WO2017000291A1 - 传输上行数据的方法和设备 - Google Patents

传输上行数据的方法和设备 Download PDF

Info

Publication number
WO2017000291A1
WO2017000291A1 PCT/CN2015/083099 CN2015083099W WO2017000291A1 WO 2017000291 A1 WO2017000291 A1 WO 2017000291A1 CN 2015083099 W CN2015083099 W CN 2015083099W WO 2017000291 A1 WO2017000291 A1 WO 2017000291A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
data
terminal device
time
frequency resource
Prior art date
Application number
PCT/CN2015/083099
Other languages
English (en)
French (fr)
Inventor
罗禾佳
李榕
曾广珠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580081314.1A priority Critical patent/CN107710842B/zh
Priority to CN202010214678.5A priority patent/CN111556569A/zh
Priority to EP21172252.5A priority patent/EP3926864A1/en
Priority to EP15896822.2A priority patent/EP3324690B1/en
Priority to PCT/CN2015/083099 priority patent/WO2017000291A1/zh
Publication of WO2017000291A1 publication Critical patent/WO2017000291A1/zh
Priority to US15/860,512 priority patent/US10560926B2/en
Priority to US16/736,511 priority patent/US11082964B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the invention relates to the field of communication technology, and more particularly to a method and apparatus for data processing.
  • a scheme for transmitting uplink data is known.
  • the uplink data that the terminal device needs to send to the network device is subjected to encoding processing and modulation processing to become a modulation symbol.
  • the network device performs demodulation processing and decoding processing on the received modulation symbols to obtain uplink data.
  • the foregoing process requires the terminal device and the network device to adopt corresponding coding modes and decoding modes.
  • the existing method is: the coding mode (or the decoding mode) of the uplink transmission is determined by the network device and notified to the terminal device, that is, when the network device decides to allocate the time-frequency resource for the uplink transmission of the terminal device, according to the time-frequency resource from the terminal device.
  • the pilot signal performs quality measurement of the uplink channel, and determines a coding mode used by the terminal device to perform uplink transmission through the uplink channel according to the measurement result, and notifies the terminal device.
  • the terminal device can perform uplink transmission after obtaining the coding mode notified by the network device, which affects the flexibility of the uplink transmission.
  • the embodiments of the present invention provide a method and a device for transmitting uplink data, which can improve the flexibility of uplink transmission.
  • the first aspect provides a method for transmitting uplink data, where the method includes: a method for transmitting uplink data, where the method includes: receiving, by a network device, a control symbol sent by the terminal device by controlling a time-frequency resource, where the control symbol is The terminal device generates, according to the control coding mode and the control modulation mode used by the terminal device, the control information is encoded and modulated, and the control information is used to indicate a data coding mode used by the terminal device, where the control time-frequency resource belongs to a transmission resource for uplink transmission, where the transmission resource further includes a data time-frequency resource, the control time-frequency resource is different from the data time-frequency resource; and the control is performed according to a control coding mode and a control modulation mode used by the terminal device.
  • the symbol performs demodulation decoding processing to acquire the control information; according to the control information,
  • the terminal device performs decoding processing on the data symbols sent by the data time-frequency resource to obtain uplink data, where the data symbol is after the terminal device encodes the uplink data according to the data encoding manner used by the terminal device. Generated.
  • a second aspect provides a method for transmitting uplink data, where the method includes: the terminal device performs coding and modulation processing on the control information according to a control coding mode and a control modulation mode used by the terminal device to acquire a control symbol, and the control The information is used to indicate the data encoding mode used by the terminal device; the control symbol is sent to the network device by controlling the time-frequency resource, and the data symbol is sent to the network device by using the data time-frequency resource, wherein the control time-frequency resource and the The data time-frequency resource belongs to a transmission resource for uplink transmission, and the control time-frequency resource is different from the data time-frequency resource, and the data symbol is that the terminal device encodes the uplink data according to the data coding manner used by the terminal device. After the build.
  • a third aspect provides an apparatus for transmitting uplink data, where the apparatus includes: a receiver; and a processor, configured to be connected to the receiver, to control the receiver to receive a control symbol sent by the terminal device by controlling a time-frequency resource,
  • the control symbol is generated after the terminal device performs coding and modulation processing on the control information according to the control coding mode and the control modulation mode used by the terminal device, and the control information is used to indicate the data coding mode used by the terminal device.
  • the control time-frequency resource belongs to a transmission resource used for uplink transmission, and the transmission resource further includes a data time-frequency resource, where the control time-frequency resource is different from the data time-frequency resource; and is used according to a control coding manner used by the terminal device.
  • a fourth aspect provides a device for transmitting uplink data, where the device includes: a transmitter; and a processor, connected to the transmitter, configured to perform control information according to a control coding mode and a control modulation mode used by the device. Encoding and modulating processing to obtain a control symbol, the control information is used to indicate a data encoding mode used by the device, and is configured to control the transmitter to send the control symbol to the network device by controlling a time-frequency resource, and use the data time-frequency resource to The network device sends a data symbol, where the control time-frequency resource and the data time-frequency resource belong to a transmission resource for uplink transmission, and the control time-frequency resource is different from the data time-frequency resource, where the data symbol is based on the device
  • the data encoding method used by the device is generated after encoding the uplink data.
  • the frequency resource is divided into a control time-frequency resource and a data time-frequency resource, so that the network device or the terminal device agrees to use a control coding mode and a control modulation mode for information carried in the control time-frequency resource, and the terminal device determines the data coding for the uplink data.
  • the coding control processing and the modulation process of the data coding mode are performed to generate a control symbol, and accordingly, the network device can control the coding mode and the control modulation mode according to the foregoing convention.
  • the control symbol performs demodulation processing and decoding processing, acquires control information, and determines an encoding manner of the uplink data indicated by the control information, so that the negotiation of the encoding manner of the uplink data can be completed without the notification of the network device. Can improve the flexibility of uplink transmission.
  • FIG. 1 is a schematic diagram of a communication system to which a method of transmitting uplink data according to the present invention is applied.
  • FIG. 2 is a schematic flowchart of a method for transmitting uplink data according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of time-frequency resources used for grant-free transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing an example of controlling the distribution of time-frequency resources and data time-frequency resources.
  • FIG. 5 is a schematic diagram of an encoding process of uplink transmission according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a mapping process of an LDS according to an embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a method for transmitting uplink data according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an apparatus for transmitting uplink data according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an apparatus for transmitting uplink data according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an apparatus for transmitting uplink data according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an apparatus for transmitting uplink data according to an embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • Application and computing set running on a computing device by illustration The preparation can be a part.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers. Moreover, these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • the solution of the embodiment of the present invention can be applied to an existing cellular communication system, such as global mobile communication (English full name can be: Global System for Mobile Communication, English abbreviation can be: GSM), wideband code division multiple access (English full name can be :Wideband Code Division Multiple Access, English abbreviation can be: WCDMA), long-term evolution (English full name can be: Long Term Evolution, English abbreviation can be: LTE) and other systems, the supported communication is mainly for voice and data communication .
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE long-term evolution
  • the supported communication is mainly for voice and data communication .
  • a traditional base station supports a limited number of connections and is easy to implement.
  • the next-generation mobile communication system will not only support traditional communication, but also support M2M (Machine to Machine) communication, or MTC (Machine Type Communication). According to forecasts, by 2020, the number of MTC devices connected to the network will reach 500 to 100 billion, which will far exceed the current number of connections. For M2M services, due to the wide variety of services, there is a big difference in network requirements. In general, there are several needs:
  • a large number of connections require more resources to access the terminal device and need to consume more resources for the transmission of scheduling signaling related to the data transmission of the terminal device.
  • the solution according to the embodiment of the present invention can effectively solve the above resource consumption problem.
  • the network device is a base station, and the terminal device is a user equipment.
  • a terminal device may also be referred to as a user equipment (UE, User Equipment) user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, Mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device may be a STA (STAION) in a Wireless Local Area Networks (WLAN), and may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, or a WLL (Wireless Local Loop).
  • PDA Personal Digital Assistant
  • handheld device with wireless communication capabilities
  • computing device or other processing device connected to the wireless modem
  • in-vehicle device wearable device
  • terminal in future 5G networks A device or a terminal device in a future evolved PLMN network.
  • the present invention describes various embodiments in connection with a network device.
  • the network device may be a device for communicating with the mobile device, such as a network device, and the network device may be an AP (ACCESS POINT, Access Point) in WLAN (Wireless Local Area Networks), GSM or CDMA (Code Division Multiple Access)
  • the BTS (Base Transceiver Station) in the code division multiple access) may be an NB (NodeB, base station) in WCDMA, or an eNB or an eNodeB (Evolutional Node in LTE (Long Term Evolution)).
  • B an evolved base station), or a relay station or an access point, or an in-vehicle device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape), and an optical disk (for example, a CD (Compact Disk), a DVD (Digital Versatile Disk). Etc.), smart cards and flash memory devices (eg, EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the communication system 100 includes a network device 102 that can include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, both of which may include signaling and connection Receive multiple components (such as processors, modulators, multiplexers, demodulators, demultiplexers, or antennas, etc.).
  • Receive multiple components such as processors, modulators, multiplexers, demodulators, demultiplexers, or antennas, etc.
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits can be included in the transport block of data (or more Of the transport blocks, the transport block can be segmented to produce a plurality of code blocks.
  • the communication system 100 may be a public land mobile network (English full name may be: Public Land Mobile Network, English abbreviation may be: PLMN) network or D2D network or M2M network or other network, FIG. 1 is only a simplified schematic diagram of the network, Other network devices may also be included, which are not shown in FIG.
  • FIG. 2 is a schematic flowchart of a method 200 for transmitting uplink data according to an embodiment of the present invention, as shown in FIG. 2, the method 200 includes:
  • the network device receives, by the terminal device, a control symbol that is sent by controlling the time-frequency resource, where the control symbol is generated by the terminal device after performing coding and modulation processing on the control information according to the control coding mode and the control modulation mode used by the terminal device.
  • the control information is used to indicate a data encoding mode used by the terminal device, where the control time-frequency resource belongs to a transmission resource used for uplink transmission, and the transmission resource further includes a data time-frequency resource, and the control time-frequency resource and the data Time-frequency resources are different;
  • the data symbol is sent by the terminal device to the network device by means of an unlicensed transmission, and the unlicensed transmission pre-allocates and informs the terminal device of the plurality of transmission resources, so that the terminal device has uplink data.
  • the unlicensed transmission pre-allocates and informs the terminal device of the plurality of transmission resources, so that the terminal device has uplink data.
  • the demand is transmitted, at least one transmission resource is selected from the plurality of transmission resources, and the uplink data is sent through the selected transmission resource.
  • the so-called Grant-Free refers to a method for realizing uplink transmission of user data without dynamic scheduling of network devices in a public land mobile network (Public Land Mobile Network), specifically, a user according to different services or at a specified time-frequency resource.
  • the method for reducing data transmission and reducing transmission delay by using a code domain resource, a pilot resource, or the like for supporting data transmission (for example, transmitting pilot and data together) is supported by the time-frequency resource.
  • Unauthorized transmission of English can be expressed as Grant Free.
  • the unlicensed transmission here can be for uplink data transmission.
  • An unauthorized transfer can be understood as any one of the following meanings, or multiple meanings, or a combination of some of the various technical meanings or other similar meanings:
  • the unlicensed transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources; when the terminal device has an uplink data transmission requirement, select at least one transmission resource from the plurality of transmission resources pre-allocated by the network device, and use the selected transmission.
  • the resource sends uplink data; the network device detects uplink data sent by the terminal device on one or more of the pre-assigned multiple transmission resources.
  • the detection may be blind detection, or may be performed according to one of the control domains in the uplink data, or may be detected in other manners.
  • the unlicensed transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources, so that when the terminal device has an uplink data transmission requirement, at least one transmission resource is selected from a plurality of transmission resources pre-allocated by the network device, and the selected one is used.
  • the transmission resource sends uplink data.
  • the unlicensed transmission may be: acquiring information of a plurality of pre-assigned transmission resources, selecting at least one transmission resource from the plurality of transmission resources when there is an uplink data transmission requirement, and transmitting the uplink data by using the selected transmission resource.
  • the method of obtaining can be obtained from a network device.
  • the unlicensed transmission may be a method for realizing uplink data transmission of the terminal device without dynamic scheduling of the network device.
  • the dynamic scheduling may refer to the network device indicating the transmission resource by signaling for each uplink data transmission of the terminal device.
  • implementing uplink data transmission of the terminal device may be understood as allowing data of two or more terminal devices to perform uplink data transmission on the same time-frequency resource.
  • the transmission resource may be one or more transmission time units of transmission resources after the time when the UE receives the signaling.
  • a transmission time unit may refer to a minimum time unit for one transmission, such as a transmission time interval (English:: Transmission Time Interval, English abbreviation: TTI), the value may be 1 ms, or may be a preset transmission time unit. .
  • Unauthorized transmission can mean that the terminal device performs uplink data transmission without requiring authorization of the network device.
  • the authorization may be performed by the terminal device sending an uplink scheduling request to the network device. After receiving the scheduling request, the network device sends an uplink grant to the terminal device, where the uplink grant indicates the uplink transmission resource allocated to the terminal device.
  • the unlicensed transmission may refer to: a contention transmission mode, which may specifically mean that multiple terminals simultaneously perform uplink data transmission on the same time-frequency resources allocated in advance without the base station performing authorization.
  • the data may be included in service data or signaling data.
  • the blind detection can be understood as the detection of data that may arrive without predicting whether or not data has arrived.
  • the blind detection can also be understood as detection without explicit signaling indication.
  • the transmission resource may include, but is not limited to, a combination of one or more of the following resources:
  • --time domain resources such as radio frames, subframes, symbols, etc.
  • --frequency domain resources such as subcarriers, resource blocks, etc.
  • ⁇ -space resources such as transmit antennas, beams, etc.
  • ⁇ -code domain resources such as sparse code multiple access (English full name: Sparse Code Multiple Access, English abbreviation: SCMA) codebook, low-density signature (English full name: Low Density Signature, English abbreviation: LDS) Sequence, CDMA code, etc.;
  • the above transmission resources may be transmitted according to a control mechanism including, but not limited to, the following:
  • A-uplink power control such as uplink transmit power upper limit control, etc.
  • B-modulation coding mode setting such as transmission block size, code rate, modulation order setting, etc.
  • C-retransmission mechanism such as HARQ mechanism.
  • the contention transmission unit (English name can be: Contention Transmission Unit, English abbreviation can be: CTU) can be the basic transmission resource for unauthorized transmission.
  • a CTU may refer to a transmission resource combining time, frequency, and code domain, or may refer to a combination of time, frequency, and pilot transmission, or may refer to a transmission resource combining time, frequency, code domain, and pilot.
  • the access area to which the CTU belongs may refer to the time-frequency area corresponding to the CTU.
  • Patent No. PCT/CN2014/073084 the patent application entitled “System and Method for Uplink Grant-free Transmission Scheme", provides a technical solution for uplink grant-free transmission.
  • the PCT/CN2014/073084 application describes that radio resources can be divided into various CTUs, and the UE is mapped to a certain CTU.
  • Each CTU may be assigned a set of codes, and the assigned set of codes may be a set of CDMA codes, or may be an SCMA codebook set or an LDS sequence group or a signature group.
  • Each code can correspond to a set of pilots. The user can select a code and one of the pilot groups corresponding to the code for uplink transmission.
  • the content of the PCT/CN2014/073084 application is also to be understood as a part of the content of the embodiments of the present invention, and is not described again.
  • each terminal device may independently selects an unlicensed transmission resource to the network according to the Grant Free scheme.
  • the device sends upstream data.
  • each pilot resource and each transmission resource (or an unlicensed resource) may have a one-to-one correspondence, and the network device may learn the transmission resource selected by each terminal device according to the pilot selected by each terminal device.
  • control time-frequency resource and the data time-frequency resource used by the terminal device belong to a time-frequency resource corresponding to the contention transmission unit CTU used by the terminal device in uplink transmission.
  • the current Grant-free scheme defines a CTU as a bearer unit of information, and the user equipment maps data on the CTU according to certain criteria to complete uplink data transmission, and the base station side performs blind detection on the CTU resource to recover the bearer.
  • User data is defined as a bearer unit of information, and the user equipment maps data on the CTU according to certain criteria to complete uplink data transmission, and the base station side performs blind detection on the CTU resource to recover the bearer.
  • FIG. 3 shows a time-frequency region in which the available bandwidth is divided into four contention access regions (also referred to as CTU access regions), that is, CTU access regions 310, 320, 330, and 340, that is, .
  • Each CTU access region may occupy a predetermined number of Resource Blocks.
  • the CTU access region 310 includes four RBs: RB1, RB2, RB3, and RB4.
  • RB1, RB2, RB3, and RB4 Embodiments of the invention are not limited in this regard, for example, different contention access zones may include different numbers of RBs.
  • each CTU access region can support 36 UEs to compete for 36 CTUs defined in the CTU access region, and each CTU is a combination of time domain resources, frequency domain resources, code domain resources, and pilots.
  • Code domain resources include CDMA codes or SCMA codes or LDS sequences or other signatures.
  • Each contention access area occupies one time-frequency resource area, each time-frequency resource area supports six code domain resources (S1-S6), and each code domain resource is mapped to 6 pilots, thereby generating a total of 36 pilots. Frequency (P1-P36).
  • the network device can use a pilot or code domain resource decorrelator to detect or decode the signals transmitted by each UE on the CTU.
  • the terminal device can receive the high layer signaling sent by the network device.
  • the high layer signaling may carry a CTU access region definition, a total number of CTUs, a default mapping rule, and the like. Alternatively, the terminal device may also pre-configure default mapping rules.
  • the terminal device can determine an appropriate CTU to perform an unlicensed transmission on the CTU.
  • a conflict occurs when different terminal devices perform unlicensed transmissions on the same CTU, that is, when they compete for the same CTU.
  • the terminal device can determine whether there is a conflict according to the indication of the network device. For example, an asynchronous HARQ method can be used to solve the problem caused by the conflict.
  • the network device may be requested to remap the CTU.
  • the network device sends the remapped CTU information to the terminal device, so that the terminal device performs the unlicensed transmission on the remapped CTU.
  • FIG. 3 shows four CTU access regions, the present invention. Embodiments are not limited thereto, and more or fewer CTU access regions may be defined as needed. .
  • the manner in which a plurality of terminal devices are multiplexed in one CTU access region is merely an example.
  • the present invention is not limited thereto.
  • the CTU access region may be used as a control time-frequency resource or a data time-frequency resource.
  • the process of the method 200 will be described in detail below by taking the uplink transmission based on the CTU access region as an example.
  • a time-frequency resource ie, an example of a transmission resource used for uplink transmission (unauthorized transmission) may be divided into two parts: a data time-frequency resource and a control time-frequency resource, where:
  • a data time-frequency resource for carrying data specifically, a modulation symbol (ie, an example of a data symbol) produced by performing encoding processing and modulation processing on the data,
  • the control time-frequency resource is used to carry control information, specifically, a modulation symbol (ie, an example of a control symbol) produced by performing encoding processing and modulation processing on the control information. Subsequently, the role of the control information will be described in detail.
  • a modulation symbol ie, an example of a control symbol
  • control time-frequency resource and the data time-frequency resource are different from each other, and the position of the control time-frequency resource and the data time-frequency resource can be arbitrarily set, and the present invention is not particularly limited, as shown in FIG. 4 .
  • the control time-frequency resource may be continuously distributed in the time-frequency resource, or in the embodiment of the present invention, the control time-frequency resource may be discretely distributed in the time-frequency resource.
  • control time-frequency resource and the data time-frequency resource listed in FIG. 4 is only an exemplary description, and the present invention is not limited thereto, as long as the control time-frequency resource or data determined by the network device or the terminal device can be enabled.
  • the location of the time-frequency resources is the same.
  • the method further includes:
  • the indication information of the control time-frequency resource is sent to the terminal device, where the indication information of the control time-frequency resource is used to indicate the location of the control time-frequency resource in the plurality of time-frequency resources included in the transmission resource.
  • the network device determines, among the time-frequency resources provided by the system for uplink transmission, which are control time-frequency resources (or data time-frequency resources), and indicates the control time-frequency.
  • Information about the location of resources (or data time-frequency resources) ie, controlling time-frequency resources
  • An example of the indication information is delivered to the terminal device.
  • the time-frequency resources provided by the system for uplink transmission may be numbered, and the network device may control the number of time-frequency resources (or data time-frequency resources) (ie, control time)
  • An example of the indication information of the frequency resource is sent to the terminal device, so that the terminal device can determine that the received time-frequency resource is a control time-frequency resource (or data time-frequency resource).
  • the timing of issuing the indication information of the control time-frequency resource can be arbitrarily determined, as long as the terminal device can be obtained before the uplink transmission is performed, for example, the network device can periodically pass, for example.
  • the broadcast message is sent to the terminal device.
  • the network device can also be delivered to the terminal device by using, for example, a broadcast message when the terminal device accesses.
  • the indication information of the control time-frequency resource is specifically used to indicate that the plurality of control time-frequency resources are discretely distributed in the time-frequency resource.
  • the network device can also indicate the discrete distribution by using the indication information of the control time-frequency resource, for example, by one bit, for example, “0” ” indicates that the control time-frequency resource is discretely distributed, and the indication information of the control time-frequency resource indicates that the degree of dispersion N of the control time-frequency resource can be further indicated, so that the network device or the terminal device can determine the control time-frequency resource based on the following formula.
  • RE index (m) represents the number of the control time-frequency resource
  • M represents the total number of time-frequency resources provided by the system for uplink transmission.
  • the indication information of the multiple control time-frequency resources is specifically used to indicate that the control time-frequency resource is continuously distributed in the time-frequency resource.
  • the network device can also indicate the discrete distribution by using the indication information of the control time-frequency resource, for example, by one bit, for example, “1” "It means that the control time-frequency resources are continuously distributed.
  • the manner in which the above-mentioned network device or terminal device distinguishes the control time-frequency resource and the control time-frequency resource from the time-frequency resources of the uplink transmission provided by the system is only an example description, and the present invention is not limited thereto, for example, in the embodiment of the present invention, which of the time-frequency resources are used to control time-frequency resources and which are data time-frequency resources can be specified by the standard.
  • the network administrator or the operator may also notify the network device or the terminal device of which time-frequency resources are controlled time-frequency resources and which are data time-frequency resources.
  • control information may be used to indicate a data encoding manner, where the data encoding manner refers to an encoding manner used by the terminal device to perform encoding processing on the data symbols, so that the network device may be based on the data indicated by the control information.
  • the encoding method completes the decoding process of the data symbols.
  • the data encoding manner includes a code rate used when encoding the uplink data.
  • the encoding mode may include a code rate used in the encoding process.
  • the coding mode may further include a type of coding, for example, Turbo coding and convolutional coding. (Convolution code), Polarization (Polar) coding.
  • Turbo coding Convolution code
  • Polarization Polarization
  • the network device needs to know that the terminal device uses the modulation mode (ie, the data modulation mode) to modulate the uplink data to ensure the reliability of the uplink data transmission. That is, optionally, the method further includes:
  • the network device or the terminal device determines the data modulation mode in the following manner:
  • control information is further used to indicate the data modulation mode.
  • control information may be used to indicate a data modulation mode, where the data modulation mode refers to a modulation mode used by the terminal device to perform modulation processing on the data symbols, so that the network device may be based on the control information.
  • the indicated data modulation method performs demodulation processing on the data symbols.
  • control modulation mode is the same as the data modulation mode.
  • control modulation mode and the data modulation mode are performed, so that after the terminal device determines the control modulation mode (following the process in detail),
  • the uplink data may be demodulated in the same manner.
  • the network device determines the control modulation mode, the data symbols may be demodulated in the same manner.
  • the data modulation mode is determined according to a pilot resource used by the terminal device.
  • the data modulation mode may have a mapping relationship with the pilot resources provided by the system, so that the network device or the terminal device may determine the data modulation mode based on the pilot selected by the terminal device.
  • the method for determining the data modulation manner enumerated above is merely an exemplary description, and the present invention is not limited thereto.
  • Other solutions capable of making the data demodulation manner determined by the network device or the terminal device the same are all included in the present invention.
  • the data modulation mode may have a mapping relationship with the device identifier of the terminal device, so that the network device or the terminal device may determine the data modulation mode based on the identifier of the terminal device.
