WO2018059210A1 - 一种用于数据传输的方法和装置 - Google Patents

一种用于数据传输的方法和装置 Download PDF

Info

Publication number
WO2018059210A1
WO2018059210A1 PCT/CN2017/101012 CN2017101012W WO2018059210A1 WO 2018059210 A1 WO2018059210 A1 WO 2018059210A1 CN 2017101012 W CN2017101012 W CN 2017101012W WO 2018059210 A1 WO2018059210 A1 WO 2018059210A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
antenna ports
network device
terminal device
information
Prior art date
Application number
PCT/CN2017/101012
Other languages
English (en)
French (fr)
Inventor
窦圣跃
李元杰
任海豹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17854660.2A priority Critical patent/EP3512112B1/en
Publication of WO2018059210A1 publication Critical patent/WO2018059210A1/zh
Priority to US16/368,645 priority patent/US11025316B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0465Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking power constraints at power amplifier or emission constraints, e.g. constant modulus, into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • H04L25/03929Spatial equalizers codebook-based design with layer mapping, e.g. codeword-to layer design

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for data transmission.
  • Coordination Multiple Point (CoMP) transmission is a method proposed in Long Term Evolution (LTE) to solve the problem of inter-cell interference and improve the throughput of cell edge users.
  • the user equipment may receive a Physical Downlink Control Channel (PDCCH) from the serving network device, receive a physical downlink shared channel from the serving network device or the cooperative network side device, or simultaneously (both sides) (Physical Downlink Share) Channel, PDSCH) introduces the concept of antenna port quasi-co-location (QCL) in LTE.
  • the antenna port quasi-co-location is defined as the same large-scale fading from the signal transmitted from the quasi-co-located antenna port.
  • the large-scale fading includes delay spread, Doppler spread, Doppler shift, average channel gain, and average.
  • the network side device can transmit data to the user equipment according to the mapping relationship between the codeword to layer and the layer to the antenna port in the prior art by using the antenna port that meets the quasi co-location. However, if the antenna ports of multiple network devices that are cooperatively transmitted do not satisfy the QCL, the accuracy of channel estimation and the performance of data demodulation are affected.
  • the PDSCH RE mapping and Quasi-Co-Location Indicator are indicated by using a 2 bit (bit) PDSCH resource mapping and a PSII in a Downlink Control Information (DCI) 2D format.
  • a reference signal including, for example, a Cell Reference Signal (CRS), a Demodulation Reference Signal (DMRS), and a Channel State Information-Reference Signal), which is transmitted by each antenna port of the QCL. , CSI-RS) parameter configuration information.
  • CRS Cell Reference Signal
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • the same network device may be configured with different antenna panels, and the antenna ports belonging to different antenna panels may be non-QCL. That is, the antenna ports of the same network device may be non-QCL.
  • the same codeword (CW) is mapped to the non-QCL antenna port (for example, non-QCL port #7 and port #9), it is necessary to indicate the DMRS satisfying QCL with port #7 through the above PQI.
  • DMRS that meets QCL with port #9. it is necessary to expand the number of bits of the DCI, or use more PQI to indicate. Therefore, such a method based on an antenna port to indicate QCL configuration information lacks flexibility.
  • An embodiment of the present application provides a method and apparatus for data transmission, by grouping antenna ports, And transmitting at least one set of codewords to be sent to the same terminal device to a set of antenna ports satisfying the QCL for data transmission, and transmitting, according to a mapping relationship between the at least one set of codewords and the at least one set of target antenna ports, to the terminal device
  • the indication information for determining the QCL configuration information is more suitable for cooperative transmission in the NR, and has greater flexibility.
  • a method for data transmission comprising:
  • the network device determines a plurality of sets of antenna ports, each set of antenna ports includes two antenna ports, and any two of the same set of antenna ports satisfy a quasi co-location QCL;
  • the network device sends at least one first indication information to the terminal device, where the first indication information is used to determine QCL configuration information corresponding to a target antenna port used for sending the first data, where the QCL configuration information is used to indicate Corresponding target antenna port satisfies an antenna port of the QCL, the first data is data obtained by mapping at least one set of code words to the at least one set of target antenna ports, the at least one first indication information and the at least one One set of code words corresponds one-to-one, and the at least one set of code words are in one-to-one correspondence with the at least one set of target antenna ports.
  • the large-scale characteristic of the channel through which one symbol is transmitted from one antenna port can be inferred by the large-scale characteristic of the channel through which one symbol is transmitted from another antenna port.
  • the two antenna ports satisfying the QCL have the same large-scale characteristics, and the large-scale characteristics may specifically include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay. .
  • the specific content included in the "large-scale characteristics" listed herein is merely illustrative and should not be construed as limiting the application. This application does not exclude the inclusion of "large-scale characteristics" in future standards. The possibility of content modification or extension.
  • the mapping relationship sends the indication information to the terminal device for the terminal device to determine QCL configuration information for demodulating the data.
  • the first data is data obtained by the sending end device mapping the at least one set of code words to the at least one set of target antenna ports, where the sending end device is the same device as the network device, Or, for different devices.
  • the sending end device may configure multiple sets of antenna ports in advance by the controller or itself, and use one or more sets of antenna ports to transmit data when data needs to be sent; or when data needs to be sent , configure one or more sets of antenna ports to send data.
  • the multiple sets of antenna ports configured by the network device may be static or dynamic, which is not specifically limited in this application.
  • each group of antenna ports in the embodiment of the present application may include at least two antenna ports, or may only include one antenna port. If one of the antenna ports (for example, referred to as antenna port group #1) includes only one antenna port, the antenna port in the antenna port group #1 does not have a QCL relationship, but the antenna port group #1 and other groups There may be a QCL or non-QCL relationship between the antenna ports (for example, as antenna port group #2); if at least two antenna ports are included in the antenna port group #2, any two of the antenna port groups #2 The QCL relationship is satisfied between the antenna ports.
  • the number of antenna ports included in each group of antenna ports is not particularly limited in the present application.
  • the network device sends the at least one first indication information to the terminal device, including:
  • the network device sends the first downlink control information DCI to the terminal device, where the first DCI includes the at least one first indication information.
  • the first indication information includes an index of a high-level parameter, and the high-level parameter is used to determine the QCL configuration information, and
  • the network device sends the first downlink control information DCI to the terminal device, where the first DCI includes the at least one first indication information, including:
  • the network device determines, according to the first mapping relationship, at least one set of target high-level parameters corresponding to the at least one set of target antenna ports, where the first mapping relationship is used to indicate a mapping relationship between the multiple sets of antenna ports and the plurality of sets of high-level parameters;
  • the network device sends the first DCI, and the first DCI includes the at least one target information bit.
  • the terminal device determines the corresponding QCL configuration parameter according to the high-level parameter.
  • the network device sends the first DCI, where the first DCI includes the at least one target information bit, including:
  • the network device sends the first DCI, where the first DCI includes at least one indication field, and each indication field includes a target information bit,
  • the indication field is a field for indicating a transport block TB, and the at least one indication field is in one-to-one correspondence with at least one field for indicating a TB;
  • the indication field is a field for indicating a codeword.
  • the at least one first indication information may be carried by a field for indicating a TB in a DCI specified in an existing protocol (for example, an LTE protocol or the like), or may be added by adding a new field (for example, for indicating The field of the codeword is to be carried, and the present application is not particularly limited thereto.
  • an existing protocol for example, an LTE protocol or the like
  • a new field for example, for indicating The field of the codeword is to be carried, and the present application is not particularly limited thereto.
  • a second aspect provides a method for data transmission, including: receiving, by a terminal device, first data, where the first data is data obtained by mapping at least one set of codewords to at least one set of target antenna ports, where The at least one set of codewords is in one-to-one correspondence with the at least one set of target antenna ports, wherein each set of target antenna ports includes at least two antenna ports, and any two of the same set of target antenna ports satisfy a quasi-co-located QCL ;
  • the terminal device receives at least one first indication information that is sent by the network device, where the first indication information is used to determine at least one group of QCL configuration information corresponding to the target antenna port, where the QCL configuration information is used to indicate that The target antenna port satisfies an antenna port of the QCL, and the at least one first indication information is in one-to-one correspondence with the at least one group of code words;
  • the terminal device demodulates the first data according to the at least one first indication information.
  • the large-scale characteristic of the channel through which one symbol is transmitted from one antenna port can be inferred by the large-scale characteristic of the channel through which one symbol is transmitted from another antenna port.
  • the two antenna ports satisfying the QCL have the same large-scale characteristics, and the large-scale characteristics may specifically include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay. .
  • the specific content included in the "large-scale characteristics" listed herein is merely illustrative and should not be construed as limiting the application. This application does not exclude the inclusion of "large-scale characteristics" in future standards. The possibility of content modification or extension.
  • the antenna port sending indication information it is more suitable for cooperative transmission in the NR, and has greater flexibility.
  • the receiving, by the terminal device, the at least one first indication information that is sent by the network device includes:
  • the terminal device receives the first downlink control information DCI sent by the network device, where the first DCI includes the at least one first indication information.
  • the first indication information includes an index of a high-level parameter
  • the terminal device Receiving, by the terminal device, the first downlink control information DCI sent by the network device, where the first DCI includes the at least one first indication information, including:
  • the terminal device Receiving, by the terminal device, the first DCI sent by the network device, where the first DCI includes at least one target information bit, and the at least one target information bit is in one-to-one correspondence with an index of the at least one set of high-level parameters.
  • the terminal device determines the corresponding QCL configuration parameter according to the high-level parameter.
  • the terminal device receives the first DCI that is sent by the network device, where the first DCI includes At least one target information bit, including:
  • the indication field is a field for indicating a transport block TB, and the at least one indication field is in one-to-one correspondence with at least one field for indicating a TB;
  • the indication field is a field for indicating a codeword.
  • the at least one first indication information may be carried by a field for indicating a TB in a DCI specified in an existing protocol (for example, an LTE protocol or the like), or may be added by adding a new field (for example, for indicating The field of the codeword is to be carried, and the present application is not particularly limited thereto.
  • an existing protocol for example, an LTE protocol or the like
  • a new field for example, for indicating The field of the codeword is to be carried, and the present application is not particularly limited thereto.
  • the terminal device demodulates the foregoing according to the at least one first indication information A data, including:
  • the terminal device demodulates the first data according to the at least one QCL configuration information.
  • the QCL configuration information for demodulating the first data may be acquired by demodulating the indicated higher layer parameter in the at least one first indication information.
  • a method for data transmission comprising:
  • the network device determines a plurality of sets of antenna ports, each set of antenna ports includes two antenna ports, and any two of the same set of antenna ports satisfy a quasi co-location QCL;
  • the network device sends at least one first indication information to the terminal device, where the first indication information is used to determine QCL configuration information corresponding to the target antenna port used to send the first data, where the QCL configuration information is used to indicate that the corresponding The QCL is satisfied between any two of the set of target antenna ports, the first data being data obtained by mapping at least one set of codewords to at least one set of target antenna ports, the at least one first indication The information is in one-to-one correspondence with the at least one set of codewords, the at least one set of codewords being in one-to-one correspondence with the at least one set of target antenna ports.
  • the large-scale characteristic of the channel through which one symbol is transmitted from one antenna port can be inferred by the large-scale characteristic of the channel through which one symbol is transmitted from another antenna port.
  • the two antenna ports satisfying the QCL have the same large-scale characteristics, and the large-scale characteristics may specifically include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay. .
  • the specific content included in the "large-scale characteristics" listed herein is merely illustrative and should not be construed as limiting the application. This application does not exclude the inclusion of "large-scale characteristics" in future standards. The possibility of content modification or extension.
  • the mapping relationship sends the indication information to the terminal device for the terminal device to determine QCL configuration information for demodulating the data.
  • the first data is data obtained by the sending end device mapping the at least one set of code words to the at least one set of target antenna ports, where the sending end device is the same device as the network device, Or, for different devices.
  • the sending end device may configure multiple sets of antenna ports in advance by the controller or itself, and use one or more sets of antenna ports to transmit data when data needs to be sent; or when data needs to be sent , configure one or more sets of antenna ports to send data.
  • the multiple sets of antenna ports configured by the network device may be static or dynamic, which is not specifically limited in this application.
  • each group of antenna ports in the embodiment of the present application may include at least two antenna ports, or may only include one antenna port. If one of the antenna ports (for example, referred to as antenna port group #1) includes only one antenna port, the antenna port in the antenna port group #1 does not have a QCL relationship, but the antenna port group #1 and other groups There may be a QCL or non-QCL relationship between the antenna ports (for example, as antenna port group #2); if at least two antenna ports are included in the antenna port group #2, any two of the antenna port groups #2 The QCL relationship is satisfied between the antenna ports.
  • the number of antenna ports included in each group of antenna ports is not particularly limited in the present application.
  • the network device sends the at least one first indication information to the terminal device, including:
  • the network device sends the first downlink control information DCI to the terminal device, where the first DCI includes the at least one first indication information.
  • the first indication information includes an index of a high-level parameter, where the high-level parameter is used to determine the QCL configuration information, as well as,
  • the network device sends the first downlink control information DCI to the terminal device, where the first DCI includes the at least one first indication information, including:
  • the network device sends the first DCI, and the first DCI includes the at least one target information bit.
  • the terminal device determines the corresponding QCL configuration parameter according to the high-level parameter.
  • the network device sends the first DCI, where the first DCI includes the at least one target information bit, including:
  • the network device sends the first DCI, where the first DCI includes at least one indication field, and each indication field includes a target information bit,
  • the indication field is a field for indicating a transport block TB, and the at least one indication field is in one-to-one correspondence with at least one field for indicating a TB;
  • the indication field is a field for indicating a codeword.
  • the at least one first indication information may be carried by a field for indicating a TB in a DCI specified in an existing protocol (for example, an LTE protocol or the like), or may be added by adding a new field (for example, for indicating The field of the codeword is to be carried, and the present application is not particularly limited thereto.
  • an existing protocol for example, an LTE protocol or the like
  • a new field for example, for indicating The field of the codeword is to be carried, and the present application is not particularly limited thereto.
  • a fourth aspect provides a method for data transmission, including: receiving, by a terminal device, first data, where the first data is data obtained by mapping at least one set of codewords to at least one set of target antenna ports, where The at least one set of codewords is in one-to-one correspondence with the at least one set of target antenna ports, wherein each set of target antenna ports includes at least two antenna ports, and any two of the same set of target antenna ports satisfy a quasi-co-located QCL ;
  • At least one first indication information that is sent by the network device, where the first indication information is used to determine at least one group of QCL configuration information corresponding to the target antenna port, where the QCL configuration information is used to indicate the corresponding Any two antenna ports of the set of target antenna ports satisfy the QCL, and the at least one first indication information is in one-to-one correspondence with the at least one set of code words;
  • the terminal device demodulates the first data according to the at least one first indication information.
  • the large-scale characteristic of the channel through which one symbol is transmitted from one antenna port can be inferred by the large-scale characteristic of the channel through which one symbol is transmitted from another antenna port.
  • the two antenna ports satisfying the QCL have the same large-scale characteristics, and the large-scale characteristics may specifically include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay. .
  • the specific content included in the "large-scale characteristics" listed herein is merely illustrative and should not be construed as limiting the application. This application does not exclude the inclusion of "large-scale characteristics" in future standards. The possibility of content modification or extension.
  • the mapping relationship sends the indication information to the terminal device for the terminal device to determine QCL configuration information for demodulating the data.
  • the receiving, by the terminal device, the at least one first indication information that is sent by the network device includes:
  • the terminal device receives the first downlink control information DCI sent by the network device, where the first DCI includes the at least one first indication information.
  • the first indication information includes an index of a high-level parameter
  • the terminal device Receiving, by the terminal device, the first downlink control information DCI sent by the network device, where the first DCI includes the at least one first indication information, including:
  • the terminal device Receiving, by the terminal device, the first DCI sent by the network device, where the first DCI includes at least one target information bit, and the at least one target information bit is in one-to-one correspondence with an index of the at least one set of high-level parameters.
  • the terminal device determines the corresponding QCL configuration parameter according to the high-level parameter.
  • the terminal device receives the first DCI that is sent by the network device, where the first DCI includes At least one target information bit, including:
  • the indication field is a field for indicating a transport block TB, and the at least one indication field is in one-to-one correspondence with at least one field for indicating a TB;
  • the indication field is a field for indicating a codeword.
  • the at least one first indication information may be carried by a field for indicating a TB in a DCI specified in an existing protocol (for example, an LTE protocol or the like), or may be added by adding a new field (for example, for indicating The field of the codeword is to be carried, and the present application is not particularly limited thereto.
  • an existing protocol for example, an LTE protocol or the like
  • a new field for example, for indicating The field of the codeword is to be carried, and the present application is not particularly limited thereto.
  • the terminal device demodulates the foregoing according to the at least one first indication information A data, including:
  • the terminal device demodulates the first data according to the at least one QCL configuration information.
  • the QCL configuration information for demodulating the first data may be acquired by demodulating the indicated higher layer parameter in the at least one first indication information.
  • a method for data transmission comprising:
