WO2017041683A1 - 用于上行数据传输的方法、网络设备和终端设备 - Google Patents

用于上行数据传输的方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2017041683A1
WO2017041683A1 PCT/CN2016/098121 CN2016098121W WO2017041683A1 WO 2017041683 A1 WO2017041683 A1 WO 2017041683A1 CN 2016098121 W CN2016098121 W CN 2016098121W WO 2017041683 A1 WO2017041683 A1 WO 2017041683A1
Authority
WO
WIPO (PCT)
Prior art keywords
ctu
band
sub
configuration information
terminal device
Prior art date
Application number
PCT/CN2016/098121
Other languages
English (en)
French (fr)
Inventor
曾广珠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017041683A1 publication Critical patent/WO2017041683A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, a network device, and a terminal device for uplink data transmission in the field of communications.
  • next-generation mobile communication systems will support not only traditional communications, but also machine-to-machine (M2M) communications, or Machine Type Communication (Machine Type Communication).
  • M2M machine-to-machine
  • MTC Machine Type Communication
  • the number of MTC devices connected to the network will reach 500 to 100 billion, which will far exceed the current number of connections.
  • M2M services due to the wide variety of services, there is a big difference in network requirements. In general, there are several requirements: (I) reliable transmission, but not sensitive to delay; (II) low latency, high reliability transmission.
  • Grant Free transmission can be understood as a contention-based uplink service data transmission, data transmission with Wireless Local Area Network (WLAN), and existing random access in Long Term Evolution (LTE) systems.
  • WLAN Wireless Local Area Network
  • LTE Long Term Evolution
  • the uplink unlicensed transmission can be applied to various existing communication systems, and in each communication system, especially in a communication system using frequency division multiplexing technology or improved frequency division multiplexing technology, there is no one that makes A mechanism by which a terminal device can quickly and efficiently obtain and use Grant Free transmission resources.
  • the embodiments of the present invention provide a method, a network device, and a terminal device for uplink data transmission, which can enable the terminal device to quickly and efficiently obtain information of the unlicensed transmission resource, thereby improving the efficiency of the system for transmitting data.
  • a method for uplink data transmission comprising:
  • the network device generates configuration information of the contention transmission unit CTU of the uplink first subband, where the first subband is one of the uplink multiple subbands, and the uplink multiple subbands have respective specific configurations.
  • the CTU is a resource list on the first sub-band for performing an unlicensed transmission yuan;
  • the network device sends configuration information of the CTU.
  • the sending, by the network device, the configuration information of the CTU includes:
  • the network device sends the configuration information of the CTU in a broadcast manner through a system information block.
  • the sending, by the network device, the configuration information of the CTU includes:
  • the network device sends the configuration information of the CTU to the terminal device by using a downlink control channel of the downlink second sub-band corresponding to the first sub-band.
  • the network device performs downlink control by using a downlink second sub-band corresponding to the first sub-band
  • the channel sends the configuration information of the CTU to the terminal device, including:
  • the network device sends, by using a downlink control channel of the downlink second sub-band corresponding to the first sub-band, a CTU configuration in a corresponding frame of the first sub-band to the terminal device in a frame period information.
  • the network device performs downlink control by using a downlink second sub-band corresponding to the first sub-band
  • the channel sends the configuration information of the CTU to the terminal device, including:
  • the sending, by the network device, the configuration information of the CTU includes:
  • the network device controls the RRC signaling by using the radio resource, and sends the configuration information of the CTU to the terminal device.
  • the configuration information of the CTU includes configuration information of at least one CTU, and the configuration information of the at least one CTU includes a time-frequency resource, a transmission multiplexing mode, and a code division multiplexing mode and code information.
  • the transmission multiplexing mode is a frequency division multiplexing mode, a time division multiplexing mode, or a space division multiplexing mode formula.
  • the code division multiplexing mode is code division multiple access CDMA, low density signature LDS or The sparse code multiple access SCMA, the code information corresponding to the code division multiplexing mode, is a CDMA code, an LDS sequence or an SCMA codebook.
  • the first subband Subbands in the upstream frequency band in a frequency division multiplexed FDD system in the ninth possible implementation manner of the first aspect, the first subband Subbands in the upstream frequency band in a frequency division multiplexed FDD system; or
  • the first sub-band is a sub-band in a frequency band corresponding to an uplink period in a time division multiplexed TDD system.
  • a method for uplink data transmission including:
  • the terminal device Receiving, by the terminal device, configuration information of a contention transmission unit CTU of the first subband sent by the network device, where the first subband is one of a plurality of uplink subbands, and the uplink multiple subbands have respective specific Configuration, the CTU is a resource unit on the first sub-band for performing an unlicensed transmission;
  • the terminal device determines, according to the configuration information of the CTU, a CTU for performing an unlicensed transmission on the first subband.
  • the receiving, by the terminal device, the configuration information of the contention of the contiguous transmission unit CTU of the first subband sent by the network device includes:
  • the terminal device receives configuration information of the CTU that is sent by the network device in a broadcast manner through a system information block.
  • the terminal device receives, by the network device, configuration information of a contention transmission unit CTU of the first subband sent by the network device, including:
  • the terminal device receives the second sub-band of the downlink corresponding to the first sub-band
  • the configuration information of the CTU that is sent by the network device to the terminal device by using the downlink control channel of the second sub-band includes:
  • the terminal device Receiving, by the terminal device, the second sub-band corresponding to the first sub-band And the configuration information of the CTU in the corresponding frame of the first subband sent by the network device to the terminal device by using a downlink control channel of the second subband.
  • the terminal device receives the second sub-band of the downlink corresponding to the first sub-band
  • the configuration information of the CTU that is sent by the network device to the terminal device by using the downlink control channel of the second sub-band includes:
  • the terminal device receives, on a second sub-band of the downlink corresponding to the first sub-band, a location that the network device sends to the terminal device by using a downlink control channel in a subframe of the second sub-band
  • the configuration information of the CTU in the corresponding subframe of the first subband
  • the receiving, by the terminal device, the configuration information of the contention, the CTU of the first sub-band, that is sent by the network device includes:
  • the terminal device receives configuration information of the CTU that is sent by the network device to the terminal device by using radio resource control RRC signaling.
  • the configuration information of the CTU includes configuration information of at least one CTU, and the configuration information of the at least one CTU includes a time-frequency resource, a transmission multiplexing mode, and a code division multiplexing mode and code information.
  • the transmission multiplexing mode is a frequency division multiplexing mode, a time division multiplexing mode, or a space division multiplexing mode.
  • the code division multiplexing mode is code division multiple access CDMA, low density signature LDS or The sparse code multiple access SCMA, the code information corresponding to the code division multiplexing mode, is a CDMA code, an LDS sequence or an SCMA codebook.
  • the first subband Subbands in the upstream frequency band in a frequency division multiplexed FDD system in the ninth possible implementation manner of the second aspect, the first subband Subbands in the upstream frequency band in a frequency division multiplexed FDD system; or
  • the first sub-band is a sub-band in a frequency band corresponding to an uplink period in a time division multiplexed TDD system.
  • a network device including:
  • a generating module configured to generate configuration information of a contention transmission unit CTU of the uplink first subband,
  • the first sub-band is one of a plurality of uplink sub-bands, and the uplink multiple sub-bands have respective specific configurations, and the CTU is used on the first sub-band for unauthorized transmission.
  • a sending module configured to send configuration information of the CTU generated by the generating module.
  • the sending module is specifically configured to:
  • the configuration information of the CTU is transmitted in a broadcast form through a system information block.
  • the sending module is specifically configured to:
  • the sending module is specifically configured to:
  • the sending module is specifically configured to:
  • the sending module is specifically configured to:
  • the RRC signaling is controlled by the radio resource, and the configuration information of the CTU is sent to the terminal device.
  • the first subband The configuration information of the CTU includes configuration information of at least one CTU, and the configuration information of the at least one CTU includes a time-frequency resource, a transmission multiplexing mode, and a code division multiplexing mode and code information.
  • the transmission multiplexing mode is a frequency division multiplexing mode, a time division multiplexing mode, or a space division multiplexing mode.
  • the code division multiplexing mode is code division multiple access CDMA, low density signature LDS Or sparse code multiple access to the SCMA, the code information corresponding to the code division multiplexing mode, being a CDMA code, an LDS sequence, or an SCMA codebook.
  • the first subband Subbands in the upstream frequency band in a frequency division multiplexed FDD system in a ninth possible implementation manner of the third aspect, the first subband Subbands in the upstream frequency band in a frequency division multiplexed FDD system; or
  • the first sub-band is a sub-band in a frequency band corresponding to an uplink period in a time division multiplexed TDD system.
  • a terminal device including:
  • a receiving module configured to receive configuration information of a contention transmission unit CTU of a first subband sent by a network device, where the first subband is one of a plurality of uplink subbands, and the uplink multiple subbands Having a respective specific configuration, the CTU being a resource unit on the first sub-band for performing an unlicensed transmission;
  • a determining module configured to determine, according to the configuration information of the CTU received by the receiving module, a CTU for performing an unlicensed transmission on the first subband.
  • the receiving module is specifically configured to:
  • the receiving module is specifically configured to:
  • the receiving module is specifically configured to:
  • the receiving module is specifically configured to:
  • the receiving module is specifically configured to:
  • the configuration information of the CTU includes configuration information of at least one CTU, and the configuration information of the at least one CTU includes a time-frequency resource, a transmission multiplexing mode, and a code division multiplexing mode and code information.
  • the transmission multiplexing mode is a frequency division multiplexing mode, a time division multiplexing mode, or a space division multiplexing mode .
  • the code division multiplexing mode is code division multiple access CDMA, low density signature LDS or The sparse code multiple access SCMA, the code information corresponding to the code division multiplexing mode, is a CDMA code, an LDS sequence or an SCMA codebook.
  • the first subband Subbands in the upstream frequency band in a frequency division multiplexed FDD system in a ninth possible implementation manner of the fourth aspect, the first subband Subbands in the upstream frequency band in a frequency division multiplexed FDD system; or
  • the first sub-band is a sub-band in a frequency band corresponding to an uplink period in a time division multiplexed TDD system.
  • a method, a network device, and a terminal device for uplink data transmission provided by an embodiment of the present invention, in a system including multiple sub-bands having respective specific configurations, the network device generates and sends an uplink sub-band by using The configuration information of the CTU enables the terminal device to acquire the CTU information quickly and efficiently, thereby performing unauthorized transfer, thereby improving the efficiency of the system for transmitting data.
  • FIG. 1 is a schematic architectural diagram of a communication system to which an embodiment of the present invention is applied.
  • FIG. 2 is a schematic diagram of a definition of a CTU in accordance with an embodiment of the present invention.
  • FIG. 3 is a new 5G technology based on F-OFDM time-frequency resource allocation.
  • FIG. 4 is a schematic flow chart of a method for uplink data transmission according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an encoding process of uplink transmission according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a mapping process of an LDS according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a method for uplink data transmission in accordance with an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a method for uplink data transmission according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a method for uplink data transmission in accordance with another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a method for uplink data transmission according to still another embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a method for uplink data transmission in accordance with still another embodiment of the present invention.
  • Figure 12 is a schematic block diagram of a network device in accordance with one embodiment of the present invention.
  • FIG. 13 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • Figure 14 is a schematic block diagram of a network device in accordance with still another embodiment of the present invention.
  • Figure 15 is a schematic block diagram of a terminal device according to still another embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on data having one or more data packets (eg, from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Signals communicate via local and/or remote processes.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the technical solution of the embodiments of the present invention can also be applied to various communication systems based on non-orthogonal multiple access technologies, such as a Sparse Code Multiple Access (SCMA) system.
  • SCMA Sparse Code Multiple Access
  • the SCMA may also be referred to as another name in the field of communication;
  • the technical solution of the embodiment of the present invention may be applied to a multi-carrier transmission system using non-orthogonal multiple access technology, for example, using non-orthogonal multiple access Orthogonal Frequency Division Multiplexing (“OFDM”), Filter Bank Multi-Carrier (FBMC), Generalized Frequency Division Multiplexing , referred to as "GFDM” for short), filtered OFDM (Filtered-OFDM, abbreviated as "F-OFDM”) system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FBMC Filter Bank Multi-Carrier
  • GFDM Generalized Frequency Division Multiplexing
  • F-OFDM filtered OFDM
  • the present invention describes various embodiments in connection with a terminal device.
  • the terminal device can communicate with one or more core networks via a radio access network (RAN), and the terminal device can refer to a user equipment (User Equipment, referred to as “UE”), an access terminal, a subscriber unit, and a user.
  • RAN radio access network
  • UE user equipment
  • Station mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol ("SSIP") phone, a Wireless Local Loop (WLL) station, and a personal digital processing (Personal Digital) Assistant, referred to as "PDA” for short, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks, and the like.
  • SSIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Processing
  • the present invention describes various embodiments in connection with a network device.
  • the network device may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, abbreviated as "BTS”) in the GSM system or CDMA, or may be a base station (NodeB in the WCDMA system, referred to as "NB") may also be an evolved base station (Evolutional Node B, "eNB” or "eNodeB”) in the LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and A network side device in a future 5G network or a network device in a future evolved PLMN network.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNodeB evolved base station
  • eNodeB evolved base station
  • the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and A network side
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape), and an optical disk (for example, a CD (Compact Disk), a DVD (Digital Versatile Disk). Etc.), smart cards and flash memory devices (eg, EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the next-generation mobile communication system will support not only traditional communication, but also machine-to-machine (M2M) communication, or Machine Type Communication (MTC) communication.
  • M2M machine-to-machine
  • MTC Machine Type Communication
  • the number of MTC devices connected to the network will reach 500 to 100 billion, which will far exceed the current number of connections.
  • M2M services due to the wide variety of services, there is a big difference in network requirements. In general, there are several requirements: (I) reliable transmission, but not sensitive to delay; (II) low latency, high reliability transmission.
  • V2V Vehicle to Vehicle
  • a large number of connections require more resources to access the terminal device and need to consume more resources for the transmission of scheduling signaling related to the data transmission of the terminal device.
  • FIG. 1 shows a schematic architectural diagram of a communication system to which an embodiment of the present invention is applied.
  • the communication system 100 can include a network device 102 and terminal devices 104-114 (referred to as UEs in the figure) connected by a wireless connection or a wired connection or other means.
  • UEs terminal devices
  • the network in the embodiment of the present invention may refer to a Public Land Mobile Network (PLMN) or a D2D network or an M2M network or other network.
  • PLMN Public Land Mobile Network
  • FIG. 1 is only a simplified schematic diagram of the example, and the network may also include other Network equipment, not shown in Figure 1.
  • the present invention proposes an uplink grant-free (Grant Free) transmission.
  • the unlicensed transmission here can be for uplink data transmission.
  • An unauthorized transfer can be understood as any one of the following meanings, or multiple meanings, or a combination of some of the various technical features or other similar meanings:
  • the unlicensed transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources; when the terminal device has the uplink data transmission requirement, select at least one transmission resource from the plurality of transmission resources pre-allocated by the network device, and use the selected one.
  • the transmission resource sends the uplink data; the network device detects the uplink data sent by the terminal device on one or more of the pre-assigned multiple transmission resources.
  • the detection may be blind detection, or may be performed according to one of the control domains in the uplink data, or may be detected in other manners.
  • the unlicensed transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources, so that when the terminal device has an uplink data transmission requirement, at least one transmission resource is selected from a plurality of transmission resources pre-allocated by the network device, and used.
  • the selected transmission resource sends uplink data.
  • the unlicensed transmission may be: acquiring information of a plurality of pre-assigned transmission resources, selecting at least one transmission resource from the plurality of transmission resources when the uplink data transmission request is required, and transmitting the uplink data by using the selected transmission resource.
  • the method of obtaining can be obtained from a network device.
  • the unlicensed transmission may refer to a method for implementing uplink data transmission of the terminal device without dynamic scheduling of the network device.
  • the dynamic scheduling may refer to that the network device indicates the transmission by using signaling for each uplink data transmission of the terminal device.
  • implementing uplink data transmission of the terminal device may be understood as allowing data of two or more terminal devices to perform uplink data transmission on the same time-frequency resource.
  • the transmission resource may be one or more transmission time units of transmission resources after the time when the UE receives the signaling.
  • a transmission time unit can refer to the minimum time unit of one transmission, such as transmission time interval (Transmission) Time Interval (TTI), the value can be 1ms, or it can be a preset transmission time unit.
  • TTI transmission time interval
  • TTI Transmission Time Interval
  • Unauthorized transmission may refer to: the terminal device performs uplink data transmission without requiring network device authorization.
  • the authorization may be performed by the terminal device sending an uplink scheduling request to the network device. After receiving the scheduling request, the network device sends an uplink grant to the terminal device, where the uplink grant indicates the uplink transmission resource allocated to the terminal device.
  • the unlicensed transmission may be a competitive transmission mode. Specifically, multiple terminals may simultaneously perform uplink data transmission on the same time-frequency resources allocated in advance, without requiring the base station to perform authorization.
  • the data may be included in service data or signaling data.
  • the blind detection can be understood as the detection of data that may arrive without predicting whether or not data has arrived.
  • the blind detection can also be understood as detection without explicit signaling indication.
  • the transmission resource may include, but is not limited to, a combination of one or more of the following resources: a time domain resource, such as a radio frame, a subframe, a symbol, etc.; a frequency domain resource, such as a subcarrier, a resource block, etc.; a spatial domain resource, such as Transmit antenna, beam, etc.; code domain resources, such as SCMA codebook, Low Density Signature (LDS) group, CDMA code group, etc.; uplink pilot resources.
  • a time domain resource such as a radio frame, a subframe, a symbol, etc.
  • a frequency domain resource such as a subcarrier, a resource block, etc.
  • a spatial domain resource such as Transmit antenna, beam, etc.
  • code domain resources such as SCMA codebook, Low Density Signature (LDS) group, CDMA code group, etc.
  • uplink pilot resources such as SCMA codebook, Low Density Signature (LDS) group, CDMA code group, etc.
  • the foregoing transmission resource may be transmitted according to a control mechanism including but not limited to: uplink power control, such as uplink transmission power upper limit control, etc.; modulation and coding mode setting, such as transmission block size, code rate, modulation order setting, etc.; Transmission mechanism, such as Hybrid Automatic Repeat reQuest (HARQ) mechanism.
  • uplink power control such as uplink transmission power upper limit control, etc.
  • modulation and coding mode setting such as transmission block size, code rate, modulation order setting, etc.
  • Transmission mechanism such as Hybrid Automatic Repeat reQuest (HARQ) mechanism.
  • HARQ Hybrid Automatic Repeat reQuest
  • a Contention Transmission Unit may be a basic transmission resource for unauthorized transmission.
  • a CTU may refer to a transmission resource combining time, frequency, and code domain, or may refer to a combination of time, frequency, and pilot transmission, or may refer to a transmission resource combining time, frequency, code domain, and pilot.
  • the access area of the CTU may refer to a time-frequency area for unauthorized transmission.
  • Patent No. PCT/CN2014/073084 the patent application entitled “System and Method for Uplink Grant-free Transmission Scheme", provides a technical solution for uplink grant-free transmission.
  • the PCT/CN2014/073084 application describes that radio resources can be divided into various CTUs, and the UE is mapped to a certain CTU.
  • Each CTU may be assigned a set of codes, and the assigned set of codes may be a set of CDMA codes, or may be an SCMA codebook set or an LDS group or a signature group. Wait.
  • Each code can correspond to a set of pilots. The user can select a code and one of the pilot groups corresponding to the code for uplink transmission.
  • the content of the PCT/CN2014/073084 application is also to be understood as a part of the content of the embodiments of the present invention, and is not described again.
  • the terminal devices 104-114 may report their own capability information to the network device 102, wherein the capability information may include information indicating whether there is an capability of uplink unlicensed transmission.
  • the network device 102 can communicate with the terminal device by using an uplink unlicensed transmission mechanism or a traditional request-authorization mechanism according to the capability information reported by each terminal device.
  • the network device 102 may notify the terminal device of the necessary information for the uplink unlicensed transmission.
  • the network device 102 may instruct the terminal device to perform uplink unlicensed transmission, and send the search space information, the CAR information, and the CTU information to the terminal device.
  • the mapping rules may be predefined or configured by the network device.
  • the terminal device may select one code and one pilot in the pilot group corresponding to the code for uplink transmission, but the embodiment of the present invention does not limit this. It should be understood that the embodiments of the present invention may be applied to other communication systems other than FIG. 1, which is not limited by the embodiment of the present invention.
  • FIG. 2 exemplarily shows four CARs 202-208, wherein the system available bandwidth is divided into a plurality of different time frequency regions, each CAR occupies a different resource block, wherein, optionally, each CAR occupancy
  • the number of resource blocks may be predefined.
  • the CAR 202 occupies a resource block (Resource Block, abbreviated as "RB") 1-4.
  • RB Resource Block
  • each CAR may be further divided into at least one CTU, where each CTU is a combination of a specific time, frequency, signature, and pilot.
  • Each CAR in FIG. 2 corresponds to the same CTU mapping relationship, where It is to be noted that the mapping relationship of four CARs is respectively shown from different angles, but the embodiment of the present invention is not limited thereto.
  • each CAR supports six signatures (S1-S6), and each signature can correspond to six pilots, thus constituting 36 pilots (P1-P36), corresponding to 36 CTUs, but The embodiment of the invention is not limited thereto.
  • FIG. 2 exemplarily shows four CARs and each CAR includes 36 CTUs, but embodiments of the present invention may also include other numbers of CARs and each CAR may include other numbers of CTUs, embodiments of the present invention There is no limit to this.
  • F-OFDM Orthogonal Frequency Division Multiplex
  • Figure 3 shows a new 5G technology based on F-OFDM time-frequency resource allocation.
  • F-OFDM divides the spectrum into multiple sub-bands, each sub-band having a specific sub-carrier bandwidth, transmission time interval ("TTI") length, symbol length or symbol number in TTI, and cyclic prefix (Cyclic) Prefix, referred to as "CP") length.
  • TTI transmission time interval
  • CP cyclic prefix
  • the parameter configuration of each sub-band is not static, but can be flexibly adapted according to the traffic load.
  • the sub-bands configured for each parameter are suitable for some specific service types, as shown in Figure 3, traditional voice/video, Internet of Things ("IOT”), real-time car networking, multimedia broadcast multicast services ( The Multimedia Broadcast Multicast Service (MBMS) is distributed in specific subbands.
  • IOT Internet of Things
  • MBMS Multimedia Broadcast Multicast Service
  • the sub-band configuration of the IOT service has a narrow sub-carrier bandwidth and a large transmission delay, which is of great significance for low-power, high-density IOT devices; and sub-band configuration of real-time car networking services. Has the largest subcarrier bandwidth and the smallest transmission delay.
  • the frequency spectrum can be divided into multiple sub-bands, and one sub-band has a set of sub-band parameters (the parameter English can be numerology).
  • the numerology of different subbands may be the same or different.
  • the parameters of the subband may include at least one of a subcarrier spacing, a Transmission Time Interval (TTI) length, a symbol length, a symbol number, and a Cyclic Prefix (CP) length.
  • TTI Transmission Time Interval
  • CP Cyclic Prefix
  • the parameters of the subbands can be pre-configured or flexibly adapted according to the traffic load. Different types of services can use different sub-bands. For example, traditional voice/video, Internet of Things (IOT), real-time car networking, and multimedia broadcast multicast service (MBMS) are distributed in different sub-bands.
  • IOT Internet of Things
  • MBMS multimedia broadcast multicast service
  • the F-OFDM technique shown in Figure 3 is difficult to support Grant Free transmission.
