WO2019213795A1 - Apparatus, method and computer program - Google Patents

Apparatus, method and computer program Download PDF

Info

Publication number
WO2019213795A1
WO2019213795A1 PCT/CN2018/085749 CN2018085749W WO2019213795A1 WO 2019213795 A1 WO2019213795 A1 WO 2019213795A1 CN 2018085749 W CN2018085749 W CN 2018085749W WO 2019213795 A1 WO2019213795 A1 WO 2019213795A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
communication device
control channel
parts
multiple access
Prior art date
Application number
PCT/CN2018/085749
Other languages
French (fr)
Inventor
Yuantao Zhang
Chunhai Yao
Kungmin PARK
Emad Farag
Yejian Chen
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to CN201880094868.9A priority Critical patent/CN112314024A/en
Priority to PCT/CN2018/085749 priority patent/WO2019213795A1/en
Publication of WO2019213795A1 publication Critical patent/WO2019213795A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to a method, apparatus, system and computer program.
  • a wireless communication system can be seen as a facility that enables communication sessions.
  • the session may be between two or more entities.
  • the entity or entities may be user terminals, machine type devices and/or the like.
  • the entity or entities may be an access node such as a base station and/or the like.
  • At least a part of a communication session occurs over a wireless link.
  • Non-orthogonal multiple access allows access by different communication devices in the same resources.
  • a method comprising: causing a communications device to transmit to a base station using a plurality of resource parts of a resource, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
  • the resource may comprise one or more of: one or more OFDM symbols in a time domain; one or more time slots in a time domain; and one or more physical resource blocks in a frequency domain.
  • At least one resource part may comprise one or more of: one or more OFDM symbols of said one or more OFDM symbols in the time domain; one or more of sad time slots in the time domain; and one or more physical resource blocks of the one or more physical resource blocks in the frequency domain.
  • the non-orthogonal multiple access signature may be one or more of a: spreading sequence of a specific spreading factor; a scrambling sequence; and an interleaving pattern.
  • the respective non orthogonal multiple access signatures may be related to each other.
  • One or more of said resource parts may be used for a control channel and one or more of said resource parts may be used for a data channel.
  • the resource part for the control channel may be associated with a resource part periodicity.
  • the method may comprise causing the control channel to be transmitted to request one or more updated parameters.
  • the method may comprise determining that one or more parameters require updating before causing the control channel to be transmitted to request one or more updated parameters.
  • a same non-orthogonal multiple access signature may be used by another communication device and said communication device with respect to a given resource part.
  • either said communication device or said another communication device transmits a control channel and the other of said communication device and said another communication device transmits a data channel.
  • the method may comprise receiving information from a base station, and using said information to configure said plurality of resource parts.
  • the information may comprise periodicity information for said resource part periodicity.
  • the information may comprise a relationship between non-orthogonal multiple access signatures among different resource parts.
  • the information may comprise information indicating when said resource part for said control channel is not required for a control channel if said resource part for said control channel is used to transmit the data channel or is left vacant.
  • a method comprising: receiving at a base station communications from a communication device using a plurality of resource parts of a resource, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
  • the resource may comprise one or more of: one or more OFDM symbols in a time domain; one or more time slots in a time domain; and one or more physical resource blocks in a frequency domain.
  • At least one resource part may comprise one or more of: one or more OFDM symbols of said one or more OFDM symbols in the time domain; one or more of sad time slots in the time domain; and one or more physical resource blocks of the one or more physical resource blocks in the frequency domain.
  • the non-orthogonal multiple access signature may be one or more of a: spreading sequence of a specific spreading factor; a scrambling sequence; and an interleaving pattern.
  • the respective non orthogonal multiple access signatures may be related to each other.
  • One or more of said resource parts may be used for a control channel and one or more of said resource parts may be used for a data channel.
  • the resource part for the control channel may be associated with a resource part periodicity.
  • the method may comprise receiving the control channel requesting one or more updated parameters.
  • the method may comprise receiving communications from at least one other communication device, a same non-orthogonal multiple access signature being used by said another communication device and said communication device with respect to a given resource part.
  • the method may comprise receiving in one resource part, a control channel from either said communication device or said another communication device and a data channel from the other of said communication device and said another communication device.
  • the method may comprise causing information to be transmitted from a base station, said information being for configuring said plurality of resource parts.
  • the information may comprise periodicity information for said resource part periodicity.
  • the information may comprise a relationship between non-orthogonal multiple access signatures among different resource parts.
  • the information may comprise information indicating when said resource part for said control channel is not required for a control channel if said resource part for said control channel is used to transmit the data channel or is left vacant.
  • an apparatus comprising: at least one processor; and at least one memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to: cause a communications device to transmit to a base station using a plurality of resource parts of a resource, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
  • the resource may comprise one or more of: one or more OFDM symbols in a time domain; one or more time slots in a time domain; and one or more physical resource blocks in a frequency domain.
  • At least one resource part may comprise one or more of: one or more OFDM symbols of said one or more OFDM symbols in the time domain; one or more of sad time slots in the time domain; and one or more physical resource blocks of the one or more physical resource blocks in the frequency domain.
  • the non-orthogonal multiple access signature may be one or more of a: spreading sequence of a specific spreading factor; a scrambling sequence; and an interleaving pattern.
  • the respective non orthogonal multiple access signatures may be related to each other.
  • One or more of said resource parts may be used for a control channel and one or more of said resource parts may be used for a data channel.
  • the resource part for the control channel may be associated with a resource part periodicity.
  • the at least one the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus at least to cause the control channel to be transmitted to request one or more updated parameters.
  • the at least one the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus at least to determine that one or more parameters require updating before causing the control channel to be transmitted to request one or more updated parameters.
  • a same non-orthogonal multiple access signature may be used by another communication device and said communication device with respect to a given resource part.
  • either said communication device or said another communication device transmits a control channel and the other of said communication device and said another communication device transmits a data channel.
  • the at least one the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus at least to receive information from a base station, and use said information to configure said plurality of resource parts.
  • the information may comprise periodicity information for said resource part periodicity.
  • the information may comprise a relationship between non-orthogonal multiple access signatures among different resource parts.
  • the information may comprise information indicating when said resource part for said control channel is not required for a control channel if said resource part for said control channel is used to transmit the data channel or is left vacant.
  • an apparatus in a base station comprising: at least one processor; and at least one memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to: receive communications from a communication device using a plurality of resource parts of a resource, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
  • the resource may comprise one or more of: one or more OFDM symbols in a time domain; one or more time slots in a time domain; and one or more physical resource blocks in a frequency domain.
  • At least one resource part may comprise one or more of: one or more OFDM symbols of said one or more OFDM symbols in the time domain; one or more of sad time slots in the time domain; and one or more physical resource blocks of the one or more physical resource blocks in the frequency domain.
  • the non-orthogonal multiple access signature may be one or more of a: spreading sequence of a specific spreading factor; a scrambling sequence; and an interleaving pattern.
  • the respective non orthogonal multiple access signatures may be related to each other.
  • One or more of said resource parts may be used for a control channel and one or more of said resource parts may be used for a data channel.
  • the resource part for the control channel may be associated with a resource part periodicity.
  • the at least one the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus at least to receive the control channel requesting one or more updated parameters.
  • the at least one the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus at least to receive communications from at least one other communication device, a same non-orthogonal multiple access signature being used by said another communication device and said communication device with respect to a given resource part.
