WO2019158005A1 - 下行控制信息传输方法 - Google Patents

下行控制信息传输方法 Download PDF

Info

Publication number
WO2019158005A1
WO2019158005A1 PCT/CN2019/074555 CN2019074555W WO2019158005A1 WO 2019158005 A1 WO2019158005 A1 WO 2019158005A1 CN 2019074555 W CN2019074555 W CN 2019074555W WO 2019158005 A1 WO2019158005 A1 WO 2019158005A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
dci
information
frequency domain
domain resource
Prior art date
Application number
PCT/CN2019/074555
Other languages
English (en)
French (fr)
Inventor
李俊超
唐浩
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2020552091A priority Critical patent/JP7059393B2/ja
Priority to BR112020016565-4A priority patent/BR112020016565A2/pt
Priority to EP23158129.9A priority patent/EP4221403A3/en
Priority to EP19754092.5A priority patent/EP3709740B1/en
Publication of WO2019158005A1 publication Critical patent/WO2019158005A1/zh
Priority to US16/890,006 priority patent/US11445536B2/en
Priority to JP2022066633A priority patent/JP7449974B2/ja
Priority to US17/891,927 priority patent/US11930508B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a downlink control information transmission method, apparatus, and system.
  • the network device may send downlink control information (DCI) to the terminal device for indicating data transmission between the network device and the terminal device.
  • DCI downlink control information
  • the network device sends a DCI to the terminal device by using a physical downlink control channel (PDCCH), where the DCI includes scheduling information of the data channel, where the scheduling information may include a transmission parameter of the data channel, and based on the transmission parameter,
  • PDCCH physical downlink control channel
  • the network device and the terminal device perform data transmission through a data channel. Since DCI plays an important role in data transmission, the design of DCI is a key research topic in wireless communication systems.
  • the present application provides a downlink control information transmission method, including: receiving a first DCI in a search space of a first BWP, where the first DCI includes first information, and the first one in the first DCI The information is used to determine scheduling information of the second BWP.
  • the first DCI includes first information, where the first information is used to determine scheduling information of the second BWP, including: if the type of the frequency domain resource allocation of the first BWP is type 0, the first DCI
  • the L f bit frequency domain resource allocation indication is an L f bit bitmap, and the bits in the L f bit bitmap correspond to RBG 0 to RBG L f -1 in the second BWP from the high to the low, respectively, for the L f a bit in the bit map, when the value of the bit is t1, the allocated resource includes the RBG corresponding to the bit; when the value of the bit is t2 or not t1, the allocated resource does not include the RBG corresponding to the bit.
  • t1 and t2 can be integers.
  • t1 is 1.
  • the first DCI includes first information, where the first information is used to determine scheduling information of the second BWP, including: if the type of the frequency domain resource allocation of the first BWP is type 1, the first DCI
  • the L f -bit frequency domain resource allocation indication is used to indicate an index of the starting RB allocated in the second BWP and the number of consecutively allocated RBs.
  • the pre-configured VRB is directly mapped to the PRB, and the pre-configuration does not enable frequency domain hopping.
  • the first DCI includes first information, where the first information is used to determine scheduling information of the second BWP, including: the first DCI includes an L T bit time domain resource allocation indication, and the L T bit Time domain resource allocation indication The bit is used to indicate that the time domain resource allocation information configured for the second BWP is which one of the X time domain resource allocation information, and the X time domain resource allocation information is included in Time domain resource allocation information,
  • the time domain resource allocation information is the candidate time domain resource allocation information corresponding to the second BWP, wherein the X time domain resource allocation information is the The time offset of the time domain resource allocation information is 2 X , and the timing offset of the time domain resource allocation information is based on the k1 in the time domain resource allocation information and the identifier of the starting symbol of the PUSCH in the time domain resource. Determining, wherein k1 is a time slot between a time slot for transmitting the first DCI and a time slot for transmitting the PUSCH corresponding to the first DCI.
  • the first DCI includes first information, where the first information is used to determine scheduling information of the second BWP, including: L PM bit precoding information and number of layers in the first DCI
  • the bit is used to indicate which of the number of layers and the TPMI is configured for the UE in the second BWP, and the Z number of layers and the TPMI are configured as the candidate layer number and TPMI configuration of the second BWP.
  • the Z number of layers and the TPMI configuration are The number of layers and the TPMI configuration are smaller in the number of layers and the TPMI configuration.
  • the number of Z layers with a smaller number of layers and the corresponding number of layers in the TPMI configuration are 1 and/or 2.
  • the first DCI includes first information, where the first information is used to determine scheduling information of the second BWP, including: the first DCI includes a 1-bit rate matching indication, and is used to enable two resources.
  • the rate matching resource of the resource group in the group, the one resource group is included in the two resource groups, and the two resource groups are resource groups of the second BWP; when the rate matching indication in the first DCI is 0, The rate matching resource in the resource group 0 and the resource group 1 on the second BWP is enabled.
  • the rate matching indication in the first DCI is 1, it indicates that the rate matching resource in the resource group 1 is enabled.
  • the present application provides a downlink control information transmission method, including: transmitting a first DCI in a search space of a first BWP, where the first DCI includes first information, and the first one in the first DCI The information is used to determine scheduling information of the second BWP.
  • the description includes the first information in the first DCI, and the first information in the first DCI is used to determine the scheduling information of the second BWP, which is the same as the description in the first aspect, and details are not described herein again.
  • the present application provides an apparatus that is capable of implementing one or more of the first aspect and various possible implementations of the first aspect.
  • This function can be implemented in the form of hardware, software or hardware plus software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the apparatus includes a processor, a memory, and a transceiver. Wherein the memory is coupled to the processor, the processor executes the program instructions stored by the memory; the processor is coupled to the transceiver, and the processor transmits and/or receives signals through the transceiver.
  • the apparatus includes a processor and a memory. Wherein the memory is coupled to the processor, the processor executes the program instructions stored by the memory; the processor generates and transmits signals, and/or receives and processes the signals.
  • the processor is configured to receive the first DCI in a search space of the first BWP, where the first DCI includes first information, and the first information in the first DCI is used to determine scheduling information of the second BWP.
  • the description includes the first information in the first DCI, and the first information in the first DCI is used to determine the scheduling information of the second BWP, which is the same as the description in the first aspect, and details are not described herein again.
  • the present application provides an apparatus capable of implementing one or more of the second aspect and the possible implementations of the second aspect.
  • This function can be implemented in the form of hardware, software or hardware plus software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the apparatus includes a processor, a memory, and a transceiver. Wherein the memory is coupled to the processor, the processor executes the program instructions stored by the memory; the processor is coupled to the transceiver, and the processor transmits and/or receives signals through the transceiver.
  • the apparatus includes a processor and a memory. Wherein the memory is coupled to the processor, the processor executes the program instructions stored by the memory; the processor generates and transmits signals, and/or receives and processes the signals.
  • the processor is configured to send the first DCI in a search space of the first BWP, where the first DCI includes first information, and the first information in the first DCI is used to determine scheduling information of the second BWP.
  • the description includes the first information in the first DCI, and the first information in the first DCI is used to determine the scheduling information of the second BWP, which is the same as the description in the first aspect, and details are not described herein again.
  • the application provides an apparatus, where the apparatus includes: a communication module, configured to receive a first DCI in a search space of a first BWP, where the first DCI includes first information, and the first information in the first DCI Used to determine scheduling information of the second BWP.
  • the description includes the first information in the first DCI, and the first information in the first DCI is used to determine the scheduling information of the second BWP, which is the same as the description in the first aspect, and details are not described herein again.
  • the application provides an apparatus, the apparatus includes: a DCI generating module, configured to generate a first DCI; and a communication module, configured to send a first DCI in a search space of the first BWP; wherein, in the first DCI The first information is included, and the first information in the first DCI is used to determine scheduling information of the second BWP.
  • the description includes the first information in the first DCI, and the first information in the first DCI is used to determine the scheduling information of the second BWP, which is the same as the description in the first aspect, and details are not described herein again.
  • the present application provides a computer program product comprising instructions which, when executed on a computer, cause the computer to perform one or more of the first aspect and the various possible implementations of the first aspect.
  • the present application provides a computer program product comprising instructions which, when executed on a computer, cause the computer to perform one or more of the second aspect and the possible implementations of the second aspect.
  • the present application provides a communication system comprising the apparatus of any one of the third aspect or the third aspect of the possible implementation, and the fourth aspect or any of the possible implementations of the fourth aspect s installation.
  • the present application provides a communication system comprising the apparatus of any of the fifth aspect or the fifth aspect, and the possible implementation of any of the sixth or sixth aspects s installation.
  • an embodiment of the present application provides a chip system, including a processor, and a memory, for implementing one or more of the first aspect and each possible implementation of the first aspect.
  • the embodiment of the present application provides a chip system, including a processor, and a memory, for implementing one or more of the second aspect and the possible implementations of the second aspect.
  • the embodiment of the present application provides a downlink control information transmission method, which includes:
  • L f of the first bit in the DCI indicated as frequency domain resource allocation bitmap bits L f, L f of the bits in FIG. Bits from high to low correspond to resource block groups RBG 0 to RBG L f -1 in the second BWP, respectively, where L f is a positive integer;
  • the allocated resource includes the RBG corresponding to the one bit; when the value of the bit is not 1, the allocated resource The RBG corresponding to the one bit is not included.
  • the embodiment of the present application provides a downlink control information transmission method, which includes:
  • L f of the first bit in the DCI indicated as frequency domain resource allocation bitmap bits L f, L f of the bits in FIG. Bits from high to low correspond to resource block groups RBG 0 to RBG L f -1 in the second BWP, respectively, where L f is a positive integer;
  • the allocated resource includes the RBG corresponding to the one bit; when the value of the bit is not 1, the allocated resource The RBG corresponding to the one bit is not included.
  • FIG. 1 is a diagram showing an example of a carrier bandwidth portion BWP provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a frequency domain resource allocation method according to an embodiment of the present application
  • FIG. 3 is a diagram showing an example of air interface resources provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the technical solutions provided by the embodiments of the present application can be applied to various communication systems.
  • the technical solution provided by the embodiment of the present application may be applied to a communication system in which a network device sends a DCI for a terminal device, or may be applied to a communication system in which a network device sends scheduling information for a terminal device, for example, may be applied to: a fifth generation.
  • 5G fifth generation mobile networks
  • LTE long term evolution
  • NR new radio
  • wireless communication can be performed between the communication devices using air interface resources.
  • the communication device may include a network device and a terminal device, and the network device may also be referred to as a network side device.
  • the air interface resource may include at least one of a time domain resource, a frequency domain resource, a code resource, and a space resource.
  • the time domain resource and the frequency domain resource may also be referred to as time-frequency resources.
  • At least one may be described as one or more, and the plurality may be two, three, four or more, which is not limited in the application.
  • the number of the technical features is an integer or a positive integer.
  • the number of bits of the information bit when the number of bits of the information bit is described for an information bit, the number of bits of the information bit is an integer or a positive integer.
  • the number of bits of the information bit when the number of bits of the information bit is described, the number of bits of the information bit is an integer or a positive integer.
  • the size of the information bit when the size of the information bit is described, the size of the information bit is an integer or a positive integer.
  • an integer number may be zero, one, two, three, four or more; a positive integer may be one, two, three, four or more; The application is not restricted.
  • the technology can be distinguished by “first”, “second”, “third”, “A”, “B”, “C”, and “D”.
  • the technical features in the features, the technical features described by the “first”, “second”, “third”, “A”, “B”, “C”, and “D” have no order or size order.
  • the terminal device in the embodiment of the present application may also be referred to as a terminal, and may be a device having a wireless transceiver function, which may be deployed on land, including indoor or outdoor, handheld or on-board, or may be deployed on the water surface (eg, Ships, etc.); can also be deployed in the air (such as airplanes, balloons, satellites, etc.).
  • the terminal device may be a user equipment (UE).
  • the UE includes a handheld device, an in-vehicle device, a wearable device, or a computing device having a wireless communication function.
  • the UE can be a mobile phone, a tablet, or a computer with wireless transceiving capabilities.
  • the terminal device may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in an unmanned vehicle, a wireless terminal in telemedicine, and an intelligent device.
  • the device that implements the function of the terminal may be a terminal, or may be a device that supports the terminal to implement the function.
  • the device that implements the function of the terminal is a terminal, and the terminal is a UE as an example, and the technical solution provided by the embodiment of the present application is described.
  • the network device involved in the embodiment of the present application includes a base station (BS), and may be a device deployed in the radio access network to perform wireless communication with the terminal.
  • the base station may have various forms, such as a macro base station, a micro base station, a relay station, and an access point.
  • the base station in the embodiment of the present application may be a base station in the 5G or a base station in the LTE, where the base station in the 5G may also be referred to as a transmission reception point (TRP) or a gNB.
  • TRP transmission reception point
  • the device that implements the function of the network device may be a network device, or may be a device that supports the network device to implement the function.
  • the device that implements the function of the network device is a network device, and the network device is a base station as an example, and the technical solution provided by the embodiment of the present application is described.
  • Wireless communication between communication devices may include wireless communication between the network device and the terminal, wireless communication between the network device and the network device, and wireless communication between the terminal and the terminal.
  • wireless communication may also be simply referred to as “communication”
  • communication may also be described as "data transmission”, “information transmission” or “transmission”.
  • a base station can manage one or more cells, and an integer number of UEs can be included in one cell.
  • the base station and the UE can perform air communication using air interface resources.
  • the air interface resources include frequency domain resources.
  • the frequency domain resources may be located in a set frequency range, which may also be referred to as a band or a frequency band.
  • the center point of the frequency domain resource may be referred to as a center frequency point, and the width of the frequency domain resource may be referred to as a bandwidth (BW).
  • the base station manages the carrier frequency domain resources, and allocates the frequency domain resources to the UE from the carrier frequency domain resources, so that the base station and the UE can use the allocated frequency domain resources for communication.
  • the carrier frequency domain resource may be a system frequency domain resource, a frequency domain resource that the base station can manage and allocate, or a frequency domain resource that can be used for communication between the base station and the UE.
  • the carrier frequency domain resource may be a continuous frequency domain resource, and the carrier frequency domain resource may also be referred to as a carrier.
  • the width of a carrier can be referred to as system bandwidth, carrier bandwidth, or transmission bandwidth.
  • the frequency domain resource may also be referred to as a frequency resource or other name, which is not limited in this application.
  • a possible design for the base station to allocate the frequency domain resources to the UE is: the base station configures a carrier bandwidth part (BWP) for the UE from the carrier, and the base station schedules the UE in the configured BWP.
  • the design may also be described as: the base station configures the BWP for the UE from the carrier; the base station may allocate some or all of the resources in the configured BWP to the UE, and perform communication between the base station and the UE.
  • the BWP configured by the base station for the UE is included in the carrier, and may be a continuous or discontinuous part of the resources in the carrier, or may be all resources in the carrier.
  • the BWP may also be referred to as a bandwidth resource, a frequency domain resource part, a partial frequency domain resource, a frequency resource part, a partial frequency resource, a carrier BWP or other names, which is not limited in this application.
  • the BWP When the BWP is a contiguous resource in the carrier, the BWP may also be referred to as a subband, a narrowband, or other name, which is not limited in this application.
  • FIG. 1 shows an example diagram of a BWP. As shown in FIG. 1 , the BWP is a continuous resource in the carrier, the bandwidth of the BWP is W, and the center frequency of the BWP is F. It can also be described that the frequency of the highest frequency point in the BWP is F+2/ W, the frequency of the lowest frequency point in the BWP is FW/2.
  • one possible design of the above-mentioned base station for allocating frequency domain resources to the UE may be applied to, but not limited to, at least one of the following scenarios:
  • the existing communication system proposes a carrier bandwidth with a large bandwidth design to provide more system resources. This can provide a higher data transfer rate.
  • the bandwidth supported by the UE may be smaller than the carrier bandwidth in consideration of the cost of the UE and the traffic volume of the UE. The greater the bandwidth supported by the UE, the stronger the processing capability of the UE, the higher the data transmission rate of the UE, and the higher the design cost of the UE.
  • the bandwidth supported by the UE may also be referred to as the bandwidth capability of the UE.
  • the carrier bandwidth may be up to 400 MHz, and the bandwidth capability of the UE may be 20 MHz, 50 MHz, or 100 MHz, and the like.
  • the bandwidth capabilities of different UEs may be the same or different, and are not limited in this embodiment.
  • the bandwidth capability of the UE may also be described as a bandwidth supported by the UE.
  • the bandwidth capability of the UE may also include the downlink bandwidth capability of the UE and the uplink bandwidth capability of the UE.
  • the downlink bandwidth capability of the UE is used to describe the bandwidth supported by the UE when receiving the downlink bandwidth capability.
  • the downlink bandwidth capability may also be referred to as a receiving bandwidth capability, a downlink receiving bandwidth capability, or another name, which is not limited in this application.
  • the uplink bandwidth capability of the UE is used to describe the bandwidth supported by the UE when transmitting.
  • the uplink bandwidth capability may also be referred to as a transmission bandwidth capability, an uplink transmission bandwidth capability, or another name, which is not limited in this application.
  • the downlink bandwidth capability of the UE and the uplink bandwidth capability of the UE may be the same or different, and the application does not limit the application.
  • the bandwidth of the UE is smaller than the carrier bandwidth, and the base station can configure the BWP for the UE from the carrier, and the bandwidth of the BWP is less than or equal to the bandwidth capability of the UE.
  • the base station may perform scheduling on the UE based on the BWP configured for the UE, that is, the base station may allocate some or all resources in the BWP configured for the UE to the UE, and perform communication between the base station and the UE.
  • the carrier may include a downlink carrier and an uplink carrier, the downlink carrier is used for downlink transmission between the base station and the UE, and the uplink carrier is used for uplink transmission between the base station and the UE, and the downlink carrier and the uplink carrier may be the same, It may be different, and the application is not limited.
  • the BWP of the UE may be used for uplink transmission and/or downlink transmission between the base station and the UE, and the BWP for uplink transmission may be referred to as an uplink BWP or other name, and the BWP for downlink transmission may be called
  • the uplink BWP and the downlink BWP may be the same or different, and the application does not limit the application.
  • the uplink BWP is included in the uplink carrier, and the bandwidth of the uplink BWP may be less than or equal to the transmission bandwidth capability of the UE.
  • the downlink BWP is included in the downlink carrier, and the bandwidth of the downlink BWP may be less than or equal to the receiving bandwidth capability of the UE.
  • the BWP of the UE may be a self-contained structure, that is, the UE does not expect downlink reception in a frequency domain resource other than the downlink BWP of the UE, and the UE does not expect to perform uplink transmission in a frequency domain resource other than the uplink BWP of the UE.
  • the parameter includes at least one of a subcarrier spacing and a cyclic prefix (CP).
  • CP cyclic prefix
  • 3GPP third generation partnership project
  • the base station may configure multiple BWPs in the carrier, and independently configure a numerology for each of the multiple BWPs to support multiple service types and/or communication scenarios in the carrier.
  • the numerology of different BWPs may be the same or different; one or more BWPs may be configured for one UE; this application does not limit the application.
  • the base station may determine the numerology A for performing communication based on the service type and/or the communication scenario corresponding to the communication, so that the corresponding BWP may be configured for the UE based on the numerology A.
  • the numerology of the corresponding BWP is configured as numerology A.
  • the base station may perform scheduling on the UE based on the BWP configured for the UE, that is, the base station may allocate some or all resources in the BWP configured for the UE to the UE, and perform communication between the base station and the UE.
  • the base station may configure the BWP for the UE based on the traffic of the UE, to save power consumption of the UE.
  • the UE can receive the control information in the smaller BWP, so that the task amount of the radio frequency processing of the UE and the task amount of the baseband processing can be reduced, so that the power consumption of the UE can be reduced.
  • the base station can configure a BWP with a smaller bandwidth for the UE, so that the task amount of the radio processing of the UE and the task amount of the baseband processing can be reduced, thereby reducing the power consumption of the UE.
  • the base station can configure a BWP with a large bandwidth for the UE, thereby providing a higher data transmission rate.
  • the base station may perform scheduling on the UE based on the BWP configured for the UE, that is, the base station may allocate some or all resources in the BWP configured for the UE to the UE, and perform communication between the base station and the UE.
  • An exemplary frequency domain resource allocation method is: Step 1, the base station passes the signaling A or through a predefined, from the carrier.
  • the BWP is configured for the UE, and the base station may configure one or more BWPs for the UE, which is not limited in this application.
  • the base station performs scheduling on the UE in the BWP configured for the UE by using downlink control information (DCI).
  • DCI downlink control information
  • the base station allocates the frequency domain resource A to the UE through the DCI, and the frequency domain resource A is the resource in the BWP configured for the UE in the first step, and the base station and the UE can perform data transmission in the allocated frequency domain resource A.
  • the signaling A may be a radio resource control (RRC) signaling, a broadcast message, a system message, a medium access control (MAC) control element (CE), a DCI, or a physical downlink. Signaling carried by the physical downlink shared channle (PDSCH).
  • RRC radio resource control
  • MAC medium access control
  • CE medium access control element
  • DCI or a physical downlink.
  • PDSCH Physical downlink shared channle
  • the DCI may be signaling that is sent by the base station to the UE through a physical downlink control channel (PDCCH), that is, the DCI may be signaling carried by the PDCCH.
  • PDCCH physical downlink control channel
  • the DCI may also be referred to as control information or other names, and may be used for base station and UE for data transmission, for example, for base station and UE to transmit PDSCH or physical uplink shared chanel (PUSCH).
  • the PDCCH may also be referred to as a physical control channel, a control channel, or other name, and is mainly used to carry control information sent by the base station to the UE at the physical layer.
  • the term "carrying" can also be described as "bearing.”
  • the base station may configure multiple BWPs for the UE, and the multiple BWPs may also be referred to as candidate BWPs, candidate BWP sets, configuration BWPs, configuration BWP sets, or other names.
  • the present application is not limited; in step 2, for the first BWP and the second BWP in the multiple BWPs, the base station may schedule the UE by using the DCI in the first BWP, that is, the UE may receive the base station through the DCI in the first BWP.
