WO2017004819A1 - 资源调度的方法、装置和设备 - Google Patents

资源调度的方法、装置和设备 Download PDF

Info

Publication number
WO2017004819A1
WO2017004819A1 PCT/CN2015/083617 CN2015083617W WO2017004819A1 WO 2017004819 A1 WO2017004819 A1 WO 2017004819A1 CN 2015083617 W CN2015083617 W CN 2015083617W WO 2017004819 A1 WO2017004819 A1 WO 2017004819A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
sta
default
resource block
allocation information
Prior art date
Application number
PCT/CN2015/083617
Other languages
English (en)
French (fr)
Inventor
于健
乔登宇
杨讯
刘乐
林梅露
刘辰辰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580079141.XA priority Critical patent/CN107534863B/zh
Priority to PCT/CN2015/083617 priority patent/WO2017004819A1/zh
Publication of WO2017004819A1 publication Critical patent/WO2017004819A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning

Definitions

  • the present invention relates to the field of communication technologies, and more particularly to a method, apparatus and apparatus for resource scheduling.
  • OFDMA orthogonal frequency division multiple access
  • MU-MIMO multi-user input/output
  • the above multi-user transmission (for example, including OFDMA mode, MU-MIMO mode or OFDMA and MU-MIMO hybrid transmission mode) requires a solution for how to perform resource scheduling for multiple users.
  • the embodiments of the present invention provide a method, an apparatus, and a device for resource scheduling, which can support efficient resource allocation information.
  • a method for resource scheduling is provided, which is characterized by being applied to a wireless local area network, including
  • the resource allocation information includes: for a total bandwidth to be allocated, a case for indicating a division of a default resource block at the same time, and an index of whether the destination STA of each resource block is a default STA;
  • a method for resource scheduling is provided, which is characterized by being applied to a wireless local area network, including
  • resource allocation information includes: an indication of a case of resource block partitioning, and, for one or more resource blocks that are divided, used to indicate whether a destination STA allocated in each resource block is a default STA Information, including an index, or a special site or site group identifier;
  • the default STA is an STA that participates in preamble transmission on a corresponding resource block, or an STA that is pre-agreed based on a beacon frame and a management frame.
  • a method for resource scheduling is characterized by being applied to a wireless local area network, including
  • resource allocation information includes: an indication of a case of resource block partitioning, and, for the partitioned one or more resource blocks, used to indicate that a MAC frame transmitted in each resource block includes a multicast MAC frame. index;
  • a method for receiving resource scheduling is provided, which is characterized in that it is applied to a wireless local area network, including
  • Receiving resource allocation information where the resource allocation information includes: for a total bandwidth to be allocated, a case for simultaneously indicating a division of a default resource block, and an index of whether the destination station STA of each resource block is a default site STA;
  • the index in the resource allocation information if it is a default STA, data is transmitted on the default resource block.
  • a method for receiving resource scheduling is provided, which is characterized in that it is applied to a wireless local area network, including
  • the resource allocation information includes: an indication of a case of resource block partitioning, and, for one or more resource blocks that are divided, used to indicate whether a destination STA allocated in each resource block is a default STA Information, including an index, or a special site or site group identifier;
  • the transmission includes transmission or reception.
  • the default STA is an STA that participates in preamble transmission on a corresponding resource block, or an STA that is pre-agreed based on a beacon frame and a management frame.
  • a method for resource scheduling is provided, which is characterized in that it is applied to a wireless local area network, including
  • the resource allocation information includes: an indication of a case of resource block partitioning, and, for the partitioned one or more resource blocks, indicating that a MAC frame transmitted in each resource block includes a multicast MAC frame Index
  • the multicast data is received on the default resource block.
  • apparatus are provided that can be used to perform the various methods described above.
  • the method, apparatus, and device for resource scheduling according to an embodiment of the present invention can efficiently perform an indication of resource allocation by simply indicating default resource allocation information.
  • FIG. 1 is a schematic flowchart of a method for resource scheduling according to an embodiment of the present invention.
  • FIG. 2 is a schematic architectural diagram of a WLAN system.
  • Figure 3 is a simplified schematic diagram of one possible data structure for 802.11ax.
  • Figure 4 is a simplified schematic diagram of one possible configuration of HE-SIG-B.
  • FIG. 5 is a simplified schematic diagram of the manner of resource block allocation of 20 MHz bandwidth and its index.
  • FIG. 6 is a simplified schematic diagram of another resource block division manner and its index.
  • Figure 7 is a simplified schematic diagram of a default acknowledgment mode.
  • Figure 8 is a simplified schematic diagram of two other default acknowledgments.
  • Figure 9 is a simplified schematic diagram of another default confirmation method.
  • Figures 10a, 10b are simplified schematic diagrams of another default confirmation mode, respectively.
  • Figures 11a-11d are simplified schematic diagrams of default resource block allocation information and its indexes, respectively.
  • 12 is a simplified schematic diagram of a transmission flow of uplink OFDMA/MU-MIMO.
  • Figure 13 is a simplified diagram of a resource allocation information and its receiving process.
  • FIG. 14 is a simplified schematic diagram of a resource allocation information processing performed by a receiving end.
  • Fig. 15 is a simplified schematic diagram of another resource allocation information and its receiving process.
  • Fig. 16 is a simplified schematic diagram of still another resource allocation information and its receiving process.
  • FIG. 17 is a schematic block diagram of an apparatus for resource scheduling according to an embodiment of the present invention.
  • FIG. 18 is a schematic block diagram of an apparatus for resource scheduling according to another embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of an apparatus for resource scheduling according to an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of an apparatus for resource scheduling according to another embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a method 100 for resource scheduling according to an embodiment of the present invention, which is applied from a perspective of a transmitting end.
  • the method 100 is applied to a wireless local area network, and one or more of the next-generation protocols followed by the wireless local area network are agreed upon.
  • Default resource block allocation information as shown in FIG. 1, the method 100 includes:
  • the sender generates resource scheduling information, where the resource scheduling information includes an indication for the one or more default resource block allocation information.
  • the index is used to simultaneously indicate the partitioning of the resource block and the information of the default destination site; or, in addition to the indication of the resource block allocation, the identifier of the special site or the site group is used to indicate the multicast, or the special site is utilized. Or the identity of the site group indicates the default destination site.
  • the method of the receiving end includes
  • the receiving end receives resource scheduling information, where the resource scheduling information includes an indication for the one or more default resource block allocation information.
  • the index is used to indicate the division of the resource block and the information of the default destination site; or, in addition to the indication of the resource block partition, the identifier of the special site or the site group is used to indicate the multicast, or the default purpose is indicated. Site.
  • the resource scheduling information includes an indication that the default resource block allocation information exists, and the receiving end needs to perform transmission according to the default resource block allocation information, the transmission is performed according to a protocol agreement or a mutually agreed manner.
  • the receiving is consistent with the sending process; for non-default STAs, it is not necessary to receive and cannot be sent.
  • the method 100 can be applied to various communication systems that implement multi-user transmission by means of resource scheduling, for example, a system that performs communication by means of OFDMA or MU-MIMO.
  • the method 100 can be applied to a Wireless Local Area Network (WLAN), for example, Wireless Fidelity (Wi-Fi).
  • WLAN Wireless Local Area Network
  • Wi-Fi Wireless Fidelity
  • the WLAN system includes one or more The access points AP21 also include one or more stations STA22. Data transmission is performed between the access point and the station, wherein the station determines the resource scheduled to be based on the preamble sent by the access point, and performs data transmission between the resource and the access point.
  • the sending end is a network device
  • the receiving end is a terminal device.
  • a network side device in the communication system may be mentioned.
  • it may be an access point (AP) in the WLAN, and the AP may also be called a wireless access point or bridge. Or a hotspot, etc., which can access a server or a communication network.
  • AP access point
  • the AP may also be called a wireless access point or bridge.
  • a hotspot, etc. which can access a server or a communication network.
  • a terminal device in a communication system may be cited.
  • it may be a user station (STA, Station) in a WLAN.
  • STA may also be referred to as a user, and may be a wireless sensor, a wireless communication terminal, or a mobile terminal, such as a mobile device.
  • a telephone or "cellular" telephone
  • a computer with wireless communication capabilities For example, it may be a portable, pocket-sized, hand-held, computer-integrated, wearable, or in-vehicle wireless communication device that exchanges voice, data, and the like communication data with a wireless access network.
  • GSM global mobile communication system
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • the network device may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (eNB or e-NodeB, evolutional Node B) It may be a micro cell base station, which may be a micro base station (Micro), may be a pico base station (Pico), may be a home base station, or may be referred to as a femto cell base station (femto), which is not limited in the present invention.
  • the terminal device may be a mobile terminal, a mobile user device, or the like, such as a mobile phone (or "cellular" phone).
  • the rule for resource block size partitioning in a WLAN system is that the smallest resource block includes 26 subcarriers. In addition, it includes 52 subcarriers, 106 subcarriers, 242 subcarriers, 484 subcarriers, and resource blocks of 996 subcarriers. Correspondingly, a larger resource block can be regarded as twice, 4 times, 9 times, 19 times, 38 times the smallest resource block of 26 subcarriers.
  • 802.11ax is a possible data structure.
  • the AP divides the entire bandwidth into multiple resource units (sub-bands), and uses multiple resource units to perform data transmission on multiple STAs.
  • the AP needs to indicate the resource scheduling information before transmitting the data.
  • resource scheduling information of a multi-user STA is included in the HE-SIG-B, and multiple STAs are instructed to receive data.
  • HE-SIG-B is a possible structure of HE-SIG-B, which includes a common part and a dedicated part.
  • the public domain contains some common information that all destination STAs need to read, such as the guard interval (GI) of the data part, the location information of the resource block or the resource unit allocation, and the HE-LTF (High Efficient Long Training) to be sent.
  • Field the number of OFDM symbols of the high-efficiency long training sequence, etc.; and the information that each STA needs to read in a STA or a group of STAs in the same resource block, including the STA Identifier (STA ID), is included in the site-by-site domain.
  • the Modulation and Coding Scheme (MCS) is used to indicate the modulation and coding strategy.
  • the Number of Space-Time Stream is used to indicate the number of space-time streams used.
  • the Low Density Parity Check (LDPC) is used to indicate whether to use the LDPC encoding method.
  • the Space Time Block Coding (STBC) is used to indicate whether to use STBC or not.
  • Beamforming (Beamforming, BF) is used to indicate whether beamforming technology is employed.
  • CRC Cyclic Redundancy Code
  • BCC Binary Convolution Code
  • the resource block location information may also indicate the location of its resource block for each STA. That is to say, the resource block location information may be included only in the public domain, or the location of the resource block may be included only in the site domain portion, or the location information of the resource block may be included in both the public domain and the site domain.
  • the specific instructions are not limited in this article.
  • the size of multiple resource blocks is currently defined, and is divided into 26, 52, 106, 242, 484, 996 according to the number of subcarriers.
  • 26 subcarriers correspond to approximately 2 MHz
  • 52 subcarriers correspond to approximately 4 MHz
  • 106 subcarriers correspond to approximately 10 MHz
  • 242 subcarriers approximately correspond to 20 MHz
  • 484 subcarriers The wave corresponds to approximately 40 MHz
  • the 996 subcarriers approximately correspond to 80 MHz. However, it is not completely corresponding. For example, when the bandwidth is 80 MHz, there are four large resource blocks of 242 subcarriers. In addition, there is a small resource block of 26 subcarriers in the middle part.
  • Figure 5 is a combination of possible OFDMA resource blocks for a total bandwidth of 20 MHz.
  • the size of the resource block may be 26, 52, 106 (since 102 is used, so 102 represents 106 in Figure 3).
  • ceil log 2 25
  • a list index can be separately performed for each 20 MHz, and instructions are respectively performed.
  • multi-user MIMO Multi-user MIMO, MU-MIMO
  • MU-MIMO multi-user MIMO
  • the resource block is large enough, such as 106 or 242
  • it will allow further MU MIMO to be used for transmission in that subband.
  • there is a table index that includes a more comprehensive allocation method, which requires more bits to indicate than the former.
  • the resource block labeled 1-8 is for the case of transmitting MU-MIMO, and corresponds to one index for each case of 1 user to 8 users.
  • the indication of the default resource allocation information is performed by means of a list index.
  • the resource allocation information may refer to the manner of the table index, for example, as shown in FIG. 5 and FIG. 6 above, including one or more indexes for indicating default resource allocation information.
  • the foregoing default resource allocation information includes:
  • the AP and the STA contract or the resource block specified by the protocol is divided into two resource blocks of 242 subcarriers if the bandwidth is 40 MHz; if the bandwidth is 80 MHz, the entire bandwidth is divided into four. 242 subcarriers Resource block and a resource block of 26 subcarriers.
  • determining the division of the currently transmitted resource blocks for example, the 20 MHz of the preamble uplink transmission is divided into resource blocks of 9 26 subcarriers, and the downlink transmission is used before The same resource block division manner in the uplink transmission is also the resource block of 9 26 subcarriers. or,
  • the destination STA of the default resource block (the STA allocated on the resource block). That is, the STA participating in the preamble transmission receives/transmits data in the resource block in accordance with a predetermined pattern. For example, for a STA that participates in a preamble transmission, data is received/transmitted in a resource block of 242 subcarriers to which the resource block transmitted in the same resource block or preamble transmission belongs in the current transmission. In addition to this, it is also possible to pre-determine which STAs are to receive/transmit data in which resource blocks by beacon frames or some management frame. or,
  • the default reply frame reply mode This includes how resource blocks are allocated, which resource blocks are sent on the acknowledgment frame, and which STAs send acknowledgment frames.
  • 3) contains the contents of 1) and 2) that require a default indication.
  • 3) may also include an acknowledgment frame for replying to what type of MAC frame, such as O-BA, M-BA, OFDMA M-BA and BA.
  • the index in the first embodiment does not only indicate the division of the resource block, but includes the case of the division of the resource block and the information of the destination STA of the resource block.
  • the method includes two types. The first one is: for the total bandwidth to be allocated, the index is used to indicate the division of the resource block and whether the destination STA of each resource block is the default STA; the second is: the resource block.
  • the division is indicated in some known or other manner, and the index is used to indicate whether the destination STA allocated in each resource block is the default STA.
  • the index is used to indicate a default acknowledgment mode, that is, an acknowledgment frame of a certain MAC type is carried in the limited resource block.
  • the unicast frame or the multicast frame may be indicated first, and the destination STA of the multicast frame is further indicated.
  • the default resource allocation information may be one of the above default allocation modes; or an index may be separately established for each of the respective indications.
  • each index and its corresponding resource allocation situation, and the target site may be stored in the sending end or the receiving end, respectively, or may be known to the transmitting end and the receiving end in other manners.
  • multiple STAs perform uplink multi-user transmission frame transmission according to scheduling of a trigger frame; when the AP performs downlink acknowledgement frame reply, the resource block allocation indication index is 26 (For example, other values may be used), the allocation of the resource blocks will be allocated as shown in Figure 7, divided into resource blocks of two 242 subcarriers. Then, using the resource block of 242 subcarriers, the M-BA frame is confirmed by the STA that has transmitted the uplink data in the range of 242 subcarriers.