  • the at least one the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus at least to receive in one resource part, a control channel from either said communication device or said another communication device and a data channel from the other of said communication device and said another communication device.
  • the at least one the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus at least to cause information to be transmitted from a base station, said information being for configuring said plurality of resource parts.
  • the information may comprise periodicity information for said resource part periodicity.
  • the information may comprise a relationship between non-orthogonal multiple access signatures among different resource parts.
  • the information may comprise information indicating when said resource part for said control channel is not required for a control channel if said resource part for said control channel is used to transmit the data channel or is left vacant.
  • an apparatus comprising: means for causing a communications device to transmit to a base station using a plurality of resource parts of a resource, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
  • the resource may comprise one or more of: one or more OFDM symbols in a time domain; one or more time slots in a time domain; and one or more physical resource blocks in a frequency domain.
  • At least one resource part may comprise one or more of: one or more OFDM symbols of said one or more OFDM symbols in the time domain; one or more of sad time slots in the time domain; and one or more physical resource blocks of the one or more physical resource blocks in the frequency domain.
  • the non-orthogonal multiple access signature may be one or more of a: spreading sequence of a specific spreading factor; a scrambling sequence; and an interleaving pattern.
  • the respective non orthogonal multiple access signatures may be related to each other.
  • One or more of said resource parts may be used for a control channel and one or more of said resource parts may be used for a data channel.
  • the resource part for the control channel may be associated with a resource part periodicity.
  • the means may be for causing the control channel to be transmitted to request one or more updated parameters.
  • the apparatus may comprise means for determining that one or more parameters require updating before causing the control channel to be transmitted to request one or more updated parameters.
  • the means may be for determining that one or more parameters require updating before causing the control channel to be transmitted to request one or more updated parameters.
  • a same non-orthogonal multiple access signature may be used by another communication device and said communication device with respect to a given resource part.
  • either said communication device or said another communication device transmits a control channel and the other of said communication device and said another communication device transmits a data channel.
  • the means may be for receiving information from a base station, and using said information to configure said plurality of resource parts.
  • the apparatus may comprise means for receiving information from a base station, and using said information to configure said plurality of resource parts.
  • the information may comprise periodicity information for said resource part periodicity.
  • the information may comprise a relationship between non-orthogonal multiple access signatures among different resource parts.
  • the information may comprise information indicating when said resource part for said control channel is not required for a control channel if said resource part for said control channel is used to transmit the data channel or is left vacant.
  • an apparatus for a base station comprising: means for receiving communications from a communication device using a plurality of resource parts of a resource, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
  • This receiving means may be at the baseband level, the radio frequency level or both.
  • the resource may comprise one or more of: one or more OFDM symbols in a time domain; one or more time slots in a time domain; and one or more physical resource blocks in a frequency domain.
  • At least one resource part may comprise one or more of: one or more OFDM symbols of said one or more OFDM symbols in the time domain; one or more of sad time slots in the time domain; and one or more physical resource blocks of the one or more physical resource blocks in the frequency domain.
  • the non-orthogonal multiple access signature may be one or more of a: spreading sequence of a specific spreading factor; a scrambling sequence; and an interleaving pattern.
  • the respective non orthogonal multiple access signatures may be related to each other.
  • One or more of said resource parts may be used for a control channel and one or more of said resource parts may be used for a data channel.
  • the resource part for the control channel may be associated with a resource part periodicity.
  • the means may be for receiving the control channel requesting one or more updated parameters.
  • the means may be for receiving communications from at least one other communication device, a same non-orthogonal multiple access signature being used by said another communication device and said communication device with respect to a given resource part.
  • the means may be for receiving in one resource part, a control channel from either said communication device or said another communication device and a data channel from the other of said communication device and said another communication device.
  • the means may be for causing information to be transmitted from a base station, said information being for configuring said plurality of resource parts.
  • the apparatus may comprise means for causing information to be transmitted from a base station, said information being for configuring said plurality of resource parts.
  • the information may comprise periodicity information for said resource part periodicity.
  • the information may comprise a relationship between non-orthogonal multiple access signatures among different resource parts.
  • the information may comprise information indicating when said resource part for said control channel is not required for a control channel if said resource part for said control channel is used to transmit the data channel or is left vacant.
  • an apparatus comprising: circuitry configured to configure a plurality of resource parts of a resource; and circuitry configured to cause a communications device to transmit to a base station using the plurality of resource parts, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
  • an apparatus in a base station comprising: circuity for causing configuration information to be provided to a communications device; and circuitry for receiving communications from a communication device using a plurality of resource parts of a resource, based on said configuration information, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
  • a non-transitory computer readable medium comprising program instructions stored thereon for performing any one or more of the method steps discussed previously.
  • a non-transitory computer readable medium comprising program instructions stored thereon for causing an apparatus to perform any one or more of the method steps discussed previously.
  • a computer program comprising computer executable instructions, which when executed by at least one processor, cause the method of any one of the preceding claims to be performed.
  • FIG. 1 illustrates an communication system
  • Figure 2 illustrates a communication device
  • Figure 3 shows a first example of control and data channels in a resource
  • Figure 4 shows a second example of control and data channels in a resource
  • Figure 5 schematically shows a method
  • Figure 6 shows an example control apparatus provided in a base station.
  • FIG. 1 One example of a wireless communication system in which some embodiments may be provided is shown in Figure 1.
  • An example wireless communication device in which some embodiments may be provided is shown in Figure 2.
  • Some embodiments relate to communication between user equipment and one or more base stations.
  • wireless communication devices 102, 104, 105 are provided wireless access via at least one base station or similar wireless transmitting and/or receiving node or point.
  • Base stations are typically controlled by at least one appropriate controller apparatus.
  • the controller apparatus may be part of the base station.
  • base stations 106 and 107 are shown as connected to a wider communications network 113 via gateway 112.
  • a further gateway function may be provided to connect to another network.
  • Base stations 116, 118 and 120 associated with smaller cells may also be connected to the network 113, for example by a separate gateway function and/or via the macro level stations.
  • the base stations 116, 118 and 120 may be pico or femto level base stations or the like. In the example, stations 116 and 118 are connected via a gateway 111 whilst station 120 connects via the base station 106. In some embodiments, the smaller stations may not be provided.
  • FIG. 6 shows an example of a control apparatus for a base station.
  • the control apparatus 10 comprises at least one memory 11, at least one data processing unit 12, 13 and an input/output interface 14. Via the interface the control apparatus can be coupled to relevant other components of the base station.
  • the control apparatus can be configured to execute an appropriate software code to provide the control functions.
  • FIG. 2 shows a schematic, partially sectioned view of a communication device 200.
  • the communication device may be provided by any device capable of sending and receiving radio signals.
  • Non-limiting examples comprise a mobile station (MS) or mobile device such as a mobile phone or what is known as a ’smart phone’ , a computer provided with a wireless interface card or other wireless interface facility (e.g., USB dongle) , personal data assistant (PDA) or a tablet provided with wireless communication capabilities, machine-type communications MTC devices, IoT type communication devices or any combinations of these or the like.
  • a device may provide, for example, communication of data for carrying communications.
  • the communications may be one or more of voice, electronic mail (email) , text message, multimedia, data, machine data and so on.