  • the data modulation mode includes at least one of a modulation order and a code domain resource used in performing modulation processing on the uplink data.
  • the modulation mode may include at least one of a modulation order and a code domain resource used in the modulation process.
  • the data modulation scheme may include only modulation orders.
  • the data modulation scheme may include only code domain resources.
  • the data modulation mode can include both modulation order and code domain resources.
  • the code domain resource comprises a sparse code division multiple access SCMA codebook, a low density signature LDS sequence or a code division multiple access CDMA code.
  • the SCMA codebook, the LDS sequence, or the CDMA code may be used as the code domain resource. It should be understood that the specific examples of the code domain resources listed above are merely exemplary descriptions, and the present invention does not. Limited to this, other codebooks that can be used for transmission fall within the protection of the present invention. Within the scope.
  • the SCMA codebook includes at least two codewords, where the SCMA codebook is used to indicate a mapping relationship between the at least two data combinations and the at least two codewords, where the codeword is a multi-dimensional complex vector, used to indicate data. And a mapping relationship between the plurality of modulation symbols, the modulation symbol including at least one zero modulation symbol and at least one non-zero modulation symbol
  • SCMA Sparse Code Multiple Access
  • SCMA is a non-orthogonal multiple access technology.
  • SCMA Sparse Code Multiple Access
  • the technology uses a codebook to transmit multiple different data streams on the same transmission resource, wherein different data streams use different codebooks, thereby improving resource utilization.
  • the data stream can come from the same terminal device or from different terminal devices.
  • the codebook used by SCMA is a collection of two or more codewords.
  • the codeword may be a multi-dimensional complex number vector, and the dimension thereof is two-dimensional or two-dimensional or more, and is used to represent a mapping relationship between data and two or more modulation symbols, and the mapping relationship may be a direct mapping relationship.
  • the modulation symbol includes at least one zero modulation symbol and at least one non-zero modulation symbol, and the data may be binary bit data or multiple data, and the relationship between the zero modulation symbol and the non-zero modulation symbol may be zero or less. The number of non-zero modulation symbols.
  • a codebook consists of two or more codewords.
  • the codebook may represent a mapping relationship between a possible data combination of a certain length of data and a codeword in a codebook, and the mapping relationship may be a direct mapping relationship.
  • the SCMA technology realizes the extended transmission of data on multiple resource units by directly mapping the data in the data stream to a code word in the codebook according to a certain mapping relationship, that is, a multi-dimensional complex vector.
  • the direct mapping relationship in SCMA technology can be understood as the data in the data stream does not need to be mapped to intermediate modulation symbols, or there are other intermediate processes.
  • the data here may be binary bit data or multi-dimensional data, and multiple resource units may be resource elements in a time domain, a frequency domain, an air domain, a time-frequency domain, a spatio-temporal domain, and a time-frequency spatial domain.
  • the codeword used by the SCMA may have a certain sparsity.
  • the number of zero elements in the codeword may be no less than the number of modulation symbols, so that the receiving end can utilize the multi-user detection technique to perform lower complexity decoding.
  • the relationship between the number of zero elements listed above and the modulation symbol is only an exemplary description of sparsity, and the present invention is not limited thereto, and the ratio of the number of zero elements to the number of non-zero elements can be arbitrarily set as needed.
  • Each resource block is composed of a number of resource REs, where the REs may be subcarrier-symbol units in OFDM technology, or may be resource units in the time domain or frequency domain of other air interface technologies.
  • the available resources are divided into orthogonal time-frequency resource blocks, each resource block containing U REs, wherein the U REs may be in the same position in the time domain.
  • the terminal device #L transmits data
  • the data to be transmitted is first divided into data blocks of S-bit size, and each data block is mapped into a group including U by searching a codebook (determined by the network device and sent to the terminal device).
  • each modulation symbol in the sequence corresponds to one RE in the resource block, and then generates a signal waveform according to the modulation symbol .
  • each codebook contains 2S different modulation symbol groups, corresponding to 2S possible data blocks.
  • the above codebook may also be referred to as an SCMA codebook which is a SCMA codeword set, and the SCMA codeword is a mapping relationship of information bits to modulation symbols. That is, the SCMA codebook is a set of the above mapping relationships.
  • FIG. 5 is a schematic diagram showing bit mapping processing (or encoding processing) of SCMA exemplified by 6 resource units multiplexed by 6 data streams.
  • 6 data streams form one packet
  • 4 Resource units form a coding unit.
  • a resource unit can be a subcarrier, either an RE or an antenna port.
  • there is a line between the data stream and the resource unit indicating that at least one data combination of the data stream is mapped by the codeword, and a non-zero modulation symbol is transmitted on the resource unit, and the data stream and the resource unit are The absence of a connection between them means that all possible data combinations of the data stream are zero coded on the resource unit after the codeword mapping.
  • the data combination of the data streams can be understood as follows, for example, in a binary bit data stream, 00, 01, 10, 11 are all possible two-bit data combinations.
  • the data of each data stream is represented as s1 to s6, respectively, and the symbols transmitted by each resource unit are represented as x1 to x4, respectively, and the connection between the data stream and the resource unit indicates that the data of the data stream is expanded.
  • the modulation symbol is then transmitted on the resource unit, wherein the modulation symbol can be a zero symbol (corresponding to a zero element) or a non-zero symbol (corresponding to a non-zero element) between the data stream and the resource unit If there is no connection, it means that the data of the data stream is expanded and the modulation symbol is not sent on the resource unit.
  • the data of each data stream is expanded and transmitted on multiple resource units, and the symbol sent by each resource unit is an extended non-zero symbol of data from multiple data streams.
  • Superposition For example, the data s3 of the data stream 3 is expanded to transmit non-zero symbols on the resource unit 1 and the resource unit 2, and the data x2 transmitted by the resource unit 3 is the data s2, s4 of the data stream 2, the data stream 4, and the data stream 6.
  • the codewords in the codebook usually have the following form:
  • the corresponding codebook usually has the following form:
  • N is a positive integer greater than 1, and can be expressed as the number of resource units included in one coding unit, and can also be understood as the length of the codeword;
  • Q m is a positive integer greater than 1, indicating the number of codewords included in the codebook.
  • QPSK Quadrature Phase Shift Keying
  • q represents the qth codeword in Q m code words, q is a positive integer, and 1 ⁇ q ⁇ Q m ;
  • the codebook and the codeword contain elements c n, q are complex numbers, and c n, q can be expressed mathematically as:
  • can be any real number, ⁇ can be any value, and N and Q m can be positive integers.
  • the codeword in the codebook can form a certain mapping relationship with the data.
  • the codeword in the codebook can form a mapping relationship with the 2-bit data.
  • the codebook corresponding to the data stream and the codeword in the codebook should have the following characteristics: at least one codeword exists in the codebook on the corresponding resource unit. Sending a non-zero modulation symbol, for example, there is a connection between the data stream 3 and the resource unit 1, and at least one codeword corresponding to the data stream 3 satisfies c 1, q ⁇ 0, 1 ⁇ q ⁇ Q m ;
  • the codebook corresponding to the data stream 3 in FIG. 3 above may have the following forms and features:
  • the data combination is mapped to a codeword, that is, a 4-dimensional complex vector according to the foregoing mapping rule:
  • the LDS sequence includes at least two signature sequences, where the LDS sequence is used to indicate a mapping relationship between the at least two data combinations and the at least two signature sequences, where the signature sequence is a multi-dimensional complex vector, and the multi-dimensional vector includes at least one A zero element and at least one non-zero element, the signature sequence is used to adjust the amplitude and phase of the modulation symbol obtained by constelling the data by constellation mapping of the modulation constellation.
  • LDS Low Density Signature
  • P is an integer not less than 1
  • P is an integer not less than 1
  • P is an integer not less than 1
  • LDS technology can effectively improve network capacity, including the number of users that can be accessed by the system and the spectrum efficiency. Therefore, as an important non-orthogonal access technology, LDS technology has attracted more and more attention and become an important alternative access technology for the evolution of wireless cellular networks in the future.
  • a resource unit can be a subcarrier, or a resource element (Resource Element, referred to as "RE"), or an antenna port.
  • RE Resource Element
  • a line between the data stream and the resource unit indicates that at least one data combination of the data stream exists, and the data combination is adjusted on the resource unit by constellation mapping and amplitude and phase adjustment. Transmitting a non-zero modulation symbol, and no connection between the data stream and the resource unit indicates that all possible data combinations of the data stream are zero-modulated and the amplitude and phase are adjusted and the modulation symbols transmitted on the resource unit are zero. Modulation symbol.
  • the data combination of the data streams can be understood as explained below, for example, in a binary bit data stream, 00, 01, 10, 11 are all possible data combinations of two-bit data.
  • the data combinations to be transmitted of the six data streams in the bipartite graph are sequentially represented by s1 to s6, and the modulation symbols transmitted on the four resource units in the bipartite graph are sequentially represented by x1 to x4.
  • the data combination of each data stream is transmitted by the constellation mapping and the amplitude and phase adjustment, and the modulation symbols are transmitted on two or more resource units, and simultaneously transmitted by each resource unit.
  • a modulation symbol is a superposition of adjusted data from two or more data streams via respective constellation mappings and adjusted modulation symbols of amplitude and phase.
  • the data combination s3 of the data stream 3 may be transmitted with non-zero modulation symbols on the resource unit 1 and the resource unit 2 after the constellation mapping and the adjustment of the amplitude and phase, and the modulation symbol x3 transmitted by the resource unit 3 is the data stream. 2.
  • the data (b1, b2) of the data stream is subjected to constellation mapping, and the modulation symbol is q, and each element in the signature sequence, that is, an adjustment factor, is used to perform phase and amplitude on the modulation symbol q.
  • the adjustment is to obtain the modulation symbols sent on each resource unit, which are q*s1, q*s2, q*s3, and q*s4, respectively.
  • SCMA codebook and the LDS sequence enumerated as the code domain resources are merely exemplary, and the present invention is not limited thereto, and may also be a CDMA code or the like.
  • CDMA code the specific function and usage method of the CDMA code It can be similar to the prior art, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the parameters or physical quantities of the above-described modulation methods are merely illustrative, and the present invention is not limited thereto, and the parameters or physical quantities involved in the modulation processing in the prior art are all within the scope of the present invention.
  • control information may also indicate other parameters or physical quantities in addition to the above-mentioned data modulation mode and data encoding mode.
  • control symbol is also used to indicate the device of the terminal device. logo.
  • the terminal device By causing the terminal device to carry its device identifier in the control information, for example, when a terminal device transmits control information through multiple control time-frequency resources (for example, time-frequency resources corresponding to multiple CTU access regions), the diversity information is improved.
  • the network device can determine which control information belongs to the same terminal device according to the identifier of the terminal device carried in the control information carried by the control time-frequency resources, thereby improving the processing efficiency and processing effect of the network device.
  • the terminal device may randomly select an encoding mode (for example, an arbitrary code rate) as the initial data encoding mode, and when performing uplink transmission, may be based on the feedback result of the network device.
  • the selected initial data coding mode is adjusted, for example, when the feedback result indicates that the network device does not correctly receive the uplink data (for example, the network device feeds back a non-acknowledgement (NACK) message, or the network device does not feed back an acknowledgement (ACK) message)
  • NACK non-acknowledgement
  • ACK acknowledgement
  • the terminal device can randomly select a modulation mode (for example, an arbitrary modulation order) as an initial data modulation mode, and when performing uplink transmission, the selected initial data modulation mode can be adjusted according to the feedback result of the network device. For example, in the case where the feedback result indicates that the network device cannot decode the uplink data (for example, the network device feeds back a non-acknowledgement (NACK) message), the terminal device can reduce the modulation order.
  • a modulation mode for example, an arbitrary modulation order
  • NACK non-acknowledgement
  • the methods and processes for determining the data encoding mode and the data modulation mode by the terminal device enumerated above are merely exemplary descriptions, and the present invention is not limited thereto. In other prior art, the schemes for determining the encoding mode and the modulation mode are both falling.
  • the terminal device may also perform quality detection on the channel used for uplink transmission, and determine a data encoding mode and a data modulation mode according to the detection result.
  • control information is an index value that is determined by the terminal device according to the mapping relationship information and corresponding to a data encoding manner and a data modulation manner used by the terminal device, where the mapping relationship information is used to indicate multiple a one-to-one mapping relationship between a parameter set and a plurality of index values, each parameter set including a data encoding mode and a data modulation mode, at least one of any two parameter sets, a data encoding mode, and a data modulation mode Different.
  • the method further includes:
  • an entry for recording a one-to-one mapping relationship between a plurality of parameter sets and a plurality of index values may be stored in the network device, where
  • the parameter set may include a plurality of parameters, for example, a data encoding mode and a data modulation mode.
  • the types of parameters included in the parameter set may be arbitrarily changed according to parameters or physical quantities that can be indicated by the control information. Table 1 below shows an example of this entry.
  • the network device may send the above mapping relationship information (for example, Table 1) to the terminal device by using, for example, a broadcast message or the like.
  • the terminal device may look up the type corresponding to the specific value recorded in Table 1 according to the type and specific value of each parameter or physical quantity in the data encoding mode and the data modulation mode.
  • the index value is sent to the network device as control information.
  • the network device can search for the type and specific value of each parameter or physical quantity corresponding to the index value recorded in Table 1 according to the received index value, as the data encoding mode and data used by the terminal device. Modulation.
  • index value As the control information, resource consumption of the transmission control information can be reduced, and transmission efficiency can be improved.
  • mapping relationship information is only an exemplary description, and the present invention is not limited thereto, as long as the mapping relationship used by the network device or the terminal device can be ensured to be the same, for example, The operator or the manufacturer pre-configures the mapping relationship information in the terminal device.
  • multiple terminal devices may multiplex the same control time-frequency resource transmission control information (ie, case 1), or one control time-frequency resource (for example, one or more CTU access regions corresponding time-frequency) Resource) transmission of control information only for one terminal device (ie, situation) 2)
  • control time-frequency resource used by the terminal device is determined according to a pilot resource used by the terminal device to transmit the control symbol.
  • each control time-frequency resource provided by the system may have a one-to-one mapping relationship with each pilot or pilot set (ie, an example of pilot resources) provided by the system, thereby enabling selection.
  • Terminal devices of different pilots transmit control information (or control symbols) through different control time-frequency resources.
  • the network device or the terminal device can determine the control time-frequency resource used by the terminal device based on the following formula.
  • RE index (RS index –1)*k+1 to RS index *k
  • the RE index (m) indicates the number of the control time-frequency resource used by the terminal device
  • the RS index indicates the number of the pilot resource selected by the terminal device
  • k indicates the occupied by the control time-frequency resource used by the terminal device.
  • the control time-frequency resources provided by the system and the identifier based on each device may also be The determined information (for example, when the device identifier is a decimal number, the information may be a value obtained by performing a residual processing on a predetermined threshold for each device identifier), thereby having a one-to-one mapping relationship, thereby being able to support different terminal devices.
  • Control information (or control symbols) is transmitted through different control time-frequency resources.
  • the device identifier an identifier of a terminal device that can uniquely distinguish one terminal device, such as a media access control (MAC) address or a mobile phone number of the terminal device, may be cited.
  • MAC media access control
  • the method further includes:
  • the non-multiplexed mode information is used to indicate that one control time-frequency resource is used only for transmitting a control symbol of a terminal device.
  • the network device may also indicate the non-multiplexed mode information by using the non-multiplexed mode information.
  • the mode for example, may be represented by a bit, for example "1", for controlling a time-frequency resource for transmitting only one terminal device's control symbols.
  • control time-frequency resource can be used to transmit control symbols of a plurality of terminal devices
  • code domain resources used when the plurality of terminal devices generate control symbols are different.
  • a plurality of terminal devices may transmit control information by using the same control time-frequency resource (constituted by time-frequency resources of one or more CTU access regions) in a code division multiplexing manner, that is, A plurality of terminal devices respectively use different code domain resources (for example, a CDMA code, an LDS sequence, an SCMA codebook, etc.).
  • code domain resources for example, a CDMA code, an LDS sequence, an SCMA codebook, etc.
  • the method also includes:
  • multiplexing mode information is used to indicate that a control time-frequency resource can be used to transmit control symbols of multiple terminal devices.
  • the network device may also indicate the mode by using the multiplexing mode information.
  • a control bit that can be used to transmit a plurality of terminal devices can be represented by a bit, such as "1".
  • the foregoing control information is the uplink information that is sent by the terminal device to the network device. Therefore, in order to improve the accuracy of the control information transmission, the network device needs to know the coding mode (ie, control coding mode) and the modulation mode of the control information. , control modulation mode).
  • the coding mode ie, control coding mode
  • the modulation mode of the control information ie, control modulation mode
  • the terminal device may select an encoding mode (ie, a control coding mode) and a modulation mode (ie, Controlling the modulation mode)
  • an encoding mode ie, a control coding mode
  • a modulation mode ie, Controlling the modulation mode
  • the control signal is generated by the encoding process and the modulation process used by the terminal device, and the control symbol is transmitted by the control time-frequency resource used by the terminal device.
  • the network device may determine the control coding mode and the control modulation mode used by the terminal device, and based on the corresponding decoding mode and demodulation mode.
  • the control symbol performs decoding processing and demodulation processing to acquire the control information.
  • the terminal device and the network device may be configured to have the same control coding mode and control modulation mode determined by the terminal device and the network device.
  • control coding modes adopted by each terminal device in the communication system may be the same, for example, a lower code rate may be adopted.
  • control coding mode may be 1/3 code.
  • the convolutional code of the rate may be 1/3 code.
  • each terminal device in the communication system may employ the same control modulation scheme, for example, a lower modulation order may be employed.
  • control modulation mode may be: a 4-point SCMA codebook, and the modulation order is 2.
  • control coding mode and the control modulation mode used by the terminal device are determined according to pilot resources used when the terminal device transmits the control symbol.
  • control coding modes adopted by each terminal device in the communication system may also be different.
  • each control coding mode provided by the system can be in a one-to-one mapping relationship with each pilot or pilot set (ie, an example of pilot resources) provided by the system, thereby enabling terminal devices that select different pilots.
  • the control information is encoded by different control coding methods.
  • control time-frequency resources provided by the system and the identifier based on each device may also be The determined information has a one-to-one mapping relationship, thereby enabling different terminal devices to encode the control information through different control coding modes.
  • control modulation modes adopted by each terminal device in the communication system may also be different.
  • each control modulation mode provided by the system can be in a one-to-one mapping relationship with each pilot or pilot set (ie, an example of pilot resources) provided by the system, thereby enabling terminal devices that select different pilots.
  • the control information is encoded by different control modulation methods.
  • control time-frequency resources provided by the system and the identifier based on each device may also be The determined information has a one-to-one mapping relationship, thereby enabling different terminal devices to encode the control information through different control modulation modes.
  • the network device or the terminal device can determine the data coding mode and the data modulation mode for the uplink data carried by the data time-frequency resource through the control information negotiation carried in the control time-frequency resource.
  • the network device or the terminal device can perform uplink data transmission based on the data encoding mode and the data modulation mode, and the process is similar to the prior art, and a detailed description thereof is omitted herein to avoid redundancy.
  • control coding mode and the control modulation mode used by the terminal device may be a coding mode and a modulation mode pre-defined by the communication system or the communication protocol.
  • the time-frequency resource used for uplink transmission is divided into a control time-frequency resource and a data time-frequency resource, so that the network device or the terminal device agrees to use information for controlling the time-frequency resource.
  • the control coding mode and the control modulation mode after determining the data coding mode for the uplink data, the terminal device performs coding processing and modulation processing on the control information indicating the data coding mode according to the above-mentioned control coding mode and control modulation mode to generate a control symbol.
  • the network device can perform demodulation processing and decoding processing on the control symbol according to the foregoing control coding mode and control modulation mode, acquire control information, and determine an encoding manner of the uplink data indicated by the control information, thereby
  • the negotiation of the encoding mode of the uplink data can be completed without the notification of the network device, the flexibility of the uplink transmission can be improved, and the reliability of the Grant-free transmission scheme can be improved.
  • a method for transmitting uplink data according to an embodiment of the present invention is described in detail from the perspective of a network device.
  • FIG. 7 a transmission uplink data according to an embodiment of the present invention will be described from the perspective of a terminal device. Methods.
  • FIG. 7 is a schematic flowchart of a method 400 for transmitting uplink data according to an embodiment of the present invention, which is described from the perspective of a terminal device. As shown in FIG. 7, the method 400 includes:
  • the terminal device performs coding and modulation processing on the control information according to the control coding mode and the control modulation mode used by the terminal device to obtain a control symbol, where the control information is used to indicate a data coding mode used by the terminal device.
  • S420 Send the control symbol to the network device by controlling the time-frequency resource, and send the data symbol to the network device by using the data time-frequency resource, where the control time-frequency resource and the data time-frequency resource belong to a transmission resource used for uplink transmission.
  • the control time-frequency resource is different from the data time-frequency resource, and the data symbol is generated by the terminal device encoding the uplink data according to the data encoding manner used by the terminal device.
  • the data symbol is sent by the terminal device to the network device by means of an unlicensed transmission, and the unlicensed transmission pre-allocates and informs the terminal device of the plurality of transmission resources, so that the terminal device has uplink data.
  • the unlicensed transmission pre-allocates and informs the terminal device of the plurality of transmission resources, so that the terminal device has uplink data.
  • the demand is transmitted, at least one transmission resource is selected from the plurality of transmission resources, and the uplink data is sent through the selected transmission resource.
  • control coding mode includes a code used when performing coding processing on the control information. rate
  • the control modulation method includes a modulation order and a code domain resource used in performing modulation processing on the control information.
  • control coding mode and the control modulation mode used by the terminal device are determined according to pilot resources used when the terminal device transmits the control symbol.
  • the data encoding manner used by the terminal device includes a code rate used by the terminal device to perform encoding processing on the uplink data.
  • the data symbol is generated by the terminal device performing modulation processing on the uplink data according to a data modulation manner used by the terminal device.
  • the data modulation mode used by the terminal device includes a modulation order and a code domain resource used by the terminal device to perform modulation processing on the uplink data.
  • control modulation mode used by the terminal device is the same as the data modulation mode used by the terminal device.
  • the data modulation mode used by the terminal device is determined according to a pilot resource used by the terminal device.
  • control information is further used to indicate a data modulation manner used by the terminal device.
  • control information is an index value corresponding to a data encoding manner and a data modulation manner used by the terminal device, and the control information is determined by the terminal device based on mapping relationship information, where the mapping relationship information is The method is used to indicate a one-to-one mapping relationship between a plurality of parameter sets and a plurality of index values, each parameter set includes a data encoding mode and a data modulation mode, and between any two parameter sets, a data encoding mode, and a data modulation mode. At least one of them is different.
  • the method further includes:
  • the method further includes:
  • the network device And receiving, by the network device, indication information of a control time-frequency resource, where the indication information of the control time-frequency resource is used to indicate a location of the control time-frequency resource in the multiple time-frequency resources included in the transmission resource;
  • the indication information of the control time-frequency resource is specifically used to indicate that multiple control time-frequency resources are continuously distributed among the multiple time-frequency resources;
  • the indication information of the control time-frequency resource is specifically used to indicate that a plurality of control time-frequency resources are discretely distributed among the plurality of time-frequency resources.
  • control time-frequency resource used by the terminal device to transmit the control symbol is a pilot used according to the terminal device to transmit the control symbol.
  • the resources are determined.
  • the method further includes:
  • non-multiplexed mode information sent by the network device, where the non-multiplexed mode information is used to indicate that one control time-frequency resource is used only for transmitting a control symbol of a terminal device.
  • control time-frequency resource when one control time-frequency resource can be used to transmit control symbols of multiple terminal devices, the code domain resources used when the multiple terminal devices generate control symbols are different.
  • the method further includes:
  • multiplexing mode information is used to indicate that a control time-frequency resource can be used to transmit control symbols of multiple terminal devices.
  • control information is further used to indicate a device identifier of the terminal device.
  • the network device is a base station, and the terminal device is a user equipment.
  • the operation of the terminal device in the method 400 is similar to the operation of the terminal device in the method 200, and the operation of the network device in the method 400 is similar to the operation of the network device in the method 200.
  • the operation of the network device in the method 400 is similar to the operation of the network device in the method 200.
  • detailed description thereof is omitted.
  • the time-frequency resource used for uplink transmission is divided into a control time-frequency resource and a data time-frequency resource, so that the network device or the terminal device agrees to use information for controlling the time-frequency resource.
  • the control coding mode and the control modulation mode after determining the data coding mode for the uplink data, the terminal device performs coding processing and modulation processing on the control information indicating the data coding mode according to the above-mentioned control coding mode and control modulation mode to generate a control symbol.