  • the resource block CTUs transmitted by Grant Free are distributed on different subbands, and the TTI length, the subcarrier bandwidth, the number of symbols in the TTI, and the CP length between the resource blocks on different subbands.
  • the parameters are not exactly the same.
  • the subband configuration in the system may also be adjusted. The influence of the above factors makes it difficult to implement Grant Free transmission of terminal equipment in a system using F-OFDM technology, and it is difficult for a terminal device to obtain a CTU suitable for its own needs.
  • the network device simply transfers the resources of the Grant Free required by the terminal device The block CTU is notified to the terminal device and is contending by the terminal device. Then, the network device notifies the terminal device that the CTU information will consume a large amount of downlink resources, the system transmission efficiency is low, and the terminal device is incapable of selecting between a large number of different CTUs.
  • the terminal device can receive the subband configuration information broadcast by the network device.
  • the subband configuration information not only describes all frequency bands of the current system, but also describes parameter configuration information of each frequency band, including subcarrier bandwidth of the subband, TTI length, symbol length or symbol number in the TTI, and CP length.
  • the terminal device selects an appropriate sub-band from the frequency band of the system according to the sub-band configuration information, acquires the configuration information of the CTU on the sub-band, acquires the CTU, and performs the Grant Free transmission using the acquired CTU.
  • the embodiment of the present invention is used to solve the problem of how to acquire a CTU and use the acquired CTU for Grant Free transmission when the terminal device adopts the Grant Free transmission mode in the uplink direction in the system using the F-OFDM technology.
  • FIG. 4 illustrates a method 300 for uplink data transmission in accordance with an embodiment of the present invention.
  • the method 300 is performed by a network device, and the method 300 includes:
  • the network device generates configuration information of a contention transmission unit (CTU) of an uplink first subband, where the first subband is one of a plurality of uplink subbands, and the uplink multiple subbands have respective specific configurations.
  • the CTU is a resource unit on the first subband for performing an unlicensed transmission;
  • the network device sends configuration information of the CTU.
  • the first sub-band is one of a plurality of sub-bands that are uplinked in the filtered orthogonal frequency division multiplexing F-OFDM system.
  • the network device in a system including multiple sub-bands having respective specific configurations, can generate and transmit configuration information of the CTU of the uplink sub-band, so that the terminal device can The CTU information is quickly and efficiently obtained, and then the license-free transmission is performed, thereby improving the efficiency of the system for transmitting data.
  • the first subband is a subband in an uplink frequency band in a frequency division multiplexing FDD system
  • the first sub-band is a sub-band in a frequency band corresponding to an uplink period in a time division multiplexed TDD system.
  • the F-OFDM system may include a Frequency Division Dual (FDD) system or a Time Division Duplex (TDD) system.
  • the spectrum resource may be composed of a downlink frequency band and an uplink frequency band; in the TDD system, the spectrum resource may be composed of a downlink time period and an uplink time period.
  • the downlink frequency band referred to herein is a group of transmission resources including time domain resources and frequency domain resources used for downlink transmission in the FDD system; the downlink time period referred to herein is the time period for downlink transmission in the TDD system.
  • the uplink frequency band referred to herein is a group of transmission resources including time domain resources and frequency domain resources used for uplink transmission in the FDD system; the uplink time period referred to herein is the time domain resource used for uplink transmission in the TDD system. And a set of transmission resources for frequency domain resources.
  • the downlink frequency band (or downlink time period) and the uplink frequency band (or uplink time period) each have a plurality of sub-bands.
  • the plurality of sub-bands have respective specific configurations. That is, each subband has the subcarrier specific subcarrier bandwidth, TTI length, symbol length or symbol number in the TTI, and CP length.
  • the parameter configuration of each sub-band is not static, but can be flexibly adapted according to the traffic load.
  • the embodiment of the present invention is described by taking an FDD system as an example.
  • the scheme of the TDD system is similar, and the difference is that the uplink period of the TDD system corresponds to the uplink frequency band of the FDD system, and the downlink period of the TDD system corresponds to the downlink frequency band of the FDD system.
  • the text does not go into details about the TDD system.
  • the network device generates configuration information of the contention transmission unit CTU of the uplink first subband. Specifically, the network device generates configuration information of the CTU of the subband of the uplink frequency band.
  • the CTU can be represented in various forms.
  • the configuration information of the CTU may include the information of the subband to which the CTU belongs, and the subcarrier bandwidth of the CTU, the length of the TTI, the symbol length or the number of symbols in the TTI, and the number of symbols can be determined according to the information of the subband. Information such as CP length.
  • the time-frequency range of the CTU in the sub-band may be an atomic time-frequency resource block, a time-frequency resource block in multiple frequency domains, or a time-frequency resource block in multiple time domains.
  • the system defines a combination of multiple codes and pilots.
  • Each CTU can support multiple users to transmit data through code division multiplexing.
  • the configuration information of the CTU of the first sub-band includes configuration information of the at least one CTU
  • the configuration information of the at least one CTU includes a time-frequency resource and a transmission complex.
  • the configuration information of the CTU of the first subband may include an identifier of the first subband, a number of CTUs in the first subband, and configuration information of each CTU in the first subband.
  • the configuration information of each CTU may include time-frequency resources, such as a resource block (Resource Block, referred to as "RB") and the number of RBs, and a feedback mode, for example, whether the CTU supports hybrid automatic retransmission.
  • RB resource block
  • a feedback mode for example, whether the CTU supports hybrid automatic retransmission.
  • Hybrid Automatic Repeat reQuest (HARQ) feedback etc.
  • code division multiplexing mode such as the specific mode of code division multiplexing supported by CTU, CDMA, LDS or SCMA
  • code information network equipment informs terminal equipment Code information that can be used, such as CDMA code, LDS sequence or SCMA codebook, etc.
  • transmission multiplexing mode such as frequency division multiplexing mode, time division multiplexing mode or space division multiplexing mode, etc., network device through transmission multiplexing mode Inform the terminal device whether the CTU allows some multiplexing mode.
  • the SCMA codebook in the embodiment of the present invention includes at least two codewords, where the SCMA codebook is used to indicate a mapping relationship between at least two data combinations and the at least two codewords, where the codeword is a multi-dimensional complex vector. And for indicating a mapping relationship between the data and the plurality of modulation symbols, the modulation symbol comprising at least one zero modulation symbol and at least one non-zero modulation symbol.
  • SCMA Sparse Code Multiple Access
  • SCMA is a non-orthogonal multiple access technology.
  • SCMA Sparse Code Multiple Access
  • the technology uses a codebook to transmit multiple different data streams on the same transmission resource, wherein different data streams use different codebooks, thereby improving resource utilization.
  • the data stream can come from the same terminal device or from different terminal devices.
  • the codebook used by SCMA is a collection of two or more codewords.
  • the codeword may be a multi-dimensional complex number vector, and the dimension thereof is two-dimensional or two-dimensional or more, and is used to represent a mapping relationship between data and two or more modulation symbols, and the mapping relationship may be a direct mapping relationship.
  • the modulation symbol includes at least one zero modulation symbol and at least one non-zero modulation symbol, and the data may be binary bit data or multiple data, and the relationship between the zero modulation symbol and the non-zero modulation symbol may be zero or less. The number of non-zero modulation symbols.
  • a codebook consists of two or more codewords.
  • the codebook may represent a mapping relationship between a possible data combination of a certain length of data and a codeword in a codebook, and the mapping relationship may be a direct mapping relationship.
  • the SCMA technology realizes the extended transmission of data on multiple resource units by directly mapping the data in the data stream to a code word in the codebook according to a certain mapping relationship, that is, a multi-dimensional complex vector.
  • the direct mapping relationship in SCMA technology can be understood as the data in the data stream does not need to be mapped to intermediate modulation symbols, or there are other intermediate processes.
  • the data here may be binary bit data or multi-dimensional data, and multiple resource units may be resource elements in a time domain, a frequency domain, an air domain, a time-frequency domain, a spatio-temporal domain, and a time-frequency spatial domain.
  • the codeword used by SCMA can have a certain sparsity, for example, the number of zero elements in the codeword can be Not less than the number of modulation symbols, so that the receiver can use the multi-user detection technology to perform lower complexity decoding.
  • the relationship between the number of zero elements listed above and the modulation symbol is only an exemplary description of sparsity, and the present invention is not limited thereto, and the ratio of the number of zero elements to the number of non-zero elements can be arbitrarily set as needed.
  • Each resource block is composed of a number of resource REs, where the REs may be subcarrier-symbol units in OFDM technology, or may be resource units in the time domain or frequency domain of other air interface technologies.
  • the available resources are divided into orthogonal time-frequency resource blocks, each resource block containing U REs, wherein the U REs may be in the same position in the time domain.
  • the terminal device #L transmits data
  • the data to be transmitted is first divided into data blocks of S-bit size, and each data block is mapped into a group including U by searching a codebook (determined by the network device and sent to the terminal device).
  • each modulation symbol in the sequence corresponds to one RE in the resource block, and then generates a signal waveform according to the modulation symbol .
  • each codebook contains 2S different modulation symbol groups, corresponding to 2S possible data blocks.
  • the above codebook may also be referred to as an SCMA codebook which is a SCMA codeword set, and the SCMA codeword is a mapping relationship of information bits to modulation symbols. That is, the SCMA codebook is a set of the above mapping relationships.
  • FIG. 5 is a schematic diagram showing bit mapping processing (or encoding processing) of SCMA exemplified by 6 resource units multiplexed by 6 data streams.
  • 6 data streams form one packet
  • 4 Resource units form a coding unit.
  • a resource unit can be a subcarrier, either an RE or an antenna port.
  • there is a line between the data stream and the resource unit indicating that at least one data combination of the data stream is mapped by the codeword, and a non-zero modulation symbol is transmitted on the resource unit, and the data stream and the resource unit are The absence of a connection between them means that all possible data combinations of the data stream are zero coded on the resource unit after the codeword mapping.
  • the data combination of the data streams can be understood as follows, for example, in a binary bit data stream, 00, 01, 10, 11 are all possible two-bit data combinations.
  • the data of each data stream is represented as s1 to s6, respectively, and the symbols sent by each resource unit are respectively represented as X1 to x4, and the line between the data stream and the resource unit indicates that the data of the data stream is expanded to transmit a modulation symbol on the resource unit, wherein the modulation symbol can be a zero symbol (corresponding to a zero element) It can also be a non-zero symbol (corresponding to a non-zero element). If there is no connection between the data stream and the resource unit, it means that the data of the data stream is expanded and the modulation symbol is not sent on the resource unit.
  • the data of each data stream is expanded and transmitted on multiple resource units, and the symbol sent by each resource unit is an extended non-zero symbol of data from multiple data streams.
  • Superposition For example, the data s3 of the data stream 3 is expanded to transmit non-zero symbols on the resource unit 1 and the resource unit 2, and the data x2 transmitted by the resource unit 3 is the data s2, s4 of the data stream 2, the data stream 4, and the data stream 6.
  • the codewords in the codebook usually have the following form:
  • the corresponding codebook usually has the following form:
  • N is a positive integer greater than 1, and can be expressed as the number of resource units included in one coding unit, and can also be understood as the length of the codeword;
  • Q m is a positive integer greater than 1, indicating the number of codewords included in the codebook.
  • Q m is 4 in sampling quadrature phase shift keying (QPSK, Quadrature Phase Shift Keying) or 4th order modulation;
  • q positive integer, and 1 ⁇ q ⁇ Q m ;
  • codebook sum The code word contains c n,q is a complex number, c n,q can be expressed mathematically as:
  • can be any real number, ⁇ can be any value, and N and Q m can be positive integers.
  • the codeword in the codebook can form a certain mapping relationship with the data, such as the codeword in the codebook.
  • a mapping relationship can be formed with 2-bit data.
  • the codebook corresponding to the data stream and the codeword in the codebook should have the following characteristics: at least one codeword exists in the codebook on the corresponding resource unit. Sending a non-zero modulation symbol, for example, there is a connection between the data stream 3 and the resource unit 1, and at least one codeword corresponding to the data stream 3 satisfies c 1, q ⁇ 0, 1 ⁇ q ⁇ Q m ;
  • the codebook corresponding to the data stream 3 in FIG. 5 above may have the following forms and features:
  • the data combination is mapped to a codeword, that is, a 4-dimensional complex vector according to the foregoing mapping rule:
  • the LDS sequence in the embodiment of the present invention may be at least one signature sequence in the LDS group.
  • the LDS group includes at least two signature sequences, and the LDS group is configured to indicate a mapping relationship between the at least two data combinations and the at least two signature sequences, where the signature sequence is a multi-dimensional complex vector, and the multi-dimensional vector includes at least one zero element sum. At least one non-zero element, the signature sequence is used for adjusting the amplitude and phase of the modulation symbol, which is obtained by constelling the data by constellation mapping of the modulation constellation.
  • LDS Low Density Signature
  • P is an integer not less than 1
  • P is an integer not less than 1
  • P is an integer not less than 1
  • LDS technology can effectively improve network capacity, including the number of users that can be accessed by the system and the spectrum efficiency. Therefore, as an important non-orthogonal access technology, LDS technology has attracted more and more attention and become an important alternative access technology for the evolution of wireless cellular networks in the future.
  • a resource unit can be a subcarrier, or a resource element (Resource Element, referred to as "RE"), or an antenna port.
  • RE Resource Element
  • a line between the data stream and the resource unit indicates that at least one data combination of the data stream exists, and the data combination is adjusted by constellation mapping and amplitude and phase.
  • a non-zero modulation symbol is transmitted on the resource unit, and no connection between the data stream and the resource unit indicates modulation of all possible data combinations of the data stream transmitted over the resource unit after constellation mapping and adjustment of amplitude and phase.
  • the symbols are all zero modulation symbols.
  • the data combination of the data streams can be understood as explained below, for example, in a binary bit data stream, 00, 01, 10, 11 are all possible data combinations of two-bit data.
  • the data combinations to be transmitted of the six data streams in the bipartite graph are sequentially represented by s1 to s6, and the modulation symbols transmitted on the four resource units in the bipartite graph are sequentially represented by x1 to x4.
  • the data combination of each data stream is transmitted by the constellation mapping and the amplitude and phase adjustment, and the modulation symbols are transmitted on two or more resource units, and simultaneously transmitted by each resource unit.
  • a modulation symbol is a superposition of adjusted data from two or more data streams via respective constellation mappings and adjusted modulation symbols of amplitude and phase.
  • the data combination s3 of the data stream 3 may be transmitted with non-zero modulation symbols on the resource unit 1 and the resource unit 2 after the constellation mapping and the adjustment of the amplitude and phase, and the modulation symbol x3 transmitted by the resource unit 3 is the data stream. 2.
  • the data (b1, b2) of the data stream is subjected to constellation mapping, and the modulation symbol is q, and each element in the signature sequence, that is, an adjustment factor, is used to perform phase and amplitude on the modulation symbol q.
  • the adjustment is to obtain the modulation symbols sent on each resource unit, which are q*s1, q*s2, q*s3, and q*s4, respectively.
  • the SCMA codebook and the LDS sequence listed above are merely exemplary descriptions, and the present invention is not limited thereto, and may also be a CDMA code or the like.
  • the CDMA code may be at least one code in the CDMA code group.
  • the specific function and usage of the CDMA code can be similar to the prior art. Here, in order to avoid redundancy, detailed description thereof will be omitted.
  • the embodiment of the present invention may flexibly determine the configuration information of the CTU according to a specific implementation situation. For example, when the network device and the terminal device mutually agree on a transmission multiplexing mode (such as a space division multiplexing mode), the configuration information of the CTU may not include the transmission multiplexing mode.
  • the network device and the terminal device directly transmit in the space division multiplexing mode by default, which is not limited in this embodiment of the present invention.
  • the network device sends configuration information of the CTU of the generated subband of the uplink frequency band to the terminal device, so that the terminal device selects according to the configuration information of the CTU of the subband of the uplink frequency band. Select the appropriate CTU and perform an unlicensed transmission on the selected CTU. For the terminal device on the first sub-band, the network device sends the generated configuration information of the CTU of the first sub-band to the terminal device on the first sub-band.
  • the configuration information of the CTU of the sub-band of the uplink frequency band of the network device may be broadcast or multicast, or may be unicast, which is not limited in this embodiment of the present invention.
  • the terminal device can then select the CTU on the subband and determine at least one of the used code information, pilot and modulation coding modes.
  • the terminal device performs an unlicensed transmission on the CTU of the selected sub-band.
  • the configuration information of the CTU of the subband is all CTUs in a certain frame or subframe of a specific subband, and these CTUs are used for terminal device to perform uplink unlicensed transmission, and the terminal device transmits randomly or according to certain The rule selects one or a set of CTUs and selects the code and pilot resources in the CTU in the selected CTU.
  • the S320 network device sends the configuration information of the CTU, including:
  • the network device sends the configuration information of the CTU in a broadcast manner through a system information block.
  • the system information block is in the common control subband of the downlink frequency band.
  • SIB system information block
  • the downlink frequency band is divided into sub-band 1, common control sub-band and sub-band three
  • the uplink frequency band is divided into sub-band 1, sub-band two and sub-band three.
  • the number of the foregoing sub-bands is only an example. In practical applications, the number of sub-bands, configuration parameters, and the like are dynamically configured by the system, and can be dynamically adjusted according to the condition of the traffic load.
  • the network device broadcasts the configuration information of the CTU of the subband of the uplink frequency band to the terminal device through the SIB of the common control subband of the downlink frequency band.
  • the configuration information of the CTU of the subband is broadcasted by the SIB in the cell range.
  • the configuration information of the CTUs of the subbands 1 and 3 of the uplink band in one frame can be transmitted in the same SIB-1-5 of the common control subband of the downlink frequency band, and the configuration information of the CTU of the subband 2 of the uplink frequency band in one frame (CTU-21)
  • the configuration information of -5 to CTU-24-5 can be transmitted in another separate SIB-2-5 of the common control subband of the downlink frequency band. Whether the configuration information of the CTUs of the sub-bands are combined and transmitted in the SIB may be based on whether the size of the SIB information container can accommodate the CTU configuration information of the multiple sub-bands.
  • the network device When the network device broadcasts in the common control subband (or called the primary subband), it may broadcast only the configuration information of the CTU of one subband of the downlink frequency band at a time, or may broadcast the downlink frequency band at a time.
  • the configuration information of the CTU of a group of sub-bands is not limited in this embodiment of the present invention.
  • the SIB is usually transmitted in a period of one frame or several frames, indicating configuration information of CTUs in the uplink frequency band within one frame or several frames.
  • One CB may include all CTUs of its corresponding one or several subbands in the next one or several uplink frame slots.
  • the network device broadcasts the CTU configuration information through the SIB, and the SIB organization form SubbandCTUConfigSIB is as follows:
  • CTUConfigList includes all CTUs in the specified subband, and subbandID specifies the identifier of the subband.
  • CTUConfigList there may be up to maxCTU CTUConfigInfo resources, and each CTU is determined by parameters such as startRB, sizeInRB, harqMode, codeType, codeSetIndex, multipleMode, and the like. It is worth noting that each CTU supports multiple users to simultaneously transmit data through code division multiplexing.
  • the network device can specify CDMA, LDS or SCMA.
  • codeSetIndex specifies the set range of the user-selectable code of the terminal device, set What elements are available in the standard can be defined in the standard.
  • the user of the terminal device may select a separate CTU for transmission, or may select a group of CTUs to transmit by frequency division multiplexing (FDMA), time division multiplexing (TDMA) or space division multiplexing (SDMA) at one time, and the network device passes multipleMode. Tell the terminal device whether the CTU allows some kind of transmission multiplexing mode. If it is not allowed to reuse with other CTUs, then multipleMode should be set to NONE. It should be understood that multipleMode can be set to FDMA, TDMA or SDMA only when the network device device allows the terminal device to use the transport multiplexing mode. The network device determines whether the transmission succeeds in the CTU according to the harqMode. If the terminal device requests timely feedback whether the transmission is successful, the CTU supporting the HARQ feedback should be selected.
  • FDMA frequency division multiplexing
  • TDMA time division multiplexing
  • SDMA space division multiplexing
  • FIG. 8 shows a schematic flow chart of a method for uplink data transmission in accordance with a specific embodiment of the present invention.
  • the terminal device and the network device may adopt the following process 400 when using the unlicensed transmission mode for uplink transmission under F-OFDM:
  • the network device sends the SIB X including the configuration information of the subband to the terminal device.
  • the network device broadcasts the configuration information of the subband of the uplink frequency band to the terminal device through the SIB on the downlink common control subband.
  • the terminal device can know which subbands are configured in the current uplink frequency band in the system.
  • the terminal device usually selects a sub-band to transmit service data according to the characteristics of the service type.
  • the network device sends the SIB Y including the configuration information of the subband to the terminal device.
  • the network device broadcasts the configuration information of the CTU of the subband of the uplink frequency band to the terminal device through the SIB on the downlink common control subband.
  • the terminal device acquires configuration information of the CTU in the subband according to the configuration information of the subband selected in S410 and the subband received in S420, and selects the CTU time-frequency resource used for the unlicensed transmission, and according to In the manner corresponding to the selected CTU, one or more of the multiple codes are selected to process the data. If the terminal device selects multiple codes, multiple data streams may be transmitted in the CTU in a code division multiplexing manner. If the terminal device determines to use the method of frequency division multiplexing, time division multiplexing, or space division multiplexing to transmit data to increase the reliability of the transmission, the terminal device needs to select multiple CTUs corresponding to multipleMode.
  • the terminal device selects the subband of the uplink transmission according to the characteristics of the service type, and then acquires the configuration information of the CTU in the subband.
  • the terminal device determines whether to transmit in one CTU according to the size of the data packet and the requirement of the transmission quality, or The group CTU is transmitted. If the transmission is performed in a group of CTUs, it is also determined whether the method of frequency multiplexing or time domain multiplexing is used to determine the time-frequency resource block in one atom or the time-frequency resource block in multiple frequency domains, or Transmission in time-frequency resource blocks on multiple time domains. Further, the terminal can randomly select the adopted CTU in these time-frequency resource blocks.
  • the terminal device also selects and determines the code and pilot in the CTU in the selected CTU time-frequency resource, and one CTU can simultaneously support multiple users in code division multiplexing mode, and the system defines multiple codes and pilots. Combination.
  • the terminal device transmits uplink data in an unlicensed transmission manner.
  • the terminal device transmits data according to the CTU determined in S430 and its transmission mode.
  • the network device receives data for unauthorized transfer in a predetermined CTU on the subband. If the CTU supports transmission methods of frequency division multiplexing, time division multiplexing, or space division multiplexing, the network device may combine multiple possible CTUs of the same type for joint decoding. When the network device performs decoding, blind detection is performed according to a combination of possible codes and pilots.
  • the S320 network device sends the configuration information of the CTU, including:
  • the network device sends the configuration information of the CTU to the terminal device by using a downlink control channel of the downlink second sub-band corresponding to the first sub-band.
  • the CTU configuration information of the subband of the uplink frequency band may be broadcasted in the subband of each corresponding downlink frequency band.
  • the physical downlink control channel Physical Downlink Control Channel, hereinafter referred to as "PDCCH"
  • PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • the DCI format of the unlicensed transmission CTU is used for the uplink unlicensed channel.
  • the following information is sent by means of an unlicensed transmission of the DCI format of the CTU:
  • the number of CTUs is the number of CTUs, and the specific configuration of each CTU includes: resource block assignment indicating resource block allocation, Code type indicating code type, codeSetIndex indicating a range of user-selectable codes of the terminal device, and Multiple mode. Indicates that the transmission multiplexing mode, Modulation and coding scheme indicates that the modulation coding scheme and Hart mode indicate whether the feedback transmission is successful.
  • the network device passes the downlink control channel of the downlink second subband corresponding to the first subband.
  • the terminal device sends the configuration information of the CTU, including:
  • the network device sends, by using a downlink control channel of the downlink second sub-band corresponding to the first sub-band, configuration information of the CTU in the corresponding frame of the first sub-band to the terminal device in a frame period.