  • the device 200 may receive signals over an air or radio interface 207 via appropriate apparatus for receiving and may transmit signals via appropriate apparatus for transmitting radio signals.
  • transceiver apparatus is designated schematically by block 206.
  • the transceiver apparatus 206 may be provided for example by means of a radio part and associated antenna arrangement.
  • the antenna arrangement may be arranged internally or externally to the mobile device.
  • the device 200 may be provided with at least one data processing entity 201, at least one memory 202 and other possible components 203 for use in software and hardware aided execution of tasks it is designed to perform, including control of access to and communications with access systems and other communication devices.
  • the data processing, storage and other relevant control apparatus can be provided on an appropriate circuit board and/or in chipsets. This feature is denoted by reference 204.
  • the device may optionally have a user interface such as key pad 205, touch sensitive screen or pad, combinations thereof or the like.
  • a display 208, a speaker and a microphone may be provided depending on the type of the device.
  • the communication devices 102, 104, 105 may access the communication system based on various access techniques, such as code division multiple access (CDMA) , or wideband CDMA (WCDMA) .
  • CDMA code division multiple access
  • WCDMA wideband CDMA
  • Other non-limiting examples comprise time division multiple access (TDMA) , frequency division multiple access (FDMA) and various schemes thereof such as the interleaved frequency division multiple access (IFDMA) , single carrier frequency division multiple access (SC-FDMA) and orthogonal frequency division multiple access (OFDMA) , space division multiple access (SDMA) and so on.
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • IFDMA interleaved frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SDMA space division multiple access
  • Some embodiments may be provided in the context so call 5G or NR (new radio) network architecture. However, it should be appreciated that this is by way of example and other embodiments may be implemented in the context of other network architectures.
  • a basic multiple access scheme is used which is orthogonal for one or both of downlink and uplink data transmissions. This may be referred to as orthogonal multiple access (OMA) .
  • OMA orthogonal multiple access
  • resources of different users can be differentiated.
  • the resources may be physical resources such as time and/or frequency which are not overlapped.
  • the signals for different users may alternatively or additionally be differentiated using one or more of the spatial domain and the coding domain.
  • non-orthogonal multiple-access (NOMA) schemes may alternatively or additionally be used.
  • signals from two or more UEs might be transmitted simultaneously in the same resources, e.g., time domain resources and frequency domain resources.
  • this non-orthogonal interference characteristic may be more pronounced.
  • transmitter side schemes such as spreading (linear or non-linear, with or without sparseness) and/or interleaving may be employed. This may improve the performance of the system. Alternatively or additionally, this may ease the burden of advanced receivers.
  • Non-orthogonal multiple access may be beneficial for grant-free transmission. This may be due to the availability of plenty of NOMA signatures and/or the correspondingly low multiple access (MA) signature collision rate for grant-free transmissions.
  • the NOMA signature may be one or more of a: spreading sequence of a specific spreading factor; a scrambling sequence; and an interleaving pattern.
  • Non-orthogonal multiple access may have more than one user or communication device served in each orthogonal resource block, e.g., a time slot, a frequency channel, a spreading code, or an orthogonal spatial degree of freedom.
  • NOMA may be advantageous in various use cases or deployment scenarios.
  • NOMA may be deployed in one or more of enhanced mobile broad band (eMBB) , ultra-reliable low latency communication (URLLC) and massive machine type communication (mMTC) .
  • eMBB enhanced mobile broad band
  • URLLC ultra-reliable low latency communication
  • mMTC massive machine type communication
  • NOMA may use less signalling than OMA. This may result in one or more of: reducing a UE’s power consumption; reducing latency; and increasing system capacity.
  • grant-free access may result in issues relating to one or more of link adaptation, flexible resource occupation and power control. These may impact the user throughput.
  • a grant-free control channel may be transmitted together with a data channel to indicate the information for data transmission.
  • this information may be one or more of a modulation and coding scheme (MCS level) , resources and so on.
  • MCS level modulation and coding scheme
  • the control channel may need to be robust.
  • the control channel may be subject to a collision rate from a UEs transmission. Using NOMA transmission may reduce the multiple access signature collision.
  • Some embodiments may be used for communication between one or more of the base stations of Figure 1 and one or more communication devices. Some embodiments may be used with UL uplink communication.
  • Some embodiments may provide a grant-free control channel using NOMA. This may be in conjunction with a data channel also using NOMA. Some embodiments may relate to the control channel design and its association with the data channel. Some embodiments may separate resource parts for NOMA grant-free control and data channel, with a different spreading factor or other link related parameter for each part. Some embodiments may use a resource specific spreading factor per communication device or group of communication devices.
  • the resource part may be a resource unit or a resource grid or any other suitable resource part.
  • the data signal associated with one communication device may be transmitted in the same resource as the control signal for a different communication device.
  • Some embodiments may be used where a given communication device is connecting to a given base station via the control and data channels.
  • the communication devices which are transmitting in the same resource are transmitting to the same base station.
  • the control channel and the data channel may be using different resources or parts of a resource.
  • resources configured for NOMA grant-free access for a group of UEs are configured as two (or more) resource parts.
  • the two resource parts may be provided in one time slot.
  • the two or more resource parts may not overlap in time.
  • Each resource part may be associated with a different spreading factor.
  • the resource may be a slot or smaller than a slot (e.g., several symbols) .
  • the resource may comprise one or more OFDM symbols in a time domain or one or more time slots in a time domain.
  • the resource may additionally or alternatively comprise one or more physical resource blocks in a frequency domain.
  • the resource part may comprise one or more OFDM symbols or a slot in time domain out of the configured resource.
  • the resource part may comprise, alternatively or additionally one or more physical resource blocks out of the configured resource.
  • Some embodiments may be provided where the resources of a different domain to the time domain.
  • the resources may be with respect to the unit or part of the unit appropriate to that domain. Where the resources are considered in the context of a plurality of different domains, the resource will be with respect to a unit or part of a unit with respect to the plurality of domains.
  • the different resource parts may not overlap in the respective one or more domains.
  • the network will configure how many symbols the resource part occupies. This may be the number of symbols or slot.
  • the spreading factor may be configured to a resource part. It should be appreciated that this may be determined by the base station and communicated to the communications device. In some embodiments, the configuration may be determined at least partially by a core network element and communicated to the communication device.
  • the base station may configure the communication device related resource part information, when the NOMA is configured to communication device.
  • the resource part information may comprise one or more of the starting symbol, the ending symbol of this resource part, and the corresponding spreading factor.
  • a resource can be divided into more than two parts. Each part may have all different spreading factors, all the same spreading factors or two or more different spreading factors with at least one spreading factor used by at least two parts.
  • each resource part may be configured with a specific NOMA scheme.
  • the resource specific spreading factor can be configured on the basis of a group of communication devices or on a per communication device basis or a mixture of both of these techniques. Where the configuration is on a per communication device, there may be the same spreading factor used by different communication devices in the same resource part.
  • the base station will configure the resource parts related information. This may comprise the spreading factor or information from which the spreading factor may be determined.
  • a control channel from a communication device if need to be transmitted, will be transmitted in one resource part and spread with a specific spreading factor
  • a communication may need to transmit a control channel in certain situations.
  • the communication device may only need to use the control channel when higher layer configured parameters (e.g., MCS or HARQ (Hybrid automatic repeat request) process ID) are outdated.
  • higher layer configured parameters e.g., MCS or HARQ (Hybrid automatic repeat request) process ID
  • the communication device may use all the resources for data transmission or leave the control resource vacant. This may be based on configuration by the base station. If the control resource is vacant, this may reduce the interference to other communication devices (which can be configured to provide a data transmission in the control channel resource) .
  • a communication device may just use only one or more resource parts out of the whole allocated resources.
  • one resource part there might be a control signal from one communication device and a data signal from another communication device.
  • the data signal from a communication device will correspondingly be transmitted using a different spreading factors.
  • Different communication devices may be configured with same or a different resource part for transmitting a control channel.