  • the network device can perform demodulation processing and decoding processing on the control symbol according to the foregoing control coding mode and control modulation mode, acquire control information, and determine an encoding manner of the uplink data indicated by the control information, thereby
  • the negotiation of the encoding mode of the uplink data can be completed without the notification of the network device, the flexibility of the uplink transmission can be improved, and the reliability of the Grant-free transmission scheme can be improved.
  • FIG. 8 is a schematic block diagram of an apparatus 500 for transmitting uplink data according to an embodiment of the present invention. As shown in FIG. 8, the apparatus 500 includes:
  • the receiving unit 510 is configured to receive, by the terminal device, a control symbol that is sent by controlling a time-frequency resource, where the control symbol is that the terminal device performs coding and modulation processing on the control information according to a control coding mode and a control modulation mode used by the terminal device.
  • the control information is used to indicate a data encoding mode used by the terminal device, where the control time-frequency resource belongs to a transmission resource used for uplink transmission, and the transmission resource further includes a data time-frequency resource, and the control time-frequency resource is The data has different time-frequency resources;
  • the processing unit 520 is configured to perform demodulation and decoding processing on the control symbol according to the control coding mode and the control modulation mode used by the terminal device, to obtain the control information, and use the terminal device to pass the control device according to the control information.
  • the data symbol sent by the data time-frequency resource is decoded to obtain uplink data, where the data symbol is generated by the terminal device encoding the uplink data according to a data encoding manner used by the terminal device.
  • the data symbol is sent by the terminal device to the device by means of an unlicensed transmission, and the unlicensed transmission pre-allocates and informs the terminal device of multiple transmission resources, so that the terminal device has an uplink data transmission requirement.
  • At least one transmission resource is selected from the plurality of transmission resources, and the uplink data is transmitted through the selected transmission resource.
  • control coding mode includes a code rate used when encoding the control information
  • the control modulation method includes a modulation order and a code domain resource used in performing modulation processing on the control information.
  • control coding mode and the control modulation mode used by the terminal device are determined according to pilot resources used when the terminal device transmits the control symbol.
  • the data encoding manner used by the terminal device includes a code rate used by the terminal device to perform encoding processing on the uplink data.
  • the processing unit is further configured to perform demodulation processing on the data symbol according to a data modulation manner used by the terminal device, to obtain uplink data, where the data symbol is used by the terminal device according to the terminal device.
  • the data modulation method is generated by modulating the uplink data.
  • the data modulation mode used by the terminal device includes a modulation order and a code domain resource used by the terminal device to perform modulation processing on the uplink data.
  • control modulation mode used by the terminal device is the same as the data modulation mode used by the terminal device.
  • the data modulation mode used by the terminal device is determined according to a pilot resource used by the terminal device.
  • control information is further used to indicate a data modulation manner used by the terminal device.
  • control information is an index value corresponding to a data encoding manner and a data modulation manner used by the terminal device, and the control information is determined by the terminal device based on mapping relationship information, where the mapping relationship information is The method is used to indicate a one-to-one mapping relationship between a plurality of parameter sets and a plurality of index values, each parameter set includes a data encoding mode and a data modulation mode, and between any two parameter sets, a data encoding mode, and a data modulation mode. At least one of them is different.
  • the device further includes a sending unit, and is connected to the processing unit;
  • the processing unit is further configured to control the sending unit to send the mapping relationship information to the terminal device.
  • the device further includes a sending unit, and is connected to the processing unit;
  • the processing unit is further configured to control the sending unit to send the indication information of the control time-frequency resource to the terminal device, where the indication information of the control time-frequency resource is used to indicate that the control time-frequency resource is in the multiple time-frequency resources included in the transmission resource. s position.
  • the indication information of the control time-frequency resource is specifically used to indicate that multiple control time-frequency resources are continuously distributed among the multiple time-frequency resources;
  • the indication information of the control time-frequency resource is specifically used to indicate that a plurality of control time-frequency resources are discretely distributed among the plurality of time-frequency resources.
  • control time-frequency resource used by the terminal device to transmit the control symbol is a pilot used according to the terminal device to transmit the control symbol.
  • the resources are determined.
  • the device further includes a sending unit, and is connected to the processing unit;
  • the processing unit is further configured to control the sending unit to send non-multiplexed mode information to the terminal device, where the non-multiplexed mode information is used to indicate that one control time-frequency resource is used only for transmitting a control symbol of a terminal device.
  • control time-frequency resource when one control time-frequency resource can be used to transmit control symbols of multiple terminal devices, the code domain resources used when the multiple terminal devices generate control symbols are different.
  • the device further includes a sending unit, and is connected to the processing unit;
  • the processing unit is further configured to control the sending unit to send multiplexing mode information to the terminal device, where
  • the multiplexing mode information is used to indicate that a control time-frequency resource can be used to transmit control symbols of a plurality of terminal devices.
  • control information is further used to indicate a device identifier of the terminal device.
  • the device is a base station, and the terminal device is a user equipment.
  • the apparatus 500 for transmitting information may correspond to a network device in the method of the embodiment of the present invention, and each unit in the apparatus 500 for transmitting information and the other operations and/or functions described above are respectively implemented for The corresponding process of the method 200 in FIG. 2 is not repeated here for brevity.
  • the apparatus for transmitting uplink data divides time-frequency resources for uplink transmission into control time-frequency resources and data time-frequency resources, so that the network device or the terminal device agrees to use information for carrying the control time-frequency resources.
  • the control coding mode and the control modulation mode after determining the data coding mode for the uplink data, the terminal device performs coding processing and modulation processing on the control information indicating the data coding mode according to the above-mentioned control coding mode and control modulation mode to generate a control symbol.
  • the network device can perform demodulation processing and decoding processing on the control symbol according to the foregoing control coding mode and control modulation mode, acquire control information, and determine an encoding manner of the uplink data indicated by the control information, thereby
  • the negotiation of the encoding mode of the uplink data can be completed without the notification of the network device, the flexibility of the uplink transmission can be improved, and the reliability of the Grant-free transmission scheme can be improved.
  • FIG. 9 shows a schematic block diagram of an apparatus 600 for transmitting information according to an embodiment of the present invention.
  • the apparatus 600 includes:
  • the processing unit 610 is configured to perform coding and modulation processing on the control information according to the control coding mode and the control modulation mode corresponding to the device, to obtain a control symbol, where the control information is used to indicate a data coding mode corresponding to the device;
  • the sending unit 620 is configured to send the control symbol to the network device by controlling the time-frequency resource, and send the data symbol to the network device by using the data time-frequency resource, where the control time-frequency resource and the data time-frequency resource belong to the uplink
  • the transmitted transmission resource, the control time-frequency resource is different from the data time-frequency resource, and the data symbol is generated by the device encoding and processing the uplink data according to the data encoding manner corresponding to the device.
  • the data symbol is sent by the device to the network device by means of an unlicensed transmission, and the unauthorized transmission is pre-allocated and notified to the network device by the network device, so that the device has an uplink data transmission requirement.
  • control coding mode includes a code rate used when encoding the control information
  • the control modulation method includes a modulation order and a code domain resource used in performing modulation processing on the control information.
  • control coding mode and the control modulation mode corresponding to the device are determined according to pilot resources used when the device transmits the control symbol.
  • the data encoding manner corresponding to the device includes a code rate used by the device to perform encoding processing on the uplink data.
  • the data symbol is generated by the device performing modulation processing on the uplink data according to a data modulation manner corresponding to the device.
  • the data modulation mode corresponding to the device includes a modulation order and a code domain resource used by the device to perform modulation processing on the uplink data.
  • control modulation mode corresponding to the device is the same as the data modulation mode corresponding to the device.
  • the data modulation mode corresponding to the device is determined according to a pilot resource corresponding to the device.
  • control information is further used to indicate a data modulation manner corresponding to the device.
  • control information is an index value corresponding to a data encoding manner and a data modulation manner corresponding to the device, and the control information is determined by the device based on the mapping relationship information, where the mapping relationship information is used. Instructing a one-to-one mapping relationship between a plurality of parameter sets and a plurality of index values, each parameter set includes a data encoding mode and a data modulation mode, between any two parameter sets, a data encoding mode, and a data modulation mode At least one of them is different.
  • the device further includes a receiving unit connected to the processing unit;
  • the processing unit is further configured to control the receiving unit to receive the mapping relationship information sent by the network device.
  • the device further includes a receiving unit connected to the processing unit;
  • the processing unit is further configured to control the receiving unit to receive the indication information of the control time-frequency resource sent by the network device, where the indication information of the control time-frequency resource is used to indicate that the control time-frequency resource is in the multiple time-frequency included in the transmission resource. Location in the resource;
  • the indication information of the control time-frequency resource is specifically used to indicate that multiple control time-frequency resources are continuously distributed among the multiple time-frequency resources;
  • the indication information of the control time-frequency resource is specifically used to indicate that a plurality of control time-frequency resources are discretely distributed among the plurality of time-frequency resources.
  • control time-frequency resource used by the device to transmit the control symbol is determined according to a pilot resource used when the device transmits the control symbol.
  • the device further includes a receiving unit connected to the processing unit;
  • the processing unit is further configured to control the receiving unit to receive non-multiplexed mode information sent by the network device, where the non-multiplexed mode information is used to indicate that one control time-frequency resource is used only for transmitting control symbols of one device.
  • control time-frequency resource when one control time-frequency resource can be used to transmit control symbols of multiple devices, the code domain resources used when the multiple devices generate control symbols are different.
  • the device further includes a receiving unit connected to the processing unit;
  • the processing unit is further configured to control the receiving unit to receive the multiplexing mode information sent by the network device, where the multiplexing mode information is used to indicate that one control time-frequency resource can be used to transmit control symbols of multiple devices.
  • control information is further used to indicate a device identifier of the device.
  • the network device is a base station, and the device is a user equipment.
  • the device 600 for transmitting information may correspond to a terminal device in the method of the embodiment of the present invention, and each unit in the device 600 for transmitting information and the other operations and/or functions described above are respectively implemented for The corresponding flow of the method 400 in the seventh embodiment will not be repeated here for brevity.
  • the apparatus for transmitting uplink data divides time-frequency resources for uplink transmission into control time-frequency resources and data time-frequency resources, so that the network device or the terminal device agrees to use information for carrying the control time-frequency resources.
  • the control coding mode and the control modulation mode after determining the data coding mode for the uplink data, the terminal device performs coding processing and modulation processing on the control information indicating the data coding mode according to the above-mentioned control coding mode and control modulation mode to generate a control symbol.
  • the network device can perform demodulation processing and decoding processing on the control symbol according to the foregoing control coding mode and control modulation mode, acquire control information, and determine the control information.
  • the coding mode of the instructed uplink data enables the negotiation of the coding mode of the uplink data to be completed without the notification of the network device, thereby improving the flexibility of the uplink transmission and improving the reliability of the Grant-free transmission scheme.
  • FIG. 10 shows a schematic block diagram of an apparatus 500 for transmitting uplink data according to an embodiment of the present invention.
  • the apparatus 700 includes a processor 710 and a receiver 720, and the processor 710 is connected to the receiver 720.
  • the device 700 further includes a memory 730 that is coupled to the processor 710.
  • the device 700 includes a bus system 740.
  • the processor 710, the memory 720, and the transmitter 730 may be connected by a bus system 740, where the memory 730 may be used to store instructions for executing the instructions stored in the memory 730 to control the receiver 720 to receive information or signal;
  • the processor 710 is configured to control the receiver 720 to receive a control symbol sent by the terminal device by controlling a time-frequency resource, where the control symbol is controlled by the terminal device according to a control coding mode and a control modulation mode used by the terminal device. After the information is encoded and modulated, the control information is used to indicate a data encoding mode used by the terminal device.
  • the control time-frequency resource belongs to a transmission resource used for uplink transmission, and the transmission resource further includes a data time-frequency resource. Controlling the time-frequency resource is different from the data time-frequency resource;
  • Decoding according to the control information, a data symbol sent by the terminal device by using the data time-frequency resource, to obtain uplink data, where the data symbol is a data encoding manner used by the terminal device according to the terminal device Generated after encoding the uplink data.
  • the data symbol is sent by the terminal device to the device by means of an unlicensed transmission, and the unlicensed transmission pre-allocates the device and informs the terminal device of multiple transmission resources, so that the terminal device has an uplink data transmission requirement.
  • At least one transmission resource is selected from the plurality of transmission resources, and the uplink data is transmitted through the selected transmission resource.
  • control coding mode includes a code rate used when encoding the control information
  • the control modulation method includes a modulation order used when the control information is modulated. Code domain resources.
  • control coding mode and the control modulation mode used by the terminal device are determined according to pilot resources used when the terminal device transmits the control symbol.
  • the data encoding manner used by the terminal device includes a code rate used by the terminal device to perform encoding processing on the uplink data.
  • the processor is further configured to perform demodulation processing on the data symbol according to a data modulation manner used by the terminal device, to obtain uplink data, where the data symbol is used by the terminal device according to the terminal device.
  • the data modulation method is generated by modulating the uplink data.
  • the data modulation mode used by the terminal device includes a modulation order and a code domain resource used by the terminal device to perform modulation processing on the uplink data.
  • control modulation mode used by the terminal device is the same as the data modulation mode used by the terminal device.
  • the data modulation mode used by the terminal device is determined according to a pilot resource used by the terminal device.
  • control information is further used to indicate a data modulation manner used by the terminal device.
  • control information is an index value corresponding to a data encoding manner and a data modulation manner used by the terminal device, and the control information is determined by the terminal device based on mapping relationship information, where the mapping relationship information is The method is used to indicate a one-to-one mapping relationship between a plurality of parameter sets and a plurality of index values, each parameter set includes a data encoding mode and a data modulation mode, and between any two parameter sets, a data encoding mode, and a data modulation mode. At least one of them is different.
  • the device further includes a transmitter connected to the processor;
  • the processor is further configured to control the sender to send the mapping relationship information to the terminal device.
  • the device further includes a transmitter connected to the processor;
  • the processor is further configured to control the transmitter to send the indication information of the control time-frequency resource to the terminal device, where the indication information of the control time-frequency resource is used to indicate that the control time-frequency resource is in the multiple time-frequency resources included in the transmission resource. s position.
  • the indication information of the control time-frequency resource is specifically used to indicate that multiple control time-frequency resources are continuously distributed among the multiple time-frequency resources;
  • the indication information of the control time-frequency resource is specifically used to indicate that a plurality of control time-frequency resources are discretely distributed among the plurality of time-frequency resources.
  • control time-frequency resource used by the terminal device to transmit the control symbol is a pilot used according to the terminal device to transmit the control symbol.
  • the resources are determined.
  • the device further includes a transmitter connected to the processor;
  • the processor is further configured to control the transmitter to send non-multiplexed mode information to the terminal device, where the non-multiplexed mode information is used to indicate that a control time-frequency resource is used only for transmitting a control symbol of a terminal device.
  • control time-frequency resource when one control time-frequency resource can be used to transmit control symbols of multiple terminal devices, the code domain resources used when the multiple terminal devices generate control symbols are different.
  • the device further includes a transmitter connected to the processor;
  • the processor is further configured to control the transmitter to send multiplexing mode information to the terminal device, where the multiplexing mode information is used to indicate that a control time-frequency resource can be used to transmit control symbols of the plurality of terminal devices.
  • control information is further used to indicate a device identifier of the terminal device.
  • the device is a base station, and the terminal device is a user equipment.
  • the processor 710 may be a central processing unit (“CPU"), and the processor 710 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 730 can include read only memory and random access memory and provides instructions and data to the processor 710. A portion of the memory 730 may also include a non-volatile random access memory. For example, the memory 730 can also store information of the device type.
  • the bus system 740 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 740 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 710 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 730, and processor 710 reads the information in memory 730 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the device 700 for transmitting information according to the embodiment of the present invention may correspond to the network device in the method of the embodiment of the present invention, and each unit in the device 700 for transmitting information, that is, the module and the other operations and/or functions described above are respectively implemented for The corresponding process of the method 200 in FIG. 2 is not repeated here for brevity.
  • the device for transmitting uplink data divides time-frequency resources for uplink transmission into control time-frequency resources and data time-frequency resources, so that the network device or the terminal device appoints information for carrying the control time-frequency resources.
  • the control coding mode and the control modulation mode after determining the data coding mode for the uplink data, the terminal device performs coding processing and modulation processing on the control information indicating the data coding mode according to the above-mentioned control coding mode and control modulation mode to generate a control symbol.
  • the network device can perform demodulation processing and decoding processing on the control symbol according to the foregoing control coding mode and control modulation mode, acquire control information, and determine an encoding manner of the uplink data indicated by the control information, thereby
  • the negotiation of the encoding mode of the uplink data can be completed without the notification of the network device, the flexibility of the uplink transmission can be improved, and the reliability of the Grant-free transmission scheme can be improved.
  • FIG. 11 is a schematic block diagram of an apparatus 800 for transmitting information according to an embodiment of the present invention.
  • the apparatus 800 includes a processor 810 and a transmitter 820, and the processor 810 is connected to the receiver 820.
  • the device 800 also includes a memory 830 that is coupled to the processor 810.
  • the device 800 includes a bus system 840.
  • the processor 810, the memory 830, and the transmitter 820 may be connected by a bus system 840, which may be used to store instructions for executing instructions stored in the memory 830 to control the transmitter 820 to transmit information or signal;
  • the processor 810 is configured to perform coding and modulation processing on the control information according to the control coding mode and the control modulation mode used by the device, to obtain a control symbol, where the control information is used to indicate a data coding mode used by the device;
  • the control unit 820 is configured to send the control symbol to the network device by controlling the time-frequency resource, and send the data symbol to the network device by using the data time-frequency resource, where the control time-frequency resource and the data time-frequency resource are used for The transmission resource of the uplink transmission, the control time-frequency resource is different from the data time-frequency resource, and the data symbol is generated by the device encoding the uplink data according to the data coding manner used by the device.
  • the data symbol is sent by the device to the network device by means of an unlicensed transmission, where the unlicensed transmission pre-allocates and informs the device of multiple transmission resources, so that the device has uplink data transmission requirements. And selecting at least one transmission resource from the plurality of transmission resources, and transmitting the uplink data by using the selected transmission resource.
  • control coding mode includes a code rate used when encoding the control information
  • the control modulation method includes a modulation order and a code domain resource used in performing modulation processing on the control information.
  • control coding mode and the control modulation mode used by the device are determined according to pilot resources used when the device transmits the control symbol.
  • the data encoding manner used by the device includes a code rate used by the device to perform encoding processing on the uplink data.
  • the data symbol is generated by the device performing modulation processing on the uplink data according to a data modulation manner used by the device.
  • the data modulation mode used by the device includes a modulation order and a code domain resource used by the device to perform modulation processing on the uplink data.
  • the device uses the same control modulation method as the data modulation used by the device.
  • the data modulation method used by the device is determined according to pilot resources used by the device.
  • control information is further used to indicate a data modulation mode used by the device.
  • control information is an index value corresponding to a data encoding manner and a data modulation manner used by the device, and the control information is determined by the device based on the mapping relationship information, where the mapping relationship information is used. Instructing a one-to-one mapping relationship between a plurality of parameter sets and a plurality of index values, each parameter set includes a data encoding mode and a data modulation mode, between any two parameter sets, a data encoding mode, and a data modulation mode At least one of them is different.
  • the device further includes a receiver connected to the processor;
  • the processor is further configured to control the receiver to receive the mapping relationship information sent by the network device.
  • the device further includes a receiver connected to the processor;
  • the processor is further configured to control the receiver to receive the indication information of the control time-frequency resource sent by the network device, where the indication information of the control time-frequency resource is used to indicate that the control time-frequency resource is in the transmission resource. a location in a plurality of time-frequency resources included;
  • the indication information of the control time-frequency resource is specifically used to indicate that multiple control time-frequency resources are continuously distributed among the multiple time-frequency resources;
  • the indication information of the control time-frequency resource is specifically used to indicate that a plurality of control time-frequency resources are discretely distributed among the plurality of time-frequency resources.
  • control time-frequency resource used by the device to transmit the control symbol is determined according to a pilot resource used when the device transmits the control symbol.
  • the device further includes a receiver connected to the processor;
  • the processor is further configured to control the receiver to receive non-multiplexed mode information sent by the network device, where the non-multiplexed mode information is used to indicate that one control time-frequency resource is used to transmit only one device control symbol.
  • control time-frequency resource when one control time-frequency resource can be used to transmit control symbols of multiple devices, the code domain resources used when the multiple devices generate control symbols are different.
  • the device further includes a receiver connected to the processor;
  • the processor is further configured to control the receiver to receive multiplexing mode information sent by the network device, where the multiplexing mode information is used to indicate that a control time-frequency resource can be used to transmit control symbols of multiple devices.
  • control information is further used to indicate a device identifier of the device.
  • the network device is a base station, and the device is a user equipment.
  • the processor 810 may be a central processing unit (“CPU"), and the processor 810 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 830 can include read only memory and random access memory and provides instructions and data to the processor 810. A portion of the memory 830 may also include a non-volatile random access memory. For example, the memory 830 can also store information of the device type.
  • the bus system 840 may include a power bus and a control bus in addition to the data bus. And status signal bus, etc. However, for clarity of description, various buses are labeled as bus system 840 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 810 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 830, and processor 810 reads the information in memory 830 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the device 800 for transmitting information may correspond to a terminal device in the method of the embodiment of the present invention, and each unit in the device 800 for transmitting information and the other operations and/or functions described above are respectively implemented for The corresponding flow of the method 400 in the seventh embodiment will not be repeated here for brevity.
  • the device for transmitting uplink data divides time-frequency resources for uplink transmission into control time-frequency resources and data time-frequency resources, so that the network device or the terminal device appoints information for carrying the control time-frequency resources.
  • the control coding mode and the control modulation mode after determining the data coding mode for the uplink data, the terminal device performs coding processing and modulation processing on the control information indicating the data coding mode according to the above-mentioned control coding mode and control modulation mode to generate a control symbol.
  • the network device can perform demodulation processing and decoding processing on the control symbol according to the foregoing control coding mode and control modulation mode, acquire control information, and determine an encoding manner of the uplink data indicated by the control information, thereby
  • the negotiation of the encoding mode of the uplink data can be completed without the notification of the network device, the flexibility of the uplink transmission can be improved, and the reliability of the Grant-free transmission scheme can be improved.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the sending module or the sending unit or the sender in the above embodiment may refer to sending on the air interface, but may not send on the air interface, but send it to other devices to facilitate other devices to send on the air interface.
  • the receiving module or the receiving unit or the receiver in the above embodiment may refer to receiving on the air interface, or may not receive on the air interface, but receive through other devices that receive on the air interface.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种传输上行数据的方法和设备,该方法包括:网络设备接收终端设备通过控制时频资源发送的控制符号,控制符号是终端设备根据终端设备所使用的控制编码方式和控制调制方式对控制信息进行编码调制处理后生成的,控制信息用于指示终端设备所使用的数据编码方式,控制时频资源属于用于上行传输的传输资源,传输资源还包括数据时频资源,控制时频资源与数据时频资源相异;根据终端设备所使用的控制编码方式和控制调制方式,对控制符号进行解调译码处理,以获取控制信息;根据控制信息,对终端设备通过数据时频资源发送的数据符号进行译码处理,以获取上行数据,其中,数据符号是终端设备根据终端设备所使用的数据编码方式对上行数据进行编码处理后生成的。

