WO2016154991A1 - 基于非正交传输的通信方法和设备 - Google Patents

基于非正交传输的通信方法和设备 Download PDF

Info

Publication number
WO2016154991A1
WO2016154991A1 PCT/CN2015/075766 CN2015075766W WO2016154991A1 WO 2016154991 A1 WO2016154991 A1 WO 2016154991A1 CN 2015075766 W CN2015075766 W CN 2015075766W WO 2016154991 A1 WO2016154991 A1 WO 2016154991A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink control
user equipment
data signal
control information
rnti
Prior art date
Application number
PCT/CN2015/075766
Other languages
English (en)
French (fr)
Inventor
郭志恒
吴海
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15886961.0A priority Critical patent/EP3270647B1/en
Priority to PCT/CN2015/075766 priority patent/WO2016154991A1/zh
Priority to CN201580065167.9A priority patent/CN107005983B/zh
Publication of WO2016154991A1 publication Critical patent/WO2016154991A1/zh
Priority to US15/719,752 priority patent/US10609697B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a communication method and apparatus based on non-orthogonal transmission.
  • the downlink multiple access method usually adopts Orthogonal Frequency Division Multiplexing Access (OFDMA). )the way.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • the main feature of the orthogonal frequency division multiple access method is that different users use different time-frequency resources to ensure that the received signals between different users are free from interference, thereby achieving simple reception on the user side.
  • the utilization of time-frequency resources is low, resulting in a limitation of the overall transmission rate of the communication system.
  • the Non-orthogonal Multiplexing Access (NOMA) transmission method can transmit information of multiple users on a single Resource Element (RE). Compared to OFDMA, NOMA increases the overall transmission rate of the system.
  • NOMA transmission signals of a plurality of users are superimposed in the time-frequency domain, and accurate reception on the user side is ensured by assigning different powers to different users.
  • the cell edge user or the user far away from the base station treats the signal of the cell center user as interference, and achieves accurate demodulation.
  • the cell center user or the user closer to the base station needs to detect the signal of the cell edge user first, and then use the interference cancellation algorithm to finally achieve accurate demodulation of the own signal.
  • Embodiments of the present invention provide a communication method, device, and system based on non-orthogonal transmission to reduce signaling transmission overhead.
  • an embodiment of the present invention provides a communication method based on non-orthogonal transmission, including:
  • the first user equipment UE receives the first downlink control information sent by the base station, where the first downlink control information includes a downlink control parameter of the first UE and a wireless network temporary identifier RNTI of the second UE.
  • the first UE and the second UE belong to an associated user equipment group;
  • the first UE receives the second downlink control information that is sent by the base station, and the second downlink control information includes the downlink control parameter of the second UE.
  • the first UE receives the data signal of the associated user equipment group sent by the base station, where the data signal of the associated user equipment group includes the data signal of the first UE and the data signal of the second user equipment;
  • the first UE obtains the data signal of the first UE according to the index of the RNTI of the second UE, the downlink control parameter of the second UE, the data signal of the associated user equipment group, and the downlink control parameter of the first UE.
  • the first UE is configured according to an index of an RNTI of the second UE, a downlink control parameter of the second UE, a data signal of the associated user equipment group, and a downlink of the first UE.
  • Controlling parameters, obtaining data signals of the first UE including:
  • the first UE obtains the data signal of the first UE according to the data signal of the second UE, the downlink control parameter of the first UE, and the data signal of the associated user equipment group.
  • the first downlink control information further includes time-frequency location information of the second downlink control information, and the first UE receives the second Downlink control information, including:
  • the first UE receives the second downlink control information according to the time-frequency location information.
  • the first UE is configured according to an index of an RNTI of the second UE, a downlink control parameter of the second UE, and a data signal of the associated user equipment group, Obtaining the data signal of the second UE, including:
  • the first UE obtains the data signal of the second UE from the data signal of the associated user equipment group according to the RNTI of the second UE, the corresponding semi-static configuration parameter, and the downlink control parameter of the second UE.
  • the method before the first UE receives the first downlink control information that is sent by the base station, the method further includes:
  • the first UE receives a RNTI parameter comparison table of the second UE sent by the base station;
  • Determining, by the first UE, the data signal of the second UE according to the index of the RNTI of the second UE, the downlink control parameter of the second UE, and the data signal of the associated user equipment group including:
  • the first UE obtains the data signal of the second UE according to the RNTI of the second UE, the downlink control parameter of the second UE, and the data signal of the associated user equipment group.
  • the first downlink control information further includes an identity identifier of the first UE, where the identity identifier is used to indicate that the first UE is a cell center UE.
  • the first downlink control information further includes pairing information and/or power allocation ratio information.
  • the information included in the first downlink control information is encoded by means of joint coding.
  • an embodiment of the present invention provides a user equipment UE, including:
  • the communication unit is configured to receive the first downlink control information that is sent by the base station, where the first downlink control information includes a downlink control parameter of the user equipment and an index of the radio network temporary identifier RNTI of the second UE, where the user equipment is in the associated user equipment group.
  • the first UE, the associated user equipment group further includes the second UE;
  • the communication unit is further configured to receive second downlink control information that is sent by the base station, where the second downlink control information includes a downlink control parameter of the second UE.
  • the communication unit is further configured to receive a data signal of the associated user equipment group sent by the base station, where the data signal of the associated user equipment group includes the data signal of the first UE and the data signal of the second UE;
  • the processing unit is configured to obtain the data signal of the first UE according to the index of the RNTI of the second UE, the downlink control parameter of the second UE, the data signal of the associated user equipment group, and the downlink control parameter of the first UE.
  • the first downlink control information further includes time-frequency location information of the second downlink control information, where the communications unit is configured to receive, according to the time-frequency location information, Two downlink control information.
  • the processing unit is specifically configured to:
  • the data signal of the second UE is obtained from the data signal of the associated user equipment group.
  • the communication unit is further configured to: receive, by the base station, a RNTI parameter comparison table of the second UE;
  • the processing unit is specifically configured to determine, according to an index of the RNTI of the second UE and an RNTI parameter comparison table of the second UE, an RNTI of the second UE, where
  • the first downlink control information further includes an identity identifier of the first UE, where the identity identifier is used to indicate that the first UE is a cell center UE.
  • the information included in the first downlink control information is encoded by means of joint coding.
  • the processing unit is configured to: according to the index of the RNTI of the second UE, the downlink control parameter of the second UE, and the data signal of the associated user equipment group, the first UE
  • the downlink control parameter obtains the data signal of the near-end UE, including:
  • a processing unit configured to obtain, according to an index of an RNTI of the second UE, a downlink control parameter of the second UE, and a data signal of the associated user equipment group, a data signal of the second UE;
  • the processing unit is further configured to obtain the data signal of the first UE according to the data signal of the second UE, the downlink control parameter of the first UE, and the data signal of the associated user equipment group.
  • an embodiment of the present invention provides a communication method based on non-orthogonal transmission, including:
  • the base station sends the first downlink control information, where the first downlink control information includes a downlink control parameter of the first user equipment UE and an index of the wireless network temporary identifier RNTI of the second UE;
  • the base station sends the second downlink control information, where the second downlink control information includes the downlink control parameter of the second UE, where the first UE and the second UE belong to an associated user equipment group;
  • the base station sends a data signal of the associated user equipment group, and the data signal of the associated user equipment group includes the data of the first UE and the data of the second UE.
  • the first downlink control information further includes an identity identifier of the first UE, where the identity identifier is used to indicate that the first UE is a cell center UE.
  • the first downlink control information further includes time-frequency location information and/or power allocation ratio information of the second downlink control information.
  • the information included in the downlink control information is encoded by means of joint coding.
  • an embodiment of the present invention provides a base station, including:
  • a communication unit configured to send first downlink control information, where the first downlink control information includes a downlink control parameter of the first user equipment UE and an index of a radio network temporary identifier RNTI of the second UE;
  • the communication unit is further configured to: the second UE sends the second downlink control information, where the second downlink control information includes the downlink control parameter of the second UE, where the first UE and the second UE belong to an associated user equipment group;
  • the communication unit is further configured to send, to the first UE, a data signal of the associated user equipment group, where the data signal of the associated user equipment group includes data of the first UE and data of the second UE.
  • the first downlink control information further includes an identity identifier of the first UE, where the identity identifier is used to indicate that the first UE is a cell center UE.
  • the downlink control information further includes pairing information and/or power allocation ratio information.
  • the information included in the downlink control information is encoded by means of joint coding.
  • an embodiment of the present invention provides a communication method based on non-orthogonal transmission, including:
  • the first user equipment UE receives downlink control information sent by the base station, where the downlink control information includes a downlink control parameter of the first UE and a downlink control parameter of the second UE, where the first UE and the second UE belong to an associated user equipment group;
  • the first UE receives the data signal of the associated user equipment group sent by the base station, where the data signal of the associated user equipment group includes the data signal of the first UE and the data signal of the second UE;
  • the first UE obtains the data signal of the first UE according to the preset radio network temporary identifier RNTI of the second UE, the downlink control parameter of the second UE, the data signal of the associated user equipment group, and the downlink control parameter of the first UE.
  • the first UE is configured according to the preset radio network temporary identifier RNTI of the second UE, the downlink control parameter of the second UE, the data signal of the associated user equipment group, and The downlink control parameter of the first UE obtains the data signal of the first UE, including:
  • the first UE obtains the data signal of the first UE according to the downlink control parameter of the first UE, the data signal of the second UE, and the data signal of the associated user equipment group.
  • the downlink control information includes an identity identifier of the first UE, where the identity identifier is used to indicate that the first UE is a cell center UE.
  • the downlink control information further includes pairing information and/or power allocation ratio information.
  • the information included in the downlink control information is encoded by means of joint coding.
  • an embodiment of the present invention provides a user equipment, including:
  • a communication unit configured to receive downlink control information sent by the base station, where the downlink control information includes a downlink control parameter of the user equipment and a downlink control parameter of the second UE, where the user equipment is the first UE in the associated user equipment group, and the associated user equipment group is further Include the second UE;
  • the communication unit is further configured to receive a data signal of the associated user equipment group sent by the base station, where the data signal of the associated user equipment group includes the data signal of the first UE and the data signal of the second UE;
  • a processing unit configured to obtain, according to the preset radio network temporary identifier RNTI of the second UE, the downlink control parameter of the second UE, the data signal of the associated user equipment group, and the downlink control parameter of the first UE, to obtain the data signal of the first UE .
  • the processing unit is specifically configured to:
  • the data signal of the first UE is obtained according to the downlink control parameter of the user equipment, the data signal of the second UE, and the data signal of the associated user equipment group.
  • the downlink control information includes an identity identifier of the first UE, where the identity identifier is used to indicate that the first UE is a cell center UE.
  • the downlink control information further includes pairing information and/or power allocation ratio information.
  • the information included in the downlink control information is encoded by means of joint coding.
  • an embodiment of the present invention provides a communication method based on non-orthogonal transmission, including:
  • the base station sends downlink control information, where the downlink control information includes a downlink control parameter of the first user equipment UE and a downlink control parameter of the second UE, where the first UE and the second UE belong to an associated user.
  • Equipment group includes a downlink control parameter of the first user equipment UE and a downlink control parameter of the second UE, where the first UE and the second UE belong to an associated user.
  • the base station sends the data signal of the associated user equipment group, and the data signal of the second UE in the data signal of the associated user equipment group is scrambled by using the preset wireless network temporary identifier RNTI of the second UE.
  • the downlink control information further includes an identity identifier of the first UE, where the identity identifier is used to indicate that the first UE is a cell center UE.
  • the downlink control information further includes pairing information and/or power allocation ratio information.
  • the information included in the downlink control information is encoded by means of joint coding.
  • the radio network temporary identifier RNTI of the preset second UE is a group/public RNTI.
  • an embodiment of the present invention provides a base station, including:
  • a communication unit configured to send downlink control information to the first user equipment UE, where the downlink control information includes a downlink control parameter of the first UE and a downlink control parameter of the second UE, where the first UE and the second UE belong to an associated user equipment group;
  • the communication unit is further configured to associate the data signal of the user equipment group with the first UE, and the data signal of the second UE in the data signal of the associated user equipment group is scrambled by using the preset wireless network temporary identifier RNTI of the second UE.
  • the downlink control information further includes an identity identifier of the first UE, where the identity identifier is used to indicate that the first UE is a cell center UE.
  • the downlink control information further includes pairing information and/or power allocation ratio information.
  • the information included in the downlink control information is encoded by means of joint coding.
  • the radio network temporary identifier RNTI of the preset second UE is a group/public RNTI.
  • an embodiment of the present invention provides a communication system, where the system includes the base station and the UE in the foregoing aspect. Moreover, the present invention also provides a computer storage medium comprising a program for performing the above aspects.
  • the base station sends the index of the RNTI of the second user equipment and the downlink control parameter to the first user equipment, without sending a space occupying a large space. RNTI.
  • the first user equipment can recover its own signal from the received superimposed signal according to the index of the RNTI and the downlink control parameter.
  • the communication method provided by the embodiment of the present invention can reduce signaling overhead.
  • FIG. 1 is a structural diagram of a communication system applied to a communication method based on non-orthogonal transmission according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a non-orthogonal transmission based communication method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a communication method based on non-orthogonal transmission according to another embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a device based on non-orthogonal transmission according to another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • a user equipment may be referred to as a terminal (Mobile), a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), etc.
  • the user equipment may be A Radio Access Network (RAN) communicates with one or more core networks.