  • the data channel may use both resource parts when the control channel is not being used.
  • a periodicity may be configured by the base station for the resource part carrying control channel.
  • the periodicity may be varied. This may be controlled by the base station.
  • the resource part carrying the data channel can be configured to transmit on the control channel part if not being used. This may for example be dependent on a network estimates interference level. This may be controlled by the base station.
  • the relationship or mapping between the spreading sequence for the NOMA control channel and data channel may be predefined or configured by higher layer signalling.
  • Figure 3 shows a first example.
  • a first communications device UE1 400, a second communications device UE2 401 and a third communications device UE3 402 are configured with same resources for grant-free transmission.
  • the resources in a slot are divided as two resource parts, where resource part 1 is associated with spreading factor 1 (SF1) and resource part 2 is associated with spreading factor 2 (SF2) .
  • resource part 1 is associated with spreading factor 1 (SF1)
  • resource part 2 is associated with spreading factor 2 (SF2) .
  • SF1 spreading factor 1
  • SF2 spreading factor 2
  • the first resource part is referenced 403
  • the second resource part is referenced 404.
  • the first resource part is referenced 405 and the second resource part is referenced 406.
  • the third communications device UE3 402 the first resource part is referenced 409 and the second resource part is referenced 408.
  • the first resource part 1 is for control channel transmission, therefore the control channel is spread using SF1.
  • SF1 may be higher than SF2 since the higher the spreading factor, the lower inter-device interference that can be obtained.
  • the second resource part is for data.
  • the resource part 1 is used for transmitting data signals. This may be because the first communications device UE1 400 does not need to update any configured parameters (e.g., MCS) for data transmission. Therefore the first communications device UE1 400 uses both resource parts for data transmission.
  • the data signal from first communications device UE1 400 is spread using SF1 and SF2 in resource part 1 and resource part 2, respectively.
  • the resource part for control can be configured with more frequency/time resources than for data channel. In some embodiments this may be to provide the control channel with a higher reliability than the data channel.
  • a same resource part is used for the control channel for all the communication devices of the group.
  • FIG. 4 Another example is shown in Figure 4.
  • a different resource part for transmitting a control channel for different UEs is provided. This may be configured by the base station.
  • a first communications device UE1 500, a second communications device UE2 502 and a third communications device UE3 503 are configured with same resources for grant-free transmission.
  • the resources in a slot are divided as three resource parts, where resource part 1 is associated with spreading factor 1 (SF1) , resource part 2 is associated with spreading factor 2 (SF2) and resource part 3 is associated with spreading factor 3 (SF3) .
  • resource part 1 is associated with spreading factor 1 (SF1)
  • resource part 2 is associated with spreading factor 2 (SF2)
  • resource part 3 is associated with spreading factor 3 (SF3) .
  • the first resource part is referenced 503
  • the second resource part is referenced 504
  • the third resource part is referenced 505.
  • the first resource part is referenced 506, the second resource part is referenced 507 and the third resource part is referenced 508.
  • the first resource part is referenced 509
  • the second resource part is referenced 511
  • the third resource part is referenced 512.
  • all three resource parts are for data.
  • the second resource part is for control with the other two resource parts being for data.
  • the first resource part is for control channel transmission, and the second and third resource parts are for data.
  • a control apparatus of a base station is configured to determine configuration information for two or more communication devices.
  • This configuration information may be with respect to the resource part (s) which are to be used for control and/or data channels transmission.
  • the configuration information may comprise one or more of: spreading factor information which determines which spreading code is used in the resource part (s) ; the starting symbols, the ending symbols of symbols of a resource part, the slot number; and periodicity of resource part.
  • the slot number and/or periodicity may be provided if only one resource part is configured.
  • step S2 the control apparatus is configured to control the base station to transmit the information to the communication devices.
  • the configuration information can be transmitted at the same time or different parts of the configuration information may be sent at different times.
  • the configuration information may be explicitly and/or implicitly signalled to the communication devices.
  • the configuration information for different communication devices may be transmitted at the same or at different times by means of broadcast signalling or dedicated signalling.
  • step S3 the configuration information is received by the one or more communication devices. This information may be stored in a respective communication device.
  • step S4 apparatus in the communication device is configured to use the configuration information to cause the communication device to transmit one or more of the control and data channels on the resource part (s) using the respective spreading factors.
  • the control and/or data channels are transmitted to the base station.
  • the base station uses blind decoding to determine the existence of the control header.
  • the relationship or mapping between the spreading sequence for the NOMA control channel and data channel may be predefined or configured by higher layer signalling.
  • the mapping can be configured by network to reduce or simplify base station blind detection on the control channel and data channel, otherwise the base station may need to detect the control channel and data channel from the same UE separately.
  • the base station may configure the length of a spreading factor. A larger spreading factor could have larger signature pool, so more signatures are available. This may mean that the collision probability of the signatures, which may be randomly selected by the communication device, may be lower. This may mean that the base station can decode the data easily.
  • the base station may configure one spreading sequence index for resource part 1, so that UE can find the spreading sequence from the spreading sequence pool 1.
  • the UE may use the same index to find the spreading sequence for the one or more other resource parts from the respective spreading sequence pools. More specifically, a mapping relationship may be defined for the spreading sequence index between different resource parts.
  • the communications device may be configured by the network using one index. Using this index, the communications device will know which spreading sequence it will use for one of the resource parts. For the other resource part, the communication device may use the same index to find the spreading sequence. However due to the sequence pool for the two resource parts being different, so using same index, the sequence corresponding to the same index but from the different sequence pool will be different.
  • the use of NOMA for a grant-free control channel may improve reliability of decoding the data channel.
  • the reliability may be determined using one or more metrics and/or information. For example, the reliability may be determined based on a miss detection rate within a time window.
  • a resource specific spreading factor may satisfy a detection requirement for distinguishing different channels.
  • the provision of a control channel based on need may improve a resource utilization efficiency.
  • a more efficient use of resources may be provided in the context where NOMA is used.
  • inventions may relate to communications between user equipment and base stations.
  • the base stations may be associated with macro cells and/or smaller cells.
  • a base station may be dependent on the standard or protocol.
  • the base station is referred to as gNB.
  • embodiments may be used with any other suitable standard or system alternatively or additionally.
  • some embodiments may be implemented in hardware or special purpose circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although embodiments are not limited thereto.
  • firmware or software which may be executed by a controller, microprocessor or other computing device, although embodiments are not limited thereto. While various embodiments may be illustrated and described as block diagrams, flow charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the embodiments may be implemented by computer software stored in a memory and executable by at least one data processor of the involved entities or by hardware, or by a combination of software and hardware. Further in this regard it should be noted that any procedures, e.g., as in Figure 5, may represent program steps, or interconnected logic circuits, blocks and functions, or a combination of program steps and logic circuits, blocks and functions.
  • the software may be stored on such physical media as memory chips, or memory blocks implemented within the processor, magnetic media such as hard disk or floppy disks, and optical media such as for example DVD and the data variants thereof, CD.
  • the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory.
  • the data processors may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) , application specific integrated circuits (ASIC) , gate level circuits and processors based on multi-core processor architecture, as non-limiting examples.
  • circuitry may be configured to perform one or more of the functions and/or method steps previously described. That circuitry may be provided in the base station and/or in the communications device.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example integrated device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method comprising: causing a communications device (102, 104, 105) to transmit to a base station (106, 107, 116, 118, 120). The communications device (102, 104, 105) uses two or more resource parts of a resource. A respective, different, non-orthogonal multiple access signature is associated with the respective resource parts.