Description

传输上行数据的方法和设备 技术领域
发明涉及通信技术领域,并且更具体地涉及数据处理的方法和设备。
背景技术
目前已知一种传输上行数据的方案,在该方案中,终端设备需要发送给网络设备的上行数据经过编码处理和调制处理后成为调制符号。网络设备对接收到的调制符号进行解调处理和译码处理从而获得上行数据。
为了提高该方案的可靠性,上述过程要求终端设备和网络设备采用相应的编码方式和译码方式。
现有的方式是:上行传输的编码方式(或译码方式)由网络设备决定并通知终端设备,即,当网络设备决定为终端设备的上行传输分配时频资源时,会根据来自终端设备的导频信号进行上行信道的质量测量,并根据测量的结果,决定终端设备通过该上行信道进行上行传输时使用的编码方式,并通知终端设备。
但是,在该现有的方式中,终端设备在获得网络设备所通知的编码方式后才能够进行上行传输,影响了上行传输的灵活性。
因此,希望提供一种技术,能够提高上行传输的灵活性。
发明内容
本发明实施例提供一种传输上行数据的方法和设备,能够提高上行传输的灵活性。
第一方面,提供了一种传输上行数据的方法,该方法包括:传输上行数据的方法,该方法包括:网络设备接收该终端设备通过控制时频资源发送的控制符号,其中,该控制符号是该终端设备根据该终端设备所使用的控制编码方式和控制调制方式对控制信息进行编码调制处理后生成的,该控制信息用于指示该终端设备所使用的数据编码方式,该控制时频资源属于用于上行传输的传输资源,该传输资源还包括数据时频资源,该控制时频资源与该数据时频资源相异;根据该终端设备所使用的控制编码方式和控制调制方式,对该控制符号进行解调译码处理,以获取该控制信息;根据该控制信息,对 该终端设备通过该数据时频资源发送的数据符号进行译码处理,以获取上行数据,其中,该数据符号是该终端设备根据该终端设备所使用的数据编码方式对该上行数据进行编码处理后生成的。
第二方面,提供了一种传输上行数据的方法,该方法包括:终端设备根据该终端设备所使用的控制编码方式和控制调制方式,对控制信息进行编码调制处理,以获取控制符号,该控制信息用于指示该终端设备所使用的数据编码方式;通过控制时频资源向网络设备发送该控制符号,并通过数据时频资源向该网络设备发送数据符号,其中,该控制时频资源和该数据时频资源属于用于上行传输的传输资源,该控制时频资源与该数据时频资源相异,该数据符号是该终端设备根据该终端设备所使用的数据编码方式对上行数据进行编码处理后生成的。
第三方面,提供了一种传输上行数据的设备,该设备包括:接收器;处理器,与该接收器连接,用于控制该接收器接收该终端设备通过控制时频资源发送的控制符号,其中,该控制符号是该终端设备根据该终端设备所使用的控制编码方式和控制调制方式对控制信息进行编码调制处理后生成的,该控制信息用于指示该终端设备所使用的数据编码方式,该控制时频资源属于用于上行传输的传输资源,该传输资源还包括数据时频资源,该控制时频资源与该数据时频资源相异;用于根据该终端设备所使用的控制编码方式和控制调制方式,对该控制符号进行解调译码处理,以获取该控制信息;用于根据该控制信息,对该终端设备通过该数据时频资源发送的数据符号进行译码处理,以获取上行数据,其中,该数据符号是该终端设备根据该终端设备所使用的数据编码方式对该上行数据进行编码处理后生成的。
第四方面,提供了一种传输上行数据的设备,该设备包括:发送器;处理器,与该发送器连接,用于根据该设备所使用的控制编码方式和控制调制方式,对控制信息进行编码调制处理,以获取控制符号,该控制信息用于指示该设备所使用的数据编码方式;用于控制该发送器通过控制时频资源向网络设备发送该控制符号,并通过数据时频资源向该网络设备发送数据符号,其中,该控制时频资源和该数据时频资源属于用于上行传输的传输资源,该控制时频资源与该数据时频资源相异,该数据符号是该设备根据该设备所使用的数据编码方式对上行数据进行编码处理后生成的。
根据本发明实施例的传输上行数据的方法和设备,将用于上行传输的时 频资源划分为控制时频资源和数据时频资源,使网络设备或终端设备约定用针对承载于控制时频资源的信息的控制编码方式和控制调制方式,终端设备在确定针对上行数据的数据编码方式后根据上述约定的控制编码方式和控制调制方式对指示该数据编码方式的控制信息进行编码处理和调制处理生成控制符号,相应地,网络设备能够根据上述约定的控制编码方式和控制调制方式对该控制符号进行解调处理和译码处理,获取控制信息,并确定该控制信息所指示的上行数据的编码方式,从而,能够在无需网络设备通知的情况下完成上行数据的编码方式的协商,能够提高上行传输的灵活性。
附图说明
图1是适用本发明的传输上行数据的方法的通信系统的示意图。
图2是根据本发明一实施例的传输上行数据的方法的示意性流程图。
图3是本发明实施例的免授权传输所使用的时频资源的示意图。
图4是控制时频资源与数据时频资源的分布情况的一例的示意图。
图5是本发明实施例的上行传输的编码过程的示意图。
图6是本发明实施例的LDS的映射过程的示意图。
图7是根据本发明另一实施例的传输上行数据的方法的流程示意图。
图8是根据本发明一实施例的传输上行数据的装置的示意性结构图。
图9是根据本发明另一实施例的传输上行数据的装置的示意性结构图。
图10是根据本发明一实施例的传输上行数据的设备的示意性结构图。
图11是根据本发明一实施例的传输上行数据的设备的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设 备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本发明实施例的方案可以应用于现有的蜂窝通信系统,如全球移动通讯(英文全称可以为:Global System for Mobile Communication,英文简称可以为:GSM),宽带码分多址(英文全称可以为:Wideband Code Division Multiple Access,英文简称可以为:WCDMA),长期演进(英文全称可以为:Long Term Evolution,英文简称可以为:LTE)等系统中,所支持的通信主要是针对语音和数据通信的。通常来说,一个传统基站支持的连接数有限,也易于实现。
下一代移动通信系统将不仅支持传统的通信,还将支持M2M(英文全称可以为:Machine to Machine)通信,或者叫做MTC(英文全称可以为:Machine Type Communication)通信。根据预测,到2020年,连接在网络上的MTC设备将会达到500到1000亿,这将远超现在的连接数。对M2M类业务,由于其业务种类千差万别,对网络需求存在很大差异。大致来说,会存在如下几种需求:
可靠传输,但对时延不敏感;
低延迟,高可靠传输。
对可靠传输,而对时延不敏感业务,较容易处理。但是,对低延迟、高可靠传输类的业务,不仅要求传输时延短,而且要求可靠,比如V2V(英文全称为:Vehicle to Vehicle)业务。如果传输不可靠,会导致重传而造成传输时延过大,不能满足要求。
由于大量连接的存在,使得未来的无线通信系统和现有的通信系统存在很大差异。大量连接需要消耗更多的资源接入终端设备以及需要消耗更多的资源用于终端设备的数据传输相关的调度信令的传输。根据本发明实施例的方案能够有效解决上述资源消耗问题。
可选地,该网络设备为基站,该终端设备为用户设备。
本发明结合终端设备描述了各个实施例。终端设备也可以称为用户设备(UE,User Equipment)用户设备、接入终端、用户单元、用户站、移动站、 移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是WLAN(Wireless Local Area Networks,无线局域网)中的ST(STAION,站点),可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
此外,本发明结合网络设备描述了各个实施例。网络设备可以是网络设备等用于与移动设备通信的设备,网络设备可以是WLAN(Wireless Local Area Networks,无线局域网)中的AP(ACCESS POINT,接入点),GSM或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
此外,本发明的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是使用本发明的传输信息的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接 收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(FDD,Frequency Division Duplex)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(TDD,Time Division Duplex)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多 个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络(英文全称可以为:Public Land Mobile Network,英文简称可以为:PLMN)网络或者D2D网络或者M2M网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
图2示出了从网络设备角度描述的根据本发明一实施例的传输上行数据的方法200的示意性流程图,如图2所示,该方法200包括:
S210,网络设备接收该终端设备通过控制时频资源发送的控制符号,其中,该控制符号是该终端设备根据该终端设备所使用的控制编码方式和控制调制方式对控制信息进行编码调制处理后生成的,该控制信息用于指示该终端设备所使用的数据编码方式,该控制时频资源属于用于上行传输的传输资源,该传输资源还包括数据时频资源,该控制时频资源与该数据时频资源相异;
S220,根据该终端设备所使用的控制编码方式和控制调制方式,对该控制符号进行解调译码处理,以获取该控制信息;
S230,根据该控制信息,对该终端设备通过该数据时频资源发送的数据符号进行译码处理,以获取上行数据,其中,该数据符号是该终端设备根据该终端设备所使用的数据编码方式对该上行数据进行编码处理后生成的。
可选地,该数据符号是该终端设备通过免授权传输的方式发送给该网络设备的,该免授权传输为网络设备预先分配并告知终端设备多个传输资源,以使该终端设备有上行数据传输需求时,从该多个传输资源中选择至少一个传输资源,并通过所选择的传输资源发送上行数据。
具体地说,近年来,研究人员针对海量用户接入引发的一系列问题提出了上行免授权(Grant-free)传输方案,本发明实施例的方法200可以用于针对基于Grant-Free(即,使用的免授权传输资源进行)方案的上行传输过程。
所谓Grant-Free是指在公共陆地移动网络(Public Land Mobile Network)中不需要网络设备动态调度即可实现用户数据上行传输的方法,具体地,指用户根据业务的不同或在指定的时频资源上,采用该时频资源所能支持的包括码域资源、导频资源等进行数据传输的方式(例如,导频和数据一起传输)以减少网络信令及减小传输时延的方法。
为了解决未来网络大量的MTC类业务,以及满足低时延、高可靠的业 务传输,本专利提出了免授权传输的一种方案。免授权传输英文可以表示为Grant Free。这里的免授权传输可以针对的是上行数据传输。免授权传输可以理解为如下含义的任一一种含义,或,多种含义,或者多种含义中的部分技术特征的组合或其他类似含义:
免授权传输可以指:网络设备预先分配并告知终端设备多个传输资源;终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据;网络设备在所述预先分配的多个传输资源中的一个或多个传输资源上检测终端设备发送的上行数据。所述检测可以是盲检测,也可能根据所述上行数据中某一个控制域进行检测,或者是其他方式进行检测。
免授权传输可以指:网络设备预先分配并告知终端设备多个传输资源,以使终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。
免授权传输可以指:获取预先分配的多个传输资源的信息,在有上行数据传输需求时,从所述多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。获取的方式可以从网络设备获取。
免授权传输可以指:不需要网络设备动态调度即可实现终端设备的上行数据传输的方法,所述动态调度可以是指网络设备为终端设备的每次上行数据传输通过信令来指示传输资源的一种调度方式。可选地,实现终端设备的上行数据传输可以理解为允许两个或两个以上终端设备的数据在相同的时频资源上进行上行数据传输。可选地,所述传输资源可以是UE接收所述的信令的时刻以后的一个或多个传输时间单位的传输资源。一个传输时间单位可以是指一次传输的最小时间单元,比如传输时间间隔(英文全称为:,Transmission Time Interval,英文简称为:TTI),数值可以为1ms,或者可以是预先设定的传输时间单元。
免授权传输可以指:终端设备在不需要网络设备授权的情况下进行上行数据传输。所述授权可以指终端设备发送上行调度请求给网络设备,网络设备接收调度请求后,向终端设备发送上行授权,其中所述上行授权指示分配给终端设备的上行传输资源。
免授权传输可以指:一种竞争传输方式,具体地可以指多个终端在预先分配的相同的时频资源上同时进行上行数据传输,而无需基站进行授权。
所述的数据可以为包括业务数据或者信令数据。
所述盲检测可以理解为在不预知是否有数据到达的情况下,对可能到达的数据进行的检测。所述盲检测也可以理解为没有显式的信令指示下的检测。
所述传输资源可以包括但不限于如下资源的一种或多种的组合:
α-时域资源,如无线帧、子帧、符号等;
β-频域资源,如子载波、资源块等;
γ-空域资源,如发送天线、波束等;
θ-码域资源,如稀疏码多址接入(英文全称为:Sparse Code Multiple Access,英文简称为:SCMA)码本、低密度签名(英文全称为:Low Density Signature,英文简称为:LDS)序列、CDMA码等;
δ-上行导频资源。
如上的传输资源可以根据包括但不限于如下的控制机制进行的传输:
a-上行功率控制,如上行发送功率上限控制等
b-调制编码方式设置,如传输块大小、码率、调制阶数设置等;
c-重传机制,如HARQ机制等。
竞争传输单元(英文全称可以为:Contention Transmission Unit,英文缩写可以为:CTU)可以为免授权传输的基本传输资源。CTU可以指时间、频率、码域相结合的传输资源,或者,可以指时间、频率、导频相结合的传输,或者,可以指时间、频率、码域、导频相结合的传输资源。
CTU所属的接入区域可以指CTU对应的时频区域。
专利号PCT/CN2014/073084,申请名称为“System and Method for Uplink Grant-free Transmission Scheme”的专利申请给出了一种上行免授权传输的技术方案。PCT/CN2014/073084申请介绍可以将无线资源划分为各种CTU,UE被映射到某个CTU。每个CTU可以被分配一组码,所分配的一组码可以是一组CDMA码,也可以是SCMA码本集或LDS序列组或签名(signature)组等。每一个码可以对应一组导频。用户可以选择一个码以及与该码对应的导频组中的一个导频进行上行传输。PCT/CN2014/073084申请内容也可以理解为通过引用作为本发明实施例内容的一部分,不再赘述。
在适用该方法200的通信系统中,可以具有多个(两个或两个以上)终端设备,各终端设备根据Grant Free方案,自主选择免授权传输资源向网络 设备发送上行数据。并且,各导频和各传输资源(或者说,免授权资源)可以具有一一对应关系,网络设备可以根据各终端设备所选择的导频,获知各终端设备所选用的传输资源。
可选地,该终端设备所使用的控制时频资源和数据时频资源属于该终端设备在上行传输时所使用的竞争传输单元CTU对应的时频资源。
具体地说,目前的Grant-free方案中定义了CTU作为信息的承载单元,用户设备按照一定准则将数据映射在CTU上,完成上行数据传输,基站侧对CTU资源进行盲检,恢复出承载的用户数据。
图3示出了可用带宽被分成四个竞争接入区域(也成为CTU接入区域)的时频区域,即,CTU接入区域(CTU access region)310、320、330和340,即。每个CTU access region可以占用预定数量的资源块(Resource Block),例如,在图3的实施例中,CTU access region 310包括四个RB:RB1、RB2、RB3和RB4。本发明的实施例并不限于此,例如,不同的竞争接入区域可以包括不同数目的RB。在图3中,每个CTU access region能够支持36个UE竞争该CTU access region中定义的36个CTU,每个CTU是时域资源、频域资源、码域资源和导频的结合。码域资源包括CDMA码或SCMA码或LDS序列或其它签名(signature)等。每个竞争接入区域占用一个时频资源区,每个时频资源区支持6个码域资源(S1-S6),并且每个码域资源映射到6个导频,从而生成总共36个导频(P1-P36)。网络设备可以使用导频或码域资源解相关器来检测或解码各个UE在CTU上发送的信号。
终端设备进入源网络设备的覆盖区时,可以接收到网络设备发送的高层信令。该高层信令可以携带CTU接入区域定义(CTU access region definition)、CTU的总数、默认映射规则等等。可替代地,终端设备也可预先配置默认映射规则。终端设备可以确定一个合适的CTU以在该CTU上进行免授权传输。当不同的终端设备在相同的CTU进行免授权传输时,即竞争相同的CTU时,会出现冲突。终端设备可以根据网络设备的指示确定是否存在冲突。例如,可以采用异步HARQ方法解决冲突引起的问题。然而,如果冲突的次数超过预定的阈值,则可以请求网络设备重新映射CTU。网络设备将重新映射后的CTU的信息发送给终端设备,以便终端设备在重新映射后的CTU上进行免授权传输。
应理解,为了描述方便,图3示出了四个CTU access region,本发明的 实施例并不限于此,可以根据需要定义更多或更少的CTU access region。。
以上列举的一个CTU access region有多个终端设备复用的方式仅为实例性说明,本发明并不限定于此,例如,在系统内的终端设备较少时,也可能存在一个CTU access region仅用于一个终端设备的上行传输的情况。
在本发明实施例中,可以将上述CTU access region作为控制时频资源或数据时频资源。
为了便于理解和说明,作为实例而非限定,以下,以基于CTU access region的上行传输为例,对方法200的过程进行详细说明。
在本发明实施例中,用于上行传输(免授权传输)的时频资源(即,传输资源的一例)可以被划分为数据时频资源和控制时频资源两个部分,其中:
数据时频资源,用于承载数据,具体地说,是对数据进行编码处理和调制处理而生产的调制符号(即,数据符号的一例),
控制时频资源,用于承载控制信息,具体地说,是对控制信息进行编码处理和调制处理而生产的调制符号(即,控制符号的一例)。随后,对控制信息的作用进行详细说明。
在本发明实施例中,控制时频资源与数据时频资源彼此相异,并且,控制时频资源与数据时频资源的位置可以任意设定,本发明并未特别限定,如图4所示,例如,在本发明实施例中,控制时频资源可以连续地分布在时频资源中,或者,在本发明实施例中,控制时频资源可以离散地分布在时频资源中。
应理解,图4列举的控制时频资源与数据时频资源的分布情况仅为示例性说明,本发明并未限定于此,只要能够使网络设备或终端设备所确定的控制时频资源或数据时频资源的位置相同即可。
下面,对网络设备或终端设备从系统提供的上行传输的时频资源中区分控制时频资源和控制时频资源的方式进行详细说明。
可选地,该方法还包括:
向终端设备发送控制时频资源的指示信息,该控制时频资源的指示信息用于指示控制时频资源在该传输资源所包括的多个时频资源中的位置。
具体地说,在本发明实施例中,可以由网络设备决定系统提供的用于上行传输的时频资源中哪些为控制时频资源(或,数据时频资源),并将指示该控制时频资源(或,数据时频资源)的位置的信息(即,控制时频资源的 指示信息的一例)下发至终端设备。
例如,在本发明实施例中,可以对系统提供的用于上行传输的时频资源进行编号,并且,网络设备可以将控制时频资源(或,数据时频资源)的编号(即,控制时频资源的指示信息的一例)下发给终端设备,从而,终端设备可以确定所接收到的编号的时频资源为控制时频资源(或,数据时频资源)。
并且,在本发明实施例中,该控制时频资源的指示信息的下发时机可以任意确定,只要使该终端设备在进行上行传输之前能够获得即可,例如,网络设备可以周期性地通过例如广播消息等下发至终端设备,再例如,网络设备也可以在终端设备接入时,通过例如广播消息等下发至终端设备。
可选地,该控制时频资源的指示信息具体用于指示该多个控制时频资源在该时频资源中离散分布。
具体地说,当控制时频资源可以离散地分布在时频资源中时,网络设备还可以通过该控制时频资源的指示信息指示该离散分布情况,例如,可以由一个比特位,例如“0”表示控制时频资源离散分布,并且,该控制时频资源的指示信息指示还可以进一步指示控制时频资源的离散度N,从而,网络设备或终端设备可以基于以下公式确定控制时频资源。
REindex(m)=N·m,m∈[0,1,...,M]
其中,REindex(m)表示控制时频资源的编号,M表示系统提供的用于上行传输的时频资源的总数。
可选地,该多个控制时频资源的指示信息具体用于指示该控制时频资源在该时频资源中连续分布。
具体地说,当控制时频资源可以连续地分布在时频资源中时,网络设备还可以通过该控制时频资源的指示信息指示该离散分布情况,例如,可以由一个比特位,例如“1”表示控制时频资源连续分布。
应理解,以上列举的网络设备或终端设备从系统提供的上行传输的时频资源中区分控制时频资源和控制时频资源的方式仅为实例性说明,本发明并未限定于此,例如,在本发明实施例中,可以通过标准规定时频资源中哪些是控制时频资源,哪些是数据时频资源。再例如,在本发明实施例中,也可以由网络管理员或运营商预先通知网络设备或终端设备时频资源中哪些是控制时频资源,哪些是数据时频资源。
下面对上述控制时频资源所传输的控制信息的功能进行详细说明。
在本发明实施例中,该控制信息可以用于指示数据编码方式,该数据编码方式是指终端设备对数据符号进行编码处理时使用的编码方式,从而网络设备可以基于该控制信息所指示的数据编码方式完成对数据符号的译码处理。
首先,对该数据编码方式的内容进行说明。
可选地,该数据编码方式包括对该上行数据进行编码处理时使用的码率。
具体地说,在本发明实施例中,编码方式可以包括编码处理时使用的码率。
应理解,以上列举的作为编码方式的参数或物理量仅为示例性说明,本发明并未限定于此,例如,编码方式还可以包括编码的种类,例如,拓博(Turbo)编码、卷积编码(Convolution code)、极化(Polar)编码。
除了数据编码方式,网络设备还需要获知终端设备对上行数据进行调制处理时使用调制方式(即,数据调制方式)才能确保上行数据传输的可靠性。即,可选地,该方法还包括:
根据该终端设备所使用的数据调制方式,对该数据符号进行解调处理,以获取上行数据,其中,该数据符号是该终端设备根据该终端设备所使用的数据调制方式对该上行数据进行调制处理后生成的。
在本发明实施例中,可以列举以下方式使网络设备或终端设备确定数据调制方式:
方式1
可选地,该控制信息还用于指示该数据调制方式。
具体地说,在本发明实施例中,该控制信息可以用于指示数据调制方式,该数据调制方式是指终端设备对数据符号进行调制处理时使用的调制方式,从而网络设备可以基于该控制信息所指示的数据调制方式完成对数据符号的解调处理。
方式2
可选地,该控制调制方式与该数据调制方式相同。
具体地说,在本发明实施例中,该控制调制方式与该数据调制方式,从而,在终端设备确定了控制调制方式(随后,对该过程进行详细说明)之后, 可以采用该相同的方式对上行数据进行解调处理,相应地,在网络设备确定了控制调制方式之后,可以采用该相同的方式对数据符号进行解调处理。
方式3
可选地,该数据调制方式是根据该终端设备所使用的导频资源确定的。
具体地说,在本发明实施例中,数据调制方式可以与系统提供的导频资源具有映射关系,从而,网络设备或终端设备可以基于终端设备所选择的导频,确定数据调制方式。
应理解,以上列举的数据调制方式的确定方法仅为示例性说明,本发明并未限定于此,其他能够使网络设备或终端设备所确定的数据解调方式相同的方案均落入本发明的保护范围内,例如,数据调制方式可以与系终端设备的设备标识具有映射关系,从而,网络设备或终端设备可以基于终端设备的标识,确定数据调制方式。
并且,上述方式1~方式3可以单独使用也可以联合使用,本发明并未特别限定。
下面,对该数据调制方式的内容进行说明。
可选地,该数据调制方式包括对该上行数据进行调制处理时使用的调制阶数和码域资源中的至少一种。
具体地说,在本发明实施例中,调制方式可以包括调制处理时使用的调制阶数和码域资源中的至少一种。
例如,当通信系统仅使用一种固定的码域资源的情况下,该数据调制方式可以仅包括调制阶数。