  • the user equipment may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc., for example, a user equipment. It can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice and/or data with the wireless access network.
  • a user equipment or a UE For convenience of description, it is collectively referred to herein as a user equipment or a UE.
  • the base station may be a base station (Base Transceiver Station, BTS) in GSM or CDMA, may be a base station (NodeB, NB) in WCDMA, or may be an evolved type in LTE.
  • BTS Base Transceiver Station
  • NodeB Node B
  • NB base station
  • the base station (Evolved Node B, eNB or e-NodeB) may also be a base station in other evolved networks, and the present invention is not limited thereto. However, for convenience of description, this document is collectively referred to as a base station or a BS.
  • base station 101 can implement communication with user equipment (102a, 102b) based on NOMA technology.
  • the user equipment 102a is a cell-center UE
  • the user equipment 102b is a cell-edge UE.
  • the base station may determine whether the user equipment is a cell-center UE or a cell-edge UE according to information such as a signal to noise ratio, a path loss, or a geographical location. It can be understood that, for a user equipment, it can be used as a cell-center UE or a cell-edge UE due to its mobility.
  • the base station can use lower transmit power; for cell-edge UEs, the base station uses higher transmit power.
  • This embodiment of the present invention does not limit this.
  • the cell-center UE is a relative concept to the cell-edge UE, rather than a geographically absolute concept. To avoid ambiguity, the following describes a cell-center UE (also referred to as a near-end user equipment) and a cell-edge UE (also referred to as a remote user equipment) as an example.
  • the user equipment 102a first user equipment
  • the user equipment 102b second user equipment
  • a cell-center UE such as UE 102a
  • a cell-edge UE such as UE 102b
  • the base station 101 can superimpose the transmission signals of the user equipment 102a and the user equipment 102b on the same or partially overlapping time-frequency resources for transmission. That is, the signal sent by the base station 101 includes the signal of the user equipment 102a and the signal of the user equipment 102b, and the user equipment 102a and the user equipment 102b The signal power is different.
  • the associated device group includes at least one near-end UE and one far-end UE.
  • the following description will be made by taking pairing by two user equipments as an example.
  • the signal power of the user equipment 102a is small, and the user equipment 102b can directly perform accurate demodulation of its own signal according to the normal procedure.
  • the user equipment 102a needs to demodulate the signal of the user equipment 102b according to the flow of the user equipment 102b. Then, the signal of the user equipment 102b is cancelled, and then the signal is demodulated to obtain its own signal.
  • the user equipment 102a needs to acquire some parameters, such as a Radio Network Temporary Identity (RNTI) and a downlink control parameter of the user equipment 102b.
  • RNTI Radio Network Temporary Identity
  • the downlink control parameter may include one or more of the following parameters: Modulation and Coding Scheme (MCS), transmission mode, Redundancy Version (RV), and the like.
  • the embodiment of the present invention provides a communication method based on non-orthogonal transmission, which can reduce signaling overhead in the process of transmitting the RNTI and downlink control parameters of the user equipment 102b.
  • the embodiments of the present invention will be described in more detail below with reference to specific examples.
  • the first UE and the second UE are two UEs in the associated user equipment group.
  • the first UE is a near-end UE
  • the second UE is a remote UE.
  • the first UE is used as the near-end UE and the second UE is used as the remote UE. It should be understood that the embodiment of the present invention does not limit this.
  • the base station sends first downlink control information to the first UE (near-end UE).
  • the first downlink control information includes a downlink control parameter of the first UE.
  • the first downlink control information may further include an identifier of a radio network temporary identifier RNTI of the second UE or an RNTI of the second UE.
  • the first UE and the second UE belong to the same associated user equipment group. For example, the near-end UE is associated with the remote UE to form an associated user equipment group, and then the transmission signal of the associated user equipment group is superimposed on the same or partially overlapping time-frequency resources for transmission.
  • the downlink control parameters include parameters required to demodulate data.
  • the types of parameters may vary in different scenarios.
  • the downlink control parameters may include an MCS, a transmission mode, an RV, and the like, which are not limited in this embodiment of the present invention.
  • the first UE receives the first downlink control information.
  • the near-end UE detects that the downlink control information is sent from the base station, for example, the downlink control information can be obtained by means of blind detection.
  • the UE can confirm whether it is a near-end UE according to the received downlink control information. For example, the UE can determine whether it is a near-end UE by using the format of the downlink control information or the information included.
  • the first downlink control information may include identity identification information. The identity information indicates whether the UE that receives the first downlink control information is a near-end UE.
  • the UE determines that it is a near-end UE. It should be understood that the examples are only intended to assist those skilled in the art to understand the embodiments of the invention, and not to limit the scope of the embodiments of the invention.
  • the base station sends second downlink control information to the second UE (the remote UE).
  • the second downlink control information includes a downlink control parameter of the remote UE.
  • the second UE receives the second downlink control information sent by the base station.
  • the near-end UE receives the second downlink control information sent by the base station. For example, the near-end UE obtains the second downlink control information that the base station sends to the remote UE by using blind detection or other manners.
  • the UE may receive the downlink control parameter of the second UE by means of blind detection for subsequent serial interference cancellation.
  • the UE may also learn the location of the downlink control parameter of the second UE by using the pre-configured information, and then receive the second downlink control information on the corresponding time-frequency resource.
  • the base station transmits data signals associated with the group of user equipment.
  • the data signals of the associated UE group include a data signal of a near-end UE and a data signal of a remote UE.
  • the base station combines the data signal of the remote UE and the data signal of the near-end UE into one signal, and sends the signal to the near-end UE and the far-end UE in the associated UE group.
  • the near-end UE and the remote UE respectively receive data signals of the associated UE group sent by the base station.
  • the near-end UE obtains the near-end UE downlink control parameter according to the index of the RNTI of the remote UE, the downlink control parameter of the remote UE, and the data signal of the associated UE group.
  • the data signal of the UE is the data signal of the UE.
  • the near-end UE may obtain the data signal of the remote UE according to the index of the RNTI of the remote UE, the downlink control parameter of the remote UE, and the data signal of the associated UE group, and then according to the data of the remote UE.
  • the near-end UE receives a data signal of the associated UE group from a base station, the data signal including a signal of the far-end UE and a signal of the near-end UE (a signal of itself).
  • the near-end UE demodulates the data signal of the remote UE from the received data signal according to the index of the RNTI of the remote UE and the downlink control parameter of the remote UE. Then, the near-end UE obtains the data signal of the near-end UE according to the data signal of the remote UE, the downlink control parameter of the near-end UE, and the data signal of the associated UE group.
  • the near-end UE cancels the data signal of the far-end UE in the data signal of the associated user equipment group. Then, the remaining signals are demodulated according to the downlink control parameters, thereby recovering their original data signals (the original data signals of the near-end UE).
  • the remote UE demodulates its own data signal from the data signal of the associated UE group according to the second downlink control information.
  • the power of the data signal of the far end UE is much larger than the power of the data signal of the near end UE.
  • the remote UE can use the data signal of the near-end UE as an interference signal to demodulate its own data signal directly from the overall signal of the associated user equipment group.
  • the base station sends the index of the RNTI of the second UE and the downlink control parameter to the first UE, and does not need to send the RNTI occupying a large space.
  • the first UE can recover its own signal from the received superimposed signal according to the index of the RNTI and the downlink control parameter.
  • the communication method provided by the embodiment of the present invention can reduce signaling transmission overhead.
  • the first downlink control information may further include time-frequency location information of the second downlink control information.
  • the first UE when receiving the second downlink control information, the first UE may receive the second downlink control information according to the time-frequency location information.
  • the first UE blindly detects and receives its own downlink control information (first downlink control information). Then, the time-frequency location information of the second downlink control information is obtained, and the downlink control information (second downlink control information) of the second UE is detected and received on the time-frequency resource corresponding to the location information. In this way, when receiving the second downlink control information, the first UE does not need to perform blind detection or perform a small amount of blind detection, thereby reducing the detection complexity.
  • the first UE first determines the RNTI of the second UE and the corresponding semi-static configuration parameter from the pre-configured parameter comparison table according to the index of the RNTI of the second UE. Then, the data signal of the second UE is obtained from the data signal of the associated UE group according to the RNTI of the second UE, the corresponding semi-static configuration parameter, and the downlink control parameter of the second UE.
  • the base station configures a parameter comparison table of the second UE on the first UE side in advance by using Radio Resource Control (RRC) signaling.
  • the parameter comparison table may include an RNTI value corresponding to an index of the RNTI, and a corresponding semi-static configuration parameter.
  • the semi-static configuration parameters include user-specific (UE-specific) semi-static configuration parameters such as transmission mode and single-user power allocation parameters.
  • the RNTI parameter comparison table of the second UE sent by the base station is received before receiving the first downlink control information sent by the base station.
  • the RNTI of the second UE is determined according to the index of the RNTI of the second UE and the RNTI parameter comparison table of the second UE. Then, the data signal of the second UE is obtained according to the RNTI of the second UE, the downlink control parameter of the second UE, and the data signal of the associated UE group.
  • the first downlink control information further includes an identity identifier of the first UE, where the identity identifier is used to indicate that the first UE is a cell center UE.
  • the first downlink control information further includes pairing information and/or power allocation ratio information.
  • the information included in the first downlink control information is encoded by means of joint coding.
  • the index table length of the RRC semi-static parameters such as RNTI is 10, and the length of the position information is 22.
  • FIG. 3 is a schematic flowchart of a communication method based on non-orthogonal transmission according to another embodiment of the present invention. This method can be applied to the network scenario shown in FIG. Similar to FIG. 2, the first UE and the second UE are two UEs in an associated user equipment group (associated UE group). For the convenience of description, the description is made by taking the first UE as the near-end UE and the second UE as the remote UE. It can be understood that the present invention is not limited thereto.
  • the base station sends first downlink control information to the first UE (near-end UE).
  • the near-end UE receives the first downlink control information sent by the base station.
  • the first downlink control information includes a lower end UE The row control parameters and the downlink control parameters of the far end UE.
  • the near-end UE and the remote UE belong to an associated user equipment group.
  • the near-end UE is paired with the far-end UE to form an associated user equipment group.
  • the transmission signals of the associated user equipment group are then superimposed on the same or partially overlapping time-frequency resources for transmission.
  • the downlink control parameters include the parameters required to demodulate the data, and the types of parameters may be different in different scenarios.
  • the downlink control parameters may include an MCS, a transmission mode, an RV, and the like, which are not limited in this embodiment of the present invention.
  • the UE may determine whether it is the first UE according to the format of the received downlink control information or the information included. For example, the identifier information is added to the first downlink control information to identify whether it is a near-end user, or when the index of the RNTI is included in the first downlink control information, it is determined to be the first UE. It should be understood that the examples are only intended to assist those skilled in the art to understand the embodiments of the invention, and not to limit the scope of the embodiments of the invention.
  • the base station sends second downlink control information to the second UE (the remote UE).
  • the remote UE receives the second downlink control information sent by the base station.
  • the second downlink control information includes a downlink control parameter of the remote UE.
  • the base station transmits data signals associated with the group of user equipment.
  • the data signal of the associated UE includes a data signal of a near-end UE and a data signal of a remote UE.
  • the base station combines the data signal of the remote UE and the data signal of the near-end UE into one signal, and sends the signal to the near-end UE and the far-end UE in the associated UE group.
  • the near-end UE and the remote UE respectively receive data signals of the associated UE group.
  • the near-end UE obtains the data of the near-end UE according to the preset radio network temporary identifier RNTI of the remote UE, the downlink control parameter of the remote UE, and the data signal of the associated UE group, and the downlink control parameter of the near-end UE. signal.
  • the near-end UE determines the data signal of the second UE according to the preset radio network temporary identifier RNTI of the remote UE, the downlink control parameter of the remote UE, and the data signal of the associated UE group. Then, the data signal of the near-end UE is obtained according to the downlink control parameter of the near-end UE, the data signal of the remote UE, and the data signal of the associated user equipment group.
  • the near-end UE receives a data signal from a base station, the data signal including a signal of the far end UE and a signal of the near end UE (self signal). Then, determining, according to the preset RNTI of the remote UE, the corresponding transmission mode, and the single-user power allocation parameter and the downlink control parameter, determining the data signal of the remote UE from the received data signal. Then, the remote UE is eliminated in the data signal of the associated UE group Data signal. After the data signal of the remote UE is removed, the UE demodulates the remaining signal according to the downlink control parameter, thereby recovering its original data signal (the original data signal of the near-end UE).
  • the RNTI of the preset remote UE may be a group/common RNTI, that is, other remote UEs paired with the near-end UE are applicable to the RNTI.
  • the remote UE demodulates its own data signal from the data signal of the associated UE group according to the second downlink control information.
  • the base station pre-configures the RNTI of the second UE on the first UE side, and sends the downlink control parameter of the second UE to the first UE, without sending the RNTI occupying a large space.
  • the first UE can recover its own signal from the received superposed signal according to the pre-configured RNTI and the received downlink control parameters.
  • the communication method provided by the embodiment of the present invention can reduce signaling overhead.
  • the data signal of the first UE when determining the data signal of the first UE from the received data signal, first receiving the data signal according to the preset RNTI of the second UE and the downlink control parameter of the second UE. The data signal of the second UE is determined. Then, the data signal of the second UE is cancelled from the received data signal, and the data signal of the first UE is obtained.
  • the first downlink control information may further include an identifier of the first UE, to indicate that the first UE is a cell center UE.
  • the first downlink control information may further include power indication information and/or pairing indication information.
  • the information included in the first downlink control information may be encoded in a joint coding manner to further reduce signaling overhead.
  • Table 1 shows the format of Downlink Control Information (DCI).
  • the first UE may use the downlink control information format shown in Table 1.
  • the A bit can be used to indicate different Transmission Modes (TM), for example, 2 bits are used to indicate different transmission modes.
  • TM Transmission Mode
  • a power indication of B bits eg, 2 or 3 bits
  • the C eg, 3 bit
  • D bit indicates the physical downlink control channel of the paired remote UE (Physical Downlink Control Channel, PDCCH) location.
  • PDCCH Physical Downlink Control Channel