  • the network device determines a plurality of sets of antenna ports, each set of antenna ports including at least one antenna port, where the i-th antenna port of the at least one set of antenna ports includes more than two antenna ports, the i-th antenna port Any two of the antenna ports satisfy QCL, where i ⁇ [1, N], N represents the number of groups of antenna ports, and N is a natural number greater than or equal to 1;
  • the network device sends second indication information to the terminal device, where the second indication information is used to indicate whether QCL is satisfied between two sets of target antenna ports for transmitting the second data, and the second data is two sets of codes Words are mapped to data obtained on the two sets of target antenna ports, the two sets of codewords being in one-to-one correspondence with the two sets of target antenna ports.
  • the network device may not send the indication information of the high-level parameter to the terminal device (that is, the first indication information in the first aspect or the second aspect), and directly indicate the between two sets of target antenna ports by using 1 bit.
  • the QCL relationship demodulates the data using pilot information for data demodulation included in the existing DCI. Compared with the PQI indication information of the prior art 2 bits, the cost of 1 bit is saved, and it is also very flexible and convenient.
  • the sending, by the network device, the second indication information to the terminal device includes:
  • the network device sends second downlink control information DCI to the terminal device, where the second DCI includes the second indication information.
  • the method provided by the fifth aspect may be implemented independently of the method provided by the first aspect or the third aspect, or may be combined with the method provided by the first aspect or the third aspect, and details are not described herein again.
  • a method for data transmission comprising:
  • the terminal device receives the second data, where the second data is data obtained by mapping two sets of codewords to the two sets of target antenna ports, and the two sets of codewords are in one-to-one correspondence with the two sets of target antenna ports.
  • each set of target antenna ports includes at least one antenna port, and when the i-th target antenna port of the at least one set of target antenna ports includes more than two antenna ports, any two of the i-th target antenna ports
  • the antenna ports satisfy the quasi-co-location QCL, where i ⁇ [1, M], M represents the number of groups of target antenna ports, and M is a natural number greater than or equal to 1;
  • the terminal device demodulates the second data according to the second indication information.
  • the network device may not send the indication information of the high-level parameter to the terminal device (ie, the first indication information described in the first aspect or the second aspect), but directly indicate the two sets of target antenna ports by using 1 bit.
  • the QCL relationship between the two uses the pilot information for data demodulation included in the existing DCI to demodulate the data. Compared with the PQI indication information of the prior art 2 bits, the cost of 1 bit is saved, and it is also very flexible and convenient.
  • the receiving, by the terminal device, the second indication information that is sent by the network device includes:
  • the terminal device receives the second downlink control information DCI sent by the network device, where the second DCI includes the second indication information.
  • the method provided by the sixth aspect may be implemented independently of the method provided by the second aspect or the fourth aspect, or may be combined with the method provided by the second aspect or the fourth aspect, and details are not described herein again.
  • a network device for performing the first aspect, a possible implementation manner of any aspect of the first aspect, a third aspect, a possible implementation manner of any aspect of the third aspect, and a fifth aspect, Or a method in a possible implementation of any of the fifth aspects.
  • the terminal device may include a first aspect, where the first party is configured Any possible implementation of the aspect, the third aspect, or a possible implementation of any aspect of the third aspect, the fifth aspect, or a unit of the method in a possible implementation of any of the fifth aspects.
  • a terminal device for performing the second aspect, a possible implementation manner of any aspect of the second aspect, the fourth aspect, a possible implementation manner of any aspect of the fourth aspect, the sixth aspect, Or a method in a possible implementation of any of the sixth aspects.
  • the terminal device may comprise a possible implementation, a sixth aspect, or a sixth aspect for performing the second aspect, any possible implementation of the second aspect, the fourth aspect, or any aspect of the fourth aspect A unit of a method in a possible implementation of any aspect of the aspect.
  • a network device comprising a memory and a processor for storing instructions for executing instructions stored in the memory, and performing execution of instructions stored in the memory causes the processor to execute
  • a terminal device comprising: a memory for storing instructions for executing instructions stored in the memory, and a processor for causing the processor to execute
  • a computer readable storage medium for storing a computer program, the computer program comprising any one of any of the possible implementations of the first to sixth aspects or the first to sixth aspects Method of instruction.
  • the first mapping relationship and the second mapping relationship may be pre-negotiated between the network device and the terminal device, or may be sent by the network device to the terminal device. It is not particularly limited.
  • the embodiment of the present application groups the antenna ports, and at least one set of codewords to be sent to the same terminal device is mapped to a set of antenna ports that satisfy the QCL for data transmission, and based on at least one set of codewords.
  • the mapping relationship of the at least one set of target antenna ports is used to send the indication information for determining the QCL configuration information to the terminal device, which is more suitable for cooperative transmission in the NR, and has greater flexibility.
  • FIG. 1 is a schematic diagram of a wireless communication system suitable for use in an embodiment of the present application.
  • FIG. 2 is a schematic flow chart of a method for data transmission according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for data transmission according to another embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a network device in accordance with an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a network device according to another embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • FIG. 1 illustrates a wireless communication system 100 suitable for use with embodiments of the present application.
  • the wireless communication system 100 can include at least one network device, such as the first network device 110 and the second network device 120 shown in FIG. Both the first network device 110 and the second network device 120 can communicate with the terminal device 130 through a wireless air interface.
  • the first network device 110 and the second network device 120 can provide communication coverage for a particular geographic area and can communicate with terminal devices located within the coverage area.
  • the first network device 110 or the second network device 120 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB) in a WCDMA system, or may be an evolution in an LTE system.
  • BTS Base Transceiver Station
  • NodeB base station
  • the embodiment of the present application is not limited to the embodiment of the present disclosure.
  • the embodiment of the present application is not limited to the network device in the future 5G network, such as a transmission point (TRP), a base station, a small base station device, and the like. .
  • TRP transmission point
  • base station a base station
  • small base station device a small base station device
  • the wireless communication system 100 further includes one or more User Equipments (UEs) 130 located within the coverage of the first network device 110 and the second network device 120.
  • the terminal device 130 can be mobile or fixed.
  • the terminal device 130 may communicate with one or more core networks via a Radio Access Network (RAN), and the terminal device may be referred to as an access terminal, a terminal device, a subscriber unit, a subscriber station, and a mobile station. , mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), and a wireless communication function.
  • the wireless communication system 100 can support coordinated multi-point (CoMP) transmission, ie, multiple cells or multiple transmission points can cooperate to transmit data to the same terminal device on the same time-frequency resource.
  • the multiple cells may belong to the same network device or different network devices, and may be selected according to channel gain or path loss, received signal strength, received signal instructions, and the like.
  • the set of antenna ports of any two of the plurality of transmission points may not have the same large-scale properties, that is, the antenna port sets of the two transmission points are non-QCL (or, not Meet QCL).
  • the two transmission points may belong to the same cell or belong to different cells, which is not limited in this embodiment of the present application.
  • the same characteristics can refer to large-scale Third Generation Partnership Project (3 rd Generation Partnership Project, 3GPP ) defined in the standard, it can also be set according to actual system requirements. It is defined in the current 3GPP standard as: the large-scale characteristic of the channel through which one symbol is transmitted from one antenna port, and the large-scale characteristic of the channel through which one symbol is transmitted from another antenna port, in the two antenna ports satisfying QCL. infer.
  • the "large-scale characteristics" can also be referred to the definition of the 3GPP standard, or can be set according to actual system requirements.
  • "large scale characteristics" may include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay.
  • the first network device and the second network device in the embodiment of the present application may be QCL (or satisfy the QCL relationship), or may be non-QCL (or not satisfy the QCL relationship).
  • Two networks that satisfy the QCL relationship A device can be a network device belonging to the same site or a network device belonging to a different site.
  • the two network devices that do not satisfy the QCL relationship may be non-QCL network devices belonging to the same site, such as radio units of the same base station that are geographically distant, or the same base station is configured with different antenna panels, the same base station.
  • Antenna ports belonging to different antenna panels may be non-QCL.
  • Two network devices that do not satisfy the QCL relationship can also be different sites that are not QCL. This embodiment of the present application is not particularly limited.
  • the terminal device 130 in the wireless communication system 100 can support multipoint transmission, that is, the terminal device 130 can communicate with the first network device 110 or with the second network device 120, wherein the first network device 110 can serve as
  • the service network device refers to a network device that provides RRC connection, non-access stratum (NAS) mobility management, and security input services for the terminal device through the wireless air interface protocol.
  • NAS non-access stratum
  • the first network device may be a serving network device, and the second network device may be a cooperative network device; or the first network device may be a cooperative network device, and the second network device is a serving network device.
  • the service network device may send control signaling to the terminal device, where the cooperative network device may send data to the terminal device; or the service network device may send control signaling to the terminal device, the service network device and the cooperative network device Data can be sent to the terminal device at the same time.
  • This embodiment of the present application is not particularly limited.
  • the first network device is a serving network device
  • the second network device is a cooperative network device.
  • the number of the second network devices may be one or more
  • the first network device is a network device that meets different QCLs. It can be understood that the first network device and the second network device can both be serving network devices, for example in a scenario without cell non-cell.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Media Media
  • Processing of the Access Control, MAC) layer The data processed at the physical layer is the Protocol Data Unit (PDU) of the MAC layer, that is, the data stream.
  • PDU Protocol Data Unit
  • Different codewords distinguish different data streams. Since the number of codewords is inconsistent with the number of transmit antennas, the codewords can be mapped to different transmit antennas, so layer mapping and precoding are required.
  • Layer mapping can be understood as re-mapping a codeword to multiple layers according to certain rules; precoding can be understood as mapping data mapped to multiple layers onto different antenna ports.
  • the network device encodes the data to obtain a codeword, maps the codeword to the layer, maps to the antenna port, sends the signal to the terminal device through the corresponding antenna port, and sends a demodulation reference signal through the corresponding antenna port, so that the terminal device can
  • the demodulation reference signal demodulates the received data to obtain original data.
  • an antenna port can be understood as a transmitting antenna that can be recognized by a receiving end device or a spatially distinguishable transmitting antenna.
  • the antenna port can be defined in accordance with a reference signal (or pilot signal) associated with the antenna port.
  • An antenna port can be a physical antenna on the transmitting device or a weighted combination of multiple physical antennas on the transmitting device. In the embodiment of the present application, one antenna port corresponds to one reference signal without special explanation.
  • an antenna port (or a port for short) may be referred to as a reference signal port, and one reference signal corresponds to one antenna port.
  • the antenna port may include, for example, a CRS.
  • the description of the antenna port in this application may be a CSI-RS port or a CRS port, or a DMRS port. The skilled person can understand the meaning.
  • FIGS. 2 and FIG. 3 are schematic flowcharts of a method for data transmission according to an embodiment of the present application, showing detailed communication steps or operations of the method, but the steps or operations are merely examples, and the present application Embodiments may also perform other operations or variations of the various operations in FIG. 2 or FIG. Moreover, the various steps in FIGS. 2 and 3 may be performed in a different order than that presented in FIGS. 2 and 3, respectively, and it is possible that not all operations in FIGS. 2 and 3 are to be performed.
  • the method 200 can be used in a communication system for communicating over a wireless air interface, the communication system can include at least one network device and at least one terminal device.
  • the communication system can be the wireless communication system 100 shown in FIG.
  • the network device may be a transmission point (TRP), a base station, or may be another network device used for Downlink Control Information (DCI), which is not specifically limited in this application.
  • TRP transmission point
  • DCI Downlink Control Information
  • the method 200 will be described in detail by taking the interaction between the first network device (referred to as the first network device for convenience of distinction and description) and the terminal device as an example.
  • the first network device may be any one of the at least one network device described above as a network device serving the network device.
  • the "first” is only used to distinguish the description, and should not be construed as limiting the application.
  • the terminal device can be in communication with the first network device, and can also perform data communication with other one or more network devices (for example, the second network device), which is not specifically limited in this application.
  • the method 200 includes the following steps:
  • the first network device determines multiple sets of antenna ports.
  • each network device can be configured with at least one antenna port, and the antenna ports configured by each network device have a QCL or non-QCL relationship.
  • at least two antenna ports that satisfy the QCL are defined as a group of antenna ports (or one antenna port group).
  • each set of antenna ports includes a DMRS port and a CRS port, or each set of antenna ports includes a DMRS port and a CSI-RS port.
  • the network device can be configured with one antenna port or multiple antenna ports.
  • the antenna port When a network device (for example, referred to as network device #1) is configured with an antenna port, the antenna port may be non-QCL between the antenna ports configured by other network devices (for example, referred to as network device #2).
  • the one antenna port may be determined as a group of antenna ports; the antenna port may also be QCL between the antenna ports configured by other network devices (for example, referred to as network device #2). In this case, the one can be used.
  • the antenna port and the antenna port satisfying the QCL with the antenna port are determined as a set of antenna ports.
  • the multiple antenna ports may be QCL or non-QCL.
  • any two antenna ports in the one antenna panel may be QCL.
  • multiple antenna ports in the one antenna panel may be determined as a set of antenna ports; when the network device #3 is configured with multiple antenna panels, any two antenna ports in the same antenna panel may be QCL, and the antenna ports in each antenna panel may be The determination is a set of antenna ports; the antenna ports in any two different antenna panels (eg, any one of the antenna panels #1 and any one of the antenna panels #2) may be non-QCL.
  • the network device in the communication system is configured with N (N is a natural number greater than or equal to 1) group antenna port, in the case where the i-th antenna port of the N groups of antenna ports includes multiple antenna ports
  • the any two antenna ports of the i-th antenna port are QCL, and the antenna ports between different groups are non-QCL, wherein i ⁇ [1, N], i is a natural number.
  • each set of antenna ports may include more than two antenna ports, unless otherwise specified.
  • Type-A defines a site (TRP) QCL configuration, that is, the site's antenna ports (including CRS port, DMRS port, and CSI-RS port) satisfy QCL;
  • Type-B defines multiple sites.
  • the QCL configuration, the QCL configuration between antenna ports (including CRS ports, DMRS ports, and CSI-RS ports) between multiple sites can be indicated by PQI (2 bits) in DCI.
  • the Type-A may correspond to the same antenna device of the same network device in the NR
  • the Type-B may correspond to the situation of different antenna panels of the same network device in the NR, and the situation of different network devices in the NR.
  • the first network device may determine multiple sets of antenna ports by using the following two methods.
  • each network device may obtain information about a QCL relationship between the antenna ports configured by itself (that is, whether the QCL is met), and through an interface between the network devices (for example, an X2 interface).
  • the information about the QCL relationship of the respective antenna ports is sent to the serving network device (for example, the first network device in the embodiment of the present application).
  • each network device can be controlled by a centralized controller that can communicate with each network via fiber optics.
  • the QCL configuration of the antenna port between the network devices can be configured by the upper layer and sent to the controller through radio resource control (RRC) signaling, and the controller performs resource scheduling and data on each network device.
  • RRC radio resource control
  • the controller can send the information about the QCL relationship of the antenna port configured by each network device to the serving network device (for example, the first network device in this embodiment).
  • the first network device can determine the QCL relationship between the antenna ports in the communication system.
  • the method for obtaining the QCL relationship of the antenna port by the two first network devices enumerated above is only an exemplary description, and the present application should not be limited in any way, and the application should not be limited thereto.
  • the first network device may be a service network device of the terminal device, or may be a cooperative network device of the terminal device, which is not specifically limited in this application.
  • a network device may pre-configure multiple sets of antenna ports, and use one or more groups when data needs to be sent.
  • the antenna port transmits data; the network device can also configure one or more sets of antenna ports to transmit data when data needs to be transmitted.
  • the multiple sets of antenna ports configured by the network device may be static or dynamic, which is not specifically limited in this application.
  • the first network device determines at least one set of target antenna ports for transmitting the first data.
  • each network device may perform resource scheduling and data through a serving network device (for example, the serving network device may be the first network device in this embodiment).
  • the configuration of the transmission in which case the serving network device can determine at least one set of target antenna ports for transmitting the first data.
  • each network device may also perform resource scheduling and data transmission configuration by itself.
  • each network device needs to coordinate resources for data transmission and pass an interface between network devices (for example, an X2 interface). At least one set of target antenna ports for transmitting the first data is transmitted to the first network device.
  • the antenna port for transmitting the first data may be referred to as a target antenna port, and the target antenna port for transmitting the first data may be, for example, a DMRS port, and the DMRS may be used for facilitating differentiation and description. Do channel estimation and data demodulation.
  • the network device for sending the first data may include the first network device, and may also include other network devices.
  • the sender device and the first network device may be the same device or different devices.
  • the interface information is not required to be exchanged between the antenna panels.
  • the controller may decide to send the first data to the terminal device (for easy understanding and differentiation, the data to be sent to the terminal device is recorded as the first data), in other words, In other words, the controller can decide which network devices send which data to the terminal device.
  • the sending end device for sending the first data to the terminal device may be the foregoing first network device, or other network device (for example, the second network device), and may also be the foregoing first network device and other Internet equipment.
  • the source device and the first network device may be the same device or different devices, which is not specifically limited in this application.
  • each network device may also perform resource scheduling and data transmission configuration through a service network device, or each network device may also perform resource scheduling and data transmission configuration by itself.