再例如,当通信系统仅使用一种固定的调制阶数的情况下,该数据调制方式可以仅包括码域资源。
再例如,当通信系统可以使用多种调制制阶数和多种码域资源的情况下,该数据调制方式可以包括调制阶数和码域资源双方。
下面,对码域资源进行说明。
可选地,该码域资源包括稀疏码分多址SCMA码本、低密度签名LDS序列或码分多址CDMA码。
具体地说,在本发明实施例中,可以采用SCMA码本、LDS序列或CDMA码作为码域资源,应理解,以上列举的作为码域资源的具体实例仅为实例性说明,本发明并不限定于此,其他能够用于传输的码本均落入本发明的保护 范围内。
可选地,该SCMA码本包括至少两个码字,该SCMA码本用于指示至少两种数据组合与该至少两个码字的映射关系,该码字为多维复数向量,用于指示数据与多个调制符号之间的映射关系,该调制符号包括至少一个零调制符号和至少一个非零调制符号
具体地说,稀疏码多址接入(SCMA,Sparse Code Multiple Access)是一种非正交的多址接入技术,当然本领域技术人员也可以不把这个技术称之为SCMA,也可以称为其他技术名称。该技术借助码本在相同的传输资源上传输多个不同的数据流,其中不同的数据流使用的码本不同,从而达到提升资源的利用率。数据流可以来自同一个终端设备也可以来自不同的终端设备。
SCMA采用的码本为两个或两个以上码字的集合。
其中,码字可以为多维复数域向量,其维数为两维或两维以上,用于表示数据与两个或两个以上调制符号之间的映射关系,该映射关系可以为直接映射关系,该调制符号包括至少一个零调制符号和至少一个非零调制符号,数据可以为二进制比特数据或者多元数据可选的,零调制符号和非零调制符号的关系可以为零调制符号个数不少于非零调制符号个数。
码本由两个或两个以上的码字组成。码本可以表示一定长度的数据的可能的数据组合与码本中码字的映射关系,该映射关系可以为直接映射关系。
SCMA技术通过将数据流中的数据按照一定的映射关系直接映射为码本中的码字即多维复数向量,实现数据在多个资源单元上的扩展发送。SCMA技术中的直接映射关系可以理解为数据流中的数据不需要被映射为中间调制符号,或者有其他中间处理过程。这里的数据可以是二进制比特数据也可以是多元数据,多个资源单元可以是时域、频域、空域、时频域、时空域、时频空域的资源单元。
SCMA采用的码字可以具有一定稀疏性,比如说码字中的零元素数量可以不少于调制符号数量,以便于接收端可以利用多用户检测技术来进行较低复杂度的译码。这里,以上列举的零元素数量与调制符号的关系仅为稀疏性一个示例性说明,本发明并不限定于此,零元素数量与非零元素数量的比例可以根据需要任意设定。
在使用SCMA的通信系统中,多个用户复用同一个时频资源块进行数 据传输。每个资源块由若干资源RE组成,这里的RE可以是OFDM技术中的子载波-符号单元,也可以是其它空口技术中时域或频域的资源单元。例如,在一个包含L个终端设备的SCMA系统中,可用资源分成若干正交的时频资源块,每个资源块含有U个RE,其中,该U个RE可以是在时域上的位置相同。当终端设备#L发送数据时,首先将待发送数据分成S比特大小的数据块,通过查找码本(由网络设备确定并下发给该终端设备)将每个数据块映射成一组包括U个调制符号的调制符号序列X#L={X#L1,X#L2,…,X#LU},序列中的每个调制符号对应资源块中一个RE,然后根据调制符号生成信号波形。对于S比特大小的数据块,每个码本含有2S个不同的调制符号组,对应2S种可能的数据块。
上述码本也可以称为SCMA码本是SCMA码字集合,SCMA码字是一种信息比特到调制符号的映射关系。即,SCMA码本为上述映射关系的集合。
另外,在SCMA中,每个终端设备所对应的组调制符号X#k={X#k1,X#k2,…,X#kL}中,至少一个符号为零符号,并且,至少一个符号为非零符号。即,针对一个终端设备的数据,在L个RE中,只有部分RE(至少一个RE)承载有该终端设备的数据。
图5示出了以6个数据流复用4个资源单元作为举例的SCMA的比特映射处理(或者说,编码处理)的示意图,如图5所示,6个数据流组成一个分组,4个资源单元组成一个编码单元。一个资源单元可以为一个子载波,或者为一个RE,或者为一个天线端口。在图5中,数据流和资源单元之间有连线表示至少存在该数据流的一种数据组合经码字映射后会在该资源单元上发送非零的调制符号,而数据流和资源单元之间没有连线则表示该数据流的所有可能的数据组合经码字映射后在该资源单元上发送的调制符号都为零。数据流的数据组合可以按照如下阐述进行理解,例如,二进制比特数据流中,00、01、10、11为所有可能的两比特数据组合。为了描述方便,每个数据流的数据分别表示为s1至s6,每个资源单元发送的符号分别表示为x1至x4,并且数据流和资源单元之间的连线表示该数据流的数据经扩展后会在该资源单元上发送调制符号,其中,该调制符号可以为零符号(与零元素相对应),也可以为非零符号(与非零元素相对应),数据流和资源单元之间没有连线则表示该数据流的数据经扩展后不会在该资源单元上发送调制符号。
从图5中可以看出,每个数据流的数据经扩展后会在多个资源单元上发送,同时,每个资源单元发送的符号是来自多个数据流的数据经扩展后的非零符号的叠加。例如数据流3的数据s3经扩展后会在资源单元1和资源单元2上发送非零符号,而资源单元3发送的数据x2是数据流2、数据流4和数据流6的数据s2、s4和s6分别经扩展后得到的非零符号的叠加。由于数据流的数量可以大于资源单元的数量,因而该SCMA系统可以有效地提升网络容量,包括系统的可接入用户数和频谱效率等。
码本中的码字通常具有如下形式:
Figure PCTCN2015083099-appb-000001
而且,相对应的码本通常具有如下形式:
Figure PCTCN2015083099-appb-000002
其中,N为大于1的正整数,可以表示为一个编码单元所包含的资源单元数量,也可以理解为码字的长度;Qm为大于1的正整数,表示码本中包含的码字数量,与调制阶数对应,例如,在采样四相相移键控(QPSK,Quadrature Phase Shift Keying)或4阶调制时Qm为4;q表示Qm个码字中的第q个码字,q为正整数,且1≤q≤Qm;码本和码字所包含的元素cn,q为复数,cn,q数学上可以表示为:
cn,q∈{0,α*exp(j*β)},1≤n≤N,1≤q≤Qm
α可以为任意实数,β可以为任意值,N和Qm可以为正整数。
并且,码本中的码字可以和数据形成一定映射关系,例如码本中的码字可以与2比特数据形成一种映射关系。
例如,“00”可以对应码字1,即
Figure PCTCN2015083099-appb-000003
“01”可以对应码字2,即
Figure PCTCN2015083099-appb-000004
“10”可以对应码字3,即
Figure PCTCN2015083099-appb-000005
“11”可以对应码字4,即
Figure PCTCN2015083099-appb-000006
结合上述图3,当数据流与资源单元之间有连线时,数据流对应的码本和码本中的码字应具有如下特点:码本中至少存在一个码字在相应的资源单元上发送非零的调制符号,例如,数据流3和资源单元1之间有连线,则数据流3对应的码本至少有一个码字满足c1,q≠0,1≤q≤Qm
当数据流与资源单元之间没有连线时,数据流对应的码本和码本中的码字应具有如下特征:码本中所有码字在相应的资源单元上发送为零的调制符号,例如,数据流3和资源单元3之间没有连线,则数据流3对应的码本中的任意码字满足c3,q=0,1≤q≤Qm
综上所述,当调制阶数为QPSK时,上述图3中数据流3对应的码本可以具有如下形式和特征:
Figure PCTCN2015083099-appb-000007
其中,cn,q=α*exp(j*β),1≤n≤2,1≤q≤4,α和β可以为任意实数,对任意q,1≤q≤4,c1,q和c2,q不同时为零,且至少存在一组q1和q2,1≤q1,q2≤4,使得
Figure PCTCN2015083099-appb-000008
Figure PCTCN2015083099-appb-000009
举例地,如果数据流3的数据s3为“10”,则根据前述映射规则,该数据组合映射为码字即4维复数向量:
Figure PCTCN2015083099-appb-000010
可选地,该LDS序列包括至少两个签名序列,该LDS序列用于指示至少两种数据组合与该至少两个签名序列的映射关系,该签名序列为多维复数向量,该多维向量包括至少一个零元素和至少一个非零元素,该签名序列用于对调制符号进行幅度和相位的调整,该调制符号是通过调制星座对数据进行星座映射后得到的。
具体地说,低密度签名(LDS,Low Density Signature)技术也是一种非正交多址接入和传输技术,当然该LDS技术在通信领域还可以被称为其他名称。该类技术将来自一个或多个用户的O(O为不小于1的整数)个数据流叠加到P(P为不小于1的整数)个子载波上进行发送,其中每个数据流的每个数据都通过稀疏扩频的方式扩展到P个子载波上。当O的取值大于P时,该类技术可以有效地提升网络容量,包括系统可接入用户数和频谱效率等。因此,LDS技术作为一种重要的非正交接入技术,已经引起越来越多的关注,并成为未来无线蜂窝网络演进的重要备选接入技术。
如图5所示,以6个数据流复用4个资源单元为例进行说明,即O=6,且P=4,其中,O为正整数,表示数据流的数量;P为正整数,表示资源单元的数量。一个资源单元可以为一个子载波,或者为一个资源粒子(Resource Element,简称为“RE”),或者为一个天线端口。其中,6个数据流组成一个分组,4个资源单元组成一个编码单元。
在图6所示的二分图中,数据流和资源单元之间有连线表示至少存在该数据流的一种数据组合,该数据组合经星座映射以及幅度和相位的调整后在该资源单元上发送非零调制符号,而数据流和资源单元之间没有连线则表示该数据流的所有可能的数据组合经星座映射以及幅度和相位的调整后在该资源单元上发送的调制符号都为零调制符号。数据流的数据组合可以按照如下阐述进行理解,例如,在二进制比特数据流中,00、01、10、11为两比特数据的所有可能数据组合。为了描述方便,用s1至s6依次表示该二分图中6个数据流待发送的数据组合,用x1至x4依次表示该二分图中4个资源单元上发送的调制符号。
从该二分图中可以看出,每个数据流的数据组合经星座映射以及幅度和相位的调整后会在两个或两个以上的资源单元上发送调制符号,同时,每个资源单元发送的调制符号是来自两个或两个以上的数据流的数据组合经各自星座映射以及幅度和相位的调整后的调制符号的叠加。例如,数据流3的待发送数据组合s3经星座映射以及幅度和相位的调整后可能会在资源单元1和资源单元2上发送非零调制符号,而资源单元3发送的调制符号x3是数据流2、数据流4和数据流6的待发送数据组合s2、s4和s6分别经各自星座映射以及幅度和相位的调整后得到的非零调制符号的叠加。由于数据流的数量可以大于资源单元的数量,因而该非正交多址接入系统可以有效地提升网络容量,包括系统的可接入用户数和频谱效率等。
进一步地,如图6所示,数据流的数据(b1,b2)经星座映射后得到的调制符号为q,使用签名序列中的每一个元素,即调整因子,对调制符号q进行相位和幅度的调整,得到每个资源单元上发送的调制符号,分别为q*s1、q*s2、q*s3和q*s4。
应理解,以上列举的作为码域资源而列举的SCMA码本和LDS序列仅为示例性说明,本发明并未限定于此,还可以列举CDMA码等,这里,CDMA码的具体作用和使用方法可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
另外,以上列举的作为调制方式的参数或物理量仅为示例性说明,本发明并未限定于此,现有技术中的调制处理所涉及的参数或物理量均落入本发明的保护范围内。
并且,除了以上列举的数据调制方式和数据编码方式外,该控制信息还可以指示其他参数或物理量,例如,作为实例而非限定,可选地,该控制符号还用于指示该终端设备的设备标识。
通过使终端设备将其设备标识承载于控制信息中,例如,在一个终端设备通过多个控制时频资源(例如,多个CTU access region所对应的时频资源)传输控制信息已提高分集效果时,网络设备可以根据各控制时频资源所承载的控制信息中携带的终端设备的标识,确定哪些控制信息属于同一终端设备,从而能够提高网络设备的处理效率和处理效果。
下面对终端设备确定数据编码方式和数据调制方式的方法进行详细说明。
作为实例而非限定例如,在本发明实施例中,终端设备可以随机选择一种编码方式(例如,任意码率)作为初始数据编码方式,在进行上行传输时,可以根据网络设备的反馈结果对所选择的初始数据编码方式进行调整,例如,在反馈结果指示网络设备没有正确接收到上行数据(例如,网络设备反馈非确认(NACK)消息,或网络设备未反馈确认(ACK)消息)的情况下,终端设备可以减小码率。
类似地,终端设备可以随机选择一种调制方式(例如,任意调制阶数)作为初始数据调制方式,在进行上行传输时,可以根据网络设备的反馈结果对所选择的初始数据调制方式进行调整,例如,在反馈结果指示网络设备无法对上行数据进行译码(例如,网络设备反馈非确认(NACK)消息)的情况下,终端设备可以降低调制阶数。
应理解,以上列举的终端设备确定数据编码方式和数据调制方式的方法和过程仅为示例性说明,本发明并未限定于此,其他现有技术中能够确定编码方式和调制方式的方案均落入本发明的保护范围内,例如,终端设备也可以对上行传输所使用的信道进行质量检测,并根据检测结果确定数据编码方式和数据调制方式。
下面,对上述控制信息的形式进行详细说明。
可选地,该控制信息为该终端设备基于映射关系信息所确定的、与根据该终端设备所使用的数据编码方式和数据调制方式相对应的索引值,其中,该映射关系信息用于指示多个参数集合与多个索引值之间的一一映射关系,每个参数集合包括一个数据编码方式和一个数据调制方式,任意两个参数集合之间,数据编码方式和数据调制方式中的至少一方相异。
并且,可选地,该方法还包括:
向该终端设备发送该映射关系信息。
具体地说,在本发明实施例中,在网络设备中可以存储用于记录多个参数集合和多个索引值之间的一一映射关系的表项(即,映射关系信息的一例),其中,该参数集合可以包括多个参数,例如,数据编码方式和数据调制方式,需要说明的是,参数集合所包括的参数的种类可以根据控制信息所能够指示的参数或物理量任意变更。以下表1示出了该表项的一例。
表1
索引值 调制阶数 码率 码域资源(可选) 导频与码域资源的 ...
        映射规则(可选)  
0 2 0.5 低密度签名组 规则1 ...
1 2 0.5 低密度签名组 规则2 ...
2 2 0.5 码分多址码组 规则1 ...
3 2 0.5 码分多址码组 规则2 ...
4 2 0.8 低密度签名组 规则1 ...
5 2 0.8 低密度签名组 规则2 ...
6 2 0.8 码分多址码组 规则1 ...
7 2 0.8 码分多址码组 规则2 ...
8 4 0.5 低密度签名组 规则1 ...
... ... ... ... ... ...
应理解,以上表1所示的各参数或物理量的种类和具体数值仅为示例性说明,本发明并未限定于此。
网络设备可以通过例如广播消息等,将上述映射关系信息(例如,表1)下发给终端设备。
从而,终端设备在确定了数据编码方式和数据调制方式后,可以根据数据编码方式和数据调制方式中各参数或物理量的种类和具体数值,查找表1中所记录的与该具体数值相对应的索引值作为控制信息发送给网络设备。
相应地,网络设备可以根据所接收到的索引值,查找表1中所记录的与该索引值相对应的各参数或物理量的种类和具体数值,作为该终端设备所使用的数据编码方式和数据调制方式。
通过将索引值作为控制信息,能够减少传输控制信息的资源消耗,提高传输效率。
应理解,以上列举的终端设备获取映射关系信息的方式仅为示例性说明,本发明并不限定于此,只要能够确保网络设备或终端设备所使用的映射关系相同即可,例如,还可以由运营商或生产厂家预先将该映射关系信息配置在终端设备中。
在本发明实施例中,多个终端设备可以复用同一控制时频资源传输控制信息(即,情况1),或者,一个控制时频资源(例如,一个或多个CTU access region对应的时频资源)仅用于一个终端设备的控制信息的传输(即,情况 2)
下面,分别对以上两种情况下,控制信息的传输方式进行详细说明。
情况1
可选地,当一个控制时频资源仅用于传输一个终端设备的控制符号时,该终端设备所使用的控制时频资源是根据该终端设备传输该控制符号是使用的导频资源确定的。
例如,在本发明实施例中,可以使系统提供的各控制时频资源与系统提供的各导频或导频集合(即,导频资源的一例)具有一一映射关系,从而,能够使选择不同导频的终端设备通过不同的控制时频资源传输控制信息(或者说,控制符号)。
具体地说网络设备或终端设备可以基于以下公式确定终端设备所使用的控制时频资源。
REindex=(RSindex–1)*k+1~RSindex*k
其中,REindex(m)表示该终端设备所使用的控制时频资源的编号,RSindex表示终端设备所选的导频资源的编号,k表示该终端设备所使用的控制时频资源所占用的CTU access region的数量。
应理解,以上列举的通过导频资源来确定控制时频资源的方式仅为实例性说明,本发明并未限定于此,例如,还可以使系统提供的各控制时频资源与基于各设备标识确定的信息(例如,当该设备标识为10进制数字时,该信息可以是各设备标识对规定阈值进行求余处理所得到的值)具有一一映射关系,从而,能够支持不同的终端设备通过不同的控制时频资源传输控制信息(或者说,控制符号)。这里,作为设备标识,可以列举终端设备的媒体接入控制(MAC,Media Access Control)地址或手机号码等能够唯一地区分一个终端设备的标识。
可选地,该方法还包括:
向该终端设备发送非复用模式信息,该非复用模式信息用于指示一个控制时频资源仅用于传输一个终端设备的控制符号。
具体地说,当一个控制时频资源(由一个或多个CTU access region的时频资源构成)仅用于传输一个终端设备的控制符号时,网络设备还可以通过该非复用模式信息指示该模式,例如,可以由一个比特位,例如“1”表示一个控制时频资源仅用于传输一个终端设备的控制符号。
情况2
当一个控制时频资源能够用于传输多个终端设备的控制符号时,该多个终端设备生成控制符号时使用的码域资源相异。
具体地说,在本发明实施例中,多个终端设备可以采用码分复用的方式通过同一控制时频资源(由一个或多个CTU access region的时频资源构成)传输控制信息,即,多个终端设备分别使用相异的码域资源(例如,CDMA码、LDS序列、SCMA码本等)。
该方法还包括:
向该终端设备发送复用模式信息,该复用模式信息用于指示一个控制时频资源能够用于传输多个终端设备的控制符号。
具体地说,当一个控制时频资源(由一个或多个CTU access region的时频资源构成)能够传输多个终端设备的控制符号时,网络设备还可以通过该复用模式信息指示该模式,例如,可以由一个比特位,例如“1”表示一个控制时频资源能够用于传输多个终端设备的控制符号。
由于上述控制信息为终端设备发送给网络设备的上行信息,因此,为了提高该控制信息传输的准确性,需要使网络设备获知该控制信息的编码方式(即,控制编码方式)和调制方式(即,控制调制方式)。
即,如上所述确定了终端设备所使用的控制信息和用于承载该终端设备的控制信息的控制时频资源后,终端设备可以选择编码方式(即,控制编码方式)和调制方式(即,控制调制方式)对该终端设备所使用的控制信息进行编码处理和调制处理已生成控制符号,并通过该终端设备所使用的控制时频资源发送该控制符号。
相应地,网络设备在通过该终端设备所使用的控制时频资源接收到控制符号后,可以确定该终端设备所使用的控制编码方式和控制调制方式,并基于相应的译码方式和解调方式该控制符号进行译码处理和解调处理,以获取该控制信息。
在本发明实施例中,可以使终端设备和网络设备规定方式以使其所确定的上述控制编码方式和控制调制方式相同。
在本发明实施例中,通信系统中的各终端设备所采用的控制编码方式可以相同,例如,可以采用较低的码率。
作为示例而非限定,在本发明实施例中,该控制编码方式可以为1/3码 率的卷积码。
类似地,通信系统中的各终端设备所采用的控制调制方式可以相同,例如,可以采用较低的调制阶数。
作为示例而非限定,在本发明实施例中,该控制调制方式可以为:4点的SCMA码本,调制阶数为2。
或者,可选地,该终端设备所使用的控制编码方式和控制调制方式是根据该终端设备传输该控制符号时使用的导频资源确定的。
具体地说,在本发明实施例中,通信系统中的各终端设备所采用的控制编码方式也可以相异。
此情况下,可以使系统提供的各控制编码方式与系统提供的各导频或导频集合(即,导频资源的一例)具有一一映射关系,从而,能够使选择不同导频的终端设备通过不同的控制编码方式对控制信息进行编码处理。
应理解,以上列举的通过导频资源来确定控制时频资源的方式仅为实例性说明,本发明并未限定于此,例如,还可以使系统提供的各控制时频资源与基于各设备标识确定的信息具有一一映射关系,从而,能够支持不同的终端设备通过不同的控制编码方式对控制信息进行编码处理。
类似地,在本发明实施例中,通信系统中的各终端设备所采用的控制调制方式也可以相异。
此情况下,可以使系统提供的各控制调制方式与系统提供的各导频或导频集合(即,导频资源的一例)具有一一映射关系,从而,能够使选择不同导频的终端设备通过不同的控制调制方式对控制信息进行编码处理。
应理解,以上列举的通过导频资源来确定控制时频资源的方式仅为实例性说明,本发明并未限定于此,例如,还可以使系统提供的各控制时频资源与基于各设备标识确定的信息具有一一映射关系,从而,能够支持不同的终端设备通过不同的控制调制方式对控制信息进行编码处理。
由此,网络设备或终端设备能够通过承载于控制时频资源的控制信息协商确定针对承载于数据时频资源的上行数据的数据编码方式和数据调制方式。
其后,网络设备或终端设备可以基于该数据编码方式和数据调制方式进行上行数据的传输,并且,该过程与现有技术相似,这里为了避免赘述,省略其详细说明。
需要说明的是,在本发明实施例中,终端设备所使用的控制编码方式和控制调制方式可以是通信系统或者通信协议所预先规定的编码方式和调制方式。
根据本发明实施例的传输上行数据的方法,将用于上行传输的时频资源划分为控制时频资源和数据时频资源,使网络设备或终端设备约定用针对承载于控制时频资源的信息的控制编码方式和控制调制方式,终端设备在确定针对上行数据的数据编码方式后根据上述约定的控制编码方式和控制调制方式对指示该数据编码方式的控制信息进行编码处理和调制处理生成控制符号,相应地,网络设备能够根据上述约定的控制编码方式和控制调制方式对该控制符号进行解调处理和译码处理,获取控制信息,并确定该控制信息所指示的上行数据的编码方式,从而,能够在无需网络设备通知的情况下完成上行数据的编码方式的协商,能够提高上行传输的灵活性,并且,能够提高Grant-free传输方案的可靠性。
上文中结合图1至图6,从网络设备的角度详细描述了根据本发明实施例的传输上行数据的方法,下面将结合图7,从终端设备的角度描述根据本发明实施例的传输上行数据的方法。
图7示出了从终端设备角度描述的根据本发明实施例的传输上行数据的方法400的示意性流程图,如图7所示,该方法400包括:
S410,终端设备根据该终端设备所使用的控制编码方式和控制调制方式,对控制信息进行编码调制处理,以获取控制符号,该控制信息用于指示该终端设备所使用的数据编码方式;
S420,通过控制时频资源向网络设备发送该控制符号,并通过数据时频资源向该网络设备发送数据符号,其中,该控制时频资源和该数据时频资源属于用于上行传输的传输资源,该控制时频资源与该数据时频资源相异,该数据符号是该终端设备根据该终端设备所使用的数据编码方式对上行数据进行编码处理后生成的。
可选地,该数据符号是该终端设备通过免授权传输的方式发送给该网络设备的,该免授权传输为网络设备预先分配并告知终端设备多个传输资源,以使该终端设备有上行数据传输需求时,从该多个传输资源中选择至少一个传输资源,并通过所选择的传输资源发送上行数据。
可选地,该控制编码方式包括对该控制信息进行编码处理时使用的码 率,
该控制调制方式包括对该控制信息进行调制处理时使用的调制阶数和码域资源。
可选地,该终端设备所使用的控制编码方式和控制调制方式是根据该终端设备传输该控制符号时使用的导频资源确定的。
可选地,该终端设备所使用的数据编码方式包括该终端设备对该上行数据进行编码处理时使用的码率。
可选地,该数据符号是该终端设备根据该终端设备所使用的数据调制方式对该上行数据进行调制处理后生成的。
可选地,该终端设备所使用的数据调制方式包括该终端设备对该上行数据进行调制处理时使用的调制阶数和码域资源。
可选地,该终端设备所使用的控制调制方式与该终端设备所使用的数据调制方式相同。
可选地,该终端设备所使用的数据调制方式是根据该终端设备所使用的导频资源确定的。
可选地,该控制信息还用于指示该终端设备所使用的数据调制方式。
可选地,该控制信息为与根据该终端设备所使用的数据编码方式和数据调制方式相对应的索引值,且该控制信息是该终端设备基于映射关系信息确定的,其中,该映射关系信息用于指示多个参数集合与多个索引值之间的一一映射关系,每个参数集合包括一个数据编码方式和一个数据调制方式,任意两个参数集合之间,数据编码方式和数据调制方式中的至少一方相异。
可选地,该方法还包括:
接收该网络设备发送的该映射关系信息。
可选地,该方法还包括:
接收该网络设备发送的控制时频资源的指示信息,该控制时频资源的指示信息用于指示控制时频资源在该传输资源所包括的多个时频资源中的位置;
根据该控制时频资源的指示信息,从该多个时频资源中,确定该控制时频资源。
可选地,该控制时频资源的指示信息具体用于指示多个控制时频资源在该多个时频资源中连续分布;或
该控制时频资源的指示信息具体用于指示多个控制时频资源在该多个时频资源中离散分布。
可选地,当一个控制时频资源仅用于传输一个终端设备的控制符号时,该终端设备传输该控制符号时使用的控制时频资源是根据该终端设备传输该控制符号时使用的导频资源确定的。
可选地,该方法还包括:
接收该网络设备发送的非复用模式信息,该非复用模式信息用于指示一个控制时频资源仅用于传输一个终端设备的控制符号。
可选地,当一个控制时频资源能够用于传输多个终端设备的控制符号时,该多个终端设备生成控制符号时使用的码域资源相异。
可选地,该方法还包括:
接收该网络设备发送的复用模式信息,该复用模式信息用于指示一个控制时频资源能够用于传输多个终端设备的控制符号。
可选地,该控制信息还用于指示该终端设备的设备标识。
可选地,该网络设备为基站,该终端设备为用户设备。
上述方法400中终端设备的动作与上述方法200中终端设备的动作相似,并且上述方法400中网络设备的动作与上述方法200中网络设备的动作相似,这里,为了避免赘述,省略其详细说明。
根据本发明实施例的传输上行数据的方法,将用于上行传输的时频资源划分为控制时频资源和数据时频资源,使网络设备或终端设备约定用针对承载于控制时频资源的信息的控制编码方式和控制调制方式,终端设备在确定针对上行数据的数据编码方式后根据上述约定的控制编码方式和控制调制方式对指示该数据编码方式的控制信息进行编码处理和调制处理生成控制符号,相应地,网络设备能够根据上述约定的控制编码方式和控制调制方式对该控制符号进行解调处理和译码处理,获取控制信息,并确定该控制信息所指示的上行数据的编码方式,从而,能够在无需网络设备通知的情况下完成上行数据的编码方式的协商,能够提高上行传输的灵活性,并且,能够提高Grant-free传输方案的可靠性。
以上,结合图1至图7详细说明了根据本发明实施例的传输上行数据的方法,下面,结合图8至图9详细说明根据本发明实施例的传输上行数据的装置。
图8示出了根据本发明实施例的传输上行数据的装置500的示意性框图,如图8所示,该装置500包括:
接收单元510,用于接收该终端设备通过控制时频资源发送的控制符号,其中,该控制符号是该终端设备根据该终端设备所使用的控制编码方式和控制调制方式对控制信息进行编码调制处理后生成的,该控制信息用于指示该终端设备所使用的数据编码方式,该控制时频资源属于用于上行传输的传输资源,该传输资源还包括数据时频资源,该控制时频资源与该数据时频资源相异;
处理单元520,用于根据该终端设备所使用的控制编码方式和控制调制方式,对该控制符号进行解调译码处理,以获取该控制信息,用于根据该控制信息,对该终端设备通过该数据时频资源发送的数据符号进行译码处理,以获取上行数据,其中,该数据符号是该终端设备根据该终端设备所使用的数据编码方式对该上行数据进行编码处理后生成的。
可选地,该数据符号是该终端设备通过免授权传输的方式发送给该装置的,该免授权传输为设备预先分配并告知终端设备多个传输资源,以使该终端设备有上行数据传输需求时,从该多个传输资源中选择至少一个传输资源,并通过所选择的传输资源发送上行数据。
可选地,该控制编码方式包括对该控制信息进行编码处理时使用的码率,
该控制调制方式包括对该控制信息进行调制处理时使用的调制阶数和码域资源。
可选地,该终端设备所使用的控制编码方式和控制调制方式是根据该终端设备传输该控制符号时使用的导频资源确定的。
可选地,该终端设备所使用的数据编码方式包括该终端设备对该上行数据进行编码处理时使用的码率。
可选地,该处理单元还用于根据该终端设备所使用的数据调制方式,对该数据符号进行解调处理,以获取上行数据,其中,该数据符号是该终端设备根据该终端设备所使用的数据调制方式对该上行数据进行调制处理后生成的。
可选地,该终端设备所使用的数据调制方式包括该终端设备对该上行数据进行调制处理时使用的调制阶数和码域资源。
可选地,该终端设备所使用的控制调制方式与该终端设备所使用的数据调制方式相同。
可选地,该终端设备所使用的数据调制方式是根据该终端设备所使用的导频资源确定的。
可选地,该控制信息还用于指示该终端设备所使用的数据调制方式。
可选地,该控制信息为与根据该终端设备所使用的数据编码方式和数据调制方式相对应的索引值,且该控制信息是该终端设备基于映射关系信息确定的,其中,该映射关系信息用于指示多个参数集合与多个索引值之间的一一映射关系,每个参数集合包括一个数据编码方式和一个数据调制方式,任意两个参数集合之间,数据编码方式和数据调制方式中的至少一方相异。
可选地,该装置还包括发送单元,与该处理单元相连接;
该处理单元还用于控制该发送单元向该终端设备发送该映射关系信息。
可选地,该装置还包括发送单元,与该处理单元相连接;
该处理单元还用于控制该发送单元向终端设备发送控制时频资源的指示信息,该控制时频资源的指示信息用于指示控制时频资源在该传输资源所包括的多个时频资源中的位置。
可选地,该控制时频资源的指示信息具体用于指示多个控制时频资源在该多个时频资源中连续分布;或
该控制时频资源的指示信息具体用于指示多个控制时频资源在该多个时频资源中离散分布。
可选地,当一个控制时频资源仅用于传输一个终端设备的控制符号时,该终端设备传输该控制符号时使用的控制时频资源是根据该终端设备传输该控制符号时使用的导频资源确定的。
可选地,该装置还包括发送单元,与该处理单元相连接;
该处理单元还用于控制该发送单元向该终端设备发送非复用模式信息,该非复用模式信息用于指示一个控制时频资源仅用于传输一个终端设备的控制符号。
可选地,当一个控制时频资源能够用于传输多个终端设备的控制符号时,该多个终端设备生成控制符号时使用的码域资源相异。
可选地,该装置还包括发送单元,与该处理单元相连接;
该处理单元还用于控制该发送单元向该终端设备发送复用模式信息,该 复用模式信息用于指示一个控制时频资源能够用于传输多个终端设备的控制符号。
可选地,该控制信息还用于指示该终端设备的设备标识。
可选地,该装置为基站,该终端设备为用户设备。
根据本发明实施例的传输信息的装置500可对应于本发明实施例的方法中的网络设备,并且,传输信息的装置500中的各单元即模块和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程,为了简洁,在此不再赘述。
根据本发明实施例的传输上行数据的装置,将用于上行传输的时频资源划分为控制时频资源和数据时频资源,使网络设备或终端设备约定用针对承载于控制时频资源的信息的控制编码方式和控制调制方式,终端设备在确定针对上行数据的数据编码方式后根据上述约定的控制编码方式和控制调制方式对指示该数据编码方式的控制信息进行编码处理和调制处理生成控制符号,相应地,网络设备能够根据上述约定的控制编码方式和控制调制方式对该控制符号进行解调处理和译码处理,获取控制信息,并确定该控制信息所指示的上行数据的编码方式,从而,能够在无需网络设备通知的情况下完成上行数据的编码方式的协商,能够提高上行传输的灵活性,并且,能够提高Grant-free传输方案的可靠性。
图9示出了根据本发明实施例的传输信息的装置600的示意性框图,如图9所示,该装置600包括:
处理单元610,用于根据该装置所对应的控制编码方式和控制调制方式,对控制信息进行编码调制处理,以获取控制符号,该控制信息用于指示该装置所对应的数据编码方式;
发送单元620,用于通过控制时频资源向网络设备发送该控制符号,并通过数据时频资源向该网络设备发送数据符号,其中,该控制时频资源和该数据时频资源属于用于上行传输的传输资源,该控制时频资源与该数据时频资源相异,该数据符号是该装置根据该装置所对应的数据编码方式对上行数据进行编码处理后生成的。
可选地,该数据符号是该装置通过免授权传输的方式发送给该网络设备的,该免授权传输为网络设备预先分配并告知设备多个传输资源,以使该装置有上行数据传输需求时,从该多个传输资源中选择至少一个传输资源,并 通过所选择的传输资源发送上行数据。
可选地,该控制编码方式包括对该控制信息进行编码处理时使用的码率,
该控制调制方式包括对该控制信息进行调制处理时使用的调制阶数和码域资源。
可选地,该装置所对应的控制编码方式和控制调制方式是根据该装置传输该控制符号时使用的导频资源确定的。
可选地,该装置所对应的数据编码方式包括该装置对该上行数据进行编码处理时使用的码率。
可选地,该数据符号是该装置根据该装置所对应的数据调制方式对该上行数据进行调制处理后生成的。
可选地,该装置所对应的数据调制方式包括该装置对该上行数据进行调制处理时使用的调制阶数和码域资源。
可选地,该装置所对应的控制调制方式与该装置所对应的数据调制方式相同。
可选地,该装置所对应的数据调制方式是根据该装置所对应的导频资源确定的。
可选地,该控制信息还用于指示该装置所对应的数据调制方式。
可选地,该控制信息为与根据该装置所对应的数据编码方式和数据调制方式相对应的索引值,且该控制信息是该装置基于映射关系信息确定的,其中,该映射关系信息用于指示多个参数集合与多个索引值之间的一一映射关系,每个参数集合包括一个数据编码方式和一个数据调制方式,任意两个参数集合之间,数据编码方式和数据调制方式中的至少一方相异。
可选地,该装置还包括接收单元,与该处理单元相连接;
该处理单元还用于控制该接收单元接收该网络设备发送的该映射关系信息。
可选地,该装置还包括接收单元,与该处理单元相连接;
该处理单元还用于控制该接收单元接收该网络设备发送的控制时频资源的指示信息,该控制时频资源的指示信息用于指示控制时频资源在该传输资源所包括的多个时频资源中的位置;
用于根据该控制时频资源的指示信息,从该多个时频资源中,确定该控 制时频资源。
可选地,该控制时频资源的指示信息具体用于指示多个控制时频资源在该多个时频资源中连续分布;或
该控制时频资源的指示信息具体用于指示多个控制时频资源在该多个时频资源中离散分布。
可选地,当一个控制时频资源仅用于传输一个设备的控制符号时,该装置传输该控制符号时使用的控制时频资源是根据该装置传输该控制符号时使用的导频资源确定的。
可选地,该装置还包括接收单元,与该处理单元相连接;
该处理单元还用于控制该接收单元接收该网络设备发送的非复用模式信息,该非复用模式信息用于指示一个控制时频资源仅用于传输一个设备的控制符号。
可选地,当一个控制时频资源能够用于传输多个设备的控制符号时,该多个设备生成控制符号时使用的码域资源相异。
可选地,该装置还包括接收单元,与该处理单元相连接;
该处理单元还用于控制该接收单元接收该网络设备发送的复用模式信息,该复用模式信息用于指示一个控制时频资源能够用于传输多个设备的控制符号。
可选地,该控制信息还用于指示该装置的设备标识。
可选地,该网络设备为基站,该装置为用户设备。
根据本发明实施例的传输信息的装置600可对应于本发明实施例的方法中的终端设备,并且,传输信息的装置600中的各单元即模块和上述其他操作和/或功能分别为了实现图7中的方法400的相应流程,为了简洁,在此不再赘述。
根据本发明实施例的传输上行数据的装置,将用于上行传输的时频资源划分为控制时频资源和数据时频资源,使网络设备或终端设备约定用针对承载于控制时频资源的信息的控制编码方式和控制调制方式,终端设备在确定针对上行数据的数据编码方式后根据上述约定的控制编码方式和控制调制方式对指示该数据编码方式的控制信息进行编码处理和调制处理生成控制符号,相应地,网络设备能够根据上述约定的控制编码方式和控制调制方式对该控制符号进行解调处理和译码处理,获取控制信息,并确定该控制信息 所指示的上行数据的编码方式,从而,能够在无需网络设备通知的情况下完成上行数据的编码方式的协商,能够提高上行传输的灵活性,并且,能够提高Grant-free传输方案的可靠性。
以上,结合图1至图7详细说明了根据本发明实施例的传输上行数据的方法,下面,结合图10至图11详细说明根据本发明实施例的传输上行数据的设备。
图10示出了根据本发明实施例的传输上行数据的设备500的示意性框图,如图10所示,该设备700包括:处理器710和接收器720,处理器710和接收器720相连,可选地,该设备700还包括存储器730,存储器730与处理器710相连,进一步可选地,该设备700包括总线系统740。其中,处理器710、存储器720和发送器730可以通过总线系统740相连,该存储器730可以用于存储指令,该处理器710用于执行该存储器730存储的指令,以控制接收器720接收信息或信号;
处理器710,用于控制该接收器720接收该终端设备通过控制时频资源发送的控制符号,其中,该控制符号是该终端设备根据该终端设备所使用的控制编码方式和控制调制方式对控制信息进行编码调制处理后生成的,该控制信息用于指示该终端设备所使用的数据编码方式,该控制时频资源属于用于上行传输的传输资源,该传输资源还包括数据时频资源,该控制时频资源与该数据时频资源相异;
用于根据该终端设备所使用的控制编码方式和控制调制方式,对该控制符号进行解调译码处理,以获取该控制信息;
用于根据该控制信息,对该终端设备通过该数据时频资源发送的数据符号进行译码处理,以获取上行数据,其中,该数据符号是该终端设备根据该终端设备所使用的数据编码方式对该上行数据进行编码处理后生成的。
可选地,该数据符号是该终端设备通过免授权传输的方式发送给该设备的,该免授权传输为设备预先分配并告知终端设备多个传输资源,以使该终端设备有上行数据传输需求时,从该多个传输资源中选择至少一个传输资源,并通过所选择的传输资源发送上行数据。
可选地,该控制编码方式包括对该控制信息进行编码处理时使用的码率,
该控制调制方式包括对该控制信息进行调制处理时使用的调制阶数和 码域资源。
可选地,该终端设备所使用的控制编码方式和控制调制方式是根据该终端设备传输该控制符号时使用的导频资源确定的。
可选地,该终端设备所使用的数据编码方式包括该终端设备对该上行数据进行编码处理时使用的码率。
可选地,该处理器还用于根据该终端设备所使用的数据调制方式,对该数据符号进行解调处理,以获取上行数据,其中,该数据符号是该终端设备根据该终端设备所使用的数据调制方式对该上行数据进行调制处理后生成的。
可选地,该终端设备所使用的数据调制方式包括该终端设备对该上行数据进行调制处理时使用的调制阶数和码域资源。
可选地,该终端设备所使用的控制调制方式与该终端设备所使用的数据调制方式相同。
可选地,该终端设备所使用的数据调制方式是根据该终端设备所使用的导频资源确定的。
可选地,该控制信息还用于指示该终端设备所使用的数据调制方式。
可选地,该控制信息为与根据该终端设备所使用的数据编码方式和数据调制方式相对应的索引值,且该控制信息是该终端设备基于映射关系信息确定的,其中,该映射关系信息用于指示多个参数集合与多个索引值之间的一一映射关系,每个参数集合包括一个数据编码方式和一个数据调制方式,任意两个参数集合之间,数据编码方式和数据调制方式中的至少一方相异。
可选地,该设备还包括发送器,与该处理器相连接;
该处理器还用于控制该发送器向该终端设备发送该映射关系信息。
可选地,该设备还包括发送器,与该处理器相连接;
该处理器还用于控制该发送器向终端设备发送控制时频资源的指示信息,该控制时频资源的指示信息用于指示控制时频资源在该传输资源所包括的多个时频资源中的位置。
可选地,该控制时频资源的指示信息具体用于指示多个控制时频资源在该多个时频资源中连续分布;或
该控制时频资源的指示信息具体用于指示多个控制时频资源在该多个时频资源中离散分布。
可选地,当一个控制时频资源仅用于传输一个终端设备的控制符号时,该终端设备传输该控制符号时使用的控制时频资源是根据该终端设备传输该控制符号时使用的导频资源确定的。
可选地,该设备还包括发送器,与该处理器相连接;
该处理器还用于控制该发送器向该终端设备发送非复用模式信息,该非复用模式信息用于指示一个控制时频资源仅用于传输一个终端设备的控制符号。
可选地,当一个控制时频资源能够用于传输多个终端设备的控制符号时,该多个终端设备生成控制符号时使用的码域资源相异。
可选地,该设备还包括发送器,与该处理器相连接;
该处理器还用于控制该发送器向该终端设备发送复用模式信息,该复用模式信息用于指示一个控制时频资源能够用于传输多个终端设备的控制符号。
可选地,该控制信息还用于指示该终端设备的设备标识。
可选地,该设备为基站,该终端设备为用户设备。
应理解,在本发明实施例中,该处理器710可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器710还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器730可以包括只读存储器和随机存取存储器,并向处理器710提供指令和数据。存储器730的一部分还可以包括非易失性随机存取存储器。例如,存储器730还可以存储设备类型的信息。
该总线系统740除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统740。
在实现过程中,上述方法的各步骤可以通过处理器710中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。 该存储介质位于存储器730,处理器710读取存储器730中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的传输信息的设备700可对应于本发明实施例的方法中的网络设备,并且,传输信息的设备700中的各单元即模块和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程,为了简洁,在此不再赘述。
根据本发明实施例的传输上行数据的设备,将用于上行传输的时频资源划分为控制时频资源和数据时频资源,使网络设备或终端设备约定用针对承载于控制时频资源的信息的控制编码方式和控制调制方式,终端设备在确定针对上行数据的数据编码方式后根据上述约定的控制编码方式和控制调制方式对指示该数据编码方式的控制信息进行编码处理和调制处理生成控制符号,相应地,网络设备能够根据上述约定的控制编码方式和控制调制方式对该控制符号进行解调处理和译码处理,获取控制信息,并确定该控制信息所指示的上行数据的编码方式,从而,能够在无需网络设备通知的情况下完成上行数据的编码方式的协商,能够提高上行传输的灵活性,并且,能够提高Grant-free传输方案的可靠性。
图11示出了根据本发明实施例的传输信息的设备800的示意性框图,如图11所示,该设备800包括:处理器810和发送器820,处理器810和接收器820相连,可选地,该设备800还包括存储器830,存储器830与处理器810相连,进一步可选地,该设备800包括总线系统840。其中,处理器810、存储器830和发送器820可以通过总线系统840相连,该存储器830可以用于存储指令,该处理器810用于执行该存储器830存储的指令,以控制发送器820发送信息或信号;
处理器810,用于根据该设备所使用的控制编码方式和控制调制方式,对控制信息进行编码调制处理,以获取控制符号,该控制信息用于指示该设备所使用的数据编码方式;
用于控制该发送器820通过控制时频资源向网络设备发送该控制符号,并通过数据时频资源向该网络设备发送数据符号,其中,该控制时频资源和该数据时频资源属于用于上行传输的传输资源,该控制时频资源与该数据时频资源相异,该数据符号是该设备根据该设备所使用的数据编码方式对上行数据进行编码处理后生成的。
可选地,该数据符号是该设备通过免授权传输的方式发送给该网络设备的,该免授权传输为网络设备预先分配并告知设备多个传输资源,以使该设备有上行数据传输需求时,从该多个传输资源中选择至少一个传输资源,并通过所选择的传输资源发送上行数据。
可选地,该控制编码方式包括对该控制信息进行编码处理时使用的码率,
该控制调制方式包括对该控制信息进行调制处理时使用的调制阶数和码域资源。
可选地,该设备所使用的控制编码方式和控制调制方式是根据该设备传输该控制符号时使用的导频资源确定的。
可选地,该设备所使用的数据编码方式包括该设备对该上行数据进行编码处理时使用的码率。
可选地,该数据符号是该设备根据该设备所使用的数据调制方式对该上行数据进行调制处理后生成的。
可选地,该设备所使用的数据调制方式包括该设备对该上行数据进行调制处理时使用的调制阶数和码域资源。
可选地,该设备所使用的控制调制方式与该设备所使用的数据调制方式相同。
可选地,该设备所使用的数据调制方式是根据该设备所使用的导频资源确定的。
可选地,该控制信息还用于指示该设备所使用的数据调制方式。
可选地,该控制信息为与根据该设备所使用的数据编码方式和数据调制方式相对应的索引值,且该控制信息是该设备基于映射关系信息确定的,其中,该映射关系信息用于指示多个参数集合与多个索引值之间的一一映射关系,每个参数集合包括一个数据编码方式和一个数据调制方式,任意两个参数集合之间,数据编码方式和数据调制方式中的至少一方相异。
可选地,该设备还包括接收器,与该处理器相连接;
该处理器还用于控制该接收器接收该网络设备发送的该映射关系信息。
可选地,该设备还包括接收器,与该处理器相连接;
该处理器还用于控制该接收器接收该网络设备发送的控制时频资源的指示信息,该控制时频资源的指示信息用于指示控制时频资源在该传输资源 所包括的多个时频资源中的位置;
用于根据该控制时频资源的指示信息,从该多个时频资源中,确定该控制时频资源。
可选地,该控制时频资源的指示信息具体用于指示多个控制时频资源在该多个时频资源中连续分布;或
该控制时频资源的指示信息具体用于指示多个控制时频资源在该多个时频资源中离散分布。
可选地,当一个控制时频资源仅用于传输一个设备的控制符号时,该设备传输该控制符号时使用的控制时频资源是根据该设备传输该控制符号时使用的导频资源确定的。
可选地,该设备还包括接收器,与该处理器相连接;
该处理器还用于控制该接收器接收该网络设备发送的非复用模式信息,该非复用模式信息用于指示一个控制时频资源仅用于传输一个设备的控制符号。
可选地,当一个控制时频资源能够用于传输多个设备的控制符号时,该多个设备生成控制符号时使用的码域资源相异。
可选地,该设备还包括接收器,与该处理器相连接;
该处理器还用于控制该接收器接收该网络设备发送的复用模式信息,该复用模式信息用于指示一个控制时频资源能够用于传输多个设备的控制符号。
可选地,该控制信息还用于指示该设备的设备标识。
可选地,该网络设备为基站,该设备为用户设备。
应理解,在本发明实施例中,该处理器810可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器810还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器830可以包括只读存储器和随机存取存储器,并向处理器810提供指令和数据。存储器830的一部分还可以包括非易失性随机存取存储器。例如,存储器830还可以存储设备类型的信息。
该总线系统840除包括数据总线之外,还可以包括电源总线、控制总线 和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统840。
在实现过程中,上述方法的各步骤可以通过处理器810中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器830,处理器810读取存储器830中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的传输信息的设备800可对应于本发明实施例的方法中的终端设备,并且,传输信息的设备800中的各单元即模块和上述其他操作和/或功能分别为了实现图7中的方法400的相应流程,为了简洁,在此不再赘述。
根据本发明实施例的传输上行数据的设备,将用于上行传输的时频资源划分为控制时频资源和数据时频资源,使网络设备或终端设备约定用针对承载于控制时频资源的信息的控制编码方式和控制调制方式,终端设备在确定针对上行数据的数据编码方式后根据上述约定的控制编码方式和控制调制方式对指示该数据编码方式的控制信息进行编码处理和调制处理生成控制符号,相应地,网络设备能够根据上述约定的控制编码方式和控制调制方式对该控制符号进行解调处理和译码处理,获取控制信息,并确定该控制信息所指示的上行数据的编码方式,从而,能够在无需网络设备通知的情况下完成上行数据的编码方式的协商,能够提高上行传输的灵活性,并且,能够提高Grant-free传输方案的可靠性。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上某一实施例中的技术特征和描述,为了使申请文件简洁清楚,可以理解适用于其他实施例,比如方法实施例的技术特征可以适用于装置实施例或其他方法实施例,在其他实施例不再一一赘述。
以上实施例中的发送模块或发送单元或发送器可以指在空口上进行发送,可以不是空口上发送,而是发送给其他设备以便于其他设备在空口上发送。以上实施例中的接收模块或接收单元或接收器可以指在空口上进行接收,也可以不是空口上接收,而是通过在空口上进行接收的其他设备处进行接收。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前 述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (80)