  • 5 bits are used to indicate the PDCCH location of the paired remote UE, assuming 22 locations, then when the value represented by the 5 bits is greater than 21 and the power indication is 1 (ie, the power ratio of the near-end UE is 100%), Indicates that there is no associated UE group, that is, the UE does not have a corresponding remote UE. When the value represented by the 5 bits is less than 21 and the power indication ⁇ 1, it indicates that the UE is a near-end UE.
  • the power allocation scheme of the UE (first UE) and the second UE notifies the UE of different power user allocation values by 2 or 3 bits.
  • the first UE may also obtain a parameter comparison table in advance through RRC or MAC signaling.
  • the corresponding RNTI value can be determined according to the RNTI index in the DCI.
  • Table 1 in Table 3 is basically the same. To avoid repetition, only the differences between Table 3 and Table 1 are described here.
  • the 5 bits in addition to indicating the PDCCH location of the paired remote UE, may be used to combine the value of the value in the power indication, implicitly indicating the identity of the current user (ie, unpaired or near-end UE).
  • the bit indicating the PDCCH location of the far end UE no longer has this effect.
  • the value of the V bit is X
  • the current UE has no paired user
  • the value of the V bit is Y
  • the current UE is the remote UE.
  • X means no paired users
  • Y means a remote UE.
  • X, Y, and Z are predefined one or a set of values.
  • each value can represent a power distribution mode and a ratio.
  • Z is a set of values, each value can represent a power ratio mode and an RNTI index.
  • the first UE may also adopt the DCI format shown in Table 3.
  • X bits are used for power indication or associated user settings. Prepare group instructions. For example, use 3 bits for power indication or with or without associated user equipment group indication.
  • the power indicator bit may be used to implicitly indicate whether there is an associated user equipment group. When the power indication bit is 1, it indicates that there is an associated user equipment group. Conversely, when the power indication is 1, it means that there is no associated user equipment group.
  • the DCI may also include bits indicating the MCS and RV versions of the far end UE.
  • the first UE can also use the DCI format shown in Table 4. Specifically, the user may determine whether the user is a paired far-end user or a paired near-user or an unrelated user equipment group through a power indication, a special combination of the far-user MCS and the RV.
  • MCS1 is a predefined MCS value.
  • the possible MCS may have a certain range.
  • the system can limit the MCS used by the near and far users in the matching according to the simulation or real-time calculation, so the MCS can be reduced.
  • the near user When paired, the near user obtains the power, MCS, and RV demodulation information of the far user through its DCI, and the scrambling code used by the PDSCH by the far user when pairing is generated is a group/common RNTI.
  • This group/common RNTI (group/common RNTI) is known to the near UE.
  • the system is informed or broadcast to the near UE and the far UE by pre-definition or by system signaling.
  • the CRC scrambling of the PDCCH of the far UE still adopts the RNTI of the far UE, not the RNTI (group/common RNTI) known by the near UE. Therefore, the system allocates two RNTIs for each possible paired UE, one for the PDCCH. Demodulation of the PDSCH with a single user, and another RNTI (Group/Common RNTI) for PDSCH demodulation in the case of pairing.
  • the second UE can use the DCI format shown in Table 6.
  • M bits indicate different transmission modes (TM), for example, 2 bits are used to indicate different transmission modes.
  • W bits (eg, 3 bits) are used for power indication.
  • the W bits may be omitted, that is, the number of bits used by the power indication may be omitted. That is to say, when the base station generates the downlink control information according to the method shown in FIG. 2 or FIG. 3, the W bits in the downlink control information can be omitted, thereby reducing the signaling overhead.
  • each network element such as a UE, a base station, etc.
  • each network element such as a UE, a base station, etc.
  • each network element includes modules corresponding to each function.
  • Those skilled in the art should appreciate that the elements and algorithm steps of the various examples described in connection with the embodiments disclosed herein can be implemented in a combination of hardware and computer software. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the user equipment UE 40 includes a communication unit 401 and a processing unit 402. It should be understood that user equipment 40 may act as the first UE in the associated user equipment group.
  • the associated user group further includes at least a second UE.
  • the first UE is a near-end UE
  • the second UE is a remote UE, but the invention is not limited thereto.
  • the following description is convenient for the description, and the near-end UE and the far-end UE are described as an example.
  • the communication unit 401 is configured to support the UE to communicate with other network entities, for example, to support communication with the base station.
  • the communication unit is configured to receive downlink control information (parts 201 and 203) and data signals (part 204) transmitted by the base station.
  • the communication unit is configured to receive first downlink control information (part 301) and data signal (part 303) sent by the base station.
  • the processing unit is configured to support the UE to perform processing performed by the UE in the foregoing embodiment.
  • the processing unit is configured to support, when the UE is a near-end UE, an index of the RNTI of the remote UE, a downlink control parameter of the remote UE, and a data signal of the associated UE group.
  • the control parameter of the near-end UE obtains the data signal of the near-end UE.
  • the processing unit is further configured to: when the UE is a remote UE, demodulate and obtain a data signal of the remote UE.
  • the processing unit is configured to support an action performed by the UE to perform the UE in the embodiment involved in FIG. For example, it is used in step 305 or step 306 described in FIG.
  • FIG. 5 is a schematic block diagram of a base station for performing the method of the embodiment shown in FIG. 2 according to an embodiment of the present invention.
  • the base station 50 includes a communication unit 501 and a processing unit 502.
  • the communication unit 501 is configured to send first downlink control information, where the first downlink control information includes a downlink control parameter of the first UE and an index of the radio network temporary identifier RNTI of the second UE.
  • the first UE and the second UE belong to an associated user equipment group.
  • the first UE is a near-end UE, and the second UE is a remote UE.
  • the following description is convenient for the description, and the near-end UE and the far-end UE are described as an example.
  • processing unit 502 associates the near-end UE with the remote UE to form an associated user equipment group. Then, the transmission signals of the associated user equipment group are superimposed on the same or partially overlapping time-frequency resources for transmission.
  • the near-end UE can detect and receive the first downlink control information by means of blind detection.
  • the downlink control parameters include the parameters required to demodulate the data, and the types of parameters may be different in different scenarios. Specifically, the downlink control parameters may include an MCS, a transmission mode, an RV, and the like, which are not limited in this embodiment of the present invention.
  • the UE may determine whether it is a near-end UE according to the format of the received downlink control information or the information included.
  • the first downlink control information may include the identity identification information to identify whether the UE that receives the first downlink control information is a near-end UE, or when the first downlink control information includes an index of the RNTI or the RNTI.
  • the UE receiving the first downlink control information determines that it is a near-end UE. It should be understood that these examples are only intended to assist in the art. A person skilled in the art can better understand the embodiments of the present invention and not limit the scope of the embodiments of the present invention.
  • the communication unit 501 is further configured to send the second downlink control information.
  • the second downlink control information includes a downlink control parameter of the second UE.
  • the near-end UE may receive the downlink control parameter of the remote UE by means of blind detection for subsequent serial interference cancellation.
  • the UE may also learn the location of the downlink control parameter of the remote UE by using the pre-configured information, and then receive the second downlink control information on the corresponding time-frequency resource.
  • the communication unit 501 is further configured to send a data signal of the associated user equipment group, where the data signal of the associated user equipment group includes data of the near-end UE and data of the remote UE.
  • the base station combines the data signal of the remote UE and the data signal of the near-end UE into one signal, and sends the signal to the near-end UE and the remote UE in the associated user equipment group.
  • the base station sends the index of the RNTI of the second UE and the downlink control parameter to the first UE, and does not need to send the RNTI occupying a large space.
  • the first UE can recover its own signal from the received superimposed signal according to the index of the RNTI and the downlink control parameter.
  • the communication method provided by the embodiment of the present invention can reduce signaling overhead.
  • the first downlink control information further includes an identity identifier of the first UE, where the identity identifier is used to indicate that the first UE is a cell center UE.
  • the first downlink control information further includes time-frequency location information and/or power allocation ratio information of the second downlink control information.
  • the information included in the first downlink control information is encoded by means of joint coding.
  • the index table length of the RRC semi-static parameters such as RNTI is 10, and the length of the position information is 22.
  • the embodiment of the invention further provides another user equipment for implementing a communication method based on non-orthogonal transmission.
  • a schematic block diagram of the user equipment can refer to FIG. 4. The function of the user equipment will be described below with reference to FIG.
  • the communication unit 401 is configured to receive downlink control information sent by the base station.
  • Downlink control information includes The downlink control parameter of the user equipment 40 and the downlink control parameter of the second UE.
  • the user equipment is the first UE in the associated user equipment group, and the associated user equipment group further includes the second UE.
  • the first UE is a near-end UE, and the second UE is a remote UE. The following description is convenient for the description, and the near-end UE and the far-end UE are described as an example.
  • the near-end UE is paired with the far-end UE to form an associated UE group.
  • the transmission signals of the associated user equipment group are then superimposed on the same or partially overlapping time-frequency resources for transmission.
  • the downlink control parameters include the parameters required to demodulate the data, and the types of parameters may be different in different scenarios.
  • the downlink control parameters may include an MCS, a transmission mode, an RV, and the like, which are not limited in this embodiment of the present invention.
  • the UE may determine whether it is the first UE according to the format of the received downlink control information or the information included. For example, the identifier information is added to the first downlink control information to identify whether it is a near-end user, or when the index of the RNTI is included in the first downlink control information, it is determined to be the first UE. It should be understood that the examples are only intended to assist those skilled in the art to understand the embodiments of the invention, and not to limit the scope of the embodiments of the invention.
  • the communication unit 401 is further configured to receive a data signal of the associated user equipment group sent by the base station.
  • the data signal of the associated user equipment group includes the data signal of the user equipment 40 and the data signal of the remote UE.
  • the base station combines the data signal of the remote UE and the data signal of the near-end UE into one signal, and sends the signal to the near-end UE and the remote UE in the associated user equipment group.
  • the processing unit 402 is configured to obtain a data signal of the remote UE according to the preset radio network temporary identifier RNTI of the remote UE, the downlink control parameter of the remote UE, and the data signal of the associated UE group.
  • the UE receives a data signal from a base station, the data signal including the signal of the far end UE and the signal of the near end UE (the signal of itself). Then, determining, according to the preset RNTI of the remote UE, the corresponding transmission mode, and the single-user power allocation parameter and the downlink control parameter, determining the data signal of the remote UE from the received data signal.
  • the processing unit 402 is further configured to obtain, according to the downlink control parameter of the communications device, the data signal of the remote UE, and the data signal of the associated user equipment group, the data signal of the communications device.
  • the data signal of the far end UE is eliminated in the data signal of the associated user equipment group.
  • the UE demodulates the remaining signal according to the downlink control parameter, thereby recovering its original data signal (the original data signal of the near-end UE).
  • the base station pre-configures the second on the first UE side.
  • the RNTI of the UE sends the downlink control parameter of the second UE to the first UE without sending an RNTI occupying a large space.
  • the first UE can recover its own signal from the received superposed signal according to the pre-configured RNTI and the received downlink control parameters.
  • the communication method provided by the embodiment of the present invention can reduce signaling overhead.
  • FIG. 5 Another embodiment of the present invention provides a base station for implementing a communication method based on non-orthogonal transmission.
  • a schematic block diagram of the user equipment can refer to FIG. 5. The function of the base station will be described below with reference to FIG.
  • the communication unit 501 is configured to send downlink control information.
  • the downlink control information includes a downlink control parameter of the first UE and a downlink control parameter of the second UE.
  • the first UE and the second UE belong to one associated UE group.
  • the first UE is a near-end UE, and the second UE is a remote UE.
  • the following description is convenient for the description, and the near-end UE and the far-end UE are described as an example.
  • processing unit 502 pairs the near-end UE with the remote two UEs to form an associated user equipment group. Then, the transmission signals of the associated user equipment group are superimposed on the same or partially overlapping time-frequency resources for transmission.
  • the downlink control parameters include the parameters required to demodulate the data, and the types of parameters may be different in different scenarios.
  • the downlink control parameters may include an MCS, a transmission mode, an RV, and the like, which are not limited in this embodiment of the present invention.
  • the UE may determine whether it is the first UE according to the format of the received downlink control information or the information included. For example, the identifier information is added to the first downlink control information to identify whether it is a near-end user, or when the index of the RNTI is included in the first downlink control information, it is determined to be the first UE. It should be understood that the examples are only intended to assist those skilled in the art to understand the embodiments of the invention, and not to limit the scope of the embodiments of the invention.
  • the communication unit 501 is further configured to send a data signal of the associated user equipment group.
  • the data signal of the remote UE in the data signal of the associated user equipment group is scrambled using the preset radio network temporary identifier RNTI of the remote UE.
  • the base station pre-configures the RNTI of the second UE on the first UE side, and sends the downlink control parameter of the second UE to the first UE, without sending the RNTI occupying a large space.
  • the first UE can recover its own signal from the received superposed signal according to the pre-configured RNTI and the received downlink control parameters.
  • the communication method provided by the embodiment of the present invention can reduce signaling overhead.
  • the downlink control information further includes an identifier of the first UE, where The identity identifier is used to indicate that the first UE is a cell center UE.
  • the downlink control information further includes pairing information and/or power allocation ratio information.
  • the information included in the downlink control information is encoded by means of joint coding.
  • the embodiment of the invention further provides a communication system based on a communication method based on non-orthogonal transmission, the communication system comprising the user equipment and the base station as described above.
  • FIG. 6 is a schematic block diagram of a device based on non-orthogonal transmission according to another embodiment of the present invention.
  • the device 60 of FIG. 6 can be used to implement the steps and methods in the above method embodiments.
  • device 60 includes an antenna 601, a transmitter 602, a receiver 603, a processor 604, and a memory 605.
  • Processor 604 controls the operation of device 60 and can be used to process signals.
  • Memory 605 can include read only memory and random access memory and provides instructions and data to processor 604.
  • Transmitter 602 and receiver 603 can be coupled to antenna 601.
  • the various components of device 60 are coupled together by a bus system 606, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 606 in the figure.
  • the device 60 may be the user equipment shown in FIG. 4 or the base station shown in FIG. 5.
  • the memory 605 can store programs or instructions to perform the functions of the user equipment shown in FIG. 4, and is not repeated here to avoid repetition.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于非正交传输的通信方法和设备。该方法包括:第一用户设备UE接收基站发送的第一下行控制信息,第一下行控制信息包括第一UE的下行控制参数和第二UE的无线网络临时标识RNTI的索引;第一UE接收基站发送的第二下行控制信息,第二下行控制信息包括第二UE的下行控制参数;第一UE接收基站发送的关联用户设备组的数据信号;第一UE根据第二UE的RNTI的索引、第二UE的下行控制参数、关联用户设备组的数据信号和第一UE的下行控制参数,获得第一UE的数据信号。本发明实施例能够降低信令开销。