  • the first data may be data obtained by the source device mapping at least one set of codewords to the at least one set of target antenna ports, where at least one set of codewords and at least one set of target antennas The ports correspond one-to-one, and each set of codewords is mapped to a corresponding set of target antenna ports. The first data is then transmitted to the terminal device through the at least one set of target antenna ports.
  • the at least one set of target antenna ports may be part of one or more sets of antenna ports of the plurality of sets of antenna ports determined in S210. Assume that the number of groups of target antenna ports is M, then M is a natural number less than or equal to N.
  • the first network device can be interfaced by the controller (when the configuration of the resource scheduling and data transmission is performed by the controller) or with other network devices (when the configuration of the resource scheduling and data transmission is performed by the network device itself)
  • the first network device sends at least one first indication information to the terminal device.
  • the first indication information may be included in a DCI sent by the first network device to the terminal device (referred to as a first DCI for convenience of distinguishing and description).
  • S230 may specifically include:
  • the first network device sends a first DCI to the terminal device, where the first DCI includes at least one first indication information.
  • the first network device may indicate different QCL configuration information through different information bits on the indication field in the DCI (referred to as the first DCI for convenience of distinguishing and description) sent to the terminal device.
  • the at least one first indication information is in one-to-one correspondence with the at least one group of code words, and each of the first indication information is used to determine at least one corresponding to at least one group of target antenna ports used for transmitting the first data.
  • Pilot information wherein the at least one pilot information is in one-to-one correspondence with at least one set of target antenna ports, and each pilot information is used to demodulate data transmitted through the corresponding set of target antenna ports.
  • the first indication information includes an index of a high-level parameter, and the high-level parameter is used to determine QCL configuration information.
  • the QCL configuration information is used to indicate that the QCL is met between the antenna ports in the corresponding set of antenna ports. That is to say, when the terminal device obtains the QCL configuration information, it can determine which antenna ports belong to a group of antenna ports according to the specific content included therein, that is, which antenna ports satisfy the QCL.
  • S230 may further include:
  • the first network device sends the first downlink control information DCI to the terminal device, where the first DCI includes the at least one first indication information, including:
  • the first network device determines, according to the first mapping relationship, at least one set of higher layer parameters corresponding to the at least one set of target antenna ports, where the first mapping relationship is used to indicate the multiple sets of antenna ports and groups Mapping of high-level parameters;
  • the first network device sends the first DCI, and the first DCI includes the at least one target information bit.
  • the first mapping relationship and the second mapping relationship may be pre-configured in the first network device, and after determining at least one set of target antenna ports that send the first data through S220, the corresponding mapping relationship may be determined according to the first mapping relationship.
  • At least one set of target high-level parameters, and according to the second mapping relationship, at least one information bit corresponding to the at least one set of target high-level parameters is carried in at least one indication field of the first DCI.
  • the high-level parameter can be understood as a parameter that is configured through a high-level configuration and sent through RRC signaling.
  • the high level parameters can include the following:
  • CRS configuration (including CRS port and frequency offset);
  • the CRS configuration, the PDSCH starting point, and the MBSFN are used to determine pilot information required for a PDSCH resource element (Resource Element, RE) mapping; a non-zero power CSI-RS configuration and a pilot configuration for beam management may be used. Used to determine QCL configuration information.
  • the port number of the antenna port, the scrambling identifier, and the mapping relationship between the codeword and the layer used in the data transmission are carried in the DCI sent by the network device to the terminal device in the prior art. Characterized by high-level parameters.
  • the above-mentioned high-level parameters for determining pilot information required for PDSCH RE mapping, and high-level parameters for determining QCL configuration information, and the specific contents included in the above-mentioned listed high-level parameters are merely exemplary.
  • This application does not constitute any limitation. This application does not preclude the possibility of deleting, modifying or expanding the specific content of high-level parameters in future standards.
  • the higher layer parameters used to determine QCL configuration information may include only non-zero power CSI-RS configurations.
  • Table 1 shows an example of a mapping relationship between a plurality of information bits and an index of a plurality of sets of higher layer parameters (i.e., a second mapping relationship).
  • the index of the four sets of higher layer parameters can be indicated by a bit sequence of two bits.
  • this should not constitute any limitation to the present application, and the present application does not exclude the possibility of indicating more or fewer sets of higher layer parameters by more or fewer bit sequence.
  • the number of groups of high-level parameters is L
  • the number of bits of information bits used to indicate high-level parameters may be among them, Indicates rounding up.
  • the first network device and the terminal device are pre-configured with a one-to-one correspondence between the plurality of high-level parameters and the index, and when the first network device indicates the index of the high-level parameter to the terminal device, the terminal device
  • the target high level parameter indicated by the first network device may be determined according to an index.
  • the first network device sends the first DCI, where the first DCI includes the at least one target information bit, which may specifically include:
  • the first network device sends the first DCI, where the first DCI includes at least one indication field, and each indication field includes a target information bit.
  • the indication field is a field for indicating a transport block TB, and the at least one indication field is in one-to-one correspondence with at least one field for indicating a TB;
  • the indication field is a field for indicating a codeword.
  • a field for indicating a transport block (TB) having a one-to-one correspondence with the code word is included.
  • the target information bit may be carried by adding an indication field of at least one bit in the field for indicating an index of a high-level parameter.
  • the terminal device may be based on a one-to-one correspondence between the TB and the codeword. And a one-to-one correspondence between the index and the high-level parameter, and determining a target high-level parameter corresponding to the target information bit.
  • a field for indicating a codeword may be directly added to the first DCI.
  • the terminal device may directly determine a target corresponding to the codeword according to the information bits in the field. High-level parameters.
  • the sending end device sends the first data to the terminal device.
  • the transmitting end device may map at least one set of codewords to be transmitted to the at least one set of target antenna ports, And transmitting to the terminal device through the at least one set of target antenna ports.
  • the terminal device receives the at least one first indication information sent by the first network device, and the first data sent by the sending end device.
  • the terminal device demodulates the received first data according to the at least one indication information.
  • the terminal device may determine QCL configuration information with the at least one set of target antenna ports according to the one-to-one correspondence between the received at least one indication information and the at least one set of codewords to demodulate the first data.
  • S250 may specifically include:
  • the terminal device Determining, by the terminal device, at least one set of target high-level parameters corresponding to the at least one target information bit according to the second mapping relationship, where the second mapping relationship is used to indicate a mapping relationship between the indexes of the multiple sets of high-level parameters and the plurality of information bits;
  • the terminal device demodulates the first data according to the at least one QCL configuration information.
  • the terminal device may determine the target high-level parameter according to the target information bit in each indication field, and further determine the QCL configuration information used to demodulate the first data, that is, determine the An antenna port having a QCL relationship with the at least one set of target antenna ports. Thereby, the terminal device can acquire the first data.
  • the antenna port having a QCL relationship with the target antenna port may be, for example, a CRS port or a CSI-RS port.
  • the high-level parameters include a CRS configuration and/or a non-zero-power CSI-RS configuration, thereby determining a CRS port or CSI- having a QCL relationship with the DMRS port. RS port.
  • the method for data transmission in the embodiment of the present application by grouping antenna ports, mapping at least one set of codewords to be sent to the same terminal device to a set of antenna ports satisfying QCL for data transmission, and based on And mapping the at least one set of codewords to the at least one set of target antenna ports, and transmitting the indication information to the terminal device for determining, by the terminal device, QCL configuration information for demodulating the data.
  • the antenna port sending indication information it is more suitable for cooperative transmission in the NR, and has greater flexibility.
  • first mapping relationship and the second mapping relationship described above may be pre-negotiated between the network device and the terminal device, or may be sent by the network device to the terminal device, which is not specifically described in this application. limited.
  • the method for indicating the index of the high-level parameters by the DCI listed in the method 200 for the terminal device to determine the QCL configuration information is merely exemplary and should not be construed as limiting the application.
  • the first network device may directly include the high-level parameters in the DCI and directly send the information to the terminal device.
  • the terminal device may directly determine the QCL configuration information according to the high-level parameters.
  • the first network device can also set high-level parameters. The terminal device is directly sent to the terminal device through RRC signaling, so that the terminal device determines the QCL configuration information according to the high-level parameter.
  • FIG. 3 shows a schematic flow diagram of a method 300 for data transmission in accordance with an embodiment of the present application, as described in terms of device interaction.
  • the method 300 can be used in a communication system that communicates over a wireless air interface, which can include at least one network device and at least one terminal device.
  • the communication system can be the wireless communication system 100 shown in FIG.
  • the network device may be a transmission point (TRP), a base station, or another network device for transmitting downlink control information (DCI), which is not specifically limited in this application.
  • TRP transmission point
  • DCI downlink control information
  • the method 300 will be described in detail by taking the interaction between the first network device and the terminal device as an example.
  • the first network device may be any one of the at least one network device described above as a network device serving the network device.
  • the first network device may be the first network device in the method 200, or may be different from the first network device in the method 200, which is not specifically limited in this application.
  • the "first” is only used to distinguish the description, and should not be construed as limiting the application.
  • the terminal device can be in communication with the first network device, and can also perform data communication with other one or more network devices (for example, the second network device), which is not specifically limited in this application.
  • the method 300 includes the following steps:
  • the first network device determines multiple sets of antenna ports.
  • the first network device determines two sets of target antenna ports for transmitting the second data.
  • the data sent by the transmitting device to the terminal device is recorded as the second data.
  • the second data may be mapped by the transmitting device to two sets of codewords (eg, codeword group #A and codeword group #B) to the two sets of target antenna ports (eg, antenna port group #A and antenna port group # B), and the obtained data (for example, the data A corresponding to the codeword group #A and the data B corresponding to the codeword group #B) are transmitted to the terminal device through the two sets of target antenna ports.
  • the antenna port group #A and the antenna port group #B exemplified herein may include one antenna port or multiple antenna ports, which is not specifically limited in this application.
  • the first network device sends second indication information to the terminal device.
  • the second indication information can be used to determine whether the QCL is met between the two sets of target antenna ports. Specifically, the second indication information may be used to indicate whether the QCL is satisfied between any one of the antenna port groups #A and any one of the antenna port groups #B. It can be understood that any two antenna ports of the same group of antenna ports satisfy the QCL. If any one of the antenna port groups #A and any one of the antenna port groups #B does not satisfy the QCL, the antenna is considered to be an antenna. QCL is not satisfied between port group #A and antenna port group #B; otherwise, QCL is considered to be satisfied between antenna port group #A and antenna port group #B.
  • S330 may specifically include:
  • the first network device sends a second DCI to the terminal device, where the second DCI includes the second indication information.
  • the DCI sent by the first network device to the terminal device is recorded as the second DCI.
  • the second DCI and the first DCI may be the same DCI or different.
  • the DCI is not specifically limited in this application.
  • the sending end device sends the second data to the terminal device.
  • the terminal device receives the second indication information and the second data.
  • the terminal device demodulates the received second data according to the second indication information.
  • the second data received by the terminal device is obtained by mapping two sets of code words to two sets of target antenna ports respectively, if the two sets of target antenna ports corresponding to the two sets of code words are not If the QCL is met, the data corresponding to the two sets of codewords (for example, data A and data B) are respectively demodulated by using QCL configuration information corresponding to the two sets of target antenna ports; if the two sets of codes If the two sets of target antenna ports corresponding to the word satisfy the QCL, the same QCL configuration information can be used to simultaneously demodulate the data corresponding to the two sets of code words (for example, data A and data B).
  • the first network device includes, in the second DCI sent to the terminal device, a port number of the antenna port used for transmitting data, a scrambling identifier ID, and a codeword and a layer.
  • the information of the mapping relationship the terminal device can perform data demodulation based on the above information.
  • the first network device sends the 1-bit indication information (ie, the second indication information) to the terminal device to indicate whether the QCL is met between the two sets of target antenna ports, and then uses the existing DCI.
  • the pilot information for data demodulation demodulates the data.
  • the method for data transmission in the embodiment of the present application can determine that the two sets of code words are respectively mapped to two sets of antenna ports, and the second indication information indicates whether the two sets of target antenna ports meet QCL.
  • the data corresponding to the two sets of code words are respectively demodulated, or simultaneously demodulated.
  • the cost of 1 bit is saved, and it is also very flexible and convenient.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 4 is a schematic block diagram of a network device 400 in accordance with an embodiment of the present application.
  • the network device 400 includes a transmitting unit 410 and a processing unit 420.
  • the network device 400 may correspond to the network device in the method 200 or the method 300 for data transmission according to an embodiment of the present application, and the network device 400 may include a method for performing the method 200 or the method in FIG. A unit of method performed by the first network device of 300.
  • the units in the network device 400 and the other operations and/or functions described above are respectively implemented in order to implement the corresponding processes of the method 200 in FIG. 2 or the method 300 in FIG. 3, and are not described herein again for brevity.
  • FIG. 5 is a schematic block diagram of a terminal device 500 according to an embodiment of the present application.
  • the terminal device 500 includes a receiving unit 510 and a processing unit 520.
  • the terminal device 500 may correspond to the terminal device in the method 200 or the method 300 for data transmission according to an embodiment of the present application, and the terminal device 500 may include a method for performing the method 200 or the method in FIG. A unit of method performed by a terminal device of 300.
  • the respective units in the terminal device 500 and the other operations and/or functions described above are respectively implemented in order to implement the corresponding processes of the method 200 in FIG. 2 or the method 300 in FIG. 3, and are not described herein again for brevity.
  • FIG. 6 is a schematic block diagram of a network device 600 in accordance with another embodiment of the present application.
  • the network device 600 includes a transceiver 610, a processor 620, a memory 630, and a bus system 640.
  • the transceiver 640, the processor 620 and the memory 630 are connected by a bus system 640 for storing instructions for executing the instructions stored by the memory 630 to control the transceiver 610 to send and receive signals.
  • the memory 630 may be configured in the processor 620 or may be independent of the processor 620.
  • the network device 600 may correspond to the network device in the method 200 or the method 300 for data transmission according to an embodiment of the present application, and the network device 600 may include a method for performing the method 200 or the method in FIG. The physical unit of the method performed by the first network device of 300.
  • the physical units in the network device 600 and the other operations and/or functions described above are respectively implemented in order to implement the corresponding processes of the method 200 in FIG. 2 or the method 300 in FIG. 3, and are not described herein again for brevity.
  • FIG. 7 is a schematic block diagram of a terminal device 700 according to another embodiment of the present application.
  • the terminal device 700 includes a transceiver 710, a processor 720, a memory 730, and a bus system 740.
  • the transceiver 740, the processor 720 and the memory 730 are connected by a bus system 740 for storing instructions for executing instructions stored in the memory 730 to control the transceiver 710 to send and receive signals.
  • the memory 730 may be configured in the processor 720 or may be independent of the processor 720.
  • the terminal device 700 may correspond to the terminal device in the method 200 or the method 300 for data transmission according to an embodiment of the present application, and the terminal device 700 may include the method 300 for performing the method 200 or the method 300 of FIG.
  • the physical unit of the method performed by the terminal device may correspond to the terminal device in the method 200 or the method 300 for data transmission according to an embodiment of the present application, and the terminal device 700 may include the method 300 for performing the method 200 or the method 300 of FIG.
  • the physical unit of the method performed by the terminal device The physical unit of the method performed by the terminal device.
  • the physical units in the terminal device 700 and the other operations and/or functions described above are respectively used to implement the corresponding processes of the method 200 in FIG. 2 or the method 300 in FIG. 3, and are not described herein again for brevity.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a central processing unit (CPU), the processor may be another general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (ASIC). ), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software in the decoding processor.
  • the software can be located in a random storage medium, such as a flash memory, a read only memory, a programmable read only memory or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be a read-only memory (Read-Only) Memory, ROM, Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM) or Flash Memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • bus system may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus.
  • bus systems may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus.
  • various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method for data transmission disclosed in the embodiments of the present application may be directly implemented as hardware processor execution completion, or performed by hardware and software combination in the processor.
  • the software can be located in a random storage medium, such as a flash memory, a read only memory, a programmable read only memory or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs including instructions, when the portable electronic device is included in a plurality of applications When executed, the portable electronic device can be caused to perform the method of the embodiment shown in FIG. 2.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs including instructions, when the portable electronic device is included in a plurality of applications When executed, the portable electronic device can be caused to perform the method of the embodiment shown in FIG.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple networks. On the unit. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种用于数据传输的方法,能够适用于NR中的协作传输,具有较大的灵活性。该方法包括:网络设备确定多组天线端口,每组天线端口包括至少两个天线端口,同一组天线端口中的任意两个天线端口满足准共址QCL;该网络设备向终端设备发送至少一个第一指示信息,该第一指示信息用于确定发送第一数据所使用的目标天线端口对应的QCL配置信息,该QCL配置信息用于指示与所对应的目标天线端口满足QCL的天线端口,该第一数据是由发送端设备将至少一组码字映射到该至少一组目标天线端口上得到的数据,该至少一个第一指示信息与该至少一组码字一一对应,该至少一组码字与该至少一组目标天线端口一一对应。