  • the subbands of the downlink frequency band of the F-OFDM system are in one-to-one correspondence with the subbands of the uplink frequency band.
  • the subband of each downlink frequency band transmits configuration information of the CTU of the subband of the corresponding uplink frequency band in a period of one frame or several frames.
  • the configuration information of the CTU of the subband of the uplink frequency band may include configuration information of all CTUs in one frame or several subframes of the subband of the corresponding uplink frequency band.
  • the appropriate one or more CTUs are selected and transmitted in the configuration information of the CTU of the subband, and the multiple CTUs may be frequency division multiplexed and time division multiplexed. Combine by means of space division multiplexing to perform unlicensed transmission on the selected CTU.
  • the subband 1, the common control subband, and the subband 3 of the downlink frequency band respectively correspond to the subband 1, the subband 2, and the subband three of the uplink frequency band.
  • the subband of each downlink frequency band transmits configuration information of the CTU of the subband of the corresponding uplink frequency band in one frame period.
  • the sub-band of the uplink frequency band - the configuration information of the CTU in one frame may be transmitted in the resource block -1-7 in the sub-band 1 of the downlink frequency band;
  • the configuration information of the CTU of the subband 2 of the uplink frequency band may be transmitted in the resource block-2-7 in the common control subband of the downlink frequency band.
  • the configuration information of the CTU in the intra-subband three sub-bands in one frame can be controlled in the downlink frequency band.
  • the resource block -3-7 in the subband is sent.
  • the network device sends the CTU configuration information to the terminal device by using the downlink control channel of the downlink second sub-band corresponding to the first sub-band, including:
  • the network device sends configuration information of the CTU in the corresponding subframe of the first subband to the terminal device by using a downlink control channel in a subframe of the downlink second subband corresponding to the first subband.
  • the subbands of the downlink frequency band and the subbands of the uplink frequency band may have a one-to-one correspondence.
  • the sub-band of the downlink frequency band transmits configuration information of the CTU of the subframe of the sub-band of the uplink frequency band on the downlink control channel of one or several subframes.
  • the configuration information of the CTU of the subframe of the subband of the uplink frequency band includes the configuration information of the CTU of one or several subframes.
  • the terminal device in the current uplink frequency band selects one or more CTUs for transmission in the CTU of the corresponding downlink subframe. Multiple CTUs may be combined in a frequency division multiplex, time division multiplex, or space division multiplex to perform unlicensed transmission on selected CTUs.
  • the embodiment of the present invention does not require that the configuration information of the CTU is transmitted in the frame or subframe of the downlink subband.
  • the proportion of uplink and downlink subframes may be different.
  • the downlink subframe is more than the uplink subframe, some of the redundant downlink subframes do not have corresponding uplink subframes, and the downlink subframes may not transmit the configuration information of the CTU.
  • the downlink subframe is smaller than the uplink subframe, one downlink subframe may be bound to multiple consecutive uplink subframes, and the CTU configuration information of the corresponding multiple uplink subframes may be sent in the downlink subframe. .
  • a subframe of a downlink subband in a TDD system may not have a one-to-one correspondence with a subframe of an uplink subband.
  • the number of uplink and downlink subframes may be 5:5, 8:2, 2:8, and the like. If the number ratio of the uplink and downlink subframes is 5:5, the configuration information of the CTUs of the subframes of the uplink subbands corresponding thereto may be transmitted in the subframe of the downlink subband. If the number of uplink and downlink subframes is 8:2, the configuration information of the CTUs of the eight uplink subframes may be transmitted in the two downlink subframes.
  • the configuration information of the CTU is transmitted only in the two downlink subframes corresponding to the uplink subframe.
  • the configuration information of the CTU may be sent only in the corresponding one subframe, for example, only in the downlink subframe corresponding to the first uplink subframe corresponding to the CTU. This embodiment of the present invention does not limit this.
  • the subband 1, the common control subband, and the subband 3 of the downlink frequency band respectively correspond to the subband 1, the subband 2, and the subband three of the uplink frequency band.
  • the subband of each downlink frequency band transmits configuration information of the CTU of the subframe of the subband of the corresponding uplink frequency band on the subframe.
  • the configuration information of the CTU of each subframe in the frame may be sent in a corresponding subframe in the subband 1 of the downlink frequency band, for example, the configuration information of the CTU-11-8 is in the resource block of the first subframe of the frame - Sending on 1-8, the configuration information of CTU-12-8 is sent on the resource block of the third subframe of the frame, and the configuration information of CTU-13-8 is sent on the resource block of the second subframe of the frame, etc. .
  • the transmission of the CTU configuration information of the subframes of other subbands is similar, and details are not described herein again.
  • the S320 network device sends the configuration information of the CTU, including:
  • the network device controls the RRC signaling by using the radio resource, and sends the configuration information of the CTU to the terminal device.
  • the configuration information of the CTU of the subband of the uplink frequency band is connected to the terminal device by the network device by being connected to the radio resource control (Radio Resource Control, abbreviated as "RRC") of the terminal device.
  • RRC Radio Resource Control
  • the configuration information of the CTU of the subband may include the terminal device performing the unlicensed transmission of the selectable CTU resource, and may also specify the identifier of the subband when the terminal device communicates.
  • the configuration information of the CTU of the subband may be sent to the terminal device through the network device in the RRC connection setup (RRCConnectionSetup) or the RRC connection reconfiguration (RRCConnectionReconfiguration), or may be sent through a dedicated message.
  • the terminal device may perform uplink unlicensed transmission in a time period allowed by the configuration information of the CTU of the subband.
  • the configuration information of the CTU of the subband in the RRC signaling may be SubbandCTUConfig, as follows:
  • the network device in an F-OFDM system including a plurality of sub-bands having respective specific configurations, the network device generates and transmits configuration information of CTUs of the uplink sub-bands, thereby making The terminal device can quickly and efficiently acquire the information of the CTU, thereby performing the license-free transmission, thereby improving the efficiency of the system for transmitting data.
  • FIG. 4 to FIG. 10 a method for uplink data transmission according to an embodiment of the present invention is described in detail from the perspective of a network device. Referring to FIG. 11, a description will be made from the perspective of a terminal device according to an embodiment of the present invention. The method of uplink data transmission.
  • Figure 11 illustrates a method 500 for uplink data transmission in accordance with an embodiment of the present invention.
  • the method 500 is performed by a terminal device, and the method 500 includes:
  • the terminal device receives, by the network device, configuration information of a contention transmission unit CTU of the first subband, where the first subband is one of the uplink multiple subbands, and the uplink multiple subbands have respective specific Configuration, the CTU is a resource unit on the first sub-band for performing an unlicensed transmission;
  • the terminal device determines, according to the configuration information of the CTU, a CTU for performing an unlicensed transmission on the first subband.
  • the terminal device receives the configuration of the CTU of the uplink sub-band to which the terminal device belongs, which is sent by the network device.
  • Information which can quickly and efficiently determine the CTU for unlicensed transmission, which can improve the efficiency of the system to transmit data.
  • the S510 terminal device receives the configuration information of the contention transmission unit CTU of the first subband sent by the network device, including:
  • the terminal device receives configuration information of the CTU that is sent by the network device in a broadcast manner through a system information block.
  • the S510 terminal device receives the configuration information of the contention transmission unit CTU of the first subband sent by the network device, including:
  • the terminal device receives the configuration information of the CTU sent by the network device to the terminal device by using the downlink control channel of the second sub-band on the downlink second sub-band corresponding to the first sub-band.
  • the terminal device receives, on the second sub-band of the downlink corresponding to the first sub-band, the CTU sent by the network device to the terminal device by using a downlink control channel of the second sub-band.
  • Configuration information including:
  • the network device Receiving, by the network device, the first sub-band sent by the network device to the terminal device by using a downlink control channel of the second sub-band on a downlink second sub-band corresponding to the first sub-band Configuration information of the CTU in the corresponding frame.
  • the terminal device receives, on the second sub-band of the downlink corresponding to the first sub-band, the CTU sent by the network device to the terminal device by using a downlink control channel of the second sub-band.
  • Configuration information including:
  • the terminal device Receiving, by the terminal device, the first sub-band sent by the network device to the terminal device by using a downlink control channel in a subframe of the second sub-band, on a downlink second sub-band corresponding to the first sub-band Configuration information of the CTU in the corresponding subframe.
  • the S510 terminal device receives the configuration information of the contention transmission unit CTU of the first subband sent by the network device, including:
  • the terminal device receives configuration information of the CTU sent by the network device to the terminal device by using RRC signaling by radio resources.
  • the configuration information of the CTU of the first sub-band includes configuration information of the at least one CTU
  • the configuration information of the at least one CTU includes a time-frequency resource, a transmission multiplexing mode, and a code division multiplexing. Mode and code information.
  • the transmission multiplexing mode is a frequency division multiplexing mode, a time division multiplexing mode, or a space division multiplexing mode.
  • the code division multiplexing mode is code division multiple access CDMA, low density signature LDS, or sparse code multiple access SCMA, and the code information corresponds to the code division multiplexing mode.
  • CDMA code, LDS sequence or SCMA codebook is code division multiple access CDMA, low density signature LDS, or sparse code multiple access SCMA, and the code information corresponds to the code division multiplexing mode.
  • the first subband is a subband in an uplink frequency band in a frequency division multiplexing FDD system
  • the first sub-band is a sub-band in a frequency band corresponding to an uplink period in a time division multiplexed TDD system.
  • the terminal device receives the uplink sub-band to which the terminal device belongs, which is sent by the network device.
  • the configuration information of the CTU can quickly and efficiently determine the CTU for unauthorized transmission, thereby improving the efficiency of the system for transmitting data.
  • FIG. 12 shows a network device 600 in accordance with an embodiment of the present invention. As shown in FIG. 12, the network device 600 includes:
  • the generating module 610 is configured to generate configuration information of a contention transmission unit CTU of the uplink first subband, where the first subband is one of a plurality of uplink subbands, and the uplink multiple subbands have a respective specific configuration, the CTU being a resource unit on the first sub-band for performing an unlicensed transmission;
  • the sending module 620 is configured to send configuration information of the CTU generated by the generating module 610.
  • the network device in a system including multiple sub-bands having respective specific configurations, can obtain the CTU of the uplink sub-band by generating and transmitting configuration information of the CTU of the uplink sub-band.
  • the information, and thus the unauthorized transfer, can improve the efficiency of the system to transfer data.
  • the sending module 620 is specifically configured to: send, by using a system information block, configuration information of the CTU in a broadcast manner.
  • the sending module 620 is specifically configured to: send the configuration information of the CTU to the terminal device by using a downlink control channel of the downlink second sub-band corresponding to the first sub-band.
  • the sending module 620 is specifically configured to: pass the first sub The downlink control channel with the corresponding downlink second sub-band transmits the configuration information of the CTU in the corresponding frame of the first sub-band to the terminal device in a frame period.
  • the sending module 620 is specifically configured to: send, by using, a downlink control channel in a subframe of a downlink second subband corresponding to the first subband to the terminal device. Configuration information of the CTU in the corresponding subframe of a subband.
  • the sending module 620 is specifically configured to: send, by using radio resource control, RRC signaling, configuration information of the CTU to the terminal device.
  • the configuration information of the CTU of the first subband includes configuration information of at least one CTU
  • the configuration information of the at least one CTU includes a time frequency resource, a transmission multiplexing mode, and a code division multiplexing. Mode and code information.
  • the transmission multiplexing mode is a frequency division multiplexing mode, a time division multiplexing mode, or a space division multiplexing mode.
  • the code division multiplexing mode is code division multiple access CDMA, low density signature LDS, or sparse code multiple access SCMA, and the code information corresponds to a code division multiplexing mode, where CDMA code, LDS sequence or SCMA codebook.
  • the first subband is a subband in an uplink frequency band in a frequency division multiplexing FDD system; or the first subband is an uplink time period in a time division multiplexing TDD system. Subbands in the band.
  • network device 600 may correspond to an execution body in the method embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the network device 600 are respectively implemented in order to implement FIG. 4 to FIG.
  • the corresponding processes of each method in the following are not repeated here for brevity.
  • the network device in a system including multiple sub-bands having respective specific configurations, can obtain the CTU of the uplink sub-band by generating and transmitting configuration information of the CTU of the uplink sub-band.
  • the information, and thus the unauthorized transfer, can improve the efficiency of the system to transfer data.
  • FIG. 13 shows a terminal device 700 in accordance with an embodiment of the present invention. As shown in FIG. 13, the terminal device 700 includes:
  • the receiving module 710 is configured to receive configuration information of a contention transmission unit CTU of the first subband sent by the network device, where the first subband is one of a plurality of uplink subbands, and the uplink multiple subcarriers
  • the belts have respective configurations, the CTU being for the first sub-band for Resource unit for unauthorized transfer;
  • the determining module 720 is configured to determine, according to the configuration information of the CTU received by the receiving module 710, a CTU for performing an unlicensed transmission on the first subband.
  • the terminal device in a system including a plurality of sub-bands having respective specific configurations, the terminal device receives the configuration information of the CTU of the uplink sub-band to which the terminal device belongs, which is sent by the network device, so that the terminal device can quickly Effectively determine the CTU for unlicensed transmission, which in turn can improve the efficiency of the system to transmit data.
  • the receiving module 710 is specifically configured to: receive configuration information of the CTU that is sent by the network device by using a system information block in a broadcast manner.
  • the receiving module 710 is specifically configured to: receive, by using a downlink control channel of the second subband, by the network device, on a second subband that is downlink corresponding to the first subband Configuration information of the CTU sent.
  • the receiving module 710 is specifically configured to: receive, by using a downlink control channel of the second subband, by the network device, on a second subband that is downlink corresponding to the first subband Configuration information of CTUs in respective frames of the first subband transmitted in a frame period.
  • the receiving module 710 is specifically configured to: in a downlink second sub-band corresponding to the first sub-band, receive the network device by using the second sub-band in a subframe.
  • the receiving module 710 is specifically configured to: receive configuration information of the CTU that is sent by the network device by using a radio resource control RRC signaling.
  • the configuration information of the CTU of the first subband includes configuration information of at least one CTU
  • the configuration information of the at least one CTU includes a time frequency resource, a transmission multiplexing mode, and a code division multiplexing. Mode and code information.
  • the transmission multiplexing mode is a frequency division multiplexing mode, a time division multiplexing mode, or a space division multiplexing mode.
  • the code division multiplexing mode is code division multiple access CDMA, low density signature LDS, or sparse code multiple access SCMA, and the code information corresponds to a code division multiplexing mode, where CDMA code, LDS sequence or SCMA codebook.
  • the first subband is a subband in an uplink frequency band in a frequency division multiplexing FDD system; or the first subband is an uplink time period in a time division multiplexing TDD system. Subbands in the band.
  • terminal device 700 may correspond to an execution body in the method embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the terminal device 700 are respectively implemented in order to implement FIG. 4 to FIG.
  • the corresponding processes of each method in the following are not repeated here for brevity.
  • the terminal device in a system including a plurality of sub-bands having respective specific configurations, the terminal device receives the configuration information of the CTU of the uplink sub-band to which the terminal device belongs, which is sent by the network device, so that the terminal device can quickly Effectively determine the CTU for unlicensed transmission, which in turn can improve the efficiency of the system to transmit data.
  • an embodiment of the present invention further provides a network device 800, which includes a processor 820 and a transceiver 840, and optionally includes a bus 810 and a memory 830, and a processor 820 and a memory 830.
  • the transceiver 840 is coupled to the bus 810.
  • the processor 820 by using the bus 810, invokes a program stored in the memory 830 to generate configuration information of a contention transmission unit CTU of an uplink first subband, where the first subband is uplink.
  • the network device in a system including multiple sub-bands having respective specific configurations, can obtain the CTU of the uplink sub-band by generating and transmitting configuration information of the CTU of the uplink sub-band.
  • the information, and thus the unauthorized transfer, can improve the efficiency of the system to transfer data.
  • the processor 820 may be a central processing unit (CPU), and the processor 820 may also be another general-purpose processor, a digital signal processor (DSP). , Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 830 can include read only memory and random access memory and provides instructions and data to the processor 820. A portion of the memory 830 may also include a non-volatile random access memory. For example, the memory 830 can also store information of the device type.
  • the bus 810 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus 810 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 820 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 830, and the processor 820 reads the information in the memory 830 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the transceiver 840 is specifically configured to: send, by using a system information block, configuration information of the CTU in a broadcast manner.
  • the transceiver 840 is specifically configured to: send the configuration information of the CTU to the terminal device by using a downlink control channel of the downlink second sub-band corresponding to the first sub-band.
  • the transceiver 840 is specifically configured to: send, by using a downlink control channel of a downlink second sub-band corresponding to the first sub-band, to the terminal device in a frame period. Configuration information of the CTU in the corresponding frame of the first subband.
  • the transceiver 840 is configured to: send, by using, a downlink control channel in a subframe of a downlink second sub-band corresponding to the first sub-band to the terminal device. Configuration information of the CTU in the corresponding subframe of a subband.
  • the transceiver 840 is specifically configured to: send, by using radio resource control, RRC signaling, configuration information of the CTU to the terminal device.
  • the configuration information of the CTU of the first subband includes configuration information of at least one CTU
  • the configuration information of the at least one CTU includes a time frequency resource, a transmission multiplexing mode, and a code division multiplexing. Mode and code information.
  • the transmission multiplexing mode is a frequency division multiplexing mode, a time division multiplexing mode, or a space division multiplexing mode.
  • the code division multiplexing mode is code division multiple access CDMA, low density signature LDS, or sparse code multiple access SCMA, and the code information corresponds to a code division multiplexing mode, where CDMA code, LDS sequence or SCMA codebook.
  • the first sub-band is upper in a frequency division multiplexing FDD system. a subband in a line band; or the first subband is a subband in a frequency band corresponding to an uplink period in a time division multiplexed TDD system.
  • the network device 800 may correspond to the main body of the method in the embodiment of the present invention, and may also correspond to the network device 600 according to the embodiment of the present invention, and the foregoing modules of the network device 800 And other operations and/or functions are for implementing the corresponding processes of the methods of FIG. 4 to FIG. 11 , and are not described herein for brevity.
  • the network device in a system including multiple sub-bands having respective specific configurations, can obtain the CTU of the uplink sub-band by generating and transmitting configuration information of the CTU of the uplink sub-band.
  • the information, and thus the unauthorized transfer, can improve the efficiency of the system to transfer data.
  • an embodiment of the present invention further provides a terminal device 900, which includes a processor 920 and a transceiver 940, and optionally includes a bus 910 and a memory 930, and a processor 920 and a memory 930.
  • the transceiver 940 is coupled to the bus 910.
  • the transceiver 940 by using the bus 910, invokes a program stored in the memory 930, for receiving configuration information of a contention transmission unit CTU of a first subband sent by the network device, where the first subband is One sub-band of the uplink, the multiple sub-bands of the uplink have respective specific configurations, and the CTU is a resource unit on the first sub-band for performing unlicensed transmission; the processor 920 passes The bus 910 calls a program stored in the memory 930 for determining a CTU for performing an unlicensed transmission on the first subband according to the configuration information of the CTU.
  • the terminal device in a system including a plurality of sub-bands having respective specific configurations, the terminal device receives the configuration information of the CTU of the uplink sub-band to which the terminal device belongs, which is sent by the network device, so that the terminal device can quickly Effectively determine the CTU for unlicensed transmission, which in turn can improve the efficiency of the system to transmit data.
  • the processor 920 may be a central processing unit (CPU), and the processor 920 may also be another general-purpose processor, a digital signal processor (DSP). , Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 930 can include a read only memory and a random access memory, and is directed to the processor 920. Provide instructions and data. A portion of the memory 930 may also include a non-volatile random access memory. For example, the memory 930 can also store information of the device type.
  • the bus 910 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus 910 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 920 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 930, and processor 920 reads the information in memory 930 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the transceiver 940 is specifically configured to: receive configuration information of the CTU that is sent by the network device by using a system information block in a broadcast manner.
  • the transceiver 940 is configured to: receive, by using a downlink control channel of the second subband, by the network device, on a second subband that is downlink corresponding to the first subband. Configuration information of the CTU sent.
  • the transceiver 940 is configured to: receive, by using a downlink control channel of the second subband, by the network device, on a second subband that is downlink corresponding to the first subband. Configuration information of CTUs in respective frames of the first subband transmitted in a frame period.
  • the transceiver 940 is specifically configured to: receive, by using the second subband, the network device in a downlink second subband corresponding to the first subband The configuration information of the CTU in the corresponding subframe of the first subband transmitted by the downlink control channel.
  • the transceiver 940 is specifically configured to: receive configuration information of the CTU that is sent by the network device by using radio resource control RRC signaling.
  • the configuration information of the CTU of the first subband includes configuration information of at least one CTU
  • the configuration information of the at least one CTU includes a time frequency resource, a transmission multiplexing mode, and a code division multiplexing. Mode and code information.
  • the transmission multiplexing mode is a frequency division multiplexing mode, a time division multiplexing mode, or a space division multiplexing mode.
  • the code division multiplexing mode is code division multiple access CDMA, low density signature LDS, or sparse code multiple access SCMA, and the code information corresponds to a code division multiplexing mode. It is a CDMA code, an LDS sequence or an SCMA codebook.
  • the first subband is a subband in an uplink frequency band in a frequency division multiplexing FDD system; or the first subband is an uplink time period in a time division multiplexing TDD system. Subbands in the band.
  • the terminal device 900 may correspond to the main body of the method in the embodiment of the present invention, and may also correspond to the terminal device 700 according to the embodiment of the present invention, and the foregoing modules of the terminal device 900 And other operations and/or functions are for implementing the corresponding processes of the methods of FIG. 4 to FIG. 11 , and are not described herein for brevity.
  • the terminal device in a system including a plurality of sub-bands having respective specific configurations, the terminal device receives the configuration information of the CTU of the uplink sub-band to which the terminal device belongs, which is sent by the network device, so that the terminal device can quickly Effectively determine the CTU for unlicensed transmission, which in turn can improve the efficiency of the system to transmit data.
  • the terminal device is a user equipment
  • the network device is a base station
  • the sending module or the sender in the above embodiment may refer to transmitting on the air interface, may not be sent on the air interface, but may be sent to other devices to facilitate other devices to send on the air interface.
  • the receiving module or the receiver in the above embodiment may refer to receiving on the air interface, and may not receive on the air interface, but receive from other devices received on the air interface.
  • the terminal device is a user equipment
  • the network device is a base station
  • the sending module or the sender in the above embodiment may refer to transmitting on the air interface, may not be sent on the air interface, but may be sent to other devices to facilitate other devices to send on the air interface.
  • the receiving module or the receiver in the above embodiment may refer to receiving on the air interface, and may not receive on the air interface, but receive from other devices received on the air interface.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, and a read only memory (ROM, Read-Only Memory), random access memory (RAM), disk or optical disk, and other media that can store program code.