Description

基于非正交传输的通信方法和设备 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种基于非正交传输的通信方法和设备。
背景技术
在长期演进(Long Term Evolution,LTE)/长期演进高级(Long Term Evolution Advanced,LTE-A)通信系统中,下行多址接入方式通常采用正交频分多址(Orthogonal Frequency Division Multiplexing Access,OFDMA)方式。正交频分多址方式的主要特点是不同用户使用不同的时频资源,确保不同用户之间的接收信号无干扰,进而实现用户侧的简单接收。然而,在使用正交频分多址的方式进行通信时,时频资源的利用率较低,导致通信系统的整体传输速率受到了限制。
非正交多址(Non-orthogonal Multiplexing Access,NOMA)的传输方式能够在单个资源单元(Resource Element,RE)上传输多个用户的信息。与OFDMA相比,NOMA提升了系统的整体传输速率。在NOMA技术中,多个用户的传输信号在时频域上是叠加的,通过给不同的用户分配不同的功率来确保用户侧的准确接收。在接收侧,小区边缘用户或距离基站较远用户将小区中心用户的信号当作干扰,实现准确解调。小区中心用户或距离基站较近用户则需要先检测出小区边缘用户的信号,然后使用干扰消除算法,最后实现自身信号的准确解调。
然而,采用基于NOMA的通信技术,需要传输的下行控制参数较多,信令开销较大。
发明内容
本发明实施例提供了一种基于非正交传输的通信方法,设备和系统,以降低信令传输开销。
第一方面,本发明实施例提供了一种基于非正交传输的通信方法,包括:
第一用户设备UE接收基站发送的第一下行控制信息,第一下行控制信息包括第一UE的下行控制参数和第二UE的无线网络临时标识RNTI的索 引,第一UE与第二UE属于一个关联用户设备组;
第一UE接收基站发送的第二下行控制信息,第二下行控制信息包括第二UE的下行控制参数;
第一UE接收基站发送的关联用户设备组的数据信号,其中,关联用户设备组的数据信号包括第一UE的数据信号和第二用户设备的数据信号;
第一UE根据第二UE的RNTI的索引、第二UE的下行控制参数、关联用户设备组的数据信号和第一UE的下行控制参数,获得第一UE的数据信号。
结合第一方面,在第一方面的第一种实现方式中,第一UE根据第二UE的RNTI的索引、第二UE的下行控制参数、关联用户设备组的数据信号和第一UE的下行控制参数,获得第一UE的数据信号,包括:
第一UE根据第二UE的RNTI的索引、第二UE的下行控制参数和关联用户设备组的数据信号,获得第二UE的数据信号;
第一UE根据第二UE的数据信号、第一UE的下行控制参数和关联用户设备组的数据信号,获得第一UE的数据信号。
结合第一方面及其上述实现方式,在第一方面的第二种实现方式中,第一下行控制信息还包括第二下行控制信息的时频位置信息,第一UE接收基站发送的第二下行控制信息,包括:
第一UE根据时频位置信息,接收第二下行控制信息。
结合第一方面及其上述实现方式,在第一方面的第三种实现方式中,第一UE根据第二UE的RNTI的索引、第二UE的下行控制参数和关联用户设备组的数据信号,获得第二UE的数据信号,包括:
第一UE根据第二UE的RNTI的索引,从预配置的参数对照表中确定第二UE的RNTI和相应的半静态配置参数;
第一UE根据第二UE的RNTI、相应的半静态配置参数和第二UE的下行控制参数,从关联用户设备组的数据信号中获得第二UE的数据信号。
结合第一方面及其上述实现方式,在第一方面的第四种实现方式中,在第一UE接收基站发送的第一下行控制信息之前,该方法还包括:
第一UE接收基站发送的第二UE的RNTI参数对照表;
第一UE根据第二UE的RNTI的索引、第二UE的下行控制参数和关联用户设备组的数据信号,确定第二UE的数据信号,包括:
第一UE根据第二UE的RNTI的索引和第二UE的RNTI参数对照表,确定第二UE的RNTI;
第一UE根据第二UE的RNTI、第二UE的下行控制参数和关联用户设备组的数据信号,获得第二UE的数据信号。
结合第一方面及其上述实现方式,在第一方面的第五种实现方式中,第一下行控制信息还包括第一UE的身份标识,身份标识用于表示第一UE为小区中心UE。
结合第一方面及其上述实现方式,在第一方面的第六种实现方式中,第一下行控制信息还包括配对信息和/或功率分配比例信息。
结合第一方面及其上述实现方式,在第一方面的第七种实现方式中,第一下行控制信息所包括的信息采用联合编码的方式进行编码。
第二方面,本发明实施例提供了一种用户设备UE,包括:
通信单元,用于接收基站发送的第一下行控制信息,第一下行控制信息包括用户设备的下行控制参数和第二UE的无线网络临时标识RNTI的索引,用户设备为关联用户设备组中的第一UE,关联用户设备组还包括所述第二UE;
通信单元,还用于接收基站发送的第二下行控制信息,第二下行控制信息包括第二UE的下行控制参数;
通信单元,还用于接收基站发送的关联用户设备组的数据信号,其中,关联用户设备组的数据信号包括第一UE的数据信号和第二UE的数据信号;
处理单元,用于根据第二UE的RNTI的索引、第二UE的下行控制参数、关联用户设备组的数据信号和第一UE的下行控制参数,获得第一UE的数据信号。
结合第二方面,在第二方面的第一种实现方式中,第一下行控制信息还包括第二下行控制信息的时频位置信息,通信单元具体用于,根据时频位置信息,接收第二下行控制信息。
结合第二方面及其上述实现方式,在第二方面的第二种实现方式中,处理单元具体用于,
根据第二UE的RNTI的索引,从预配置的参数对照表中确定第二UE的RNTI和相应的半静态配置参数;
根据第二UE的RNTI、相应的半静态配置参数和第二UE的下行控制参 数,从关联用户设备组的数据信号中获得第二UE的数据信号。
结合第二方面及其上述实现方式,在第二方面的第三种实现方式中,通信单元还用于,接收基站发送的第二UE的RNTI参数对照表;
处理单元具体用于,根据第二UE的RNTI的索引和第二UE的RNTI参数对照表,确定第二UE的RNTI,
根据第二UE的RNTI、第二UE的下行控制参数和关联用户设备组的数据信号,获得第二UE的数据信号。
结合第二方面及其上述实现方式,在第二方面的第四种实现方式中,第一下行控制信息还包括第一UE的身份标识,身份标识用于表示第一UE为小区中心UE。
结合第二方面及其上述实现方式,在第二方面的第五种实现方式中,第一下行控制信息所包括的信息采用联合编码的方式进行编码。
结合第二方面,在第二方面的第六种实现方式中,处理单元,用于根据第二UE的RNTI的索引、第二UE的下行控制参数和关联用户设备组的数据信号,第一UE的下行控制参数,获得近端UE的数据信号,包括:
处理单元,用于根据第二UE的RNTI的索引、第二UE的下行控制参数和关联用户设备组的数据信号,获得第二UE的数据信号;
处理单元,还用于根据第二UE的数据信号、第一UE的下行控制参数和关联用户设备组的数据信号,获得第一UE的数据信号。
第三方面,本发明实施例提供了一种基于非正交传输的通信方法,包括:
基站发送第一下行控制信息,第一下行控制信息包括第一用户设备UE的下行控制参数和第二UE的无线网络临时标识RNTI的索引;
基站发送第二下行控制信息,第二下行控制信息包括第二UE的下行控制参数,第一UE与第二UE属于一个关联用户设备组;
基站发送关联用户设备组的数据信号,关联用户设备组的数据信号包括第一UE的数据和第二UE的数据。
结合第三方面,在第三方面的第一种实现方式中,第一下行控制信息还包括第一UE的身份标识,身份标识用于表示第一UE为小区中心UE。
结合第三方面及其上述实现方式,在第三方面的第二种实现方式中,第一下行控制信息还包括第二下行控制信息的时频位置信息和/或功率分配比例信息。
结合第三方面及其上述实现方式,在第三方面的第三种实现方式中,下行控制信息所包括的信息采用联合编码的方式进行编码。
第四方面,本发明实施例提供了一种基站,包括:
通信单元,用于发送第一下行控制信息,第一下行控制信息包括第一用户设备UE的下行控制参数和第二UE的无线网络临时标识RNTI的索引;
通信单元,还用于第二UE发送第二下行控制信息,第二下行控制信息包括第二UE的下行控制参数,第一UE与第二UE属于一个关联用户设备组;
通信单元,还用于向第一UE发送关联用户设备组的数据信号,关联用户设备组的数据信号包括第一UE的数据和第二UE的数据。
结合第四方面,在第四方面的第一种实现方式中,第一下行控制信息还包括第一UE的身份标识,身份标识用于表示第一UE为小区中心UE。
结合第四方面及其上述实现方式,在第四方面的第二种实现方式中,下行控制信息还包括配对信息和/或功率分配比例信息。
结合第四方面及其上述实现方式,在第四方面的第三种实现方式中,下行控制信息所包括的信息采用联合编码的方式进行编码。
第五方面,本发明实施例提供了一种基于非正交传输的通信方法,包括:
第一用户设备UE接收基站发送的下行控制信息,下行控制信息包括第一UE的下行控制参数和第二UE的下行控制参数,第一UE与第二UE属于一个关联用户设备组;
第一UE接收基站发送的关联用户设备组的数据信号,其中,关联用户设备组的数据信号包括第一UE的数据信号和第二UE的数据信号;
第一UE根据预设的第二UE的无线网络临时标识RNTI、第二UE的下行控制参数、关联用户设备组的数据信号和第一UE的下行控制参数,获得第一UE的数据信号。
结合第五方面,在第五方面的第二种实现方式中,第一UE根据预设的第二UE的无线网络临时标识RNTI、第二UE的下行控制参数、关联用户设备组的数据信号和第一UE的下行控制参数,获得第一UE的数据信号,包括:
第一UE根据预设的第二UE的无线网络临时标识RNTI、第二UE的下行控制参数和关联用户设备组的数据信号,获得第二UE的数据信号;
第一UE根据第一UE的下行控制参数、第二UE的数据信号和关联用户设备组的数据信号,获得第一UE的数据信号。
结合第五方面,在第五方面的第三种实现方式中,下行控制信息包括第一UE的身份标识,身份标识用于表示第一UE为小区中心UE。
结合第五方面及其上述实现方式,在第五方面的第四种实现方式中,下行控制信息还包括配对信息和/或功率分配比例信息。
结合第五方面及其上述实现方式,在第五方面的第五种实现方式中,下行控制信息所包括的信息采用联合编码的方式进行编码。
第六方面,本发明实施例提供了一种用户设备,包括:
通信单元,用于接收基站发送的下行控制信息,下行控制信息包括用户设备的下行控制参数和第二UE的下行控制参数,用户设备为关联用户设备组中的第一UE,关联用户设备组还包括所述第二UE;
通信单元,还用于接收基站发送的关联用户设备组的数据信号,其中,关联用户设备组的数据信号包括第一UE的数据信号和第二UE的数据信号;
处理单元,用于根据预设的第二UE的无线网络临时标识RNTI、第二UE的下行控制参数、关联用户设备组的数据信号和第一UE的下行控制参数,获得第一UE的数据信号。
结合第六方面,在第六方面的第二种实现方式中,处理单元具体用于,
根据预设的第二UE的无线网络临时标识RNTI、第二UE的下行控制参数和关联用户设备组的数据信号,获得第二UE的数据信号;
根据用户设备的下行控制参数、第二UE的数据信号和关联用户设备组的数据信号,获得第一UE的数据信号。
结合第六方面,在第六方面的第三种实现方式中,下行控制信息包括第一UE的身份标识,身份标识用于表示第一UE为小区中心UE。
结合第六方面及其上述实现方式,在第六方面的第四种实现方式中,下行控制信息还包括配对信息和/或功率分配比例信息。
结合第六方面及其上述实现方式,在第六方面的第五种实现方式中,下行控制信息所包括的信息采用联合编码的方式进行编码。
第七方面,本发明实施例提供了一种基于非正交传输的通信方法,包括:
基站发送下行控制信息,下行控制信息包括第一用户设备UE的下行控制参数和第二UE的下行控制参数,第一UE与第二UE属于一个关联用户 设备组;
基站发送关联用户设备组的数据信号,关联用户设备组的数据信号中的第二UE的数据信号使用预设的第二UE的无线网络临时标识RNTI加扰。
结合第七方面,在第七方面的第二种实现方式中,下行控制信息还包括第一UE的身份标识,身份标识用于表示第一UE为小区中心UE。
结合第七方面及其上述实现方式,在第七方面的第三种实现方式中,下行控制信息还包括配对信息和/或功率分配比例信息。
结合第七方面及其上述实现方式,在第七方面的第四种实现方式中,下行控制信息所包括的信息采用联合编码的方式进行编码。
结合第七方面及其上述实现方式,在第七方面的第五种实现方式中,预设的第二UE的无线网络临时标识RNTI为组/公共RNTI。
第八方面,本发明实施例提供了一种基站,包括:
通信单元,用于向第一用户设备UE发送下行控制信息,下行控制信息包括第一UE的下行控制参数和第二UE的下行控制参数,第一UE与第二UE属于一个关联用户设备组;
通信单元,还用于向第一UE关联用户设备组的数据信号,关联用户设备组的数据信号中的第二UE的数据信号使用预设的第二UE的无线网络临时标识RNTI加扰。
结合第八方面,在第八方面的第二种实现方式中,下行控制信息还包括第一UE的身份标识,身份标识用于表示第一UE为小区中心UE。
结合第八方面及其上述实现方式,在第八方面的第三种实现方式中,下行控制信息还包括配对信息和/或功率分配比例信息。
结合第八方面及其上述实现方式,在第八方面的第四种实现方式中,下行控制信息所包括的信息采用联合编码的方式进行编码。
结合第八方面及其上述实现方式,在第八方面的第五种实现方式中,预设的第二UE的无线网络临时标识RNTI为组/公共RNTI。
又一方面,本发明实施例提供了一种通信系统,该系统包括上述方面所述的基站和UE。此外,本发明还提供了一种计算机存储介质,其包含用于执行上述方面所涉及的程序。
基于上述技术方案,在本发明实施例中,基站将第二用户设备的RNTI的索引和下行控制参数发送给第一用户设备,而不必发送占用较大空间的 RNTI。这样,第一用户设备可以根据RNTI的索引和下行控制参数,从接收到的叠加信号中恢复出自身的信号。本发明实施例提供的通信方法能够降低信令开销。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的基于非正交传输的通信方法应用的通信系统架构图。
图2是本发明一个实施例的基于非正交传输的通信方法的示意性流程图。
图3是本发明另一实施例的基于非正交传输的通信方法的示意性流程图。
图4是本发明一个实施例的用户设备的示意性框图。
图5是本发明一个实施例的基站的示意性框图。
图6是本发明另一实施例的基于非正交传输的设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile  Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)可称之为终端(Terminal)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。为描述方便,本文中统一称为用户设备或UE。