Description

一种用于数据传输的方法和装置
本申请要求于2016年9月30日提交中国专利局、申请号为201610872741.8、申请名称为“一种用于数据传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种用于数据传输的方法和装置。
背景技术
协作多点(Coordination Multiple Point,CoMP)传输是长期演进(Long Term Evolution,LTE)中提出的一种用于解决小区间干扰问题并提升小区边缘用户吞吐量的方法。为了支持CoMP,也就是用户设备可以从服务网络设备接收物理下行控制信道(Physical Downlink Control Channel,PDCCH)、从服务网络设备或协作网络侧设备或(两边同时)接收物理下行共享信道(Physical Downlink Share Channel,PDSCH),在LTE中引入了天线端口准共址(Quasi-Co-Location,QCL)的概念。天线端口准共址定义为从准共址的天线端口发送出的信号会经过相同的大尺度衰落,大尺度衰落包括时延扩展、多普勒扩展、多普勒频移、平均信道增益和平均时延。网络侧设备可通过满足准共址的天线端口,根据现有技术中码字到层、层到天线端口的映射关系,向用户设备传输数据。但是,若协作传输的多个网络设备的天线端口不满足QCL,则会影响信道估计的精度以及数据解调的性能。
当前技术中,通过在下行控制信息(Downlink Control Information,DCI)2D格式中通过2比特(bit)的PDSCH资源映射和准共址指示(PDSCH RE Mapping and Quasi-Co-Location Indicator,PQI)来指示满足QCL的各天线端口所发射的参考信号(包括例如:小区参考信号(Cell Reference Signal,CRS)、解调参考信号(Demodulation Reference Signal,DMRS)以及信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS))的参数配置信息。
随着5G新无线(New Radio,NR)的引入,同一网络设备可能配置有不同的天线面板,归属不同天线面板的天线端口可能是非QCL的。也就是说,同一网络设备的天线端口之间可能是非QCL的。若将同一个码字(Code Word,CW)映射到非QCL的天线端口(例如,非QCL的端口#7和端口#9)上,需要分别通过上述PQI来指示与端口#7满足QCL的DMRS,以及与端口#9满足QCL的DMRS。这种情况下,就需要扩展DCI的比特数,或者使用更多的PQI来指示。因此,这种基于天线端口来指示QCL配置信息的方法缺乏灵活性。
发明内容
本申请实施例提供了一种用于数据传输的方法和装置,通过对天线端口进行分组,将 待发送给同一终端设备的至少一组码字映射到满足QCL的一组天线端口上进行数据发送,并基于至少一组码字与至少一组目标天线端口的映射关系,向终端设备发送用于确定QCL配置信息的指示信息,更加适用于NR中的协作传输,具有较大的灵活性。
第一方面,提供了一种用于数据传输的方法,包括:
网络设备确定多组天线端口,每组天线端口包括两个天线端口,同一组天线端口中的任意两个天线端口满足准共址QCL;
所述网络设备向终端设备发送至少一个第一指示信息,所述第一指示信息用于确定发送第一数据所使用的目标天线端口对应的QCL配置信息,所述QCL配置信息用于指示与所对应的目标天线端口满足QCL的天线端口,所述第一数据是将至少一组码字映射到所述至少一组目标天线端口上得到的数据,所述至少一个第一指示信息与所述至少一组码字一一对应,所述至少一组码字与所述至少一组目标天线端口一一对应。
需要说明的是,满足QCL的两个天线端口中,一个符号从一个天线端口传输经过的信道的大尺度特性可通过一个符号从另一个天线端口传输所经过的信道的大尺度特性推断。满足QCL的两个天线端口之间具有相同的大尺度特性,大尺度特性具体可以包括:时延扩展、多普勒扩展、多普勒频移、平均增益以及平均时延中的一个或多个。但应理解,这里所列举的“大尺度特性”所包括的具体内容仅为示例性说明,不应对本申请构成任何限定,本申请不排除在未来的标准中对“大尺度特性”所包括的内容进行修改或扩展的可能。
因此,通过对天线端口进行分组,将待发送给同一终端设备的至少一组码字映射到满足QCL的一组天线端口上进行数据发送,并基于至少一组码字与至少一组目标天线端口的映射关系,向终端设备发送指示信息,以用于终端设备确定用于解调数据的QCL配置信息。与现有技术中基于天线端口发送指示信息相比,更加适用于NR中的协作传输,具有较大的灵活性。
可选地,所述第一数据是发送端设备将所述至少一组码字映射到所述至少一组目标天线端口上得到的数据,所述发送端设备与所述网络设备为同一设备,或者,为不同的设备。
需要说明的是,该发送端设备可以预先由控制器或者自身配置多组天线端口,并在需要发送数据时,使用其中的一组或多组天线端口来发送数据;也可以在需要发送数据时,配置一组或多组天线端口来发送数据。换句话说,网络设备所配置的多组天线端口可以是静态的,也可以是动态的,本申请对此并未特别限定。
还需要说明的是,本申请实施例中的每组天线端口可以包括至少两个天线端口,也可以仅包括一个天线端口。若其中的某一组天线端口(例如,记作天线端口组#1)仅包括一个天线端口,该天线端口组#1中的天线端口不存在QCL关系,但该天线端口组#1与其他组的天线端口(例如,记作天线端口组#2)之间可能存在QCL或者非QCL的关系;若天线端口组#2中包括至少两个天线端口时,天线端口组#2中的任意两个天线端口之间满足QCL关系。本申请对于每组天线端口中所包括的天线端口的数量并未特别限定。
结合第一方面,在第一方面的第一种可能的实现方式中,该网络设备向该终端设备发送至少一个第一指示信息,包括:
该网络设备向该终端设备发送第一下行控制信息DCI,该第一DCI包括该至少一个第一指示信息。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所 述第一指示信息包括高层参数的索引,该高层参数用于确定该QCL配置信息,以及,
该网络设备向该终端设备发送第一下行控制信息DCI,该第一DCI包括该至少一个第一指示信息,包括:
该网络设备根据第一映射关系,确定与该至少一组目标天线端口对应的至少一组目标高层参数,该第一映射关系用于指示该多组天线端口与多组高层参数的映射关系;
该网络设备根据第二映射关系,确定与该至少一组目标高层参数的索引对应的至少一个目标信息比特,该第二映射关系用于指示多组高层参数的索引与多个信息比特的映射关系;
该网络设备发送该第一DCI,该第一DCI包括该至少一个目标信息比特。
通过在DCI中承载上述至少一个第一指示信息,通过指示高层参数的索引以便于终端设备根据高层参数确定相对应的QCL配置参数,非常灵活方便,易于实现。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,该网络设备发送该第一DCI,该第一DCI包括该至少一个目标信息比特,包括:
该网络设备发送该第一DCI,该第一DCI包括至少一个指示字段,每个指示字段包括一个目标信息比特,
其中,该指示字段为用于指示传输块TB的字段,该至少一个指示字段与至少一个用于指示TB的字段一一对应;
或者,该指示字段为用于指示码字的字段。
也就是说,该至少一个第一指示信息可以通过现有协议(例如,LTE协议等)中规定的DCI中用于指示TB的字段来承载,也可以通过增加新的字段(例如,用于指示码字的字段)来承载,本申请对此并未特别限定。通过用于指示TB的字段或用于指示码字的字段来承载,可以将至少一组码字与至少一个第一指示信息之间的一一对应关系通过不同的字段区分开来,非常灵活方便,易于实现。
第二方面,提供了一种用于数据传输的方法,包括:终端设备接收第一数据,所述第一数据是将至少一组码字映射到至少一组目标天线端口上得到的数据,所述至少一组码字与所述至少一组目标天线端口一一对应,其中,每组目标天线端口包括至少两个天线端口,同一组目标天线端口中的任意两个天线端口满足准共址QCL;
所述终端设备接收网络设备发送的至少一个第一指示信息,所述第一指示信息用于确定所述目标天线端口对应的至少一组QCL配置信息,所述QCL配置信息用于指示与所对应的目标天线端口满足QCL的天线端口,所述至少一个第一指示信息与所述至少一组码字一一对应;
所述终端设备根据所述至少一个第一指示信息,解调所述第一数据。
其中,满足QCL的两个天线端口中,一个符号从一个天线端口传输经过的信道的大尺度特性可通过一个符号从另一个天线端口传输所经过的信道的大尺度特性推断。满足QCL的两个天线端口之间具有相同的大尺度特性,大尺度特性具体可以包括:时延扩展、多普勒扩展、多普勒频移、平均增益以及平均时延中的一个或多个。但应理解,这里所列举的“大尺度特性”所包括的具体内容仅为示例性说明,不应对本申请构成任何限定,本申请不排除在未来的标准中对“大尺度特性”所包括的内容进行修改或扩展的可能。
因此,通过对天线端口进行分组,将待发送给同一终端设备的至少一组码字映射到满 足QCL的一组天线端口上进行数据发送,并基于至少一组码字与至少一组目标天线端口的映射关系,向终端设备发送指示信息,以用于终端设备确定用于解调数据的QCL配置信息。与现有技术中基于天线端口发送指示信息相比,更加适用于NR中的协作传输,具有较大的灵活性。
结合第二方面,在第二方面的第一种可能的实现方式中,所述终端设备接收网络设备发送的至少一个第一指示信息,包括:
所述终端设备接收该网络设备发送的第一下行控制信息DCI,所述第一DCI包括该至少一个第一指示信息。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述第一指示信息包括高层参数的索引,以及,
所述终端设备接收所述网络设备发送的第一下行控制信息DCI,所述第一DCI包括所述至少一个第一指示信息,包括:
所述终端设备接收所述网络设备发送的所述第一DCI,所述第一DCI包括至少一个目标信息比特,所述至少一个目标信息比特与所述至少一组高层参数的索引一一对应。
通过在DCI中承载上述至少一个第一指示信息,通过指示高层参数的索引以便于终端设备根据高层参数确定相对应的QCL配置参数,非常灵活方便,易于实现。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述终端设备接收所述网络设备发送的所述第一DCI,所述第一DCI包括至少一个目标信息比特,包括:
所述终端设备接收所述网络设备发送的所述第一DCI,所述第一DCI包括至少一个指示字段,每个指示字段包括一个目标信息比特,
其中,所述指示字段为用于指示传输块TB的字段,所述至少一个指示字段与至少一个用于指示TB的字段一一对应;
或者,所述指示字段为用于指示码字的字段。
也就是说,该至少一个第一指示信息可以通过现有协议(例如,LTE协议等)中规定的DCI中用于指示TB的字段来承载,也可以通过增加新的字段(例如,用于指示码字的字段)来承载,本申请对此并未特别限定。通过用于指示TB的字段或用于指示码字的字段来承载,可以将至少一组码字与至少一个第一指示信息之间的一一对应关系通过不同的字段区分开来,非常灵活方便,易于实现。
结合第二方面的第二种或者第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述终端设备根据所述至少一个第一指示信息,解调所述第一数据,包括:
所述终端设备根据第二映射关系,确定与所述至少一个目标信息比特对应的至少一组目标高层参数,所述第二映射关系用于指示多组高层参数的索引与多个信息比特的映射关系;
所述终端设备根据所述至少一组目标高层参数,确定所述至少一个QCL配置信息;
所述终端设备根据所述至少一个QCL配置信息,解调所述第一数据。
通过对该至少一个第一指示信息中的所指示的高层参数进行解调,可以获取到用于解调第一数据的QCL配置信息。
第三方面,提供了一种用于数据传输的方法,包括:
网络设备确定多组天线端口,每组天线端口包括两个天线端口,同一组天线端口中的任意两个天线端口满足准共址QCL;
所述网络设备向终端设备发送至少一个第一指示信息,所述第一指示信息用于确定发送第一数据所使用的目标天线端口对应的QCL配置信息,所述QCL配置信息用于指示所对应的一组目标天线端口中的任意两个天线端口之间满足QCL,所述第一数据是将至少一组码字映射到至少一组目标天线端口上得到的数据,所述至少一个第一指示信息与所述至少一组码字一一对应,所述至少一组码字与所述至少一组目标天线端口一一对应。
需要说明的是,满足QCL的两个天线端口中,一个符号从一个天线端口传输经过的信道的大尺度特性可通过一个符号从另一个天线端口传输所经过的信道的大尺度特性推断。满足QCL的两个天线端口之间具有相同的大尺度特性,大尺度特性具体可以包括:时延扩展、多普勒扩展、多普勒频移、平均增益以及平均时延中的一个或多个。但应理解,这里所列举的“大尺度特性”所包括的具体内容仅为示例性说明,不应对本申请构成任何限定,本申请不排除在未来的标准中对“大尺度特性”所包括的内容进行修改或扩展的可能。
因此,通过对天线端口进行分组,将待发送给同一终端设备的至少一组码字映射到满足QCL的一组天线端口上进行数据发送,并基于至少一组码字与至少一组目标天线端口的映射关系,向终端设备发送指示信息,以用于终端设备确定用于解调数据的QCL配置信息。与现有技术中基于天线端口发送指示信息相比,更加适用于NR中的协作传输,具有较大的灵活性。
可选地,所述第一数据是发送端设备将所述至少一组码字映射到所述至少一组目标天线端口上得到的数据,所述发送端设备与所述网络设备为同一设备,或者,为不同的设备。
需要说明的是,该发送端设备可以预先由控制器或者自身配置多组天线端口,并在需要发送数据时,使用其中的一组或多组天线端口来发送数据;也可以在需要发送数据时,配置一组或多组天线端口来发送数据。换句话说,网络设备所配置的多组天线端口可以是静态的,也可以是动态的,本申请对此并未特别限定。
还需要说明的是,本申请实施例中的每组天线端口可以包括至少两个天线端口,也可以仅包括一个天线端口。若其中的某一组天线端口(例如,记作天线端口组#1)仅包括一个天线端口,该天线端口组#1中的天线端口不存在QCL关系,但该天线端口组#1与其他组的天线端口(例如,记作天线端口组#2)之间可能存在QCL或者非QCL的关系;若天线端口组#2中包括至少两个天线端口时,天线端口组#2中的任意两个天线端口之间满足QCL关系。本申请对于每组天线端口中所包括的天线端口的数量并未特别限定。
结合第三方面,在第三方面的第一种可能的实现方式中,该网络设备向该终端设备发送至少一个第一指示信息,包括:
该网络设备向该终端设备发送第一下行控制信息DCI,该第一DCI包括该至少一个第一指示信息。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述第一指示信息包括高层参数的索引,该高层参数用于确定该QCL配置信息,以及,
该网络设备向该终端设备发送第一下行控制信息DCI,该第一DCI包括该至少一个第一指示信息,包括:
该网络设备根据第一映射关系,确定与该至少一组目标天线端口对应的至少一组目标 高层参数,该第一映射关系用于指示该多组天线端口与多组高层参数的映射关系;
该网络设备根据第二映射关系,确定与该至少一组目标高层参数的索引对应的至少一个目标信息比特,该第二映射关系用于指示多组高层参数的索引与多个信息比特的映射关系;
该网络设备发送该第一DCI,该第一DCI包括该至少一个目标信息比特。
通过在DCI中承载上述至少一个第一指示信息,通过指示高层参数的索引以便于终端设备根据高层参数确定相对应的QCL配置参数,非常灵活方便,易于实现。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,该网络设备发送该第一DCI,该第一DCI包括该至少一个目标信息比特,包括:
该网络设备发送该第一DCI,该第一DCI包括至少一个指示字段,每个指示字段包括一个目标信息比特,
其中,该指示字段为用于指示传输块TB的字段,该至少一个指示字段与至少一个用于指示TB的字段一一对应;
或者,该指示字段为用于指示码字的字段。
也就是说,该至少一个第一指示信息可以通过现有协议(例如,LTE协议等)中规定的DCI中用于指示TB的字段来承载,也可以通过增加新的字段(例如,用于指示码字的字段)来承载,本申请对此并未特别限定。通过用于指示TB的字段或用于指示码字的字段来承载,可以将至少一组码字与至少一个第一指示信息之间的一一对应关系通过不同的字段区分开来,非常灵活方便,易于实现。
第四方面,提供了一种用于数据传输的方法,包括:终端设备接收第一数据,所述第一数据是将至少一组码字映射到至少一组目标天线端口上得到的数据,所述至少一组码字与所述至少一组目标天线端口一一对应,其中,每组目标天线端口包括至少两个天线端口,同一组目标天线端口中的任意两个天线端口满足准共址QCL;
所述终端设备接收网络设备发送的至少一个第一指示信息,所述第一指示信息用于确定所述目标天线端口对应的至少一组QCL配置信息,所述QCL配置信息用于指示所对应的一组目标天线端口中的任意两个天线端口满足QCL,所述至少一个第一指示信息与所述至少一组码字一一对应;
所述终端设备根据所述至少一个第一指示信息,解调所述第一数据。
其中,满足QCL的两个天线端口中,一个符号从一个天线端口传输经过的信道的大尺度特性可通过一个符号从另一个天线端口传输所经过的信道的大尺度特性推断。满足QCL的两个天线端口之间具有相同的大尺度特性,大尺度特性具体可以包括:时延扩展、多普勒扩展、多普勒频移、平均增益以及平均时延中的一个或多个。但应理解,这里所列举的“大尺度特性”所包括的具体内容仅为示例性说明,不应对本申请构成任何限定,本申请不排除在未来的标准中对“大尺度特性”所包括的内容进行修改或扩展的可能。