  • resource block allocation indication index is 27 (only other values may be used as an example)
  • resource block allocation will be allocated according to the situation in FIG. 8a, resource block allocation and preamble uplink data.
  • the resource block allocation of the transmission is the same. If a subband of the preamble is a data transmission of a single STA, the O-BA is replied; if a subband of the preamble is a MU MIMO data transmission of multiple STAs, the M-BA is replied. .
  • the resource block allocation indication index is 28 (only the value may be another value), and as shown in FIG. 10a, the resource block indicated by the Kth resource indicator in the default site-by-site indication is M- BA frame.
  • the resource block allocation indication index is 29 (only other values may be used as an example).
  • the default reply mode performs average allocation of resource blocks for the number of STAs that need to reply to the acknowledgement frame, and then replies within each resource block. O-BA.
  • the two cases shown in FIG. 11a and FIG. 11b are methods for performing default resource allocation information indication for the entire bandwidth, that is, the value of the index is used to indicate that the partitioning of the resource block and the destination STA are defaults of the default STA. Resource allocation information.
  • each resource block can be indicated separately.
  • multicast data is transmitted only for the case where the resource block is large (a resource block larger than the threshold 106 or 242 subcarriers), wherein an index value is assigned for each of the number of MU MIMO users that the resource block propagates.
  • FIG. 11c shows a simplified representation. The first row actually corresponds to a centralized representation of 81 rows, corresponding to 81 index values, respectively N1-N81, wherein the left and right two 106s (1-9) respectively represent the location.
  • the resource block of size 106 is allocated to any number of users 1 to 8, and the ninth case is used to indicate that the destination STA of the resource block is the default STA, or is used to indicate that the multicast frame is transmitted on the resource block. .
  • the index value indicates on the one hand the allocation of resource blocks: the resource block of 106, the resource block of 26, the resource block of 106, and on the other hand indicates whether the destination STA of a particular resource block is the default. STA.
  • Figure 11d shows an expanded identification method of Figure 11c, wherein the index N90 indicates that 20 MHz is divided into four resource blocks of 106, 26, 52, 52 in order, and the purpose of the first resource block of size 106 is The STA is the default STA, and the index N99 indicates that the 20 MHz is used as a resource block of one complete 242 subcarriers, and the destination STA is the default STA.
  • the MU MIMO user number is any value from 1 to 8.
  • another MME value may be included, which is equivalent to, for example, the ninth case for a larger resource block, indicating the resource block.
  • the destination STA is a default STA, for example, a station that sends uplink information in advance.
  • the resource block may also be indicated that the resource block propagates a multicast frame.
  • the destination STA of the multicast frame it is possible to restrict the transmission of only one multicast MAC frame, and the STA participating in the unicast reception does not need to receive the multicast frame.
  • the STA learns that it is not participating in the unicast transmission, it can read the multicast frame and read the MAC address or the STA ID of the MAC frame body to identify whether it is the destination STA of the multicast. It is also possible to indicate whether a multicast frame having a fixed packet or a multicast packet of a temporary packet is carried by carrying a special multicast ID.
  • the corresponding index value is used to indicate that the MAC frame transmitted by the resource block is a MAC frame (temporary grouping) that the STA participating in the preamble uplink transmission needs to read
  • the corresponding index value for the ninth case is used to indicate the multicast transmission of the fixed packet.
  • multiple destination STAs do not have a common multicast MAC address (non-broadcast MAC address) to identify this group of STAs. For example, if an STA that is arbitrarily scheduled to participate in uplink multi-user transmissions replies to these STAs by using the M-BA mode, the multiple destination STAs of the M-BA often do not have a common multicast MAC address.
  • the fixed packet multicast transmission there is a common multicast MAC address allocated above the MAC layer, which can be used to identify the destination STA of the fixed packet multicast transmission.
  • the indication of the unicast/multicast data and the indication of the default confirmation mode are performed by the value of the index of the more default resource allocation information.
  • the indication of the resource scheduling parameters of the physical layer may also be separately performed for each STA or for the STA group (MU MIMO user group or multicast transmission user group) in each resource block. Since it is known in the public part that the MAC frame transmitted by each resource block is unicast/multicast, if it is unicast data, whether it is a single STA or a MU MIMO user group, the site-by-site domain can be targeted for each resource block. The way in which the transmission method differs is specifically designed to indicate the resource.
  • the indication of the STA ID of the station allocated on the resource block may not be performed.
  • the lower MCS is often used because of the robustness of edge user reception.
  • the default resource allocation information can be used for multicast data transmission without indicating relevant physical layer parameters, such as MCS, NSTS, LDPC, STBC, BF, and the like. Therefore, one possible way is to use the default resource allocation information for the default transmitted multicast data without performing the site-by-site indication. If the default resource allocation information is instructed to use default resource allocation information for all subsequent resource blocks, the indication of the domain-by-site domain may not be performed, and only the indication of the public domain may be performed.
  • the index of the read resource allocation indication is a default resource allocation information, and the self-involved pre-order transmission, the resource is performed according to the default resource allocation information. Read/send of the block; if there is no pre-order transmission, the read/send is not continued.
  • a special case of the default resource allocation information mentioned in the foregoing embodiments is the default acknowledgment mode. There are many default confirmation methods, and the implementation manners do not limit them.
  • a default acknowledgment frame reply mode 1 As shown in the default reply mode shown in Figure 7. That is, for STAs that perform uplink transmission within 20 MHz (242 subcarrier carriers), the AP aligns the responses in the corresponding subbands by means of M-BA. For M-BAs on different 20MHz, M-BA transmission is performed by OFDMA.
  • a default acknowledgment frame reply mode 2 is to allocate the same OFDMA BA (O-BA) transmission as the preamble resource block.
  • O-BA OFDMA BA
  • a resource block is a MU-MIMO transmission
  • the M-BA may be replied to the corresponding resource block or the resource block may be evenly allocated for O-BA transmission, as shown in FIG.
  • a default acknowledgment frame reply mode 3 is an O-BA reply mode that distributes the entire bandwidth evenly.
  • the entire bandwidth is divided equally according to the number of STAs, and the O-BA reply is performed, as shown in FIG.
  • a default acknowledgment frame reply mode 4 is a default multicast frame for the Kth indication of the Dedicated part, and the destination STA is the STA that participates in the UL MU transmission in advance, other resources.
  • the block continues to be specified by subsequent sections, and unicast frames or multicast frames with fixed packets can be transmitted. Preferably, this case applies to the case where the public part and the station-by-site part are jointly coded.
  • the default first indication is the default multicast frame M-BA.
  • the location of the resource block can be indicated or defaulted.
  • the default acknowledgment frame reply mode includes the default resource allocation information of the resource block partitioning, and includes the destination STA in each resource block as the default STA.
  • the division of the resource blocks may be included, for example, the division of the resource blocks is performed according to the above four manners, but the destination STAs of each resource block are separately indicated separately; The resource block is divided, and then each resource block indicates whether the destination STA is the default STA.
  • the destination STAs mentioned above for the default (default) resource blocks may be STAs participating in preamble transmission, or STAs pre-agreed based on beacon frames and management frames.
  • 802.11ax In addition to downlink multi-user transmission, 802.11ax also introduces multi-user uplink transmission, as shown in Figure 12.
  • the AP sends a trigger frame, which is used to trigger multi-user transmission, and includes resource scheduling information of multi-user uplink transmission. After receiving the trigger frame, the multiple STAs send the uplink frame almost at the same time according to the resource scheduling information in the trigger frame. After receiving the uplink frame of multiple users, the AP simultaneously sends multiple user acknowledgement frames for multiple STAs.
  • the AP sends the trigger frame, and the STA needs to transmit the uplink frame immediately after the X Inter-frame Space, and sets an Acknowledge Policy. If the confirmation rule is immediate feedback, the AP is required to be correct.
  • the acknowledgement frame is returned immediately after receiving the data XIFS.
  • the "STA that participates in the preamble transmission" is the STA that participates in the uplink frame transmission. In addition to this, the case where the STA participating in the preamble transmission needs to receive data on which subchannel depends on the default resource allocation.
  • the STA needs to immediately reply to the acknowledgement frame after correctly receiving the data XIFS.
  • the AP sends a trigger frame while transmitting downlink data, and transmits scheduling information for triggering the acknowledgement frame, indicating how the STA responds to the acknowledgement frame.
  • the STA that participates in the preamble transmission in the scheduling information in the trigger frame is the destination STA that requests the downlink frame that is immediately replied in the current downlink transmission, as shown in FIG. 10b.
  • the AP/STA that requested the acknowledgment frame does not receive/correctly receive the corresponding acknowledgment frame within a fixed period of time, it considers that the data is not received correctly, or if the acknowledgment frame is not resolved, it is no longer considered to be participating in the preamble.
  • the transmitted STA If the AP/STA that requested the acknowledgment frame does not receive/correctly receive the corresponding acknowledgment frame within a fixed period of time, it considers that the data is not received correctly, or if the acknowledgment frame is not resolved, it is no longer considered to be participating in the preamble.
  • the transmitted STA If the AP/STA that requested the acknowledgment frame does not receive/correctly receive the corresponding acknowledgment frame within a fixed period of time, it considers that the data is not received correctly, or if the acknowledgment frame is not resolved, it is no longer considered to be participating in the preamble. The transmitted STA.
  • a special STA ID is used to indicate in a certain resource block.
  • One or more destination STAs of the MAC frame are STAs that participate in uplink transmission in advance.
  • a STA that does not participate in preamble uplink transmission does not need to read the resource block.
  • the special STA ID may be an all-zero or all-one STA ID, or an STA ID agreed by the AP in advance with the STA participating in the pre-order transmission.
  • the STA reads the STA ID. If the STA ID is a special STA ID, and the STA participates in the uplink transmission on the preamble corresponding resource block, the MAC frame in the resource block is read; if the STA does not participate in the preamble corresponding resource. Upstream transmission on the block eliminates the need to read the resource block.
  • the corresponding resource block may be the same resource block that is the same as the resource block or belongs to the same 20 MHz (the resource block of 242 subcarriers).
  • a special STA ID may also be used to indicate whether the MAC frame in the resource block is a multicast MAC frame or a unicast MAC frame.
  • two special STA IDs can be reserved.
  • the STA reads a special STA ID 1
  • the frame is considered to be a fixed-packet multicast frame and is selectively read according to certain rules.
  • the STA participating in the unicast frame does not need to read the multicast frame, it decides whether to read according to whether there is a unicast frame sent to itself. If the STA supports simultaneous reception of unicast data and multicast data, the STA can perform reading together.
  • Unicast refers to a transmission method in which packets are transmitted in a computer network and the destination address is a single destination. It is the most widely used network application today, and most commonly used network protocols or services use unicast transmission, such as all TCP-based protocols. In addition to unicast transmission methods, there are also broadcast and multicast. The difference between them and unicast is that the destination address of the broadcast is the overall target in the network, and the destination address of the multicast is a group of targets, and the members joining the group are the destinations of the packet.
  • Video transmission/teaching content transmission through multicast is an important application scenario in 802.11ax, which will be widely used in sports venues and lecture halls.
  • the unicast or multicast indication is also included, and Multicast, which uses a special multicast ID to indicate that the multicast is not a normal multicast frame with a common multicast MAC address, but a multicast frame that the default STA needs to read.
  • the indication of the unicast and the multicast data may be indicated by using the index of the resource block location information mentioned in the first embodiment, or other schemes are used for indication, and the solution of the present invention is not limited.
  • Other schemes indicating unicast and multicast for example, indicate whether a MAC frame on a resource block is a multicast/broadcast MAC frame (multicast) or a unicast MAC frame by a 1-bit explicit or special STA ID. If the MAC frame of a certain resource block is indicated as a multicast/broadcast MAC frame by 1 bit, it is also possible to further indicate which multicast group is by the multicast ID.
  • the multicast ID can be associated with the multicast MAC address by the STA and the AP through handshake negotiation.
  • the STA can confirm whether the MAC frame propagated by some resource blocks is a multicast MAC frame or a unicast MAC frame by reading the received information.
  • the STA distinguishes the MAC frame in a resource block from the multicast frame, it reads the multicast ID and finds that the multicast ID is a special multicast ID, and the STA participates in the uplink transmission on the pre-ordered resource block.
  • the resource allocation information of the province receives the multicast data, or reads the MAC frame in the resource block; if the STA does not participate in the uplink transmission on the pre-order corresponding resource block, the resource block does not need to be read.
  • the STA ID or the multicast ID can also be implicitly carried in the manner of scrambling or XOR.
  • the receiving end uses the special ID to perform descrambling or singular OR to identify whether the AP is implicit. Carrying a special ID, this method is still within the scope of the solution of the present invention.
  • the fourth embodiment first indicates that the packet structure is a single-user packet structure, and the indication manner may be indicated by the indication in the HE-SIG-A, or may be implicitly carried by the L-SIG+RL-SIG part.
  • the solution of the present invention is not limited.
  • the special multicast ID is a special ID when it is confirmed that the address is a multicast ID, such as all 0s or all 1s, or an ID pre-defined by the AP and the STA.
  • the physical layer parameters of the single site may be used to uniformly indicate the MAC frames in the multiple resource blocks, where the physical layer parameters, as shown in FIG. 16 , may include MCS, NSTS, LDPC, or STBC; You can also use the default physical layer parameters without indication.
  • MCS is fixed with MCS0
  • NSTS is fixed with 1 spatial stream
  • LDPC is fixed to 0, that is, BCC is used
  • STBC is fixed to 0, that is, STBC is not used.
  • MCS is fixed with MCS0
  • NSTS is fixed with 1 spatial stream
  • LDPC fixed to 0, that is, BCC is used
  • STBC is fixed to 0, that is, STBC is not used.
  • MCS is fixed with MCS0
  • NSTS is fixed with 1 spatial stream
  • LDPC is fixed to 0, that is, BCC is used
  • STBC is fixed to 0, that is, STBC is not used.
  • STBC is fixed to 0, that is, STBC is not used.
  • the STA reads the frame of the SU and the STA ID/multicast ID is a special STA ID/multicast ID, and the STA participates in the preamble uplink transmission, the STA reads the resource according to the default resource allocation information.
  • the MAC frame in the block if the STA does not participate in the preamble uplink transmission, there is no need to read the resource block.
  • the physical layer parameters of the SU in the HE-SIG-A are read or the MAC frame is read according to the default physical layer parameters.
  • the indication of the default resource allocation information is directly performed by implicitly carrying the bits in the L-SIG and RL-SIG or by using the information bits in the HE-SIG-A or HE-SIG-B.
  • An indication of 1 bit may be directly performed for the entire bandwidth, indicating that some default resource allocation information is used; and a plurality of default resource allocation information may be separately indicated.
  • each resource block may be indicated by one bit.
  • the 1-bit indication confirmation mode is some default resource allocation information, that is, the resource block according to some default resource allocation information. Assigned, and the destination STA is the STA that participates in the preamble uplink transmission.