Description

APPARATUS, METHOD AND COMPUTER PROGRAM Field
The present application relates to a method, apparatus, system and computer program.
Background
A wireless communication system can be seen as a facility that enables communication sessions. The session may be between two or more entities. On one side the entity or entities may be user terminals, machine type devices and/or the like. On the other side, the entity or entities may be an access node such as a base station and/or the like.
In a wireless communication system at least a part of a communication session occurs over a wireless link.
Orthogonal access schemes may be used where resources for different communication devices are not overlapped. Non-orthogonal multiple access (NOMA) allows access by different communication devices in the same resources.
Summary
According to an aspect, there is provided a method comprising: causing a communications device to transmit to a base station using a plurality of resource parts of a resource, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
The resource may comprise one or more of: one or more OFDM symbols in a time domain; one or more time slots in a time domain; and one or more physical resource blocks in a frequency domain.
At least one resource part may comprise one or more of: one or more OFDM symbols of said one or more OFDM symbols in the time domain; one or more of sad time slots in the time domain; and one or more physical resource blocks of the one or more physical resource blocks in the frequency domain.
The non-orthogonal multiple access signature may be one or more of a: spreading sequence of a specific spreading factor; a scrambling sequence; and an interleaving pattern.
The respective non orthogonal multiple access signatures may be related to each other.
One or more of said resource parts may be used for a control channel and one or more of said resource parts may be used for a data channel.
The resource part for the control channel may be associated with a resource part periodicity.
The method may comprise causing the control channel to be transmitted to request one or more updated parameters.
The method may comprise determining that one or more parameters require updating before causing the control channel to be transmitted to request one or more updated parameters.
A same non-orthogonal multiple access signature may be used by another communication device and said communication device with respect to a given resource part.
In one resource part, either said communication device or said another communication device transmits a control channel and the other of said communication device and said another communication device transmits a data channel.
The method may comprise receiving information from a base station, and using said information to configure said plurality of resource parts.
The information may comprise periodicity information for said resource part periodicity.
The information may comprise a relationship between non-orthogonal multiple access signatures among different resource parts.
The information may comprise information indicating when said resource part for said control channel is not required for a control channel if said resource part for said control channel is used to transmit the data channel or is left vacant.
According to an aspect, there is provided a method comprising: receiving at a base station communications from a communication device using a plurality of resource parts of a resource, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
The resource may comprise one or more of: one or more OFDM symbols in a time domain; one or more time slots in a time domain; and one or more physical resource blocks in a frequency domain.
At least one resource part may comprise one or more of: one or more OFDM symbols of said one or more OFDM symbols in the time domain; one or more of sad time slots in the time domain; and one or more physical resource blocks of the one or more physical resource blocks in the frequency domain.
The non-orthogonal multiple access signature may be one or more of a: spreading sequence of a specific spreading factor; a scrambling sequence; and an interleaving pattern.
The respective non orthogonal multiple access signatures may be related to each other.
One or more of said resource parts may be used for a control channel and one or more of said resource parts may be used for a data channel.
The resource part for the control channel may be associated with a resource part periodicity.
The method may comprise receiving the control channel requesting one or more updated parameters.
The method may comprise receiving communications from at least one other communication device, a same non-orthogonal multiple access signature being used by said another communication device and said communication device with respect to a given resource part.
The method may comprise receiving in one resource part, a control channel from either said communication device or said another communication device and a data channel from the other of said communication device and said another communication device.
The method may comprise causing information to be transmitted from a base station, said information being for configuring said plurality of resource parts.
The information may comprise periodicity information for said resource part periodicity.
The information may comprise a relationship between non-orthogonal multiple access signatures among different resource parts.
The information may comprise information indicating when said resource part for said control channel is not required for a control channel if said resource part for said control channel is used to transmit the data channel or is left vacant.
According to an aspect, there is provided an apparatus comprising: at least one processor; and at least one memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to: cause a communications device to transmit to a base station using a plurality of resource parts of a resource, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
The resource may comprise one or more of: one or more OFDM symbols in a time domain; one or more time slots in a time domain; and one or more physical resource blocks in a frequency domain.
At least one resource part may comprise one or more of: one or more OFDM symbols of said one or more OFDM symbols in the time domain; one or more of sad time slots in the time domain; and one or more physical resource blocks of the one or more physical resource blocks in the frequency domain.
The non-orthogonal multiple access signature may be one or more of a: spreading sequence of a specific spreading factor; a scrambling sequence; and an interleaving pattern.
The respective non orthogonal multiple access signatures may be related to each other.
One or more of said resource parts may be used for a control channel and one or more of said resource parts may be used for a data channel.
The resource part for the control channel may be associated with a resource part periodicity.
The at least one the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus at least to cause the control channel to be transmitted to request one or more updated parameters.
The at least one the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus at least to determine that one or more parameters require updating before causing the control channel to be transmitted to request one or more updated parameters.
A same non-orthogonal multiple access signature may be used by another communication device and said communication device with respect to a given resource part.
In one resource part, either said communication device or said another communication device transmits a control channel and the other of said communication device and said another communication device transmits a data channel.
The at least one the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus at least to receive information from a base station, and use said information to configure said plurality of resource parts.
The information may comprise periodicity information for said resource part periodicity.
The information may comprise a relationship between non-orthogonal multiple access signatures among different resource parts.
The information may comprise information indicating when said resource part for said control channel is not required for a control channel if said resource part for said control channel is used to transmit the data channel or is left vacant.
According to an aspect, there is provided an apparatus in a base station comprising: at least one processor; and at least one memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to: receive communications from a communication device using a plurality of resource parts of a resource, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
The resource may comprise one or more of: one or more OFDM symbols in a time domain; one or more time slots in a time domain; and one or more physical resource blocks in a frequency domain.
At least one resource part may comprise one or more of: one or more OFDM symbols of said one or more OFDM symbols in the time domain; one or more of sad time slots in the time domain; and one or more physical resource blocks of the one or more physical resource blocks in the frequency domain.
The non-orthogonal multiple access signature may be one or more of a: spreading sequence of a specific spreading factor; a scrambling sequence; and an interleaving pattern.
The respective non orthogonal multiple access signatures may be related to each other.
One or more of said resource parts may be used for a control channel and one or more of said resource parts may be used for a data channel.
The resource part for the control channel may be associated with a resource part periodicity.
The at least one the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus at least to receive the control channel requesting one or more updated parameters.
The at least one the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus at least to receive communications from at least one other communication device, a same non-orthogonal multiple access signature being used by said another communication device and said communication device with respect to a given resource part.
The at least one the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus at least to receive in one resource part, a control channel from either said communication device or said another communication device and a data channel from the other of said communication device and said another communication device.
The at least one the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus at least to cause information to be transmitted from a base station, said information being for configuring said plurality of resource parts.
The information may comprise periodicity information for said resource part periodicity.
The information may comprise a relationship between non-orthogonal multiple access signatures among different resource parts.
The information may comprise information indicating when said resource part for said control channel is not required for a control channel if said resource part for said control channel is used to transmit the data channel or is left vacant.
According to another aspect, there is provided an apparatus comprising: means for causing a communications device to transmit to a base station using a plurality of resource parts of a resource, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
The resource may comprise one or more of: one or more OFDM symbols in a time domain; one or more time slots in a time domain; and one or more physical resource blocks in a frequency domain.
At least one resource part may comprise one or more of: one or more OFDM symbols of said one or more OFDM symbols in the time domain; one or more of sad time slots in the time domain; and one or more physical resource blocks of the one or more physical resource blocks in the frequency domain.
The non-orthogonal multiple access signature may be one or more of a: spreading sequence of a specific spreading factor; a scrambling sequence; and an interleaving pattern.
The respective non orthogonal multiple access signatures may be related to each other.
One or more of said resource parts may be used for a control channel and one or more of said resource parts may be used for a data channel.
The resource part for the control channel may be associated with a resource part periodicity.
The means may be for causing the control channel to be transmitted to request one or more updated parameters.
The apparatus may comprise means for determining that one or more parameters require updating before causing the control channel to be transmitted to request one or more updated parameters.
The means may be for determining that one or more parameters require updating before causing the control channel to be transmitted to request one or more updated parameters.
A same non-orthogonal multiple access signature may be used by another communication device and said communication device with respect to a given resource part.
In one resource part, either said communication device or said another communication device transmits a control channel and the other of said  communication device and said another communication device transmits a data channel.
The means may be for receiving information from a base station, and using said information to configure said plurality of resource parts.
The apparatus may comprise means for receiving information from a base station, and using said information to configure said plurality of resource parts.
The information may comprise periodicity information for said resource part periodicity.
The information may comprise a relationship between non-orthogonal multiple access signatures among different resource parts.
The information may comprise information indicating when said resource part for said control channel is not required for a control channel if said resource part for said control channel is used to transmit the data channel or is left vacant.
According to an aspect, there is provided an apparatus for a base station comprising: means for receiving communications from a communication device using a plurality of resource parts of a resource, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
This receiving means may be at the baseband level, the radio frequency level or both.
The resource may comprise one or more of: one or more OFDM symbols in a time domain; one or more time slots in a time domain; and one or more physical resource blocks in a frequency domain.
At least one resource part may comprise one or more of: one or more OFDM symbols of said one or more OFDM symbols in the time domain; one or more of sad time slots in the time domain; and one or more physical resource blocks of the one or more physical resource blocks in the frequency domain.