Abstract

本发明公开了一种用于上行数据传输的方法、终端设备和网络设备,该方法包括:网络设备生成上行的第一子带的竞争传输单元CTU的配置信息,其中,该第一子带为上行的多个子带中的一个子带,该上行的多个子带具有各自特定的配置,该CTU为该第一子带上用于进行免授权传输的资源单元;网络设备发送该CTU的配置信息。本发明实施例提供的用于上行数据传输的方法、终端设备和网络设备,使得终端设备可以快速有效地获取CTU的信息,进而进行免授权传输,从而能够提高系统传输数据的效率。

Description

用于上行数据传输的方法、网络设备和终端设备 技术领域
本发明涉及通信领域,尤其涉及通信领域中的用于上行数据传输的方法、网络设备和终端设备。
背景技术
随着无线蜂窝网络的持续演进,下一代移动通信系统将不仅支持传统的通信,还将支持机器到机器(Machine to Machine,简称为“M2M”)通信,或者叫做机器类通信(Machine Type Communication,简称为“MTC”)通信。根据预测,到2020年,连接在网络上的MTC设备将会达到500到1000亿,这将远超现在的连接数。对M2M类业务,由于其业务种类千差万别,对网络需求存在很大差异。大致来说,会存在如下几种需求:(I)可靠传输,但对时延不敏感;(II)低延迟,高可靠传输。
为了解决未来网络大量的MTC类业务,以及满足低时延、高可靠的业务传输,提出了上行的免授权(Grant Free)传输的一种方案。Grant Free传输可以理解为一种基于竞争的上行业务数据传输,与无线局域网络(Wireless Local Area Network,WLAN)的数据传输、以及长期演进LTE(Long Term Evolution,)系统中现有的随机接入过程有本质的区别。上行的免授权传输可以应用于现有的各种通信系统中,在各通信系统中,尤其是在采用频分复用技术或改进的频分复用技术的通信系统中,还没有一种使得终端设备可以快速有效地获得并使用Grant Free传输资源的机制。
发明内容
本发明实施例提供一种用于上行数据传输的方法、网络设备和终端设备,可以使得终端设备快速有效地获取的免授权传输资源的信息,从而能够提高系统传输数据的效率。
第一方面,提供了一种用于上行数据传输的方法,包括:
网络设备生成上行的第一子带的竞争传输单元CTU的配置信息,其中,所述第一子带为上行的多个子带中的一个子带,所述上行的多个子带具有各自特定的配置,所述CTU为所述第一子带上用于进行免授权传输的资源单 元;
所述网络设备发送所述CTU的配置信息。
结合第一方面,在第一方面的第一种可能的实现方式中,所述网络设备发送所述CTU的配置信息,包括:
所述网络设备通过系统信息块以广播的形式发送所述CTU的配置信息。
结合第一方面,在第一方面的第二种可能的实现方式中,所述网络设备发送所述CTU的配置信息,包括:
所述网络设备通过与所述第一子带对应的下行的第二子带的下行控制信道,向终端设备发送所述CTU的配置信息。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述网络设备通过与所述第一子带对应的下行的第二子带的下行控制信道,向终端设备发送所述CTU的配置信息,包括:
所述网络设备通过与所述第一子带对应的下行的第二子带的下行控制信道,以帧为周期,向所述终端设备发送所述第一子带的相应帧中的CTU的配置信息。
结合第一方面的第二种可能的实现方式,在第一方面的第四种可能的实现方式中,所述网络设备通过与所述第一子带对应的下行的第二子带的下行控制信道,向终端设备发送所述CTU的配置信息,包括:
所述网络设备通过与所述第一子带对应的下行的第二子带的子帧中的下行控制信道,向所述终端设备发送所述第一子带的相应子帧中的CTU的配置信息。
结合第一方面,在第一方面的第五种可能的实现方式中,所述网络设备发送所述CTU的配置信息,包括:
所述网络设备通过无线资源控制RRC信令,向终端设备发送所述CTU的配置信息。
结合第一方面和第一方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,所述第一子带的CTU的配置信息包括至少一个CTU的配置信息,所述至少一个CTU的配置信息包括时频资源、传输复用模式和码分复用模式及码信息。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,所述传输复用模式为频分复用模式、时分复用模式或空分复用模 式。
结合第一方面的第六种或第七种可能的实现方式,在第一方面的第八种可能的实现方式中,所述码分复用模式为码分多址CDMA、低密度签名LDS或稀疏码多址接入SCMA,所述码信息与码分复用模式相对应,为CDMA码、LDS序列或SCMA码本。
结合第一方面和第一方面的第一种至第八种可能的实现方式中的任一种可能的实现方式,在第一方面的第九种可能的实现方式中,所述第一子带为频分复用FDD系统中的上行频带中的子带;或者
所述第一子带为时分复用TDD系统中的上行时段对应的频带中的子带。
第二方面,提供了一种用于上行数据传输的方法,包括:
终端设备接收网络设备发送的第一子带的竞争传输单元CTU的配置信息,其中,所述第一子带为上行的多个子带中的一个子带,所述上行的多个子带具有各自特定的配置,所述CTU为所述第一子带上用于进行免授权传输的资源单元;
所述终端设备根据所述CTU的配置信息,确定在所述第一子带上用于进行免授权传输的CTU。
结合第二方面,在第二方面的第一种可能的实现方式中,所述终端设备接收网络设备发送的第一子带的竞争传输单元CTU的配置信息,包括:
所述终端设备接收所述网络设备通过系统信息块以广播的形式发送的所述CTU的配置信息。
结合第二方面,在第二方面的第二种可能的实现方式中,所述终端设备接收网络设备发送的第一子带的竞争传输单元CTU的配置信息,包括:
所述终端设备在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的下行控制信道向所述终端设备发送的所述CTU的配置信息。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述终端设备在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的下行控制信道向所述终端设备发送的所述CTU的配置信息,包括:
所述终端设备在与所述第一子带对应的下行的第二子带上,接收所述网 络设备通过所述第二子带的下行控制信道以帧为周期向所述终端设备发送的所述第一子带的相应帧中的CTU的配置信息。
结合第二方面的第二种可能的实现方式,在第二方面的第四种可能的实现方式中,所述终端设备在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的下行控制信道向所述终端设备发送的所述CTU的配置信息,包括:
所述终端设备在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的子帧中的下行控制信道向所述终端设备发送的所述第一子带的相应子帧中的CTU的配置信息。
结合第二方面,在第二方面的第五种可能的实现方式中,所述终端设备接收网络设备发送的第一子带的竞争传输单元CTU的配置信息,包括:
所述终端设备接收所述网络设备通过无线资源控制RRC信令,向所述终端设备发送的所述CTU的配置信息。
结合第二方面和第二方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第二方面的第六种可能的实现方式中,所述第一子带的CTU的配置信息包括至少一个CTU的配置信息,所述至少一个CTU的配置信息包括时频资源、传输复用模式和码分复用模式及码信息。
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中,所述传输复用模式为频分复用模式、时分复用模式或空分复用模式。
结合第二方面的第六种或第七种可能的实现方式,在第二方面的第八种可能的实现方式中,所述码分复用模式为码分多址CDMA、低密度签名LDS或稀疏码多址接入SCMA,所述码信息与码分复用模式相对应,为CDMA码、LDS序列或SCMA码本。
结合第二方面和第二方面的第一种至第八种可能的实现方式中的任一种可能的实现方式,在第二方面的第九种可能的实现方式中,所述第一子带为频分复用FDD系统中的上行频带中的子带;或者
所述第一子带为时分复用TDD系统中的上行时段对应的频带中的子带。
第三方面,提供了一种网络设备,包括:
生成模块,用于生成上行的第一子带的竞争传输单元CTU的配置信息, 其中,所述第一子带为上行的多个子带中的一个子带,所述上行的多个子带具有各自特定的配置,所述CTU为所述第一子带上用于进行免授权传输的资源单元;
发送模块,用于发送所述生成模块生成的所述CTU的配置信息。
结合第三方面,在第三方面的第一种可能的实现方式中,所述发送模块具体用于:
通过系统信息块以广播的形式发送所述CTU的配置信息。
结合第三方面,在第三方面的第二种可能的实现方式中,所述发送模块具体用于:
通过与所述第一子带对应的下行的第二子带的下行控制信道,向终端设备发送所述CTU的配置信息。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述发送模块具体用于:
通过与所述第一子带对应的下行的第二子带的下行控制信道,以帧为周期,向所述终端设备发送所述第一子带的相应帧中的CTU的配置信息。
结合第三方面的第二种可能的实现方式,在第三方面的第四种可能的实现方式中,所述发送模块具体用于:
通过与所述第一子带对应的下行的第二子带的子帧中的下行控制信道,向所述终端设备发送所述第一子带的相应子帧中的CTU的配置信息。
结合第三方面,在第三方面的第五种可能的实现方式中,所述发送模块具体用于:
通过无线资源控制RRC信令,向终端设备发送所述CTU的配置信息。
结合第三方面和第三方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第三方面的第六种可能的实现方式中,所述第一子带的CTU的配置信息包括至少一个CTU的配置信息,所述至少一个CTU的配置信息包括时频资源、传输复用模式和码分复用模式及码信息。
结合第三方面的第六种可能的实现方式,在第三方面的第七种可能的实现方式中,所述传输复用模式为频分复用模式、时分复用模式或空分复用模式。
结合第三方面的第六种或第七种可能的实现方式,在第三方面的第八种可能的实现方式中,所述码分复用模式为码分多址CDMA、低密度签名LDS 或稀疏码多址接入SCMA,所述码信息与码分复用模式相对应,为CDMA码、LDS序列或SCMA码本。
结合第三方面和第三方面的第一种至第八种可能的实现方式中的任一种可能的实现方式,在第三方面的第九种可能的实现方式中,所述第一子带为频分复用FDD系统中的上行频带中的子带;或者
所述第一子带为时分复用TDD系统中的上行时段对应的频带中的子带。
第四方面,提供了一种终端设备,包括:
接收模块,用于接收网络设备发送的第一子带的竞争传输单元CTU的配置信息,其中,所述第一子带为上行的多个子带中的一个子带,所述上行的多个子带具有各自特定的配置,所述CTU为所述第一子带上用于进行免授权传输的资源单元;
确定模块,用于根据所述接收模块接收的所述CTU的配置信息,确定在所述第一子带上用于进行免授权传输的CTU。
结合第四方面,在第四方面的第一种可能的实现方式中,所述接收模块具体用于:
接收所述网络设备通过系统信息块以广播的形式发送的所述CTU的配置信息。
结合第四方面,在第四方面的第二种可能的实现方式中,所述接收模块具体用于:
在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的下行控制信道发送的所述CTU的配置信息。
结合第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现方式中,所述接收模块具体用于:
在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的下行控制信道以帧为周期发送的所述第一子带的相应帧中的CTU的配置信息。
结合第四方面的第二种可能的实现方式,在第四方面的第四种可能的实现方式中,所述接收模块具体用于:
在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的子帧中的下行控制信道发送的所述第一子带的相应子帧中的 CTU的配置信息。
结合第四方面,在第四方面的第五种可能的实现方式中,所述接收模块具体用于:
接收所述网络设备通过无线资源控制RRC信令发送的所述CTU的配置信息。
结合第四方面和第四方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第四方面的第六种可能的实现方式中,所述第一子带的CTU的配置信息包括至少一个CTU的配置信息,所述至少一个CTU的配置信息包括时频资源、传输复用模式和码分复用模式及码信息。
结合第四方面的第六种可能的实现方式,在第四方面的第七种可能的实现方式中,所述传输复用模式为频分复用模式、时分复用模式或空分复用模式。
结合第四方面的第六种或第七种可能的实现方式,在第四方面的第八种可能的实现方式中,所述码分复用模式为码分多址CDMA、低密度签名LDS或稀疏码多址接入SCMA,所述码信息与码分复用模式相对应,为CDMA码、LDS序列或SCMA码本。
结合第四方面和第四方面的第一种至第八种可能的实现方式中的任一种可能的实现方式,在第四方面的第九种可能的实现方式中,所述第一子带为频分复用FDD系统中的上行频带中的子带;或者
所述第一子带为时分复用TDD系统中的上行时段对应的频带中的子带。
基于上述技术方案,本发明实施例提供的用于上行数据传输的方法、网络设备和终端设备,在包括具有各自特定的配置的多个子带的系统中,网络设备通过生成并发送上行的子带的CTU的配置信息,使得终端设备可以快速有效地获取CTU的信息,进而进行免授权传输,从而能够提高系统传输数据的效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是应用本发明实施例的一种通信系统的示意性架构图。
图2是根据本发明实施例的CTU的定义的示意图。
图3是基于F-OFDM时频资源分配方式的一种新的5G技术。
图4是本发明一个实施例的用于上行数据传输的方法的示意性流程图。
图5是本发明实施例的上行传输的编码过程的示意图。
图6是本发明实施例的LDS的映射过程的示意图。
图7是本发明一个实施例的用于上行数据传输的方法的示意图。
图8是本发明一个实施例的用于上行数据传输的方法的示意性流程图。
图9是本发明另一个实施例的用于上行数据传输的方法的示意图。
图10是本发明又一个实施例的用于上行数据传输的方法的示意图。
图11是本发明又一个实施例的用于上行数据传输的方法的示意图。
图12是本发明一个实施例的网络设备的示意性框图。
图13是本发明一个实施例的终端设备的示意性框图。
图14是本发明又一个实施例的网络设备的示意性框图。
图15是本发明又一个实施例的终端设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的 信号通过本地和/或远程进程来通信。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)通用分组无线业务(General Packet Radio Service,简称为“GPRS”)系统、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统,以及未来的5G通信系统等。
还应理解,本发明实施例的技术方案还可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(Sparse Code Multiple Access,简称为“SCMA”)系统,当然SCMA在通信领域也可以被称为其他名称;进一步地,本发明实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(Orthogonal Frequency Division Multiplexing,简称为“OFDM”)、滤波器组多载波(Filter Bank Multi-Carrier,简称为“FBMC”)、通用频分复用(Generalized Frequency Division Multiplexing,简称为“GFDM”)、滤波正交频分复用(Filtered-OFDM,简称为“F-OFDM”)系统等。
本发明结合终端设备描述了各个实施例。终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端设备可以指用户设备(User Equipment,简称为“UE”)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称为“SIP”)电话、无线本地环路(Wireless Local Loop,简称为“WLL”)站、个人数字处理(Personal Digital Assistant,简称为“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备等。
本发明结合网络设备描述了各个实施例。网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,简称为“BTS”),也可以是WCDMA系统中的基站(NodeB,简称为“NB”),还可以是LTE系统中的演进型基站(Evolutional Node B,简称为“eNB”或“eNodeB”),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备或未来演进的PLMN网络中的网络设备等。
此外,本发明的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
下一代移动通信系统将不仅支持传统的通信,还将支持机器到机器(Machine to Machine,简称为“M2M”)通信,或者叫做机器类通信(Machine Type Communication,简称为“MTC”)通信。根据预测,到2020年,连接在网络上的MTC设备将会达到500到1000亿,这将远超现在的连接数。对M2M类业务,由于其业务种类千差万别,对网络需求存在很大差异。大致来说,会存在如下几种需求:(I)可靠传输,但对时延不敏感;(II)低延迟,高可靠传输。
对可靠传输,而对时延不敏感业务,较容易处理。但是,对低延迟、高可靠传输类的业务,不仅要求传输时延短,而且要求可靠,比如V2V(Vehicle to Vehicle)业务。如果传输不可靠,会导致重传而造成传输时延过大,不能满足要求。
由于大量连接的存在,使得未来的无线通信系统和现有的通信系统存在很大差异。大量连接需要消耗更多的资源接入终端设备以及需要消耗更多的资源用于终端设备的数据传输相关的调度信令的传输。
图1示出了应用本发明实施例的一种通信系统的示意性架构图。如图1所示,该通信系统100可以包括网络设备102和终端设备104~114(图中简称为UE)通过无线连接或有线连接或其它方式连接。
本发明实施例中的网络可以是指公共陆地移动网络(Public Land Mobile Network,简称为“PLMN”)或者D2D网络或者M2M网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
为了解决未来网络大量的MTC类业务,以及满足低时延、高可靠的业务传输,本发明提出了上行的免授权(Grant Free)传输的一种方案。这里的免授权传输可以针对的是上行数据传输。免授权传输可以理解为如下含义的任一一种含义,或,多种含义,或者多种含义中的部分技术特征的组合或其他类似含义::
1、免授权传输可以指:网络设备预先分配并告知终端设备多个传输资源;终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据;网络设备在所述预先分配的多个传输资源中的一个或多个传输资源上检测终端设备发送的上行数据。所述检测可以是盲检测,也可能根据所述上行数据中某一个控制域进行检测,或者是其他方式进行检测。
2、免授权传输可以指:网络设备预先分配并告知终端设备多个传输资源,以使终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。
3、免授权传输可以指:获取预先分配的多个传输资源的信息,在有上行数据传输需求时,从所述多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。获取的方式可以从网络设备获取。
4、免授权传输可以指:不需要网络设备动态调度即可实现终端设备的上行数据传输的方法,所述动态调度可以是指网络设备为终端设备的每次上行数据传输通过信令来指示传输资源的一种调度方式。可选地,实现终端设备的上行数据传输可以理解为允许两个或两个以上终端设备的数据在相同的时频资源上进行上行数据传输。可选地,所述传输资源可以是UE接收所述的信令的时刻以后的一个或多个传输时间单位的传输资源。一个传输时间单位可以是指一次传输的最小时间单元,比如传输时间间隔(Transmission  Time Interval,简称为“TTI”),数值可以为1ms,或者可以是预先设定的传输时间单元。
5、免授权传输可以指:终端设备在不需要网络设备授权的情况下进行上行数据传输。所述授权可以指终端设备发送上行调度请求给网络设备,网络设备接收调度请求后,向终端设备发送上行授权,其中所述上行授权指示分配给终端设备的上行传输资源。
6、免授权传输可以指:一种竞争传输方式,具体地可以指多个终端在预先分配的相同的时频资源上同时进行上行数据传输,而无需基站进行授权。
所述的数据可以为包括业务数据或者信令数据。
所述盲检测可以理解为在不预知是否有数据到达的情况下,对可能到达的数据进行的检测。所述盲检测也可以理解为没有显式的信令指示下的检测。
所述传输资源可以包括但不限于如下资源的一种或多种的组合:时域资源,如无线帧、子帧、符号等;频域资源,如子载波、资源块等;空域资源,如发送天线、波束等;码域资源,如SCMA码本、低密度签名(Low Density Signature,简称为“LDS”)组、CDMA码组等;上行导频资源。
如上的传输资源可以根据包括但不限于如下的控制机制进行的传输:上行功率控制,如上行发送功率上限控制等;调制编码方式设置,如传输块大小、码率、调制阶数设置等;重传机制,如混合自动重传请求(Hybrid Automatic Repeat reQuest,简称为“HARQ”)机制等。
竞争传输单元(Contention Transmission Unit,简称为“CTU”)可以为免授权传输的基本传输资源。CTU可以指时间、频率、码域相结合的传输资源,或者,可以指时间、频率、导频相结合的传输,或者,可以指时间、频率、码域、导频相结合的传输资源。CTU的接入区域可以指用于免授权传输的时频区域。
专利号PCT/CN2014/073084,申请名称为“System and Method for Uplink Grant-free Transmission Scheme”的专利申请给出了一种上行免授权传输的技术方案。PCT/CN2014/073084申请介绍可以将无线资源划分为各种CTU,UE被映射到某个CTU。每个CTU可以被分配一组码,所分配的一组码可以是一组CDMA码,也可以是SCMA码本集或LDS组或签名(signature)组 等。每一个码可以对应一组导频。用户可以选择一个码以及与该码对应的导频组中的一个导频进行上行传输。PCT/CN2014/073084申请内容也可以理解为通过引用作为本发明实施例内容的一部分,不再赘述。
终端设备104-114在接入网络设备102之后,可以向网络设备102上报自身的能力信息,其中,该能力信息可以包括用于指示是否具有上行的免授权传输的能力的信息。这样,网络设备102可以根据各个终端设备上报的能力信息,采用上行的免授权传输机制或传统的请求-授权机制与终端设备进行通信。可选地,网络设备102可以通知终端设备进行上行的免授权传输的必要信息,例如该网络设备102可以指示终端设备进行上行的免授权传输,向终端设备发送搜索空间信息、CAR信息、CTU信息、调制编码方式信息,等等,其中,每个终端设备被映射到一个或多个CTU,该映射规则可以预定义或者由网络设备配置。终端设备可以选择一个码以及与该码对应的导频组中的一个导频进行上行传输,但本发明实施例对此不做限定。应理解,本发明实施例还可以应用于除图1之外的其它通信系统,本发明实施例对此不做限定。
图2示例性地示出了四个CAR 202-208,其中,系统可用带宽被分成了多个不同的时间频率区域,每个CAR占用不同的资源块,其中,可选地,每个CAR占用的资源块的数量可以预定义,例如,CAR 202占用频带的资源块(Resource Block,简称为“RB”)1-4。如图2所示,每个CAR可以进一步划分成至少一个CTU,其中,每个CTU是特定时间、频率、签名和导频的组合,图2中每个CAR对应相同的CTU映射关系,这里为了说明,从不同的角度分别示出四个CAR的映射关系,但本发明实施例不限于此。如图2所示,每个CAR支持6个签名(S1-S6),每个签名可以对应于6个导频,因此共构成36个导频(P1-P36),对应36个CTU,但本发明实施例不限于此。
应理解,图2示例性地示出了四个CAR并且每个CAR包括36个CTU,但本发明实施例还可以包括其它数量的CAR并且每个CAR可以包括其它数量的CTU,本发明实施例对此不做限定。
下面将介绍本发明实施例应用的滤波的正交频分复用(Filter Orthogonal Frequency Division Multiplex,简称为“F-OFDM”)技术。
在未来的无线通信系统中,移动宽带网络需要很宽的频谱资源以实现高 速率大容量的数据传输。5G技术中预期的频谱带宽可能会达到100MHz-400MHz,在6GHz以上的高频频带,频谱带宽最大甚至可能会达到1GHz。如此大的频谱带宽对满足高速率大容量数据传输虽然很有意义,但是并不容易应用于5G技术中的多种应用场景。