在本发明实施例中,基站(Base Station,BS)可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),可以是WCDMA中的基站(NodeB,NB),也可以是LTE中的演进型基站(Evolved Node B,eNB或e-NodeB),还可以是其他演进网络中的基站,本发明并不限定。但为描述方便,本文中统一称为基站或BS。
图1是本发明实施例的基于非正交传输的通信方法应用的通信系统架构图。如图1所示,基站101可以基于NOMA技术实现与用户设备(102a,102b)的通信。其中,用户设备102a为小区中心(cell-center)UE,用户设备102b为小区边缘(cell-edge)UE。具体地,基站可以根据信噪比、路损或地理位置等信息来确定用户设备为cell-center UE还是cell-edge UE。可以理解的是,对于一个用户设备而言,由于其移动性,其既可以作为cell-center UE,也可以作为cell-edge UE。对于cell-center UE,基站可以使用较低的发送功率;而对于cell-edge UE,基站使用较高的发射功率。本发明实施例对此不作限定。另外,cell-center UE与cell-edge UE是相对的概念,而非地理上的绝对概念。为避免歧义,下文以cell-center UE(也可称为,近端用户设备)和cell-edge UE(也可称为,远端用户设备)为例进行描述。
在通信过程中,可以将用户设备102a(第一用户设备)与用户设备102b(第二用户设备)配对为一组,也即关联用户设备组。关联用户设备组中可以包含cell-center UE(如UE 102a)和cell-edge UE(如UE 102b)。这样,基站101可以将用户设备102a与用户设备102b的传输信号叠加在相同或部分重叠的时频资源上进行发送。也就是说,基站101发送的信号中包括用户设备102a的信号和用户设备102b的信号,且用户设备102a与用户设备102b的 信号功率不同。应理解,可以将多个UE组成一个关联用户设备组,本发明实施例对关联用户设备组中的用户设备数量不做限定。优选地,关联用设备组中至少包括一个近端UE和一个远端UE。为描述方便,下文将以两个用户设备进行配对为例进行描述。
用户设备102b接收到基站101发送的信号后,用户设备102a的信号功率较小,用户设备102b可以直接按照正常流程就可以实现自身信号的准确解调。用户设备102a接收到基站101发送的信号后,需要先按照用户设备102b的流程,解调出用户设备102b的信号。然后,将用户设备102b的信号消除,进而解调得到自身的信号。
在前述解调用户设备102b的信号的过程中,用户设备102a需要先获取一些参数,如用户设备102b的无线网络临时标识(Radio Network Temporary Identity,RNTI)和下行控制参数。具体地,下行控制参数可以包括以下参数中的一项或多项:调制和编码方案(Modulation and Coding Scheme,MCS),传输模式,冗余版本(Redundancy Version,RV)等。
本发明实施例提供了一种基于非正交传输的通信方法,在传输用户设备102b的RNTI和下行控制参数的过程中可以降低信令开销。下面结合具体例子对本发明实施例做更加详细的描述。
图2是本发明一个实施例的基于非正交传输的通信方法的示意性流程图。该方法可以被应用于图1所示的网络场景。第一UE和第二UE是关联用户设备组中的两个UE。其中,优选的,第一UE为近端UE,第二UE为远端UE。下文为描述方便,优选的,以第一UE作为近端UE,第二UE作为远端UE为例进行描述,可以理解的是本发明实施例并不对此进行限定。
可以理解的是,附图只是示意的表示,图中的序号并不必然代表时间先后顺序。例如,图中201,202,204,205部分并不限定其时间顺序,只是示意性的表示控制信息或数据信号的流向。
201,基站向第一UE(近端UE)发送第一下行控制信息。
所述第一下行控制信息包括第一UE的下行控制参数。所述第一下行控制信息还可以包括第二UE的无线网络临时标识RNTI或者所述第二UE的RNTI的索引。所述第一UE与所述第二UE属于同一个关联用户设备组。例如,将近端UE与远端UE进行关联,形成关联用户设备组,然后将关联用户设备组的传输信号叠加在相同或部分重叠的时频资源上进行发送。
所述下行控制参数包括解调数据所需要的参数。在不同场景下参数的种类可能会有所不同。具体地,下行控制参数可以包括MCS、传输模式、RV等,本发明实施例对此不做限定。
第一UE接收所述第一下行控制信息。
例如近端UE检测从基站发送下行控制信息,例如可以通过盲检测的方式来获取下行控制信息。
应理解,UE可以根据接收到的下行控制信息来确认自己是否为近端UE,例如UE可以通过下行控制信息的格式或包含的信息等来判断自己是否为近端UE。在一个设计中,所述第一下行控制信息中可以包含身份标识信息。该身份标识信息指示接收所述第一下行控制信息的UE是否为近端UE。在另一个设计中,当UE接收第一下行控制信息时,发现所述第一下行控制信息中包括RNTI或者RNTI的索引时,UE确定自己为近端UE。应理解,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
202,基站向第二UE(远端UE)发送第二下行控制信息。所述第二下行控制信息包括远端UE的下行控制参数。
第二UE接收基站发送的第二下行控制信息。
在203部分,近端UE接收基站发送的第二下行控制信息。例如近端UE通过盲检测或者其它方式获取基站向远端UE发送的第二下行控制信息。
例如,UE可以通过盲检测的方式,接收到第二UE的下行控制参数,以用于后续的串行干扰消除。又例如,UE也可以通过预先配置的信息获知第二UE的下行控制参数所在的位置,然后在相应的时频资源上接收第二下行控制信息。应注意,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
在204和205部分,基站发送关联用户设备组的数据信号。所述关联UE组的数据信号包括近端UE的数据信号和远端UE的数据信号。
例如,基站将远端UE的数据信号和近端UE的数据信号合为一个信号,向关联UE组中的近端UE和远端UE发送该信号。近端UE和远端UE分别接收基站发送的关联UE组的数据信号。
在206部分,近端UE根据所述远端UE的RNTI的索引、远端UE的下行控制参数和关联UE组的数据信号,近端UE的下行控制参数,获得近 端UE的数据信号。
例如,近端UE可以先根据所述远端UE的RNTI的索引、远端UE的下行控制参数和关联UE组的数据信号,获得远端UE的数据信号,然后根据所述远端UE的数据信号,所述近端UE的下行控制参数和所述关联UE组的数据信号,获得近端UE的数据信号。
例如,近端UE从基站接收所述关联UE组的数据信号,该数据信号包括远端UE的信号和近端UE的信号(自身的信号)。近端UE根据远端UE的RNTI的索引和远端UE的下行控制参数,从接收到的数据信号中解调得到远端UE的数据信号。然后,近端UE根据所述远端UE的数据信号,所述近端UE的下行控制参数和所述关联UE组的数据信号,获得近端UE的数据信号。例如,近端UE在关联用户设备组的数据信号中消除远端UE的数据信号。然后,根据下行控制参数将剩余的信号解调,进而恢复出自身的原始数据信号(近端UE的原始数据信号)。
207部分,远端UE根据第二下行控制信息,从关联UE组的数据信号中解调得到自身的数据信号。
例如,在关联用户设备组的数据信号中远端UE的数据信号的功率远大于近端UE的数据信号的功率。而且经过较长的传输路径后,远端UE可以将近端UE的数据信号当作干扰信号,直接从关联用户设备组的整体信号中解调得到自身的数据信号。
基于上述技术方案,在本发明实施例中,基站将第二UE的RNTI的索引和下行控制参数发送给第一UE,而不必发送占用较大空间的RNTI。这样,第一UE可以根据RNTI的索引和下行控制参数,从接收到的叠加信号中恢复出自身的信号。本发明实施例提供的通信方法能够降低信令传输开销。
可选地,作为一个实施例,第一下行控制信息还可以包括第二下行控制信息的时频位置信息。这种情况下,第一UE接收第二下行控制信息时,可以根据时频位置信息,接收第二下行控制信息。
例如,第一UE先盲检测并接收自身的下行控制信息(第一下行控制信息)。然后,获取其中的第二下行控制信息的时频位置信息,并在该位置信息对应的时频资源上检测并接收第二UE的下行控制信息(第二下行控制信息)。这样,在接收第二下行控制信息时,第一UE不必进行盲检测或进行少量盲检测,进而降低了检测复杂度。
可选地,作为另一实施例,第一UE先根据第二UE的RNTI的索引,从预配置的参数对照表中确定第二UE的RNTI和相应的半静态配置参数。然后,根据第二UE的RNTI、相应的半静态配置参数和第二UE的下行控制参数,从关联UE组的数据信号中获得第二UE的数据信号。
例如,基站通过无线资源控制(Radio Resource Control,RRC)信令预先在第一UE侧配置第二UE的参数对照表。参数对照表可以包括RNTI的索引所对应的RNTI值,以及相应地半静态配置参数。具体地,该半静态配置参数包括传输模式和单用户功率分配参数等用户特定的(UE-specific)半静态配置参数。
可选地,作为另一实施例,在接收基站发送的第一下行控制信息之前,接收基站发送的第二UE的RNTI参数对照表。这种情况下,确定第二UE的数据信号时,根据第二UE的RNTI的索引和第二UE的RNTI参数对照表,确定第二UE的RNTI。然后,根据第二UE的RNTI、第二UE的下行控制参数和关联UE组的数据信号,获得第二UE的数据信号。
可选地,作为另一实施例,第一下行控制信息还包括第一UE的身份标识,身份标识用于表示第一UE为小区中心UE。
可选地,作为另一实施例,第一下行控制信息还包括配对信息和/或功率分配比例信息。
可选地,作为另一实施例,第一下行控制信息所包括的信息采用联合编码的方式进行编码。例如,假设RNTI等RRC半静态参数的索引表长度为10条,位置信息长度为22种。这时,将RNTI的索引和位置信息进行联合编码得到的长度为上取整log2(10×22)=8比特,而分别编码的比特数和为上取整log2(10)+上取整log2(22)=9比特。也就是说,通过联合编码的方式,可以进一步减小第一下行控制信息的长度,进而降低了信令开销。
图3是本发明另一实施例的基于非正交传输的通信方法的示意性流程图。该方法可以被应用于图1所示的网络场景。与图2中类似,第一UE和第二UE是关联用户设备组(关联UE组)中的两个UE。下文为描述方便,也是以第一UE为近端UE,第二UE为远端UE为例进行描述,可以理解,本发明并不对此限定。
301,基站向第一UE(近端UE)发送第一下行控制信息。近端UE接收基站发送的第一下行控制信息。所述第一下行控制信息包括近端UE的下 行控制参数和远端UE的下行控制参数。近端UE与远端UE属于一个关联用户设备组。
例如,将近端UE与远端UE配对,形成关联用户设备组。然后将关联用户设备组的传输信号叠加在相同或部分重叠的时频资源上进行发送。下行控制参数包括解调数据所需要的参数,在不同场景下参数的种类可能会有所不同。具体地,下行控制参数可以包括MCS、传输模式、RV等,本发明实施例对此不做限定。
应理解,UE可以根据接收到的下行控制信息的格式或包含的信息等,确定自身是否为第一UE。例如,在第一下行控制信息中增加身份标识信息以标识是否为近端用户,或者当第一下行控制信息中包括RNTI的索引时,确定自己为第一UE。应理解,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
302,基站向第二UE(远端UE)发送第二下行控制信息。远端UE接收基站发送的第二下行控制信息。所述第二下行控制信息包括远端UE的下行控制参数。
在303和304部分,基站发送关联用户设备组的数据信号。所述关联UE的数据信号包括近端UE的数据信号和远端UE的数据信号。
例如,基站将远端UE的数据信号和近端UE的数据信号合为一个信号,向关联UE组中的近端UE和远端UE发送该信号。近端UE和远端UE分别收所述关联UE组的数据信号。
在305部分,近端UE根据预设的远端UE的无线网络临时标识RNTI、远端UE的下行控制参数和关联UE组的数据信号,近端UE的下行控制参数,获得近端UE的数据信号。
例如,近端UE根据预设的远端UE的无线网络临时标识RNTI、远端UE的下行控制参数和关联UE组的数据信号,确定第二UE的数据信号。然后,根据近端UE的下行控制参数、远端UE的数据信号和关联用户设备组的数据信号,获得近端UE的数据信号。
例如,近端UE从基站接收数据信号,该数据信号包括远端UE的信号和近端UE的信号(自身的信号)。然后,根据预设的远端UE的RNTI、对应的传输模式及单用户功率分配参数和下行控制参数,从接收到的数据信号中确定远端UE的数据信号。然后,在关联UE组的数据信号中消除远端UE 的数据信号。在消除了远端UE的数据信号后,UE根据下行控制参数将剩余的信号解调,进而恢复出自身的原始数据信号(近端UE的原始数据信号)。
具体地,该预设的远端UE的RNTI可以为组/公共RNTI(group/common RNTI),也就是说其他与该近端UE配对的远端UE均适用该RNTI。
306,与207部分类似,远端UE根据第二下行控制信息,从关联UE组的数据信号中解调得到自身的数据信号。
基于上述技术方案,在本发明实施例中,基站在第一UE侧预配置第二UE的RNTI,并将第二UE的下行控制参数发送给第一UE,而不必发送占用较大空间的RNTI。这样,第一UE可以根据预配置的RNTI和接收到的下行控制参数,从接收到的叠加信号中恢复出自身的信号。本发明实施例提供的通信方法能够降低信令开销。
可选地,作为一个实施例,从接收到的数据信号中确定第一UE的数据信号时,先根据预设的第二UE的RNTI和第二UE的下行控制参数,从接收到的数据信号中确定第二UE的数据信号。然后,从接收到的数据信号中消除第二UE的数据信号,得到第一UE的数据信号。
与图2示出的实施例类似,可选的,第一下行控制信息还可以包括第一UE的身份标识,用以指示第一UE为小区中心UE。所述第一下行控制信息还可以包括功率指示信息和/或配对指示信息。所述第一下行控制信息所包括的信息可采用联合编码的方式进行编码以进一步降低信令开销。具体参照上述实施例中所述,在此不再赘述。
针对上述各实施例中所述的下行控制信息(第一下行控制信息和/或第二下行控制信息),下面给出几个下行控制信息格式的示例。应注意,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
实施方式一
表一示出了一种下行控制信息(Downlink Control Information,DCI)的格式。第一UE可以使用表一所示的下行控制信息格式。其中,如表一所示,可以使用A比特指示不同传输模式(Transmission Mode,TM),例如,2比特用于指示不同传输模式。B比特(例如,2或3比特)的功率指示来表示当前近端UE和远端UE的功率分配比值。C(例如,3比特)比特指示远端UE的RNTI索引。D比特指示配对远端UE的物理下行控制信道(Physical  Downlink Control Channel,PDCCH)位置。例如,用5比特指示配对远端UE的PDCCH位置,假设有22个位置,那么当该5比特表示的数值大于21且功率指示=1(也即近端UE的功率比例为100%)时,表示没有关联UE组,也即该UE没有对应的远端UE。该5比特表示的数值小于21且功率指示≠1时,表示该UE为近端UE。