The non-orthogonal multiple access signature may be one or more of a: spreading sequence of a specific spreading factor; a scrambling sequence; and an interleaving pattern.
The respective non orthogonal multiple access signatures may be related to each other.
One or more of said resource parts may be used for a control channel and one or more of said resource parts may be used for a data channel.
The resource part for the control channel may be associated with a resource part periodicity.
The means may be for receiving the control channel requesting one or more updated parameters.
The means may be for receiving communications from at least one other communication device, a same non-orthogonal multiple access signature being used by said another communication device and said communication device with respect to a given resource part.
The means may be for receiving in one resource part, a control channel from either said communication device or said another communication device and a data channel from the other of said communication device and said another communication device.
The means may be for causing information to be transmitted from a base station, said information being for configuring said plurality of resource parts.
The apparatus may comprise means for causing information to be transmitted from a base station, said information being for configuring said plurality of resource parts.
The information may comprise periodicity information for said resource part periodicity.
The information may comprise a relationship between non-orthogonal multiple access signatures among different resource parts.
The information may comprise information indicating when said resource part for said control channel is not required for a control channel if said resource part for said control channel is used to transmit the data channel or is left vacant.
According to another aspect, there is provided an apparatus comprising: circuitry configured to configure a plurality of resource parts of a resource; and circuitry configured to cause a communications device to transmit to a base station using the plurality of resource parts, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
According to an aspect, there is provided an apparatus in a base station comprising: circuity for causing configuration information to be provided to a communications device; and circuitry for receiving communications from a communication device using a plurality of resource parts of a resource, based on  said configuration information, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
According to an aspect, there is provided a non-transitory computer readable medium comprising program instructions stored thereon for performing any one or more of the method steps discussed previously.
According to an aspect, there is provided a non-transitory computer readable medium comprising program instructions stored thereon for causing an apparatus to perform any one or more of the method steps discussed previously.
According to an aspect, there is provided a computer program comprising computer executable instructions, which when executed by at least one processor, cause the method of any one of the preceding claims to be performed.
In the above, many different embodiments have been described. It should be appreciated that further embodiments may be provided by the combination of any two or more of the embodiments described above.
Description of Figures
Some example embodiments will now be described, by way of example only, with reference to the accompanying Figures in which:
Figure 1 illustrates an communication system;
Figure 2 illustrates a communication device;
Figure 3 shows a first example of control and data channels in a resource;
Figure 4 shows a second example of control and data channels in a resource; and
Figure 5 schematically shows a method; and
Figure 6 shows an example control apparatus provided in a base station.
Detailed description
One example of a wireless communication system in which some embodiments may be provided is shown in Figure 1. An example wireless communication device in which some embodiments may be provided is shown in Figure 2. Some embodiments relate to communication between user equipment and one or more base stations.
In the example wireless communication system 100 shown in Figure 1,  wireless communication devices  102, 104, 105 are provided wireless access via at least one base station or similar wireless transmitting and/or receiving node or point. Base stations are typically controlled by at least one appropriate controller apparatus. The controller apparatus may be part of the base station.
In Figure 1  base stations  106 and 107 are shown as connected to a wider communications network 113 via gateway 112. A further gateway function may be provided to connect to another network.
Base stations  116, 118 and 120 associated with smaller cells may also be connected to the network 113, for example by a separate gateway function and/or via the macro level stations. The  base stations  116, 118 and 120 may be pico or femto level base stations or the like. In the example,  stations  116 and 118 are connected via a gateway 111 whilst station 120 connects via the base station 106. In some embodiments, the smaller stations may not be provided.
Figure 6 shows an example of a control apparatus for a base station. The control apparatus 10 comprises at least one memory 11, at least one  data processing unit  12, 13 and an input/output interface 14. Via the interface the control apparatus can be coupled to relevant other components of the base station. The control apparatus can be configured to execute an appropriate software code to provide the control functions.
One example of a communication device in which some embodiments may be provided is shown in Figure 2. Figure 2 shows a schematic, partially sectioned view of a communication device 200. The communication device may be provided by any device capable of sending and receiving radio signals. Non-limiting examples comprise a mobile station (MS) or mobile device such as a mobile phone or what is known as a ’smart phone’ , a computer provided with a wireless interface card or other wireless interface facility (e.g., USB dongle) , personal data assistant (PDA) or a tablet provided with wireless communication capabilities, machine-type communications MTC devices, IoT type communication devices or any combinations of these or the like. A device may provide, for example, communication of data for carrying communications. The communications may be one or more of voice, electronic mail (email) , text message, multimedia, data, machine data and so on.
The device 200 may receive signals over an air or radio interface 207 via appropriate apparatus for receiving and may transmit signals via appropriate  apparatus for transmitting radio signals. In Figure 2 transceiver apparatus is designated schematically by block 206. The transceiver apparatus 206 may be provided for example by means of a radio part and associated antenna arrangement. The antenna arrangement may be arranged internally or externally to the mobile device.
The device 200 may be provided with at least one data processing entity 201, at least one memory 202 and other possible components 203 for use in software and hardware aided execution of tasks it is designed to perform, including control of access to and communications with access systems and other communication devices. The data processing, storage and other relevant control apparatus can be provided on an appropriate circuit board and/or in chipsets. This feature is denoted by reference 204. The device may optionally have a user interface such as key pad 205, touch sensitive screen or pad, combinations thereof or the like. Optionally one or more of a display 208, a speaker and a microphone may be provided depending on the type of the device.
The  communication devices  102, 104, 105 may access the communication system based on various access techniques, such as code division multiple access (CDMA) , or wideband CDMA (WCDMA) . Other non-limiting examples comprise time division multiple access (TDMA) , frequency division multiple access (FDMA) and various schemes thereof such as the interleaved frequency division multiple access (IFDMA) , single carrier frequency division multiple access (SC-FDMA) and orthogonal frequency division multiple access (OFDMA) , space division multiple access (SDMA) and so on.
Some embodiments may be provided in the context so call 5G or NR (new radio) network architecture. However, it should be appreciated that this is by way of example and other embodiments may be implemented in the context of other network architectures.
In some communication systems, a basic multiple access scheme is used which is orthogonal for one or both of downlink and uplink data transmissions. This may be referred to as orthogonal multiple access (OMA) . This means that resources of different users can be differentiated. The resources may be physical resources such as time and/or frequency which are not overlapped. The signals for different users may alternatively or additionally be differentiated using one or more of the spatial domain and the coding domain.
On the other hand, non-orthogonal multiple-access (NOMA) schemes may alternatively or additionally be used.
For non-orthogonal multiple access, signals from two or more UEs might be transmitted simultaneously in the same resources, e.g., time domain resources and frequency domain resources. There may be interference between transmissions. As the load on a system increases, this non-orthogonal interference characteristic may be more pronounced. To combat the interference between non-orthogonal transmissions, transmitter side schemes such as spreading (linear or non-linear, with or without sparseness) and/or interleaving may be employed. This may improve the performance of the system. Alternatively or additionally, this may ease the burden of advanced receivers.
Non-orthogonal multiple access may be beneficial for grant-free transmission. This may be due to the availability of plenty of NOMA signatures and/or the correspondingly low multiple access (MA) signature collision rate for grant-free transmissions. The NOMA signature may be one or more of a: spreading sequence of a specific spreading factor; a scrambling sequence; and an interleaving pattern.
Non-orthogonal multiple access (NOMA) may have more than one user or communication device served in each orthogonal resource block, e.g., a time slot, a frequency channel, a spreading code, or an orthogonal spatial degree of freedom.
NOMA may be advantageous in various use cases or deployment scenarios. By way of example only, NOMA may be deployed in one or more of enhanced mobile broad band (eMBB) , ultra-reliable low latency communication (URLLC) and massive machine type communication (mMTC) .
NOMA may use less signalling than OMA. This may result in one or more of: reducing a UE’s power consumption; reducing latency; and increasing system capacity.
The nature of grant-free access may result in issues relating to one or more of link adaptation, flexible resource occupation and power control. These may impact the user throughput.
A grant-free control channel may be transmitted together with a data channel to indicate the information for data transmission. By way of example only, this information may be one or more of a modulation and coding scheme (MCS level) ,  resources and so on. The control channel may need to be robust. The control channel may be subject to a collision rate from a UEs transmission. Using NOMA transmission may reduce the multiple access signature collision.
Some embodiments may be used for communication between one or more of the base stations of Figure 1 and one or more communication devices. Some embodiments may be used with UL uplink communication.
Some embodiments may provide a grant-free control channel using NOMA. This may be in conjunction with a data channel also using NOMA. Some embodiments may relate to the control channel design and its association with the data channel. Some embodiments may separate resource parts for NOMA grant-free control and data channel, with a different spreading factor or other link related parameter for each part. Some embodiments may use a resource specific spreading factor per communication device or group of communication devices.
Without loss of generality, the resource part may be a resource unit or a resource grid or any other suitable resource part.
As will be discussed in more detail later, the data signal associated with one communication device may be transmitted in the same resource as the control signal for a different communication device. Some embodiments may be used where a given communication device is connecting to a given base station via the control and data channels. In some embodiments, the communication devices which are transmitting in the same resource are transmitting to the same base station. For a given communication device the control channel and the data channel may be using different resources or parts of a resource.
In some embodiments, resources configured for NOMA grant-free access for a group of UEs are configured as two (or more) resource parts. For example, in the time domain having slots the two resource parts may be provided in one time slot. In some embodiments, the two or more resource parts may not overlap in time. Each resource part may be associated with a different spreading factor.
Some embodiments may be used in the context of a system where the resources are considered in the time domain, the resource may be a slot or smaller than a slot (e.g., several symbols) . The resource may comprise one or more OFDM symbols in a time domain or one or more time slots in a time domain. The resource may additionally or alternatively comprise one or more physical resource blocks in a  frequency domain. The resource part may comprise one or more OFDM symbols or a slot in time domain out of the configured resource. The resource part may comprise, alternatively or additionally one or more physical resource blocks out of the configured resource.
Some embodiments may be provided where the resources of a different domain to the time domain. The resources may be with respect to the unit or part of the unit appropriate to that domain. Where the resources are considered in the context of a plurality of different domains, the resource will be with respect to a unit or part of a unit with respect to the plurality of domains. The different resource parts may not overlap in the respective one or more domains.
In some embodiments, the network will configure how many symbols the resource part occupies. This may be the number of symbols or slot. The spreading factor may be configured to a resource part. It should be appreciated that this may be determined by the base station and communicated to the communications device. In some embodiments, the configuration may be determined at least partially by a core network element and communicated to the communication device.