图3示出了基于F-OFDM时频资源分配方式的一种新的5G技术。F-OFDM将频谱分成多个子带,每个子带具有特定的子载波带宽,传输时间间隔(Transmission Time Interval,简称为“TTI”)长度,TTI中的符号长度或符号数,以及循环前缀(Cyclic Prefix,简称为“CP”)长度。每个子带的参数配置并不是一成不变的,而是可以根据业务负载的情况灵活的适配。每种参数配置的子带适合于一些特定的业务类型,如图3所示,传统语音/视频、物联网(Internet of Things,简称为“IOT”)、实时车联网、多媒体广播多播业务(Multimedia Broadcast Multicast Service,简称为“MBMS”)业务分别分布在特定的子带中。容易看出,IOT业务的子带配置具有狭窄的子载波带宽和较大的传输时延,这对低功耗的高密度分布的IOT设备具有重要的意义;而实时车联网业务的子带配置具有最大的子载波带宽和最小的传输时延。
在本发明实施例中所涉及的F-OFDM的技术,可以将频谱分成多个子带,一个子带有一套子带的参数(参数英文可以为numerology)。不同子带的参数(numerology)可以相同,也可以不同。子带的参数可以包括子载波间隔、传输时间间隔(Transmission Time Interval,TTI)长度、符号长度、符号数,以及循环前缀(Cyclic Prefix,CP)长度等参数中的至少一种。子带的参数可以是预先配置的,也可以根据业务负载的情况灵活的适配。不同类型的业务可以使用不同的子带。比如:传统语音/视频、物联网(Internet of Things,IOT)、实时车联网、多媒体广播多播业务(Multimedia broadcast multicast service,MBMS)分别分布在不同的子带中。
但是,图3所示的F-OFDM技术难以支持Grant Free传输。在使用F-OFDM技术的系统中,Grant Free传输的资源块CTU分布在不同的子带上,不同子带上的资源块之间在TTI长度、子载波带宽、TTI中的符号数、CP长度等参数不完全相同,随着系统负载情况的变化,系统中的子带配置情况还可能会跟着调整。上述因素的影响使得使用F-OFDM技术的系统中实现终端设备的Grant Free传输变得很困难,终端设备很难获得适合自身需求的CTU。如果网络设备只是简单地将终端设备所需要的Grant Free传输的资源 块CTU通知给终端设备,由终端设备竞争。则网络设备通知终端设备这些CTU的信息将会消耗大量的下行资源,系统传输效率低下,并且终端设备在大量的不同CTU间选择也无所适从。
因而,终端设备可以接收网络设备广播的子带配置信息。子带配置信息不仅说明当前系统的所有频带,而且说明各个频带的参数配置信息,包括子带的子载波带宽,TTI长度,TTI中的符号长度或符号数,以及CP长度等。终端设备根据子带配置信息从系统的频带中选择合适的子带,再获取该子带上CTU的配置信息,从而获取CTU,并使用获取的CTU进行Grant Free传输。
本发明实施例用于解决使用F-OFDM技术的系统中,终端设备在上行方向上采用Grant Free传输模式时,如何获取CTU,并使用获取的CTU进行Grant Free传输的问题。
图4示出了本发明实施例的用于上行数据传输的方法300。该方法300由网络设备执行,方法300包括:
S310,网络设备生成上行的第一子带的竞争传输单元CTU的配置信息,其中,该第一子带为上行的多个子带中的一个子带,该上行的多个子带具有各自特定的配置,该CTU为该第一子带上用于进行免授权传输的资源单元;
S320,该网络设备发送该CTU的配置信息。
优选地,该第一子带为该为滤波的正交频分复用F-OFDM系统中上行的多个子带中的一个子带。
因此,本发明实施例的用于上行数据传输的方法,在包括具有各自特定的配置的多个子带的系统中,网络设备通过生成并发送上行的子带的CTU的配置信息,使得终端设备可以快速有效地获取CTU的信息,进而进行免授权传输,从而能够提高系统传输数据的效率。
可选地,在本发明实施例中,该第一子带为频分复用FDD系统中的上行频带中的子带;或者
该第一子带为时分复用TDD系统中的上行时段对应的频带中的子带。
具体而言,本发明实施例涉及的F-OFDM系统,可以包括频分双工(Frequency Division Dual,简称为“FDD”)系统或时分双工(Time Division Duplex,简称为“TDD)系统。在FDD系统中,频谱资源可以由下行频带和上行频带组成;在TDD系统中,频谱资源可以由下行时段和上行时段组成。 即,本文简称的下行频带是指FDD系统中用于进行下行传输的包括时域资源和频域资源的一组传输资源;本文简称的下行时段是指TDD系统中用于进行下行传输的包括时域资源和频域资源的一组传输资源。本文简称的上行频带是指FDD系统中用于进行上行传输的包括时域资源和频域资源的一组传输资源;本文简称的上行时段是指TDD系统中用于进行上行传输的包括时域资源和频域资源的一组传输资源。
应理解,本发明实施例以F-OFDM系统为例,但不仅限于F-OFDM系统,可也以应用于其它类似的系统中,本发明实施例对此不作限定。
下行频带(或下行时段)和上行频带(或上行时段)各自具有多个子带。该多个子带具有各自特定的配置。即每个子带具有该子带特定的子载波带宽,TTI长度,TTI中的符号长度或符号数,以及CP长度。每个子带的参数配置并不是一成不变的,而是可以根据业务负载的情况灵活的适配。
本发明实施例以FDD系统为例进行说明,TDD系统的方案与之类似,其区别为将TDD系统的上行时段对应于FDD系统的上行频带,将TDD系统的下行时段对应于FDD系统的下行频带,文中对TDD系统的方案不再进行赘述。
在S310中,网络设备生成上行的第一子带的竞争传输单元CTU的配置信息。具体地,网络设备生成上行频带的子带的CTU的配置信息。CTU的表现形式可以多种多样,CTU的配置信息可以包括CTU所属的子带的信息,根据子带的信息就能够确定CTU的子载波带宽,TTI长度,TTI中的符号长度或符号数,以及CP长度等信息。CTU在子带中的时频范围,可以是一个原子的时频资源块,也可以是多个频域上的时频资源块,还可以是多个时域上的时频资源块。系统定义了多个码和导频的组合形式,每个CTU通过码分复用方式,可以同时支持多个用户传输数据。
可选地,本发明实施例中,该第一子带(即上行频带的子带)的CTU的配置信息包括至少一个CTU的配置信息,该至少一个CTU的配置信息包括时频资源、传输复用模式和码分复用模式及码信息。
具体而言,第一子带的CTU的配置信息可以包括该第一子带的标识、第一子带中CTU的个数以及第一子带中每个CTU的配置信息。其中,每个CTU的配置信息可以包括时频资源,例如开始资源块(Resource Block,简称为“RB”)和RB数目;反馈模式,例如该CTU是否支持混合自动重传请 求(Hybrid Automatic Repeat reQuest,简称为“HARQ”)反馈等;码分复用模式,例如CTU所支持的码分复用的具体方式CDMA、LDS或SCMA等;码信息,网络设备告知终端设备其可使用的码信息,例如CDMA码、LDS序列或SCMA码本等;传输复用模式,例如频分复用模式、时分复用模式或空分复用模式等等,网络设备通过传输复用模式告知终端设备该CTU是否允许采用某种复用方式。
应理解,本发明实施例中的SCMA码本包括至少两个码字,该SCMA码本用于指示至少两种数据组合与该至少两个码字的映射关系,该码字为多维复数向量,用于指示数据与多个调制符号之间的映射关系,该调制符号包括至少一个零调制符号和至少一个非零调制符号。
具体地说,稀疏码多址接入(SCMA,Sparse Code Multiple Access)是一种非正交的多址接入技术,当然本领域技术人员也可以不把这个技术称之为SCMA,也可以称为其他技术名称。该技术借助码本在相同的传输资源上传输多个不同的数据流,其中不同的数据流使用的码本不同,从而达到提升资源的利用率。数据流可以来自同一个终端设备也可以来自不同的终端设备。
SCMA采用的码本为两个或两个以上码字的集合。
其中,码字可以为多维复数域向量,其维数为两维或两维以上,用于表示数据与两个或两个以上调制符号之间的映射关系,该映射关系可以为直接映射关系,该调制符号包括至少一个零调制符号和至少一个非零调制符号,数据可以为二进制比特数据或者多元数据可选的,零调制符号和非零调制符号的关系可以为零调制符号个数不少于非零调制符号个数。
码本由两个或两个以上的码字组成。码本可以表示一定长度的数据的可能的数据组合与码本中码字的映射关系,该映射关系可以为直接映射关系,。
SCMA技术通过将数据流中的数据按照一定的映射关系直接映射为码本中的码字即多维复数向量,实现数据在多个资源单元上的扩展发送。SCMA技术中的直接映射关系可以理解为数据流中的数据不需要被映射为中间调制符号,或者有其他中间处理过程。这里的数据可以是二进制比特数据也可以是多元数据,多个资源单元可以是时域、频域、空域、时频域、时空域、时频空域的资源单元。
SCMA采用的码字可以具有一定稀疏性,比如说码字中的零元素数量可 以不少于调制符号数量,以便于接收端可以利用多用户检测技术来进行较低复杂度的译码。这里,以上列举的零元素数量与调制符号的关系仅为稀疏性一个示例性说明,本发明并不限定于此,零元素数量与非零元素数量的比例可以根据需要任意设定。
在使用SCMA的通信系统中,多个用户复用同一个时频资源块进行数据传输。每个资源块由若干资源RE组成,这里的RE可以是OFDM技术中的子载波-符号单元,也可以是其它空口技术中时域或频域的资源单元。例如,在一个包含L个终端设备的SCMA系统中,可用资源分成若干正交的时频资源块,每个资源块含有U个RE,其中,该U个RE可以是在时域上的位置相同。当终端设备#L发送数据时,首先将待发送数据分成S比特大小的数据块,通过查找码本(由网络设备确定并下发给该终端设备)将每个数据块映射成一组包括U个调制符号的调制符号序列X#L={X#L1,X#L2,…,X#LU},序列中的每个调制符号对应资源块中一个RE,然后根据调制符号生成信号波形。对于S比特大小的数据块,每个码本含有2S个不同的调制符号组,对应2S种可能的数据块。
上述码本也可以称为SCMA码本是SCMA码字集合,SCMA码字是一种信息比特到调制符号的映射关系。即,SCMA码本为上述映射关系的集合。
另外,在SCMA中,每个终端设备所对应的组调制符号X#k={X#k1,X#k2,…,X#kL}中,至少一个符号为零符号,并且,至少一个符号为非零符号。即,针对一个终端设备的数据,在L个RE中,只有部分RE(至少一个RE)承载有该终端设备的数据。
图5示出了以6个数据流复用4个资源单元作为举例的SCMA的比特映射处理(或者说,编码处理)的示意图,如图5所示,6个数据流组成一个分组,4个资源单元组成一个编码单元。一个资源单元可以为一个子载波,或者为一个RE,或者为一个天线端口。在图5中,数据流和资源单元之间有连线表示至少存在该数据流的一种数据组合经码字映射后会在该资源单元上发送非零的调制符号,而数据流和资源单元之间没有连线则表示该数据流的所有可能的数据组合经码字映射后在该资源单元上发送的调制符号都为零。数据流的数据组合可以按照如下阐述进行理解,例如,二进制比特数据流中,00、01、10、11为所有可能的两比特数据组合。为了描述方便,每个数据流的数据分别表示为s1至s6,每个资源单元发送的符号分别表示为 x1至x4,并且数据流和资源单元之间的连线表示该数据流的数据经扩展后会在该资源单元上发送调制符号,其中,该调制符号可以为零符号(与零元素相对应),也可以为非零符号(与非零元素相对应),数据流和资源单元之间没有连线则表示该数据流的数据经扩展后不会在该资源单元上发送调制符号。
从图5中可以看出,每个数据流的数据经扩展后会在多个资源单元上发送,同时,每个资源单元发送的符号是来自多个数据流的数据经扩展后的非零符号的叠加。例如数据流3的数据s3经扩展后会在资源单元1和资源单元2上发送非零符号,而资源单元3发送的数据x2是数据流2、数据流4和数据流6的数据s2、s4和s6分别经扩展后得到的非零符号的叠加。由于数据流的数量可以大于资源单元的数量,因而该SCMA系统可以有效地提升网络容量,包括系统的可接入用户数和频谱效率等。
码本中的码字通常具有如下形式:
Figure PCTCN2016098121-appb-000001
而且,相对应的码本通常具有如下形式:
Figure PCTCN2016098121-appb-000002
其中,N为大于1的正整数,可以表示为一个编码单元所包含的资源单元数量,也可以理解为码字的长度;Qm为大于1的正整数,表示码本中包含的码字数量,与调制阶数对应,例如,在采样四相相移键控(QPSK,Quadrature Phase Shift Keying)或4阶调制时Qm为4;q正整数,且1≤q≤Qm;码本和码字所包含的元素cn,q为复数,cn,q数学上可以表示为:
cn,q∈{0,α*exp(j*β)},1≤n≤N,1≤q≤Qm
α可以为任意实数,β可以为任意值,N和Qm可以为正整数。
并且,码本中的码字可以和数据形成一定映射关系,例如码本中的码字 可以与2比特数据形成一种映射关系。
例如,“00”可以对应码字1,即
Figure PCTCN2016098121-appb-000003
“01”可以对应码字2,即
Figure PCTCN2016098121-appb-000004
“10”可以对应码字3,即
Figure PCTCN2016098121-appb-000005
“11”可以对应码字4,即
Figure PCTCN2016098121-appb-000006
结合上述图5,当数据流与资源单元之间有连线时,数据流对应的码本和码本中的码字应具有如下特点:码本中至少存在一个码字在相应的资源单元上发送非零的调制符号,例如,数据流3和资源单元1之间有连线,则数据流3对应的码本至少有一个码字满足c1,q≠0,1≤q≤Qm
当数据流与资源单元之间没有连线时,数据流对应的码本和码本中的码字应具有如下特征:码本中所有码字在相应的资源单元上发送为零的调制符号,例如,数据流3和资源单元3之间没有连线,则数据流3对应的码本中的任意码字满足c3,q=0,1≤q≤Qm
综上所述,当调制阶数为QPSK时,上述图5中数据流3对应的码本可以具有如下形式和特征:
Figure PCTCN2016098121-appb-000007
其中,cn,q=α*exp(j*β),1≤n≤2,1≤q≤4,α和β可以为任意实数,对任意q,1≤q≤4,c1,q和c2,q不同时为零,且至少存在一组q1和q2,1≤q1,q2≤4,使得
Figure PCTCN2016098121-appb-000008
Figure PCTCN2016098121-appb-000009
举例地,如果数据流3的数据s3为“10”,则根据前述映射规则,该数据组合映射为码字即4维复数向量:
Figure PCTCN2016098121-appb-000010
应理解,本发明实施例中的LDS序列可以是LDS组中的至少一个签名序列。其中,LDS组包括至少两个签名序列,该LDS组用于指示至少两种数据组合与该至少两个签名序列的映射关系,该签名序列为多维复数向量,该多维向量包括至少一个零元素和至少一个非零元素,该签名序列用于对调制符号进行幅度和相位的调整,该调制符号是通过调制星座对数据进行星座映射后得到的。
具体地说,低密度签名(LDS,Low Density Signature)技术也是一种非正交多址接入和传输技术,当然该LDS技术在通信领域还可以被称为其他名称。该类技术将来自一个或多个用户的O(O为不小于1的整数)个数据流叠加到P(P为不小于1的整数)个子载波上进行发送,其中每个数据流的每个数据都通过稀疏扩频的方式扩展到P个子载波上。当O的取值大于P时,该类技术可以有效地提升网络容量,包括系统可接入用户数和频谱效率等。因此,LDS技术作为一种重要的非正交接入技术,已经引起越来越多的关注,并成为未来无线蜂窝网络演进的重要备选接入技术。
如图5所示,以6个数据流复用4个资源单元为例进行说明,即O=6,且P=4,其中,O为正整数,表示数据流的数量;P为正整数,表示资源单元的数量。一个资源单元可以为一个子载波,或者为一个资源粒子(Resource Element,简称为“RE”),或者为一个天线端口。其中,6个数据流组成一个分组,4个资源单元组成一个编码单元。
在图6所示的二分图中,数据流和资源单元之间有连线表示至少存在该数据流的一种数据组合,该数据组合经星座映射以及幅度和相位的调整后在 该资源单元上发送非零调制符号,而数据流和资源单元之间没有连线则表示该数据流的所有可能的数据组合经星座映射以及幅度和相位的调整后在该资源单元上发送的调制符号都为零调制符号。数据流的数据组合可以按照如下阐述进行理解,例如,在二进制比特数据流中,00、01、10、11为两比特数据的所有可能数据组合。为了描述方便,用s1至s6依次表示该二分图中6个数据流待发送的数据组合,用x1至x4依次表示该二分图中4个资源单元上发送的调制符号。
从该二分图中可以看出,每个数据流的数据组合经星座映射以及幅度和相位的调整后会在两个或两个以上的资源单元上发送调制符号,同时,每个资源单元发送的调制符号是来自两个或两个以上的数据流的数据组合经各自星座映射以及幅度和相位的调整后的调制符号的叠加。例如,数据流3的待发送数据组合s3经星座映射以及幅度和相位的调整后可能会在资源单元1和资源单元2上发送非零调制符号,而资源单元3发送的调制符号x3是数据流2、数据流4和数据流6的待发送数据组合s2、s4和s6分别经各自星座映射以及幅度和相位的调整后得到的非零调制符号的叠加。由于数据流的数量可以大于资源单元的数量,因而该非正交多址接入系统可以有效地提升网络容量,包括系统的可接入用户数和频谱效率等。
进一步地,如图6所示,数据流的数据(b1,b2)经星座映射后得到的调制符号为q,使用签名序列中的每一个元素,即调整因子,对调制符号q进行相位和幅度的调整,得到每个资源单元上发送的调制符号,分别为q*s1、q*s2、q*s3和q*s4。
应理解,以上列举的SCMA码本和LDS序列仅为示例性说明,本发明并未限定于此,还可以列举CDMA码等,这里,CDMA码可以是CDMA码组中的至少一个码。CDMA码的具体作用和使用方法可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
应理解,本发明实施例可以根据具体的实现情况灵活确定CTU的配置信息。例如,当网络设备与终端设备互相约定了传输复用模式(如为空分复用模式)时,CTU的配置信息中也可以不包括传输复用模式。网络设备与终端设备直接默认以空分复用模式进行传输,本发明实施例对此不作限定。
在S320中,网络设备将生成的上行频带的子带的CTU的配置信息发送给终端设备,以便于终端设备根据上行频带的子带的CTU的配置信息,选 择合适的CTU,并在选择的CTU上进行免授权传输。对于第一子带上的终端设备而言,网络设备将生成的第一子带的CTU的配置信息发送给该第一子带上的终端设备。
网络设备发送上行频带的子带的CTU的配置信息,可以通过广播或组播的方式也可以通过单播的方式,本发明实施例对此不作限定。终端设备则可以选择子带上的CTU,并确定采用的码信息、导频和调制编码模式中的至少一个参数。终端设备在选择的子带的CTU上进行免授权传输。换而言之,子带的CTU的配置信息是特定的子带的一定帧或子帧中的所有CTU,这些CTU用于终端设备进行上行的免授权传输,终端设备传输时随机或者按照一定的规则选择一个或一组CTU,并在选定的CTU中选择CTU中的码和导频资源。
可选地,作为一个实施例,S320网络设备发送该CTU的配置信息,包括:
该网络设备通过系统信息块以广播的形式发送该CTU的配置信息。
具体而言,系统信息块(System Information Block,简称为“SIB”)下行频带的公共控制子带中。在一个具体的例子中,假设下行频带分为子带一、公共控制子带和子带三,上行频带分为子带一、子带二和子带三。应理解,上述子带的数目仅为示例,在实际应用中,子带的数量、配置参数等是系统动态配置的,可以根据业务负载的情况动态调整。
在本例子中,网络设备通过下行频带的公共控制子带的SIB,向终端设备广播上行频带的子带的CTU的配置信息。子带的CTU的配置信息通过SIB在小区范围内广播发送。
由图7示出的一个具体的例子可以看出,上行频带的子带一和子带三在一个帧内的CTU的配置信息(CTU-11-5至CTU-16-5,以及CTU-31-5和CTU-32-5的配置信息)可以在下行频带的公共控制子带的同一个SIB-1-5中传输,上行频带的子带二在一个帧内的CTU的配置信息(CTU-21-5至CTU-24-5的配置信息)可以在下行频带的公共控制子带的另一单独的SIB-2-5中传输。子带的CTU的配置信息在SIB中是否组合在一起传输,可以根据SIB信息容器的大小是否能够容纳多个子带的CTU配置信息为准。
网络设备在公共控制子带(或者称为主子带)中广播时,可以一次只广播下行频带的一个子带的CTU的配置信息,或者也可以一次广播下行频带 的一组子带的CTU的配置信息,本发明实施例对此不作限定。
SIB通常以一帧或者几帧的周期进行发送,指示一帧或几帧范围内上行频带中的CTU的配置信息。一个SIB中可以包括其对应的一个或几个子带在下一个或几个上行帧时隙范围的所有CTU。具体地,网络设备通过SIB广播CTU的配置信息,SIB的组织形式SubbandCTUConfigSIB如下:
Figure PCTCN2016098121-appb-000011
其中,CTUConfigList包括指定的子带中所有的CTU,subbandID指定子带的标识。在CTUConfigList中,最多可以有maxCTU个CTUConfigInfo资源,每个CTU由startRB、sizeInRB、harqMode、codeType、codeSetIndex、multipleMode等参数确定。值得说明的是,每个CTU通过码分复用方式支持多个用户同时传输数据,可以由网络设备指定具体采用CDMA、LDS或SCMA方式。codeSetIndex指定终端设备的用户可选择的码的集合范围,集 合中具有有哪些元素可以在标准中进行定义。终端设备的用户可以选择单独的CTU进行传输,也可以一次选择一组CTU通过频分复用(FDMA)、时分复用(TDMA)或空分复用(SDMA)的方式传输,网络设备通过multipleMode告知终端设备,该CTU是否允许采用某种传输复用模式,如果不允许与其它CTU复用,则multipleMode应该设成NONE。应理解,仅有在网络设备设备允许终端设备使用传输复用模式时,multipleMode才可以设置为FDMA、TDMA或SDMA。网络设备对CTU中传输成功的用户根据harqMode确定是否反馈传输成功的消息,如果终端设备要求及时地反馈是否传输成功,应该选择支持HARQ反馈的CTU。
下面描述根据本发明实施例的一个具体的例子。图8示出了根据本发明的具体的实施例的用于上行数据传输的方法的示意性流程图。终端设备和网络设备在F-OFDM下,使用免授权传输模式进行上行传输时可以采用如下流程400:
S410,网络设备向终端设备发送包括子带的配置信息的SIB X。换而言之,网络设备在下行的公共控制子带上通过SIB,向终端设备广播上行频带的子带的配置信息。终端设备通过获取子带的配置信息,从而能够获知系统中当前的上行频带配置了哪些子带。终端设备通常根据业务类型的特点,选择一个子带传输业务数据。
S420,网络设备向终端设备发送包括子带的配置信息的SIB Y。换而言之,网络设备在下行的公共控制子带上通过SIB,向终端设备广播上行频带的子带的CTU的配置信息。
S430,终端设备根据S410中选定的子带和S420中接收的子带的配置信息,获取该子带中的CTU的配置信息,并从中选定免授权传输使用的CTU时频资源,还按照选定的CTU对应的方式,多个码中选择其中之一或多个,以对数据进行处理。如果终端设备选择多个码,可以在该CTU中进行码分复用方式传输多个数据流。如果终端设备确定使用频分复用、时分复用或空分复用的方式传输数据以增加传输的可靠性,终端设备需要选择multipleMode对应的多个CTU。
具体地,终端设备在进行上行的免授权传输之前,根据业务类型的特点选择上行传输的子带,然后获取该子带中的CTU的配置信息。终端设备根据数据包的大小以及传输质量的要求,确定在一个CTU中传输,还是在一 组CTU中进行传输。如果在一组CTU中进行传输,还要确定通过频率复用的方式还是时域复用的方式,以便确定在一个原子的时频资源块,还是多个频域上的时频资源块,还是多个时域上的时频资源块中进行传输。进一步地,终端在这些时频资源块中可以随机地选择所采用的CTU。终端设备在所选择的CTU时频资源中,还要选择确定CTU中的码和导频,一个CTU同时可以支持多个用户码分复用的方式传输,系统定义了多个码和导频的组合形式。
S440,终端设备以免授权传输方式传输上行数据。终端设备根据S430中确定的CTU及其传输模式发送数据。网络设备在子带上预定的CTU中接收免授权传输的数据。如果该CTU支持频分复用、时分复用或空分复用的传输方式,网络设备可以将多个可能的同类CTU组合起来联合译码。网络设备在进行译码时,按可能的码与导频的组合进行盲检。
可选地,作为一个实施例,S320网络设备发送该CTU的配置信息,包括:
该网络设备通过与该第一子带对应的下行的第二子带的下行控制信道,向终端设备发送该CTU的配置信息。
具体而言,在本发明实施例中,上行频带的子带的CTU配置信息可以在各个相应的下行频带的子带中进行广播发送。发送时可以使用物理下行控制信道(Physical Downlink Control Channel,简称为“PDCCH”),例如将上行频带的子带的CTU配置信息承载在下行控制信息(Downlink Control Information,简称为“DCI”)中。物理上行免授权传输信道的相关程序如下表1:
表1 PDCCH configured by CTU-RNTI
DCI format Search Space