  1. 一种传输上行数据的方法,其特征在于,所述方法包括:
    网络设备接收终端设备通过控制时频资源发送的控制符号,其中,所述控制符号是所述终端设备根据所述终端设备所使用的控制编码方式和控制调制方式对控制信息进行编码调制处理后生成的,所述控制信息用于指示所述终端设备所使用的数据编码方式,所述控制时频资源属于用于上行传输的传输资源,所述传输资源还包括数据时频资源,所述控制时频资源与所述数据时频资源相异;
    根据所述终端设备所使用的控制编码方式和控制调制方式,对所述控制符号进行解调译码处理,以获取所述控制信息;
    根据所述控制信息,对所述终端设备通过所述数据时频资源发送的数据符号进行译码处理,以获取上行数据,其中,所述数据符号是所述终端设备根据所述终端设备所使用的数据编码方式对所述上行数据进行编码处理后生成的。
  2. 根据权利要求1所述的方法,其特征在于,所述数据符号是所述终端设备通过免授权传输的方式发送给所述网络设备的,所述免授权传输为网络设备预先分配并告知终端设备多个传输资源,以使所述终端设备有上行数据传输需求时,从所述多个传输资源中选择至少一个传输资源,并通过所选择的传输资源发送上行数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述控制编码方式包括对所述控制信息进行编码处理时使用的码率,
    所述控制调制方式包括对所述控制信息进行调制处理时使用的调制阶数和码域资源中的至少一种。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述终端设备所使用的控制编码方式和控制调制方式是根据所述终端设备传输所述控制符号时使用的导频资源确定的。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述终端设备所使用的数据编码方式包括所述终端设备对所述上行数据进行编码处理时使用的码率。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述终端设备所使用的数据调制方式,对所述数据符号进行解调处理,以获取上行数据,其中,所述数据符号是所述终端设备根据所述终端设备所使用的数据调制方式对所述上行数据进行调制处理后生成的。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备所使用的数据调制方式包括所述终端设备对所述上行数据进行调制处理时使用的调制阶数和码域资源中的至少一种。
  8. 根据权利要求6或7所述的方法,其特征在于,所述终端设备所使用的控制调制方式与所述终端设备所使用的数据调制方式相同。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述终端设备所使用的数据调制方式是根据所述终端设备所使用的导频资源确定的。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述控制信息还用于指示所述终端设备所使用的数据调制方式。
  11. 根据权利要求10所述的方法,其特征在于,所述控制信息为与根据所述终端设备所使用的数据编码方式和数据调制方式相对应的索引值,且所述控制信息是所述终端设备基于映射关系信息确定的,其中,所述映射关系信息用于指示多个参数集合与多个索引值之间的一一映射关系,每个参数集合包括一个数据编码方式和一个数据调制方式,任意两个参数集合之间,数据编码方式和数据调制方式中的至少一方相异。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送所述映射关系信息。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:
    向终端设备发送控制时频资源的指示信息,所述控制时频资源的指示信息用于指示控制时频资源在所述传输资源所包括的多个时频资源中的位置。
  14. 根据权利要求13所述的方法,其特征在于,所述控制时频资源的指示信息具体用于指示多个控制时频资源在所述多个时频资源中连续分布;或
    所述控制时频资源的指示信息具体用于指示多个控制时频资源在所述多个时频资源中离散分布。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,当一个控制时频资源仅用于传输一个终端设备的控制符号时,所述终端设备传输所 述控制符号时使用的控制时频资源是根据所述终端设备传输所述控制符号时使用的导频资源确定的。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送非复用模式信息,所述非复用模式信息用于指示一个控制时频资源仅用于传输一个终端设备的控制符号。
  17. 根据权利要求1至14中任一项所述的方法,其特征在于,当一个控制时频资源能够用于传输多个终端设备的控制符号时,所述多个终端设备生成控制符号时使用的码域资源相异。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送复用模式信息,所述复用模式信息用于指示一个控制时频资源能够用于传输多个终端设备的控制符号。
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,所述控制信息还用于指示所述终端设备的设备标识。
  20. 根据权利要求1至19中任一项所述的方法,其特征在于,所述网络设备为基站,所述终端设备为用户设备。
  21. 一种传输上行数据的方法,其特征在于,所述方法包括:
    终端设备根据所述终端设备所使用的控制编码方式和控制调制方式,对控制信息进行编码调制处理,以获取控制符号,所述控制信息用于指示所述终端设备所使用的数据编码方式;
    通过控制时频资源向网络设备发送所述控制符号,并通过数据时频资源向所述网络设备发送数据符号,其中,所述控制时频资源和所述数据时频资源属于用于上行传输的传输资源,所述控制时频资源与所述数据时频资源相异,所述数据符号是所述终端设备根据所述终端设备所使用的数据编码方式对上行数据进行编码处理后生成的。
  22. 根据权利要求21所述的方法,其特征在于,所述数据符号是所述终端设备通过免授权传输的方式发送给所述网络设备的,所述免授权传输为网络设备预先分配并告知终端设备多个传输资源,以使所述终端设备有上行数据传输需求时,从所述多个传输资源中选择至少一个传输资源,并通过所选择的传输资源发送上行数据。
  23. 根据权利要求21或22所述的方法,其特征在于,所述控制编码方式包括对所述控制信息进行编码处理时使用的码率,
    所述控制调制方式包括对所述控制信息进行调制处理时使用的调制阶数和码域资源中的至少一种。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述终端设备所使用的控制编码方式和控制调制方式是根据所述终端设备传输所述控制符号时使用的导频资源确定的。
  25. 根据权利要求21至24中任一项所述的方法,其特征在于,所述终端设备所使用的数据编码方式包括所述终端设备对所述上行数据进行编码处理时使用的码率。
  26. 根据权利要求21至25中任一项所述的方法,其特征在于,所述数据符号是所述终端设备根据所述终端设备所使用的数据调制方式对所述上行数据进行调制处理后生成的。
  27. 根据权利要求26所述的方法,其特征在于,所述终端设备所使用的数据调制方式包括所述终端设备对所述上行数据进行调制处理时使用的调制阶数和码域资源中的至少一种。
  28. 根据权利要求26或27所述的方法,其特征在于,所述终端设备所使用的控制调制方式与所述终端设备所使用的数据调制方式相同。
  29. 根据权利要求26至28中任一项所述的方法,其特征在于,所述终端设备所使用的数据调制方式是根据所述终端设备所使用的导频资源确定的。
  30. 根据权利要求26至29中任一项所述的方法,其特征在于,所述控制信息还用于指示所述终端设备所使用的数据调制方式。
  31. 根据权利要求30所述的方法,其特征在于,所述控制信息为与根据所述终端设备所使用的数据编码方式和数据调制方式相对应的索引值,且所述控制信息是所述终端设备基于映射关系信息确定的,其中,所述映射关系信息用于指示多个参数集合与多个索引值之间的一一映射关系,每个参数集合包括一个数据编码方式和一个数据调制方式,任意两个参数集合之间,数据编码方式和数据调制方式中的至少一方相异。
  32. 根据权利要求31所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的所述映射关系信息。
  33. 根据权利要求21至32中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的控制时频资源的指示信息,所述控制时频资源的指示信息用于指示控制时频资源在所述传输资源所包括的多个时频资源中的位置;
    根据所述控制时频资源的指示信息,从所述多个时频资源中,确定所述控制时频资源。
  34. 根据权利要求33所述的方法,其特征在于,所述控制时频资源的指示信息具体用于指示多个控制时频资源在所述多个时频资源中连续分布;或
    所述控制时频资源的指示信息具体用于指示多个控制时频资源在所述多个时频资源中离散分布。
  35. 根据权利要求21至34中任一项所述的方法,其特征在于,当一个控制时频资源仅用于传输一个终端设备的控制符号时,所述终端设备传输所述控制符号时使用的控制时频资源是根据所述终端设备传输所述控制符号时使用的导频资源确定的。
  36. 根据权利要求35所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的非复用模式信息,所述非复用模式信息用于指示一个控制时频资源仅用于传输一个终端设备的控制符号。
  37. 根据权利要求21至34中任一项所述的方法,其特征在于,当一个控制时频资源能够用于传输多个终端设备的控制符号时,所述多个终端设备生成控制符号时使用的码域资源相异。
  38. 根据权利要求37所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的复用模式信息,所述复用模式信息用于指示一个控制时频资源能够用于传输多个终端设备的控制符号。
  39. 根据权利要求21至38中任一项所述的方法,其特征在于,所述控制信息还用于指示所述终端设备的设备标识。
  40. 根据权利要求21至39中任一项所述的方法,其特征在于,所述网络设备为基站,所述终端设备为用户设备。
  41. 一种传输上行数据的设备,其特征在于,所述设备包括:
    接收器;
    处理器,与所述接收器连接,用于控制所述接收器接收终端设备通过控制时频资源发送的控制符号,其中,所述控制符号是所述终端设备根据所述 终端设备所使用的控制编码方式和控制调制方式对控制信息进行编码调制处理后生成的,所述控制信息用于指示所述终端设备所使用的数据编码方式,所述控制时频资源属于用于上行传输的传输资源,所述传输资源还包括数据时频资源,所述控制时频资源与所述数据时频资源相异;
    用于根据所述终端设备所使用的控制编码方式和控制调制方式,对所述控制符号进行解调译码处理,以获取所述控制信息;
    用于根据所述控制信息,对所述终端设备通过所述数据时频资源发送的数据符号进行译码处理,以获取上行数据,其中,所述数据符号是所述终端设备根据所述终端设备所使用的数据编码方式对所述上行数据进行编码处理后生成的。
  42. 根据权利要求41所述的设备,其特征在于,所述数据符号是所述终端设备通过免授权传输的方式发送给所述设备的,所述免授权传输为设备预先分配并告知终端设备多个传输资源,以使所述终端设备有上行数据传输需求时,从所述多个传输资源中选择至少一个传输资源,并通过所选择的传输资源发送上行数据。
  43. 根据权利要求41或42所述的设备,其特征在于,所述控制编码方式包括对所述控制信息进行编码处理时使用的码率,
    所述控制调制方式包括对所述控制信息进行调制处理时使用的调制阶数和码域资源中的至少一种。
  44. 根据权利要求41至43中任一项所述的设备,其特征在于,所述终端设备所使用的控制编码方式和控制调制方式是根据所述终端设备传输所述控制符号时使用的导频资源确定的。
  45. 根据权利要求41至44中任一项所述的设备,其特征在于,所述终端设备所使用的数据编码方式包括所述终端设备对所述上行数据进行编码处理时使用的码率。
  46. 根据权利要求41至45中任一项所述的设备,其特征在于,所述处理器还用于根据所述终端设备所使用的数据调制方式,对所述数据符号进行解调处理,以获取上行数据,其中,所述数据符号是所述终端设备根据所述终端设备所使用的数据调制方式对所述上行数据进行调制处理后生成的。
  47. 根据权利要求46所述的设备,其特征在于,所述终端设备所使用的数据调制方式包括所述终端设备对所述上行数据进行调制处理时使用的 调制阶数和码域资源中的至少一种。
  48. 根据权利要求46或47所述的设备,其特征在于,所述终端设备所使用的控制调制方式与所述终端设备所使用的数据调制方式相同。
  49. 根据权利要求46至48中任一项所述的设备,其特征在于,所述终端设备所使用的数据调制方式是根据所述终端设备所使用的导频资源确定的。
  50. 根据权利要求46至49中任一项所述的设备,其特征在于,所述控制信息还用于指示所述终端设备所使用的数据调制方式。
  51. 根据权利要求50所述的设备,其特征在于,所述控制信息为与根据所述终端设备所使用的数据编码方式和数据调制方式相对应的索引值,且所述控制信息是所述终端设备基于映射关系信息确定的,其中,所述映射关系信息用于指示多个参数集合与多个索引值之间的一一映射关系,每个参数集合包括一个数据编码方式和一个数据调制方式,任意两个参数集合之间,数据编码方式和数据调制方式中的至少一方相异。
  52. 根据权利要求51所述的设备,其特征在于,所述设备还包括发送器,与所述处理器相连接;
    所述处理器还用于控制所述发送器向所述终端设备发送所述映射关系信息。
  53. 根据权利要求41至52中任一项所述的设备,其特征在于,所述设备还包括发送器,与所述处理器相连接;
    所述处理器还用于控制所述发送器向终端设备发送控制时频资源的指示信息,所述控制时频资源的指示信息用于指示控制时频资源在所述传输资源所包括的多个时频资源中的位置。
  54. 根据权利要求53所述的设备,其特征在于,所述控制时频资源的指示信息具体用于指示多个控制时频资源在所述多个时频资源中连续分布;或
    所述控制时频资源的指示信息具体用于指示多个控制时频资源在所述多个时频资源中离散分布。
  55. 根据权利要求41至54中任一项所述的设备,其特征在于,当一个控制时频资源仅用于传输一个终端设备的控制符号时,所述终端设备传输所述控制符号时使用的控制时频资源是根据所述终端设备传输所述控制符号 时使用的导频资源确定的。
  56. 根据权利要求55所述的设备,其特征在于,所述设备还包括发送器,与所述处理器相连接;
    所述处理器还用于控制所述发送器向所述终端设备发送非复用模式信息,所述非复用模式信息用于指示一个控制时频资源仅用于传输一个终端设备的控制符号。
  57. 根据权利要求41至54中任一项所述的设备,其特征在于,当一个控制时频资源能够用于传输多个终端设备的控制符号时,所述多个终端设备生成控制符号时使用的码域资源相异。
  58. 根据权利要求57所述的设备,其特征在于,所述设备还包括发送器,与所述处理器相连接;
    所述处理器还用于控制所述发送器向所述终端设备发送复用模式信息,所述复用模式信息用于指示一个控制时频资源能够用于传输多个终端设备的控制符号。
  59. 根据权利要求41至58中任一项所述的设备,其特征在于,所述控制信息还用于指示所述终端设备的设备标识。
  60. 根据权利要求41至59中任一项所述的设备,其特征在于,所述设备为基站,所述终端设备为用户设备。
  61. 一种传输上行数据的设备,其特征在于,所述设备包括:
    发送器;
    处理器,与所述发送器连接,用于根据所述设备所使用的控制编码方式和控制调制方式,对控制信息进行编码调制处理,以获取控制符号,所述控制信息用于指示所述设备所使用的数据编码方式;
    用于控制所述发送器通过控制时频资源向网络设备发送所述控制符号,并通过数据时频资源向所述网络设备发送数据符号,其中,所述控制时频资源和所述数据时频资源属于用于上行传输的传输资源,所述控制时频资源与所述数据时频资源相异,所述数据符号是所述设备根据所述设备所使用的数据编码方式对上行数据进行编码处理后生成的。
  62. 根据权利要求61所述的设备,其特征在于,所述数据符号是所述设备通过免授权传输的方式发送给所述网络设备的,所述免授权传输为网络设备预先分配并告知设备多个传输资源,以使所述设备有上行数据传输需求 时,从所述多个传输资源中选择至少一个传输资源,并通过所选择的传输资源发送上行数据。
  63. 根据权利要求61或62所述的设备,其特征在于,所述控制编码方式包括对所述控制信息进行编码处理时使用的码率,
    所述控制调制方式包括对所述控制信息进行调制处理时使用的调制阶数和码域资源中的至少一种。
  64. 根据权利要求61至63中任一项所述的设备,其特征在于,所述设备所使用的控制编码方式和控制调制方式是根据所述设备传输所述控制符号时使用的导频资源确定的。
  65. 根据权利要求61至64中任一项所述的设备,其特征在于,所述设备所使用的数据编码方式包括所述设备对所述上行数据进行编码处理时使用的码率。
  66. 根据权利要求61至65中任一项所述的设备,其特征在于,所述数据符号是所述设备根据所述设备所使用的数据调制方式对所述上行数据进行调制处理后生成的。
  67. 根据权利要求66所述的设备,其特征在于,所述设备所使用的数据调制方式包括所述设备对所述上行数据进行调制处理时使用的调制阶数和码域资源中的至少一种。
  68. 根据权利要求66或67所述的设备,其特征在于,所述设备所使用的控制调制方式与所述设备所使用的数据调制方式相同。
  69. 根据权利要求66至68中任一项所述的设备,其特征在于,所述设备所使用的数据调制方式是根据所述设备所使用的导频资源确定的。
  70. 根据权利要求66至69中任一项所述的设备,其特征在于,所述控制信息还用于指示所述设备所使用的数据调制方式。
  71. 根据权利要求70所述的设备,其特征在于,所述控制信息为与根据所述设备所使用的数据编码方式和数据调制方式相对应的索引值,且所述控制信息是所述设备基于映射关系信息确定的,其中,所述映射关系信息用于指示多个参数集合与多个索引值之间的一一映射关系,每个参数集合包括一个数据编码方式和一个数据调制方式,任意两个参数集合之间,数据编码方式和数据调制方式中的至少一方相异。
  72. 根据权利要求71所述的设备,其特征在于,所述设备还包括接收 器,与所述处理器相连接;
    所述处理器还用于控制所述接收器接收所述网络设备发送的所述映射关系信息。
  73. 根据权利要求61至72中任一项所述的设备,其特征在于,所述设备还包括接收器,与所述处理器相连接;
    所述处理器还用于控制所述接收器接收所述网络设备发送的控制时频资源的指示信息,所述控制时频资源的指示信息用于指示控制时频资源在所述传输资源所包括的多个时频资源中的位置;
    用于根据所述控制时频资源的指示信息,从所述多个时频资源中,确定所述控制时频资源。
  74. 根据权利要求73所述的设备,其特征在于,所述控制时频资源的指示信息具体用于指示多个控制时频资源在所述多个时频资源中连续分布;或
    所述控制时频资源的指示信息具体用于指示多个控制时频资源在所述多个时频资源中离散分布。
  75. 根据权利要求61至74中任一项所述的设备,其特征在于,当一个控制时频资源仅用于传输一个设备的控制符号时,所述设备传输所述控制符号时使用的控制时频资源是根据所述设备传输所述控制符号时使用的导频资源确定的。
  76. 根据权利要求75所述的设备,其特征在于,所述设备还包括接收器,与所述处理器相连接;
    所述处理器还用于控制所述接收器接收所述网络设备发送的非复用模式信息,所述非复用模式信息用于指示一个控制时频资源仅用于传输一个设备的控制符号。
  77. 根据权利要求61至74中任一项所述的设备,其特征在于,当一个控制时频资源能够用于传输多个设备的控制符号时,所述多个设备生成控制符号时使用的码域资源相异。
  78. 根据权利要求77所述的设备,其特征在于,所述设备还包括接收器,与所述处理器相连接;
    所述处理器还用于控制所述接收器接收所述网络设备发送的复用模式信息,所述复用模式信息用于指示一个控制时频资源能够用于传输多个设备 的控制符号。
  79. 根据权利要求61至78中任一项所述的设备,其特征在于,所述控制信息还用于指示所述设备的设备标识。
  80. 根据权利要求61至79中任一项所述的设备,其特征在于,所述网络设备为基站,所述设备为用户设备。
PCT/CN2015/083099 2015-07-01 2015-07-01 传输上行数据的方法和设备 WO2017000291A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201580081314.1A CN107710842B (zh) 2015-07-01 2015-07-01 传输上行数据的方法和设备
CN202010214678.5A CN111556569A (zh) 2015-07-01 2015-07-01 传输上行数据的方法和设备
EP21172252.5A EP3926864A1 (en) 2015-07-01 2015-07-01 Uplink data transmission method and device
EP15896822.2A EP3324690B1 (en) 2015-07-01 2015-07-01 Method and device for transmitting uplink data
PCT/CN2015/083099 WO2017000291A1 (zh) 2015-07-01 2015-07-01 传输上行数据的方法和设备
US15/860,512 US10560926B2 (en) 2015-07-01 2018-01-02 Data and control multiplexing for uplink data transmission method and device
US16/736,511 US11082964B2 (en) 2015-07-01 2020-01-07 Data and control multiplexing for uplink data transmission method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/083099 WO2017000291A1 (zh) 2015-07-01 2015-07-01 传输上行数据的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/860,512 Continuation US10560926B2 (en) 2015-07-01 2018-01-02 Data and control multiplexing for uplink data transmission method and device