表一
Figure PCTCN2015075766-appb-000001
本UE(第一UE)和第二UE的功率分配方案通过2或3比特通知UE不同的功率用户分配值。具体地,功率分配值表可通过RRC或MAC信令告知用户或通过协议定义。功率分配值表中的某一状态还可以用做特殊指示,如表二中的功率分配指示index=0时,表示没有关联用户设备组。
表二
Index 0 1 2 3 4 5 6 7
P1/P 1 0.05 0.1 0.15 0.2 0.25 0.3 0.35
P2/P 0 0.95 0.9 0.85 0.8 0.75 0.7 0.65
相似地,第一UE还可以通过RRC或MAC信令预先获知参数对照表。这样,接收到如表一所示的DCI时,可以根据DCI中的RNTI索引确定对应的RNTI值。
实施方式二
表三与表一对应的实施例基本相同,为避免重复,这里仅对表三与表一的不同点展开描述。在表一中,5比特除了指示配对远端UE的PDCCH位置的外,可以用于结合功率指示中数值的大小,隐含指示当前用户的身份(也即,未配对或者为近端UE)。在表三对应的实施例中,指示远端UE的PDCCH位置的比特不再具备该作用。在表三对应的实施例中,当V比特取值为X时表示当前UE无配对用户,当V比特取值为Y时表示当前UE为远端UE。例如,用X表示无配对用户,用Y表示远端UE。其中,X、Y和Z为预定义的一个或一组取值。其中当Y、为一组取值时,其每个取值可表示一种功率分配方式和配比。Z为一组值时,每个取值可表示一种功率配比方式和一个RNTI索引。
表三
Figure PCTCN2015075766-appb-000002
如表三所示,第一UE还可以采用表三所示的DCI格式。
实施方式三
如表四所示的DCI中,使用X比特用来做功率指示或有无关联用户设 备组指示。例如,用3比特做功率指示或有无关联用户设备组指示。可选的,可以用功率指示比特隐含指示是否有关联用户设备组,当功率指示比特≠1时,表示有关联用户设备组。反之,当功率指示=1时,表示没有关联用户设备组。另外,DCI中还可以包括指示远端UE的MCS和RV版本的比特。
表四
Figure PCTCN2015075766-appb-000003
第一UE还可以使用表四所示的DCI格式。具体地,可通过功率指示,远用户MCS及RV的特殊组合确定本用户为配对远用户或者是配对近用户或无关联用户设备组。
例如:
配对远用户:功率指示≠0,且远用户MCS比特>=MCS1
配对近用户:功率指示≠0,且远用户MCS比特<MCS1
无关联用户设备组:功率指示=0
其中,MCS1为预定义的MCS数值。
由于远近用户所处的信道质量不同,其可能采用的MCS有一定的范围,系统可根据仿真或实时的计算将远近用户在配对时使用的MCS限定在一定范围内,因此可以减小在通知MCS等时的比特数。
当配对时,近用户通过其DCI获得远用户的功率、MCS和RV解调信息,而远用户在进行配对时其PDSCH所使用的扰码产生为组/公共RNTI(group/common RNTI)。
该组/公共RNTI(group/common RNTI)为近UE已知。系统通过预先定义或通过系统信令告知或广播给近UE和远UE。但远UE的PDCCH的CRC加扰仍然采用远UE的RNTI,而不是该近UE已知的RNTI(组/公共RNTI)。因此系统会为每个可能配对的UE分配两个RNTI,一个用于PDCCH 和单用户下PDSCH的解调,另一个RNTI(组/公共RNTI)用于配对情况下的PDSCH解调。
实施方式四
表六
Figure PCTCN2015075766-appb-000004
第二UE可以使用表六所示的DCI格式。其中,M比特指示不同传输模式(Transmission Mode,TM),例如,2比特用于指示不同传输模式。W比特(例如,3比特)用于功率指示。可选的,当第二UE调制方式限定为QPSK时,所述W比特可以省去,即可以省去功率指示所使用的比特数。也就是说,在基站按照图2或图3所示的方法生成下行控制信息时,可以省去下行控制信息中的W比特,进而降低了信令开销。
上述主要从网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如UE,基站等为了实现上述功能,其包含了执行各个功能相应的模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以硬件和计算机软件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
图4是本发明一个实施例的用户设备的示意性框图。如图4所示,用户设备UE 40包括通信单元401和处理单元402。应理解,用户设备40可以作为关联用户设备组中的第一UE。所述关联用户组至少还包括第二UE。优选的,第一UE为近端UE,第二UE为远端UE,但本发明并不局限于此。 下文为描述方便,近端UE和远端UE为例进行描述。
所述通信单元401用于支持UE与其他网络实体进行通信,例如支持与基站的通信。例如在图2所涉及的实施例中,所述通信单元用于接收基站发送的下行控制信息(201和203部分)和数据信号(204部分)。在图3所涉及到实施例中,所述通信单元用于接收基站发送的第一下行控制信息(301部分)和数据信号(303部分)。具体参照上述实施例所描述,在此不再赘述。
所述处理单元,用于支持UE执行上述实施例中UE进行的处理。例如,在一个可选的设计中,所述处理单元用于在UE在作为近端UE时,支持UE根据远端UE的RNTI的索引、远端UE的下行控制参数和关联UE组的数据信号,近端UE的控制参数获得近端UE的数据信号。所述处理单元,还用于,在UE作为远端UE时,解调获得远端UE的数据信号。具体参照上述图2涉及的实施例中的描述,在此不再赘述。又例如,在一个可选的设计中,所述处理单元用于支持UE执行图3所涉及的实施例中的UE所涉及的动作。例如,用于图3所述的步骤305或步骤306。
图5是本发明一个实施例的基站的示意性框图,用于执行图2所示实施例的方法。如图5所示,基站50包括通信单元501和处理单元502。
通信单元501,用于发送第一下行控制信息,第一下行控制信息包括第一UE的下行控制参数和第二UE的无线网络临时标识RNTI的索引。第一UE与第二UE属于一个关联用户设备组。其中,第一UE为近端UE,第二UE为远端UE。下文为描述方便,近端UE和远端UE为例进行描述。
例如,处理单元502将近端UE与远端UE进行关联,形成关联用户设备组。然后,将关联用户设备组的传输信号叠加在相同或部分重叠的时频资源上进行发送。近端UE可以通过盲检测的方式,检测并接收第一下行控制信息。下行控制参数包括解调数据所需要的参数,在不同场景下参数的种类可能会有所不同。具体地,下行控制参数可以包括MCS、传输模式、RV等,本发明实施例对此不做限定。
应理解,UE可以根据接收到的下行控制信息的格式或包含的信息等,确定自身是否为近端UE。例如,在第一下行控制信息中可以包含身份标识信息以标识接收所述第一下行控制信息的UE是否为近端UE,或者当第一下行控制信息中包括RNTI或者RNTI的索引时,接收所述第一下行控制信息的UE确定自己为近端UE。应理解,这些例子只是为了帮助本领域技术 人员更好地理解本发明实施例,而非限制本发明实施例的范围。
通信单元501,还用于发送第二下行控制信息。第二下行控制信息包括第二UE的下行控制参数。
例如,近端UE可以通过盲检测的方式,接收到远端UE的下行控制参数,以用于后续的串行干扰消除。或者,UE也可以通过预先配置的信息获知远端UE的下行控制参数所在的位置,然后在相应的时频资源上接收第二下行控制信息。应注意,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
通信单元501,还用于发送关联用户设备组的数据信号,关联用户设备组的数据信号包括近端UE的数据和远端UE的数据。
例如,基站将远端UE的数据信号和近端UE的数据信号合为一个信号,向关联用户设备组中的近端UE和远端UE发送该信号。
基于上述技术方案,在本发明实施例中,基站将第二UE的RNTI的索引和下行控制参数发送给第一UE,而不必发送占用较大空间的RNTI。这样,第一UE可以根据RNTI的索引和下行控制参数,从接收到的叠加信号中恢复出自身的信号。本发明实施例提供的通信方法能够降低信令开销。
可选地,作为另一实施例,第一下行控制信息还包括第一UE的身份标识,身份标识用于表示第一UE为小区中心UE。
可选地,作为另一实施例,第一下行控制信息还包括第二下行控制信息的时频位置信息和/或功率分配比例信息。
可选地,作为另一实施例,第一下行控制信息所包括的信息采用联合编码的方式进行编码。
例如,假设RNTI等RRC半静态参数的索引表长度为10条,位置信息长度为22种。这时,将RNTI的索引和位置信息进行联合编码得到的长度为上取整log2(10×22)=8比特,而分别编码的比特数和为上取整log2(10)+上取整log2(22)=9比特。也就是说,通过联合编码的方式,可以进一步减小第一下行控制信息的长度,进而降低了信令开销。
本发明实施例还提供了另一种用户设备,用于实现基于非正交传输的通信方法。具体地,该用户设备的示意性框图可以参考图4。下面结合图4对用户设备的功能进行描述。
通信单元401,用于接收基站发送的下行控制信息。下行控制信息包括 用户设备40的下行控制参数和第二UE的下行控制参数。用户设备为关联用户设备组中的第一UE,关联用户设备组还包括第二UE。第一UE为近端UE,第二UE为远端UE。下文为描述方便,近端UE和远端UE为例进行描述。
例如,将近端UE与远端UE配对,形成关联UE组。然后将关联用户设备组的传输信号叠加在相同或部分重叠的时频资源上进行发送。下行控制参数包括解调数据所需要的参数,在不同场景下参数的种类可能会有所不同。具体地,下行控制参数可以包括MCS、传输模式、RV等,本发明实施例对此不做限定。
应理解,UE可以根据接收到的下行控制信息的格式或包含的信息等,确定自身是否为第一UE。例如,在第一下行控制信息中增加身份标识信息以标识是否为近端用户,或者当第一下行控制信息中包括RNTI的索引时,确定自己为第一UE。应理解,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
通信单元401,还用于接收基站发送的关联用户设备组的数据信号。其中,关联用户设备组的数据信号包括用户设备40的数据信号和远端UE的数据信号。
例如,基站将远端UE的数据信号和近端UE的数据信号合为一个信号,向关联用户设备组中的近端UE和远端UE发送该信号。
处理单元402,用于根据预设的远端UE的无线网络临时标识RNTI、远端UE的下行控制参数和关联UE组的数据信号,获得远端UE的数据信号。
例如,UE从基站接收数据信号,该数据信号包括远端UE的信号和近端UE的信号(自身的信号)。然后,根据预设的远端UE的RNTI、对应的传输模式及单用户功率分配参数和下行控制参数,从接收到的数据信号中确定远端UE的数据信号。
处理单元402,还用于根据通信设备的下行控制参数、远端UE的数据信号和关联用户设备组的数据信号,获得通信设备的数据信号。
例如,在关联用户设备组的数据信号中消除远端UE的数据信号。在消除了远端UE的数据信号后,UE根据下行控制参数将剩余的信号解调,进而恢复出自身的原始数据信号(近端UE的原始数据信号)。
基于上述技术方案,在本发明实施例中,基站在第一UE侧预配置第二 UE的RNTI,并将第二UE的下行控制参数发送给第一UE,而不必发送占用较大空间的RNTI。这样,第一UE可以根据预配置的RNTI和接收到的下行控制参数,从接收到的叠加信号中恢复出自身的信号。本发明实施例提供的通信方法能够降低信令开销。
本发明实施例还提供了另一种基站,用于实现基于非正交传输的通信方法。具体地,该用户设备的示意性框图可以参考图5。下面结合图5对基站的功能进行描述。
通信单元501,用于发送下行控制信息。下行控制信息包括第一UE的下行控制参数和第二UE的下行控制参数。第一UE与第二UE属于一个关联UE组。第一UE为近端UE,第二UE为远端UE。下文为描述方便,近端UE和远端UE为例进行描述。
例如,处理单元502将近端UE与远端二UE配对,形成关联用户设备组。然后,将关联用户设备组的传输信号叠加在相同或部分重叠的时频资源上进行发送。
下行控制参数包括解调数据所需要的参数,在不同场景下参数的种类可能会有所不同。具体地,下行控制参数可以包括MCS、传输模式、RV等,本发明实施例对此不做限定。
应理解,UE可以根据接收到的下行控制信息的格式或包含的信息等,确定自身是否为第一UE。例如,在第一下行控制信息中增加身份标识信息以标识是否为近端用户,或者当第一下行控制信息中包括RNTI的索引时,确定自己为第一UE。应理解,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
通信单元501,还用于发送关联用户设备组的数据信号。关联用户设备组的数据信号中的远端UE的数据信号使用预设的远端UE的无线网络临时标识RNTI加扰。
基于上述技术方案,在本发明实施例中,基站在第一UE侧预配置第二UE的RNTI,并将第二UE的下行控制参数发送给第一UE,而不必发送占用较大空间的RNTI。这样,第一UE可以根据预配置的RNTI和接收到的下行控制参数,从接收到的叠加信号中恢复出自身的信号。本发明实施例提供的通信方法能够降低信令开销。
可选地,作为一个实施例,下行控制信息还包括第一UE的身份标识, 身份标识用于表示第一UE为小区中心UE。
可选地,作为另一实施例,下行控制信息还包括配对信息和/或功率分配比例信息。
可选地,作为另一实施例,下行控制信息所包括的信息采用联合编码的方式进行编码。
本发明实施例还提供了一种基于非正交传输的通信方法的通信系统,该通信系统包括前文所述的用户设备和基站。
图6是本发明另一实施例的基于非正交传输的设备的示意性框图。
图6的设备60可用于实现上述方法实施例中各步骤及方法。图6的实施例中,设备60包括天线601、发射机602、接收机603、处理器604和存储器605。处理器604控制设备60的操作,并可用于处理信号。存储器605可以包括只读存储器和随机存取存储器,并向处理器604提供指令和数据。发射机602和接收机603可以耦合到天线601。设备60的各个组件通过总线系统606耦合在一起,其中总线系统606除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统606。
例如,该设备60可以为图4所示的用户设备,也可以为图5所示的基站。其中,存储器605可存储程序或指令以执行图4所示的用户设备的功能,为避免重复,在此不再重复。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对 应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (42)