DCI format for grant free CTU Common
免授权传输CTU的DCI格式用于上行免授权信道。通过免授权传输CTU的DCI格式的方式,发送以下信息:
Number of CTUs
For each CTU
      Resource block assignment
      Code type
      Code set index
      Multiple mode
      Modulation and coding scheme
      Hart mode
      ……
其中,Number of CTUs为CTU的个数,每个CTU的具体配置包括:Resource block assignment表示资源块的分配、Code type表示码类型、codeSetIndex表示终端设备的用户可选择的码的集合范围、Multiple mode表示传输复用模式、Modulation and coding scheme表示调制编码方案和Hart mode表示是否反馈传输成功的消息。
在上行频带的子带中发送上行频带的子带的CTU配置信息有两中方法,一种方法是,网络设备通过与该第一子带对应的下行的第二子带的下行控制信道,向终端设备发送该CTU的配置信息,包括:
该网络设备通过与该第一子带对应的下行的第二子带的下行控制信道,以帧为周期,向该终端设备发送该第一子带的相应帧中的CTU的配置信息。
一般而言,本发明实施例的F-OFDM系统的下行频带的子带与该上行频带的子带是一一对应的。每个下行频带的子带以一帧或几帧为周期发送相对应的上行频带的子带的CTU的配置信息。上行频带的子带的CTU的配置信息中可以包括相对应的上行频带的子带的一帧或几帧中的所有CTU的配置信息。在当前子带中的终端设备通过免授权传输方式发送上行数据时,在子带的CTU的配置信息中选择合适的一个或多个CTU进行传输,多个CTU可以以频分复用、时分复用或空分复用的方式进行组合,在选定的CTU上进行免授权传输。
如图9所示,下行频带的子带一、公共控制子带和子带三分别与上行频带的子带一、子带二和子带三对应。每个下行频带的子带以一帧为周期发送相对应的上行频带的子带的CTU的配置信息。上行频带的子带一在一个帧内的CTU的配置信息(CTU-11-7至CTU-16-7的配置信息)可以在下行频带的子带一中的资源块-1-7中发送;上行频带的子带二在一个帧内的CTU的配置信息(CTU-21-7至CTU-24-7的配置信息)可以在下行频带的公共控制子带中的资源块-2-7中发送;同理,上行频带的子带三在一个帧内的CTU的配置信息(CTU-31-7和CTU-32-7的配置信息)可以在下行频带的公共控 制子带中的资源块-3-7中发送。
另一种方法是,网络设备通过与该第一子带对应的下行的第二子带的下行控制信道,向终端设备发送该CTU的配置信息,包括:
该网络设备通过与该第一子带对应的下行的第二子带的子帧中的下行控制信道,向该终端设备发送该第一子带的相应子帧中的CTU的配置信息。
具体而言,下行频带的子带与上行频带的子带可以是一一对应的。下行频带的子带在一个或几个子帧的下行控制信道发送上行频带的子带的子帧的CTU的配置信息。上行频带的子带的子帧的CTU的配置信息中包括一个或几个子帧的CTU的配置信息。当前上行频带的子带中的终端设备在上行子帧通过免授权传输方式发送上行数据时,在对应的下行的子帧的CTU中选择合适的一个或多个CTU进行传输。多个CTU可以以频分复用、时分复用或空分复用的方式进行组合,在选定的CTU上进行免授权传输。
应理解,本发明实施例并不要求下行的子带的帧或子帧中均有CTU的配置信息发送。特别地,在TDD系统中,上下行的子帧的比例可能不相同。当下行的子帧多于上行的子帧时,部分多余的下行的子帧无对应的上行的子帧,这些下行的子帧可以不传输CTU的配置信息。当下行的子帧少于上行的子帧时,一个下行的子帧可以绑定多个连续的上行的子帧,下行的子帧中可以发送对应的多个上行的子帧的CTU的配置信息。
举例而言,在TDD系统中下行的子带的子帧与上行的子带的子帧可能不是一一对应的。上下行的子帧的数量比可能是5:5、8:2、2:8等多种情况。如果上下行的子帧的数量比是5:5,则可以在下行的子带的子帧发送与之相对应的上行的子带的子帧的CTU的配置信息。如果上下行的子帧的数量比是8:2,那么可以在2个下行的子帧中发送8个上行的子帧的CTU的配置信息。如果上下行的子帧的数量比是2:8,也只在与上行的子帧对应的2个下行的子帧中发送CTU的配置信息。此外,如果一个CTU占用多个子帧,则该CTU的配置信息可以只在相应的一个子帧中发送,例如,只在CTU对应的第一个上行的子帧相应的下行的子帧上发送,本发明实施例对此不作限定。
如图10所示,下行频带的子带一、公共控制子带和子带三分别与上行频带的子带一、子带二和子带三对应。每个下行频带的子带在子帧上发送相对应的上行频带的子带的子帧的CTU的配置信息。上行频带的子带一在一 个帧内各子帧的CTU的配置信息可以在下行频带的子带一中的相应的子帧中发送,例如,CTU-11-8的配置信息在帧的第一个子帧的资源块-1-8上发送,CTU-12-8的配置信息在帧的第三个子帧的资源块上发送,CTU-13-8的配置信息在帧的第二个子帧的资源块上发送,等等。其它子带的子帧的CTU的配置信息的发送类似,此处不再赘述。
可选地,作为一个实施例,S320网络设备发送该CTU的配置信息,包括:
该网络设备通过无线资源控制RRC信令,向终端设备发送该CTU的配置信息。
具体而言,上行频带的子带的CTU的配置信息由网络设备通过与终端设备的无线资源控制(Radio Resource Control,简称为“RRC”)连接,单独发送给终端设备。在一个例子中,子带的CTU的配置信息可以包括终端设备进行免授权传输可选择的CTU资源,还可以指定终端设备通信时的子带的标识。
子带的CTU的配置信息可以在RRC连接配置(RRCConnectionSetup)或RRC连接重配置(RRCConnectionReconfiguration)时通过网络设备发送给终端设备,也可以通过专门的消息进行发送。终端设备接收子带的CTU的配置信息后,可以在子带的CTU的配置信息允许的时间周期中进行上行的免授权传输。RRC信令中的子带的CTU的配置信息可以为SubbandCTUConfig,具体如下:
Figure PCTCN2016098121-appb-000012
Figure PCTCN2016098121-appb-000013
因此,本发明实施例的用于上行数据传输的方法,在包括具有各自特定的配置的多个子带的F-OFDM系统中,网络设备通过生成并发送上行的子带的CTU的配置信息,使得终端设备可以快速有效地获取CTU的信息,进而进行免授权传输,从而能够提高系统传输数据的效率。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文中结合图4至图10,从网络设备的角度详细描述了根据本发明实施例的用于上行数据传输的方法,下面将结合图11,从终端设备的角度描述根据本发明实施例的用于上行数据传输的方法。
图11示出了本发明实施例的用于上行数据传输的方法500。该方法500由终端设备执行,方法500包括:
S510,终端设备接收网络设备发送的第一子带的竞争传输单元CTU的配置信息,其中,该第一子带为上行的多个子带中的一个子带,该上行的多个子带具有各自特定的配置,该CTU为该第一子带上用于进行免授权传输的资源单元;
S520,该终端设备根据该CTU的配置信息,确定在该第一子带上用于进行免授权传输的CTU。
因此,本发明实施例的用于上行数据传输的方法,在包括具有各自特定的配置的多个子带的系统中,终端设备接收网络设备发送的该终端设备所属的上行的子带的CTU的配置信息,从而可以快速有效地确定进行免授权传输的CTU,进而能够提高系统传输数据的效率。
可选地,作为一个实施例,S510终端设备接收网络设备发送的第一子带的竞争传输单元CTU的配置信息,包括:
该终端设备接收该网络设备通过系统信息块以广播的形式发送的该CTU的配置信息。
可选地,作为一个实施例,S510终端设备接收网络设备发送的第一子带的竞争传输单元CTU的配置信息,包括:
该终端设备在与该第一子带对应的下行的第二子带上,接收该网络设备通过该第二子带的下行控制信道向该终端设备发送的该CTU的配置信息。
可选地,作为一个实施例,终端设备在与该第一子带对应的下行的第二子带上,接收该网络设备通过该第二子带的下行控制信道向该终端设备发送的该CTU的配置信息,包括:
该终端设备在与该第一子带对应的下行的第二子带上,接收该网络设备通过该第二子带的下行控制信道以帧为周期向该终端设备发送的该第一子带的相应帧中的CTU的配置信息。
可选地,作为一个实施例,终端设备在与该第一子带对应的下行的第二子带上,接收该网络设备通过该第二子带的下行控制信道向该终端设备发送的该CTU的配置信息,包括:
该终端设备在与该第一子带对应的下行的第二子带上,接收该网络设备通过该第二子带的子帧中的下行控制信道向该终端设备发送的该第一子带的相应子帧中的CTU的配置信息。
可选地,作为一个实施例,S510终端设备接收网络设备发送的第一子带的竞争传输单元CTU的配置信息,包括:
该终端设备接收该网络设备通过无线资源控制RRC信令,向该终端设备发送的该CTU的配置信息。
可选地,在本发明实施例中,该第一子带的CTU的配置信息包括至少一个CTU的配置信息,该至少一个CTU的配置信息包括时频资源、传输复用模式和码分复用模式及码信息。
可选地,在本发明实施例中,该传输复用模式为频分复用模式、时分复用模式或空分复用模式。
可选地,在本发明实施例中,该码分复用模式为码分多址CDMA、低密度签名LDS或稀疏码多址接入SCMA,码信息与码分复用模式相对应,为 CDMA码、LDS序列或SCMA码本。
可选地,在本发明实施例中,该第一子带为频分复用FDD系统中的上行频带中的子带;或者
该第一子带为时分复用TDD系统中的上行时段对应的频带中的子带。
因此,本发明实施例的用于上行数据传输的方法,在包括具有各自特定的配置的多个子带的F-OFDM系统中,终端设备接收网络设备发送的该终端设备所属的上行的子带的CTU的配置信息,从而可以快速有效地确定进行免授权传输的CTU,进而能够提高系统传输数据的效率。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文中结合图4至图11,详细描述了根据本发明实施例的用于上行数据传输的方法,下面将结合图12至图15,描述根据本发明实施例的网络设备和终端设备。
图12示出了根据本发明实施例的网络设备600。如图12所示,该网络设备600包括:
生成模块610,用于生成上行的第一子带的竞争传输单元CTU的配置信息,其中,所述第一子带为上行的多个子带中的一个子带,所述上行的多个子带具有各自特定的配置,所述CTU为所述第一子带上用于进行免授权传输的资源单元;
发送模块620,用于发送所述生成模块610生成的所述CTU的配置信息。
因此,本发明实施例的网络设备,在包括具有各自特定的配置的多个子带的系统中,网络设备通过生成并发送上行的子带的CTU的配置信息,使得终端设备可以快速有效地获取CTU的信息,进而进行免授权传输,从而能够提高系统传输数据的效率。
可选地,作为一个实施例,发送模块620具体用于:通过系统信息块以广播的形式发送所述CTU的配置信息。
可选地,作为一个实施例,发送模块620具体用于:通过与所述第一子带对应的下行的第二子带的下行控制信道,向终端设备发送所述CTU的配置信息。
可选地,作为一个实施例,发送模块620具体用于:通过与所述第一子 带对应的下行的第二子带的下行控制信道,以帧为周期,向所述终端设备发送所述第一子带的相应帧中的CTU的配置信息。
可选地,作为一个实施例,发送模块620具体用于:通过与所述第一子带对应的下行的第二子带的子帧中的下行控制信道,向所述终端设备发送所述第一子带的相应子帧中的CTU的配置信息。
可选地,作为一个实施例,发送模块620具体用于:通过无线资源控制RRC信令,向终端设备发送所述CTU的配置信息。
可选地,作为一个实施例,所述第一子带的CTU的配置信息包括至少一个CTU的配置信息,所述至少一个CTU的配置信息包括时频资源、传输复用模式和码分复用模式及码信息。
可选地,作为一个实施例,所述传输复用模式为频分复用模式、时分复用模式或空分复用模式。
可选地,作为一个实施例,所述码分复用模式为码分多址CDMA、低密度签名LDS或稀疏码多址接入SCMA,所述码信息与码分复用模式相对应,为CDMA码、LDS序列或SCMA码本。
可选地,作为一个实施例,所述第一子带为频分复用FDD系统中的上行频带中的子带;或者所述第一子带为时分复用TDD系统中的上行时段对应的频带中的子带。
应理解,根据本发明实施例的网络设备600可对应于本发明方法实施例中的执行主体,并且网络设备600中的各个模块的上述和其它操作和/或功能分别为了实现图4至图11中的各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的网络设备,在包括具有各自特定的配置的多个子带的系统中,网络设备通过生成并发送上行的子带的CTU的配置信息,使得终端设备可以快速有效地获取CTU的信息,进而进行免授权传输,从而能够提高系统传输数据的效率。
图13示出了根据本发明实施例的终端设备700。如图13所示,该终端设备700包括:
接收模块710,用于接收网络设备发送的第一子带的竞争传输单元CTU的配置信息,其中,所述第一子带为上行的多个子带中的一个子带,所述上行的多个子带具有各自特定的配置,所述CTU为所述第一子带上用于进行 免授权传输的资源单元;
确定模块720,用于根据所述接收模块710接收的所述CTU的配置信息,确定在所述第一子带上用于进行免授权传输的CTU。
因此,本发明实施例的终端设备,在包括具有各自特定的配置的多个子带的系统中,终端设备接收网络设备发送的该终端设备所属的上行的子带的CTU的配置信息,从而可以快速有效地确定进行免授权传输的CTU,进而能够提高系统传输数据的效率。
可选地,作为一个实施例,接收模块710具体用于:接收所述网络设备通过系统信息块以广播的形式发送的所述CTU的配置信息。
可选地,作为一个实施例,接收模块710具体用于:在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的下行控制信道发送的所述CTU的配置信息。
可选地,作为一个实施例,接收模块710具体用于:在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的下行控制信道以帧为周期发送的所述第一子带的相应帧中的CTU的配置信息。
可选地,作为一个实施例,接收模块710具体用于:在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的子帧中的下行控制信道发送的所述第一子带的相应子帧中的CTU的配置信息。
可选地,作为一个实施例,接收模块710具体用于:接收所述网络设备通过无线资源控制RRC信令发送的所述CTU的配置信息。
可选地,作为一个实施例,所述第一子带的CTU的配置信息包括至少一个CTU的配置信息,所述至少一个CTU的配置信息包括时频资源、传输复用模式和码分复用模式及码信息。
可选地,作为一个实施例,所述传输复用模式为频分复用模式、时分复用模式或空分复用模式。
可选地,作为一个实施例,所述码分复用模式为码分多址CDMA、低密度签名LDS或稀疏码多址接入SCMA,所述码信息与码分复用模式相对应,为CDMA码、LDS序列或SCMA码本。
可选地,作为一个实施例,所述第一子带为频分复用FDD系统中的上行频带中的子带;或者所述第一子带为时分复用TDD系统中的上行时段对应的频带中的子带。
应理解,根据本发明实施例的终端设备700可对应于本发明方法实施例中的执行主体,并且终端设备700中的各个模块的上述和其它操作和/或功能分别为了实现图4至图11中的各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的终端设备,在包括具有各自特定的配置的多个子带的系统中,终端设备接收网络设备发送的该终端设备所属的上行的子带的CTU的配置信息,从而可以快速有效地确定进行免授权传输的CTU,进而能够提高系统传输数据的效率。
如图14所示,本发明实施例还提供了一种网络设备800,该网络设备800包括处理器820和收发器840,可选地还可以包括总线810和存储器830,处理器820、存储器830和收发器840通过总线810相连。其中,该处理器820通过该总线810,调用该存储器830中存储的程序,以用于生成上行的第一子带的竞争传输单元CTU的配置信息,其中,所述第一子带为上行的多个子带中的一个子带,所述上行的多个子带具有各自特定的配置,所述CTU为所述第一子带上用于进行免授权传输的资源单元;该收发器840通过该总线810,调用该存储器830中存储的程序,以用于发送所述CTU的配置信息。
因此,本发明实施例的网络设备,在包括具有各自特定的配置的多个子带的系统中,网络设备通过生成并发送上行的子带的CTU的配置信息,使得终端设备可以快速有效地获取CTU的信息,进而进行免授权传输,从而能够提高系统传输数据的效率。
应理解,在本发明实施例中,该处理器820可以是中央处理单元(Central Processing Unit,CPU),该处理器820还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器830可以包括只读存储器和随机存取存储器,并向处理器820提供指令和数据。存储器830的一部分还可以包括非易失性随机存取存储器。例如,存储器830还可以存储设备类型的信息。
该总线810除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线810。
在实现过程中,上述方法的各步骤可以通过处理器820中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器830,处理器820读取存储器830中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,收发器840具体用于:通过系统信息块以广播的形式发送所述CTU的配置信息。
可选地,作为一个实施例,收发器840具体用于:通过与所述第一子带对应的下行的第二子带的下行控制信道,向终端设备发送所述CTU的配置信息。
可选地,作为一个实施例,收发器840具体用于:通过与所述第一子带对应的下行的第二子带的下行控制信道,以帧为周期,向所述终端设备发送所述第一子带的相应帧中的CTU的配置信息。
可选地,作为一个实施例,收发器840具体用于:通过与所述第一子带对应的下行的第二子带的子帧中的下行控制信道,向所述终端设备发送所述第一子带的相应子帧中的CTU的配置信息。
可选地,作为一个实施例,收发器840具体用于:通过无线资源控制RRC信令,向终端设备发送所述CTU的配置信息。
可选地,作为一个实施例,所述第一子带的CTU的配置信息包括至少一个CTU的配置信息,所述至少一个CTU的配置信息包括时频资源、传输复用模式和码分复用模式及码信息。
可选地,作为一个实施例,所述传输复用模式为频分复用模式、时分复用模式或空分复用模式。
可选地,作为一个实施例,所述码分复用模式为码分多址CDMA、低密度签名LDS或稀疏码多址接入SCMA,所述码信息与码分复用模式相对应,为CDMA码、LDS序列或SCMA码本。
可选地,作为一个实施例,所述第一子带为频分复用FDD系统中的上 行频带中的子带;或者所述第一子带为时分复用TDD系统中的上行时段对应的频带中的子带。
应理解,根据本发明实施例的网络设备800可对应于执行本发明实施例中的方法的主体,还可以对应于根据本发明实施例的网络设备600,并且网络设备800中的各个模块的上述和其它操作和/或功能是为了实现图4至图11的方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的网络设备,在包括具有各自特定的配置的多个子带的系统中,网络设备通过生成并发送上行的子带的CTU的配置信息,使得终端设备可以快速有效地获取CTU的信息,进而进行免授权传输,从而能够提高系统传输数据的效率。
如图15所示,本发明实施例还提供了一种终端设备900,该终端设备900包括处理器920和收发器940,可选地还可以包括总线910和存储器930,处理器920、存储器930和收发器940通过总线910相连。其中,该收发器940通过该总线910,调用该存储器930中存储的程序,以用于接收网络设备发送的第一子带的竞争传输单元CTU的配置信息,其中,所述第一子带为上行的多个子带中的一个子带,所述上行的多个子带具有各自特定的配置,所述CTU为所述第一子带上用于进行免授权传输的资源单元;该处理器920通过该总线910,调用该存储器930中存储的程序,以用于根据所述CTU的配置信息,确定在所述第一子带上用于进行免授权传输的CTU。
因此,本发明实施例的终端设备,在包括具有各自特定的配置的多个子带的系统中,终端设备接收网络设备发送的该终端设备所属的上行的子带的CTU的配置信息,从而可以快速有效地确定进行免授权传输的CTU,进而能够提高系统传输数据的效率。
应理解,在本发明实施例中,该处理器920可以是中央处理单元(Central Processing Unit,CPU),该处理器920还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器930可以包括只读存储器和随机存取存储器,并向处理器920 提供指令和数据。存储器930的一部分还可以包括非易失性随机存取存储器。例如,存储器930还可以存储设备类型的信息。
该总线910除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线910。
在实现过程中,上述方法的各步骤可以通过处理器920中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器930,处理器920读取存储器930中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,收发器940具体用于:接收所述网络设备通过系统信息块以广播的形式发送的所述CTU的配置信息。
可选地,作为一个实施例,收发器940具体用于:在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的下行控制信道发送的所述CTU的配置信息。
可选地,作为一个实施例,收发器940具体用于:在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的下行控制信道以帧为周期发送的所述第一子带的相应帧中的CTU的配置信息。
可选地,作为一个实施例,收发器940具体用于:在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的子帧中的下行控制信道发送的所述第一子带的相应子帧中的CTU的配置信息。
可选地,作为一个实施例,收发器940具体用于:接收所述网络设备通过无线资源控制RRC信令发送的所述CTU的配置信息。
可选地,作为一个实施例,所述第一子带的CTU的配置信息包括至少一个CTU的配置信息,所述至少一个CTU的配置信息包括时频资源、传输复用模式和码分复用模式及码信息。
可选地,作为一个实施例,所述传输复用模式为频分复用模式、时分复用模式或空分复用模式。
可选地,作为一个实施例,所述码分复用模式为码分多址CDMA、低密度签名LDS或稀疏码多址接入SCMA,所述码信息与码分复用模式相对应, 为CDMA码、LDS序列或SCMA码本。
可选地,作为一个实施例,所述第一子带为频分复用FDD系统中的上行频带中的子带;或者所述第一子带为时分复用TDD系统中的上行时段对应的频带中的子带。
应理解,根据本发明实施例的终端设备900可对应于执行本发明实施例中的方法的主体,还可以对应于根据本发明实施例的终端设备700,并且终端设备900中的各个模块的上述和其它操作和/或功能是为了实现图4至图11的方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的终端设备,在包括具有各自特定的配置的多个子带的系统中,终端设备接收网络设备发送的该终端设备所属的上行的子带的CTU的配置信息,从而可以快速有效地确定进行免授权传输的CTU,进而能够提高系统传输数据的效率。
应理解,在本发明实施例中,优选地,所述终端设备为用户设备,所述网络设备为基站。
还应理解,以上实施例中的发送模块或发送器可以指在空口上进行发送,可以不是空口上发送,而是发送给其它设备以便于其它设备在空口上发送。以上实施例中的接收模块或接收器可以指在空口上进行接收,可以不是空口上接收,而是从在空口上接收的其它设备进行接收。
应理解,在本发明实施例中,优选地,所述终端设备为用户设备,所述网络设备为基站。
还应理解,以上实施例中的发送模块或发送器可以指在空口上进行发送,可以不是空口上发送,而是发送给其它设备以便于其它设备在空口上发送。以上实施例中的接收模块或接收器可以指在空口上进行接收,可以不是空口上接收,而是从在空口上接收的其它设备进行接收。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
以上某一实施例中的技术特征和描述,为了使申请文件简洁清楚,可以理解适用于其他实施例,在其他实施例不再一一赘述。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM, Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上某一实施例中的技术特征和描述,为了使申请文件简洁清楚,可以理解适用于其他实施例,比如方法实施例的技术特征可以适用于装置实施例或其他方法实施例,在其他实施例不再一一赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (40)