If the resource parts are configured in one slot, then the number of symbols for each resource part may be configured by higher layer signalling. The base station may configure the communication device related resource part information, when the NOMA is configured to communication device. The resource part information may comprise one or more of the starting symbol, the ending symbol of this resource part, and the corresponding spreading factor.
In some embodiments, a resource can be divided into more than two parts. Each part may have all different spreading factors, all the same spreading factors or two or more different spreading factors with at least one spreading factor used by at least two parts.
In some embodiments, each resource part may be configured with a specific NOMA scheme.
The resource specific spreading factor can be configured on the basis of a group of communication devices or on a per communication device basis or a mixture of both of these techniques. Where the configuration is on a per communication device, there may be the same spreading factor used by different communication devices in the same resource part. The base station will configure  the resource parts related information. This may comprise the spreading factor or information from which the spreading factor may be determined.
A control channel from a communication device, if need to be transmitted, will be transmitted in one resource part and spread with a specific spreading factor
A communication may need to transmit a control channel in certain situations. For example, the communication device may only need to use the control channel when higher layer configured parameters (e.g., MCS or HARQ (Hybrid automatic repeat request) process ID) are outdated. If the communication device does not require a control channel, the communication device may use all the resources for data transmission or leave the control resource vacant. This may be based on configuration by the base station. If the control resource is vacant, this may reduce the interference to other communication devices (which can be configured to provide a data transmission in the control channel resource) .
In some embodiments, a communication device may just use only one or more resource parts out of the whole allocated resources.
In some embodiments, in one resource part, there might be a control signal from one communication device and a data signal from another communication device.
In some embodiments, in each different resource part, the data signal from a communication device will correspondingly be transmitted using a different spreading factors.
Different communication devices may be configured with same or a different resource part for transmitting a control channel. In some embodiments, the data channel may use both resource parts when the control channel is not being used.
A periodicity may be configured by the base station for the resource part carrying control channel. The periodicity may be varied. This may be controlled by the base station. The resource part carrying the data channel can be configured to transmit on the control channel part if not being used. This may for example be dependent on a network estimates interference level. This may be controlled by the base station.
The relationship or mapping between the spreading sequence for the NOMA control channel and data channel may be predefined or configured by higher layer signalling.
Figure 3 shows a first example. In this example, a first communications device UE1 400, a second communications device UE2 401 and a third communications device UE3 402 are configured with same resources for grant-free transmission. The resources in a slot are divided as two resource parts, where resource part 1 is associated with spreading factor 1 (SF1) and resource part 2 is associated with spreading factor 2 (SF2) . For the first communications device UE1 400, the first resource part is referenced 403 and the second resource part is referenced 404. For the second communications device UE2 401, the first resource part is referenced 405 and the second resource part is referenced 406. For the third communications device UE3 402, the first resource part is referenced 409 and the second resource part is referenced 408. For the second communications device UE2 and the third communications device UE3, the first resource part 1 is for control channel transmission, therefore the control channel is spread using SF1. SF1 may be higher than SF2 since the higher the spreading factor, the lower inter-device interference that can be obtained. The second resource part is for data.
However for first communications device UE1 400, the resource part 1 is used for transmitting data signals. This may be because the first communications device UE1 400 does not need to update any configured parameters (e.g., MCS) for data transmission. Therefore the first communications device UE1 400 uses both resource parts for data transmission. The data signal from first communications device UE1 400 is spread using SF1 and SF2 in resource part 1 and resource part 2, respectively.
In some embodiments, the resource part for control can be configured with more frequency/time resources than for data channel. In some embodiments this may be to provide the control channel with a higher reliability than the data channel.
In the example shown in Figure 3, a same resource part is used for the control channel for all the communication devices of the group.
Another example is shown in Figure 4. In this example, a different resource part for transmitting a control channel for different UEs is provided. This may be configured by the base station.
In this example, a first communications device UE1 500, a second communications device UE2 502 and a third communications device UE3 503 are configured with same resources for grant-free transmission. The resources in a slot are divided as three resource parts, where resource part 1 is associated with spreading factor 1 (SF1) , resource part 2 is associated with spreading factor 2 (SF2) and resource part 3 is associated with spreading factor 3 (SF3) . For the first communications device UE1 500, the first resource part is referenced 503, the second resource part is referenced 504 and the third resource part is referenced 505. For the second communications device UE2 501, the first resource part is referenced 506, the second resource part is referenced 507 and the third resource part is referenced 508. For the third communications device UE3 502, the first resource part is referenced 509, the second resource part is referenced 511 and the third resource part is referenced 512. For the first communications device UE1, all three resource parts are for data. For the second communications device UE2, the second resource part is for control with the other two resource parts being for data. For the third communications device UE3, the first resource part is for control channel transmission, and the second and third resource parts are for data.
Reference is made to Figure 5 which shows a method of some embodiments. In step S1 a control apparatus of a base station is configured to determine configuration information for two or more communication devices. This configuration information may be with respect to the resource part (s) which are to be used for control and/or data channels transmission. The configuration information may comprise one or more of: spreading factor information which determines which spreading code is used in the resource part (s) ; the starting symbols, the ending symbols of symbols of a resource part, the slot number; and periodicity of resource part. The slot number and/or periodicity may be provided if only one resource part is configured.
In step S2, the control apparatus is configured to control the base station to transmit the information to the communication devices. It should be appreciated that the configuration information can be transmitted at the same time or different parts of the configuration information may be sent at different times. The configuration information may be explicitly and/or implicitly signalled to the communication devices. The configuration information for different communication  devices may be transmitted at the same or at different times by means of broadcast signalling or dedicated signalling.
In step S3, the configuration information is received by the one or more communication devices. This information may be stored in a respective communication device.
In step S4, apparatus in the communication device is configured to use the configuration information to cause the communication device to transmit one or more of the control and data channels on the resource part (s) using the respective spreading factors. The control and/or data channels are transmitted to the base station.
From the detection point of view, the base station uses blind decoding to determine the existence of the control header.
The relationship or mapping between the spreading sequence for the NOMA control channel and data channel may be predefined or configured by higher layer signalling.
In some embodiments where the signature pool is sufficient large, then the mapping can be configured by network to reduce or simplify base station blind detection on the control channel and data channel, otherwise the base station may need to detect the control channel and data channel from the same UE separately. The base station may configure the length of a spreading factor. A larger spreading factor could have larger signature pool, so more signatures are available. This may mean that the collision probability of the signatures, which may be randomly selected by the communication device, may be lower. This may mean that the base station can decode the data easily.
In some embodiments, the base station may configure one spreading sequence index for resource part 1, so that UE can find the spreading sequence from the spreading sequence pool 1. The UE may use the same index to find the spreading sequence for the one or more other resource parts from the respective spreading sequence pools. More specifically, a mapping relationship may be defined for the spreading sequence index between different resource parts. Thus the communications device may be configured by the network using one index. Using this index, the communications device will know which spreading sequence it will use for one of the resource parts. For the other resource part, the communication device may use the same index to find the spreading sequence. However due to the  sequence pool for the two resource parts being different, so using same index, the sequence corresponding to the same index but from the different sequence pool will be different.
One more embodiments may provide one or more of the following advantages. The use of NOMA for a grant-free control channel may improve reliability of decoding the data channel. The reliability may be determined using one or more metrics and/or information. For example, the reliability may be determined based on a miss detection rate within a time window.
A resource specific spreading factor may satisfy a detection requirement for distinguishing different channels. In some embodiments, the provision of a control channel based on need may improve a resource utilization efficiency. In some embodiments a more efficient use of resources may be provided in the context where NOMA is used.
It should be appreciated that embodiments may relate to communications between user equipment and base stations. The base stations may be associated with macro cells and/or smaller cells.
It should be appreciated that the terminology used to refer to a base station may be dependent on the standard or protocol. By way of example only, in the so-called 5G or NR specification, the base station is referred to as gNB. It should be noted that embodiments may be used with any other suitable standard or system alternatively or additionally.
Some embodiments have been described in the context of uplink communication. It should be appreciated that alternatively or additionally some embodiments may be used in the context of downlink communication.
It is noted that while the above describes example embodiments, there are several variations and modifications which may be made to the disclosed solution without departing from the scope of the present invention.
The embodiments may thus vary within the scope of the attached claims. In general, some embodiments may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. For example, some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although embodiments are not limited thereto. While various embodiments may be illustrated and described as block diagrams, flow  charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The embodiments may be implemented by computer software stored in a memory and executable by at least one data processor of the involved entities or by hardware, or by a combination of software and hardware. Further in this regard it should be noted that any procedures, e.g., as in Figure 5, may represent program steps, or interconnected logic circuits, blocks and functions, or a combination of program steps and logic circuits, blocks and functions. The software may be stored on such physical media as memory chips, or memory blocks implemented within the processor, magnetic media such as hard disk or floppy disks, and optical media such as for example DVD and the data variants thereof, CD.
The memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory. The data processors may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) , application specific integrated circuits (ASIC) , gate level circuits and processors based on multi-core processor architecture, as non-limiting examples.
Alternatively or additionally some embodiments may be implemented using circuitry. The circuitry may be configured to perform one or more of the functions and/or method steps previously described. That circuitry may be provided in the base station and/or in the communications device.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analogue and/or digital circuitry) ;
(b) combinations of hardware circuits and software, such as:
(i) a combination of analogue and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as the communications device or base station to perform the various functions previously described; and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example integrated device.
The foregoing description has provided by way of exemplary and non-limiting examples a full and informative description of some embodiments However, various modifications and adaptations may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings and the appended claims. However, all such and similar modifications of the teachings will still fall within the scope as defined in the appended claims.