因此,通过对天线端口进行分组,将待发送给同一终端设备的至少一组码字映射到满足QCL的一组天线端口上进行数据发送,并基于至少一组码字与至少一组目标天线端口的映射关系,向终端设备发送指示信息,以用于终端设备确定用于解调数据的QCL配置信息。与现有技术中基于天线端口发送指示信息相比,更加适用于NR中的协作传输,具有较大的灵活性。
结合第四方面,在第四方面的第一种可能的实现方式中,所述终端设备接收网络设备发送的至少一个第一指示信息,包括:
所述终端设备接收该网络设备发送的第一下行控制信息DCI,所述第一DCI包括该至少一个第一指示信息。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述第一指示信息包括高层参数的索引,以及,
所述终端设备接收所述网络设备发送的第一下行控制信息DCI,所述第一DCI包括所述至少一个第一指示信息,包括:
所述终端设备接收所述网络设备发送的所述第一DCI,所述第一DCI包括至少一个目标信息比特,所述至少一个目标信息比特与所述至少一组高层参数的索引一一对应。
通过在DCI中承载上述至少一个第一指示信息,通过指示高层参数的索引以便于终端设备根据高层参数确定相对应的QCL配置参数,非常灵活方便,易于实现。
结合第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现方式中,所述终端设备接收所述网络设备发送的所述第一DCI,所述第一DCI包括至少一个目标信息比特,包括:
所述终端设备接收所述网络设备发送的所述第一DCI,所述第一DCI包括至少一个指示字段,每个指示字段包括一个目标信息比特,
其中,所述指示字段为用于指示传输块TB的字段,所述至少一个指示字段与至少一个用于指示TB的字段一一对应;
或者,所述指示字段为用于指示码字的字段。
也就是说,该至少一个第一指示信息可以通过现有协议(例如,LTE协议等)中规定的DCI中用于指示TB的字段来承载,也可以通过增加新的字段(例如,用于指示码字的字段)来承载,本申请对此并未特别限定。通过用于指示TB的字段或用于指示码字的字段来承载,可以将至少一组码字与至少一个第一指示信息之间的一一对应关系通过不同的字段区分开来,非常灵活方便,易于实现。
结合第四方面的第二种或者第三种可能的实现方式,在第四方面的第四种可能的实现方式中,所述终端设备根据所述至少一个第一指示信息,解调所述第一数据,包括:
所述终端设备根据第二映射关系,确定与所述至少一个目标信息比特对应的至少一组目标高层参数,所述第二映射关系用于指示多组高层参数的索引与多个信息比特的映射关系;
所述终端设备根据所述至少一组目标高层参数,确定所述至少一个QCL配置信息;
所述终端设备根据所述至少一个QCL配置信息,解调所述第一数据。
通过对该至少一个第一指示信息中的所指示的高层参数进行解调,可以获取到用于解调第一数据的QCL配置信息。
第五方面,提供了一种用于数据传输的方法,包括:
网络设备确定多组天线端口,每组天线端口包括至少一个天线端口,在所述至少一组天线端口中的第i组天线端口包括两个以上天线端口的情况下,所述第i组天线端口中的任意两个天线端口满足QCL,其中,i∈[1,N],N表示天线端口的组数量,且N为大于或等于1的自然数;
该网络设备向该终端设备发送第二指示信息,所述第二指示信息用于指示用于发送第二数据的两组目标天线端口之间是否满足QCL,所述第二数据是将两组码字映射到所述两组目标天线端口上得到的数据,所述两组码字与所述两组目标天线端口一一对应。
通过将两组码字分别映射到两组天线端口上,并由第二指示信息指示两组目标天线端口之间是否满足QCL,可以确定对两组码字对应的数据分别进行解调,或者,同时解调。在此情况下,网络设备可以不向终端设备发送高层参数的指示信息(即,第一方面或第二方面中所述的第一指示信息),直接通过1bit来指示两组目标天线端口之间的QCL关系,利用现有的DCI中所包括的用于数据解调的导频信息对数据进行解调。与现有技术2bits的PQI指示信息相比,节省了1bit的开销,同时也非常灵活方便。
结合第五方面,在第五方面的第一种可能的实现方式中,所述网络设备向所述终端设备发送第二指示信息,包括:
所述网络设备向所述终端设备发送第二下行控制信息DCI,所述第二DCI包括所述第二指示信息。
可以理解,第五方面提供的方法,可以和第一方面或第三方面提供的方法独立实施,也可以根据需要和第一方面或第三方面提供的方法进行结合,在此不再赘述。
第六方面,提供了一种用于数据传输的方法,包括:
终端设备接收第二数据,所述第二数据是将两组码字映射到所述两组目标天线端口上得到的数据,所述两组码字与所述两组目标天线端口一一对应,其中,每组目标天线端口包括至少一个天线端口,当所述至少一组目标天线端口中的第i组目标天线端口包括两个以上天线端口时,所述第i组目标天线端口中的任意两个天线端口满足准共址QCL,其中,i∈[1,M],M表示目标天线端口的组数量,且M为大于或等于1的自然数;
所述终端设备接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述两组目标天线端口之间是否满足QCL;
所述终端设备根据所述第二指示信息,解调所述第二数据。
通过将两组码字分别映射到两组天线端口上,并由第二指示信息指示两组目标天线端口之间是否满足QCL,可以确定对两组码字对应的数据分别进行解调,或者,同时解调。在此情况下,网络设备可以不向终端设备发送高层参数的指示信息(即,第一方面或第二方面中所述的第一指示信息),而直接通过1bit来指示两组目标天线端口之间的QCL关系,利用现有的DCI中所包括的用于数据解调的导频信息对数据进行解调。与现有技术2bits的PQI指示信息相比,节省了1bit的开销,同时也非常灵活方便。
结合第六方面,在第六方面的第一种可能的实现方式中,该终端设备接收网络设备发送的第二指示信息,包括:
该终端设备接收该网络设备发送的第二下行控制信息DCI,该第二DCI包括该第二指示信息。
可以理解,第六方面提供的方法,可以和第二方面或第四方面提供的方法独立实施,也可以根据需要和第二方面或第四方面提供的方法进行结合,在此不再赘述。
第七方面,提供了一种网络设备,用于执行第一方面,第一方面的任一方面的可能实现方式,第三方面,第三方面的任一方面的可能实现方式,第五方面,或第五方面的任一方面的可能实现方式中的方法。具体地,该终端设备可以包括用于执行第一方面,第一方 面的任一可能的实现方式,第三方面,或第三方面的任一方面的可能实现方式,第五方面,或第五方面的任一方面的可能实现方式中的方法的单元。
第八方面,提供了一种终端设备,用于执行第二方面,第二方面的任一方面的可能实现方式,第四方面,第四方面的任一方面的可能实现方式,第六方面,或第六方面的任一方面的可能实现方式中的方法。具体地,该终端设备可以包括用于执行第二方面,第二方面的任一可能的实现方式,第四方面,或第四方面的任一方面的可能实现方式,第六方面,或第六方面的任一方面的可能实现方式中的方法的单元。
第九方面,提供了一种网络设备,包括存储器和处理器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且对该存储器中存储的指令的执行使得该处理器执行第一方面,第一方面的任意可能的实现方式,第三方面,第三方面的任意可能的实现方式,第五方面,或第五方面的任意可能的实现方式中的方法。
第十方面,提供了一种终端设备,包括存储器和处理器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且对该存储器中存储的指令的执行使得该处理器执行第二方面,第二方面的任意可能的实现方式,第四方面,第四方面的任意可能的实现方式,第六方面,或第六方面的任意可能的实现方式中的方法。
第十一方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一至六方面或第一至六方面的任意可能的实现方式中的任意一种方法的指令。
在上述某些可能的实现方式中,第一映射关系和第二映射关系可以是网络设备与终端设备之间预先协商配置的,也可以是由网络设备向终端设备发送的,本申请对此并未特别限定。
基于上述技术方案,本申请实施例通过对天线端口进行分组,待发送给同一终端设备的至少一组码字映射到满足QCL的一组天线端口上进行数据发送,并基于至少一组码字与至少一组目标天线端口的映射关系,向终端设备发送用于确定QCL配置信息的指示信息,更加适用于NR中的协作传输,具有较大的灵活性。
附图说明
图1是适用于本申请实施例的无线通信系统的示意图。
图2是根据本申请一实施例的用于数据传输的方法的示意性流程图。
图3是根据本申请另一实施例的用于数据传输的方法的示意性流程图。
图4是根据本申请实施例的网络设备的示意性框图。
图5是根据本申请实施例的终端设备的示意性框图。
图6是根据本申请另一实施例的网络设备的示意性框图。
图7是根据本申请另一实施例的终端设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access, CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、5G等。
图1示出了适用于本申请实施例的无线通信系统100。该无线通信系统100可以包括至少一个网络设备,例如,图1所示的第一网络设备110和第二网络设备120。第一网络设备110和第二网络设备120均可以与终端设备130通过无线空口进行通信。第一网络设备110和第二网络设备120可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。该第一网络设备110或第二网络设备120可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是未来5G网络中的网络设备,如传输点(Transmission Reception Point,TRP)、基站、小基站设备等,本申请实施例对此并未特别限定。
该无线通信系统100还包括位于第一网络设备110和第二网络设备120覆盖范围内的一个或多个终端设备(User Equipment,UE)130。该终端设备130可以是移动的或固定的。终端设备130可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network)进行通信,终端设备可称为接入终端、终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备等。
该无线通信系统100可以支持协作多点(CoMP)传输,即,多个小区或多个传输点可以协作以在同一时频资源上向同一个终端设备发送数据。其中,该多个小区可以属于相同的网络设备或者不同的网络设备,并且可以根据信道增益或路径损耗、接收信号强度、接收信号指令等来选择。该多个传输点中的任意两个传输点的天线端口集合可以不具有相同的大尺度特性(large-scale properties),即,该两个传输点的天线端口集合是非QCL的(或者说,不满足QCL)。并且,该两个传输点可以属于同一个小区或属于不同的小区,本申请实施例对此不作限定。其中,相同的大尺度特性可以参考第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)标准中的定义,也可以依据实际系统需求进行设定。在当前3GPP标准中的定义为:满足QCL的两个天线端口中,一个符号从一个天线端口传输经过的信道的大尺度特性可通过一个符号从另一个天线端口传输所经过的信道的大尺度特性推断。“大尺度特性”也可以参考3GPP标准的定义,也可以依据实际系统需求进行设定。当前3GPP标准中,“大尺度特性”可以包括:时延扩展、多普勒扩展、多普勒频移、平均增益以及平均时延中的一个或多个。但应理解,这里所列举的“大尺度特性”所包括的具体内容仅为示例性说明,不应对本申请构成任何限定,本申请不排除在未来的标准中对“大尺度特性”所包括的内容进行修改或扩展的可能。
本申请实施例中的第一网络设备和第二网络设备可以是QCL的(或者说,满足QCL关系),也可以是非QCL的(或者说,不满足QCL关系)。满足QCL关系的两个网络 设备可以为属于同一站点的网络设备,也可以为属于不同站点的网络设备。不满足QCL关系的两个网络设备可以为属于同一个站点的非QCL的网络设备,例如地理位置相距较远的同一个基站的射频单元,或者,该同一基站配置有不同的天线面板,同一基站归属不同的天线面板的天线端口可能是非QCL的。不满足QCL关系的两个网络设备也可以为非QCL的不同的站点。本申请实施例对此并未特别限定。
该无线通信系统100中的终端设备130可以支持多点传输,即,该终端设备130可以与第一网络设备110通信,也可以与第二网络设备120通信,其中,第一网络设备110可以作为服务网络设备,服务网络设备是指该通过无线空口协议为终端设备提供RRC连接、非接入层(Non-access Stratum,NAS)移动性管理和安全性输入等服务的网络设备。
可选地,该第一网络设备可以为服务网络设备,该第二网络设备可以为协作网络设备;或者,第一网络设备可以为协作网络设备,第二网络设备为服务网络设备。其中,该服务网络设备可以向终端设备发送控制信令,该协作网络设备可以向终端设备发送数据;或者,该服务网络设备可以向终端设备发送控制信令,该服务网络设备和该协作网络设备可以同时向该终端设备发送数据。本申请实施例对此并未特别限定。
以第一网络设备为服务网络设备,第二网络设备为协作网络设备为例,该第二网络设备的数量可以是一个或多个,且与第一网络设备为满足不同QCL的网络设备。可以理解的是,第一网络设备和第二网络设备可以都为服务网络设备,例如在无小区non-cell的场景中。
为便于理解本申请实施例,在描述本申请实施例的用于数据传输的方法之前,首先简单介绍码字、层、天线端口映射关系。
用户面数据以及信令消息在到物理层由空口发送出去之前,需经分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)/无线链路控制(Radio Link Control,RLC)/媒体接入控制(Media Access Control,MAC)层的处理。在物理层处理的数据即MAC层的协议数据单元(Protocol Data Unit,PDU),即,数据流。来自上层的数据流进行信道编码之后即为码字。不同的码字区分不同的数据流。由于码字的数量与发送天线数量不一致,可以将码字映射到不同的发射天线上,因此需要进行层映射和预编码。其中,层映射可以理解为,按一定的规则将码字重新映射到多个层;预编码可以理解为,将映射到多个层的数据映射到不同的天线端口上。
网络设备将数据进行编码获得码字,将码字映射到层,再映射到天线端口,通过相应的天线端口向终端设备发送,并通过相应的天线端口发送解调参考信号,以便于终端设备根据解调参考信号对接收到的数据进行解调处理,获得原始数据。
需要说明的是,天线端口可以理解为,可以被接收端设备所识别的发射天线,或者在空间上可以区分的发射天线。天线端口可以根据与该天线端口相关联的参考信号(或者说,导频信号)进行定义。一个天线端口可以是发射端设备上的一根物理天线,也可以是发射端设备上多根物理天线的加权组合。在本申请实施例中,在未作出特别说明的情况下,一个天线端口对应一个参考信号。
还需要说明的是,在本申请实施例中,天线端口(或者,简称端口)可以理解为参考信号端口,一个参考信号与一个天线端口对应,在本申请实施例中,天线端口可以包括例如CRS端口、CSI-RS端口、和DMRS端口中的至少一种,其中,CRS和CSI-RS可用于 信道测量,DMRS可用于数据解调,不同类型的参考信号用于实现不同的功能,本申请中涉及天线端口的描述,可以为CSI-RS端口或CRS端口,也可以为DMRS端口,本领域的技术人员可以理解其含义。
以下,结合图2和图3,详细说明根据本申请实施例的用于数据传输的方法。
应理解,图2和图3是本申请实施例的用于数据传输的方法的示意性流程图,示出了该方法的详细的通信步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者图2或图3中的各种操作的变形。此外,图2和图3中的各个步骤可以分别按照与图2和图3所呈现的不同的顺序来执行,并且有可能并非要执行图2和图3中的全部操作。
图2示出了从设备交互的角度描述的根据本申请一实施例的用于数据传输的方法200的示意性流程图。该方法200可以用于通过无线空口进行通信的通信系统,该通信系统可以包括至少一个网络设备和至少一个终端设备。例如,该通信系统可以为图1中所示的无线通信系统100。
可选地,该网络设备可以为传输点(TRP)、基站,或者,也可以为其他用于下行控制信息(Downlink Control Information,DCI)的网络设备,本申请对此并未特别限定。
以下,不失一般性,以第一网络设备(为便于区分和说明,记作第一网络设备)和终端设备之间的交互为例,详细说明该方法200。应理解,第一网络设备可以为上述至少一个网络设备中的任意一个可以作为服务网络设备的网络设备。其中,“第一”仅用于区分说明,而不应对本申请构成任何限定。还应理解,该终端设备可以与该第一网络设备通信连接,还可以与其他一个或更多个网络设备(例如,第二网络设备)进行数据通信,本申请对此并未特别限定。
如图2所示,该方法200包括以下步骤:
S210,第一网络设备确定多组天线端口。
由上文描述可知,在通信系统中,每个网络设备都可以配置至少一个天线端口,各网络设备所配置的天线端口之间具有QCL或非QCL的关系。在本申请实施例中,为便于说明,将满足QCL的至少两个天线端口定义为一组天线端口(或者说,一个天线端口组)。