  • the STA reads the default resource allocation information bit indication in the L-SIG and RL-SIG or HE-SIG-A or HE-SIG-B, and if the default resource allocation information of the indication bit is read, If the STA participates in the uplink transmission of the preamble, the MAC frame in the resource block is read according to the default resource allocation information. If the STA does not participate in the corresponding uplink transmission, the resource block does not need to be read.
  • the AP performs an indication of default resource allocation information by not transmitting the site-by-site domain or by not carrying the STA ID on a site-by-site basis. On the STA side, it is calculated by comparing the number of symbols of the HE-SIG-B whether or not the STA-site or the site-by-site domain part carries the STA ID, so as to know whether the resource indication of the default resource allocation information is performed.
  • the symbol number indication of HE-SIG-B is carried in HE-SIG-A.
  • the number of OFDM symbols occupied by the common part of HE-SIG-B is generally fixed.
  • the number of symbols may indicate that the HE-SIG-B portion contains only the common portion and does not include the station-by-site portion, that is, the number of symbols of the HE-SIG-B indicated in the HE-SIG-A is equal to the number of symbols of the common portion;
  • the calculation of the number of HE-SIG-B symbols is performed by the information of the common part to indicate that the station-by-site field does not include the STA ID. For example, if:
  • the destination STA does not include the STA ID, and the destination STA that implicitly indicates the MAC frame to be subsequently transmitted is the default STA, that is, the STA that participates in the preamble uplink transmission.
  • the indication of a certain STA/MU MIMO user group/multicast user group of the HE-SIG-B common part and the STA-indicating part one by one, and the scrambling using the identification information can be passed through the L-SIG and
  • the RL-SIG or the HE-SIGA carries a bit, indicating that the data part has a multicast transmission, and the order of the resource indication of the multicast transmission may be a default location (for example, assuming that the first one is always indicated by the site-by-site field) or Information bits further indicate multicast transmission fingers The order shown (indicated as the Kth).
  • the STA can use the multicast ID or the special multicast ID to descramble, which simplifies the STA receiving process.
  • the STA may further further distinguish the destination STA of the multicast frame by using the method described in Embodiment 1.
  • the STA reads the multicast information bit indication in the L-SIG and RL-SIG or HE-SIG-A, and if there is a multicast data transmission in the indicated data portion, the STA uses the default location or the indicated location. Special ID is used for descrambling.
  • FIG. 17 is a schematic block diagram of an apparatus 300 for resource scheduling according to an embodiment of the present invention.
  • the apparatus 300 is applied to a wireless local area network. As shown in FIG. 17, the apparatus 300 includes:
  • the generating unit 310 is configured to generate resource scheduling information, where the resource scheduling information includes an indication of default resource block allocation information.
  • the index is used to simultaneously indicate the partitioning of the resource block and the information of the default destination site; or, in addition to the indication of the resource block allocation, the identifier of the special site or the site group is used to indicate the multicast, or the special site is utilized. Or the identity of the site group indicates the default destination site.
  • the sending unit 320 is configured to send the resource scheduling information to the receiving end.
  • the device 300 is a network device, and the receiving end is a terminal device.
  • the apparatus 300 for resource scheduling may correspond to a transmitting end (for example, a network device) in the method of the embodiment of the present invention, and each unit in the apparatus 300 of the resource scheduling, that is, a module and the foregoing other operations and/or For the sake of brevity, the functions of the method 100 in FIG. 1 are not described here.
  • a transmitting end for example, a network device
  • each unit in the apparatus 300 of the resource scheduling that is, a module and the foregoing other operations and/or
  • the functions of the method 100 in FIG. 1 are not described here.
  • FIG. 18 is a schematic block diagram of an apparatus 400 for resource scheduling according to an embodiment of the present invention, the apparatus 400 is applied to a wireless local area network, and the next generation protocol followed by the wireless local area network stipulates that the frequency domain resources to be allocated may be divided.
  • the resource block location, as shown in FIG. 18, the apparatus 400 includes:
  • the resource scheduling information includes an indication of the one or more default resource block allocation information.
  • the index is used to indicate the division of the resource block and the information of the default destination site; or, in addition to the indication of the resource block partition, the identifier of the special site or the site group is used to indicate the multicast, or the default purpose is indicated. Site.
  • the processing unit 420 is configured to: according to the resource scheduling information, if the indication that there is default resource block allocation information is included, and the receiving end needs to perform transmission according to the default resource block allocation information, according to a protocol agreement or a manner agreed by both parties Transfer.
  • the apparatus 400 for resource scheduling according to the embodiment of the present invention may correspond to a transmitting end (for example, a network device) in the method of the embodiment of the present invention, and each unit in the resource scheduling apparatus 400 is a module and the above other operations and/or For the sake of brevity, the functions of the method 200 in FIG. 18 are not described here.
  • FIG. 19 is a schematic structural diagram of a device 500 for resource scheduling according to an embodiment of the present invention.
  • the device 500 is applied to a wireless local area network, and a default resource allocation information is agreed in a next-generation protocol followed by the wireless local area network, or is transmitted.
  • the terminal and the receiving end have agreed on the default resource allocation information.
  • the device 500 includes:
  • processor 520 connected to the bus
  • the processor by using the bus, invokes a program stored in the memory for generating resource scheduling information, where the resource scheduling information includes an indication of default resource block allocation information.
  • the index is used to simultaneously indicate the partitioning of the resource block and the information of the default destination site; or, in addition to the indication of the resource block allocation, the identifier of the special site or the site group is used to indicate the multicast, or the special site is utilized. Or the identity of the site group indicates the default destination site.
  • the frequency domain resource to be allocated includes a symmetric center.
  • the device 500 is a network device, and the receiving end is a terminal device.
  • Embodiments of the present invention are applicable to various communication devices.
  • the transmitter of device 500 can include a transmit circuit, a power controller, an encoder, and an antenna, and device 500 can also include a receiver that can include a receive circuit, a power controller, a decoder, and an antenna.
  • the processor can also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor. Part of the memory may also include non-volatile row random access Memory (NVRAM).
  • device 500 may be embedded or may itself be a wireless communication device such as a network device, and may also include a carrier that houses the transmitting circuitry and the receiving circuitry to allow for data transmission and reception between device 500 and a remote location.
  • the transmit and receive circuits can be coupled to the antenna.
  • the various components of device 500 are coupled together by a bus, wherein the bus includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for the sake of clarity, various buses are labeled as buses in the figure.
  • the decoder in a specific different product may be integrated with the processing unit.
  • the processor may implement or perform the steps and logic blocks disclosed in the method embodiments of the present invention.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated processors. Integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the device 500 for resource scheduling may correspond to the method of the embodiment of the present invention.
  • a transmitting end for example, a network device
  • a device for resource scheduling by using at least part of bits in a bit sequence to indicate whether one or more resource block positions in a resource block location to which a frequency domain resource to be allocated may be allocated is a frequency domain to be allocated
  • the resource block to be allocated which is actually divided into resources, can be flexibly generated according to the distribution of the resource block to be allocated by the frequency domain resource to be allocated according to the distribution of the resource block to be allocated.
  • FIG. 20 is a schematic block diagram of a device 600 for resource scheduling according to an embodiment of the present invention.
  • the device 600 is applied to a wireless local area network.
  • the device 600 includes:
  • processor 620 connected to the bus
  • the processor by using the bus, invokes a program stored in the memory, to control a receiver to receive resource scheduling information sent by a sending end, where the resource scheduling information includes an indication for default resource block allocation information.
  • the index is used to simultaneously indicate the partitioning of the resource block and the information of the default destination site; or, in addition to the indication of the resource block allocation, the identifier of the special site or the site group is used to indicate the multicast, or the special site is utilized. Or the identity of the site group indicates the default destination site.
  • the sending end is a network device, and the device 600 is a terminal device.
  • Embodiments of the present invention are applicable to various communication devices.
  • the receiver of device 600 can include a receiving circuit, a power controller, a decoder, and an antenna, and device 600 can also include a transmitter, which can include a transmitting circuit, a power controller, an encoder, and an antenna.
  • the processor can also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor. A portion of the memory may also include non-volatile line random access memory (NVRAM).
  • device 600 may be embedded or may itself be a wireless communication device such as a terminal device, and may also include a carrier that houses the transmitting circuitry and the receiving circuitry to allow for data transmission and reception between device 600 and a remote location. Transmitting circuit and receiving circuit Can be coupled to an antenna.
  • the various components of device 600 are coupled together by a bus, wherein the bus includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for the sake of clarity, various buses are labeled as buses in the figure.
  • the decoder in a specific different product may be integrated with the processing unit.
  • the processor may implement or perform the steps and logic blocks disclosed in the method embodiments of the present invention.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated processors. Integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the resource scheduling device 600 may correspond to a receiving end (for example, a terminal device) in the method of the embodiment of the present invention, and each unit in the resource scheduling device 600 is a module and the foregoing other operations and/or For the sake of brevity, the functions of the method 200 in FIG. 18 are not described here.
  • a device for resource scheduling by using at least part of bits in a bit sequence to indicate whether one or more resource block positions in a resource block location to which a frequency domain resource to be allocated may be allocated is a frequency domain to be allocated
  • the resource block to be allocated which is actually divided into resources, can be flexibly generated according to the distribution of the resource block to be allocated by the frequency domain resource to be allocated according to the distribution of the resource block to be allocated.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • This functionality if implemented as a software functional unit and sold or used as a standalone product, can be stored on a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or sender, etc.) to perform all or part of the steps of the method in accordance with various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
  • the destination STA of the resource allocation or the scheduled STA is the default STA.
  • an index condition is added to the existing resource block, indicating that the destination STA/scheduled STA in the resource block is the default STA or the MAC frame indicating the transmission includes the multicast MAC frame.
  • Use one of the special STA IDs to indicate that one or more destination STAs of the MAC frame within the resource block are default STAs. If it is the default downlink STA, the downlink data of the resource block needs to be read; instead of the default STA, the downlink data of the resource block does not need to be read. If it is the default uplink STA, the uplink data needs to be sent in the resource block; instead of the default STA, the uplink data cannot be sent in the resource block.
  • the default STA is participating in the corresponding resource block.
  • the special STA ID may be carried by a trigger frame or a beacon (Beacon) frame for scheduling uplink transmission by multiple users.
  • a trigger frame or a beacon (Beacon) frame for scheduling uplink transmission by multiple users.
  • Beacon Beacon
  • a special multicast ID is introduced in the multicast address, indicating that the default STA needs to read the resource block; if it is not the default STA, Read the resource block.
  • An indication of default resource allocation information is explicitly made in the L-SIG and RL-SIG or HE-SIG-A or HE-SIG-B using information bits.
  • the L-SIG and RL-SIG or HE-SIG-A utilize information bits to indicate the presence of a multicast MAC frame for the current packet. And the order of the multicast MAC frames in the station-by-site is the default order or the order of the multicast MAC frames is indicated at the same time.
  • the STA reads the resource allocation indication, and the index of the read resource indication is a default resource allocation information, and the division of the resource block is divided according to the default resource allocation information.
  • the downlink data is read in the default resource block according to the default resource block allocation; if it is not the default STA, no data reading is needed.
  • the uplink data is sent in the default resource block according to the default resource block allocation; if the pre-order transmission is not involved, the data cannot be sent.
  • the STA reads the resource allocation indication table, and reads the index of the resource indication to learn that the MAC frame of a certain resource block is a multicast MAC frame or the destination STA/scheduled STA is a default STA.
  • the downlink data is read in the resource block; if the pre-order transmission is not involved, the data is not required to be read.
  • the uplink data is sent in the resource block; if the pre-order transmission is not involved, the data cannot be sent.
  • the STA reads the STA ID. If the STA ID is a special STA ID, and the STA is the default STA, Then, the downlink data in the corresponding resource block needs to be read; if the STA is not the default STA, the downlink data in the corresponding resource block does not need to be read.
  • the STA reads the STA ID. If the STA ID is a special STA ID and the STA is the default STA, the uplink data needs to be sent in the resource block. If the STA is not the default STA, the STA cannot be sent in the resource block. data.
  • the special STA ID can be carried by a trigger frame or a Beacon frame.
  • the multicast ID is read and the multicast ID is a special multicast ID. If the STA is the default STA, the data in the resource block needs to be read. If the STA is not the default. STA, there is no need to read the data in the resource block.
  • the STA reads the frame whose frame is the SU, and the STA ID is a special STA ID, and the STA is the default STA, and the data in the corresponding resource block is read according to the default resource block allocation; if the STA is not the default STA , there is no need to read the data in the resource block.
  • all multicast frames adopt uniform physical layer parameters or default physical layer parameters.
  • the STA reads the bit indication in the L-SIG and RL-SIG or HE-SIG-A or HE-SIG-B. If the indication is that the default resource allocation information is read, and the STA is the default STA, then the STA The data in the corresponding resource block is read according to the default resource block allocation or the explicitly specified resource block allocation; if the STA is a non-default STA, the data in the resource block does not need to be read.
  • the STA reads the bit in the L-SIG and RL-SIG or HE-SIG-A to indicate that there is a multicast MAC frame in the current packet, and the order of the multicast MAC frame in the station-by-site is the default order or by reading.
  • the order of the multicast MAC frames is used to indicate the order of the multicast MAC frames.
  • STA reads the number of HE-SIG-B symbols and MCS in HE-SIG-A, and knows that HE-SIG-B has only a common part, or further reads the public part, and knows that HE-SIG-B If the STA ID is not included in the resource indication of the site-by-site, and the STA is the default STA, the data in the resource block is read in the corresponding resource block according to the default resource block allocation or the explicitly indicated resource block allocation; if the STA is not By default, there is no need to read the data in the resource block.
  • the default STA is an STA that participates in preamble transmission on the corresponding resource block or an STA that is pre-agreed based on the beacon frame and the management frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种资源调度的方法,生成资源分配信息,所述资源分配信息包括:针对待分配的总带宽,用于同时指示缺省的资源块的划分的情况以及每个资源块的目的STA是否为默认的STA的索引;发送所述资源分配信息。