  • the scheduling information that is sent may be scheduling information corresponding to the first BWP, or may be scheduling information corresponding to the second BWP.
  • the scheduling information is scheduling information corresponding to the second BWP
  • the BWP switching function or the cross BWP scheduling function is implemented.
  • the current active BWP of the UE is the first BWP
  • the base station may switch the current active BWP of the UE to the second BWP according to communication requirements, such as service requirements or communication scenario requirements.
  • the current active BWP may also be referred to as a current working BWP or other name.
  • the current active BWP is a BWP used by the current base station and the UE for data transmission, for example, a BWP used by the current base station and the UE to transmit the PDSCH and/or the PUSCH.
  • the BWP indication may be included in the DCI
  • the scheduling information included in the DCI is the scheduling information of the BWP indicated by the BWP indication
  • the scheduling information included in the DCI is the BWP indication.
  • the identifier of the information may be included in the DCI, and the BWP indicates that the length of the corresponding information bit is
  • the number of bits, the possible values of the 2 bits, and the BWP indicated by each value are shown in Table 1.
  • the possible value of the 2 bits, that is, the BWP indication in the DCI indicates a possible value
  • the BWP indicated by each value is the BWP indicated by the BWP indication
  • the scheduling information included in the DCI is the BWP indicated by the BWP indication.
  • Scheduling information which may also be referred to as the DCI of the BWP indicated by the BWP indication in the DCI.
  • the BWP indicates that the indicated BWP is the second BWP
  • the DCI is the DCI of the second BWP, or is described as The DCI is the DCI corresponding to the second BWP.
  • the base station may configure a search space of the PDCCH for the UE.
  • the search space of the PDCCH corresponds to a PDCCH candidate resource set, and the PDCCH candidate resource set includes N candidate resources that may be used for transmitting a PDCCH, where N is an integer greater than or equal to 1.
  • the base station may select one candidate resource from the PDCCH candidate resource set. For example, the base station selects one candidate resource from the PDCCH candidate resource set according to the channel quality, and sends the PDCCH to the UE in the selected candidate resource.
  • the UE monitors the candidate resource set of the PDCCH, that is, the candidate resource detection PDCCH of the UE in the PDCCH candidate resource set.
  • the search space of the PDCCH may also be simply referred to as a search space
  • the PDCCH candidate resource may also be simply referred to as a candidate resource.
  • the UE In order to detect the DCI of one size, the UE detects the least once, and detects the N times at most.
  • the size of the DCI may be the total number of bits of information bits included in the DCI, or may be the total number of bits included in the DCI.
  • the base station can configure the search space of the PDCCH of the BWP for each BWP, that is, the method in which the base station configures the search space of the PDCCH for the UE is applied to each BWP.
  • the BWP search space may or may not be in the BWP.
  • the search space of the BWP is not in the BWP, it may be in the carrier where the BWP is not located, or may be in other BWPs in the carrier where the BWP is located.
  • a possible scenario in which the search space of the PDCCH of the BWP B is not in the carrier where the BWP B is located is: for a scenario supporting multiple carriers, for example, for the supporting base station and the UE, both in the carrier A and the carrier B
  • the search space supporting the PDCCH corresponding to the carrier A is configured in the carrier B, and the BWP B is included in the carrier A, the search space of the PDCCH of the BWP B is in the carrier B.
  • a possible scenario in the search space of the PDCCH of the BWP B in other BWPs in the carrier where the BWP is located is: for one carrier A, the carrier A includes BWP B and BWP C, Cross-BWP scheduling can be supported, that is, the search space of the PDCCH that can support BWP B is configured in BWP C.
  • the base station implements the BWP handover function or the BWP scheduling function by using the DCI
  • the scheduling corresponding to the second BWP is performed by the first DCI in the search space of the first BWP, or is described as the search space of the first DCI in the first BWP.
  • the corresponding candidate resource is transmitted.
  • the size of the first DCI may be equal to the size of the third DCI, thereby reducing power consumption of the UE.
  • the third DCI is used to perform scheduling corresponding to the first BWP in the search space of the first BWP, and may also be described as: the third DCI may be transmitted on the candidate resource corresponding to the search space of the first BWP, and the third DCI is transmitted.
  • the third DCI includes scheduling information corresponding to the first BWP.
  • the UE In the search space of the first BWP, for one UE, if the UE considers that the base station either transmits the first DCI or transmits the third DCI, in order to detect the PDCCH carrying the first DCI and the PDCCH carrying the third DCI, when the first DCI size and When the third DCI size is different, the total number of detections of the UE is at least 2 times and the maximum is 2N times. When the first DCI size and the third DCI size are the same, the total number of detections of the UE is at least one, and the maximum number is N times. The design with different size relative to the first DCI and the third DCI reduces the number of detections of the UE, thereby saving power consumption of the UE. In the search space of the first BWP, the UE may also consider that the base station may send the first DCI and the third DCI at the same time, which is not limited in this application.
  • the size of the first DCI is equal to the size of the third DCI
  • the size of the third DCI is determined according to the configuration of the first BWP
  • the size of the third DCI is configured by the base station for the search space of the first BWP
  • the size of the information field in the third DCI is determined according to the configuration of the first BWP
  • the UE detects the first DCI and/or the third DCI in the search space of the first BWP by using the third DCI size, which may occur.
  • a scenario in which the size of the first DCI is smaller than the size of the second DCI, or a scenario in which the size of the information domain in the first DCI is smaller than the size of the information domain in the second DCI may occur, so that the scheduling corresponding to the second BWP cannot be satisfied.
  • the second DCI is used for scheduling of the second BWP, the size of the second DCI is determined according to the configuration of the second BWP, or the size of the second DCI is configured by the base station for the search space of the second BWP, and the second DCI is configured.
  • the size of the information field is determined according to the configuration of the second BWP.
  • the second DCI may be transmitted in candidate resources of the search space of the second BWP, and the UE may detect the second DCI in the search space of the second BWP using the second DCI size.
  • the UE may detect the second DCI in the search space of the second BWP using the second DCI size.
  • the size of the first DCI is smaller than the size of the second DCI, it is necessary to solve how to perform BWP handover or cross-BWP scheduling by using a smaller DCI, that is, how to perform scheduling corresponding to the second BWP by using the first DCI;
  • the size of the information field in a DCI is smaller than the size of the information field in the second DCI, it is necessary to solve the problem of how to support BWP handover or cross-BWP scheduling through a smaller information domain, that is, how to support the information domain support in the first DCI.
  • the first DCI will be used to indicate the DCI for scheduling the second BWP in the search space of the first BWP
  • the third DCI is used to represent the search space pair in the first BWP, unless otherwise specified.
  • the DCI that the first BWP performs scheduling uses the second DCI to indicate the DCI that schedules the second BWP in the search space of the second BWP.
  • the DCI may be a DCI for carrying uplink scheduling information, and is referred to as an uplink scheduling DCI for scheduling transmission of a PUSCH or other uplink channel, or may be a DCI for carrying downlink scheduling information, referred to as downlink.
  • the DCI is scheduled for scheduling transmission of PDSCH or other downlink channels.
  • other information such as a frequency domain resource allocation indication, a time domain resource allocation indication, or a DMRS antenna port may be included.
  • the information in the DCI may also be referred to as an information field, a transmission parameter, a scheduling transmission parameter, or other names, which are not limited in this application.
  • the size of the information in the DCI is used to describe the number of bits of the information or the number of bits of the information, which may also be referred to as the size of the information, the number of bits of information, the length of the information, the number of bits of information, or other names. Make restrictions.
  • the size of the first DCI is smaller than the size of the second DCI.
  • the size of the second DCI is determined according to the configuration of the second BWP, or the size of the second DCI is configured by the base station for the search space of the second BWP, and the UE may use the size of the second DCI in the search space of the second BWP.
  • the second DCI is detected.
  • the second DCI includes at least one information field
  • the size of the information field in the at least one information domain is determined according to the configuration of the second BWP
  • the size of the second DCI may be information in the second DCI.
  • the size of the information domain in the first DCI may be smaller than the size.
  • the size of the information field in the second DCI that is, the information field in the first DCI is a truncated information field relative to the information field in the second DCI. Therefore, a scenario of how to perform BWP handover or cross BWP scheduling through a smaller DCI is How to perform BWP switching or cross-BWP scheduling by truncating the information domain.
  • the size of the information domain in the first DCI is smaller than the size of the information domain in the second DCI, that is, the information domain in the first DCI is relative to the information domain in the second DCI.
  • how to support BWP handover or cross-BWP scheduling through a smaller information domain can also be described as how to perform BWP handover or cross-BWP scheduling by truncating the information domain.
  • the following describes an embodiment of the method corresponding to the specific content of the information domain for the uplink scheduling DCI and the downlink scheduling DCI, respectively.
  • the uplink scheduling DCI may include a frequency domain resource allocation indication, and is used to indicate a frequency domain resource allocated by the base station to the UE in the uplink BWP, where the BWP is a BWP indicated by the BWP indication in the DCI.
  • the frequency domain resource indicated by the frequency domain resource allocation indication may be a subcarrier, a resource block (RB) or a resource block group (RBG).
  • a RB includes a positive integer number of subcarriers.
  • one RB includes 12 subcarriers;
  • one RBG includes a positive integer number of RBs, and the number of RBs in the RBG may also be referred to as an RBG size, an RBG size, or other names.
  • the RB may be a physical resource block (PRB) or a virtual resource block (VRB).
  • FIG. 3 is an example of an air interface resource.
  • a resource that can be used for data transmission includes several resource cells, and one resource cell may be referred to as a resource element (RE).
  • RE resource element
  • one RE frequency domain corresponds to one subcarrier
  • the time domain corresponds to one symbol.
  • the resources that can be used for data transmission may be a carrier or a BWP, which is not limited in this application.
  • a PRB includes X1 resource cells in the frequency domain, and X1 is an integer greater than one. Illustratively, X1 is 12.
  • the bandwidth of resources available for data transmission may be referred to as X2 PRBs, and X2 is an integer greater than or equal to 1.
  • the PRBs can be sequentially numbered from 0 to X2 - 1 based on the direction of the frequency increase, and the number values of the PRBs are obtained to uniquely identify the PRBs.
  • the "number value” may also be referred to as "number", "identification” or "index”.
  • the bandwidth of resources available for data transmission includes PRB 0 to PRB X2 - 1 and a total of X 2 PRBs.
  • the number of subcarriers in the PRBs with different subcarrier spacings may be the same or different, which is not limited in this application.
  • the bandwidth of one PRB of the BWP is determined according to the subcarrier spacing of the BWP and the number of subcarriers in the PRB of the BWP.
  • the bandwidth of the PRB of the BWP is 180 kHz.
  • the bandwidth of the PRB of the BWP is 720 kHz.
  • the VRB may include a centralized VRB or a distributed VRB.
  • the distributed VRB and PRB can be mapped by certain rules, which can be a mapping method commonly used by those skilled in the art.
  • the mapping method may be an interlace-based mapping method in the 3GPP standard protocol.
  • the 3GPP standard protocol may be an LTE standard protocol or a 5G standard protocol.
  • one BWP includes N RBG RBGs, and the RBGs in the BWPs may be sequentially numbered from 0 to N RBG -1 according to the direction of frequency increase, and the number values of the RBGs are obtained for Uniquely identify each RBG.
  • N RBG RBG is, the first and the RBG size of the last P RBG may be less than and greater than or equal to 1, the size of the first and the last one RBG RBG may also be equal to P, the rest RBG size P may be equal, P is an integer greater than or equal to 1.
  • P is equal to 1
  • one RBG can be regarded as one RB.
  • the resource allocation type when the resource allocation is performed by using the frequency domain resource allocation indication, the resource allocation type may be type 0, type 1, or type 0 and type 1.
  • Type 0 and Type 1 are used to describe different resource allocation methods; the resource allocation type is Type 0 and Type 1 can be understood as: Type 0 and Type 1 are candidate resource allocation types, and the resource allocation type can be Further configured as type 0 or type 1.
  • the resource allocation type is type 0:
  • DCI A For a BWP A, the BWP A corresponding scheduling is performed by the DCI A in the search space of the BWP A, and the DCI A includes the frequency domain resource allocation indication, and when the resource allocation type is type 0, when the BWP A is configured by the broadcast message
  • DCI A's frequency domain resource allocation indication may include Bit bit map
  • BWP A is a BWP configured through RRC signaling or system message
  • the frequency domain resource allocation of DCI A may be included Bit bitmap, For the number of RBs in BWP A, The index of the common RB corresponding to the start PRB of the BWP A, and P A is the number of RBs in the RBG of the BWP A.
  • the One bit in the bit bitmap corresponds to one RBG in BWP A, which may also be referred to as an information bit.
  • the RBGs in BWP A should be one pair in the order of the index from small to large.
  • the low to high bits of the bit map. for a bit in the bit bitmap when the value of the bit is t1, the resource allocated by the base station for the UE includes the RBG corresponding to the bit; when the value of the bit is t2 or not t1, the resource allocated by the base station for the UE is not The RBG corresponding to the bit is included.
  • t1 and t2 can be integers.
  • t1 is 1.
  • the type 0 may also be referred to as a resource allocation type 0, a first resource allocation type, or another name, which is not limited in this application.
  • the resource allocation type is type 0
  • the RB in the corresponding resource allocation method is a PRB.
  • the BWP A may be the first BWP, the second BWP, or any other BWP, which is not limited in this application.
  • the common RB is numbered from the common RB 0 in the direction of increasing frequency, and the corresponding PRB corresponding index of BWP A is Public RB; or, the offset of the position of the starting PRB of BWP A in frequency relative to the position of the common RB 0 in frequency is RB.
  • the common RB 0 is determined by the reference frequency position and the offset with respect to the reference frequency position.
  • the reference frequency location is determined according to the RB with the lowest frequency of the synchronization signal block accessed by the UE;
  • the reference frequency position is determined according to the RB with the lowest frequency of the synchronization signal block accessed by the UE;
  • the reference frequency position is determined according to the frequency position configured by the base station, and the frequency position may correspond to an absolute radio frequency channel number (ARFCN);
  • ARFCN absolute radio frequency channel number
  • the reference frequency position is determined according to the frequency position configured by the base station, and the frequency position may correspond to an absolute frequency point number ARFCN;
  • the reference frequency position is determined according to the frequency position configured by the base station, and the frequency position may correspond to an absolute frequency point number ARFCN.
  • the resource allocation type is type 1:
  • the BWP A corresponding scheduling is performed by the DCI A in the BWP A search space, and the DCI A includes the frequency domain resource allocation indication, and when the resource allocation type is type 1, the DCI A frequency domain resource allocation indication is used.
  • the type 1 may also be referred to as a resource allocation type 1, a second resource allocation type, or another name, which is not limited in this application.
  • the resource allocation type is type 1
  • the RB in the corresponding resource allocation method is a PRB or a VRB.
  • the VB-to-PRB mapping information may be included in the DCI A.
  • the size of the VRB-to-PRB mapping information is 1 bit, which is used to indicate whether the VRB in the resource allocation method is directly mapped to the PRB or is mapped to the PRB based on the interlace. .
  • the frequency domain hopping enable indication information may also be included in the DCI A, for example, the size of the frequency domain hopping enable indication information is 1 bit.
  • the frequency domain frequency hopping enable indication information is used to indicate whether frequency domain frequency hopping is enabled. If frequency domain frequency hopping is enabled, the frequency domain resource allocation indication is as described above.
  • Each bit may include N hop bits for indicating a frequency hopping offset, The information bits other than the N hop bits in the bits are used to indicate the index of the starting RB and the number of consecutively allocated RBs.
  • 1 bit for indicating VRB to PRB mapping information and 1 bit for indicating frequency domain frequency hopping enable may be the same 1 bit.
  • the resource allocation type is type 0 and type 1:
  • the BWP A corresponding scheduling is performed by the DCI A in the search space of the BWP A.
  • the DCI A includes the frequency domain resource allocation indication, and when the resource allocation type is type 0 and type 1, the frequency domain resource of the DCI A Allocation instructions can be included Bits.
  • the One bit of the bits is used to indicate the configured resource allocation type.
  • the 1 bit is the most significant bit. When the value of the bit is 0, the resource allocation type is configured as type 0; when the bit is When the value is 1, the resource allocation type is configured as type 1.
  • Other of the bits The bits are used to indicate the allocated frequency domain resources.
  • the DCB A may also include VRB-to-PRB mapping information, for example, the size of the VRB-to-PRB mapping information is 1 bit, and is used to indicate that the VRB in the resource allocation method is when the frequency domain resource allocation type is configured as type 1. Map directly to the PRB or map to the PRB based on the interlace.
  • the frequency domain hopping enable indication information may also be included in the DCI A, for example, the size of the frequency domain hopping enable indication information is 1 bit.
  • the frequency domain frequency hopping enable indication information is used to indicate whether frequency domain frequency hopping is enabled. If frequency domain frequency hopping is enabled, the frequency domain resource allocation indication is as described above.
  • Each bit may include N hop bits for indicating a frequency hopping offset, Bit or Among the bits
  • the information bits other than the N hop bits in the bits are used to indicate the index of the starting RB and the number of consecutively allocated RBs.
  • 1 bit for indicating VRB to PRB mapping information and 1 bit for indicating frequency domain frequency hopping enable may be the same 1 bit.
  • the size of the resource allocation indication of the first DCI is based on the bandwidth of the first BWP and the configured resource allocation type. Determining that the size of the resource allocation indication of the second DCI is determined according to the bandwidth of the second BWP and the configured resource allocation type, and the size of the resource allocation indication in the first DCI may be smaller than the size of the information domain in the second DCI. That is, the resource allocation indication in the first DCI is truncation information.
  • L f -bit truncation frequency domain resource allocation indication may also be referred to as an L f -bit frequency domain resource allocation indication.
  • FIG. 4 is a schematic diagram of a downlink control information transmission method.
  • a base station sends a first DCI to a UE in a search space of a first BWP, where the first DCI includes a frequency domain resource allocation indication, and the frequency domain resource
  • the allocation indication is used to indicate a frequency domain resource allocated to the UE in the second BWP.
  • the UE receives the first DCI, and determines, according to the frequency domain resource allocation indication in the first DCI, a frequency domain resource allocated to the UE in the second BWP.
  • the size of the frequency domain resource allocation indication in the first DCI is smaller than the size of the frequency domain resource allocation indication in the second DCI, or the resource allocated on the second BWP is 0.
  • the allocation type is type 1 (or type 0 and type 1)
  • the size of the frequency domain resource allocation indication in the first DCI is smaller than the size of the frequency domain resource allocation indication in the second DCI and the VRB to PRB mapping indication and/or frequency.
  • the size of the frequency domain allocation indication in a DCI and the size of the VRB to PRB mapping indication and/or the frequency domain frequency hopping enable indication are smaller than the size of the frequency domain resource allocation indication in the second DCI, and the second DCI is used in The search space of the second BWP is scheduled by the UE, and the frequency domain resource allocation indication in the second DCI is used to indicate the frequency domain resource allocated to the UE in the second BWP.
  • Scenario 1 The frequency domain resource allocation type of the second BWP is type 0.
  • the L f -bit bit used for frequency domain resource allocation in the first DCI may also be referred to as an L f -bit bitmap, where bits in the L f -bit bitmap correspond to RBGs in the second BWP from high to low respectively. 0 to RBG L f -1.
  • L f bitmap For a bit in the L f bit map, when the value of the bit is t1, the resource allocated by the base station for the UE includes the RBG corresponding to the bit; when the value of the bit is t2 or not t1, the base station is the UE.
  • the allocated resources do not include the RBG corresponding to the bit.
  • t1 and t2 can be integers. Illustratively, t1 is 1.
  • the L f -bit bit used for the frequency domain resource allocation in the first DCI may be the frequency domain resource allocation indication in the first DCI, or may be the size of the frequency domain allocation indication in the first DCI and the VRB to the PRB.
  • the mapping indication and/or the sum of the sizes of the frequency domain hopping enable indications may be the frequency domain resource allocation indication in the first DCI, or may be the size of the frequency domain allocation indication in the first DCI and the VRB to the PRB.
  • the L f bit frequency domain resource allocation indication in the first DCI is used to indicate an index of the starting RB allocated by the base station to the UE in the second BWP. And the number of consecutively allocated RBs.
  • the mapping mode of the VRB to the PRB may be pre-configured, for example, the pre-configured VRB is directly mapped to the PRB, and the frequency domain frequency hopping may be pre-configured, for example, the pre-configuration is not enabled. Domain hopping. That is, the VRB to PRB mapping information and/or the frequency hopping enable indication information may not be included in the first DCI.
  • the remaining L f -K bit information in the L f bit frequency domain resource allocation indication is used to indicate an index of the starting RB allocated by the base station for the UE in the second BWP and the number of consecutively allocated RBs.
  • the L f bit for the frequency domain resource allocation in the first DCI is used by the base station to allocate the initial RB for the UE in the second BWP.
  • the L f -bit bit used for the frequency domain resource allocation in the first DCI may be the frequency domain resource allocation indication in the first DCI, or may be the size of the frequency domain allocation indication in the first DCI and the VRB to the PRB.
  • the UE After receiving the first DCI, the UE determines, according to the first DCI, a frequency domain resource allocated to the UE in the second BWP. Exemplarily, after the UE receives an RIV, according to And the number of RBs in the second BWP Determining an index RB start of the starting RB allocated by the base station for the UE in the BWP second BWP and a number L RBs of consecutively allocated RBs . Illustratively, if then then then in case then then then
  • the frequency domain resource allocation type of the second BWP is preconfigured to type 0, and the L f bit frequency domain resource allocation indication in the first DCI may also be referred to as an L f bit bitmap, where the L f bit bitmap The bits from the high to the low correspond to RBG 0 to RBG in the second BWP, respectively.
  • the resource allocated by the base station for the UE includes the RBG corresponding to the bit; when the value of the bit is t2 or not t1, the resource allocated by the base station for the UE does not include The RBG corresponding to this bit.
  • t1 and t2 may be integers.