  1. 一种基于非正交传输的通信方法,其特征在于,包括:
    第一用户设备UE接收基站发送的第一下行控制信息,所述第一下行控制信息包括所述第一UE的下行控制参数和第二UE的无线网络临时标识RNTI的索引,所述第一UE与所述第二UE属于一个关联用户设备组;
    所述第一UE接收基站发送的第二下行控制信息,所述第二下行控制信息包括所述第二UE的下行控制参数;
    所述第一UE接收基站发送的所述关联用户设备组的数据信号,其中,所述关联用户设备组的数据信号包括所述第一UE的数据信号和所述第二用户设备的数据信号;
    所述第一UE根据所述第二UE的RNTI的索引、所述第二UE的下行控制参数、所述关联用户设备组的数据信号和所述第一UE的下行控制参数,获得所述第一UE的数据信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一UE根据所述第二UE的RNTI的索引、所述第二UE的下行控制参数、所述关联用户设备组的数据信号和所述第一UE的下行控制参数,获得所述第一UE的数据信号,包括:
    所述第一UE根据所述第二UE的RNTI的索引、所述第二UE的下行控制参数和所述关联用户设备组的数据信号,获得所述第二UE的数据信号;
    所述第一UE根据所述第二UE的数据信号、所述第一UE的下行控制参数和所述关联用户设备组的数据信号,获得所述第一UE的数据信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一下行控制信息还包括所述第二下行控制信息的时频位置信息,所述第一UE接收基站发送的第二下行控制信息,包括:
    所述第一UE根据所述时频位置信息,接收所述第二下行控制信息。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一UE根据所述第二UE的RNTI的索引、所述第二UE的下行控制参数和所述关联用户设备组的数据信号,获得所述第二UE的数据信号,包括:
    所述第一UE根据所述第二UE的RNTI的索引,从预配置的参数对照表中确定所述第二UE的RNTI和相应的半静态配置参数;
    所述第一UE根据所述第二UE的RNTI、所述相应的半静态配置参数和 所述第二UE的下行控制参数,从所述关联用户设备组的数据信号中获得所述第二UE的数据信号。
  5. 根据权利要求2或3所述的方法,其特征在于,在所述第一UE接收基站发送的第一下行控制信息之前,所述方法还包括:
    所述第一UE接收基站发送的第二UE的RNTI参数对照表;
    所述第一UE根据所述第二UE的RNTI的索引、所述第二UE的下行控制参数和所述关联用户设备组的数据信号,确定所述第二UE的数据信号,包括:
    所述第一UE根据所述第二UE的RNTI的索引和所述第二UE的RNTI参数对照表,确定所述第二UE的RNTI;
    所述第一UE根据所述第二UE的RNTI、所述第二UE的下行控制参数和所述关联用户设备组的数据信号,获得所述第二UE的数据信号。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一下行控制信息还包括所述第一UE的身份标识,所述身份标识用于表示所述第一UE为小区中心UE。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一下行控制信息还包括配对信息和/或功率分配比例信息。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一下行控制信息所包括的信息采用联合编码的方式进行编码。
  9. 一种用户设备,其特征在于,包括:
    通信单元,用于接收基站发送的第一下行控制信息,所述第一下行控制信息包括所述用户设备的下行控制参数和第二UE的无线网络临时标识RNTI的索引,所述用户设备为关联用户设备组中的第一UE,所述关联用户设备组还包括所述第二UE;
    所述通信单元,还用于接收基站发送的第二下行控制信息,所述第二下行控制信息包括所述第二UE的下行控制参数;
    所述通信单元,还用于接收基站发送的所述关联用户设备组的数据信号,其中,所述关联用户设备组的数据信号包括所述第一UE的数据信号和所述第二UE的数据信号;
    处理单元,用于根据所述第二UE的RNTI的索引、所述第二UE的下行控制参数、所述关联用户设备组的数据信号和所述第一UE的下行控制参 数,获得所述第一UE的数据信号。
  10. 根据权利要求9所述的用户设备,其特征在于,所述处理单元具体用于,
    根据所述第二UE的RNTI的索引、所述第二UE的下行控制参数和所述关联用户设备组的数据信号,获得所述第二UE的数据信号;
    根据所述第二UE的数据信号、所述第一UE的下行控制参数和所述关联用户设备组的数据信号,获得所述第一UE的数据信号。
  11. 根据权利要求9或10所述的用户设备,其特征在于,所述第一下行控制信息还包括所述第二下行控制信息的时频位置信息,所述通信单元具体用于,根据所述时频位置信息,接收所述第二下行控制信息。
  12. 根据权利要求10或11所述的用户设备,其特征在于,所述处理单元具体用于,
    根据所述第二UE的RNTI的索引,从预配置的参数对照表中确定所述第二UE的RNTI和相应的半静态配置参数;
    根据所述第二UE的RNTI、所述相应的半静态配置参数和所述第二UE的下行控制参数,从所述关联用户设备组的数据信号中获得所述第二UE的数据信号。
  13. 根据权利要求10或11所述的用户设备,其特征在于,所述通信单元还用于,接收基站发送的第二UE的RNTI参数对照表;
    所述处理单元具体用于,根据所述第二UE的RNTI的索引和所述第二UE的RNTI参数对照表,确定所述第二UE的RNTI,
    根据所述第二UE的RNTI、所述第二UE的下行控制参数和所述关联用户设备组的数据信号,获得所述第二UE的数据信号。
  14. 根据权利要求9至13中任一项所述的用户设备,其特征在于,所述第一下行控制信息还包括所述第一UE的身份标识,所述身份标识用于表示所述第一UE为小区中心UE。
  15. 根据权利要求9至14中任一项所述的用户设备,其特征在于,所述第一下行控制信息还包括配对信息和/或功率分配比例信息。
  16. 根据权利要求9至15中任一项所述的用户设备,其特征在于,所述第一下行控制信息所包括的信息采用联合编码的方式进行编码。
  17. 一种基于非正交传输的通信方法,其特征在于,包括:
    基站发送第一下行控制信息,所述第一下行控制信息包括第一用户设备UE的下行控制参数和第二UE的无线网络临时标识RNTI的索引;
    所述基站发送第二下行控制信息,所述第二下行控制信息包括所述第二UE的下行控制参数,所述第一UE与所述第二UE属于一个关联用户设备组;
    所述基站发送所述关联用户设备组的数据信号,所述关联用户设备组的数据信号包括所述第一UE的数据和所述第二UE的数据。
  18. 根据权利要求17所述的方法,其特征在于,所述第一下行控制信息还包括所述第一UE的身份标识,所述身份标识用于表示所述第一UE为小区中心UE。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第一下行控制信息还包括所述第二下行控制信息的时频位置信息和/或功率分配比例信息。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述第一下行控制信息所包括的信息采用联合编码的方式进行编码。
  21. 一种基站,其特征在于,包括:
    通信单元,用于发送第一下行控制信息,所述第一下行控制信息包括所述第一用户设备UE的下行控制参数和第二UE的无线网络临时标识RNTI的索引;
    所述通信单元,还用于所述第二UE发送第二下行控制信息,所述第二下行控制信息包括所述第二UE的下行控制参数,所述第一UE与所述第二UE属于一个关联用户设备组;
    所述通信单元,还用于向所述第一UE发送所述关联用户设备组的数据信号,所述关联用户设备组的数据信号包括所述第一UE的数据和所述第二UE的数据。
  22. 根据权利要求21所述的基站,其特征在于,所述第一下行控制信息还包括所述第一UE的身份标识,所述身份标识用于表示所述第一UE为小区中心UE。
  23. 根据权利要求21或22所述的基站,其特征在于,所述第一下行控制信息还包括所述第二下行控制信息的时频位置信息和/或功率分配比例信息。
  24. 根据权利要求21至23中任一项所述的基站,其特征在于,所述第 一下行控制信息所包括的信息采用联合编码的方式进行编码。
  25. 一种基于非正交传输的通信方法,其特征在于,包括:
    第一用户设备UE接收基站发送的下行控制信息,所述下行控制信息包括第一UE的下行控制参数和第二UE的下行控制参数,所述第一UE与所述第二UE属于一个关联用户设备组;
    所述第一UE接收基站发送的所述关联用户设备组的数据信号,其中,所述关联用户设备组的数据信号包括所述第一UE的数据信号和所述第二UE的数据信号;
    所述第一UE根据预设的第二UE的无线网络临时标识RNTI、所述第二UE的下行控制参数、所述关联用户设备组的数据信号和所述第一UE的下行控制参数,获得所述第一UE的数据信号。
  26. 根据权利要求25所述的方法,其特征在于,所述第一UE根据预设的第二UE的无线网络临时标识RNTI、所述第二UE的下行控制参数、所述关联用户设备组的数据信号和所述第一UE的下行控制参数,获得所述第一UE的数据信号,包括:
    所述第一UE根据预设的第二UE的无线网络临时标识RNTI、所述第二UE的下行控制参数和所述关联用户设备组的数据信号,获得所述第二UE的数据信号;
    所述第一UE根据所述第一UE的下行控制参数、所述第二UE的数据信号和所述关联用户设备组的数据信号,获得所述第一UE的数据信号。
  27. 根据权利要求25或26所述的方法,其特征在于,所述下行控制信息包括所述第一UE的身份标识,所述身份标识用于表示所述第一UE为小区中心UE。
  28. 根据权利要求25至27中任一项所述的方法,其特征在于,所述下行控制信息还包括配对信息和/或功率分配比例信息。
  29. 根据权利要求25至28中任一项所述的方法,其特征在于,所述下行控制信息所包括的信息采用联合编码的方式进行编码。
  30. 一种用户设备,其特征在于,包括:
    通信单元,用于接收基站发送的下行控制信息,所述下行控制信息包括所述用户设备的下行控制参数和第二UE的下行控制参数,所述用户设备为关联用户设备组中的第一UE,所述关联用户设备组还包括所述第二UE;
    所述通信单元,还用于接收基站发送的所述关联用户设备组的数据信号,其中,所述关联用户设备组的数据信号包括所述第一UE的数据信号和所述第二UE的数据信号;
    处理单元,用于根据预设的第二UE的无线网络临时标识RNTI、所述第二UE的下行控制参数、所述关联用户设备组的数据信号和所述第一UE的下行控制参数,获得所述第一UE的数据信号。
  31. 根据权利要求30所述的用户设备,其特征在于,所述处理单元具体用于,
    根据预设的第二UE的无线网络临时标识RNTI、所述第二UE的下行控制参数和所述关联用户设备组的数据信号,获得所述第二UE的数据信号;
    根据所述用户设备的下行控制参数、所述第二UE的数据信号和所述关联用户设备组的数据信号,获得所述第一UE的数据信号。
  32. 根据权利要求30或31所述的用户设备,其特征在于,所述下行控制信息包括所述第一UE的身份标识,所述身份标识用于表示所述第一UE为小区中心UE。
  33. 根据权利要求30至32中任一项所述的用户设备,其特征在于,所述下行控制信息还包括配对信息和/或功率分配比例信息。
  34. 根据权利要求30至33中任一项所述的用户设备,其特征在于,所述下行控制信息所包括的信息采用联合编码的方式进行编码。
  35. 一种基于非正交传输的通信方法,其特征在于,包括:
    基站发送下行控制信息,所述下行控制信息包括第一用户设备UE的下行控制参数和第二UE的下行控制参数,所述第一UE与所述第二UE属于一个关联用户设备组;
    基站发送所述关联用户设备组的数据信号,所述关联用户设备组的数据信号中的第二UE的数据信号使用预设的第二UE的无线网络临时标识RNTI加扰。
  36. 根据权利要求35所述的方法,其特征在于,所述下行控制信息还包括所述第一UE的身份标识,所述身份标识用于表示所述第一UE为小区中心UE。
  37. 根据权利要求35或36所述的方法,其特征在于,所述下行控制信息还包括配对信息和/或功率分配比例信息。
  38. 根据权利要求35至37中任一项所述的方法,其特征在于,所述下行控制信息所包括的信息采用联合编码的方式进行编码。
  39. 一种基站,其特征在于,包括:
    通信单元,用于发送下行控制信息,所述下行控制信息包括第一用户设备UE的下行控制参数和第二UE的下行控制参数,所述第一UE与所述第二UE属于一个关联用户设备组;
    所述通信单元,还用于发送所述关联用户设备组的数据信号,所述关联用户设备组的数据信号中的第二UE的数据信号使用预设的第二UE的无线网络临时标识RNTI加扰。
  40. 根据权利要求39所述的基站,其特征在于,所述下行控制信息还包括所述第一UE的身份标识,所述身份标识用于表示所述第一UE为小区中心UE。
  41. 根据权利要求39或40所述的基站,其特征在于,所述下行控制信息还包括配对信息和/或功率分配比例信息。
  42. 根据权利要求39至41中任一项所述的基站,其特征在于,所述下行控制信息所包括的信息采用联合编码的方式进行编码。
PCT/CN2015/075766 2015-04-02 2015-04-02 基于非正交传输的通信方法和设备 WO2016154991A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15886961.0A EP3270647B1 (en) 2015-04-02 2015-04-02 Communication method and device based on non-orthogonal transmission
PCT/CN2015/075766 WO2016154991A1 (zh) 2015-04-02 2015-04-02 基于非正交传输的通信方法和设备
CN201580065167.9A CN107005983B (zh) 2015-04-02 2015-04-02 基于非正交传输的通信方法和设备
US15/719,752 US10609697B2 (en) 2015-04-02 2017-09-29 Communication method based on non-orthogonal transmission, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/075766 WO2016154991A1 (zh) 2015-04-02 2015-04-02 基于非正交传输的通信方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/719,752 Continuation US10609697B2 (en) 2015-04-02 2017-09-29 Communication method based on non-orthogonal transmission, and device