Description

资源调度的方法、装置和设备 技术领域
本发明涉及通信技术领域,并且更具体地,涉及资源调度的方法、装置和设备。
背景技术
随着例如正交频分多址(OFDMA,Orthogonal Frequency Division Multiple Access)传输技术、多用户输入输出(MU-MIMO,Multiple User-MIMO)传输技术等技术发展,目前的通信系统已经能够支持多用户传输,即,支持多个站点同时发送和接收数据。
但是,上述多用户传输(例如,包括OFDMA方式,MU-MIMO方式或者OFDMA与MU-MIMO混合传输方式),需要针对如何对多个用户进行资源调度给出解决方案。
发明内容
本发明实施例提供一种资源调度的方法、装置和设备,能够支持高效的指示资源分配信息。
一方面,提供了一种资源调度的方法,其特征在于,应用于无线局域网,包括
生成资源分配信息,所述资源分配信息包括:针对待分配的总带宽,用于同时指示缺省的资源块的划分的情况以及每个资源块的目的STA是否为默认的STA的索引;
发送所述资源分配信息。
另一方面,提供了一种资源调度的方法,其特征在于,应用于无线局域网,包括
生成资源分配信息,所述资源分配信息包括:资源块划分的情况的指示,和,针对划分的一个或者多个资源块,用于指示每个资源块内分配的目的STA是否为默认的STA的信息,所述信息包括索引、或者、特殊的站点或者站点组标识;
发送所述资源分配信息。
较优的,所述默认的STA为在对应资源块上参与前序传输的STA,或者,基于信标帧和管理帧提前约定好的STA。
另一方面,一种资源调度的方法,其特征在于,应用于无线局域网,包括
生成资源分配信息,所述资源分配信息包括:资源块划分的情况的指示,和,针对划分的一个或者多个资源块,用于指示每个资源块内传输的MAC帧包含组播MAC帧的索引;
发送所述资源分配信息。
相应的,提供了一种接收资源调度的方法,其特征在于,应用于无线局域网,包括
接收资源分配信息,所述资源分配信息包括:针对待分配的总带宽,用于同时指示缺省的资源块的划分的情况以及每个资源块的目的站点STA是否为默认的站点STA的索引;
根据所述资源分配信息中的索引如果为默认的STA,则在所述缺省的资源块上传输数据。
相应的,提供了一种接收资源调度的方法,其特征在于,应用于无线局域网,包括
接收资源分配信息,所述资源分配信息包括:资源块划分的情况的指示,和,针对划分的一个或者多个资源块,用于指示每个资源块内分配的目的STA是否为默认的STA的信息,所述信息包括索引、或者、特殊的站点或者站点组标识;
根据所述资源分配信息中的信息,如果为默认的STA,则在所述缺省的资源块上传输数据。所述传输包含发送或者接收。
较优的,所述默认的STA为在对应资源块上参与前序传输的STA,或者,基于信标帧和管理帧提前约定好的STA。
相应的,提供了一种资源调度的方法,其特征在于,应用于无线局域网,包括
接收资源分配信息,所述资源分配信息包括:资源块划分的情况的指示,和,针对划分的一个或者多个资源块,用于指示每个资源块内传输的MAC帧包含组播MAC帧的索引;
根据所述资源分配信息中的信息,如果为默认的STA,则在所述缺省的资源块上接收组播数据。
相应的,提供了可用于执行上述各方法的装置。
根据本发明实施例的资源调度的方法、装置和设备,通过简单的指示缺省的资源分配信息,从而能够高效率的进行资源分配的指示。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明一实施例的资源调度的方法的示意性流程图。
图2是WLAN系统示意性架构图。
图3是802.11ax一种可能的数据结构的简单示意图。
图4是HE-SIG-B一种可能的结构的简单示意图。
图5是20MHz带宽的资源块分配的方式及其索引的简单示意图。
图6是另一个资源块划分方式及其索引的简单示意图。
图7是一种缺省的确认方式的简单示意图。
图8是另两种缺省的确认方式的简单示意图。
图9是另一种缺省的确认方式的简单示意图。
图10a、10b分别是另一种缺省的确认方式的简单示意图。
图11a-11d分别是缺省的资源块分配信息及其索引的简单示意图。
图12是上行OFDMA/MU-MIMO的传输流程的简单示意图。
图13是一个资源分配信息及其接收处理的简单示意图。
图14是一个接收端进行资源分配信息处理的简单的示意图。
图15是另一个资源分配信息及其接收处理的简单示意图。
图16是又一个资源分配信息及其接收处理的简单示意图。
图17是根据本发明一实施例的资源调度的装置的示意性框图。
图18是根据本发明另一实施例的资源调度的装置的示意性框图。
图19是根据本发明一实施例的资源调度的设备的示意性结构图。
图20是根据本发明另一实施例的资源调度的设备的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是从发送端角度描述的根据本发明一实施例的资源调度的方法100的示意性流程图,该方法100应用于无线局域网,该无线局域网遵循的下一代协议中约定了一种或者多种缺省的资源块分配信息,如图1所示,该方法100包括:
S110,发送端生成资源调度信息,该资源调度信息包括针对所述一种或者多种缺省的资源块分配信息的指示。例如,利用索引同时指示资源块的划分情况和缺省的目的站点的信息;或者,在资源块分配的指示之外,利用特殊的站点或者站点组的标识指示组播,或者,利用特殊的站点或者站点组的标识指示缺省的目的站点。
S120,发送该资源调度信息。
相应的,接收端的方法包括
S210,接收端接收资源调度信息,该资源调度信息包括针对所述一种或者多种缺省的资源块分配信息的指示。例如利用索引同时指示资源块的划分情况和缺省的目的站点的信息;或者,在资源块划分的指示之外,利用特殊的站点或者站点组的标识指示组播,或者,指示缺省的目的站点。
S220,根据该资源调度信息如果包含存在缺省的资源块分配信息的指示,且该接收端需要根据缺省的资源块分配信息进行传输,则按照协议约定或者双方约定的方式进行传输。
对于默认STA,其接收与发送流程相应的一致;而对于非默认STA,可以无需进行接收,不可以进行发送。
该方法100可以应用于各种通过资源调度的方式实现多用户传输的通信系统,例如,采用OFDMA或MU-MIMO等方式进行通信的系统。
并且,该方法100可以应用于无线局域网(WLAN,Wireless Local Area Network),例如,无线保真(Wi-Fi,Wireless Fidelity)等。
图2是WLAN系统示意图。如图2所示,该WLAN系统包括一个或多 个接入点AP21,还包括一个或多个站点STA22。接入点和站点之间进行数据传输,其中站点根据接入点发送的前导码确定被调度给自身的资源,基于该资源与接入点之间进行数据传输。
可选地,该发送端为网络设备,该接收端为终端设备。
具体地说,作为发送端设备,可以列举通信系统中的网络侧设备,例如,可以是WLAN中的接入点(AP,Access Point),AP也可称之为无线访问接入点或桥接器或热点等,其可以接入服务器或通信网络。
作为接收端设备,可以列举通信系统中的终端设备,例如,可以是WLAN中的用户站点(STA,Station),STA还可以称为用户,可以是无线传感器、无线通信终端或移动终端,如移动电话(或称为“蜂窝”电话)和具有无线通信功能的计算机。例如,可以是便携式、袖珍式、手持式、计算机内置的,可穿戴的,或者车载的无线通信装置,它们与无线接入网交换语音、数据等通信数据。
应理解,以上列举的适用本发明实施例的方法100的系统仅为示例性说明,本发明并不限定于此,例如,还可以列举:全球移动通讯系统(GSM,Global System of Mobile communication),码分多址(CDMA,Code Division Multiple Access)系统,宽带码分多址(WCDMA,Wideband Code Division Multiple Access Wireless),通用分组无线业务(GPRS,General Packet Radio Service),长期演进(LTE,Long Term Evolution)系统。
相应地,网络设备可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),可以是微小区基站,可以是微基站(Micro),可以是微微基站(Pico),可以是家庭基站,也可称为毫微微蜂窝基站(femto),本发明并不限定。终端设备可以是移动终端(Mobile Terminal)、移动用户设备等,如移动电话(或称为“蜂窝”电话)。
WLAN系统中关于资源块大小划分的规则为:最小的资源块包括26个子载波。除此之外,包括52个子载波,106个子载波,242个子载波,484个子载波,996个子载波的资源块。相应的,较大的资源块可以看作26个子载波的最小资源块的2倍,4倍,9倍,19倍,38倍。
如图3所示802.11ax一种可能的数据结构,AP将整个带宽分为多个资源单元(子带),利用多个资源单元对多个STA进行数据传输。为了让STA 得知自己是否为目的STA,以及,让目的STA得知数据所在的资源块位置以及接收数据的物理层参数,AP需要在传输数据之前进行资源调度信息的指示。通常,在HE-SIG-B中包含多用户STA的资源调度信息,指示多个STA进行数据的接收。
图4是HE-SIG-B一种可能的结构,其包括公共域(common part)和逐个站点域(dedicated part)。其中公共域包含所有目的STA都需要读取的一些公共信息,如数据部分的保护间隔(Guard Interval,GI),资源块或者资源单元分配的位置信息,需要发送的HE-LTF(High Efficient Long Training Field,高效长训练序列)的OFDM符号数目等;而在逐个站点域包含了每个STA或者在同一资源块内一组STA需要读取的信息,其中包含站点标识(STA Identifier,STA ID),调制与编码策略(Modulation and Coding Scheme;简称:MCS)用于指示调制与编码策略,空时流数(Number of Space-Time Stream;简称:NSTS)用于指示使用的空时流个数,低密度奇偶校验码(Low Density Parity Check;简称LDPC)用于指示是否使用LDPC编码方式;空时分组编码(Space Time Block Coding;简称:STBC)为用来指示是否采用STBC;波束成形(Beamforming,BF)用于指示是否采用了波束成形技术。除此之外,还可以包括循环冗余码(Cyclic Redundancy Code;简称:CRC)用来保存CRC校验比特;尾部比特(Tail)用来存放二进制循环卷积码(Binary Convolution Code;简称:BCC)的6个比特的尾部。
如图4,资源块位置信息除了可以放在在公共域内之外,还可以针对每个STA分别指示其资源块的位置。也就是说,可以仅在公共域内包含资源块位置信息,或者仅在站点域部分包括资源块的位置,或者,可以在公共域和站点域都包含有资源块的位置相关的信息。其具体的指示方式本文不做限制。
实施例一
目前,存在有多种资源块位置的指示方式,一种较为高效的方式是把所有可能的组合存在一张表里,用索引指示各个资源块分配的情况。在802.11ax中,目前定义了多种资源块的大小,按照子载波的个数分为26,52,106,242,484,996等。其中26个子载波大约对应2MHz,52个子载波大约对应4MHz,106个子载波大约对应10MHz,242个子载波大约对应20MHz,484个子载 波大约对应40MHz,996个子载波大约对应80MHz。但又并非完全对应,举例来讲,当带宽为80MHz时,会存在4个242个子载波的大资源块,除此之外,在中间部分还会存在一个26个子载波的小资源块。