Claims (19)

  1. A method comprising:
    causing a communications device to transmit to a base station using a plurality of resource parts of a resource, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
  2. A method as claimed in claim 1, wherein the resource comprises one or more of:
    one or more OFDM symbols in a time domain; one or more time slots in a time domain; and one or more physical resource blocks in a frequency domain.
  3. A method as claimed in claim 2, wherein the resource part comprises one or more of:
    one or more OFDM symbols of said one or more OFDM symbols in the time domain; one or more of said time slots in the time domain; and one or more physical resource blocks of the one or more physical resource blocks in the frequency domain.
  4. A method as claimed in any preceding claim, wherein the non-orthogonal multiple access signature is one or more of a: spreading sequence of a specific spreading factor; a scrambling sequence; and an interleaving pattern.
  5. A method as claimed in any preceding claim, wherein the respective non-orthogonal multiple access signatures are related to each other.
  6. A method as claimed in any preceding claim, wherein one of said resource parts is used for a control channel and one of said resource parts is used for a data channel.
  7. A method as claimed in claim 6, wherein the resource part for the control channel is associated with a resource part periodicity.
  8. A method as claimed in claim 6 or 7, comprising causing transmission of the control channel to request one or more updated parameters.
  9. A method as claimed in claim 8, comprising determining that one or more parameters require updating before causing the control channel to be transmitted to request one or more updated parameters.
  10. A method as claimed in any preceding claim, wherein a same non-orthogonal multiple access signature is used by another communication device and said communication device with respect to a given resource part.
  11. A method as claimed in claim 10, wherein in one resource part, either said communication device or said another communication device transmits a control channel and the other of said communication device and said another communication device transmits a data channel.
  12. A method as claimed in any preceding claim comprising receiving information from a base station, and using said information to configure said plurality of resource parts.
  13. A method as claimed in claim 12 when appended to claim 7 or any claim appended thereto, wherein said information comprises periodicity information for said resource part periodicity.
  14. A method as claimed in claim 12 or 13, wherein said information comprises a relationship between non-orthogonal multiple access signatures among different resource parts.
  15. A method as claimed in any of claims 12 to 14 when appended to claim 6 or any claim appended thereto, wherein said information comprises information indicating when said resource part for said control channel is not required for a control channel if said resource part for said control channel is used to transmit the data channel or is left vacant.
  16. A method comprising:
    receiving at a base station communications from a communication device using a plurality of resource parts of a resource, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
  17. A computer program comprising computer executable instructions, which when executed by at least one processor, cause the method of any one of the preceding claims to be performed.
  18. An apparatus comprising:
    at least one processor; and
    at least one memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to:
    cause a communications device to transmit to a base station using a plurality of resource parts of a resource, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.
  19. An apparatus in a base station comprising:
    at least one processor; and
    at least one memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to:
    receive communications from a communication device using a plurality of resource parts of a resource, wherein a respective, different, non-orthogonal multiple access signature is associated with the respective plurality of resource parts.to be performed.
PCT/CN2018/085749 2018-05-05 2018-05-05 Apparatus, method and computer program WO2019213795A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880094868.9A CN112314024A (en) 2018-05-05 2018-05-05 Apparatus, method and computer program
PCT/CN2018/085749 WO2019213795A1 (en) 2018-05-05 2018-05-05 Apparatus, method and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085749 WO2019213795A1 (en) 2018-05-05 2018-05-05 Apparatus, method and computer program

Publications (1)

Publication Number Publication Date
WO2019213795A1 true WO2019213795A1 (en) 2019-11-14

Family

ID=68467627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085749 WO2019213795A1 (en) 2018-05-05 2018-05-05 Apparatus, method and computer program

Country Status (2)

Country Link
CN (1) CN112314024A (en)
WO (1) WO2019213795A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180054270A1 (en) * 2016-08-19 2018-02-22 Samsung Electronics Co., Ltd. Apparatus and method for suppressing inter-cell interference in wireless communication system
US20180077685A1 (en) * 2016-09-14 2018-03-15 Huawei Technologies Co., Ltd. Non-Orthogonal Multiple Access Transmission
US20180083666A1 (en) * 2016-09-21 2018-03-22 Huawei Technologies Co., Ltd. Methods for multiple access transmission
US20180092104A1 (en) * 2016-09-28 2018-03-29 Sharp Laboratories Of America, Inc. Grant-free access method for urllc service

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111556569A (en) * 2015-07-01 2020-08-18 华为技术有限公司 Method and device for transmitting uplink data
WO2017001014A1 (en) * 2015-07-01 2017-01-05 Huawei Technologies Co., Ltd. Apparatus and method for non-orthogonal transmissions
WO2018032014A1 (en) * 2016-08-12 2018-02-15 Intel Corporation Uplink grant-less transmission techniques
WO2018031620A1 (en) * 2016-08-12 2018-02-15 Intel IP Corporation Uplink grant-free noma (non-orthogonal multiple access) transmissions
WO2018064582A1 (en) * 2016-09-30 2018-04-05 Intel IP Corporation Grant-free uplink non-orthogonal multiple access transmissions
CN107171770B (en) * 2017-05-25 2020-01-07 深圳清华大学研究院 Uplink multi-user non-orthogonal multiple access method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180054270A1 (en) * 2016-08-19 2018-02-22 Samsung Electronics Co., Ltd. Apparatus and method for suppressing inter-cell interference in wireless communication system
US20180077685A1 (en) * 2016-09-14 2018-03-15 Huawei Technologies Co., Ltd. Non-Orthogonal Multiple Access Transmission
US20180083666A1 (en) * 2016-09-21 2018-03-22 Huawei Technologies Co., Ltd. Methods for multiple access transmission
US20180092104A1 (en) * 2016-09-28 2018-03-29 Sharp Laboratories Of America, Inc. Grant-free access method for urllc service

Also Published As

Publication number Publication date
CN112314024A (en) 2021-02-02

Similar Documents

Publication Publication Date Title
JP7508662B2 (en) Communication device and wireless communication method
CN102355325B (en) PUCCH resource mapping method and apparatus thereof
JP5902821B2 (en) Method for receiving and transmitting control channel, user equipment and base station
EP3949229B1 (en) Method and apparatus for monitoring control channel candidates
CN107040342B (en) Method and equipment for transmitting uplink control information
CN113747497B (en) Interference suppression combining method, resource indicating method and communication device
WO2018121052A1 (en) Method and apparatus for determining uplink-controlled resources, transmitting terminal and receiving terminal
WO2013127466A1 (en) Allocation of communication resources
JP2021510258A (en) Data transmission method, descramble method, demodulation method and equipment
US20210014023A1 (en) Data transmission method, terminal device, and network device
CN112787772A (en) HARQ feedback method, device and storage medium for SPS PDSCH
CN111294940A (en) Transmission power distribution method and device, storage medium and terminal
US20150055583A1 (en) Method and Apparatus for Signaling Reference Signals to a UE in an LTE System
EP3509369A1 (en) Signal sending method and device
CN109391427B (en) Communication method and device
WO2021073446A1 (en) Time domain resource determination method and device
CN110890953B (en) Communication method and communication device using unlicensed frequency band
WO2018157865A1 (en) Scheduling information acquisition method, terminal and baseband chip
WO2019213795A1 (en) Apparatus, method and computer program
CN111092835B (en) Sequence demodulation method, device, communication equipment and storage medium
CN112740600B (en) Communication method and device
CN110547038B (en) Communication system
CN113826342B (en) Communication method and related equipment
US12075461B2 (en) Communication system with resource scheduling
WO2024031610A1 (en) Methods and apparatuses for determining size of transport block

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917601

Country of ref document: EP

Kind code of ref document: A1