  • t1 is 1.
  • the frequency domain resource allocation type of the second BWP is type 0
  • the L f bit frequency domain resource allocation indication in the first DCI may also be referred to as L f bit map, in the L f bit map
  • the bits from the high to the low correspond to RBG 0 to RBG in the second BWP, respectively.
  • the resource allocated by the base station for the UE includes the RBG corresponding to the bit; when the value of the bit is t2 or not t1, the resource allocated by the base station for the UE does not include The RBG corresponding to this bit.
  • t1 and t2 may be integers.
  • t1 is 1.
  • the frequency domain resource allocation type of the second BWP is type 1
  • the L f bit frequency domain resource allocation indication in the first DCI is used for the base station.
  • the UE determines the frequency domain resource allocated to the UE in the second BWP according to the first DCI, and the determining method is similar to the corresponding description in the foregoing scenario 2, and details are not described herein again.
  • the Lf bit bits for frequency domain resource allocation in the first DCI include 1-bit information for indicating a resource allocation type configured for the second BWP by using the first DCI, exemplarily, when the bit is When the value is 0, the resource allocation type is configured as type 0; when the value of the bit is 1, the resource allocation type is configured as type 1. further:
  • the remaining L f -1 bit bits may also be referred to as an L f -1 bit bitmap, which is in the L f -1 bit
  • the bits from the high to the low correspond to RBG 0 to RBG in the second BWP, respectively.
  • the resource allocated by the base station for the UE includes the RBG corresponding to the bit; when the value of the bit is t2 or not t1, the base station allocates the UE for the UE.
  • the resource does not include the RBG corresponding to the bit.
  • t1 and t2 may be integers.
  • t1 is 1.
  • the L f -bit bit used for the frequency domain resource allocation in the first DCI may be the frequency domain resource allocation indication in the first DCI, or may be the size of the frequency domain allocation indication in the first DCI and the VRB to the PRB.
  • the L f -bit bit used for the frequency domain resource allocation in the first DCI may be the frequency domain resource allocation indication in the third DCI, or may be the size of the frequency domain allocation indication in the third DCI and the VRB to the PRB.
  • the third DCI is used to perform scheduling of the first BWP in the search space of the first BWP.
  • the resource allocation type configured for the second BWP in the first DCI is type 1
  • the remaining L f -1 bit bits are used for the index of the starting RB allocated by the base station for the UE in the second BWP and the continuously allocated RB.
  • the UE determines the frequency domain resource allocated to the UE in the second BWP according to the first DCI, and the determining method is similar to the corresponding description in the foregoing scenario 2, and details are not described herein again.
  • the mapping of the VRB to the PRB may be pre-configured for the resource allocation corresponding to the first DCI.
  • the pre-configured VRB is directly mapped to the PRB.
  • Frequency domain hopping for example, pre-configuration does not enable frequency domain hopping, that is, the first DCI may not include VRB-to-PRB mapping information and/or frequency hopping enable indication information.
  • the Lf bit bits for frequency domain resource allocation in the first DCI include 1-bit information for indicating a resource allocation type configured for the second BWP by using the first DCI, exemplarily, when the bit is When the value is 0, the resource allocation type is configured as type 0; when the value of the bit is 1, the resource allocation type is configured as type 1.
  • the resource allocation type of the first BWP configuration is type 0. further:
  • the remaining L f -K-1 bit bits may also be referred to as an L f -K-1 bit bitmap, which is L f -K- Among the 1-bit bits
  • the bits from the high to the low correspond to RBG 0 to RBG in the second BWP, respectively.
  • the resource allocated by the base station for the UE includes the RBG corresponding to the bit; when the value of the bit is t2 or not t1, the resource allocated by the base station for the UE does not include The RBG corresponding to this bit.
  • t1 and t2 may be integers.
  • t1 is 1.
  • the L f -bit bit used for the frequency domain resource allocation in the first DCI may be the frequency domain resource allocation indication in the first DCI, or may be the size of the frequency domain allocation indication in the first DCI and the VRB to the PRB.
  • the L f -bit bit used for the frequency domain resource allocation in the first DCI may be the frequency domain resource allocation indication in the third DCI, or may be the size of the frequency domain allocation indication in the third DCI and the VRB to the PRB.
  • the third DCI is used to perform scheduling of the first BWP in the search space of the first BWP.
  • the resource allocation type configured for the second BWP in the first DCI is type 1
  • the remaining L f -K-1 bit bits are used for indexing and continuous allocation of the starting RB allocated by the base station to the UE in the second BWP.
  • the base station and the UE may perform data transmission based on a transmission time interval (TTI).
  • TTI may include a positive integer number of time units, and the time unit includes symbols, time slots, mini-slots, subframes, frames, or other time units commonly used in the field, which is not limited in this application.
  • the TTI is a time slot as an example for description.
  • a time slot may include 14 symbols, and the index corresponding to the 14 symbols may be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13.
  • the time domain resource allocation indication in the DCI may be used to indicate time domain resource allocation information, where the time domain resource allocation information includes at least one of: a time slot for transmitting the DCI and a time slot for transmitting the PUSCH corresponding to the DCI.
  • the unit of k1 is a time slot.
  • the PUSCH mapping type is used to indicate a symbol in which a demodulation reference signal (DMRS) of the PUSCH is located, and the DMRS is used to demodulate the PUSCH.
  • DMRS demodulation reference signal
  • the index of the symbol where the DMRS is located is configured for the broadcast message; when the PUSCH maps type B, the symbol of the DMRS is the start symbol of the PUSCH.
  • the SLIV exemplarily, if a time slot includes 14 symbols,
  • L is the number of consecutive symbols, 0 ⁇ L ⁇ 14-S.
  • the UE receives the DCI in the slot n, and the DCI is carried in the PDCCH.
  • the UE transmits the PUSCH corresponding to the DCI in the slot n+k1, that is, the DCI includes scheduling information corresponding to the PUSCH.
  • the UE transmits the PUSCH in consecutive symbols indicated by the SLIV, starting from the start symbol indicated by the SLIV.
  • the base station may configure multiple time domain resource allocation information for the UE by using a pre-configured or semi-static configuration, and each time domain resource allocation information.
  • the base station may configure one of the multiple time domain resource allocation information for the UE to use for the transmission of the PUSCH corresponding to the DCI A.
  • the semi-static configuration may be that the base station configures the UE by using RRC signaling, a broadcast message, a system message, or a MAC CE.
  • the time domain resource allocation indication in the DCI A may include The information bits are used to indicate that the time domain resource allocation information configured by the base station for the UE is information 0, information 1, information 2, and information 3.
  • Table 2 shows the possible values of the time domain resource allocation indication in DCI A, and the time domain resource allocation information corresponding to each possible value. According to the values of the time domain resource allocation indication in Table 2 and DCI A, time domain resource allocation information configured by the base station for the UE through DCI A can be determined.
  • the time domain resource allocation indication in DCI A is 00, it may be determined that the time domain resource allocation information configured by the base station for the UE through DCI A is information 0.
  • the N ind may be the same or different for the uplink and the downlink, and is not limited in this application.
  • the base station sends a first DCI to the UE in the search space of the first BWP, where the first DCI includes a time domain resource allocation indication, where the time domain resource allocation indication is used to indicate the second
  • the BWP is time domain resource allocation information configured for the UE.
  • the UE receives the first DCI in the search space of the first BWP, and determines time domain resource allocation information configured for the UE in the second BWP according to the time domain resource allocation indication in the first DCI.
  • the bit is used to indicate which one of the X time domain resource allocation information is configured in the second BWP for the UE, and the X time domain resource allocation information is included in the Time domain resource allocation information, the The time domain resource allocation information is candidate time domain resource allocation information corresponding to the second BWP.
  • the second DCI is used to schedule the UE in the search space of the second BWP, in the second DCI
  • the bit time domain resource allocation indication is used to indicate that the time domain resource allocation information configured for the UE in the second BWP is Which of the time domain resource allocation information.
  • the L T bit time domain resource allocation indication is in addition to the foregoing Outside the bit Bits are all 0.
  • the foregoing X time domain resource allocation information is the above X time-domain resource allocation information with the largest timing offset.
  • the timing offset is determined according to the identifier S of the start symbol of k1 and/or PUSCH in the time domain resource allocation information, and optionally, the timing offset may be k1, It may be the identifier S of the start symbol of the PUSCH, and may also be 14k1+S.
  • the timing offset indicated by the first DCI can be made to satisfy the handover delay of the UE switching from the first BWP to the second BWP, that is, the timing offset indicated by the first DCI can be made greater than or equal to the UE from the first
  • the switching delay of the BWP is switched to the second BWP, and the handover delay may include at least one of a radio frequency switching time, a PDCCH processing time, and a beam preparation time.
  • the foregoing X time domain resource allocation information corresponds to The first X times of the time slot allocation resource information, for example, the 0th to the X-1th, and the timing offset corresponding to the at least one time domain resource allocation information of the X time domain resource allocation information can satisfy the UE from the first The switching delay of the BWP to the second BWP, that is, the timing offset corresponding to the at least one time domain resource allocation information is greater than or equal to the handover delay of the UE switching from the first BWP to the second BWP, and the handover delay may be At least one of a radio frequency switching time, a PDCCH processing time, and a beam preparation time is included.
  • the timing offset is determined according to the identifier S of k1 and/or the start symbol of the PUSCH in the time domain resource allocation information.
  • the UE assumes that the time domain resource allocation information indicated by the first DCI is one of the at least one time domain resource allocation information.
  • a reference signal may be transmitted between the base station and the UE for performing channel estimation or channel measurement, which may also be referred to as a pilot or other name, which is not limited in this application.
  • the RS may be transmitted for channel state estimation or channel measurement, and the base station and the UE may perform data transmission based on the estimated channel state or channel measurement amount, thereby improving the data transmission rate.
  • the uplink DMRS may be sent to the base station, the base station performs channel estimation according to the received DMRS, and demodulates the PUSCH according to the channel estimation result.
  • the DMRS may be referred to as a DMRS corresponding to the PUSCH.
  • the base station and the UE perform data transmission through the channel, and one base station and one UE can perform data transmission through at least one channel.
  • a channel can correspond to an antenna port, and signals transmitted through one antenna port can be inferred based on other signals transmitted through the antenna port.
  • the base station and the UE may transmit DMRS and other data through one antenna port, and the DMRS may be used for channel estimation, which may be used to demodulate other data transmitted at the antenna port.
  • multiple antenna ports may be configured for data transmission.
  • the antenna port for downlink transmission and the antenna port for uplink transmission can be configured independently.
  • each of the multiple DMRSs may correspond to one antenna port, and an antenna port for transmitting the DMRS may also be referred to as a DMRS antenna port.
  • the DMRS antenna ports of the plurality of DMRSs may be grouped to obtain a code division multiplexing (CDM) packet.
  • CDM code division multiplexing
  • multiple DMRS antenna ports are port antenna port 8, port 1, port 2, port 3, port 4, port 5, port 6, and port 7 total 8 antenna ports
  • the first CDM packet (CDM packet 0) may include port 0, port 1, port 4, and port 5.
  • the second CDM packet (CDM packet 1) may include port 2, port 3, port 6, and port. 7.
  • multiple DMRS antenna ports are port 00, port 01, port 02, port 03, port 04, port 05, port 06, port 07, port 08, Port 09, port 10, and port 11 have a total of 12 antenna ports
  • the first CDM packet (CDM packet 0) may include port 00, port 01, port 06, and port 07
  • the second CDM packet (CDM packet 1)
  • Port 02, port 03, port 08, and port 09 may be included
  • port 04, port 05, port 10, and port 11 may be included in the third CDM packet (CDM packet 2).
  • the type of the DMRS of the PUSCH may be the same as the PUSCH mapping type
  • the type 1 of the DMRS of the PUSCH is the type A of the PUSCH mapping type
  • the type 2 of the DMRS of the PUSCH is the type B of the PUSCH mapping type.
  • the base station when the base station configures the DMRS for the UE, the base station may configure the candidate DMRS configuration set by pre-configuration or semi-static configuration.
  • the DMRS configuration may include at least one of the following: an index or identifier corresponding to the configuration.
  • the port number of the DMRS antenna port may include at least one port number, and the antenna port corresponding to the at least one port number is used for transmitting the DMRS; if the number of DMRS CDM packets is Then in the CDM packet 0 to CDM packet
  • the resources corresponding to the included DMRS antenna port are not mapped to the PUSCH, that is, in the CDM packet 0 to the CDM packet.
  • the resources corresponding to the included DMRS antenna ports do not transmit PUSCH.
  • the base station can independently configure candidate DMRS configuration sets for different BWPs.
  • the base station configures a candidate DMRS configuration set corresponding to the BWP for the UE, the set includes N DMRS DMRS configurations, and when the BWP A corresponding scheduling is performed by the DCI A in the search space of the BWP A, the DCI A can include a DMRS antenna port, and the information domain corresponding to the DMRS antenna port includes The bit is used to indicate which one of the N DMRS DMRS configurations configured by the base station for the UE is used to transmit the DMRS corresponding to the PUSCH.
  • the type of the DMRS of the PUSCH is Type 1
  • the candidate DMRS configuration set is as shown in Table 5, and the set includes 16 configurations from configuration 0 to configuration 15, and the indexes of the 16 configurations are respectively 0. To 15.
  • Configuration index DMRS CMD group number Port number of the DMRS antenna port Number of symbols to which the DMRS is mapped 0 2 0 1 1 2 1 1 2 2 2 1 3 2 3 1 4 2 0 2 5 2 1 2 6 2 2 2 7 2 3 2 8 2 4 2 9 2 5 2 10 2 6 2 11 2 7 2 12 to 15 Reserved Reserved Reserved
  • the type of DMRS of the PUSCH is type 1, and the DMRS is mapped to The maximum number of symbols is 1, and the rank of the PUSCH is 1.
  • the candidate DMRS configuration set is shown in Table 6.
  • the set includes eight configurations from configuration 0 to configuration 7.
  • the indexes of the eight configurations are 0 to 7.
  • the rank of the PUSCH is used to indicate the number of streams corresponding to the PUSCH transmission.
  • the PUSCH may be used to improve the transmission robustness of the PUSCH, and the PUSCH may be transmitted by using multiple streams to improve the transmission rate of the PUSCH.
  • Configuration index DMRS CDM group number Port number of the DMRS antenna port 0 1 0 1 1 1 1 2 2 0 3 2 1 4 2 2 5 2 3 6 to 7 Reserved Reserved
  • the type of DMRS of the PUSCH is type 1
  • the maximum number of symbols to which the DMRS is mapped is 2
  • the rank of the PUSCH is 1, candidates
  • the DMRS configuration set is shown in Table 7.
  • the set includes a total of 16 configurations from configuration 0 to configuration 15.
  • the indexes of the 16 configurations are 0 to 15.
  • Configuration index DMRS CDM group number Port number of the DMRS antenna port Number of symbols to which the DMRS is mapped 0 1 0 1 1 1 1 1 2 2 0 1 3 2 1 1 4 2 2 1 5 2 3 1 6 2 0 2 7 2 1 2 8 2 2 2 9 2 3 2 10 2 4 2 11 2 5 2 12 2 6 2 13 2 7 2 14-15 Reserved Reserved Reserved
  • the type of DMRS of the PUSCH is type 2
  • the maximum number of symbols to which the DMRS is mapped is 1
  • the rank of the PUSCH is 1, candidates
  • the DMRS configuration set is shown in Table 8. The set includes 16 configurations from configuration 0 to configuration 15, and the indexes of the 16 configurations are 0 to 15.
  • Configuration index DMRS CDM group number Port number of the DMRS antenna port 0 1 0 1 1 1 1 2 2 0 3 2 1 4 2 2 5 2 3 6 3 0 7 3 1 8 3 2 9 3 3 10 3 4 11 3 5 12 to 15 Reserved Reserved
  • the type of DMRS of the PUSCH is type 2
  • the maximum number of symbols to which the DMRS is mapped is 2
  • the rank of the PUSCH is 1, candidates
  • the DMRS configuration set is shown in Table 9. The set includes 32 configurations from configuration 0 to configuration 31, and the indexes of the 32 configurations are 0 to 31 respectively.
  • Configuration index DMRS CDM group number Port number of the DMRS antenna port Number of symbols to which the DMRS is mapped 0 1 0 1 1 1 1 1 2 2 0 1 3 2 1 1 4 2 2 1 5 2 3 1 6 3 0 1 7 3 1 1 8 3 2 1 9 3 3 1 10 3 4 1 11 3 5 1 12 3 0 2 13 3 1 2 14 3 2 2 15 3 3 2 16 3 4 2 17 3 5 2 18 3 6 2 19 3 7 2 20 3 8 2 twenty one 3 9 2 twenty two 3 10 2 twenty three 3 11 2 twenty four 1 0 2 25 1 1 2 26 1 6 2 27 1 7 2 28-31 Reserved Reserved Reserved
  • the candidate DMRS configuration set configured by the base station for the UE may also be different from the examples shown in Tables 5 to 9 above, for example, the candidate DMRS configuration set may also be a PUSCH rank of 2, 3, Or 4 o'clock candidate DMRS configuration set.
  • the base station can configure the candidate DMRS configuration set corresponding to the BWP A through pre-configuration or semi-static configuration.
  • the base station when performing BWP handover or cross-BWP scheduling based on DCI, sends a first DCI to the UE in a search space of the first BWP, where the first DCI includes a DMRS antenna port indication, and the DMRS antenna port indication Used to indicate the DMRS configuration configured for the UE in the second BWP.
  • the UE receives the first DCI in the search space of the first BWP, and determines, according to the DMRS antenna port indication in the first DCI, the DMRS configuration configured for the UE in the second BWP.
  • the first DCI Bit DMRS antenna port indication Bits are used to indicate which of the Y DMRS configurations the DMRS configured for the UE in the second BWP is configured for, and the Y DMRS configurations are included in DMRS configuration, this The DMRSs are configured as candidate DMRS configurations for the second BWP.
  • the first DCI Bit DMRS antenna port indication except this Outside the bit Bits are all 0.
  • Y and Is a positive integer.
  • the corresponding rank is 1 or 2
  • the antenna port used for transmitting the DMRS is a single antenna port or two antenna ports, and the number of corresponding antenna ports is 1 or 2. .
  • the size of the DMRS antenna port indication in the second DCI The second DCI is used to schedule the UE in the search space of the second BWP, in the second DCI
  • the bit DMRS antenna port is used to indicate that the DMRS configured for the UE in the second BWP is configured as Which of the DMRS configurations is available.
  • the above Y DMRS configurations are as described above In the DMRS configuration, the number of DMRS CDM packets is smaller than the number of Y DMRS configurations.
  • the number of DMRS CDM packets corresponding to the smaller number of DMRS CDM packets is 1 and/or 2.
  • the above Y DMRS configurations may also correspond to the above In the DMRS configuration, the number of symbols to which the DMRS is mapped is smaller than the number of Y DMRS configurations.
  • the number of symbols to which the DMRSs are mapped to the DMRSs to which the DMRSs are mapped is 1.
  • the above Y DMRS configurations may also correspond to the above Y DMRS configurations with a small number of CDM packets and a small number of symbols to which the DMRS is mapped in the DMRS configuration.
  • Y DMRS configurations with a smaller number of DMRS CDM packets correspond to the number of DMRS CDM packets. For 1 and/or 2, the number of symbols to which the DMRS mapping to which the DMRS is mapped is corresponding to the number of symbols to which the DMRS is mapped is 1.
  • the above Y DMRS configurations correspond to the above The first Y in the DMRS configuration, or the corresponding information in the Y time domain resource allocation information bits
  • the 0th to the Y-1th of the DMRS configurations, and the number of DMRS CDM packets corresponding to at least one of the Y DMRS configurations is small and/or the number of symbols to which the DMRS is mapped is small, for example, DMRS
  • the number of CDM packets is 1 and/or 2, and the number of symbols to which the DMRS is mapped is 1.
  • the UE assumes that the DMRS configuration indicated by the first DCI is one of the at least one DMRS configuration.
  • the corresponding rank is 1 or 2, that is, the antenna port used for transmitting the DMRS is a single antenna port or two antenna ports, and the number of corresponding antenna ports is 1 or 2. .
  • the DMRS when performing BWP switching or cross-BWP scheduling based on DCI, the DMRS is configured to be transmitted using a preset DMRS antenna port. For example, at least one of the following is pre-configured: the number of DMRS antenna ports corresponding to the DMRS configuration. For example, the number of symbols to which the DMRS is mapped is 1 and the type of the DMR is type 1. At this time, it can be considered that the DMRS antenna port indication included in the first DCI is meaningless, that is, the UE does not understand the DMRS antenna port indication.
  • the demand of the rank of the PUSCH can be satisfied.
  • the base station and the UE may not determine the channel state information on the second BWP, or determine the channel state information on the second BWP in time and accurately, so it is difficult to switch in BWP or cross BWP.
  • multi-stream transmission it can be assumed by the above method that both the base station and the UE need to assume a small rank, thereby ensuring the robustness of data transmission during BWP handover or cross-BWP scheduling.
  • X1 layer data can be transmitted using X1 antenna ports, and X1 and X2 are positive integers. Alternatively, X1 is greater than or equal to X2.
  • the X2 layer data can be mapped to X1 antenna ports through a precoding matrix to obtain data transmitted at each antenna port.
  • the X2 layer data is mapped to the X1 antenna ports by the precoding matrix, and the precoding matrix can be multiplied by the X2 layer data to obtain data transmitted at the X1 antenna ports.
  • the codebook W can be configured as a precoding matrix, and the codebook can be a codebook in the candidate codebook set.
  • the number of layers X2 may be equal to the rank of the PUSCH.
  • the codebook in the candidate codebook set can be as shown in Table 10.
  • the index of the codebook as the precoding matrix may be referred to as a transmission precoding matrix indicator (TPMI).
  • the codebook in the candidate codebook set can be as shown in Table 11.
  • the codebook in the candidate codebook set can be as shown in Table 12.
  • the base station may configure the candidate precoding information and the layer number configuration set by pre-configuration or semi-static, for one precoding information and the number of layers in the set.