图5是针对20MHz的总带宽的可能的OFDMA资源块的组合方式,对于20MHz,资源块的大小可能为26,52,106(由于之前采用的是102,因此图3中由102代表106),一共有25种情况,对应25个序列索引,然后只需要在公共部分携带ceil(log225)=5比特就可以携带20MHz所有可能的情况,其中ceil表示向上取整。对于总带宽为40MHz,80MHz,160MHz的情况,同样可以列举出所有可能的情况,进行列表索引,最后通过若干比特指示所有可能的情况。当然,针对总带宽为40MHz,80MHz,160MHz的情况,还可以对每个20MHz分别进行列表索引,分别进行指示。
另外,参考图6,在OFDMA位置分配时,也可能同时考虑多用户MIMO(Multiple-user MIMO,MU-MIMO)传输,即在某个子带中进一步进行空间流上的多用户分配。例如,当资源块足够大,如106或者242个时,会允许进一步利用MU MIMO在该子带进行传输。此外,还有未占据所有资源块的情况,即有些资源块空着,没有进行数据的传输。同时考虑了以上两种情况,有一种包含更加全面的分配方式的表格索引,与前一种相比,需要更多的比特进行指示。其中标有1-8的资源块为满足传输MU-MIMO的情况,会针对1个用户至8个用户的每一种情况分别对应一个索引。
当然,与图5中提到的方案类似,针对图6所示的方案,针对总带宽为40MHz,80MHz,160MHz的情况,同样可以列举出所有可能的情况,进行列表索引,也可以对该总带宽中的每个20MHz分别进行列表索引,分别进行指示。
在本发明提供的实施方式中,通过列表索引的方式进行缺省的资源分配信息的指示。资源分配信息可以参考表格索引的方式,例如前面的图5、图6所示,其中包括一个或者多个用于指示缺省的资源分配信息的索引。
前述缺省的资源分配信息包括:
1)、缺省的资源块的划分的情况。举例来讲,AP与STA约定或者协议规定的资源块的划分是,若带宽为40MHz,则将整个带宽分为两个242个子载波的资源块;若带宽为80MHz,则将整个带宽分为四个242个子载波 的资源块及一个26个子载波的资源块。或者,按照前序传输的资源块的划分情况,确定当前传输的资源块的划分情况,例如前序的上行传输时20MHz分为了9个26个子载波的资源块,则在下行传输时采用与前序上行传输时相同的资源块划分方式,同样为9个26个子载波的资源块。或者,
2)、缺省的资源块的目的STA(资源块上分配的STA)。即,参与前序传输的STA按照预先规定的模式在该资源块接收/发送数据。举例来讲,对于参与了前序传输的STA,会按照在本次传输中与前序传输相同的资源块内或者前序传输的资源块所属的242个子载波的资源块内接收/发送数据。除此之外,也可以之前通过信标(Beacon)帧或者某种管理帧预先规定好哪些STA要在哪些资源块内接收/发送数据。或者,
3)、作为一种特殊情况,缺省的确认帧的回复方式。其中包括资源块如何分配,确认帧在哪些资源块上发送,以及由哪些STA发送确认帧。其中,3)包含了1)和2)中需要默认指示的内容,除此之外,3)中还可以包括利用什么方式回复什么MAC帧类型的确认帧,例如O-BA,M-BA,OFDMA M-BA及BA。
具体的,实施例一里的索引不单单指示资源块的划分的情况,而是包含资源块的划分的情况和资源块的目的STA的信息。具体的,包括两种,第一种是:针对待分配的总带宽,该索引用于同时指示资源块的划分以及每个资源块的目的STA是否为默认的STA;第二种是:资源块划分的情况采用某种已知或者其他的方式进行指示,该索引用于指示每个资源块内分配的目的STA是否为默认的STA。
针对第一种的一个特例为,该索引用于指示缺省的确认方式,即限定资源块中承载的是某种MAC类型的确认帧。
除此之外,在发送关于缺省的资源分配信息的指示之外,也可以先指示示单播帧还是组播帧,再进一步指示组播帧的目的STA。
缺省的资源分配信息可以为以上几种默认分配方式中的某一种;也可以针对每一种分别指示,分别建立索引。在具体实施的过程中,各个索引及其对应的资源分配情况、以及目标站点等情况可以分别存储于发送端或者接收端,或者采用其他的方式为发送端和接收端共知。
一个例子中,如图11a,多个STA按照触发帧的调度进行了上行多用户传输帧的发送;在AP进行下行确认帧的回复时,资源块分配指示索引为26 (仅为举例可以是别的值),该资源块的分配将按照图7中所示进行分配,分为两个242个子载波的资源块。然后利用242个子载波的资源块对前序在242个子载波范围内传输了上行数据的STA进行M-BA帧的确认。
如图11b,另一个例子中,若资源块分配指示索引为27(仅为举例可以是别的值),资源块分配将按照图8a中的情况进行分配,资源块的分配与前序上行数据传输的资源块分配相同,若前序的某个子带为单个STA的数据传输,则回复O-BA;若前序的某个子带为多个STA的MU MIMO的数据传输,则回复M-BA。
另一个例子中,资源块分配指示索引为28(仅为举例可以是别的值),则如图10a,默认逐个站点指示当中排在第K个资源指示的资源块中所包含的是M-BA帧。资源块分配指示索引为29(仅为举例可以是别的值),如图9,则默认回复的方式针对需要回复确认帧的STA数进行资源块的平均分配,然后在每个资源块内回复O-BA。
对于这种实施方法,同样适用于触发帧中上行调度信息资源块分配的指示,指示下行帧中被索取立即确认帧的目的STA按照默认的资源块分配在相应的资源块上进行上行确认帧的发送。
图11a、图11b所示的两种情况为针对整个带宽进行缺省的资源分配信息指示的方法,即索引的值用于指示同时包含了资源块的划分与目的STA是否为默认STA的缺省的资源分配信息。
此外,如图11c所示,可以针对每个资源块分别指示。例如,只针对资源块较大的情况(大于阈值106或者242个子载波的资源块)才传输组播数据,其中,针对该资源块传播的MU MIMO用户数的每一种情况分配一个索引值。其中图11c所示为简化的表示,第1行实际上相当于集中的表示了81行,对应81个索引值,分别为N1-N81,其中左右两个106(1~9)分别表示该位置的大小为106的资源块分配给1~8中任意一个数量的用户,第9种情况用于指示该资源块的目的STA为默认的STA,或者,用于指示该资源块上传输组播帧。从图11c可以看到,索引值一方面指示了资源块的分配情况:106的资源块、26的资源块、106的资源块,另一方面指示了某个特定资源块的目的STA是否是默认的STA。
图11d给出了图11c一种展开的标识方法,其中索引N90表示20MHz被按顺序分为106,26,52,52四个资源块,第一个大小为106的资源块的目的 STA为默认的STA,索引N99表示20MHz被作为1个完整的242个子载波的资源块,且其目的STA为默认的STA。
MU MIMO用户数为1~8中的任意一个值,在本实施方式中,还可以包含另一个索引值,相当于,例如针对较大资源块的第9种情况,用于指示该资源块的目的STA为默认的STA,例如,前序发送上行信息的站点。
此外,如图11c所示,针对每个资源块,还可以指示该资源块传播的是组播帧。关于组播帧的目的STA,可以通过限制只允许传输一个组播MAC帧,且参与单播接收的STA无需接收组播帧来完成。这样STA得知自己并未参与单播传输时,可以进行组播帧的读取,通过读取MAC地址或MAC帧体的STA ID来识别自己是否为该组播的目的STA。还可以通过携带特殊的多播ID,来指示是有固定分组的组播帧或者是临时分组的组播帧。或者,可以针对较大的资源块,第10种情况,相应的索引值用于指示该资源块传输的MAC帧为参与前序上行传输的STA才需要读取的MAC帧(临时分组的),相应的,对于第9种情况的相应的索引值用于指示固定分组的组播传输。
前面提到的临时分组的组播传输中,多个目的STA(不一定是小区中的全部STA)没有共同的组播MAC地址(非广播MAC地址)来识别这一组STA。例如,任意调度的多个参与上行多用户传输的STA,对于这些STA,若采用M-BA方式回复,则M-BA的多个目的STA往往并没有共同的组播MAC地址。固定分组的组播传输中,有MAC层以上分配的共同的组播MAC地址,可以用于识别固定分组的组播传输的目的STA。
实施例一中,通过更多缺省的资源分配信息的索引的值来进行单播/组播数据的指示和、或者默认确认方式的指示。进行了公共部分的指示后,还可以针对每个STA或者针对每个资源块内的STA组(MU MIMO用户组或者组播传输用户组)分别进行物理层的资源调度参数的指示。由于在公共部分已经得知了每个资源块传输的MAC帧为单播/组播,若为单播数据,是单个STA还是一个MU MIMO用户组,所以逐个站点域可以针对每个资源块内传输方式的不同特别设计资源指示的方式。举例来讲,对于缺省的资源分配信息指示的资源块,可以不进行其资源块上分配的站点的STA ID的指示。对于组播传输,由于要保证边缘用户接收的鲁棒性,因此往往采用较低的MCS 以及单个数据流,因此可以采用缺省的资源分配信息进行组播数据的传输,而无需指示相关的物理层参数,如MCS,NSTS,LDPC,STBC,BF等。因此一种可能的方式是针对默认传输的组播数据,无需进行逐个站点域的指示而完全采用缺省的资源分配信息。若指示的缺省的资源分配信息为后续所有的资源块均采用缺省的资源分配信息,则可不进行逐个站点域的指示,而只进行公共域的指示。
对于STA侧,当STA读取资源分配指示时,读取的资源分配指示的索引为一种缺省的资源分配信息,且自己参与了前序的传输,则按照缺省的资源分配信息进行资源块的读取/发送;若没有参与前序的传输,则不继续读取/发送。
关于缺省的确认方式
前述实施方式中提到的缺省的资源分配信息的一个特例是缺省的确认方式。缺省的确认方式有多种,各实施方式对其不做限制。
例如,一种默认的确认帧回复方式1,如下图7所示的默认的回复方式。即对于所在20MHz内(242子载波资子带)进行上行传输的STA,AP在对应的子带利用M-BA的方式对齐回复。而针对不同20MHz上的M-BA,通过OFDMA的方式进行M-BA的传输。
又例如,一种默认的确认帧回复方式2,为资源分配与前序资源块相同的OFDMA BA(O-BA)传输。此外,若某个资源块为MU-MIMO传输,则可在对应的资源块上回复M-BA或者继续平均分配该资源块进行O-BA传输,如图9所示。
又例如,一种默认的确认帧回复方式3,为平均分配整个带宽的O-BA回复方式。为了平衡各个子带回复确认帧的开销,对整个带宽按照STA的数目平分,进行O-BA的回复,如图9所示。
又例如,一种默认的确认帧回复方式4,为逐个站点域(Dedicated part)第K个指示传的是默认的组播帧,且目的STA为前序参与了UL MU传输的STA,其他资源块由后续部分继续规定,可以传输单播帧或者有固定分组的多播帧。优选地,此情况适用于公共部分和逐个站点部分联合编码的情况。如图10a所示,默认第一个指示传的是默认的组播帧M-BA,资源块的位置可以指示,也可以默认。
以上几种默认的确认帧回复方式即包含了资源块划分的缺省的资源分配信息,同时包含了在各个资源块内的目的STA为默认STA。当然,在其他的实施方式中,也可以只包含资源块的划分,比如指示资源块的划分是按照以上4种方式的划分方法,但是每个资源块的目的STA再分别单独指示;也可以先进行资源块的划分,再在每个资源块里指示目的STA是不是默认STA。
关于缺省的资源块的目的STA(参与前序传输的STA)
前面提到缺省的(默认的)资源块的目的STA可以是参与前序传输的STA,或者,基于信标帧和管理帧提前约定好的STA。
除了下行多用户传输,802.11ax中还引入了多用户上行传输,如图12所示。AP发送触发帧,该触发帧用于触发多用户传输,并包含多用户上行传输的资源调度信息。多个STA接收触发帧之后,根据触发帧中的资源调度信息,几乎在同一时间内发送上行帧。AP收到多用户的上行帧之后为多个STA同时发送多用户确认帧。