  1. 一种用于上行数据传输的方法,其特征在于,包括:
    网络设备生成上行的第一子带的竞争传输单元CTU的配置信息,其中,所述第一子带为上行的多个子带中的一个子带,所述上行的多个子带具有各自特定的配置,所述CTU为所述第一子带上用于进行免授权传输的资源单元;
    所述网络设备发送所述CTU的配置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备发送所述CTU的配置信息,包括:
    所述网络设备通过系统信息块以广播的形式发送所述CTU的配置信息。
  3. 根据权利要求1所述的方法,其特征在于,所述网络设备发送所述CTU的配置信息,包括:
    所述网络设备通过与所述第一子带对应的下行的第二子带的下行控制信道,向终端设备发送所述CTU的配置信息。
  4. 根据权利要求3所述的方法,其特征在于,所述网络设备通过与所述第一子带对应的下行的第二子带的下行控制信道,向终端设备发送所述CTU的配置信息,包括:
    所述网络设备通过与所述第一子带对应的下行的第二子带的下行控制信道,以帧为周期,向所述终端设备发送所述第一子带的相应帧中的CTU的配置信息。
  5. 根据权利要求3所述的方法,其特征在于,所述网络设备通过与所述第一子带对应的下行的第二子带的下行控制信道,向终端设备发送所述CTU的配置信息,包括:
    所述网络设备通过与所述第一子带对应的下行的第二子带的子帧中的下行控制信道,向所述终端设备发送所述第一子带的相应子帧中的CTU的配置信息。
  6. 根据权利要求1所述的方法,其特征在于,所述网络设备发送所述CTU的配置信息,包括:
    所述网络设备通过无线资源控制RRC信令,向终端设备发送所述CTU的配置信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一子 带的CTU的配置信息包括至少一个CTU的配置信息,所述至少一个CTU的配置信息包括时频资源、传输复用模式和码分复用模式及码信息。
  8. 根据权利要求7所述的方法,其特征在于,所述传输复用模式为频分复用模式、时分复用模式或空分复用模式。
  9. 根据权利要求7或8所述的方法,其特征在于,所述码分复用模式为码分多址CDMA、低密度签名LDS或稀疏码多址接入SCMA,所述码信息与码分复用模式相对应,为CDMA码、LDS序列或SCMA码本。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一子带为频分复用FDD系统中的上行频带中的子带;或者
    所述第一子带为时分复用TDD系统中的上行时段对应的频带中的子带。
  11. 一种用于上行数据传输的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一子带的竞争传输单元CTU的配置信息,其中,所述第一子带为上行的多个子带中的一个子带,所述上行的多个子带具有各自特定的配置,所述CTU为所述第一子带上用于进行免授权传输的资源单元;
    所述终端设备根据所述CTU的配置信息,确定在所述第一子带上用于进行免授权传输的CTU。
  12. 根据权利要求11所述的方法,其特征在于,所述终端设备接收网络设备发送的第一子带的竞争传输单元CTU的配置信息,包括:
    所述终端设备接收所述网络设备通过系统信息块以广播的形式发送的所述CTU的配置信息。
  13. 根据权利要求11所述的方法,其特征在于,所述终端设备接收网络设备发送的第一子带的竞争传输单元CTU的配置信息,包括:
    所述终端设备在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的下行控制信道向所述终端设备发送的所述CTU的配置信息。
  14. 根据权利要求13所述的方法,其特征在于,所述终端设备在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的下行控制信道向所述终端设备发送的所述CTU的配置信息,包括:
    所述终端设备在与所述第一子带对应的下行的第二子带上,接收所述网 络设备通过所述第二子带的下行控制信道以帧为周期向所述终端设备发送的所述第一子带的相应帧中的CTU的配置信息。
  15. 根据权利要求13所述的方法,其特征在于,所述终端设备在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的下行控制信道向所述终端设备发送的所述CTU的配置信息,包括:
    所述终端设备在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的子帧中的下行控制信道向所述终端设备发送的所述第一子带的相应子帧中的CTU的配置信息。
  16. 根据权利要求11所述的方法,其特征在于,所述终端设备接收网络设备发送的第一子带的竞争传输单元CTU的配置信息,包括:
    所述终端设备接收所述网络设备通过无线资源控制RRC信令,向所述终端设备发送的所述CTU的配置信息。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,所述第一子带的CTU的配置信息包括至少一个CTU的配置信息,所述至少一个CTU的配置信息包括时频资源、传输复用模式和码分复用模式及码信息。
  18. 根据权利要求17所述的方法,其特征在于,所述传输复用模式为频分复用模式、时分复用模式或空分复用模式。
  19. 根据权利要求17或18所述的方法,其特征在于,所述码分复用模式为码分多址CDMA、低密度签名LDS或稀疏码多址接入SCMA,所述码信息与码分复用模式相对应,为CDMA码、LDS序列或SCMA码本。
  20. 根据权利要求11至19中任一项所述的方法,其特征在于,所述第一子带为频分复用FDD系统中的上行频带中的子带;或者
    所述第一子带为时分复用TDD系统中的上行时段对应的频带中的子带。
  21. 一种网络设备,其特征在于,包括:
    生成模块,用于生成上行的第一子带的竞争传输单元CTU的配置信息,其中,所述第一子带为上行的多个子带中的一个子带,所述上行的多个子带具有各自特定的配置,所述CTU为所述第一子带上用于进行免授权传输的资源单元;
    发送模块,用于发送所述生成模块生成的所述CTU的配置信息。
  22. 根据权利要求21所述的网络设备,其特征在于,所述发送模块具体 用于:
    通过系统信息块以广播的形式发送所述CTU的配置信息。
  23. 根据权利要求21所述的网络设备,其特征在于,所述发送模块具体用于:
    通过与所述第一子带对应的下行的第二子带的下行控制信道,向终端设备发送所述CTU的配置信息。
  24. 根据权利要求23所述的网络设备,其特征在于,所述发送模块具体用于:
    通过与所述第一子带对应的下行的第二子带的下行控制信道,以帧为周期,向所述终端设备发送所述第一子带的相应帧中的CTU的配置信息。
  25. 根据权利要求23所述的网络设备,其特征在于,所述发送模块具体用于:
    通过与所述第一子带对应的下行的第二子带的子帧中的下行控制信道,向所述终端设备发送所述第一子带的相应子帧中的CTU的配置信息。
  26. 根据权利要求21所述的网络设备,其特征在于,所述发送模块具体用于:
    通过无线资源控制RRC信令,向终端设备发送所述CTU的配置信息。
  27. 根据权利要求21至26中任一项所述的网络设备,其特征在于,所述第一子带的CTU的配置信息包括至少一个CTU的配置信息,所述至少一个CTU的配置信息包括时频资源、传输复用模式和码分复用模式及码信息。
  28. 根据权利要求27所述的网络设备,其特征在于,所述传输复用模式为频分复用模式、时分复用模式或空分复用模式。
  29. 根据权利要求27或28所述的网络设备,其特征在于,所述码分复用模式为码分多址CDMA、低密度签名LDS或稀疏码多址接入SCMA,所述码信息与码分复用模式相对应,为CDMA码、LDS序列或SCMA码本。
  30. 根据权利要求21至29中任一项所述的网络设备,其特征在于,所述第一子带为频分复用FDD系统中的上行频带中的子带;或者
    所述第一子带为时分复用TDD系统中的上行时段对应的频带中的子带。
  31. 一种终端设备,其特征在于,包括:
    接收模块,用于接收网络设备发送的第一子带的竞争传输单元CTU的 配置信息,其中,所述第一子带为上行的多个子带中的一个子带,所述上行的多个子带具有各自特定的配置,所述CTU为所述第一子带上用于进行免授权传输的资源单元;
    确定模块,用于根据所述接收模块接收的所述CTU的配置信息,确定在所述第一子带上用于进行免授权传输的CTU。
  32. 根据权利要求31所述的终端设备,其特征在于,所述接收模块具体用于:
    接收所述网络设备通过系统信息块以广播的形式发送的所述CTU的配置信息。
  33. 根据权利要求31所述的终端设备,其特征在于,所述接收模块具体用于:
    在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的下行控制信道发送的所述CTU的配置信息。
  34. 根据权利要求33所述的终端设备,其特征在于,所述接收模块具体用于:
    在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的下行控制信道以帧为周期发送的所述第一子带的相应帧中的CTU的配置信息。
  35. 根据权利要求33所述的终端设备,其特征在于,所述接收模块具体用于:
    在与所述第一子带对应的下行的第二子带上,接收所述网络设备通过所述第二子带的子帧中的下行控制信道发送的所述第一子带的相应子帧中的CTU的配置信息。
  36. 根据权利要求31所述的终端设备,其特征在于,所述接收模块具体用于:
    接收所述网络设备通过无线资源控制RRC信令发送的所述CTU的配置信息。
  37. 根据权利要求31至36中任一项所述的终端设备,其特征在于,所述第一子带的CTU的配置信息包括至少一个CTU的配置信息,所述至少一个CTU的配置信息包括时频资源、传输复用模式和码分复用模式及码信息。
  38. 根据权利要求37所述的终端设备,其特征在于,所述传输复用模式 为频分复用模式、时分复用模式或空分复用模式。
  39. 根据权利要求37或38所述的终端设备,其特征在于,所述码分复用模式为码分多址CDMA、低密度签名LDS或稀疏码多址接入SCMA,所述码信息与码分复用模式相对应,为CDMA码、LDS序列或SCMA码本。
  40. 根据权利要求31至39中任一项所述的终端设备,其特征在于,所述第一子带为频分复用FDD系统中的上行频带中的子带;或者
    所述第一子带为时分复用TDD系统中的上行时段对应的频带中的子带。
PCT/CN2016/098121 2015-09-08 2016-09-05 用于上行数据传输的方法、网络设备和终端设备 WO2017041683A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510568231.7A CN106507486B (zh) 2015-09-08 2015-09-08 用于上行数据传输的方法、网络设备和终端设备
CN201510568231.7 2015-09-08