  • a configuration which may indicate at least one of the following: an index or identifier corresponding to the configuration, a layer (layer(s)), and a TPMI.
  • the base station can independently configure candidate precoding information and a layer number configuration set for different BWPs.
  • the candidate precoding information and the layer number configuration set may be separately configured: scene one, a full coherent codebook, a partially coherent codebook, and a non-coherent codebook; and a scenario 2, a partially coherent codebook and a non-coherent codebook; Scene 3, unrelated codebook.
  • the full coherent codebook indicates that one data stream is mapped to all antenna ports.
  • each column of the precoding matrix is all non-zero elements; the partially coherent codebook indicates that one data stream is mapped to a part of the antenna port, In a partially coherent codebook, each column of the precoding matrix has at least one 0 element, and the number of non-zero elements is greater than one; in the non-coherent codebook, each column of the precoding matrix has only one non-zero element.
  • the UE supporting the full coherent codebook also supports the partially coherent codebook and the non-coherent codebook.
  • the UE supporting the partial coherent codebook also supports the non-coherent codebook.
  • DCI A may include precoding information and a layer number, and the information field corresponding to the precoding information and the number of layers includes The bit is used to indicate that the precoding information and the number of layers configured by the base station for the UE are configured as one of the N PM precoding information and the layer number configuration, for transmitting the PUSCH.
  • Candidate precoding information and layer number configuration set example 1 For a scenario where the UE uses a 4-antenna port, if the signal used by the UE and the base station for data transmission is CP-OFDM, or if the signal used by the UE and the base station for data transmission is CP-OFDM and the rank of the PUSCH is at most 1, 2, 3 or 4, and the candidate precoding information and the layer number configuration set include the second row precoding information and the layer number configuration in Table 13 to the fifth row precoding information and Layer number configuration, that is, precoding information and layer number configuration corresponding to index 0 to index 3.
  • Candidate precoding information and layer number configuration set example 2 For a scenario where the UE uses a 4-antenna port, if the signal used by the UE and the base station for data transmission is CP-OFDM, or if the signal used by the UE and the base station for data transmission is CP-OFDM and the PUSCH has a rank of at most 1, 2, 3 or 4, and the candidate precoding information and the layer number configuration set include the second row precoding information and the layer number configuration in Table 13 to the 17th line precoding information and The layer number configuration, that is, the precoding information and the layer number configuration corresponding to index 0 to index 15.
  • Candidate precoding information and layer number configuration set example three for a scenario where the UE uses a 4-antenna port, if the signal used by the UE and the base station for data transmission is DFT-s-OFDM, or if the UE and the base station perform data transmission
  • the waveform is CP-OFDM and the rank of the PUSCH is at most 1, 2, 3 or 4
  • the candidate precoding information and the layer number configuration set include the second row precoding information and the layer number configuration in Table 13 to the 33rd line precoding.
  • Information and layer number configuration that is, precoding information and layer number configuration corresponding to index 0 to index 31.
  • the candidate precoding information and the layer number configuration set include the second row precoding information in Table 14 and the layer number configuration to the 5th row precoding information and the layer number configuration, that is, the precoding corresponding to index 0 to index 3.
  • Information and layer configuration include the second row precoding information in Table 14 and the layer number configuration to the 5th row precoding information and the layer number configuration, that is, the precoding corresponding to index 0 to index 3.
  • the candidate precoding information and the layer number configuration set include the second row precoding information in Table 14 and the layer number configuration to the 9th row precoding information and the layer number configuration, that is, the precoding corresponding to index 0 to index 7.
  • Information and layer configuration include the second row precoding information in Table 14 and the layer number configuration to the 9th row precoding information and the layer number configuration, that is, the precoding corresponding to index 0 to index 7.
  • the base station when performing BWP handover or cross-BWP scheduling based on DCI, sends a first DCI to the UE in a search space of the first BWP, where the first DCI includes precoding information and a layer number, and the precoding The information and layer number are used to indicate the number of layers and TPMI configured for the UE in the second BWP.
  • the UE receives the first DCI in the search space of the first BWP, and determines the number of layers and the TPMI configured for the UE in the second BWP according to the precoding information and the number of layers in the first DCI.
  • L PM bit precoding information and number of layers in the first DCI The bit is used to indicate which of the number of layers and the TPMI is configured for the UE in the second BWP, and the Z number of layers and the TPMI are configured as the candidate layer number and TPMI configuration of the second BWP.
  • the foregoing L PM bit precoding information and the number of layers are in addition to the above Outside the bit Bits are all 0. Where L PM and Z are positive integers.
  • the second DCI is used to schedule the UE in the search space of the second BWP, in the second DCI
  • the bit precoding information and the number of layers are used to indicate that the number of layers and the TPMI configured for the UE in the second BWP is Which of the number of layers and TPMI configuration.
  • the above Z number of layers and the TPMI configuration correspond to Z layer and TPMI configuration with smaller number of layers and TPMI configuration
  • the number of layers and the TPMI are configured as the number of candidate layers and the TPMI configuration of the second BWP.
  • the number of Z layers and the TPMI configuration corresponding to the number of layers are 1 and/or 2.
  • the above Z number of layers and the TPMI configuration correspond to the above The number of layers and the first Z in the TPMI configuration, or described as the Z number of layers and the TPMI configuration corresponding to the above Number of layers and 0th to Z-1th of the TPMI configuration, and the number of layers in the Z layer and TPMI configuration and the number of layers corresponding to the TPMI configuration are small, for example, 1 and/or 2, UE It is assumed that the number of layers and the TPMI configuration indicated by the first DCI is one of the at least one layer number and the TPMI configuration.
  • the base station when performing BWP handover or cross-BWP scheduling based on DCI, sends a first DCI to the UE in a search space of the first BWP, where the first DCI includes precoding information and a layer number, and the pre-coding
  • the coding information and the layer number are used to indicate the precoding matrix and the number of layers configured for the UE in the second BWP.
  • the UE receives the first DCI in the search space of the first BWP, and determines a precoding matrix and a layer number configured for the UE in the second BWP according to the precoding information and the number of layers in the first DCI.
  • Precoding matrix and number of layers in the first DCI The bit is used to indicate which of the L PMI precoding information and the layer number configuration is configured for the precoding information and the number of layers configured for the UE in the second BWP, and the L PMI precoding information and the layer number configuration are included in In the precoding information and layer number configuration, The precoding information and the number of layers are configured as candidate precoding information and layer number configuration of the second BWP.
  • the second DCI is used to schedule the UE in the search space of the second BWP, in the second DCI
  • the bit precoding matrix and the number of layers are used to indicate that the precoding information and the number of layers configured for the UE in the second BWP are configured as Which of the precoding information and layer number configuration.
  • the foregoing L PMI precoding information and the number of layers are configured as described above.
  • the L PMI precoding information and the number of layers are configured as the first to the L PMI -1 of the first candidate precoding information and the number of layers in the layer number configuration set, the first The candidate precoding information and the layer number configuration set are a fallback set.
  • the fallback set may correspond to a rank of a smaller PUSCH, such as the first candidate precoding information and the layer number configuration set included in the table 14 Precoding information and layer number configuration.
  • the precoding information and the number of layers are configured as a configuration in the second candidate precoding information and the layer number configuration set, and the first candidate precoding information and the layer number configuration set and the second candidate precoding information and the layer number configuration set may be the same. It can also be different, and the application is not limited.
  • L PMI precoding information and layer number are configured as described above
  • the demand of the rank of the PUSCH can be satisfied.
  • the base station and the UE may not determine the channel state information on the second BWP, or determine the channel state information on the second BWP in time and accurately, so it is difficult to switch in BWP or cross BWP.
  • multi-stream transmission it can be assumed by the above method that both the base station and the UE need to assume a small rank.
  • the base station may configure a sounding referece signal (SRS) resource for the UE.
  • SRS sounding referece signal
  • the base station can configure whether the PUSCH transmission on the BWP A is codebook based or non-codebook based.
  • configuration SRS resources the base station configures the UE for the SRS resource indicator (SRI) One of the SRS resources for the UE to determine the precoding information;
  • SRI SRS resource indicator
  • the base station configures the UE for the SRI through the SRI At least one SRS resource of the SRS resources is used by the UE to determine precoding information.
  • the UE determines the number of antenna ports used and the antenna port according to the indicated SRS resource. If the PUSCH transmission is based on the codebook, the UE may further determine the candidate precoding information and the layer number configuration set according to the number of antenna ports, and then The precoding and the number of layers are determined based on the precoding information and the number of layers in the DCI.
  • the PUSCH transmission at the second BWP is also based on non-codebook. At this time, it can be considered that the UE does not need to use the precoding information and the number of layers in the first DCI.
  • the first BWP configures the non-codebook based PUSCH transmission, and the PUSCH transmission on the second BWP indicated by the first DCI is also based on the non-codebook.
  • the base station sends a first DCI in a search space of the first BWP, where the first DCI includes an SRI, and if the first BWP is configured with a non-codebook-based PUSCH transmission,
  • the SRI is used to indicate one or more of the SRS resources in which the second BWP is configured as the UE configured SRS resource as the second BWP.
  • the SRS resource configured in the second BWP configuration for the UE is one of the SRS resources of the second BWP.
  • the first BWP is configured with a codebook based PUSCH transmission
  • the PUSCH transmission on the second BWP indicated by the first DCI is also codebook based.
  • the base station when performing BWP handover or cross-BWP scheduling based on DCI, the base station sends a first DCI in a search space of the first BWP, where the first DCI includes an SRI, and if the first BWP is configured with a codebook-based PUSCH transmission, The SRI is used to indicate one of the SRS resources in which the second BWP is configured as the UE configured SRS resource as the second BWP.
  • the first BWP is configured with non-codebook based PUSCH transmission
  • the second BWP is configured with codebook based transmission
  • the bits are used to indicate that the SRS resource configured for the UE is configured on the second BWP. Which of the SRS resources is available.
  • the bits may be used with the precoding information and layer number configuration described above to indicate precoding information and the number of layers on the second BWP.
  • the L SRI is the size of the SRI in the first DCI or the third DCI, where the third DCI is used to perform scheduling for the first BWP in the search space of the first BWP.
  • the first BWP is configured with a codebook-based PUSCH transmission
  • the second BWP is configured with a non-codebook-based transmission
  • the first joint information domain may be used to configure the SRS resource on the second BWP, the first joint information domain.
  • the size is less than or equal to the sum of the size of the precoding information and the number of layers in the third DCI and the size of the SRS resource indication in the third DCI, or the size of the first joint information field is less than or equal to the precoding in the first DCI.
  • the third DCI is used to perform scheduling for the first BWP in the search space of the first BWP.
  • the first joint information field is used to indicate that the SRS resource configured as the UE in the second BWP is configured as the second BWP.
  • the SRS resource configured in the second BWP configuration for the UE is one of the SRS resources of the second BWP.
  • the UE may report channel state information (CSI) to the base station, where the CSI is used to determine a transmission parameter of the PDSCH or the PUSCH.
  • CSI channel state information
  • the DCI A may include a CSI request, which is used to enable the UE to report the CSI of the BWP A to the base station, for example, for The UE is enabled to report the CSI to the base station in a non-period manner.
  • the UE reports the CSI to the base station according to the CSI request included in the DCI.
  • the CSI request may be used to indicate the CSI resource used by the UE to report the CSI.
  • the CSI request may indicate that the CSI resource used by the UE to report the CSI is at least one CSI resource.
  • the at least one CSI resource may be configured by the base station for the UE by semi-static signaling.
  • the CSI resource may include a timing offset k offset , where k offset may be used to indicate a time slot for transmitting DCI including a CSI request and for transmitting the DCI enable The interval between time slots of the CSI, which may be a time slot. If the CSI request is included in the DCI A, the UE considers that the UE is enabled to report the CSI to the base station.
  • the UE reports the CSI to the base station in the time slot n 0 + k offset ; when the PUSCH transmission is scheduled in the DCI A, The UE reports the CSI to the base station in the time slot n 0 + k1, where k1 is the distance between the time slot for transmitting the DCI and the time slot for transmitting the PUSCH corresponding to the DCI, and the unit of k1 is the time slot.
  • k1 is included in the time domain resource allocation indication in the DCI.
  • the PUSCH transmission is not scheduled in DCI A.
  • NDI new data indicator
  • MCS modulation and coding schemes
  • redundancy redundancy
  • the base station sends a first DCI to the UE in the search space of the first BWP, where the first DCI includes a CSI request, and the CSI request is used to enable the UE to report the second BWP to the base station.
  • CSI is used to enable the UE to report the second BWP to the base station.
  • the UE receives the first DCI in the search space of the first BWP, and reports the CSI of the second BWP to the base station in the second BWP according to the CSI request in the first DCI.
  • the bit is used to instruct the UE to report the CSI of the second BWP according to which one of the V CSI resources, where the V CSI resources are included in Among the CSI resources, The CSI resources are included in the candidate CSI resources of the second BWP.
  • the L CSI bit time domain resource allocation indication is divided Outside the bit Bits are all 0.
  • the second DCI is used to enable the UE to report the CSI of the second BWP to the base station in the second BWP, in the second DCI.
  • a bit CSI request is used to indicate that the UE is based Which one of the CSI resources reports the CSI of the second BWP.
  • V CSI resources are as described above.
  • the maximum V of k offsets in a CSI resource By this method, the handover delay of the UE switching from the first BWP to the second BWP can be satisfied.
  • the above V CSI resources are as described above.
  • the first V resources in the CSI resource resources for example, the 0th to V-1th resources in the middle.
  • the k offset corresponding to the at least one CSI resource of the V CSI resources can meet the handover delay of the UE switching from the first BWP to the second BWP, that is, the k offset corresponding to the CSI resource is greater than or equal to the UE from the first Switching the BWP to the handover delay of the second BWP
  • the handover delay may include at least one of a radio frequency handover time, a PDCCH processing time, and a beam preparation time, and the UE assumes that the CSI resource indicated by the first DCI is in the at least one CSI resource.
  • the base station can configure the CSI resource to meet the handover delay of the UE switching from the first BWP to the second BWP.
  • the UE assumes that when the k offset corresponding to the CSI resource indicated by the first DCI is smaller than the handover delay of the UE switching from the first BWP to the second BWP, the transmission of the PUSCH is simultaneously scheduled in the first DCI.
  • k1 is the distance between the time slot for transmitting the DCI and the time slot for transmitting the PUSCH corresponding to the DCI, that is, k offset is not used.
  • the k offset of the CSI resource in the L CSI CSI resources may not be limited, and the delay may be met when the k1 is greater than or equal to the handover time of the UE switching from the first BWP to the second BWP. demand.
  • the downlink scheduling DCI may include a frequency domain resource allocation indication, and is used to indicate a frequency domain resource allocated by the base station to the UE in the downlink BWP, where the BWP is a BWP indicated by the BWP indication in the DCI.
  • the BWP A corresponding scheduling is performed by the DCI A in the search space of the BWP A, and the DCI A includes a frequency domain resource allocation indication, which is used to indicate the frequency domain resource allocated by the base station to the UE in the BWP A.
  • the corresponding resource allocation method is similar to the corresponding introduction in the uplink scheduling DCI, and details are not described herein again.
  • the design of the truncated frequency domain resource allocation indication in the first DCI is similar to the corresponding introduction in the uplink scheduling DCI, and details are not described herein again.
  • the BWP in the resource allocation method corresponding to the uplink scheduling DCI is the uplink BWP
  • the BWP in the resource allocation method corresponding to the downlink DCI is the downlink BWP.
  • the resource allocation type is type 1, or type 0 and type 1
  • the frequency domain resource allocation indication in the uplink scheduling DCI may not include the frequency domain frequency hopping in the downlink scheduling DCI. Can indicate information.
  • the time domain resource allocation indication in the DCI may be used to indicate time domain resource allocation information, where the time domain resource allocation information includes at least one of: a time slot for transmitting the DCI and a time slot for transmitting the PDSCH corresponding to the DCI.
  • the UE receives the DCI in the slot n, and the DCI is carried in the PDCCH, and the PDSCH corresponding to the DCI is transmitted in the slot n+k0, that is, the DCI includes scheduling information corresponding to the PDSCH.
  • the PDSCH is transmitted in consecutive symbols indicated by SLIV from the start symbol indicated by SLIV.
  • the base station may configure multiple time domain resource allocation information for the UE through the DCI A. One of them is used for transmission of the PDSCH corresponding to the DCI A.
  • k0 in the downlink scheduling DCI is similar to k1 in the uplink scheduling DCI, where k1 is the distance between the time slot for transmitting the DCI and the time slot for transmitting the PUSCH corresponding to the DCI, and k0 is used for transmitting the The distance between the time slot of the DCI and the time slot for transmitting the PDSCH corresponding to the DCI.
  • the DMRS involved in the downlink scheduling DCI is the DMRS of the PDSCH, and the DMRS is used to demodulate the PDSCH.
  • the DMRS involved in the uplink scheduling DCI is the DMRS of the PUSCH, and is used for demodulating the PUSCH.
  • the DMRS configuration of the DMRS of the PDSCH may be similar to the DMRS configuration of the DMRS of the PUSCH, and details are not described herein again.
  • DMRS configurations can be configured independently, such as independently configuring candidate DMRS configuration sets.
  • the information included in the DMRS configuration can also be set independently.
  • the candidate DMRS configuration set is as shown in Table 15, which includes configuration 0 to configuration 31 and 32 configurations.
  • the index of the 32 configurations is 0 to 31 respectively.
  • the codeword 0 corresponds to the first transport block (transport block 0)
  • the codeword 1 corresponds to the second transport block (transport block 1).
  • the candidate DMRS configuration set is as shown in Table 16, and the set includes 32 configurations from configuration 0 to configuration 31.
  • the index of the 32 configurations is 0 to 31 respectively.
  • the candidate DMRS configuration set is as shown in Table 17, and the set includes 64 configurations of configuration 0 to configuration 63.
  • the indexes of the 64 configurations are 0 to 63, respectively.
  • the base station when performing BWP handover or cross-BWP scheduling based on DCI, sends a first DCI to the UE in a search space of the first BWP, where the first DCI includes a DMRS antenna port indication, and the DMRS antenna port indication Used to indicate the DMRS configuration configured for the UE in the second BWP.
  • the UE receives the first DCI in the search space of the first BWP, and determines, according to the DMRS antenna port indication in the first DCI, the DMRS configuration configured for the UE in the second BWP.
  • the first DCI Bit DMRS antenna port indication Bit indicates the second DMRS BWP configured for the UE configured DMRS Y D a configuration which, the Y D DMRS configuration included a DMRS configuration, this The DMRSs are configured as candidate DMRS configurations for the second BWP.
  • Y D and Is a positive integer.
  • the size of the DMRS antenna port indication in the second DCI The second DCI is used to schedule the UE in the search space of the second BWP, in the second DCI
  • the bit DMRS antenna port is used to indicate that the DMRS configured for the UE in the second BWP is configured as Which of the DMRS configurations is available.
  • the above Y D DMRS configurations are as described above In the DMRS configuration, the number of DMRS CDM packets is smaller than the Y D DMRS configurations.
  • the Y D DMRS configurations with the smaller number of DMRS CDM packets correspond to the number of DMRS CDM packets of 1 and/or 2.
  • the above Y D DMRS configurations may also correspond to the above In the DMRS configuration, the Y D DMRS configurations in which the number of symbols to which the DMRS is mapped are small, and optionally, the Y D DMRS configurations to which the number of symbols to which the DMRS is mapped correspond to the number of symbols to which the DMRS is mapped to 1 .
  • the above Y D DMRS configurations may also correspond to the above Y D DMRS configurations with a small number of DMRS antenna ports in a DMRS configuration, optionally, the above Y D DMRS configurations may also correspond to the above The number of DMRS antenna ports in the DMRS configuration is 1 and/or 2 Y D DMRS configurations.
  • the above Y D DMRS configurations may also correspond to the above A DMRS port configured DMRS in fewer and smaller number of antenna number of the CDM packet Y D DMRS a DMRS configuration, alternatively, a Y D DMRS configuration described above also correspond to the above-described
  • the number of DMRS antenna ports in the DMRS configuration is 1 and/or 2
  • the number of DMRS CDM packets is 1 and/or 2 Y D DMRS configurations.
  • the above Y D DMRS configurations may also correspond to the above A DMRS configuration DMRS DMRS antenna ports mapped to fewer and smaller number of symbols Y D a DMRS configuration, alternatively, a Y D DMRS configuration described above also correspond to the above-described In the DMRS configuration, the number of DMRS antenna ports is one and/or two, and the number of symbols to which the DMRS is mapped is one Y D DMRS configurations.
  • the above Y D DMRS configurations may also correspond to the above Y D DMRS configurations with a small number of CDM packets and a small number of symbols to which the DMRS is mapped in the DMRS configuration.
  • Y D DMRS configurations with a smaller number of DMRS CDM packets correspond to DMRS CDM packets.
  • the number of symbols is 1 and/or 2
  • the Y D DMRS configurations to which the number of symbols to which the DMRS is mapped correspond to the number of symbols to which the DMRS is mapped to 1.
  • the above Y D DMRS configurations may also correspond to the above A small antenna DMRS configuration DMRS ports, a smaller number of symbols mapped to DMRS, and the smaller the number of the CDM packet Y D DMRS a DMRS configuration, alternatively, a Y D above may also correspond to DMRS configuration Above
  • the number of DMRS antenna ports in the DMRS configuration is 1 and/or 2
  • the number of symbols to which the DMRS is mapped is 2
  • the number of DMRS CDM packets is 1 and/or 2 Y D DMRS configurations.
  • the above Y D DMRS configurations correspond to the above The first Y D in the DMRS configuration, or described as the Y D time domain resource allocation information bits corresponding to The 0th to the Y D -1 of the DMRS configurations, and at least one of the Y D DMRS configurations satisfies at least one of the following: the number of corresponding DMRS CDM packets is small, and the number of symbols to which the DMRS is mapped The number of smaller and DMRS antenna ports is smaller. For example, the number of DMRS CDM packets is 1 and/or 2, the number of symbols to which the DMRS is mapped is 1, and the number of DMRS antenna ports is 1 and/or 2.