具体的,AP发送trigger帧,需要STA在X帧间距(X Inter-frame Space)之后立即传输上行帧,并设定确认规则(Acknowledge Policy),若设确认规则为立即反馈,则要求AP在正确接收数据XIFS之后立即回复确认帧。对于确认帧来讲,“参与了前序传输的STA”即参与了上行帧发送的STA。除此之外,对于参与了前序传输的STA需要在哪个子信道接收数据取决于默认的资源分配的情况。
若AP向多个STA发送下行多用户帧,并设定确认规则为立即反馈,则STA在正确接收数据XIFS之后需要立即回复确认帧。而AP在发送下行数据的同时会发送触发帧,传递用于触发确认帧的调度信息,指示STA如何回复确认帧。则对于触发帧中的调度信息中所指的“参与了前序传输的STA”,是说当前下行传输中索取立即回复的的下行帧的目的STA,如图10b所示。
若索求了确认帧的AP/STA在一段固定时间内没有收到/正确接收相应的确认帧,则认为数据没有正确接收,或者没有解对确认帧,则不再认定自己为参与了前序传输的STA。
实施例二
利用特殊的STA ID进行默认的资源指示
参考图13,在以图4所示为例的资源分配信息的基础上,除资源块位置信息的指示(具体方式不做限定)之外,采用特殊的STA ID指示在某个资源块内的MAC帧的一个或多个目的STA为前序参与上行传输的STA。而没有参与前序上行传输的STA则无需读取该资源块。其中特殊的STA ID可以为全0或者全1的STA ID,或者AP与参与前序传输的STA提前约定好的STA ID。
STA读取STA ID,若STA ID为特殊的STA ID,且该STA参加了前序对应资源块上的上行传输,则读取该资源块内的MAC帧;若该STA没有参与前序对应资源块上的上行传输,则无需读取该资源块。其中对应资源块可以为上行传输与该资源块相同的资源块或者属于相同的20MHz(242个子载波的资源块)。
此外,也可以利用特殊的STA ID去指示本资源块内的MAC帧为组播MAC帧还是单播MAC帧。
当然,进一步的,参考图14,可以预留两种特殊的STA ID,当STA读到特殊的STA ID 1,则认为是参与了前序对应资源块的上行传输的STA才需要读取;而读到了特殊的STA ID 2,则认为该帧是一个固定分组的组播帧,并按照某些规则进行选择性的读取。如果不是两种特殊的STA ID,若规定参与了单播帧的STA无需读取组播帧,则根据是否有发给自己的单播帧,决定是否进行读取。若STA支持单播数据和组播数据的同时接收,则可以共同进行读取。
需要补充说明的是,对于MAC(Media Access Control,媒体接入控制)帧传输方式,存在单播传输(unicast),多播传输(multicast)以及广播传输(broadcast),其中多播传输与广播传输又统称为组播传输(Groupcast)。单播是指封包在计算机网络的传输中,目的地址为单一目标的一种传输方式。它是现今网络应用最为广泛,通常所使用的网络协议或服务大多采用单播传输,例如一切基于TCP的协议。除单播传输方式外,还有广播和多播。它们与单播的区别是,广播的目的地址为网络中的全体目标,而多播的目的地址是一组目标,加入该组的成员均是封包的目的地。这里与前文单用户传输的数 据和多用户传输的数据并不相同。通过多播进行视频传输/授课内容传输是802.11ax中一种重要的应用场景,在运动场馆,阶梯教室中将会广泛应用。
实施例三
利用特殊的组播ID进行缺省的资源分配信息的指示
参考图15,在以图4所示为例的资源分配信息的基础上,除资源块位置信息的指示(具体方式不做限定)之外,还包括单播或者组播的指示,以及,针对组播,采用特殊的组播ID指示该组播不是通常的享有共同组播MAC地址的组播帧,而是需要默认的STA去读取的组播帧。
其中,单播和组播数据的指示可以采用实施例一中提到的利用资源块位置信息的索引进行指示,或者其他的方案进行指示,本发明方案不作限制。其他的指示单播和组播的方案例如,通过1比特明示或者特殊的STA ID暗示某个资源块上的MAC帧为多播/广播MAC帧(组播),还是单播MAC帧。若通过1比特指示某个资源块的MAC帧为多播/广播MAC帧,还可以通过组播ID进一步指示是哪一个多播组。
其中组播ID可以由STA与AP通过握手协商的方式同组播MAC地址对应起来。
相应的,在接收侧,STA可以通过读取接收到的信息,确认某些资源块传播的MAC帧是组播MAC帧还是单播MAC帧。STA区分某资源块内的MAC帧是多播帧之后,读取组播ID,发现组播ID为特殊的组播ID,且该STA参加了前序对应资源块上的上行传输,则按照缺省的资源分配信息接收组播数据,或者,读取该资源块内的MAC帧;若该STA没有参与前序对应资源块上的上行传输,则无需读取该资源块。
对于实施例二和三,需要指出,STA ID或组播ID也可以通过加扰或者异或的方式隐式携带,接收端通过利用特殊的ID进行解扰或者反异或来识别AP是否隐式携带了特殊ID,对于此种方法仍然在本发明方案考虑的范围内。
实施例四
利用单用户分组结构进行缺省的资源分配信息的指示
802.11ax中有三种不同的分组结构,而对于单用户分组结构,只需要进行单个STA的资源指示,因此无需传输HE-SIG-B,节省了HE-SIG-B的开销。因此实施例四首先指示该分组结构为单用户分组结构,其中指示方式可以通过HE-SIG-A中显示指示,也可以通过L-SIG+RL-SIG部分隐式携带,本发明方案不作限制。接着,通过特殊的STA ID或者特殊的组播ID指示该分组结构的带宽是按照缺省的资源分配信息进行的资源块分配,并且所有的资源块内的MAC帧的目的STA都为默认STA,即参加了前序上行传输的STA。特殊的组播ID是当确认该地址为组播ID时特殊的ID,如全0或全1,或者AP与STA预先规定好的ID。
对于该种方式,可以利用单个站点的物理层参数对多个资源块内的MAC帧进行统一的指示,其中物理层参数,如图16所示,可以包括MCS,NSTS,LDPC,或者STBC等;也可以直接采用默认的物理层参数而不进行指示,比如MCS固定采用MCS0,NSTS固定采用1个空间流,LDPC固定设为0,即采用BCC的方式,STBC固定设为0,即不采用STBC的方式。
STA读取该帧为SU的帧,且STA ID/组播ID为特殊的STA ID/组播ID,且该STA参加了前序的上行传输,则按照缺省的资源分配信息读取该资源块内的MAC帧;若该STA没有参与前序的上行传输,则无需读取该资源块。读取HE-SIG-A中SU的物理层参数或者按照默认的物理层参数进行MAC帧的读取。
实施例五
利用信息比特进行缺省的资源分配信息的明示指示
通过在L-SIG和RL-SIG中进行隐式携带的比特或者在HE-SIG-A或者HE-SIG-B中利用信息比特直接进行缺省的资源分配信息的指示。可以针对整个带宽直接进行1比特的指示,指示采用某种缺省的资源分配信息;也可以对多种缺省的资源分配信息分别指示。此外,也可以在以图4所示为例的资源分配信息的基础上,除资源块位置信息的指示(具体方式不做限定)之外针对每个资源块分别利用1比特进行指示。举例来讲,通过1比特指示确认方式为某种缺省的资源分配信息,即资源块按照某种缺省的资源分配信息 分配,且目的STA为参与了前序上行传输的STA。
对于STA侧,STA读取在L-SIG和RL-SIG或HE-SIG-A或HE-SIG-B中的缺省的资源分配信息比特指示,若指示位缺省的资源分配信息读取,且该STA参加了前序的上行传输,则按照缺省的资源分配信息读取该资源块内的MAC帧;若该STA没有参与对应上行传输,则无需读取该资源块。
实施例六
通过不传输STA ID进行缺省的资源分配信息的指示
AP通过不传输逐个站点域或在逐个站点域不携带STA ID的方式来进行缺省的资源分配信息的指示。而对于STA侧,会通过对比HE-SIG-B的符号数来推算出是否包含逐个站点域或者逐个站点域部分是否携带STA ID,从而得知是否进行了缺省的资源分配信息的资源指示。
在HE-SIG-A中会携带HE-SIG-B的符号数指示。而HE-SIG-B中公共部分所占据的OFDM符号数一般来说是固定的。可以通过符号数指示HE-SIG-B部分只包含公共部分而不包含逐个站点部分,即HE-SIG-A中指示的HE-SIG-B的符号数等于公共部分的符号数;此外,还可以通过公共部分的信息进行HE-SIG-B符号数的计算,来指示逐个站点字段不包含STA ID。举例来讲,若:
Figure PCTCN2015083617-appb-000001
,则说明逐个站点域不包含STA ID,通过不包含STA ID的方式来隐含指示后续传输的MAC帧的目的STA为默认的STA,即参与了前序上行传输的STA。
其他发明实施例
此外,针对HE-SIG-B公共部分与逐个STA指示部分的某一个STA/MU MIMO用户组/组播用户组的指示联合编码,并利用标识信息进行加扰的情况,可以通过L-SIG和RL-SIG或HE-SIGA中携带比特,指示数据部分存在组播传输,且组播传输的资源指示的顺序可以为默认的位置(例如,假设永远为逐个站点域指示的第一个)或者通过信息比特进一步指示组播传输指 示的顺序(指示为第K个)。当STA得知所有逐个站点域指示的第几个为组播传输时,则可以利用组播ID或者特殊的组播ID去解扰,简化了STA的接收流程。当STA得知某个位置上传输的MAC帧为组播帧时,可以进一步利用实施例一中所述的方法进一步区分组播帧的目的STA。
对于此种情况,STA读取L-SIG和RL-SIG或HE-SIG-A中的组播信息比特指示,若指示数据部分存在组播数据传输,则在默认的位置或者所指示的位置利用特殊的ID进行解扰。
以上,结合图1至图16详细说明了根据本发明实施例的资源调度的方法,下面,结合图17至图18详细说明根据本发明实施例的资源调度的装置。
图17示出了根据本发明实施例的资源调度的装置300的示意性框图,该装置300应用于无线局域网,如图17所示,该装置300包括:
生成单元310,用于生成资源调度信息,该资源调度信息包括针对缺省的资源块分配信息的指示。例如,利用索引同时指示资源块的划分情况和缺省的目的站点的信息;或者,在资源块分配的指示之外,利用特殊的站点或者站点组的标识指示组播,或者,利用特殊的站点或者站点组的标识指示缺省的目的站点。
发送单元320,用于向接收端发送该资源调度信息。
可选地,该装置300为网络设备,该接收端为终端设备。
根据本发明实施例的资源调度的装置300可对应于本发明实施例的方法中的发送端(例如,网络设备),并且,资源调度的装置300中的各单元即模块和上述其他操作和/或功能分别为了实现图1中的方法100的相应流程,为了简洁,在此不再赘述。
图18示出了根据本发明实施例的资源调度的装置400的示意性框图,该装置400应用于无线局域网,该无线局域网遵循的下一代协议中约定了针对待分配频域资源可能被划分的资源块位置,如图18所示,该装置400包括:
接收单元410,该资源调度信息包括针对所述一种或者多种缺省的资源块分配信息的指示。例如利用索引同时指示资源块的划分情况和缺省的目的站点的信息;或者,在资源块划分的指示之外,利用特殊的站点或者站点组的标识指示组播,或者,指示缺省的目的站点。
处理单元420,用于根据该资源调度信息,如果包含存在缺省的资源块分配信息的指示,且该接收端需要根据缺省的资源块分配信息进行传输,则按照协议约定或者双方约定的方式进行传输。
根据本发明实施例的资源调度的装置400可对应于本发明实施例的方法中的发送端(例如,网络设备),并且,资源调度的装置400中的各单元即模块和上述其他操作和/或功能分别为了实现图18中的方法200的相应流程,为了简洁,在此不再赘述。
以上,结合图1至图16详细说明了根据本发明实施例的资源调度的方法,下面,结合图19至图20详细说明根据本发明实施例的资源调度的设备。