Publications (1)

Publication Number Publication Date
WO2017000291A1 true WO2017000291A1 (zh) 2017-01-05

Family

ID=57607515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083099 WO2017000291A1 (zh) 2015-07-01 2015-07-01 传输上行数据的方法和设备

Country Status (4)

Country Link
US (2) US10560926B2 (zh)
EP (2) EP3324690B1 (zh)
CN (2) CN107710842B (zh)
WO (1) WO2017000291A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018126854A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种上行传输方法、终端、网络侧设备
WO2018171290A1 (en) * 2017-03-20 2018-09-27 Huawei Technologies Co., Ltd. Systems and methods for supporting asynchronous uplink harq and multiple simultaneous transmissions
CN109937547A (zh) * 2017-02-21 2019-06-25 南通朗恒通信技术有限公司 一种基站、用户设备中的用于信道编码的方法和装置
US10499390B2 (en) 2017-03-24 2019-12-03 Institute For Information Industry Base station, user equipment, transmission control method for base station and data transmission method for user equipment
CN111527709A (zh) * 2017-10-09 2020-08-11 联想(北京)有限公司 传输方案的指示
CN114765831A (zh) * 2021-01-12 2022-07-19 华为技术有限公司 上行资源预申请的方法及相关设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106454922B (zh) * 2015-08-10 2018-11-02 电信科学技术研究院 一种非正交多址接入系统中的上行检测方法及装置
US11329691B2 (en) * 2016-08-11 2022-05-10 Mediatek Inc. Non-orthogonal multiple access wireless communications methods and apparatus thereof
CN107733596B (zh) 2016-08-11 2020-02-14 华为技术有限公司 信息传输方法和设备
US10736082B2 (en) 2016-10-31 2020-08-04 Qualcomm Incorporated Transmission of a common control in a beamforming system
CN108024360B (zh) 2016-11-04 2023-11-21 华为技术有限公司 免授权传输的方法、终端和网络设备
US11153886B2 (en) * 2017-01-13 2021-10-19 Huawei Technologies Co., Ltd. System and method on transmission adaptation for uplink grant-free transmission
WO2019213795A1 (en) * 2018-05-05 2019-11-14 Nokia Shanghai Bell Co., Ltd. Apparatus, method and computer program
WO2020056642A1 (zh) * 2018-09-19 2020-03-26 Oppo广东移动通信有限公司 一种数据传输方法、设备及存储介质
US11582590B2 (en) * 2020-12-15 2023-02-14 Qualcomm Incorporated Vehicle communications system with vehicle controller and set of wireless relay devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043500A (zh) * 2006-06-15 2007-09-26 华为技术有限公司 反向数据调制编码方式的确定方法及其接入终端
CN101132212A (zh) * 2006-08-22 2008-02-27 中兴通讯股份有限公司 一种链路自适应方法
US20130010634A1 (en) * 2010-03-22 2013-01-10 Samsung Electronics Co. Ltd. Method and device for applying adaptive link in communication system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100689379B1 (ko) * 2004-04-14 2007-03-02 삼성전자주식회사 직교 주파수 분할 다중 접속 통신 시스템에서 상향 링크제어 정보 전송 방법 및 장치
KR100927292B1 (ko) * 2005-02-03 2009-11-18 후지쯔 가부시끼가이샤 무선 통신 시스템 및 무선 통신 방법
US8363606B2 (en) * 2006-09-05 2013-01-29 Qualcomm Incorporated Method and apparatus for data and control multiplexing
US8467367B2 (en) * 2007-08-06 2013-06-18 Qualcomm Incorporated Multiplexing and transmission of traffic data and control information in a wireless communication system
BRPI0910548B1 (pt) * 2008-04-28 2019-02-05 Nokia Siemens Networks Oy método e aparelho para ligar esquema de modulação codificada à quantidade de recursos.
KR101649458B1 (ko) * 2009-03-16 2016-08-19 인터디지탈 패튼 홀딩스, 인크 반송파 집적 및 클러스터된 dft를 갖는 업링크 mimo용 데이터 및 제어 다중화
US8891480B2 (en) * 2009-07-01 2014-11-18 Qualcomm Incorporated Positioning reference signals in a telecommunication system
JP5259840B2 (ja) * 2009-12-01 2013-08-07 富士通株式会社 周波数偏差推定方法及び基地局装置
ES2508565T3 (es) * 2010-05-10 2014-10-16 Telefonaktiebolaget Lm Ericsson (Publ) Sistema y método para asignar recursos de transmisión
CN102869049B (zh) * 2011-07-04 2015-07-08 华为技术有限公司 传输控制信道指示信息的方法、基站和用户设备
WO2014110812A1 (zh) * 2013-01-18 2014-07-24 华为技术有限公司 信息传输方法和设备
US10028302B2 (en) 2013-03-08 2018-07-17 Huawei Technologies Co., Ltd. System and method for uplink grant-free transmission scheme
CN104010275B (zh) * 2014-06-09 2018-02-13 宇龙计算机通信科技(深圳)有限公司 资源分配及广播通信方法和装置、基站和终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043500A (zh) * 2006-06-15 2007-09-26 华为技术有限公司 反向数据调制编码方式的确定方法及其接入终端
CN101132212A (zh) * 2006-08-22 2008-02-27 中兴通讯股份有限公司 一种链路自适应方法
US20130010634A1 (en) * 2010-03-22 2013-01-10 Samsung Electronics Co. Ltd. Method and device for applying adaptive link in communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3324690A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11147047B2 (en) 2017-01-06 2021-10-12 Huawei Technologies Co., Ltd. Uplink transmission method, terminal, and network side device
CN108282876A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种上行传输方法、终端、网络侧设备
CN108282876B (zh) * 2017-01-06 2022-03-25 华为技术有限公司 一种上行传输方法、终端、网络侧设备
WO2018126854A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种上行传输方法、终端、网络侧设备
CN109937547A (zh) * 2017-02-21 2019-06-25 南通朗恒通信技术有限公司 一种基站、用户设备中的用于信道编码的方法和装置
CN109937547B (zh) * 2017-02-21 2021-08-27 上海朗帛通信技术有限公司 一种基站、用户设备中的用于信道编码的方法和装置
US10652866B2 (en) 2017-03-20 2020-05-12 Huawei Technologies Co., Ltd. Systems and methods for supporting asynchronous uplink HARQ and multiple simultaneous transmissions
WO2018171290A1 (en) * 2017-03-20 2018-09-27 Huawei Technologies Co., Ltd. Systems and methods for supporting asynchronous uplink harq and multiple simultaneous transmissions
US11375484B2 (en) 2017-03-20 2022-06-28 Huawei Technologies Co., Ltd. Systems and methods for supporting asynchronous uplink HARQ and multiple simultaneous transmissions
TWI692265B (zh) * 2017-03-24 2020-04-21 財團法人資訊工業策進會 基地台、使用者裝置、用於基地台的傳輸控制方法以及用於使用者裝置的資料傳輸方法
US10499390B2 (en) 2017-03-24 2019-12-03 Institute For Information Industry Base station, user equipment, transmission control method for base station and data transmission method for user equipment
CN111527709A (zh) * 2017-10-09 2020-08-11 联想(北京)有限公司 传输方案的指示
CN111527709B (zh) * 2017-10-09 2022-07-05 联想(北京)有限公司 传输方案的指示
CN114765831A (zh) * 2021-01-12 2022-07-19 华为技术有限公司 上行资源预申请的方法及相关设备
WO2022151878A1 (zh) * 2021-01-12 2022-07-21 华为技术有限公司 上行资源预申请的方法及相关设备

Also Published As

Publication number Publication date
US20180146474A1 (en) 2018-05-24
CN107710842B (zh) 2020-04-03
CN107710842A (zh) 2018-02-16
CN111556569A (zh) 2020-08-18
EP3926864A1 (en) 2021-12-22
EP3324690A4 (en) 2018-09-05
EP3324690B1 (en) 2021-09-29
US11082964B2 (en) 2021-08-03
EP3324690A1 (en) 2018-05-23
US10560926B2 (en) 2020-02-11
US20200145989A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
US11082964B2 (en) Data and control multiplexing for uplink data transmission method and device
WO2017041683A1 (zh) 用于上行数据传输的方法、网络设备和终端设备
CN107615845B (zh) 传输上行数据的方法、装置和计算机存储介质
CN108632192B (zh) 数据传输的方法、设备和系统
WO2018126872A1 (zh) 请求资源的方法和装置
CN108282864B (zh) 通信方法、网络侧设备和终端设备
TW201916651A (zh) 傳輸資料的方法、終端設備和網路設備
CN114258650A (zh) 用于在无线通信系统中管理软缓存的装置和方法
WO2017000900A1 (zh) 传输信息的方法和设备
WO2016172875A1 (zh) 传输信息的方法、网络设备和终端设备
WO2016134528A1 (zh) 传输下行控制信息的方法和装置
US20210329601A1 (en) Communication Resource Determining Method and Apparatus
WO2017000145A1 (zh) 数据传输方法和装置
JP7474891B2 (ja) 端末装置、送信方法及び集積回路
WO2018228522A1 (zh) 发送参考信号的方法、接收参考信号的方法和通信装置
WO2017132999A1 (zh) 通信方法、终端设备和网络设备
WO2018228596A1 (zh) 一种数据处理方法及数据处理装置
WO2018025493A1 (ja) 基地局、端末及び通信方法
WO2017133407A1 (zh) 信号传输方法和装置
CN115380588A (zh) 信息传输方法及装置
US10271346B2 (en) Method for scheduling terminal device, and network device
WO2016138668A1 (zh) 传输数据的方法、发送端设备、接收端设备和中继设备
WO2019178736A1 (zh) 控制信息的接收和发送方法、装置及通信系统
WO2022199607A1 (zh) 数据传输方法及装置
WO2017004819A1 (zh) 资源调度的方法、装置和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015896822

Country of ref document: EP