置 WO2016106724A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480084394.1A CN107113788B (zh) 2014-12-31 2014-12-31 通信方法和装置
EP14909531.7A EP3229541B1 (en) 2014-12-31 2014-12-31 Communication method and apparatus
PCT/CN2014/095994 WO2016106724A1 (zh) 2014-12-31 2014-12-31 通信方法和装置
US15/637,343 US10368316B2 (en) 2014-12-31 2017-06-29 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/095994 WO2016106724A1 (zh) 2014-12-31 2014-12-31 通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/637,343 Continuation US10368316B2 (en) 2014-12-31 2017-06-29 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2016106724A1 true WO2016106724A1 (zh) 2016-07-07

Family

ID=56283996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095994 WO2016106724A1 (zh) 2014-12-31 2014-12-31 通信方法和装置

Country Status (4)

Country Link
US (1) US10368316B2 (zh)
EP (1) EP3229541B1 (zh)
CN (1) CN107113788B (zh)
WO (1) WO2016106724A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190174423A1 (en) 2016-08-05 2019-06-06 Intel Corporation Systems and methods for uplink transmission power control
CN108259149B (zh) * 2016-12-29 2023-05-05 华为技术有限公司 发送/接收参考信号的方法及终端设备、网络设备
EP3609253B1 (en) * 2017-05-06 2022-03-09 LG Electronics Inc. Method for s-tti operation of terminal in wireless communication system and terminal using said method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375531A (zh) * 2006-01-27 2009-02-25 三星电子株式会社 移动通信系统中的混合多址接入设备和方法
WO2012161080A1 (ja) * 2011-05-20 2012-11-29 株式会社エヌ・ティ・ティ・ドコモ 受信装置、送信装置及び無線通信方法
WO2013176042A1 (ja) * 2012-05-25 2013-11-28 シャープ株式会社 受信局装置、送信局装置、通信システム、受信方法、送信方法及びプログラム
US20140314006A1 (en) * 2013-04-19 2014-10-23 Samsung Electronics Co., Ltd. Method and apparatus for operating a non-orthogonal multiple access scheme in multiuser beamforming system
CN104158631A (zh) * 2014-08-27 2014-11-19 北京邮电大学 一种数据流的发射方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013074026A1 (en) * 2011-11-14 2013-05-23 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements in a wireless communication system
WO2013113144A1 (en) * 2012-01-30 2013-08-08 Telefonaktiebolaget L M Ericsson (Publ) Base station, user equipment, and methods therein in a communications system
GB2499222A (en) * 2012-02-08 2013-08-14 Nec Corp Generating a measurement report comprising information calculated from a power ratio of a non-zero power almost blank sub-frame
JP5894105B2 (ja) * 2013-04-04 2016-03-23 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
JP6313095B2 (ja) * 2014-04-01 2018-04-18 株式会社Nttドコモ 基地局
JP6296167B2 (ja) * 2014-11-06 2018-03-20 富士通株式会社 通信システムおよび通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375531A (zh) * 2006-01-27 2009-02-25 三星电子株式会社 移动通信系统中的混合多址接入设备和方法
WO2012161080A1 (ja) * 2011-05-20 2012-11-29 株式会社エヌ・ティ・ティ・ドコモ 受信装置、送信装置及び無線通信方法
WO2013176042A1 (ja) * 2012-05-25 2013-11-28 シャープ株式会社 受信局装置、送信局装置、通信システム、受信方法、送信方法及びプログラム
US20140314006A1 (en) * 2013-04-19 2014-10-23 Samsung Electronics Co., Ltd. Method and apparatus for operating a non-orthogonal multiple access scheme in multiuser beamforming system
CN104158631A (zh) * 2014-08-27 2014-11-19 北京邮电大学 一种数据流的发射方法及装置

Also Published As

Publication number Publication date
CN107113788A (zh) 2017-08-29
CN107113788B (zh) 2021-01-05
EP3229541A1 (en) 2017-10-11
EP3229541B1 (en) 2019-04-03
US20170303206A1 (en) 2017-10-19
EP3229541A4 (en) 2017-11-22
US10368316B2 (en) 2019-07-30

Similar Documents

Publication Publication Date Title
CN110291762B (zh) 减少无线通信系统中的干扰的系统和方法
WO2018059210A1 (zh) 一种用于数据传输的方法和装置
US20150365178A1 (en) System, method, and apparatus for signaling intefering cell information
EP3562082B1 (en) Resource indication method, resource acquisition method and related device
JP6197244B2 (ja) 同一チャネルセル干渉を処理するための方法、装置、及びシステム
WO2018171491A1 (zh) 无线通信的方法、网络设备和终端设备
US10708941B2 (en) Apparatus for acquiring and reporting power allocation
WO2018000929A1 (zh) 一种子帧配置方法及相关设备
JP6862346B2 (ja) Sc−fdmシンボルストリームのためのチャネル又は干渉推定
WO2016154991A1 (zh) 基于非正交传输的通信方法和设备
CN111245750B (zh) 频偏估计方法、装置及存储介质
US9392478B2 (en) Radio communication system, interference measurement method, radio base station apparatus, and user terminal
WO2018127071A1 (zh) 一种发送参考信号的方法和通信设备
WO2016065516A1 (zh) 一种自适应调制编码的方法及装置
JPWO2012144620A1 (ja) 受信機、データ受信方法、ならびにチャネル推定装置およびその方法
WO2016106724A1 (zh) 通信方法和装置
US20140073341A1 (en) Radio base station apparatus, mobile terminal apparatus, radio communication method and radio communication system
US10064197B2 (en) Network assisted interference suppression
JP6824153B2 (ja) Lteレシーバのための干渉推定
WO2016150148A1 (zh) 一种基站实现小区参考信号发射的方法、装置及基站
US20160227516A1 (en) Sparsity and continuity-based channel stitching techniques for adjacent transmissions
CN114450906A (zh) 用于自适应dmrs模式的网络接入节点和客户端设备
WO2018196657A1 (zh) 一种干扰消除方法、用户设备及网络设备
WO2016106700A1 (zh) 通信方法和装置
WO2014045755A1 (ja) 無線通信システム、ユーザ端末、無線基地局及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014909531

Country of ref document: EP