  • the DMRS configuration indicated by a DCI is one of the at least one DMRS configuration. Further, for the DMRS configuration in the Y D DMRS configurations, the corresponding rank is 1 or 2, that is, the antenna port used for transmitting the DMRS is a single antenna port or two antenna ports, and the number of corresponding antenna ports is 1 or 2.
  • the DMRS when performing BWP switching or cross-BWP scheduling based on DCI, the DMRS is configured to be transmitted using a preset DMRS antenna port. For example, at least one of the following is pre-configured: the number of DMRS antenna ports corresponding to the DMRS configuration. For example, the number of symbols to which the DMRS is mapped is 1 and the type of the DMR is type 1. At this time, it can be considered that the DMRS antenna port indication included in the first DCI is meaningless, that is, the UE does not understand the DMRS antenna port indication.
  • the requirement of the rank of the PDSCH can be satisfied.
  • the base station and the UE may not determine the channel state information on the second BWP, or determine the channel state information on the second BWP in time and accurately, so it is difficult to switch in BWP or cross BWP.
  • multi-stream transmission it can be assumed by the above method that both the base station and the UE need to assume a small rank, thereby ensuring the robustness of data transmission during BWP handover or cross-BWP scheduling.
  • the rate matching indication may indicate to the UE whether the rate matching resource is enabled.
  • the rate matching resource When the rate matching resource is enabled, it is not used to map the PDSCH, that is, the PDSCH is not transmitted in the rate matching resource.
  • the base station may include a part of the resources A or all the resources A in the rate matching resource by using the foregoing frequency domain resource allocation indication. If the rate matching resource is enabled, the base station and the UE are not in the resource A. The PDSCH is transmitted. When the rate matching resource is not enabled, the PDSCH can be mapped, that is, the PDSCH can be transmitted in the rate matching resource.
  • the base station may configure multiple rate matching resources for the UE by using a pre-configured or semi-static configuration.
  • Each rate matching resource may correspond to a unique identifier, and the base station may enable the multiple rate matching resources for the UE through DCI A. At least one of them.
  • the plurality of rate matching resources may be included in at least one resource group, and at least one resource group may be referred to as a resource group of the BWP, and any one of the at least one resource group may include at least one rate matching resource.
  • resource groups can be configured independently for each BWP.
  • the resource groups of the BWPs can be the same or different.
  • the DCI A may include a rate matching indication for enabling the BWP A rate matching resource.
  • the rate matching resource of the BWP A includes one resource group
  • the rate matching indication in the DCI A may be 1 bit, and when the value of the 1 bit is 0, the rate in the 1 resource group is enabled. Matching resources; when the value of the 1 bit is 1, the rate matching resources in the 1 resource group are not enabled.
  • the rate matching resource of the BWP A includes two resource groups
  • the two resource groups are resource group 0 and resource group 1, respectively, and the rate matching indication in DCI A may be 2 bits, when the 2 bits When the value of 00 is 00, the rate matching resource in resource group 0 and resource group 1 is enabled; when the value of the 2 bit is 01, the rate matching resource in resource group 0 is enabled; when the value of the 2 bit is 10
  • the rate matching resource in resource group 1 is enabled; when the value of the 2 bit is 11, the rate matching resource in resource group 0 and resource group 1 is not enabled.
  • the base station sends the first DCI to the UE in the search space of the first BWP when the BWP is switched or the BWP is scheduled by the DCI. If the first DCI does not include the rate matching indication, the base station enables the second for the UE. Rate matching resources in each resource group of the BWP. The UE receives the first DCI in the first BWP. If the rate matching indication is not included in the first DCI, the UE considers that the rate matching resource in each resource group of the second BWP is enabled.
  • the UE considers that the rate matching in the resource group 0 of the second BWP is enabled after receiving the first DCI.
  • Resources Illustratively, if the resource group of the second BWP includes the resource group 0 and the resource group 1, if the rate matching indication is not included in the first DCI, the UE considers that the resource group of the second BWP is enabled after receiving the first DCI. 0 and rate matching resources in resource group 1.
  • the resource group 0 of the second BWP is not pre-configured. And matching the resource with the rate of the resource 1; or pre-configuring the rate matching resource of the resource group 0 and the resource 1 of the second BWP; or pre-configuring the rate matching resource of the enabled resource group 0, and not matching the rate matching of the resource 1
  • the resource is matched with the rate matching resource of resource group 1 and the rate matching resource of resource 0 is not enabled.
  • the base station when performing BWP handover or cross-BWP scheduling by DCI, the base station sends a first DCI to the UE in the search space of the first BWP, where the first DCI includes a 1-bit rate matching indication for enabling two resources.
  • the rate of the resource group in the group matches the resource, and the two resource groups are the resource group of the second BWP.
  • the rate matching indication in the first DCI when the rate matching indication in the first DCI is t1, it indicates that the rate matching resource in the resource group 0 and the resource group 1 on the second BWP is enabled; when the rate matching indication in the first DCI is t2, indicating Rate matching resources in resource group 0 and resource group 1 are not enabled.
  • the rate matching indication in the first DCI when the rate matching indication in the first DCI is t1, it indicates that the rate matching resource in the resource group 0 and the resource group 1 on the second BWP is enabled; when the rate matching indication in the first DCI is t2, indicating The rate matching resource in resource group 0 is not enabled, and the rate matching resource in resource group 1 on the second BWP is enabled.
  • the rate matching indication in the first DCI when the rate matching indication in the first DCI is t1, it indicates that the rate matching resource in the resource group 0 on the second BWP is enabled, and the rate matching resource in the resource group 1 on the second BWP is not enabled;
  • the rate matching indication in the first DCI when the rate matching indication in the first DCI is t2, it indicates that the rate matching resources in the resource group 0 and the resource group 1 are not enabled.
  • the rate matching indication in the first DCI when the rate matching indication in the first DCI is t1, it indicates that the rate matching resource in the resource group 1 on the second BWP is enabled, and the rate matching resource in the resource group 0 on the second BWP is not enabled;
  • the rate matching indication in the first DCI when the rate matching indication in the first DCI is t2, it indicates that the rate matching resources in the resource group 0 and the resource group 1 are not enabled.
  • the rate matching indication in the first DCI when the rate matching indication in the first DCI is t1, it indicates that the rate matching resources in the resource group 0 and the resource group 1 on the second BWP are enabled, when the rate matching indication in the first DCI is t2, Indicates that the rate matching resource in resource group 0 is enabled, and the rate matching resource in resource group 1 is not enabled.
  • resource group 0 and resource group 1 are interchangeable and are not restricted.
  • the second DCI includes a 2-bit rate matching indication
  • the second DCI is used to schedule the UE in the search space of the second BWP
  • the rate matching indication in the second DCI is used to enable the two resource groups.
  • the rate of the resource group matches the resources, and the two resource groups are resource group 0 and resource group 1 of the second BWP.
  • the base station when performing BWP handover or cross-BWP scheduling by DCI, the base station sends a first DCI to the UE in a search space of the first BWP, where the first DCI includes a 1-bit rate matching indication, and the second DCI includes 2 bits.
  • the rate matching indication, the second DCI is used to schedule the UE in the search space of the second BWP, and the rate matching in the second DCI indicates a rate matching resource for enabling the resource groups in the two resource groups.
  • the UE ignores the rate matching indication in the first DCI and does not enable the rate matching resource on the second BWP.
  • the rate matching resource of the second BWP can be preferentially enabled, so that the rate matching resource of the second BWP can be prevented from introducing interference into the transmission of the PDSCH, so that the data transmission of the second BWP is more robust.
  • the function of the zero-power CSI RS resource is similar to the rate matching resource, and the zero-power CSI RS resource is similar to the rate matching resource.
  • the design of the zero-power CSI RS resource that enables the second BWP through the first DCI is similar to that of the second BWP enabled by the first DCI.
  • the rate matches the design of the resource.
  • Design 2 Discard the information domain / retain part of the information domain
  • the size of the DCI may be quantized into Q bits, and Q is a positive integer.
  • Q is a positive integer of 40, 60, 90, less than 42, a positive integer greater than 42 and less than 83, or Other positive integers.
  • the DCI may also include a zero padding information field for quantifying the size of the DCI.
  • the size of the zero-padded information field (number of bits or number of bits) is equal to QW sum , W sum is the sum of the sizes of the information fields other than the zero-padded information field in the DCI, or is described as W sum is the zero padding in the DCI.
  • the DCI may be an uplink scheduling DCI or a downlink scheduling DCI.
  • the quantized value Q of the DCI may be the same or different, and is not limited in this application.
  • the type of DCI size can be controlled, so that the power consumption when the UE detects DCI can be reduced.
  • the size of the first DCI may be smaller than the size of the second DCI.
  • the size of the second DCI is determined according to the configuration of the second BWP. Specifically, the size of the information domain in the second DCI is determined according to the configuration of the second BWP. At this time, for one information field in the second DCI, the information domain may not be included in the first DCI, that is, the first DCI retains part of the information domain in the second DCI with respect to the second DCI, or is described as the first DCI.
  • a portion of the information field in the second DCI is discarded relative to the second DCI.
  • how to perform BWP handover scheduling or cross-BWP scheduling through a smaller DCI that is, how to perform BWP handover scheduling or cross-BWP scheduling through a partial information domain.
  • the following describes an embodiment of the method corresponding to the design scheme 2 for the uplink scheduling DCI and the downlink scheduling DCI.
  • the base station sends a first DCI to the UE in the first BWP, where the first DCI is used to indicate scheduling information of the second BWP, where the first DCI includes Y1 information fields, and the UE receives the first DCI in the first BWP, according to the The first DCI determines scheduling information of the second BWP.
  • the Y1 information fields are the Y1 information fields with higher priority in the Y2 information fields, the Y2 information fields are included in the second DCI, and the second DCI is used to perform the UE in the search space of the second BWP.
  • Y1 and Y2 are positive integers.
  • an information field included in the Y2 information fields but not included in the Y1 information fields may be considered as an information field having a lower priority.
  • the value of the parameter indicated by the information domain may be pre-configured so that scheduling can be performed by using a smaller DCI.
  • the base station sends a first DCI to the UE in the first BWP, where the first DCI is used to indicate PDSCH scheduling information of the second BWP, and the first DCI does not include an information field related to the second transport block (TB) indication.
  • the information field related to the second TB includes an information field indicating a modulation and coding scheme (MCS), an information field indicating a new data indicator (NDI), and an indication redundancy version. At least one of the information fields of the (redundancy version, RV).
  • the indication information field for the second TB in the method can also be replaced with the indication information field for the first TB.
  • the base station and the UE may not determine the channel state information on the second BWP, or determine the channel state information on the second BWP in time and accurately, so it is difficult to switch in BWP or cross BWP.
  • the multi-stream transmission is enabled during scheduling, so that the transmission of 2 TBs cannot be enabled, that is, only one TB transmission can be enabled. Therefore, the information domain of the second TB can be discarded in the first DCI to satisfy the scheduling requirement of the second BWP. .
  • a TB may be divided into a plurality of code block groups (CBGs), and each code block group includes at least one code block (CB).
  • CBG-based transmission when a transmission error occurs, only a part of the CBGs of the plurality of CBGs may be retransmitted without retransmitting the entire TB.
  • CBG-based PDSCH transmission the UE needs to respond to the response response for each CBG, while also responding to the response response for the entire TB.
  • the base station sends a first DCI to the UE in the first BWP, where the first DCI is used to indicate scheduling information of the second BWP, where the indication information field related to the CBG transmission is not included in the first DCI.
  • the indication information field associated with the CBG transmission includes an information field indicating a CBG index and at least one of an information field indicating whether CBG transmission is enabled.
  • the UE assumes that the first DCI schedules the entire TB to be transmitted or retransmitted.
  • the scheduling requirement of the second BWP can be satisfied by the first DCI of the teaching.
  • the base station sends a first DCI to the UE in the first BWP, where the first DCI is used to indicate scheduling information of the second BWP, where the DMRS indication information field is not included in the first DCI.
  • the DMRS indication information field includes an information field indicating a DMRS antenna port configuration and at least one of an information field indicating an initialization parameter for determining a DMRS sequence.
  • the UE determines the DMRS sequence by using the preset initialization parameters, and uses the preset DMRS antenna port configuration to transmit the DMRS. For example, the number of DMRS antenna ports corresponding to the preset DMRS antenna port configuration is 1, and the DMRS is mapped to The number of symbols is 1.
  • the base station can configure a semi-static PRB binding size for the UE by using the semi-static signaling, and the base station can also configure the PRB binding size set for the UE by semi-static signaling, and instruct the UE to use one of the PRB binding size sets by using the DCI. .
  • the base station may indicate whether the UE uses a semi-static PRB bundling size through semi-static signaling or determine the PRB bundling size according to the DCI.
  • the UE determines the PRB binding according to the indicated PRB binding size and assumes that the same precoding is used in one PRB binding.
  • the base station sends a first DCI to the UE in the first BWP, where the first DCI is used to indicate scheduling information of the second BWP, and the first DCI does not include the PRB binding indication information field.
  • the UE determines the PRB binding using a semi-static PRB binding size.
  • the above method (a4) can be arbitrarily combined.
  • the Y1 information fields do not include at least one of the indication information field for the second TB, the indication information field of the CBG, the DMRS indication information field, and the PRB binding indication information field.
  • the size of the information field in the first DCI may be equal to the size of the information field in the second DCI; the size of the information field in the first DCI may also be smaller than the information in the second DCI.
  • the size of the domain that is, the information domain in the first DCI is the truncated information domain.
  • the BWP handover scheduling or cross-BWP scheduling may be performed by using the corresponding method described in the first scheme in the first embodiment of the present application, and details are not described herein again.
  • the information domain can be preferentially truncated to the information domain with low priority.
  • the truncation ratio of the information domain can be configured according to the priority of the information domain.
  • the truncation ratio of the information domain can be Or other pass with The value obtained by performing a linear operation, where The size of the information field in the first DCI, The size of the information field in the first DCI.
  • the size of the information domain in the first DCI may be equal to the size of the information domain in the third DCI, and the third is to schedule the first BWP in the first BWP. DCI.
  • the size of the information field in the third DCI may be determined according to the configuration of the first BWP.
  • Design 3 Determine the search space based on the DCI type
  • the base station may configure multiple search space sets for the UE by using a pre-configuration or signaling method.
  • the configuration of the search space set of different UEs may be the same or different, and the application does not limit the application.
  • the configuration information corresponding to each search space may include at least one of the following:
  • the aggregation level of the PDCCH may be the number of control resource elements (CCEs) included in the PDCCH, where a CCE may include a positive integer number of REs.
  • CCEs control resource elements
  • the aggregation level of the PDCCH may be any aggregation level in the search space set.
  • the UE when the UE detects the PDCCH by using the aggregation level in the search space set, the UE considers that the PDCCH may be transmitted in any one of the candidate resource groups corresponding to the aggregation level. At this time, the UE may perform blind detection on the candidate resources in the candidate resource set. Exemplarily, for one PDCCH, the UE starts detecting the PDCCH from the first candidate resource in the candidate resource set, and if the UE detects the PDCCH in one candidate resource in the candidate resource set, the UE may stop detecting. In a set of search spaces, the UE can detect one or more PDCCHs.
  • the number of candidate resources in the candidate resource set corresponding to different aggregation levels may be the same or different. This application is not restricted.
  • a DCI size used to indicate the size of the DCI carried in the PDCCH, or used to indicate the quantization size of the DCI carried in the PDCCH, and the UE detects the PDCCH by using the DCI size.
  • the DCI size may be the same or different for different DCI formats, and the present application is not limited.
  • the embodiment of the present application proposes a corresponding method of the design scheme 3.
  • the UE detects the first DCI and the fourth DCI in the same scheduling period, the same time slot, or the same time range.
  • the UE detects the first DCI in the first candidate resource, where the first candidate resource is included in the first candidate resource set of the PDCCH, where the first candidate resource set corresponds to the first search space set of the PDCCH, the first search
  • the spatial set corresponds to the first DCI size
  • the fourth DCI size is greater than the first DCI size
  • the UE detects the fourth DCI in the second candidate resource, where the second candidate resource is included in the second candidate resource set of the PDCCH, the second candidate
  • the resource set corresponds to a second search space set of the PDCCH
  • the second search space set corresponds to a fourth DCI size.
  • the first search space set is a search space corresponding to the first BWP
  • the second search space set may correspond to the search space of the first BWP, or may not correspond to the search space of the first BWP, which is not limited in this application.
  • the first DCI is used to schedule the PDSCH and the fourth DCI is used to schedule the PUSCH.
  • the fourth DCI may be a DCI corresponding to the first BWP, or may be a DCI corresponding to the second BWP, or may be a DCI corresponding to other BWPs, which is not limited in this application.
  • the UE may be in the second candidate resource set in the second search space set.
  • the first DCI is detected on the second candidate resource set using the fourth DCI size. Further, the UE may further detect the first DCI by using the first DCI size on the first candidate resource set in the first search space set, and use the fourth DCI size detection fourth on the second candidate resource set in the second search space set. DCI.
  • the DCI for the BWP handover or the BWP scheduling is transmitted in the candidate resource corresponding to the larger DCI size, which can reduce the probability that the DCI size cannot meet the second BWP scheduling requirement.
  • detecting the first DCI and the fourth DCI by using the second DCI size on the second candidate resource set in the second search space set does not increase the maximum number of times the UE detects the PDCCH.
  • the foregoing method of design scheme 3 may be combined with the method in design scheme 1 and/or design scheme 2, that is, the information domain in the first DCI may be a truncated information domain, and/or the first DCI is a reserved partial information domain. DCI.
  • the method provided by the embodiment of the present application is introduced from the perspective of interaction between the base station and the UE.
  • the base station and the UE may include a hardware structure and/or a software module, and implement the foregoing functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • One of the above functions is performed in a hardware structure, a software module, or a hardware structure plus a software module, depending on the specific application and design constraints of the technical solution.
  • FIG. 5 is a schematic structural diagram of an apparatus 500 according to an embodiment of the present application.
  • the device 500 can be a UE, and can implement the function of the UE in the method provided by the embodiment of the present application.
  • the device 500 can also be a device that can support the UE to implement the function of the UE in the method provided by the embodiment of the present application.
  • Device 500 can be a hardware structure, a software module, or a hardware structure plus a software module.
  • Device 500 can be implemented by a chip system. In the embodiment of the present application, the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the device 500 includes a communication module 502, and may further include a DCI processing module 504, which may be coupled to the DCI processing module 504.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in an electrical, mechanical or other form for information interaction between devices, units or modules.
  • the communication module 502 is configured to receive the first DCI, and the communication module 502 is further configured to receive at least one of: a second DCI, a third DCI, and a PDSCH, where the communication module 502 is further configured to send the PUSCH.
  • Communication module 502 is for device 500 to communicate with other modules, which may be circuits, devices, interfaces, buses, software modules, transceivers, or any other device that can implement communication.
  • the DCI processing module 504 is configured to process the DCI received by the communication module 502.
  • the DCI processing module 504 is configured to decode the DCI received by the communication module 502.
  • the DCI processing module 504 is configured to determine scheduling information according to the DCI received by the communication module 502.
  • the apparatus 500 may further include a PUSCH generating module 506, the PUSCH generating module 506 is coupled to the communications module 502, and the PUSCH generating module 506 is configured to generate a PUSCH according to the uplink scheduling DCI received by the communications module 502, where the uplink scheduling DCI may be the first DCI. At least one of the second DCI and the third DCI.
  • the device 500 may further include a PDSCH processing module 508.
  • the PDSCH processing module 508 is coupled to the communication module 502.
  • the PDSCH processing module 508 is configured to decode the PDSCH received by the communication module 502 according to the downlink module DCI received by the communication module 502.
  • the scheduling DCI may be at least one of the first DCI and the third DCI in the second DCI.
  • FIG. 6 is a schematic structural diagram of a device 600 according to an embodiment of the present application.
  • the device 600 can be a base station, and can implement the function of the base station in the method provided by the embodiment of the present application.
  • the device 600 can also be a device that can support the base station to implement the function of the base station in the method provided by the embodiment of the present application.
  • Device 600 can be a hardware structure, a software module, or a hardware structure plus a software module.
  • Device 600 can be implemented by a chip system.
  • the device 600 includes a DCI generation module 604 and a communication module 602, and the communication module 602 and the DCI generation module 604 are coupled.
  • the DCI generating module 604 is configured to generate a first DCI, and may also be used to generate a second DCI or a third DCI.
  • the communication module 602 is configured to send the first DCI, and the communication module 602 is further configured to send at least one of: a second DCI, a third DCI, and a PDSCH, where the communication module 602 is further configured to receive the PUSCH.
  • Communication module 602 is for device 600 to communicate with other modules, which may be circuits, devices, interfaces, buses, software modules, transceivers, or any other device that can implement communication.
  • the device 600 may further include a PUSCH processing module 606, the PUSCH processing module 606 is coupled to the communication module 602, and the PUSCH processing module 606 is configured to process the PUSCH received by the communication module 602. For example, the PUSCH processing module 606 is configured to decode the PUSCH received by the communication module 602.
  • the device 600 may further include a PDSCH generation module 608, a PDSCH generation module 608 and a communication module 602, and a PDSCH generation module 608 for generating a PDSCH.
  • FIG. 7 is a schematic structural diagram of an apparatus 700 according to an embodiment of the present application.
  • the device 700 can be a UE, and can implement the function of the UE in the method provided by the embodiment of the present application.
  • the device 700 can also be a device that can support the UE to implement the function of the UE in the method provided by the embodiment of the present application.
  • the apparatus 700 includes a processing system 702 for implementing or for supporting a UE to implement the functions of the UE in the method provided by the embodiment of the present application.
  • Processing system 702 can be a circuit that can be implemented by a chip system.
  • the processing system 702 includes one or more processors 722, which may be used to implement or support the UE to implement the functions of the UE in the method provided by the embodiment of the present application.