Publications (1)

Publication Number Publication Date
WO2016154991A1 true WO2016154991A1 (zh) 2016-10-06

Family

ID=57003806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075766 WO2016154991A1 (zh) 2015-04-02 2015-04-02 基于非正交传输的通信方法和设备

Country Status (4)

Country Link
US (1) US10609697B2 (zh)
EP (1) EP3270647B1 (zh)
CN (1) CN107005983B (zh)
WO (1) WO2016154991A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3720210A4 (en) * 2017-12-20 2021-07-21 Beijing Xiaomi Mobile Software Co., Ltd. DATA RECEIVING METHOD AND DEVICE AND DATA TRANSFER METHOD AND DEVICE
US11665702B2 (en) * 2018-01-04 2023-05-30 Samsung Electronics Co., Ltd Method and device for transmitting downlink control information for supporting non-orthogonal multiple access in wireless communication system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180294859A1 (en) * 2015-10-07 2018-10-11 Intel IP Corporation Dynamically beamformed control channel for beamformed cells
TWI665927B (zh) * 2017-11-24 2019-07-11 財團法人資訊工業策進會 基地台及使用者裝置
US11445487B2 (en) 2018-06-15 2022-09-13 At&T Intellectual Property I, L.P. Single user super position transmission for future generation wireless communication systems
US11140668B2 (en) 2018-06-22 2021-10-05 At&T Intellectual Property I, L.P. Performance of 5G MIMO
US11457434B2 (en) * 2018-06-22 2022-09-27 Sharp Laboratories Of America, Inc. User equipments, base stations and methods for time-domain resource allocation
CN108990071B (zh) * 2018-08-10 2022-03-04 南京邮电大学 一种基于noma的cr网络系统中两步走的功率分配方法
US10945281B2 (en) 2019-02-15 2021-03-09 At&T Intellectual Property I, L.P. Facilitating improved performance of multiple downlink control channels in advanced networks
US11800579B2 (en) * 2019-05-07 2023-10-24 Qualcomm Incorporated Establishment of millimeter wave relay links between user equipments with base station coordination
GB2615088A (en) * 2022-01-26 2023-08-02 British Telecomm Wireless telecommunications network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118872A (zh) * 2009-12-31 2011-07-06 中兴通讯股份有限公司 上行同步命令传递的方法和系统
CN103220690A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 下行控制信息的发送、下行控制信道的检测方法及装置
US20130196700A1 (en) * 2012-01-30 2013-08-01 Nokia Siemens Networks Oy Non-Orthogonal Transmit Mode
CN104284423A (zh) * 2013-07-05 2015-01-14 株式会社Ntt都科摩 移动通信方法、无线基站和移动台

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100593349C (zh) * 2003-11-03 2010-03-03 高通股份有限公司 用于无线通信环境中的数据发射和处理的方法、设备和系统
US7623553B2 (en) * 2003-11-03 2009-11-24 Qualcomm Incorporated Method, apparatus, and system for data transmission and processing in a wireless communication environment
US9277531B2 (en) 2012-02-01 2016-03-01 Nokia Solutions And Networks Oy Downlink inter-cell interference cancellation with cell aggregation coordinated multi-point
WO2014142464A1 (en) * 2013-03-13 2014-09-18 Lg Electronics Inc. Method for transmitting and receiving information for interference cancellation, and apparatus therefor
JP2015041941A (ja) * 2013-08-23 2015-03-02 株式会社Nttドコモ 無線基地局、中継局及び無線通信方法
US10003486B2 (en) * 2014-04-28 2018-06-19 Intel IP Corporation Non-orthogonal multiple access (NOMA) wireless systems and methods
US9712272B2 (en) * 2014-06-02 2017-07-18 Intel IP Corporation User equipment and method for dynamic non-orthogonal multiple access communication
US10149318B2 (en) * 2014-09-02 2018-12-04 Qualcomm Incorporated Techniques for transmitting and receiving downlink control information for a set of NOMA downlink transmissions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118872A (zh) * 2009-12-31 2011-07-06 中兴通讯股份有限公司 上行同步命令传递的方法和系统
CN103220690A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 下行控制信息的发送、下行控制信道的检测方法及装置
US20130196700A1 (en) * 2012-01-30 2013-08-01 Nokia Siemens Networks Oy Non-Orthogonal Transmit Mode
CN104284423A (zh) * 2013-07-05 2015-01-14 株式会社Ntt都科摩 移动通信方法、无线基站和移动台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3270647A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3720210A4 (en) * 2017-12-20 2021-07-21 Beijing Xiaomi Mobile Software Co., Ltd. DATA RECEIVING METHOD AND DEVICE AND DATA TRANSFER METHOD AND DEVICE
US11160066B2 (en) 2017-12-20 2021-10-26 Beijing Xiaomi Mobile Software Co., Ltd. Data receiving method and device and data transmitting method and device
US11665702B2 (en) * 2018-01-04 2023-05-30 Samsung Electronics Co., Ltd Method and device for transmitting downlink control information for supporting non-orthogonal multiple access in wireless communication system

Also Published As

Publication number Publication date
US20180027535A1 (en) 2018-01-25
EP3270647A1 (en) 2018-01-17
CN107005983B (zh) 2020-09-29
US10609697B2 (en) 2020-03-31
CN107005983A (zh) 2017-08-01
EP3270647A4 (en) 2018-03-21
EP3270647B1 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
US10609697B2 (en) Communication method based on non-orthogonal transmission, and device
US11025316B2 (en) Method and apparatus used for data transmission
US10555292B2 (en) Method for processing enhanced physical downlink control channel, network-side device, and user equipment
EP3429293B1 (en) Data transmission method, network side device and terminal device
CN106301737B (zh) 在存在信道状态信息参考信号传输的情况下改变速率匹配模式
CN110971347A (zh) 通信方法及其装置
CN104753838B (zh) 干扰处理方法、装置、网络控制单元及终端
US10523401B2 (en) Method, apparatus, and system for handling co-channel cell interference
JP6512643B2 (ja) 準直交伝送ベースの通信方法およびデバイス
JP6750096B2 (ja) データ通信方法およびデバイス
WO2018054191A1 (zh) 免授权传输的方法、网络设备和终端设备
WO2014113961A1 (zh) 用于传输参考信号的方法、基站和用户设备
WO2017020199A1 (zh) 一种物理下行控制信道的传输方法及装置
JP7140129B2 (ja) 無線通信装置、無線通信方法およびコンピュータプログラム
AU2016433342B2 (en) Information transmission method, network device and terminal device
EP3490317B1 (en) Control channel transmission method, device and system
US20230345284A1 (en) Downlink signal processing method and apparatus
CN108738042A (zh) 一种干扰消除方法、用户设备及网络设备
EP3229541B1 (en) Communication method and apparatus
CN117178612A (zh) 用于多pusch和多pdsch调度的确认信令
EP3484078A1 (en) Communication method, device and system
KR20120124337A (ko) 무선통신시스템에서 참조 신호를 송수신하는 방법 및 장치
WO2017031745A1 (zh) 一种信号处理方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015886961

Country of ref document: EP