可选地,每组天线端口包括DMRS端口和CRS端口,或者,每组天线端口包括DMRS端口和CSI-RS端口。
具体来说,网络设备可以配置一个天线端口,也可以配置多个天线端口。
当网络设备(例如,记作网络设备#1)配置一个天线端口,该天线端口与其他网络设备(例如,记作网络设备#2)所配置的天线端口之间可以是非QCL的,此时,可以将该一个天线端口确定为一组天线端口;该天线端口与其他网络设备(例如,记作网络设备#2)所配置的天线端口之间也可以是QCL的,此时,可以将该一个天线端口和与该天线端口之间满足QCL的天线端口确定为一组天线端口。
当网络设备(例如,记作网络设备#3)配置有多个天线端口时,该多个天线端口之间可以为QCL的,也可以为非QCL的。例如,当该网络设备#3配置有一个天线面板时,该一个天线面板中的任意两个天线端口之间可以是QCL的,此时,可以将该一个天线面板中的多个天线端口确定为一组天线端口;当该网络设备#3配置有多个天线面板时,同一个天线面板中的任意两个天线端口之间可以是QCL的,每个天线面板中的天线端口可 以确定为一组天线端口;任意两个不同的天线面板中的天线端口(例如,天线面板#1的任意一个天线端口和天线面板#2的任意一个天线端口)之间可以是非QCL的。
换句话说,假设该通信系统中的网络设备配置有N(N为大于或等于1的自然数)组天线端口,在该N组天线端口中的第i组天线端口包括多个天线端口的情况下,该第i组天线端口中的任意两个天线端口之间是QCL的,不同组间的天线端口之间是非QCL的,其中,i∈[1,N],i为自然数。
在本申请实施例中,在某一组天线端口中天线端口中的数量为两个以上的情况下,需要向终端设备指示QCL配置信息。该QCL配置信息可以理解为用于指示哪些天线端口是同一组天线端口,或者说,哪些天线端口满足QCL,以便于终端设备根据QCL配置信息解调数据。本申请实施例通过方法200向终端设备发送用于确定QCL配置信息的指示信息。在方法200中,在未作出特别说明的情况下,每组天线端口可以包括两个以上天线端口。
需要说明的是,在现有的LTE协议中,定义了两种类型(类型A(Type-A)和类型B(Type-B))的QCL配置。其中,Type-A定义了一个站点(TRP)的QCL配置,即,该站点的天线端口(包括CRS端口、DMRS端口以及CSI-RS端口)是满足QCL的;Type-B定义了多个站点间的QCL配置,多个站点间的天线端口(包括CRS端口、DMRS端口以及CSI-RS端口)之间的QCL配置可以通过DCI中的PQI(2bits)来指示。
在本申请实施例中,Type-A可以对应于NR中同一网络设备同一天线面板的情形,Type-B可以对应于NR中同一网络设备不同天线面板的情形,以及NR中不同网络设备的情形。
在本申请实施例中,第一网络设备可以通过以下两种方法确定多组天线端口。
在一种可能的实现方式中,各网络设备可以获取到自身所配置的天线端口之间的QCL关系(即,是否满足QCL)的信息,并通过网络设备之间的接口(例如,X2接口)将各自的天线端口的QCL关系的信息发送给服务网络设备(例如,本申请实施例中的第一网络设备)。
在另一种可能的实现方式中,各网络设备可以通过一个集中的控制器来控制,该控制器可以与各网络之间通过光纤通信。各网络设备之间的天线端口的QCL配置可以由高层配置并通过无线资源控制(Radio Resource Control,RRC)信令下发给该控制器,再由该控制器对各网络设备进行资源调度和数据传输的配置。同时,该控制器可以将各网络设备配置的天线端口的QCL关系的信息发送给服务网络设备(例如,本申请实施例中的第一网络设备)。
由此,第一网络设备可以确定该通信系统中天线端口之间的QCL关系。
应理解,以上列举的两种第一网络设备获取天线端口的QCL关系的方法仅为示例性说明,不应对本申请构成任何限定,本申请也不应限于此。还应理解,第一网络设备可以为该终端设备的服务网络设备,也可以为该终端设备的协作网络设备,本申请对此并未特别限定。
需要说明的是,在本申请实施例中,网络设备(例如,上述控制器,或者,各网络设备)可以预先配置多组天线端口,并在需要发送数据时,使用其中的一组或多组天线端口来发送数据;网络设备也可以在需要发送数据时,配置一组或多组天线端口来发送数据。 换句话说,网络设备所配置的多组天线端口可以是静态的,也可以是动态的,本申请对此并未特别限定。
S220,该第一网络设备确定用于发送第一数据的至少一组目标天线端口。
与S210中描述相对应,在一种可能的实现方式中,各网络设备可以通过服务网络设备(例如,该服务网络设备可以为本申请实施例中的第一网络设备)来进行资源调度和数据传输的配置,此情况下,该服务网络设备可以自行确定用于发送第一数据的至少一组目标天线端口。
或者,各网络设备也可以自己进行资源调度和数据传输的配置,此情况下,各网络设备之间需要对进行数据传输的资源进行协调,并通过网络设备之间的接口(例如,X2接口)向第一网络设备发送用于发送第一数据的至少一组目标天线端口。
在本申请实施例中,为便于区分和说明,可以将用于发送第一数据的天线端口记为目标天线端口,用于发送第一数据的目标天线端口例如可以为DMRS端口,DMRS可以用于做信道估计和数据解调。
其中,用于发送第一数据的网络设备可以包括第一网络设备,也可以包括其他网络设备。或者说,发送端设备与第一网络设备可以为相同的设备,或者为不同的设备。
这里,需要说明的是,若网络设备配置了多个天线面板时,各天线面板之间不需要通过接口交互信息。
在另一种可能的实现方式中,控制器可以决定向终端设备发送第一数据(为便于理解和区分,将待发送给该终端设备的数据记作第一数据)的发送端设备,换句话说,控制器可以决定通过哪些网络设备向终端设备发送哪些数据。具体来说,用于向终端设备发送第一数据的发送端设备可以为上述第一网络设备,也可以为其他网络设备(例如,第二网络设备),还可以为上述第一网络设备和其他网络设备。换句话说,发送端设备与第一网络设备可以为同一设备,也可以为不同的设备,本申请对此并未特别限定。
应理解,通过控制器对各网络设备进行资源调度和数据传输的配置的方法仅为示例性说明不应对本申请构成任何限定,本申请也不应限于此。例如,各网络设备也可以通过服务网络设备来进行资源调度和数据传输的配置,或者,各网络设备也可以自己进行资源调度和数据传输的配置。
在本申请实施例中,该第一数据可以是由发送端设备将至少一组码字映射到该至少一组目标天线端口上得到的数据,这里,至少一组码字与至少一组目标天线端口一一对应,每组码字被映射到所对应的一组目标天线端口上。然后通过该至少一组目标天线端口向该终端设备发送该第一数据。
其中,该至少一组目标天线端口可以是在S210中确定的多组天线端口中的一组或多组天线端口中的部分天线端口。假设,目标天线端口的组数量为M,则M为小于或等于N的自然数。
其后,该第一网络设备可以通过控制器(当资源调度和数据传输的配置由控制器来执行)或者与其他网络设备之间的接口(当资源调度和数据传输的配置由网络设备自身来执行时)获取用于发送第一数据的至少一组目标天线端口的信息,并基于该至少一组目标天线端口的信息,生成用于发送给该终端设备的至少一个指示信息(例如,下文所述的第一指示信息),以便于该终端设备根据接收到的至少一个指示信息,解调第一数据。
S230,该第一网络设备向该终端设备发送至少一个第一指示信息。
作为一种可能的实现方式,该第一指示信息可以包含在该第一网络设备向该终端设备发送的DCI(为便于区分和说明,记作第一DCI)中。
可选地,S230可以具体包括:
该第一网络设备向该终端设备发送第一DCI,该第一DCI包括至少一个第一指示信息。
具体而言,第一网络设备可以在发送给终端设备的DCI(为便于区分和说明,记作第一DCI)中的指示字段上通过不同的信息比特指示不同的QCL配置信息。
在本申请实施例中,该至少一个第一指示信息与至少一组码字一一对应,每个第一指示信息用于确定发送该第一数据使用的至少一组目标天线端口对应的至少一个导频信息,其中,该至少一个导频信息与至少一组目标天线端口一一对应,每个导频信息用于解调通过所对应的一组目标天线端口发送的数据。
可选地,该第一指示信息包括高层参数的索引,所述高层参数用于确定QCL配置信息。
其中,每组QCL配置信息用于指示所对应的一组天线端口中的天线端口之间满足QCL。也就是说,当终端设备获取到上述QCL配置信息时,便可以根据其包括的具体内容,确定哪些天线端口属于一组天线端口,也就是确定了哪些天线端口满足QCL。
其中,S230可以进一步包括:
该第一网络设备向该终端设备发送第一下行控制信息DCI,该第一DCI包括该至少一个第一指示信息,包括:
该第一网络设备根据第一映射关系,确定与该至少一组目标天线端口对应的至少一组目标高层参数(higher layer parameter),该第一映射关系用于指示该多组天线端口与多组高层参数的映射关系;
该第一网络设备根据第二映射关系,确定与该至少一组目标高层参数的索引对应的至少一个目标信息比特,该第二映射关系用于指示多组高层参数的索引与多个信息比特的映射关系;
该第一网络设备发送该第一DCI,该第一DCI包括该至少一个目标信息比特。
也就是说,该第一网络设备中可以预先配置第一映射关系和第二映射关系,在通过S220确定了发送第一数据的至少一组目标天线端口后,可以根据第一映射关系确定相对应的至少一组目标高层参数,并根据第二映射关系,将与该至少一组目标高层参数对应的至少一个信息比特承载在该第一DCI的至少一个指示字段中。
其中,高层参数可以理解为通过高层配置并通过RRC信令所下发的参数。该高层参数可以包括以下内容:
1、CRS配置(包括CRS的端口和频偏);
2、PDSCH起始点;
3、多播/组播单频网络(Multimedia Broadcast Multicast Service Single Frequency Network,MBSFN)子帧配置;
4、非零功率CSI-RS配置;
5、用于波束管理的导频(RS for beam management)配置;
6、发送数据时使用的天线端口的端口号;
7、加扰标识(scrambling identity)
8、码字与层之间的映射关系。
其中,CRS配置、PDSCH起始点和MBSFN用于确定PDSCH资源元素(Resource Element,RE)映射(Mapping)所需要的导频信息;非零功率CSI-RS配置和用于波束管理的导频配置可以用于确定QCL配置信息。发送数据时使用的天线端口的端口号、加扰标识以及码字与层之间的映射关系在现有技术中是携带在网络设备向终端设备发送的DCI中的,本申请实施例可以将其通过高层参数来表征。
应理解,以上列举的用于确定PDSCH RE Mapping所需要的导频信息的高层参数,以及用于确定QCL配置信息的高层参数,以及上述所列举的高层参数所包括的具体内容仅为示例性说明,不应对本申请构成任何限定,本申请并不排除在未来标准中对高层参数的具体内容的进行删除、修改或扩展的可能。例如,用于确定QCL配置信息的高层参数可以仅包括非零功率CSI-RS配置。
表1示出了多个信息比特与多组高层参数的索引之间的映射关系的一例(即,第二映射关系)。
表1
信息比特 高层参数的索引
00 1
01 2
10 3
11 4
可以看到,通过两个比特位的比特序列可以指示四组高层参数的索引。但应理解,这不应对本申请构成任何限定,本申请并不排除通过更多或者更少位数的比特序列来指示更多或更少组高层参数的可能。可以理解,当高层参数的组数量为L时,用于指示高层参数的信息比特的比特位数可以为
Figure PCTCN2017101012-appb-000001
其中,
Figure PCTCN2017101012-appb-000002
表示向上取整。
需要说明的是,该第一网络设备与终端设备中预先配置了多组高层参数与索引的一一对应关系,当该第一网络设备通过向终端设备指示高层参数的索引时,该终端设备便可以根据索引确定该第一网络设备所指示的目标高层参数。
进一步地,在S230中,该第一网络设备发送该第一DCI,该第一DCI包括该至少一个目标信息比特,可以具体包括:
该第一网络设备发送该第一DCI,该第一DCI包括至少一个指示字段,每个指示字段包括一个目标信息比特,
其中,所述指示字段为用于指示传输块TB的字段,所述至少一个指示字段与至少一个用于指示TB的字段一一对应;
或者,所述指示字段为用于指示码字的字段。
具体而言,在现有的DCI(即,第一DCI的一例)中,包含有用于指示传输块(Transport Block,TB)的字段,该TB与码字具有一一对应的关系。在一种可能的实现方式中,可以通过在该字段中添加至少一个比特位的指示字段来承载目标信息比特,以用于指示高层参数的索引。终端设备在接收到该第一DCI时,便可以根据TB与码字的一一对应关系, 以及索引与高层参数的一一对应关系,确定目标信息比特所对应的目标高层参数。
在另一种可能的实现方式中,可以直接在该第一DCI中增加一个用于指示码字的字段,此情况下,终端设备可以直接根据该字段中的信息比特确定与码字对应的目标高层参数。
应理解,以上所列举的两种指示字段仅为示例性说明,不应对本申请构成任何限定,本申请并不排除将该第一指示信息承载于第一DCI中的其他字段中。
S240,发送端设备向该终端设备发送第一数据。
通过在S220中由控制器或者网络设备自身确定了发送第一数据的至少一组目标天线端口后,发送端设备可以将需要发送的至少一组码字映射到该至少一组目标天线端口上,并通过该至少一组目标天线端口发送给终端设备。
对应地,该终端设备接收该第一网络设备发送的至少一个第一指示信息,以及发送端设备发送的第一数据。
S250,该终端设备根据该至少一个指示信息,解调接收到的第一数据。
具体而言,该终端设备可以根据接收到的至少一个指示信息与至少一组码字的一一对应关系,确定与至少一组目标天线端口的QCL配置信息,以解调第一数据。
可选地,S250可以具体包括:
该终端设备根据第二映射关系,确定与该至少一个目标信息比特对应的至少一组目标高层参数,该第二映射关系用于指示多组高层参数的索引与多个信息比特的映射关系;
该终端设备根据该至少一组目标高层参数,确定该至少一个QCL配置信息;
该终端设备根据该至少一个QCL配置信息,解调该第一数据。
也就是说,该终端设备在接收到该第一DCI后,可以根据各指示字段中的目标信息比特,确定目标高层参数,进而确定用于解调第一数据的QCL配置信息,也就是确定了与该至少一组目标天线端口具有QCL关系的天线端口。由此,该终端设备可以获取该第一数据。
在本申请实施例中,与目标天线端口具有QCL关系的天线端口例如可以为CRS端口或者CSI-RS端口。例如,参看步骤230中列举的高层参数可以看到,该高层参数中包含了CRS配置和/或非零功率CSI-RS配置,由此便可以确定与DMRS端口具有QCL关系的CRS端口或CSI-RS端口。
因此,本申请实施例的用于数据传输的方法,通过对天线端口进行分组,将待发送给同一终端设备的至少一组码字映射到满足QCL的一组天线端口上进行数据发送,并基于至少一组码字与至少一组目标天线端口的映射关系,向终端设备发送指示信息,以用于终端设备确定用于解调数据的QCL配置信息。与现有技术中基于天线端口发送指示信息相比,更加适用于NR中的协作传输,具有较大的灵活性。
应理解,上文所述的第一映射关系和第二映射关系可以是网络设备与终端设备之间预先协商配置的,也可以是由网络设备向终端设备发送的,本申请对此并未特别限定。
还应理解,方法200中所列举的通过DCI指示高层参数的索引,以便终端设备确定QCL配置信息的方法仅为示例性说明,不应对本申请构成任何限定。例如,该第一网络设备还可以直接将高层参数包含在DCI中,直接发送给终端设备,这种情况下,终端设备可以直接根据高层参数确定QCL配置信息。又例如,该第一网络设备还可以将高层参数 直接通过RRC信令下发给终端设备,以便终端设备根据高层参数确定QCL配置信息。
以上,结合图2详细说明了本申请一实施例的用于数据传输的方法。在发送端设备向同一终端设备发送的码字仅为两组的情况下,本申请实施例另提出了一种用于数据传输的方法。下面结合图3详细说明根据本申请另一实施例的用于数据传输的方法。
图3示出了从设备交互的角度描述的根据本申请一实施例的用于数据传输的方法300的示意性流程图。该方法300可以用于通过无线空口进行通信的通信系统,该通信系统可以包括至少一个网络设备和至少一个终端设备。例如,该通信系统可以为图1中所示的无线通信系统100。
可选地,该网络设备可以为传输点(TRP)、基站,或者,也可以为其他用于发送下行控制信息(DCI)的网络设备,本申请对此并未特别限定。
以下,不失一般性,仍然以第一网络设备和终端设备之间的交互为例,详细说明该方法300。应理解,第一网络设备可以为上述至少一个网络设备中的任意一个可以作为服务网络设备的网络设备。例如,该第一网络设备可以为方法200中的第一网络设备,也可以为不同于方法200中的第一网络设备,本申请对此并未特别限定。其中,“第一”仅用于区分说明,而不应对本申请构成任何限定。还应理解,该终端设备可以与该第一网络设备通信连接,还可以与其他一个或更多个网络设备(例如,第二网络设备)进行数据通信,本申请对此并未特别限定。
如图3所示,该方法300包括以下步骤:
S310,第一网络设备确定多组天线端口。
S320,该第一网络设备确定用于发送第二数据的两组目标天线端口。
为与方法200中的第一数据区分,这里将发送端设备发送给终端设备的数据记作第二数据。该第二数据可以由发送端设备将两组码字(例如,码字组#A和码字组#B)映射到该两组目标天线端口(例如,天线端口组#A和天线端口组#B),并将得到的数据(例如,与码字组#A对应的数据A和与码字组#B对应的数据B)通过该两组目标天线端口发送给终端设备。可以理解,这里所示例的天线端口组#A和天线端口组#B可以分别包括一个天线端口或多个天线端口,本申请对此并未特别限定。
应理解,S310、S320的具体过程与方法200中S210、S220的具体过程相似,为了简洁,这里不再赘述。