  • Processor 722 may also be used to manage other devices included in processing system 702 when processing system 702 includes other devices than processor 722, which may be, for example, memory 724, bus 726, and One or more of the bus interfaces 728.
  • the processor may be a central processing unit (CPU), a general-purpose processor network processor (NP), a digital signal processing (DSP), a microprocessor, A microcontroller, a programmable logic device (PLD), or any combination thereof.
  • the processor can also be any other device having processing functionality, such as a circuit, device, or software module.
  • Processing system 702 can also include one or more memories 724 for storing program instructions and/or data. Further, the memory 724 can also be included in the processor 722. If memory 724 is included in processing system 702, processor 722 can be coupled to memory 724. Processor 722 can operate in conjunction with memory 724. Processor 722 can execute program instructions stored in memory 724. When the processor 722 executes the program instructions stored in the memory 724, the UE may implement or support the UE to implement the functions of the UE in the method provided by the embodiment of the present application. Processor 722 may also read data stored in memory 724. Memory 724 may also store data obtained by processor 722 when executing program instructions.
  • the memory includes a volatile memory, such as a random-access memory (RAM); the memory may also include a non-volatile memory, such as a flash.
  • RAM random-access memory
  • the memory may also include a non-volatile memory, such as a flash.
  • the processor 722 can receive and process the first DCI, and the processor 722 can also receive and process at least one of the following: the second DCI, the third DCI, and the PDSCH. Processor 722 can also generate and transmit a PUSCH.
  • Processing system 702 can also include a bus interface 728 for providing an interface between bus 726 and other devices.
  • a transceiver 706 can also be included in device 700 for communicating over a transmission medium with other communication devices such that other devices in device 700 can communicate with other communication devices.
  • the other device may be the processing system 702.
  • other devices in device 700 may utilize transceiver 706 to communicate with other communication devices to receive and/or transmit corresponding information. It can also be described that other devices in device 700 may receive corresponding information, wherein the corresponding information is received by transceiver 706 via a transmission medium, which may be via bus interface 728 or through bus interface 728 and bus 726.
  • Interacting between transceiver 706 and other devices in device 700; and/or other devices in device 700 may transmit corresponding information, wherein the corresponding information is transmitted by transceiver 706 over a transmission medium, the corresponding The information can be exchanged between the transceiver 706 and other devices in the device 700 via the bus interface 728 or through the bus interface 728 and the bus 726.
  • the device 700 may also include a user interface 704, which is an interface between the user and the device 700, possibly for user and device 700 to perform information interaction.
  • user interface 704 may be at least one of a keyboard, a mouse, a display, a speaker, a microphone, and a joystick.
  • the processing system 702 includes a processor 722, and may also include one or more of a memory 724, a bus 726, and a bus interface 728 for implementing the method provided by the embodiments of the present application.
  • Processing system 702 is also within the scope of the present application.
  • FIG. 8 is a schematic structural diagram of an apparatus 800 according to an embodiment of the present application.
  • the device 800 can be a base station, and can implement the function of the base station in the method provided by the embodiment of the present application.
  • the device 800 can also be a device that can support the base station to implement the function of the base station in the method provided by the embodiment of the present application.
  • the apparatus 800 includes a processing system 802 for implementing or for supporting a base station to implement the functions of the base station in the method provided by the embodiments of the present application.
  • Processing system 802 can be a circuit that can be implemented by a chip system.
  • the processing system 802 includes one or more processors 822, which can be used to implement or support the base station to implement the functions of the base station in the method provided by the embodiments of the present application.
  • Processor 822 may also be used to manage other devices included in processing system 802 when processing system 802 includes other devices than processor 822, which may be, for example, memory 824, bus 826, and One or more of the bus interfaces 828.
  • Processing system 802 can also include one or more memories 824 for storing program instructions and/or data. Further, the memory 824 can also be included in the processor 822. If processing system 802 includes memory 824, processor 822 can be coupled to memory 824. Processor 822 can operate in conjunction with memory 824. Processor 822 can execute program instructions stored in memory 824. When the processor 822 executes the program instructions stored in the memory 824, the base station can implement or support the functions of the base station in the method provided by the embodiment of the present application. Processor 1822 may also read data stored in memory 824. Memory 824 may also store data obtained by processor 822 when executing program instructions.
  • the processor 822 can generate and send the first DCI, and the processor 822 can also generate and send at least one of the following: the second DCI, the third DCI, and the PDSCH.
  • the processor 822 can also receive and process the PUSCH.
  • Processing system 802 can also include a bus interface 828 for providing an interface between bus 826 and other devices.
  • Device 800 may also include a transceiver 806 for communicating over a transmission medium with other communication devices such that other devices in device 800 can communicate with other communication devices.
  • the other device may be the processing system 802.
  • other devices in device 800 may utilize transceiver 806 to communicate with other communication devices to receive and/or transmit corresponding information. It can also be described that other devices in device 800 may receive corresponding information, wherein the corresponding information is received by transceiver 806 over a transmission medium, which may be via bus interface 828 or through bus interface 828 and bus 826.
  • Interacting between transceiver 806 and other devices in device 800; and/or other devices in device 800 may transmit corresponding information, wherein the corresponding information is transmitted by transceiver 806 over a transmission medium, the corresponding The information can be exchanged between the transceiver 806 and other devices in the device 800 via the bus interface 828 or through the bus interface 828 and the bus 826.
  • the device 800 may also include a user interface 804, which is an interface between the user and the device 800, and may be used for information interaction between the user and the device 800.
  • user interface 804 may be at least one of a keyboard, a mouse, a display, a speaker, a microphone, and a joystick.
  • the processing system 802 includes a processor 822, and may also include one or more of a memory 824, a bus 826, and a bus interface 828 for implementing the method provided by the embodiments of the present application. Processing system 802 is also within the scope of this application.
  • the module division of the device is a logical function division, and the actual implementation may have another division manner.
  • each functional module of the device may be integrated into one module, or each functional module may exist separately, or two or more functional modules may be integrated into one module.
  • the method provided by the embodiment of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, a network device, a user device, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital video disc (DVD)), or a semiconductor medium (eg, an SSD) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a digital video disc (DVD)
  • a semiconductor medium eg, an SSD
  • the embodiments may be referred to each other without logical contradiction.
  • the methods and/or terms between the method embodiments may be referred to each other, for example, functions between device embodiments and/or Or the terms may be referred to each other, for example, functions and/or terms between device embodiments and method embodiments may be referenced to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种下行控制信息传输方法和装置。其中,该方法包括:在第一载波带宽部分BWP的搜索空间接收第一下行控制信息DCI,如果第一BWP的频域资源分配的类型为类型0,第一DCI中的L f位频域资源分配指示为L f位比特图,该L f位比特图中的比特由高位到低位分别对应第二BWP中的资源块组RBG 0至RBG L f-1,对于该L f位比特图中的一个比特,当该比特的值为t1时,分配的资源包括该比特对应的RBG。通过该方法,可以实现通过截断信息域进行BWP切换或跨BWP调度。

Description

下行控制信息传输方法
本申请要求于2018年02月14日提交中国专利局、申请号为201810152331.5、申请名称为“下行控制信息传输方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及下行控制信息传输方法、装置和系统。
背景技术
无线通信系统中,网络设备可以向终端设备发送下行控制信息(downlink control information,DCI),用于指示网络设备和终端设备之间的数据传输。示例性地,网络设备通过下行控制信道(physical downlink control channel,PDCCH)向终端设备发送DCI,DCI中包括数据信道的调度信息,该调度信息中可以包括数据信道的传输参数,基于该传输参数,网络设备和终端设备通过数据信道进行数据传输。由于DCI对数据传输起着重要作用,因此在无线通信系统中,DCI的设计是一个被重点研究的课题。
发明内容
第一方面,本申请提供了一种下行控制信息传输方法,其特征在于,包括:在第一BWP的搜索空间接收第一DCI,第一DCI中包括第一信息,第一DCI中的第一信息用于确定第二BWP的调度信息。
在一种可能的实现中,第一DCI中包括第一信息,第一信息用于确定第二BWP的调度信息,包括:如果第一BWP的频域资源分配的类型为类型0,第一DCI中的L f位频域资源分配指示为L f位比特图,该L f位比特图中的比特由高位到低位分别对应第二BWP中的RBG 0至RBG L f-1,对于该L f位比特图中的一个比特,当该比特的值为t1时,分配的资源包括该比特对应的RBG;当该比特的值为t2或者不为t1时,分配的资源不包括该比特对应的RBG。其中,t1和t2可以为整数。示例性地,t1为1。
在一种可能的实现中,第一DCI中包括第一信息,第一信息用于确定第二BWP的调度信息,包括:如果第一BWP的频域资源分配的类型为类型1,第一DCI中的L f位频域资源分配指示用于指示在第二BWP中分配的起始RB的索引和连续分配的RB的个数。可选地,针对第一DCI,预配置VRB直接映射到PRB,预配置不使能频域跳频。
在一种可能的实现中,第一DCI中包括第一信息,第一信息用于确定第二BWP的调度信息,包括:第一DCI中包括L T位时域资源分配指示,该L T位时域资源分配指示中的
Figure PCTCN2019074555-appb-000001
位用于指示为第二BWP配置的时域资源分配信息为X个时域资源分配信息中哪一个,该X个时域资源分配信息包括于
Figure PCTCN2019074555-appb-000002
个时域资源分配信息中, 该
Figure PCTCN2019074555-appb-000003
个时域资源分配信息为第二BWP对应的候选时域资源分配信息,其中,该X个时域资源分配信息为该
Figure PCTCN2019074555-appb-000004
个时域资源分配信息中定时偏移最大的2 X个,时域资源分配信息的定时偏移是根据该时域资源分配信息中的k1和该时域资源中的PUSCH的起始符号的标识确定的,其中,k1是用于传输第一DCI的时隙和用于传输第一DCI对应的PUSCH的时隙间的距离k1。
在一种可能的实现中,第一DCI中包括第一信息,第一信息用于确定第二BWP的调度信息,包括:第一DCI中的L PM位预编码信息和层数中的
Figure PCTCN2019074555-appb-000005
位用于指示在第二BWP为UE配置的层数和TPMI为Z个层数和TPMI配置中哪一个,该Z个层数和TPMI配置为第二BWP的候选层数和TPMI配置。该Z个层数和TPMI配置为该
Figure PCTCN2019074555-appb-000006
个层数和TPMI配置中层数较小的Z个层数和TPMI配置,可选地,该层数较小的Z个层数和TPMI配置对应层数为1和/或2。
在一种可能的实现中,第一DCI中包括第一信息,第一信息用于确定第二BWP的调度信息,包括:第一DCI中包括1比特速率匹配指示,用于使能2个资源组中的资源组的速率匹配资源,该1个资源组包括于该2个资源组中,该2个资源组为第二BWP的资源组;当第一DCI中速率匹配指示为0时,表示使能第二BWP上的资源组0和资源组1中的速率匹配资源,当第一DCI中速率匹配指示为1时,表示使能资源组1中的速率匹配资源。
第二方面,本申请提供了一种下行控制信息传输方法,其特征在于,包括:在第一BWP的搜索空间发送第一DCI,第一DCI中包括第一信息,第一DCI中的第一信息用于确定第二BWP的调度信息。其中,“第一DCI中包括第一信息,第一DCI中的第一信息用于确定第二BWP的调度信息”同第一方面中相应的描述,这里不再赘述。
第三方面,本申请提供了一种装置,该装置能够实现第一方面和第一方面各可能的实现中的一个或多个功能。该功能可以通过硬件、软件或硬件加软件的形式实现。该硬件或软件包括一个或多个与上述功能相对应的模块。在一个示例中,该装置包括:处理器、存储器和收发器。其中,存储器和处理器耦合,处理器执行所述存储器存储的程序指令;处理器和收发器耦合,处理器通过收发器发送和/或接收信号。在另一个示例性,该装置包括:处理器和存储器。其中,存储器和处理器耦合,处理器执行所述存储器存储的程序指令;处理器生成和发送信号,和/或接收和处理信号。
在一种可能的实现中,处理器用于在第一BWP的搜索空间接收第一DCI,第一DCI中包括第一信息,第一DCI中的第一信息用于确定第二BWP的调度信息。其中,“第一DCI中包括第一信息,第一DCI中的第一信息用于确定第二BWP的调度信息”同第一方面中相应的描述,这里不再赘述。
第四方面,本申请提供了一种装置,该装置能够实现第二方面和第二方面各可能的实现中的一个或多个功能。该功能可以通过硬件、软件或硬件加软件的形式实现。该硬件或软件包括一个或多个与上述功能相对应的模块。在一个示例中,该装置包括:处理器、存储器和收发器。其中,存储器和处理器耦合,处理器执行所述存储器存储的程序指令;处理器和收发器耦合,处理器通过收发器发送和/或接收信号。在另一个示例性,该装置包括:处理器和存储器。其中,存储器和处理器耦合,处理器执行所述存储器存储的程序指令;处理器生成和发送信号,和/或接收和处理信号。