图19示出了根据本发明实施例的资源调度的设备500的示意性结构图,该设备500应用于无线局域网,该无线局域网遵循的下一代协议中约定了缺省的资源分配信息,或者发送端与接收端约定了缺省的资源分配信息。如图19所示,该设备500包括:
总线510;
与所述总线相连的处理器520;
与所述总线相连的存储器530;
与所述总线相连的发射机540;
其中,所述处理器通过所述总线,调用所述存储器中存储的程序,以用于生成资源调度信息,该资源调度信息包括针对缺省的资源块分配信息的指示。例如,利用索引同时指示资源块的划分情况和缺省的目的站点的信息;或者,在资源块分配的指示之外,利用特殊的站点或者站点组的标识指示组播,或者,利用特殊的站点或者站点组的标识指示缺省的目的站点。
用于控制发射机向接收端发送该资源调度信息。
可选地,该待分配频域资源包括对称中心。
可选地,该设备500为网络设备,该接收端为终端设备。
本发明实施例可应用于各种通信设备。
设备500的发射机可以包括发射电路、功率控制器、编码器及天线,并且,设备500还可以包括接收机,接收机可以包括接收电路、功率控制器、解码器及天线。
处理器还可以称为CPU。存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失行随机存取 存储器(NVRAM)。具体的应用中,设备500可以嵌入或者本身可以就是例如网络设备等无线通信设备,还可以包括容纳发射电路和接收电路的载体,以允许设备500和远程位置之间进行数据发射和接收。发射电路和接收电路可以耦合到天线。设备500的各个组件通过总线耦合在一起,其中,总线除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚明起见,在图中将各种总线都标为总线。具体的不同产品中解码器可能与处理单元集成为一体。
处理器可以实现或者执行本发明方法实施例中的公开的各步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器,解码器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用解码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。
应理解,在本发明实施例中,该处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的资源调度的设备500可对应于本发明实施例的方法 中的发送端(例如,网络设备),并且,资源调度的设备500中的各单元即模块和上述其他操作和/或功能分别为了实现图1中的方法100的相应流程,为了简洁,在此不再赘述。
根据本发明实施例的资源调度的设备,通过使比特序列中的至少部分比特用于指示待分配频域资源可能被划分的资源块位置中的一个或者多个资源块位置是否为待分配频域资源实际被划分成的待分配资源块,能够基于待分配频域资源实际被划分成的待分配资源块的分布情况,对照待分配频域资源可能被划分的资源块位置,灵活生成不同长度的比特序列,从而能够支持减小资源调度对传输资源的开销。
图20示出了根据本发明实施例的资源调度的设备600的示意性框图,该设备600应用于无线局域网,如图22所示,该设备600包括:
总线610;
与所述总线相连的处理器620;
与所述总线相连的存储器630;
与所述总线相连的接收机640;
其中,所述处理器通过所述总线,调用所述存储器中存储的程序,以用于控制接收机接收发送端发送的资源调度信息,该资源调度信息包括针对缺省的资源块分配信息的指示。例如,利用索引同时指示资源块的划分情况和缺省的目的站点的信息;或者,在资源块分配的指示之外,利用特殊的站点或者站点组的标识指示组播,或者,利用特殊的站点或者站点组的标识指示缺省的目的站点。
可选地,该发送端为网络设备,该设备600为终端设备。
本发明实施例可应用于各种通信设备。
设备600的接收机可以包括接收电路、功率控制器、解码器及天线,并且,设备600还可以包括发射机,接收机可以包括发射电路、功率控制器、编码器及天线。
处理器还可以称为CPU。存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失行随机存取存储器(NVRAM)。具体的应用中,设备600可以嵌入或者本身可以就是例如终端设备等无线通信设备,还可以包括容纳发射电路和接收电路的载体,以允许设备600和远程位置之间进行数据发射和接收。发射电路和接收电路 可以耦合到天线。设备600的各个组件通过总线耦合在一起,其中,总线除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚明起见,在图中将各种总线都标为总线。具体的不同产品中解码器可能与处理单元集成为一体。
处理器可以实现或者执行本发明方法实施例中的公开的各步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器,解码器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用解码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。
应理解,在本发明实施例中,该处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的资源调度的设备600可对应于本发明实施例的方法中的接收端(例如,终端设备),并且,资源调度的设备600中的各单元即模块和上述其他操作和/或功能分别为了实现图18中的方法200的相应流程,为了简洁,在此不再赘述。
根据本发明实施例的资源调度的设备,通过使比特序列中的至少部分比特用于指示待分配频域资源可能被划分的资源块位置中的一个或者多个资源块位置是否为待分配频域资源实际被划分成的待分配资源块,能够基于待分配频域资源实际被划分成的待分配资源块的分布情况,对照待分配频域资源可能被划分的资源块位置,灵活生成不同长度的比特序列,从而能够支持减小资源调度对传输资源的开销。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者发送端等)执行本发明各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上该,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以该权利要求的保护范围为准。
为是本发明实施方式更为清楚,下面提供采用简化语言表达的实施方式:
AP侧的实例:
1.在资源分配指示中已有的方式添加一种或多种的缺省的资源分配信息。则资源块的分配采用缺省的资源分配信息。
2.基于实例1,资源分配的目的STA或被调度STA为默认的STA。
3.在资源分配指示表格中,针对已有的资源块,增加一种索引情况,指示该资源块中的目的STA/被调度STA为默认STA或指示传输的MAC帧包含组播MAC帧。
4.利用特殊的STA ID指示在本资源块内的MAC帧的一个或多个目的STA为默认STA。若为默认的下行STA,则需要读取该资源块的下行数据;而非默认STA则无需读取该资源块的下行数据。若为默认的上行STA,则需要在该资源块发送上行数据;而非默认STA则不可以在该资源块发送上行数据。
5.利用特殊的STA ID指示在本资源块内的一个或多个被调度的STA为默认STA。若为默认STA,则需要在该资源块内发送上行数据;而非默认STA则不可以在该资源块内发送上行数据。
6.基于实例2-实例5中的任意一个,默认STA为在对应资源块上参与 前序传输的STA或者基于信标帧和管理帧提前约定好的STA。
7.基于实例4或实例5,该特殊的STA ID可以通过前序调度多用户进行上行传输的触发帧或者信标(Beacon)帧进行携带。
8.在利用显示或者隐式信息比特指示是组播帧之后,在多播地址中引入特殊的组播ID,指示为默认的STA才需要读取该资源块;若不是默认的STA,则无需读取该资源块。
9.首先指示为SU的帧,然后利用特殊的STA ID/组播ID指示该帧为默认资源指示的组播帧,且所有的组播帧采取统一的物理层参数或者采取默认的物理层参数。
10.在L-SIG和RL-SIG或HE-SIG-A或HE-SIG-B中利用信息比特明示地进行缺省的资源分配信息的指示。
11.在L-SIG和RL-SIG或HE-SIG-A利用信息比特指示当前分组存在组播MAC帧。且组播MAC帧在逐个站点中的顺序为默认顺序或者同时对组播MAC帧的顺序进行指示。
12.通过在逐个站点域中不携带STA ID的方式隐式指示缺省的资源分配信息的指示。
STA侧的实例:
1.STA读取资源分配指示,读取的资源指示的索引为一种缺省的资源分配信息,则资源块的划分按照缺省的资源分配信息进行划分。
2.基于实例1,若自己为默认STA,则按照默认的资源块分配在默认的资源块内进行下行数据的读取;若不是默认STA,则无需进行数据的读取。
3.基于实例1,若自己为默认STA,则按照默认的资源块分配在默认的资源块内进行上行数据的发送;若没有参与前序的传输,则不可以进行数据的发送。
4.STA读取在资源分配指示表格,通过读取资源指示的索引得知某一个资源块的MAC帧为组播MAC帧或目的STA/被调度STA为默认STA。
5.基于实例4,若自己为默认STA,则在该资源块内进行下行数据的读取;若没有参与前序的传输,则无需进行数据的读取。
6.基于实例4,若自己为默认STA,则在该资源块内进行上行数据的发送;若没有参与前序的传输,则不可以进行数据的发送。
7.STA读取STA ID,若STA ID为特殊的STA ID,且该STA为默认STA, 则需要读取相应资源块内的下行数据;若该STA不是默认STA,则无需读取相应资源块内的下行数据。
8.STA读取STA ID,若STA ID为特殊的STA ID,且该STA为默认STA,则需要在该资源块内发送上行数据;若该STA不是默认STA,则不可以在该资源块发送数据。
9.基于实例7或实例8,该特殊的STA ID可以通过trigger帧或者Beacon帧进行携带。
10.STA区分是组播帧之后,读取组播ID,发现组播ID为特殊的组播ID,且该STA为默认STA,则需要读取该资源块内的数据;若该STA不是默认STA,则无需读取该资源块内的数据。
11.STA读取该帧为SU的帧,且STA ID为特殊的STA ID,且该STA为默认STA,则按照默认的资源块分配读取相应资源块内的数据;若该STA不是默认STA,则无需读取该资源块内的数据。此外所有的组播帧采取统一的物理层参数或者默认的物理层参数。
12.STA读取在L-SIG和RL-SIG或HE-SIG-A或HE-SIG-B中的比特指示,若指示为缺省的资源分配信息读取,且该STA为默认STA,则按照默认的资源块分配或明确指定的资源块分配读取相应资源块内的数据;若该STA为非默认STA,则无需读取该资源块内的数据。
13.STA读取在L-SIG和RL-SIG或HE-SIG-A中的比特指示得知当前分组存在组播MAC帧,且组播MAC帧在逐个站点中的顺序为默认顺序或者通过读取组播MAC帧的顺序指示得知组播MAC帧的顺序。
14.STA读取HE-SIG-A中的HE-SIG-B符号数及MCS,通过计算得知HE-SIG-B只有公共部分,或者进一步读取公共部分,得知HE-SIG-B的逐个站点的资源指示中不包含STA ID,且该STA为默认STA,则按照默认的资源块分配或者明确指示的资源块分配在相应的资源块读取该资源块内的数据;若该STA不是默认STA,则无需读取该资源块内的数据。
15.基于实例1~14,默认STA为在对应资源块上参与前序传输的STA或者基于信标帧和管理帧提前约定好的STA。