S330,该第一网络设备向该终端设备发送第二指示信息。
该第二指示信息可以用于该两组目标天线端口之间是否满足QCL。具体地,该第二指示信息可以用于指示天线端口组#A中的任意一个天线端口和天线端口组#B中的任意一个天线端口之间是否满足QCL。可以理解,同一组天线端口中的任意两个天线端口满足QCL,若天线端口组#A中的任意一个天线端口与天线端口组#B中的任意一个天线端口之间不满足QCL,则认为天线端口组#A与天线端口组#B之间不满足QCL;反之,则认为天线端口组#A与天线端口组#B之间满足QCL。
可选地,S330可以具体包括:
该第一网络设备向该终端设备发送第二DCI,该第二DCI包括该第二指示信息。
这里,为便于与方法200中的第一DCI区分,将该第一网络设备向该终端设备发送的DCI记作第二DCI。应理解,该第二DCI与第一DCI可以为同一个DCI,也可以为不同 的DCI,本申请对此并未特别限定。
S340,发送端设备向该终端设备发送第二数据。
对应地,该终端设备接收第二指示信息和第二数据。
应理解,S340、S350的具体过程与方法200中S240、S250的具体过程相似,为了简洁,这里不再赘述。
S350,该终端设备根据该第二指示信息,解调接收到的第二数据。
由上文描述可知,该终端设备接收到的第二数据是由两组码字分别映射到两组目标天线端口上发送而得到的,若该两组码字所对应的两组目标天线端口不满足QCL,则需要分别使用与该两组目标天线端口相对应的QCL配置信息分别对该两组码字所对应的数据(例如,数据A和数据B)进行数据解调;若该两组码字所对应的两组目标天线端口满足QCL,则可以使用相同的QCL配置信息同时对该两组码字所对应的数据(例如,数据A和数据B)进行数据解调。
需要说明的是,在现有技术中,第一网络设备在向该终端设备发送的第二DCI中包含有发送数据使用的天线端口的端口号、加扰标识ID,以及码字与层之间的映射关系的信息,终端设备可以根据上述信息进行数据解调。在本申请实施例中,通过第一网络设备向终端设备发送1bit的指示信息(即,第二指示信息)指示两组目标天线端口之间是否满足QCL,进而利用现有的DCI中所包括的用于数据解调的导频信息对数据进行解调。
因此,本申请实施例的用于数据传输的方法,通过将两组码字分别映射到两组天线端口上,并由第二指示信息指示两组目标天线端口之间是否满足QCL,可以确定对两组码字对应的数据分别进行解调,或者,同时解调。与现有技术2bits的PQI指示信息相比,节省了1bit的开销,同时也非常灵活方便。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图2和图3详细说明了根据本申请实施例的用于数据传输的方法。以下,结合图4至图7详细说明根据本申请实施例的用于数据传输的装置。
本申请实施例提出了一种网络设备,该网络设备的示意性框图可如图4所示。图4是根据本申请实施例的网络设备400的示意性框图。如图4所示,该网络设备400包括:发送单元410和处理单元420。
具体地,该网络设备400可对应于根据本申请实施例的用于数据传输的方法200或方法300中的网络设备,该网络设备400可以包括用于执行图2中方法200或图3中方法300的第一网络设备执行的方法的单元。并且,该网络设备400中的各单元和上述其他操作和/或功能分别为了实现图2中方法200或图3中方法300的相应流程,为了简洁,在此不再赘述。
本申请实施例提出了一种终端设备,该终端设备的示意性框图可如图5所示。图5是根据本申请实施例的终端设备500的示意性框图。如图5所示,该终端设备500包括:接收单元510和处理单元520。
具体地,该终端设备500可对应于根据本申请实施例的用于数据传输的方法200或方法300中的终端设备,该终端设备500可以包括用于执行图2中方法200或图3中方法 300的终端设备执行的方法的单元。并且,该终端设备500中的各单元和上述其他操作和/或功能分别为了实现图2中方法200或图3中方法300的相应流程,为了简洁,在此不再赘述。
本申请实施例还提出了一种网络设备,该网络设备的示意性框图可如图6所示。图6是根据本申请另一实施例的网络设备600的示意性框图。如图6所示,该网络设备600包括:收发器610、处理器620、存储器630和总线系统640。其中,该收发器640、处理器620和存储器630通过总线系统640相连,该存储器630用于存储指令,该处理器620用于执行该存储器630存储的指令,以控制收发器610收发信号。其中,存储器630可以配置于处理器620中,也可以独立于处理器620。
具体地,该网络设备600可对应于根据本申请实施例的用于数据传输的方法200或方法300中的网络设备,该网络设备600可以包括用于执行图2中方法200或图3中方法300的第一网络设备执行的方法的实体单元。并且,该网络设备600中的各实体单元和上述其他操作和/或功能分别为了实现图2中方法200或图3中方法300的相应流程,为了简洁,在此不再赘述。
本申请实施例还提出了一种终端设备,该终端设备的示意性框图可如图7所示。图7是根据本申请另一实施例的终端设备700的示意性框图。如图7所示,该终端设备700包括:收发器710、处理器720、存储器730和总线系统740。其中,该收发器740、处理器720和存储器730通过总线系统740相连,该存储器730用于存储指令,该处理器720用于执行该存储器730存储的指令,以控制收发器710收发信号。其中,存储器730可以配置于处理器720中,也可以独立于处理器720。
具体地,该终端设备700可对应于根据本申请实施例的用于数据传输的方法200或方法300中的终端设备,该终端设备700可以包括用于执行图2中方法200或图3方法300中终端设备执行的方法的实体单元。并且,该终端设备700中的各实体单元和上述其他操作和/或功能分别为了实现图2中方法200或图3中方法300的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理单元(Central Processing Unit,CPU)、该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件器组合执行完成。软件器可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only  Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
还应理解,该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的用于数据传输的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件器组合执行完成。软件器可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本申请实施例还提出了一种计算机可读存储介质,该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行图2所示实施例的方法。
本申请实施例还提出了一种计算机可读存储介质,该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行图3所示实施例的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种用于数据传输的方法,其特征在于,包括:
    网络设备确定多组天线端口,每组天线端口包括至少两个天线端口,同一组天线端口中的任意两个天线端口满足准共址QCL;
    所述网络设备向终端设备发送至少一个第一指示信息,所述第一指示信息用于确定发送第一数据所使用的目标天线端口对应的QCL配置信息,所述QCL配置信息用于指示与所对应的目标天线端口满足QCL的天线端口,所述第一数据是将至少一组码字映射到至少一组目标天线端口上得到的数据,所述至少一个第一指示信息与所述至少一组码字一一对应,所述至少一组码字与所述至少一组目标天线端口一一对应。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备向所述终端设备发送至少一个第一指示信息,包括:
    所述网络设备向所述终端设备发送第一下行控制信息DCI,所述第一DCI包括所述至少一个第一指示信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第一指示信息包括高层参数的索引,所述高层参数用于确定所述QCL配置信息,以及,
    所述网络设备向所述终端设备发送第一下行控制信息DCI,所述第一DCI包括所述至少一个第一指示信息,包括:
    所述网络设备根据第一映射关系,确定与所述至少一组目标天线端口对应的至少一组目标高层参数,所述第一映射关系用于指示所述多组天线端口与多组高层参数的映射关系;
    所述网络设备根据第二映射关系,确定与所述至少一组目标高层参数的索引对应的至少一个目标信息比特,所述第二映射关系用于指示多组高层参数的索引与多个信息比特的映射关系;
    所述网络设备发送所述第一DCI,所述第一DCI包括所述至少一个目标信息比特。
  4. 根据权利要求3所述的方法,其特征在于,所述网络设备发送所述第一DCI,所述第一DCI包括所述至少一个目标信息比特,包括:
    所述网络设备发送所述第一DCI,所述第一DCI包括至少一个指示字段,每个指示字段包括一个目标信息比特,
    其中,所述指示字段为用于指示传输块TB的字段,所述至少一个指示字段与至少一个用于指示TB的字段一一对应;
    或者,所述指示字段为用于指示码字的字段。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一数据是发送端设备将所述至少一组码字映射到所述至少一组目标天线端口上得到的数据,所述发送端设备与所述网络设备为同一设备,或者为不同的设备。
  6. 一种用于数据传输的方法,其特征在于,包括:
    终端设备接收第一数据,所述第一数据是将至少一组码字映射到至少一组目标天线端口上得到的数据,所述至少一组码字与所述至少一组目标天线端口一一对应,其中,每组 目标天线端口包括至少两个天线端口,同一组目标天线端口中的任意两个天线端口满足准共址QCL;
    所述终端设备接收网络设备发送的至少一个第一指示信息,所述第一指示信息用于确定所述目标天线端口对应的QCL配置信息,所述QCL配置信息用于指示与所对应的目标天线端口满足QCL的天线端口,所述至少一个第一指示信息与所述至少一组码字一一对应;
    所述终端设备根据所述至少一个第一指示信息,解调所述第一数据。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备接收网络设备发送的至少一个第一指示信息,包括:
    所述终端设备接收所述网络设备发送的第一下行控制信息DCI,所述第一DCI包括所述至少一个第一指示信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一指示信息包括高层参数的索引,以及,
    所述终端设备接收所述网络设备发送的第一下行控制信息DCI,所述第一DCI包括所述至少一个第一指示信息,包括:
    所述终端设备接收所述网络设备发送的所述第一DCI,所述第一DCI包括至少一个目标信息比特,所述至少一个目标信息比特与所述至少一组高层参数的索引一一对应。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备接收所述网络设备发送的所述第一DCI,所述第一DCI包括至少一个目标信息比特,包括:
    所述终端设备接收所述网络设备发送的所述第一DCI,所述第一DCI包括至少一个指示字段,每个指示字段包括一个目标信息比特,
    其中,所述指示字段为用于指示传输块TB的字段,所述至少一个指示字段与至少一个用于指示TB的字段一一对应;
    或者,所述指示字段为用于指示码字的字段。
  10. 根据权利要求8或9所述的方法,其特征在于,所述终端设备根据所述至少一个第一指示信息,解调所述第一数据,包括:
    所述终端设备根据第二映射关系,确定与所述至少一个目标信息比特对应的至少一组目标高层参数,所述第二映射关系用于指示多组高层参数的索引与多个信息比特的映射关系;
    所述终端设备根据所述至少一组目标高层参数,确定所述至少一个QCL配置信息;
    所述终端设备根据所述至少一个QCL配置信息,解调所述第一数据。
  11. 一种网络设备,其特征在于,包括:
    处理单元,用于确定多组天线端口,每组天线端口包括至少两个天线端口,同一组天线端口中的任意两个天线端口满足准共址QCL;
    发送单元,用于发送至少一个第一指示信息,所述第一指示信息用于确定发送第一数据所使用的目标天线端口对应的QCL配置信息,所述QCL配置信息用于指示与所对应的目标天线端口满足QCL的天线端口,所述第一数据是将至少一组码字映射到至少一组目标天线端口上得到的数据,所述至少一个第一指示信息与所述至少一组码字一一对应,所述至少一组码字与所述至少一组目标天线端口一一对应。
  12. 根据权利要求11所述的网络设备,其特征在于,所述发送单元具体用于向所述终端设备发送第一下行控制信息DCI,所述第一DCI包括所述至少一个第一指示信息。
  13. 根据权利要求12所述的网络设备,其特征在于,所述第一指示信息包括高层参数的索引,所述高层参数用于确定所述QCL配置信息,
    所述网络设备还包括处理单元,用于根据第一映射关系,确定与所述至少一组目标天线端口对应的至少一组目标高层参数,所述第一映射关系用于指示所述多组天线端口与多组高层参数的映射关系;
    所述处理单元还用于根据第二映射关系,确定与所述至少一组目标高层参数的索引对应的至少一个目标信息比特,所述第二映射关系用于指示多组高层参数的索引与多个信息比特的映射关系;
    所述发送单元具体用于发送所述第一DCI,所述第一DCI包括所述至少一个目标信息比特。
  14. 根据权利要求13所述的网络设备,其特征在于,所述第一DCI包括至少一个指示字段,每个指示字段包括一个目标信息比特,
    其中,所述指示字段为用于指示传输块TB的字段,所述至少一个指示字段与至少一个用于指示TB的字段一一对应;
    或者,所述指示字段为用于指示码字的字段。
  15. 一种终端设备,其特征在于,包括:
    接收单元,接收第一数据,所述第一数据是将至少一组码字映射到至少一组目标天线端口上得到的数据,所述至少一组码字与所述至少一组目标天线端口一一对应,其中,每组目标天线端口包括至少两个天线端口,同一组目标天线端口中的任意两个天线端口满足准共址QCL;
    所述接收单元还用于接收网络设备发送的至少一个第一指示信息,所述第一指示信息用于确定目标天线端口对应的QCL配置信息,所述QCL配置信息用于指示与所对应的目标天线端口满足QCL的天线端口,所述至少一个第一指示信息与所述至少一组码字一一对应;
    处理单元,用于根据所述至少一个第一指示信息,解调所述第一数据。
  16. 根据权利要求15所述的终端设备,其特征在于,所述接收单元具体用于接收所述网络设备发送的第一下行控制信息DCI,所述第一DCI包括所述至少一个第一指示信息。
  17. 根据权利要求16所述的终端设备,其特征在于,所述第一指示信息包括高层参数的索引,所述第一DCI包括至少一个目标信息比特,所述至少一个目标信息比特与所述至少一组高层参数的索引一一对应。
  18. 根据权利要求17所述的终端设备,其特征在于,所述第一DCI包括至少一个指示字段,每个指示字段包括一个目标信息比特,
    其中,所述指示字段为用于指示传输块TB的字段,所述至少一个指示字段与至少一个用于指示TB的字段一一对应;
    或者,所述指示字段为用于指示码字的字段。
  19. 根据权利要求17或18所述的终端设备,其特征在于,所述处理单元具体用于根 据第二映射关系,确定与所述至少一个目标信息比特对应的至少一组目标高层参数,根据所述至少一组目标高层参数,确定所述至少一个QCL配置信息;并根据所述至少一个QCL配置信息,解调所述第一数据,其中,所述第二映射关系用于指示多组高层参数的索引与多个信息比特的映射关系。
PCT/CN2017/101012 2016-09-30 2017-09-08 一种用于数据传输的方法和装置 WO2018059210A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17854660.2A EP3512112B1 (en) 2016-09-30 2017-09-08 Method and apparatus for use in data transmission
US16/368,645 US11025316B2 (en) 2016-09-30 2019-03-28 Method and apparatus used for data transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610872741.8A CN107888236B (zh) 2016-09-30 2016-09-30 一种用于数据传输的方法和装置
CN201610872741.8 2016-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/368,645 Continuation US11025316B2 (en) 2016-09-30 2019-03-28 Method and apparatus used for data transmission