在一种可能的实现中,处理器用于在第一BWP的搜索空间发送第一DCI,第一 DCI中包括第一信息,第一DCI中的第一信息用于确定第二BWP的调度信息。其中,“第一DCI中包括第一信息,第一DCI中的第一信息用于确定第二BWP的调度信息”同第一方面中相应的描述,这里不再赘述。
第五方面,本申请提供了一种装置,该装置包括:通信模块,用于在第一BWP的搜索空间接收第一DCI,第一DCI中包括第一信息,第一DCI中的第一信息用于确定第二BWP的调度信息。其中,“第一DCI中包括第一信息,第一DCI中的第一信息用于确定第二BWP的调度信息”同第一方面中相应的描述,这里不再赘述。
第六方面,本申请提供了一种装置,该装置包括:DCI生成模块,用于生成第一DCI;通信模块,用于在第一BWP的搜索空间发送第一DCI;其中,第一DCI中包括第一信息,第一DCI中的第一信息用于确定第二BWP的调度信息。其中,“第一DCI中包括第一信息,第一DCI中的第一信息用于确定第二BWP的调度信息”同第一方面中相应的描述,这里不再赘述。
第七方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面和第一方面各可能的实现中的一个或多个。
第八方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第二方面和第二方面各可能的实现中的一个或多个。
第九方面,本申请提供了一种通信系统,包括第三方面或第三方面各可能的实现中任一个所述的装置、以及第四面或第四方面各可能的实现中任一个所述的装置。
第十方面,本申请提供了一种通信系统,包括第五方面或第五方面各可能的实现中任一个所述的装置、以及第六面或第六方面各可能的实现中任一个所述的装置。
第十一方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面和第一方面各可能的实现中的一个或多个。
第十二方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第二方面和第二方面各可能的实现中的一个或多个。
本申请实施例提供了一种下行控制信息传输方法,其特征在于,包括:
在第一载波带宽部分BWP的搜索空间接收第一DCI,
其中,如果所述第一BWP的频域资源分配的类型为类型0,所述第一DCI中的L f位频域资源分配指示为L f位比特图,所述L f位比特图中的比特由高位到低位分别对应第二BWP中的资源块组RBG 0至RBG L f-1,其中,L f为正整数;
对于所述L f位比特图中的一个比特,当所述一个比特的值为1时,分配的资源包括所述一个比特对应的RBG;当所述比特的值不为1时,分配的资源不包括所述一个比特对应的RBG。
本申请实施例提供了一种下行控制信息传输方法,其特征在于,包括:
在第一载波带宽部分BWP的搜索空间发送第一DCI,
其中,如果所述第一BWP的频域资源分配的类型为类型0,所述第一DCI中的L f位频域资源分配指示为L f位比特图,所述L f位比特图中的比特由高位到低位分别对应第二BWP中的资源块组RBG 0至RBG L f-1,其中,L f为正整数;
对于所述L f位比特图中的一个比特,当所述一个比特的值为1时,分配的资源包 括所述一个比特对应的RBG;当所述比特的值不为1时,分配的资源不包括所述一个比特对应的RBG。
附图说明
图1是本申请实施例提供的载波带宽部分BWP的示例图;
图2是本申请实施例提供的一种频域资源分配方法的流程图;
图3是本申请实施例提供的空口资源的示例图;
图4是本申请实施例提供的一种下行控制信息传输方法的流程图;
图5是本申请实施例提供的一种装置结构示意图;
图6是本申请实施例提供的一种装置结构示意图;
图7是本申请实施例提供的一种装置结构示意图;
图8是本申请实施例提供的一种装置结构示意图。
具体实施方式
本申请实施例提供的技术方案可以应用于各种通信系统。示例性地,本申请实施例提供的技术方案可以应用于网络设备为终端设备发送DCI的通信系统,或可以应用于网络设备为终端设备发送调度信息的通信系统,例如可以应用于:第五代移动通信系统(the fifth generation mobile networks,5G)、长期演进(long term evolution,LTE)系统和未来通信系统。其中,5G还可以称为新无线电(new radio,NR)。
在无线通信系统中,包括通信设备,通信设备间可以利用空口资源进行无线通信。其中,通信设备可以包括网络设备和终端设备,网络设备还可以称为网络侧设备。空口资源可以包括时域资源、频域资源、码资源和空间资源中至少一个。其中,时域资源和频域资源还可以称为时频资源。
在本申请实施例中,至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。
在本申请实施例中,对于一个技术特征,描述该技术特征的个数时,该技术特征的个数的取值为整数或者正整数。
在本申请实施例中,对于一个信息位,描述该信息位的位数时,该信息位的位数的取值为整数或者正整数。对于一个信息位,描述该信息位的比特数时,该信息位的比特数的取值为整数或者正整数。对于一个信息位,描述该信息位的大小时,该信息位的大小的取值为整数或者正整数。
在本申请实施例中,整数个可以是零个、一个、两个、三个、四个或者更多个;正整数个可以是一个、两个、三个、四个或者更多个;本申请不做限制。
在本申请实施例中,对于一种技术特征,可以通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请实施例涉及到的终端设备还可以称为终端,可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是 用户设备(user equipment,UE)。其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,实现终端的功能的装置可以是终端,也可以是支持终端实现该功能的装置。本申请实施例中,以实现终端的功能的装置是终端,以终端是UE为例,描述本申请实施例提供的技术方案。
本申请实施例涉及到的网络设备包括基站(base station,BS),可以是一种部署在无线接入网中能够和终端进行无线通信的设备。基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的基站可以是5G中的基站或LTE中的基站,其中,5G中的基站还可以称为发送接收点(transmission reception point,TRP)或gNB。本申请实施例中,实现网络设备的功能的装置可以是网络设备,也可以是支持网络设备实现该功能的装置。本申请实施例中,以实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请实施例提供的技术方案。
本申请实施例提供的技术方案可以应用于通信设备间的无线通信。通信设备间的无线通信可以包括:网络设备和终端间的无线通信、网络设备和网络设备间的无线通信、以及终端和终端间的无线通信。在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。
在无线通信系统中,基站可以管理一个或者多个小区,一个小区中可以包括整数个UE。在小区中,基站和UE可以利用空口资源进行无线通信。在一种可能的无线通信系统中,例如5G系统中,空口资源包括频域资源。频域资源可以位于设置的频率范围,频率范围还可以称为频带(band)或频段。频域资源的中心点可以称为中心频点,频域资源的宽度可以称为带宽(bandwidth,BW)。
基站和UE利用频域资源进行无线通信时,基站管理载波频域资源,从载波频域资源中为UE分配频域资源,使得基站和UE可以利用该分配的频域资源进行通信。其中,载波频域资源可以是系统频域资源,还可以是基站可以管理和分配的频域资源,也可以是能够用于进行基站和UE间的通信的频域资源。载波频域资源可以是一段连续的频域资源,载波频域资源还可以被称为载波。载波的宽度可以称为系统带宽、载波带宽或传输带宽。在本申请各实施例中,频域资源还可以被称为频率资源或者其它名称,本申请不做限制。
基站为UE分配频域资源的一种可能的设计为:基站从载波中为UE配置载波带宽部分(carrier bandwidth part,BWP),基站在该配置的BWP中对UE进行调度。该设计还可以描述为:基站从载波中为UE配置BWP;基站可以将该配置的BWP中的部分或全部资源分配给UE,用于进行基站和UE间的通信。其中,基站为UE配置的BWP包括于载波中,可以是载波中连续的或者不连续的部分资源,也可以是载波中的全部资源。BWP还可以称为带宽资源、频域资源部分、部分频域资源、频率资源部分、部分频率资源、载波BWP或者其它名称,本申请不做限制。当BWP为载波中 的一段连续资源时,BWP还可以称为子带、窄带或者其它名称,本申请不做限制。示例性地,图1所示为BWP的示例图。如图1中所示,BWP为载波中一段连续资源,该BWP的带宽为W,该BWP的中心频点为F,还可以描述为,该BWP中最高频点的频率为F+2/W,该BWP中最低频点的频率为F-W/2。
示例性地,上述基站为UE分配频域资源的一种可能的设计可以应用于但不限于以下场景中至少一个:
场景一:大带宽场景
在通信系统中,随着UE业务量的增加和UE数量的增加,系统业务量显著增加,因此,现有通信系统中提出了载波带宽为大带宽的设计,用于提供较多的系统资源,从而可以提供较高的数据传输速率。在载波带宽为大带宽的通信系统中,考虑到UE的成本以及UE的业务量,UE支持的带宽可能小于载波带宽。其中,UE支持的带宽越大,UE的处理能力越强,UE的数据传输速率可能越高,UE的设计成本可能越高。UE支持的带宽还可以称为UE的带宽能力。示例性地,在5G系统中,载波带宽最大可能为400MHz,UE的带宽能力可能为20MHz、50MHz或100MHz等。在无线通信系统中,不同UE的带宽能力可以相同也可以不同,本申请实施例不做限制。
在本申请实施例中,UE的带宽能力还可以描述为UE支持的带宽。UE的带宽能力还可以包括UE的下行带宽能力和UE的上行带宽能力。UE的下行带宽能力用于描述UE进行接收时支持的带宽,下行带宽能力还可以被称为接收带宽能力、下行接收带宽能力或者别的名称,本申请不做限制。UE的上行带宽能力用于描述UE进行发送时支持的带宽,上行带宽能力还可以被称为发送带宽能力、上行发送带宽能力或者别的名称,本申请不做限制。UE的下行带宽能力和UE的上行带宽能力可以相同,也可以不相同,本申请不做限制。
在载波带宽为大带宽的通信系统中,由于UE的带宽能力小于载波带宽,基站可以从载波中为UE配置BWP,该BWP的带宽小于或等于UE的带宽能力。当UE和基站进行通信时,基站可以基于为UE配置的BWP对UE进行调度,即基站可以将为UE配置的BWP中的部分或全部资源分配给UE,用于进行基站和UE间的通信。
在本申请各实施例中,载波可以包括下行载波和上行载波,下行载波用于基站和UE间的下行传输,上行载波用于基站和UE间的上行传输,下行载波和上行载波可以相同,也可以不相同,本申请不做限制。
在本申请各实施例中,UE的BWP可以用于基站和UE间的上行传输和/或下行传输,用于上行传输的BWP可以称为上行BWP或者其它名称,用于下行传输的BWP可以称为下行BWP或者其它名称,上行BWP和下行BWP可以相同,也可以不同,本申请不做限制。上行BWP包括于上行载波中,上行BWP的带宽可以小于或等于UE的发送带宽能力;下行BWP包括于下行载波中,下行BWP的带宽可以小于或等于UE的接收带宽能力。UE的BWP可以是自包含结构,即UE不期望在该UE的下行BWP以外的频域资源中进行下行接收,UE不期望在该UE的上行BWP以外的频域资源中进行上行发送。
场景二:多参数场景
在无线通信系统中,例如5G系统中,为了支持更多的业务类型和/或通信场景, 提出了支持多种参数的设计。对于不同的业务类型和/或通信场景,可以独立设置参数。该参数包括子载波间隔和循环前缀(cyclic prefix,CP)中至少一个。在第三代合作伙伴计划(third generation partnership project,3GPP)研究和制定无线通信系统的标准的过程中,该参数的英文名称还可以称为numerology。
在一种可能的配置中,基站可以在载波中配置多个BWP,为该多个BWP中的每个BWP独立配置numerology,用于在载波中支持多种业务类型和/或通信场景。其中,不同BWP的numerology可以相同,也可以不相同;可以为一个UE配置一个或多个BWP;本申请不做限制。
当UE和基站进行通信时,基站可以基于该通信对应的业务类型和/或通信场景确定用于进行通信的numerology A,从而可以基于numerology A为UE配置相应的BWP。其中,该相应的BWP的numerology被配置为numerology A。当UE和基站进行通信时,基站可以基于为UE配置的BWP对UE进行调度,即基站可以将为UE配置的BWP中的部分或全部资源分配给UE,用于进行基站和UE间的通信。
场景三:带宽回退
当UE和基站进行通信时,基站可以基于UE的业务量为UE配置BWP,用于节省UE的功耗。示例性地,如果UE没有业务,UE可以在较小的BWP中接收控制信息,从而可以降低UE的射频处理的任务量和基带处理的任务量,从而可以减少UE的功耗。如果UE的业务量较少,基站可以为UE配置带宽较小的BWP,从而可以降低UE的射频处理的任务量和基带处理的任务量,从而可以减少UE的功耗。如果UE的业务量较多,基站可以为UE配置带宽较大的BWP,从而可以提供更高的数据传输速率。当UE和基站进行通信时,基站可以基于为UE配置的BWP对UE进行调度,即基站可以将为UE配置的BWP中的部分或全部资源分配给UE,用于进行基站和UE间的通信。
基于上述基站为UE分配频域资源的一种可能的设计,如图2所示,一种示例性的频域资源分配方法为:步骤1,基站通过信令A或者通过预定义,从载波中为UE配置BWP,基站可以为该UE配置一个或者多个BWP,本申请不做限制;步骤2,基站通过下行控制信息(downlink control information,DCI)在为UE配置的BWP中对UE进行调度,即基站通过DCI为UE分配频域资源A,频域资源A为步骤1中为UE配置的BWP中的资源,基站和UE可以在该分配的频域资源A中进行数据传输。其中,信令A可以是无线资源控制(radio resource control,RRC)信令、广播消息、系统消息、媒体接入控制(medium access control,MAC)控制元素(control element,CE)、DCI或物理下行共享信道(physical downlink shared channle,PDSCH)携带的信令。其中,DCI可以是由基站通过物理下行控制信道(physical downlink control channel,PDCCH)发送至UE的信令,即DCI可以是由PDCCH携带的信令。DCI还可以称为控制信息或者其它名称,可以用于基站和UE进行数据传输,例如用于基站和UE传输PDSCH或物理上行共享信道(physical uplink shared channle,PUSCH)。PDCCH还可以称为物理控制信道、控制信道或者其它名称,主要用于在物理层携带基站为UE发送的控制信息。术语“携带”还可以描述为“承载”。
基于图2涉及的频域资源分配方法,在步骤1中,基站可以为UE配置多个BWP, 该多个BWP还可以称为候选BWP、候选BWP集合、配置BWP、配置BWP集合或者其它名称,本申请不做限制;在步骤2中,对于该多个BWP中的第一BWP和第二BWP,基站可以在第一BWP通过DCI对UE进行调度,即UE可以在第一BWP接收基站通过DCI发送的调度信息,该调度信息可以是对应于第一BWP的调度信息,也可以是对应于第二BWP的调度信息。如果该调度信息是对应于第二BWP的调度信息,即实现了BWP切换功能或跨BWP调度功能。示例性地,UE的当前激活BWP为第一BWP,根据通信需求,例如业务需求或通信场景需求,基站可以将UE的当前激活BWP切换为第二BWP。其中,当前激活BWP还可以称为当前工作BWP或者其它名称,当前激活BWP是当前基站和UE用于进行数据传输的BWP,例如,是当前基站和UE用于传输PDSCH和/或PUSCH的BWP。为了实现BWP切换功能或者跨BWP调度功能,可以在DCI中包括BWP指示,该DCI中包括的调度信息为该BWP指示所指示的BWP的调度信息,或者该DCI中包括的调度信息为该BWP指示所指示的BWP对应的调度信息。示例性地,如表1所示,基站为UE配置的BWP包括Num BWP=4个BWP,分别为第一BWP、第二个BWP、第三个BWP和第四个BWP,每个BWP对应唯一的标识;DCI中可以包括BWP指示,该BWP指示对应的信息位的长度为
Figure PCTCN2019074555-appb-000007
个比特,该2个比特可能的取值以及各取值指示的BWP如表1所示。其中,该2个比特可能的取值即DCI中的BWP指示可能的取值,各取值指示的BWP即BWP指示所指示的BWP,该DCI中包括的调度信息是BWP指示所指示的BWP的调度信息,该DCI还可以称为该DCI中的BWP指示所指示的BWP的DCI。例如,基于表1,对于一个DCI,该DCI中的BWP指示的取值为01,则该BWP指示所指示的BWP为第2个BWP,该DCI为第2个BWP的DCI,或者描述为该DCI为对应于第2个BWP的DCI。
表1
Figure PCTCN2019074555-appb-000008
基站和UE间通过PDCCH传输DCI时,基站可以为UE配置PDCCH的搜索空间。PDCCH的搜索空间对应PDCCH候选资源集合,PDCCH候选资源集合中包括可能用于传输PDCCH的N个候选资源,N为大于或等于1的整数。基站可以从PDCCH候选资源集合中选择一个候选资源,示例性地,基站根据信道质量从PDCCH候选资源集合中选择一个候选资源,在该选择的候选资源向UE发送PDCCH。UE监控PDCCH的候选资源集合,即UE在PDCCH候选资源集合中的候选资源检测PDCCH。在本申请实施例中,PDCCH的搜索空间还可以简称为搜索空间,PDCCH候选资源还可以简称为候选资源。UE接收PDCCH时,由于UE在接收PDCCH之前不知道基站在PDCCH的N个候选资源中的哪个资源发送PDCCH,或者不知道基站是否向UE发送PDCCH,UE认为基站在上述N个候选资源中的任一个资源都有可能发送PDCCH,因此,UE在上述N个候选资源检测PDCCH,直到检测到PDCCH。UE检测PDCCH时,PDCCH中携带DCI,为了检测一种大小的DCI,UE最少检测1次,最多检测N次。其中,DCI的大小可以是DCI中包括的信息位的总位数,或者可以是DCI中包括的总比特数。
基站为UE配置PDCCH的搜索空间时,如果支持多个BWP,基站可以针对各BWP 配置该BWP的PDCCH的搜索空间,即可以将上述基站为UE配置PDCCH的搜索空间的方法应用于各BWP中。BWP的搜索空间可以在该BWP中,也可以不在该BWP中。BWP的搜索空间不在该BWP中时,可以是不在该BWP所在的载波,也可以是在该BWP所在的载波中的其它BWP中。
示例性地,对于一个BWP B,BWP B的PDCCH的搜索空间不在BWP B所在的载波的可能的场景为:对于支持多载波的场景,例如对于支持基站和UE可以同时在载波A和载波B中进行数据传输的场景,如果支持跨载波调度,例如支持对应于载波A的PDCCH的搜索空间配置在载波B中,BWP B包括于载波A中,则BWP B的PDCCH的搜索空间在载波B中。
再示例性地,对于一个BWP B,BWP B的PDCCH的搜索空间在该BWP所在的载波中的其它BWP中的可能的场景为:对于一个载波A,该载波A中包括BWP B和BWP C,可以支持跨BWP调度,即可以支持BWP B的PDCCH的搜索空间配置在BWP C中。
基站通过DCI实现BWP切换功能或者跨BWP调度功能时,例如在第一BWP的搜索空间中通过第一DCI进行对应于第二BWP的调度时,或者描述为第一DCI在第一BWP的搜索空间对应的候选资源上被传输,第一DCI为对应于第二BWP的DCI时,可以使得第一DCI的大小等于第三DCI的大小,从而降低UE的功耗。其中,第三DCI用于在第一BWP的搜索空间进行对应于第一BWP的调度,还可以描述为:第三DCI可以在第一BWP的搜索空间对应的候选资源上被传输,第三DCI为对应于第一BWP的DCI,第三DCI中包括对应于第一BWP的调度信息。在第一BWP的搜索空间中,对于一个UE,如果UE认为基站要么发送第一DCI要么发送第三DCI,为了检测携带第一DCI的PDCCH和携带第三DCI的PDCCH,当第一DCI大小和第三DCI大小不同时,UE总的检测次数最少为2次,最多为2N次;当第一DCI大小和第三DCI大小相同时,UE总的检测次数最少为1次,最多为N次,其相对于第一DCI和第三DCI大小不同的设计减少了UE的检测次数,从而节省了UE的功耗。在第一BWP的搜索空间中,UE还可以认为基站可能同时发送第一DCI和第三DCI,本申请不做限制。
上述示例中,使第一DCI的大小等于第三DCI的大小,第三DCI的大小是根据第一BWP的配置确定的,或者第三DCI的大小是基站为第一BWP的搜索空间配置的,可选地,第三DCI中的信息域的大小是根据第一BWP的配置确定的,UE使用第三DCI大小在第一BWP的搜索空间检测第一DCI和/或第三DCI,可能会出现第一DCI的大小小于第二DCI的大小的场景,或者可能会出现第一DCI中的信息域的大小小于第二DCI中该信息域的大小的场景,从而无法满足对应于第二BWP的调度的需求。其中,第二DCI用于第二BWP的调度,第二DCI的大小是根据第二BWP的配置确定的,或者第二DCI的大小是基站为第二BWP的搜索空间配置的,第二DCI中的信息域的大小是根据第二BWP的配置确定的。第二DCI可以在第二BWP的搜索空间的候选资源中被传输,UE可以使用第二DCI大小在第二BWP的搜索空间检测第二DCI。此时,即第一DCI的大小小于第二DCI的大小时,需要解决如何通过较小DCI进行BWP切换或者跨BWP调度,即需要解决如何通过第一DCI进行对应于第二BWP的 调度;第一DCI中的信息域的大小小于第二DCI中该信息域的大小时,需要解决如何通过较小信息域支持BWP切换或者跨BWP调度,即需要解决如何通过第一DCI中的信息域支持对应于第二BWP的调度。在本申请各实施例中,如无特别说明,将使用第一DCI表示用于在第一BWP的搜索空间对第二BWP进行调度的DCI,使用第三DCI表示在第一BWP的搜索空间对第一BWP进行调度的DCI,使用第二DCI表示在第二BWP的搜索空间对第二BWP进行调度的DCI。
为了实现通过较小DCI进行BWP切换或者跨BWP调度,本申请实施例中提出了以下几种设计方案及其相应的方法实施例。
设计方案一:截断信息域
在本申请各实施例中,DCI可以是用于携带上行调度信息的DCI,简称上行调度DCI,用于调度PUSCH或其它上行信道的传输;也可以是用于携带下行调度信息的DCI,简称下行调度DCI,用于调度PDSCH或其它下行信道的传输。在上行调度DCI或者下行调度DCI中,除了BWP指示,还可以包括诸如频域资源分配指示、时域资源分配指示或DMRS天线端口等其它信息。DCI中的信息还可以称为信息域、传输参数、调度传输参数或者其它名称,本申请不做限制。DCI中的信息的大小用于描述该信息的位数或该信息的比特数,其还可以称为信息的尺寸、信息的位数、信息的长度、信息的比特数或者其它名称,本申请不做限制。
通过较小DCI进行BWP切换或者跨BWP调度时,即通过第一DCI在第一BWP的搜索空间中进行第二BWP对应的调度时,第一DCI的大小小于第二DCI的大小。其中,第二DCI的大小是根据第二BWP的配置确定的,或者第二DCI的大小是基站为第二BWP的搜索空间配置的,UE可以使用第二DCI的大小在第二BWP的搜索空间中检测第二DCI。其中,示例性地,第二DCI中包括至少一个信息域,该至少一个信息域中的信息域的大小是根据第二BWP的配置确定的,第二DCI的大小可以是第二DCI中的信息域的大小之和。对于DCI中的一个信息域,如果第一DCI中和第二DCI中都包括该信息域,且第一DCI的大小小于第二DCI的大小,则第一DCI中该信息域的大小可能小于第二DCI中该信息域的大小,即第一DCI中该信息域相对于第二DCI中该信息域为截断信息域,因此,如何通过较小DCI进行BWP切换或者跨BWP调度的一种场景为如何通过截断信息域进行BWP切换或跨BWP调度。
通过较小信息域支持BWP切换或者跨BWP调度,第一DCI中的信息域的大小小于第二DCI中该信息域的大小,即第一DCI中该信息域相对于第二DCI中该信息域为截断信息域,因此,如何通过较小信息域支持BWP切换或者跨BWP调度还可以描述为如何通过截断信息域进行BWP切换或跨BWP调度。
为了解决如何通过截断信息域进行BWP切换或跨BWP调度,以下将分别针对上行调度DCI和下行调度DCI,基于信息域的具体内容给出设计方案一对应的方法实施例。
(一)上行调度DCI
(a1) 频域资源分配(frequency domain resource assignment)指示
上行调度DCI中可以包括频域资源分配指示,用于指示基站在上行BWP中为UE分配的频域资源,该BWP为DCI中的BWP指示所指示的BWP。示例性地,频域资 源分配指示所指示的频域资源可以是子载波、资源块(resource block,RB)或资源块组(resource block group,RBG)。一个RB中包括正整数个子载波,示例性地,一个RB中包括12个子载波;一个RBG中包括正整数个RB,RBG中的RB的个数还可以称为RBG大小、RBG尺寸或者其它名称。RB可以为物理资源块(physical resource block,PRB),也可以为虚拟资源块(virtual resource block,VRB)。
在无线通信系统中,例如在基于正交频分复用(orthogonal frequency division multiplexing,OFDM)的通信系统中,图3所示为空口资源示例图。如图3所示,可用于进行数据传输的资源中包括若干个资源格,一个资源格可以称为一个资源元素(resource element,RE)。其中,一个RE频域对应于一个子载波,时域对应于一个符号。如图3所示,在频域,可用于进行数据传输的资源可以为载波,也可以为BWP,本申请不做限制。一个PRB在频域包括X1个资源格,X1为大于1的整数。示例性地,X1为12。可用于进行数据传输的资源的带宽可以被称为X2个PRB,X2为大于等于1的整数。对于可用于进行数据传输的资源中的PRB,可以基于频率增长的方向从0至X2–1为各PRB依次进行编号,得到各PRB的编号值,用于唯一地标识各PRB,其中,本申请实施例中,“编号值”也可以称作“编号”、“标识”或“索引”。如图3所示,可用于进行数据传输的资源的带宽包括PRB 0至PRB X2–1共X2个PRB。对于不同的子载波间隔,可以配置不同子载波间隔的PRB中的子载波个数相同或不相同,本申请不做限制。在本申请实施例中,对于一个BWP,该BWP的一个PRB的带宽是根据该BWP的子载波间隔和该BWP的PRB中的子载波个数确定的。示例性地,对于一个BWP,如果其子载波间隔为15kHz,一个PRB中包括12个子载波,则该BWP的PRB的带宽为180kHz。再示例性地,对于一个BWP,如果其子载波间隔为60kHz,一个PRB中有12个子载波,则该BWP的PRB的带宽为720kHz。
在频域,可用于进行数据传输的资源中,一个PRB对应一个VRB。VRB可以包括集中式VRB或者分布式VRB。集中式VRB和PRB直接映射,即索引为n VRB的VRB对应的PRB的索引为n PRB,其中n PRB=n VRB。分布式VRB和PRB可以通过一定的规则进行映射,该规则可以为本领域技术人员常用的映射方法。示例性地,该映射方法可以为3GPP标准协议中基于交织的映射方法,示例性地,3GPP标准协议可以是LTE标准协议或5G标准协议。