Claims (16)

  1. 一种资源调度的方法,其特征在于,应用于无线局域网,包括
    生成资源分配信息,所述资源分配信息包括:针对待分配的总带宽,用于同时指示缺省的资源块的划分的情况以及每个资源块的目的STA是否为默认的STA的索引;
    发送所述资源分配信息。
  2. 一种资源调度的方法,其特征在于,应用于无线局域网,包括
    生成资源分配信息,所述资源分配信息包括:资源块划分的情况的指示,和,针对划分的一个或者多个资源块,用于指示每个资源块内分配的目的STA是否为默认的STA的信息,所述信息包括索引、或者、特殊的站点或者站点组标识;
    发送所述资源分配信息。
  3. 根据权利要求1或者2的方法,所述默认的STA为在对应资源块上参与前序传输的STA,或者,基于信标帧和管理帧提前约定好的STA。
  4. 一种资源调度的方法,其特征在于,应用于无线局域网,包括
    生成资源分配信息,所述资源分配信息包括:资源块划分的情况的指示,和,针对划分的一个或者多个资源块,用于指示每个资源块内传输的MAC帧包含组播MAC帧的索引;
    发送所述资源分配信息。
  5. 一种接收资源调度的方法,其特征在于,应用于无线局域网,包括
    接收资源分配信息,所述资源分配信息包括:针对待分配的总带宽,用于同时指示缺省的资源块的划分的情况以及每个资源块的目的站点STA是否为默认的站点STA的索引;
    根据所述资源分配信息中的索引如果为默认的STA,则在所述缺省的资源块上传输数据。
  6. 一种接收资源调度的方法,其特征在于,应用于无线局域网,包括
    接收资源分配信息,所述资源分配信息包括:资源块划分的情况的指示, 和,针对划分的一个或者多个资源块,用于指示每个资源块内分配的目的STA是否为默认的STA的信息,所述信息包括索引、或者、特殊的站点或者站点组标识;
    根据所述资源分配信息中的信息,如果为默认的STA,则在所述缺省的资源块上传输数据。
  7. 根据权利要求1或者2的方法,所述默认的STA为在对应资源块上参与前序传输的STA,或者,基于信标帧和管理帧提前约定好的STA。
  8. 一种资源调度的方法,其特征在于,应用于无线局域网,包括
    接收资源分配信息,所述资源分配信息包括:资源块划分的情况的指示,和,针对划分的一个或者多个资源块,用于指示每个资源块内传输的MAC帧包含组播MAC帧的索引;
    根据所述资源分配信息中的信息,如果为默认的STA,则在所述缺省的资源块上接收组播数据。
  9. 一种用于资源调度的装置,其特征在于,应用于无线局域网,包括
    生成单元,用于生成资源分配信息,所述资源分配信息包括:针对待分配的总带宽,用于同时指示缺省的资源块的划分的情况以及每个资源块的目的STA是否为默认的STA的索引;
    发送单元,用于发送所述资源分配信息。
  10. 一种资源调度的装置,其特征在于,应用于无线局域网,包括
    生成单元,用于生成资源分配信息,所述资源分配信息包括:资源块划分的情况的指示,和,针对划分的一个或者多个资源块,用于指示每个资源块内分配的目的STA是否为默认的STA的信息,所述信息包括索引、或者、特殊的站点或者站点组标识;
    发送单元,用于发送所述资源分配信息。
  11. 根据权利要求9或者10的装置,所述默认的STA为在对应资源块上参与前序传输的STA,或者,基于信标帧和管理帧提前约定好的STA。
  12. 一种资源调度的装置,其特征在于,应用于无线局域网,包括
    生成单元,用于生成资源分配信息,所述资源分配信息包括:资源块划分的情况的指示,和,针对划分的一个或者多个资源块,用于指示每个资源块内传输的MAC帧包含组播MAC帧的索引;
    发送单元,用于发送所述资源分配信息。
  13. 一种接收资源调度的装置,其特征在于,应用于无线局域网,包括
    接收单元,用于接收资源分配信息,所述资源分配信息包括:针对待分配的总带宽,用于同时指示缺省的资源块的划分的情况以及每个资源块的目的站点STA是否为默认的站点STA的索引;
    处理单元,用于根据所述资源分配信息中的索引如果为默认的STA,则在所述缺省的资源块上传输数据。
  14. 一种接收资源调度的装置,其特征在于,应用于无线局域网,包括
    接收单元,用于接收资源分配信息,所述资源分配信息包括:资源块划分的情况的指示,和,针对划分的一个或者多个资源块,用于指示每个资源块内分配的目的STA是否为默认的STA的信息,所述信息包括索引、或者、特殊的站点或者站点组标识;
    处理单元,用于根据所述资源分配信息中的信息,如果为默认的STA,则在所述缺省的资源块上传输数据。
  15. 根据权利要求13或者14的装置,所述默认的STA为在对应资源块上参与前序传输的STA,或者,基于信标帧和管理帧提前约定好的STA。
  16. 一种资源调度的装置,其特征在于,应用于无线局域网,包括
    接收单元,用于接收资源分配信息,所述资源分配信息包括:资源块划分的情况的指示,和,针对划分的一个或者多个资源块,用于指示每个资源块内传输的MAC帧包含组播MAC帧的索引;
    处理单元,用于根据所述资源分配信息中的信息,如果为默认的STA,则在所述缺省的资源块上接收组播数据。
PCT/CN2015/083617 2015-07-08 2015-07-08 资源调度的方法、装置和设备 WO2017004819A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580079141.XA CN107534863B (zh) 2015-07-08 2015-07-08 资源调度的方法、装置和设备
PCT/CN2015/083617 WO2017004819A1 (zh) 2015-07-08 2015-07-08 资源调度的方法、装置和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/083617 WO2017004819A1 (zh) 2015-07-08 2015-07-08 资源调度的方法、装置和设备

Publications (1)

Publication Number Publication Date
WO2017004819A1 true WO2017004819A1 (zh) 2017-01-12

Family

ID=57684713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083617 WO2017004819A1 (zh) 2015-07-08 2015-07-08 资源调度的方法、装置和设备

Country Status (2)

Country Link
CN (1) CN107534863B (zh)
WO (1) WO2017004819A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111328027A (zh) * 2018-12-17 2020-06-23 华为技术有限公司 报文传输方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064679A (zh) * 2006-04-29 2007-10-31 华为技术有限公司 获取用户数据状态指示信息的方法及系统
CN101064559A (zh) * 2006-04-30 2007-10-31 华为技术有限公司 资源分配方法和系统
CN101189833A (zh) * 2005-06-16 2008-05-28 诺基亚公司 在无线网络中调度数据传输以改进功率效率
CN102036387A (zh) * 2009-09-30 2011-04-27 中兴通讯股份有限公司 无线信道资源分配的指示方法及基站、解码方法及终端
US8428606B1 (en) * 2007-08-31 2013-04-23 Apple Inc. Communicating control information including an index
CN104735675A (zh) * 2013-12-19 2015-06-24 宇龙计算机通信科技(深圳)有限公司 无线局域网通信方法和无线局域网通信设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060359B2 (en) * 2010-05-26 2015-06-16 Lg Electronics Inc. Method and apparatus for transceiving data in a wireless LAN system
CN104022842A (zh) * 2013-03-01 2014-09-03 华为技术有限公司 组播信息传输方法及设备
US10439773B2 (en) * 2013-04-15 2019-10-08 Qualcomm Incorporated Systems and methods for backwards-compatible preamble formats for multiple access wireless communication
US20150163028A1 (en) * 2013-12-10 2015-06-11 Qualcomm Incorporated Methods and apparatus for wireless communication utilizing efficient signal field design in high efficiency wireless packets
CN104580053B (zh) * 2014-12-02 2017-09-15 江苏中兴微通信息科技有限公司 在宽带无线局域网中实现ofdma技术的收发方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101189833A (zh) * 2005-06-16 2008-05-28 诺基亚公司 在无线网络中调度数据传输以改进功率效率
CN101064679A (zh) * 2006-04-29 2007-10-31 华为技术有限公司 获取用户数据状态指示信息的方法及系统
CN101064559A (zh) * 2006-04-30 2007-10-31 华为技术有限公司 资源分配方法和系统
US8428606B1 (en) * 2007-08-31 2013-04-23 Apple Inc. Communicating control information including an index
CN102036387A (zh) * 2009-09-30 2011-04-27 中兴通讯股份有限公司 无线信道资源分配的指示方法及基站、解码方法及终端
CN104735675A (zh) * 2013-12-19 2015-06-24 宇龙计算机通信科技(深圳)有限公司 无线局域网通信方法和无线局域网通信设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111328027A (zh) * 2018-12-17 2020-06-23 华为技术有限公司 报文传输方法

Also Published As

Publication number Publication date
CN107534863B (zh) 2020-08-14
CN107534863A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
JP7246396B2 (ja) データ伝送方法及び装置、コンピュータ記憶媒体
US11736935B2 (en) Downlink transmission method and apparatus
CN109392152B (zh) 通信方法和通信装置
WO2018059210A1 (zh) 一种用于数据传输的方法和装置
CN111989963B (zh) 用于在无线通信系统中发送或接收同步信号的方法和装置
WO2017000143A1 (zh) 传输上行数据的方法和装置
CN108632192B (zh) 数据传输的方法、设备和系统
WO2017041683A1 (zh) 用于上行数据传输的方法、网络设备和终端设备
WO2019029240A1 (zh) 一种信号加扰、解扰方法及装置
WO2017000291A1 (zh) 传输上行数据的方法和设备
CN107196689B (zh) 一种上行mu-mimo的方法及系统
TW201803382A (zh) 傳輸數據的方法、終端設備和網絡設備
WO2016134528A1 (zh) 传输下行控制信息的方法和装置
TWI802668B (zh) 降低複雜度之極化編碼及解碼
CN108632841B (zh) 一种信息传输方法和装置
WO2019076207A1 (zh) 数据传输的确认方法及设备
US20200067644A1 (en) Data feedback method and related device
CN113261225A (zh) 无线通信系统中用于反馈发送和接收的方法和装置
WO2014187358A1 (zh) 一种机器类通信业务信息的传输方法、基站、终端和系统
JP2022046754A (ja) チャネル符号化に用いるユーザー装置、基地局における方法及び装置
WO2017000900A1 (zh) 传输信息的方法和设备
WO2018228236A1 (zh) 数据传输方法和装置
CN111434042A (zh) 利用极性码进行urllc传输
WO2019080555A1 (zh) 免授权数据传输的确认方法和装置
CN110730513B (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897475

Country of ref document: EP

Kind code of ref document: A1