Publications (1)

Publication Number Publication Date
WO2018059210A1 true WO2018059210A1 (zh) 2018-04-05

Family

ID=61762506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101012 WO2018059210A1 (zh) 2016-09-30 2017-09-08 一种用于数据传输的方法和装置

Country Status (4)

Country Link
US (1) US11025316B2 (zh)
EP (1) EP3512112B1 (zh)
CN (1) CN107888236B (zh)
WO (1) WO2018059210A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180102931A1 (en) * 2016-10-07 2018-04-12 Lg Electronics Inc. Reference signal having flexible structure
CN108024355B (zh) * 2016-11-04 2020-10-23 华为技术有限公司 一种下行控制信息的指示方法、装置及通信系统
EP3905581A1 (en) * 2017-03-24 2021-11-03 Apple Inc. Dm-rs grouping and csi reporting for comp
CN108809507B (zh) * 2017-05-05 2021-01-29 华为技术有限公司 用于数据传输的方法、终端和网络设备
CN108809573B (zh) * 2017-05-05 2023-09-29 华为技术有限公司 确定天线端口的qcl的方法和设备
CN109936401A (zh) * 2017-12-15 2019-06-25 索尼公司 电子装置、无线通信方法以及计算机可读介质
CN110474745B (zh) * 2018-05-11 2021-01-22 维沃移动通信有限公司 一种准共址配置方法、终端及网络设备
CN113938875A (zh) * 2018-06-27 2022-01-14 华为技术有限公司 一种能力上报的方法及装置
CN110798295B (zh) * 2018-08-03 2021-04-02 维沃移动通信有限公司 用于确定物理共享信道传输数据的方法和设备
CN110798298B (zh) * 2018-08-03 2021-11-02 维沃移动通信有限公司 控制信息指示、接收方法和设备
US11863268B2 (en) 2018-08-10 2024-01-02 Qualcomm Incorporated Quasi-colocation indication for non-zero power channel state information reference signal port groups
WO2020029232A1 (en) 2018-08-10 2020-02-13 Qualcomm Incorporated Quasi-colocation indication for demodulation reference signals
WO2020042028A1 (en) * 2018-08-29 2020-03-05 Qualcomm Incorporated Multiple downlink control information design for multiple transceiver nodes
CN110881220B (zh) * 2018-09-06 2022-09-30 大唐移动通信设备有限公司 多传输点trp数据处理的方法、基站、终端及存储介质
CN110958089B (zh) * 2018-09-27 2021-12-03 华为技术有限公司 传输块与码字的对应关系、相关设备以及系统
US10917140B2 (en) * 2018-10-03 2021-02-09 Nokia Technologies Oy Dynamic signaling of coherence levels
CN111278113B (zh) * 2018-12-05 2022-10-04 成都华为技术有限公司 一种数据传输方法和设备
CN111435846B (zh) * 2019-01-11 2022-04-15 大唐移动通信设备有限公司 一种信道状态信息上报方法、终端和网络侧设备
CN111435883B (zh) 2019-01-11 2021-10-26 华为技术有限公司 准共址指示方法及装置
JP7426403B2 (ja) * 2019-04-25 2024-02-01 北京小米移動軟件有限公司 ビーム失敗の報告方法、装置及び記憶媒体
CN112399574B (zh) * 2019-08-15 2023-10-24 华为技术有限公司 一种无线通信的方法和装置以及通信设备
CN112448743B (zh) * 2019-08-30 2022-06-14 华为技术有限公司 信道测量的方法和通信装置
CN110830096B (zh) * 2019-10-30 2023-06-16 西安广和通无线通信有限公司 天线适配方法和天线组件
CN113271133B (zh) * 2020-02-14 2023-09-08 大唐移动通信设备有限公司 一种天线端口指示方法、终端及网络侧设备
CN111901086A (zh) * 2020-04-29 2020-11-06 中兴通讯股份有限公司 信息指示、确定、载频信息确定方法、通信节点及介质
CN116134743A (zh) * 2020-07-07 2023-05-16 联发科技股份有限公司 具有波束成形的无线通信系统中的波束报告方法
CN114070372B (zh) * 2020-08-07 2024-05-10 华为技术有限公司 通信方法与通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974316A (zh) * 2013-02-06 2014-08-06 中兴通讯股份有限公司 一种控制用户设备进行测量的方法及装置
US20160223639A1 (en) * 2015-01-29 2016-08-04 Intel Corporation Wireless systems and methods

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101789621B1 (ko) * 2010-01-19 2017-10-25 엘지전자 주식회사 하향링크 데이터 전송방법 및 기지국과, 하향링크 데이터 수신방법 및 사용자기기
US9107213B2 (en) * 2011-11-09 2015-08-11 Samsung Electronics Co., Ltd. Reference signal for time and/or frequency tracking in a wireless network
CN104106223A (zh) * 2012-02-11 2014-10-15 Lg电子株式会社 报告信道状态信息的方法、其支持方法及所述方法的设备
RU2617833C2 (ru) * 2012-04-19 2017-04-28 Самсунг Электроникс Ко., Лтд. Способ и устройство для идентификации квазисовмещения портов опорного символа для координированных многоточечных систем связи
US9307521B2 (en) 2012-11-01 2016-04-05 Samsung Electronics Co., Ltd. Transmission scheme and quasi co-location assumption of antenna ports for PDSCH of transmission mode 10 for LTE advanced
US20150304997A1 (en) * 2013-03-26 2015-10-22 Lg Electronics Inc. Method for transmitting and receiving signal in multiple cell-based wireless communication system, and apparatus for same
US9389009B2 (en) * 2013-10-31 2016-07-12 Manitowoc Foodservice Companies, Llc Ice making machine evaporator with joined partition intersections
US9906344B2 (en) * 2015-02-23 2018-02-27 Intel Corporation Methods, apparatuses, and systems for multi-point, multi-cell single-user based multiple input and multiple output transmissions
CN106160802B (zh) * 2015-03-25 2021-09-07 索尼公司 无线通信设备、无线通信方法、计算机可读存储介质
CN106559879B (zh) * 2015-09-25 2019-08-02 中兴通讯股份有限公司 信息发送及确定、关系确定的方法及装置
CN107342852B (zh) * 2016-04-29 2022-11-15 中兴通讯股份有限公司 信令发送、接收方法及装置、网络侧设备、终端
US10834716B2 (en) * 2016-07-28 2020-11-10 Lg Electronics Inc. Method for receiving reference signal in wireless communication system and device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974316A (zh) * 2013-02-06 2014-08-06 中兴通讯股份有限公司 一种控制用户设备进行测量的方法及装置
US20160223639A1 (en) * 2015-01-29 2016-08-04 Intel Corporation Wireless systems and methods

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Evaluation of the Impact of QCL Assumptions and Discussion on Potential QCL Configurations", 3GPP TSG RAN WG1 MEETING #86, R1-167199, 26 August 2016 (2016-08-26), XP051140570 *
HUAWEI ET AL.: "Potential Enhancements for Non-Coherent JT", 3GPP TSG RAN WG1 MEETING #86, R1-167143, 26 August 2016 (2016-08-26), XP051125740 *
See also references of EP3512112A4

Also Published As

Publication number Publication date
US11025316B2 (en) 2021-06-01
EP3512112B1 (en) 2023-12-13
CN107888236A (zh) 2018-04-06
CN107888236B (zh) 2021-06-29
US20190222274A1 (en) 2019-07-18
EP3512112A4 (en) 2019-08-07
EP3512112A1 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
WO2018059210A1 (zh) 一种用于数据传输的方法和装置
JP7267344B2 (ja) データ送信方法および装置
US11044714B2 (en) Method for transmitting downlink control information, terminal device and network device
US11101948B2 (en) Data transmission method, terminal, and network device
WO2017167290A1 (zh) 一种数据传输方法、网络侧设备及终端设备
WO2018202098A1 (zh) 无线通信的方法、网络设备和终端设备
TWI694698B (zh) 傳輸數據的方法和通信設備
US11184090B2 (en) Method and device for determining QCL relationship between antenna ports
CN111034287B (zh) 资源配置方法、确定方法及其装置、通信系统
WO2020216130A1 (zh) 一种通信方法及装置
WO2018082043A1 (zh) 通信方法、终端和网络设备
WO2017193727A1 (zh) 参考信号传输方法、网络设备、用户设备和通信系统
WO2020169063A1 (zh) 一种数据传输方法及通信装置
TW201742421A (zh) 傳輸參考訊號的方法、網路設備和終端設備
WO2017174018A1 (zh) 多传输点数据传输的方法及装置
JP2021503210A (ja) リソース構成方法、端末装置及びネットワーク装置
WO2018127158A1 (zh) 一种数据传输的方法、网络侧设备及终端设备
TWI734828B (zh) 傳輸資料的方法、接收端裝置和發送端裝置
WO2020087541A1 (zh) 下行控制信息的传输方法和设备
WO2018028245A1 (zh) 一种接收定时的配置方法及通信设备
WO2022206271A1 (zh) 一种确定资源的方法和装置
WO2018053752A1 (zh) 传输系统信息的方法、网络设备和终端设备
WO2017004819A1 (zh) 资源调度的方法、装置和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854660

Country of ref document: EP

Effective date: 20190410