Publications (1)

Publication Number Publication Date
WO2017041683A1 true WO2017041683A1 (zh) 2017-03-16

Family

ID=58240645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098121 WO2017041683A1 (zh) 2015-09-08 2016-09-05 用于上行数据传输的方法、网络设备和终端设备

Country Status (2)

Country Link
CN (2) CN106507486B (zh)
WO (1) WO2017041683A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108633005A (zh) * 2017-03-17 2018-10-09 维沃移动通信有限公司 一种资源分配方法及装置、免授权业务的处理方法及用户设备
WO2018192015A1 (zh) * 2017-04-21 2018-10-25 华为技术有限公司 时频资源传输方向的配置方法和装置
WO2019191911A1 (zh) * 2018-04-03 2019-10-10 Oppo广东移动通信有限公司 数据传输的方法和设备
CN110326344A (zh) * 2017-03-20 2019-10-11 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
EP3641447A4 (en) * 2017-06-16 2020-06-10 Vivo Mobile Communication Co., Ltd. METHOD AND DEVICE FOR CONFIGURING AN UNAUTHORIZED UPLINK TRANSMISSION
CN111542120A (zh) * 2017-09-08 2020-08-14 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端设备
RU2772884C2 (ru) * 2017-11-17 2022-05-26 Хуавэй Текнолоджиз Ко., Лтд. Способ и аппаратура для определения ресурса временной области, используемого для безгрантовой передачи
CN114867124A (zh) * 2022-04-28 2022-08-05 新华三工业互联网有限公司 一种5g空口时延抖动优化方法及装置
TWI782158B (zh) * 2017-12-20 2022-11-01 美商高通公司 管理在頻寬部分去啟動時對用於上行鏈路免准許傳輸的資源的釋放
US11515972B2 (en) 2017-11-17 2022-11-29 Huawei Technologies Co., Ltd. Method and apparatus for determining time-domain resource used for grant-free transmission
US11632760B2 (en) 2017-05-27 2023-04-18 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for resource configuration

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11546929B2 (en) 2017-01-09 2023-01-03 Huawei Technologies Co., Ltd. Systems and methods for signaling for semi-static configuration in grant-free uplink transmissions
CN108633105A (zh) 2017-03-23 2018-10-09 索尼公司 用于无线通信的电子设备和方法
CN110651441A (zh) * 2017-03-23 2020-01-03 株式会社Ntt都科摩 用户终端以及无线通信方法
CN108633091B (zh) * 2017-03-24 2021-01-29 华为技术有限公司 上行通信的方法、终端设备和网络设备
CN108631988B (zh) * 2017-03-24 2020-12-04 华为技术有限公司 用于数据传输的方法和装置
CN108632815B (zh) * 2017-03-24 2020-02-21 华为技术有限公司 通信方法与设备
CN108631932B (zh) * 2017-03-24 2020-12-15 华为技术有限公司 一种调制与编码策略mcs配置方法及设备
CN108631964B (zh) * 2017-03-24 2023-11-21 华为技术有限公司 一种数据传输方法和相关设备
CN108631953B (zh) 2017-03-24 2022-06-28 中兴通讯股份有限公司 一种数据发送、反馈方法及装置
US11483810B2 (en) * 2017-04-03 2022-10-25 Huawei Technologies Co., Ltd. Methods and systems for resource configuration of wireless communication systems
US10645730B2 (en) 2017-04-06 2020-05-05 Huawei Technologies Co., Ltd. Flexible grant-free resource configuration signaling
CN110786071B (zh) 2017-04-07 2021-08-20 华为技术有限公司 用于无线通信系统的资源配置的方法和系统
CN109565825B (zh) * 2017-04-11 2021-06-15 华为技术有限公司 非授权上行传输方法和装置
CN108809545B (zh) * 2017-05-04 2023-01-06 华为技术有限公司 传输上行控制信息的方法和装置
CN108809374B (zh) 2017-05-05 2021-08-13 华为技术有限公司 数据传输方法、终端设备和网络设备
CN108964847B (zh) * 2017-05-19 2020-06-26 中国移动通信有限公司研究院 一种跨Numerology的HARQ管理控制方法、装置和基站
EP3633912B1 (en) 2017-05-31 2023-12-27 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission method and device
CN109121166A (zh) 2017-06-22 2019-01-01 维沃移动通信有限公司 一种数据传输方法、基站和用户终端
WO2019010808A1 (zh) * 2017-07-12 2019-01-17 华为技术有限公司 传输控制方法及装置
CN110754125B (zh) * 2017-07-13 2022-04-29 华为技术有限公司 资源池配置方法和装置
WO2019014993A1 (zh) * 2017-07-17 2019-01-24 华为技术有限公司 上行传输方法、终端设备和网络设备
CN109392099B (zh) * 2017-08-03 2019-11-05 维沃移动通信有限公司 Urllc中上行免授权传输的方法、用户侧设备和网络侧设备
CN109392167B (zh) * 2017-08-04 2022-01-11 维沃移动通信有限公司 资源调度指示方法、终端及网络设备
CN109391423B (zh) * 2017-08-11 2020-11-03 华为技术有限公司 传输参数获取、数据传输方法和装置
GB2565339A (en) * 2017-08-11 2019-02-13 Tcl Communication Ltd Improvements in or relating to signalling aspects of uplink data transmissions
CN109391419B (zh) * 2017-08-11 2021-08-20 华为技术有限公司 一种无线通信方法及装置
CN109391428B (zh) * 2017-08-11 2020-08-28 维沃移动通信有限公司 一种信息传输方法、终端及基站
GB2565772B (en) * 2017-08-17 2020-02-26 Tcl Communication Ltd Improvements in or relating to UL Grant Free Transmissions - Configuration and resource bundling
WO2019037736A1 (zh) * 2017-08-24 2019-02-28 华为技术有限公司 传输方法、终端设备和网络设备
CN109429337B (zh) * 2017-08-24 2023-04-07 上海诺基亚贝尔股份有限公司 用于非授权频带通信的方法、设备及计算机可读介质
CN109429251B (zh) * 2017-08-24 2020-12-22 华为技术有限公司 传输方法、终端设备和网络设备
US10362593B2 (en) * 2017-09-01 2019-07-23 Huawei Technologies Co., Ltd. Grant-free uplink transmission in unlicensed spectrum
CN107613555B (zh) * 2017-09-04 2020-12-11 西安电子科技大学 非正交多址接入蜂窝和终端直通密集网络资源管控方法
WO2019071576A1 (zh) * 2017-10-13 2019-04-18 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
WO2019090720A1 (zh) 2017-11-10 2019-05-16 Oppo广东移动通信有限公司 传输数据的方法和设备
CN109842949A (zh) * 2017-11-27 2019-06-04 深圳市海思半导体有限公司 一种资源调度的方法、用户设备以及网络设备
CN109041231B (zh) 2018-01-12 2019-07-09 华为技术有限公司 信道状态信息上报频带的配置方法及通信装置
CN110035529B (zh) * 2018-01-12 2021-07-16 华为技术有限公司 一种资源配置的方法和通信装置
US10511411B2 (en) 2018-01-12 2019-12-17 Huawei Technologies Co., Ltd. Method for configuring channel state information reporting band and communications apparatus
EP3544351A4 (en) * 2018-01-18 2019-11-06 Guangdong OPPO Mobile Telecommunications Corp., Ltd. METHOD FOR TRANSMITTING DATA IN THE INTERNET OF VEHICLES AND DEVICES
US10904909B2 (en) 2018-01-23 2021-01-26 Huawei Technologies Co., Ltd. System and method for time domain grant-free PUSCH resource allocation
CN110113139B (zh) * 2018-02-01 2021-08-03 普天信息技术有限公司 一种下行业务信道发送方法、用户终端和基站
CN108810986B (zh) * 2018-05-18 2021-11-23 浙江工业大学 一种基于深度确定性策略梯度的非正交接入下行传输时间优化方法
WO2020014897A1 (en) * 2018-07-18 2020-01-23 Nokia Shanghai Bell Co., Ltd. Resource indication in contention based transmission
CN110739988B (zh) 2018-07-20 2021-04-27 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110752899A (zh) * 2018-07-23 2020-02-04 维沃移动通信有限公司 用于半静态授权上行传输的方法、终端设备和网络侧设备
CN110769510B (zh) 2018-07-28 2022-07-22 华为技术有限公司 一种免调度gf资源分配方法及相关设备
CN110830194B (zh) * 2018-08-08 2020-10-30 北京紫光展锐通信技术有限公司 上行信道资源的指示及确定方法、基站、终端、介质
WO2020163672A1 (en) * 2019-02-08 2020-08-13 Sony Corporation Bandwidth part flexibility for unlicensed nr access
CN111031611B (zh) * 2020-01-03 2022-03-01 浙江工业大学 一种基于非授权的导频随机接入方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996806A (zh) * 2006-01-06 2007-07-11 北京三星通信技术研究有限公司 无线通信系统中在竞争资源中传输数据的设备和方法
US7778151B2 (en) * 2006-10-03 2010-08-17 Texas Instruments Incorporated Efficient scheduling request channel for wireless networks
CN102158932A (zh) * 2010-02-12 2011-08-17 中兴通讯股份有限公司 一种基于竞争的上行发送方法和系统
US20140254544A1 (en) * 2013-03-08 2014-09-11 Futurewei Technologies, Inc. System and Method for Uplink Grant-Free Transmission Scheme
US20150016402A1 (en) * 2008-11-21 2015-01-15 Telefonaktiebolaget L M Ericsson (Publ) Transmission Method and Devices in a Communication System with Contention-Based Data Transmission

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101772170A (zh) * 2009-01-04 2010-07-07 中兴通讯股份有限公司 通信系统中的系统信息管理及传输方法
CN103518413A (zh) * 2011-05-13 2014-01-15 瑞萨移动公司 用于在允许为上行链路或下行链路传输分配灵活子帧的tdd系统中干扰降低的方法、设备和计算机程序产品
CN102957666B (zh) * 2011-08-19 2017-02-15 中兴通讯股份有限公司 一种许可控制方法及系统
CN103546195B (zh) * 2012-07-10 2017-08-04 中兴通讯股份有限公司 数据传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996806A (zh) * 2006-01-06 2007-07-11 北京三星通信技术研究有限公司 无线通信系统中在竞争资源中传输数据的设备和方法
US7778151B2 (en) * 2006-10-03 2010-08-17 Texas Instruments Incorporated Efficient scheduling request channel for wireless networks
US20150016402A1 (en) * 2008-11-21 2015-01-15 Telefonaktiebolaget L M Ericsson (Publ) Transmission Method and Devices in a Communication System with Contention-Based Data Transmission
CN102158932A (zh) * 2010-02-12 2011-08-17 中兴通讯股份有限公司 一种基于竞争的上行发送方法和系统
US20140254544A1 (en) * 2013-03-08 2014-09-11 Futurewei Technologies, Inc. System and Method for Uplink Grant-Free Transmission Scheme

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108633005B (zh) * 2017-03-17 2019-12-24 维沃移动通信有限公司 一种资源分配方法及装置、免授权业务的处理方法及用户设备
CN108633005A (zh) * 2017-03-17 2018-10-09 维沃移动通信有限公司 一种资源分配方法及装置、免授权业务的处理方法及用户设备
CN110326344B (zh) * 2017-03-20 2024-02-06 Oppo广东移动通信有限公司 传输数据的方法、终端设备、网络设备和计算机存储介质
CN110326344A (zh) * 2017-03-20 2019-10-11 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
WO2018192015A1 (zh) * 2017-04-21 2018-10-25 华为技术有限公司 时频资源传输方向的配置方法和装置
US11129155B2 (en) 2017-04-21 2021-09-21 Huawei Technologies Co., Ltd. Method for configuring transmission direction of time-frequency resource, and apparatus
US11632760B2 (en) 2017-05-27 2023-04-18 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for resource configuration
EP3641447A4 (en) * 2017-06-16 2020-06-10 Vivo Mobile Communication Co., Ltd. METHOD AND DEVICE FOR CONFIGURING AN UNAUTHORIZED UPLINK TRANSMISSION
US11350461B2 (en) 2017-06-16 2022-05-31 Vivo Mobile Communication Co., Ltd. Method of configuring uplink grant-free transmission and device thereof
CN111542120B (zh) * 2017-09-08 2022-05-31 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端设备
CN111542120A (zh) * 2017-09-08 2020-08-14 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端设备
US11357012B2 (en) 2017-09-08 2022-06-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, network device, and terminal device
RU2772884C2 (ru) * 2017-11-17 2022-05-26 Хуавэй Текнолоджиз Ко., Лтд. Способ и аппаратура для определения ресурса временной области, используемого для безгрантовой передачи
US11515972B2 (en) 2017-11-17 2022-11-29 Huawei Technologies Co., Ltd. Method and apparatus for determining time-domain resource used for grant-free transmission
TWI782158B (zh) * 2017-12-20 2022-11-01 美商高通公司 管理在頻寬部分去啟動時對用於上行鏈路免准許傳輸的資源的釋放
CN111543113B (zh) * 2018-04-03 2022-02-11 Oppo广东移动通信有限公司 数据传输的方法和设备
CN111543113A (zh) * 2018-04-03 2020-08-14 Oppo广东移动通信有限公司 数据传输的方法和设备
WO2019191911A1 (zh) * 2018-04-03 2019-10-10 Oppo广东移动通信有限公司 数据传输的方法和设备
CN114867124A (zh) * 2022-04-28 2022-08-05 新华三工业互联网有限公司 一种5g空口时延抖动优化方法及装置
CN114867124B (zh) * 2022-04-28 2023-05-26 新华三工业互联网有限公司 一种5g空口时延抖动优化方法及装置

Also Published As

Publication number Publication date
CN111654914B (zh) 2023-02-14
CN111654914A (zh) 2020-09-11
CN106507486A (zh) 2017-03-15
CN106507486B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2017041683A1 (zh) 用于上行数据传输的方法、网络设备和终端设备
US20210105757A1 (en) Method and apparatus for control channel transmission in a wireless communication system
US10979194B2 (en) Resource indication method, user equipment, and network device
EP3225060B1 (en) Methods, base station and user equipment
WO2019158005A1 (zh) 下行控制信息传输方法
CN107615845B (zh) 传输上行数据的方法、装置和计算机存储介质
US11212036B2 (en) Data communication method, device, and system
WO2017000291A1 (zh) 传输上行数据的方法和设备
CN110999245B (zh) 无线通信网络中的波形指示
CN108632011B (zh) 用于进行数据传输的方法和装置
WO2016101107A1 (zh) 传输指示信息的方法和装置
WO2020025042A1 (zh) 资源配置的方法和终端设备
WO2020025040A1 (zh) 资源配置的方法和终端设备
US8699440B2 (en) Resource allocation method for broadband wireless connection system, and apparatus for performing same
KR20200036995A (ko) Nr v2x 시스템을 위한 harq 동작을 수행하는 방법 및 장치
WO2017000900A1 (zh) 传输信息的方法和设备
CN110677872B (zh) 数据传输方法、设备和通信系统
CN116803158A (zh) 指示用于上行链路重复的资源集
US20230058037A1 (en) Method and device for transmitting and receiving control information and data in wireless communication system
WO2021000937A1 (zh) 多时间单元传输方法及相关装置
CN115004828A (zh) 通信方法和通信装置
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
WO2018171691A1 (zh) 用于进行数据传输的方法和装置
WO2022117058A1 (zh) 数据传输方法及装置
WO2022199607A1 (zh) 数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16843621

Country of ref document: EP

Kind code of ref document: A1