在本申请各实施例中,一个BWP中包括N RBG个RBG,可以基于频率增长的方向从0至N RBG-1为该BWP中的各RBG依次进行编号,得到各RBG的编号值,用于唯一地标识各RBG。其中,该N RBG个RBG中,第一个RBG和最后一个RBG的大小可能小于P且大于等于1,第一个RBG和最后一个RBG的大小还可能等于P,其余RBG的大小可以等于P,P是大于等于1的整数。当P等于1时,1个RBG可以看做1个RB。
在本申请各实施例中,通过频域资源分配指示进行资源分配时,资源分配类型可以为类型0、类型1、或类型0和类型1。在本申请实施例中,类型0和类型1用于描述不同的资源分配方法;资源分配类型为类型0和类型1可以理解为:类型0和类型1为候选资源分配类型,资源分配类型可以被进一步配置为类型0或类型1。
资源分配类型为类型0:
对于一个BWP A,在BWP A的搜索空间中通过DCI A进行BWP A对应的调度,DCI A中包括频域资源分配指示,且资源分配类型为类型0时,当BWP A是通过广播消息配置的初始接入BWP时,DCI A的频域资源分配指示中可以包括
Figure PCTCN2019074555-appb-000009
位比特图,当BWP A是通过RRC信令或系统消息配置的BWP时,DCI A的频域资源分配中可以包括
Figure PCTCN2019074555-appb-000010
位比特图,
Figure PCTCN2019074555-appb-000011
为BWP A中的RB个数,
Figure PCTCN2019074555-appb-000012
为BWP A的起始PRB对应的公共RB的索引,P A为BWP A的RBG中的RB的个数。该
Figure PCTCN2019074555-appb-000013
位比特图中的一个比特对应于BWP A中的一个RBG,该一个比特还可以称为一个信息位。示例性地,BWP A中的RBG按照索引由小到大的顺序分别一一对应该
Figure PCTCN2019074555-appb-000014
位比特图的低位到高位。对于
Figure PCTCN2019074555-appb-000015
位比特图中的一个比特,当该比特的值为t1时,基站为UE分配的资源包括该比特对应的RBG;当该比特的值为t2或者不为t1时,基站为UE分配的资源不包括该比特对应的RBG。其中,t1和t2可以为整数。示例性地,t1为1。在本申请实施例中,类型0还可以称为资源分配类型0、第一资源分配类型或者别的名称,本申请不做限制。在一种可能的实现中,如果资源分配类型为类型0,其对应的资源分配方法中的RB为PRB。在本申请各实施例中,BWP A可以是第一BWP,也可以是第二BWP,还可以是其它任意BWP,本申请不做限制。
对于频域资源,可以通过公共RB来进行标识。公共RB从公共RB 0按频率增大的方向编号,BWP A的起始PRB对应索引为
Figure PCTCN2019074555-appb-000016
的公共RB;或者,BWP A的起始PRB在频率上的位置相对于公共RB 0在频率上的位置的偏移为
Figure PCTCN2019074555-appb-000017
个RB。其中,频域资源中,公共RB 0通过参考频率位置和相对于该参考频率位置的偏移确定。示例性地,:
1)对于主小区下行载波,参考频率位置根据UE接入的同步信号块的频率最低的RB确定;
2)对于非配对频谱主小区上行载波,参考频率位置根据UE接入的同步信号块的频率最低的RB确定;
3)对于配对频谱主小区上行载波,参考频率位置根据基站配置的频率位置确定,该频率位置可以对应一个绝对频点号(absolute radio frequency channel number,ARFCN);
4)对于辅小区,参考频率位置根据基站配置的频率位置确定,该频率位置可以对应一个绝对频点号ARFCN;
5)对于增补上行载波,参考频率位置根据基站配置的频率位置确定,该频率位置可以对应一个绝对频点号ARFCN。
资源分配类型为类型1:
对于一个BWP A,在BWP A的搜索空间中通过DCI A进行BWP A对应的调度,DCI A中包括频域资源分配指示,且资源分配类型为类型1时,DCI A的频域资源分配指示中可以包括
Figure PCTCN2019074555-appb-000018
位资源指示值(resource indication value,RIV),
Figure PCTCN2019074555-appb-000019
为BWP A中的RB个数。RIV用于指示基站在BWP A中为UE分配的起始RB的索引和连续分配的RB的个数。示例性地,
如果
Figure PCTCN2019074555-appb-000020
Figure PCTCN2019074555-appb-000021
否则,
Figure PCTCN2019074555-appb-000022
其中,L RBs为连续分配的RB个数,
Figure PCTCN2019074555-appb-000023
为分配的起始RB 的索引。在本申请实施例中,类型1还可以称为资源分配类型1、第二资源分配类型或者别的名称,本申请不做限制。在一种可能的实现中,如果资源分配类型为类型1,其对应的资源分配方法中的RB为PRB或VRB。此时,DCI A中可以包括VRB到PRB映射信息,例如VRB到PRB映射信息的大小为1比特,用于指示该资源分配方法中的VRB是直接映射到PRB上,还是基于交织映射到PRB上。DCI A中还可以包括频域跳频使能指示信息,例如频域跳频使能指示信息的大小为1比特。在本申请实施例中,频域跳频使能指示信息用于指示是否使能频域跳频。若使能频域跳频,则频域资源分配指示中,上述
Figure PCTCN2019074555-appb-000024
个比特中可以包括N hop个比特,用于指示跳频偏移,该
Figure PCTCN2019074555-appb-000025
个比特中除该N hop个比特以外的信息位用于指示起始RB的索引和连续分配的RB的个数。可选地,用于指示VRB到PRB映射信息的1比特和用于指示频域跳频使能的1比特可以是同1比特。
资源分配类型为类型0和类型1:
对于一个BWP A,在BWP A的搜索空间中通过DCI A进行BWP A对应的调度,DCI A中包括频域资源分配指示,且资源分配类型为类型0和类型1时,DCI A的频域资源分配指示中可以包括
Figure PCTCN2019074555-appb-000026
个比特。其中,该
Figure PCTCN2019074555-appb-000027
个比特中的1个比特用于指示配置的资源分配类型,示例性地,该1个比特为最高位比特,当该比特的值为0时,资源分配类型被配置为类型0;当该比特的值为1时,资源分配类型被配置为类型1。除了该用于指示配置的资源分配类型的1比特,
Figure PCTCN2019074555-appb-000028
个比特中的其它
Figure PCTCN2019074555-appb-000029
个比特用于指示分配的频域资源。示例性地,如果资源分配类型为类型0,该
Figure PCTCN2019074555-appb-000030
个比特中的
Figure PCTCN2019074555-appb-000031
个比特用于根据上述类型0描述的方法进行资源分配;如果资源分配类型为类型1,
Figure PCTCN2019074555-appb-000032
个比特中的
Figure PCTCN2019074555-appb-000033
个比特用于根据上述类型1描述的方法进行资源分配,这里不再赘述。此时,DCI A中还可以包括VRB到PRB映射信息,例如VRB到PRB映射信息的大小为1比特,用于当频域资源分配类型被配置为类型1时指示该资源分配方法中的VRB是直接映射到PRB上,还是基于交织映射到PRB上。DCI A中还可以包括频域跳频使能指示信息,例如频域跳频使能指示信息的大小为1比特。在本申请实施例中,频域跳频使能指示信息用于指示是否使能频域跳频。若使能频域跳频,则频域资源分配指示中,上述
Figure PCTCN2019074555-appb-000034
个比特中可以包括N hop个比特,用于指示跳频偏移,该
Figure PCTCN2019074555-appb-000035
个比特或该
Figure PCTCN2019074555-appb-000036
个比特中的
Figure PCTCN2019074555-appb-000037
个比特中除该N hop个比特以外的信息位用于指示起始RB的索引和连续分配的RB的个数。可选地,用于指示VRB到PRB映射信息的1比特和用于指示频域跳频使能的1比特可以是同1比特。
通过上述描述,进行BWP切换或跨BWP调度时,如果第一DCI和第二DCI中都包括资源分配指示,第一DCI的资源分配指示的大小是根据第一BWP的带宽和配置的资源分配类型确定的,第二DCI的资源分配指示的大小是根据第二BWP的带宽和配置的资源分配类型确定,则第一DCI中的资源分配指示的大小可能小于第二DCI中该信息域的大小,即第一DCI中的资源分配指示为截断信息。下面将详细说明如何通过该L f位截断频域资源分配指示进行BWP切换或跨BWP资源分配,其中,L f位截断频域资源分配指示还可以称为L f位频域资源分配指示。
图4所示为一种下行控制信息传输方法,如图4所示,基站在第一BWP的搜索空间中向UE发送第一DCI,第一DCI中包括频域资源分配指示,该频域资源分配指示用于指示在第二BWP为UE分配的频域资源。UE接收该第一DCI,根据该第一DCI中的频域资源分配指示确定在第二BWP为该UE分配的频域资源。
其中,第一DCI中的频域资源分配指示的大小小于第二DCI中的频域资源分配指示的大小,或者,当第一BWP上配置的资源分配类型为0,第二BWP上配置的资源分配类型为类型1(或类型0和类型1)时,第一DCI中的频域资源分配指示的大小小于第二DCI中的频域资源分配指示的大小与VRB到PRB映射指示和/或频域跳频使能指示的大小之和,或者,当第一BWP上配置的资源分配类型为类型1(或类型0和类型1),第二BWP上配置的资源分配类型为类型0时,第一DCI中的频域分配指示的大小与VRB到PRB映射指示和/或频域跳频使能指示的大小之和小于第二DCI中的频域资源分配指示的大小,第二DCI用于在第二BWP的搜索空间对该UE进行调度,第二DCI中的频域资源分配指示用于指示在第二BWP为该UE分配的频域资源。
场景一:第二BWP的频域资源分配类型为类型0
可选地,第一DCI中用于频域资源分配的L f位比特还可以称为L f位比特图,该L f位比特图中的比特由高位到低位分别对应第二BWP中的RBG 0至RBG L f-1。对于该L f位比特图中的一个比特,当该比特的值为t1时,基站为UE分配的资源包括该比特对应的RBG;当该比特的值为t2或者不为t1时,基站为UE分配的资源不包括该比特对应的RBG。其中,t1和t2可以为整数。示例性地,t1为1。可选地,第一DCI中用于频域资源分配的L f位比特可以是第一DCI中的频域资源分配指示,也可以是第一DCI中的频域分配指示的大小与VRB到PRB映射指示和/或频域跳频使能指示的大小之和。
场景二:第二BWP的频域资源分配类型为类型1
示例性地,如果第一BWP的频域资源分配的类型为类型0,第一DCI中的L f位频域资源分配指示用于指示基站在第二BWP中为UE分配的起始RB的索引和连续分配的RB的个数。此时,针对第一DCI对应的资源分配,可以预配置VRB到PRB的映射方式,例如预配置VRB直接映射到PRB;还可以预配置是否使能频域跳频,例如预配置不使能频域跳频。即第一DCI中可以不包括VRB到PRB映射信息和/或跳频使能指示信息。
示例性地,如果第一BWP的频域资源分配的类型为类型0,第一DCI中的L f位频域资源分配指示中包括K位信息,该K位信息为VRB到PRB映射信息和/或频域跳频使能指示信息,其中,K=1或K=2。示例性地,该K位信息为该L f位频域资源分配指示中的最高K位、最低K位,或最高K 1位和最低K 2位共K位,即K 1+K 2=K。该L f位频域资源分配指示中的其余L f-K位信息用于指示基站在第二BWP中为UE分配的起始RB的索引和连续分配的RB的个数。
示例性地,如果第一BWP的频域资源分配的类型为类型1,第一DCI中用于频域资源分配的L f位比特用于基站在第二BWP中为UE分配的起始RB的索引和连续分配的RB的个数。可选地,第一DCI中用于频域资源分配的L f位比特可以是第一DCI中的频域资源分配指示,也可以是第一DCI中的频域分配指示的大小与VRB到PRB映射指示和/或频域跳频使能指示的大小之和。
UE接收到第一DCI后,根据第一DCI确定在第二BWP为UE分配的频域资源。 示例性地,UE接收到一个RIV后,根据
Figure PCTCN2019074555-appb-000038
以及第二BWP中的RB个数
Figure PCTCN2019074555-appb-000039
确定基站在BWP第二BWP中为UE分配的起始RB的索引RB start和连续分配的RB的个数L RBs。示例性地,若
Figure PCTCN2019074555-appb-000040
Figure PCTCN2019074555-appb-000041
Figure PCTCN2019074555-appb-000042
如果
Figure PCTCN2019074555-appb-000043
Figure PCTCN2019074555-appb-000044
Figure PCTCN2019074555-appb-000045
场景三:第二BWP的频域资源分配类型为类型0和类型1
示例性地,第二BWP的频域资源分配类型预配置为类型0,第一DCI中的L f位频域资源分配指示还可以称为L f位比特图,该L f位比特图中的
Figure PCTCN2019074555-appb-000046
个比特由高位到低位分别对应第二BWP中的RBG 0至RBG
Figure PCTCN2019074555-appb-000047
对于该
Figure PCTCN2019074555-appb-000048
位比特中的一个比特,当该比特的值为t1时,基站为UE分配的资源包括该比特对应的RBG;当该比特的值为t2或者不为t1时,基站为UE分配的资源不包括该比特对应的RBG。其中,
Figure PCTCN2019074555-appb-000049
为第二BWP包括的RBG个数,t1和t2可以为整数。示例性地,t1为1。
示例性地,如果第一BWP的频域资源分配的类型为类型0,则第二BWP的频域资源分配类型为类型0,第一DCI中的L f位频域资源分配指示还可以称为L f位比特图,该L f位比特图中的
Figure PCTCN2019074555-appb-000050
个比特由高位到低位分别对应第二BWP中的RBG 0至RBG
Figure PCTCN2019074555-appb-000051
对于该
Figure PCTCN2019074555-appb-000052
位比特中的一个比特,当该比特的值为t1时,基站为UE分配的资源包括该比特对应的RBG;当该比特的值为t2或者不为t1时,基站为UE分配的资源不包括该比特对应的RBG。其中,
Figure PCTCN2019074555-appb-000053
为第二BWP包括的RBG个数,t1和t2可以为整数。示例性地,t1为1。
示例性地,如果第一BWP的频域资源分配的类型为类型1,则第二BWP的频域资源分配类型为类型1,第一DCI中的L f位频域资源分配指示用于基站在第二BWP中为UE分配的起始RB的索引和连续分配的RB的个数。UE接收到第一DCI后,根据第一DCI确定在第二BWP为UE分配的频域资源,其确定方法类似上述场景二中相应的描述,这里不再赘述。
示例性地,第一DCI中用于频域资源分配的L f位比特中包括1比特信息,用于指示通过第一DCI为第二BWP配置的资源分配类型,示例性地,当该比特的值为0时,资源分配类型被配置为类型0;当该比特的值为1时,资源分配类型被配置为类型1。进一步地:
当通过第一DCI中为第二BWP配置的资源分配类型为类型0时,其余的L f-1位比特还可以称为L f-1位比特图,该L f-1位比特中的
Figure PCTCN2019074555-appb-000054
个比特由高位到低位分别对应第二BWP中的RBG 0至RBG
Figure PCTCN2019074555-appb-000055
对于该L f位比特中的一个比特,当该比特的值为t1时,基站为UE分配的资源包括该比特对应的RBG;当该比特的值为t2或者不为t1时,基站为UE分配的资源不包括该比特对应的RBG。其中,
Figure PCTCN2019074555-appb-000056
为第二BWP包括的RBG个数,t1和t2可以为整数。示例性地,t1为1。可选地,第一DCI中用于频域资源分配的L f位比特可以是第一DCI中的频域资源分配指示,也可以是第一DCI中的频域分配指示的大小与VRB到PRB映射指示和/或频域跳频使能指示的大小之和。可选地,第一DCI中用于频域资源分配的L f位比特可以是第三DCI中的频域资源分配指示,也可以是第三DCI中的频域分配指示的大小与VRB到PRB映射指示和/或频域跳频使能指示的大小之和。其中,第三DCI用于在第一BWP的搜索空间进行第一BWP的调度。
当通过第一DCI中为第二BWP配置的资源分配类型为类型1时,其余的L f-1位比特用于基站在第二BWP中为UE分配的起始RB的索引和连续分配的RB的个数。UE接收到第一DCI后,根据第一DCI确定在第二BWP为UE分配的频域资源,其确定方法类似上述场景二中相应的描述,这里不再赘述。如果第一BWP的频域资源分配的类型为类型0,针对第一DCI对应的资源分配,可以预配置VRB到PRB的映射方式,例如预配置VRB直接映射到PRB;还可以预配置是否使能频域跳频,例如预配置不使能频域跳频,即第一DCI中可以不包括VRB到PRB映射信息和/或跳频使能指示信息。
示例性地,第一DCI中用于频域资源分配的L f位比特中包括1比特信息,用于指示通过第一DCI为第二BWP配置的资源分配类型,示例性地,当该比特的值为0时,资源分配类型被配置为类型0;当该比特的值为1时,资源分配类型被配置为类型1。第一DCI中用于频域资源分配的L f位比特中还包括K位信息,该K位信息为VRB到PRB映射信息和/或频域跳频使能指示信息,其中,K=1或K=2。可选地,第一BWP配置的资源分配类型为类型0。进一步地:
当通过第一DCI中为第二BWP配置的资源分配类型为类型0时,其余的L f-K-1位比特还可以称为L f-K-1位比特图,该L f-K-1位比特中的
Figure PCTCN2019074555-appb-000057
个比特由高位到低位分别对应第二BWP中的RBG 0至RBG
Figure PCTCN2019074555-appb-000058
对于该
Figure PCTCN2019074555-appb-000059
位比特中的一个比特,当该比特的值为t1时,基站为UE分配的资源包括该比特对应的RBG;当该比特的值为t2或者不为t1时,基站为UE分配的资源不包括该比特对应的RBG。其中,
Figure PCTCN2019074555-appb-000060
为第二BWP包括的RBG个数,t1和t2可以为整数。示例性地,t1为1。可选地,第一DCI中用于频域资源分配的L f位比特可以是第一DCI中的频域资源分配指示,也可以是第一DCI中的频域分配指示的大小与VRB到PRB映射指示和/或频域跳频使能指示的大小之和。可选地,第一DCI中用于频域资源分配的L f位比特可以是第三DCI中的频域资源分配指示,也可以是第三DCI中的频域分配指示的大小与VRB到PRB映射指示和/或频域跳频使能指示的大小之和。其中,第三DCI用于在第一BWP的搜索空间进行第一BWP的调度。
当通过第一DCI中为第二BWP配置的资源分配类型为类型1时,其余的L f-K-1位比特用于基站在第二BWP中为UE分配的起始RB的索引和连续分配的RB的个数。UE接收到第一DCI后,根据第一DCI确定在第二BWP为UE分配的频域资源,其确定方法类似上述场景二中相应的描述,这里不再赘述。
(b1) 时域资源分配指示
如图3所示的空口资源示例图,在时域,基站和UE可以基于传输时间间隔(transmission time interval,TTI)进行数据传输。在本申请实施例中,TTI中可以包括正整数个时间单元,该时间单元包括符号、时隙、微时隙、子帧、帧或其它本领域常用的时间单元,本申请不做限制。在本申请实施例中,可以以TTI是时隙为例进行描述。示例性地,一个时隙中可以包括14个符号,该14个符号对应的索引可以分别为0、1、2、3、4、5、6、7、8、9、10、11、12和13。
DCI中的时域资源分配指示可以用于指示时域资源分配信息,时域资源分配信息中包括以下至少一个:用于传输该DCI的时隙和用于传输该DCI对应的PUSCH的时隙间的距离k1、在用于传输该DCI对应的PUSCH的时隙中PUSCH的起始符号和连 续符号个数指示值(staring and length indication value,SLIV)、以及PUSCH映射类型指示。其中,k1的单位为时隙。本申请实施例中,PUSCH映射类型用于指示PUSCH的解调参考信号(demodulation reference signal,DMRS)所在的符号,该DMRS用于解调PUSCH。示例性地,PUSCH映射类型A时,DMRS所在符号的索引为广播消息配置的;PUSCH映射类型B时,DMRS所在符号为PUSCH的起始符号。在本申请实施例中,对于SLIV,示例性地,如果一个时隙中包括14个符号,
如果L-1≤7,则SLIV=14·(L-1)+S,
否则,SLIV=14·(14-L+1)+(14-1-S),
其中,S为起始符号的标识或索引,L为连续符号个数,0<L≤14-S。
示例性地,UE在时隙n接收到DCI,该DCI携带于PDCCH中,则UE在时隙n+k1中发送该DCI对应的PUSCH,即该DCI中包括该PUSCH对应的调度信息。在时隙n+k1中,从SLIV指示的起始符号起,UE在SLIV指示的连续符号中传输PUSCH。
对于一个BWP A,在BWP A的搜索空间中通过DCI A进行BWP A对应的调度时,基站可以通过预配置或者半静态配置为UE配置多个时域资源分配信息,每个时域资源分配信息对应唯一标识,基站可以通过DCI A为UE配置该多个时域资源分配信息中的一个,用于该DCI A对应的PUSCH的传输。本申请各实施例中,半静态配置可以是基站通过RRC信令、广播消息、系统消息、MAC CE为UE进行配置。示例性地,基站为UE配置的多个时域资源分配信息为信息0、信息1、信息2和信息3共N ind=4个信息,则DCI A中的时域资源分配指示中可以包括
Figure PCTCN2019074555-appb-000061
个信息位,用于指示基站为UE配置的时域资源分配信息为信息0、信息1、信息2和信息3中哪一个。示例性地,表2所示为DCI A中的时域资源分配指示可能的取值,以及各可能的取值对应的时域资源分配信息。根据表2以及DCI A中的时域资源分配指示的取值,可以确定基站通过DCI A为UE配置的时域资源分配信息。示例性地,如果DCI A中的时域资源分配指示的取值为00,则可以确定基站通过DCI A为UE配置的时域资源分配信息为信息0。其中,对于上行和下行,N ind可以相同也可以不相同,本申请不做限制。
表2
Figure PCTCN2019074555-appb-000062
基于DCI进行BWP切换或者跨BWP调度时,基站在第一BWP的搜索空间中向UE发送第一DCI,第一DCI中包括时域资源分配指示,该时域资源分配指示用于指示在第二BWP为UE配置的时域资源分配信息。UE在第一BWP的搜索空间接收该第一DCI,根据该第一DCI中的时域资源分配指示确定在第二BWP为该UE配置的时域资源分配信息。
第一DCI中的L T位时域资源分配指示中的
Figure PCTCN2019074555-appb-000063
位用于指示在第二BWP为UE配置的时域资源分配信息为X个时域资源分配信息中哪一个,该X个时域资源分配信息包括于
Figure PCTCN2019074555-appb-000064
个时域资源分配信息中,该
Figure PCTCN2019074555-appb-000065
个时域资源分配信息为第二BWP对应的候选时域资源分配信息。示例性地,第二DCI用于在第二BWP的搜索空 间对该UE进行调度,第二DCI中的
Figure PCTCN2019074555-appb-000066
位时域资源分配指示用于指示在第二BWP为该UE配置的时域资源分配信息为
Figure PCTCN2019074555-appb-000067
个时域资源分配信息中哪一个。可选地,L T位时域资源分配指示中除上述
Figure PCTCN2019074555-appb-000068
位之外的
Figure PCTCN2019074555-appb-000069
位均为0。
示例性地,上述X个时域资源分配信息为上述
Figure PCTCN2019074555-appb-000070
个时域资源分配信息中定时偏移最大的X个。其中,对于一个时域资源分配信息,其定时偏移是根据该时域资源分配信息中的k1和/或PUSCH的起始符号的标识S确定,可选地,定时偏移可以是k1,也可以是PUSCH的起始符号的标识S,还可以是14k1+S。通过该方法,可以使得通过第一DCI指示的定时偏移能够满足UE从第一BWP切换到第二BWP的切换时延,即可以使得通过第一DCI指示的定时偏移大于或等于UE从第一BWP切换到第二BWP的切换时延,该切换时延可以包括射频切换时间、PDCCH处理时间、波束准备时间中的至少一个。
再示例性地,上述X个时域资源分配信息对应
Figure PCTCN2019074555-appb-000071
个时隙分配资源信息的前X个,例如第0个至第X-1个,且这X个时域资源分配信息中的至少一个时域资源分配信息对应的定时偏移能够满足UE从第一BWP切换到第二BWP的切换时延,即该至少一个时域资源分配信息对应的的定时偏移大于或等于UE从第一BWP切换到第二BWP的切换时延,该切换时延可以包括射频切换时间、PDCCH处理时间、波束准备时间中的至少一个。所述定时偏移是根据该时域资源分配信息中的k1和/或PUSCH的起始符号的标识S确定。UE假设第一DCI指示的时域资源分配信息是该至少一个时域资源分配信息中的一个。
(c1) DMRS天线端口
在本申请实施例中,基站和UE间可以传输参考信号(reference signal,RS),用于进行信道估计或信道测量,其还可以称为导频或者其它名称,本申请不做限制。示例性地,基站和UE进行通信时,可以传输RS,用于进行信道状态估计或信道测量,基站和UE可以基于估计的信道状态或信道测量量匹配地进行数据传输,从而可以提高数据传输速率。
UE向基站发送PUSCH时,可以向基站发送上行DMRS,基站根据接收到的DMRS进行信道估计,根据该信道估计结果对PUSCH进行解调。该DMRS可以称为PUSCH对应的DMRS。
在进行数据传输时,基站和UE通过信道进行数据传输,一个基站和一个UE可以通过至少一个信道进行数据传输。一个信道可以对应一个天线端口,通过一个天线端口传输的信号可以根据通过该天线端口传输的其他信号进行推断。示例性地,基站和UE可以通过一个天线端口传输DMRS和其它数据,DMRS可以用于进行信道估计,该信道估计结果可以用于解调在该天线端口传输的其它数据。在小区中,为了支持基站通过多天线端口和一个或者多个UE同时进行数据传输,以提升系统容量,可以配置多个天线端口用于进行数据传输。用于进行下行传输的天线端口和用于进行上行传输的天线端口可以独立进行配置。
对于上行,可以配置多个DMRS,该多个DMRS中的每一个可以对应一个天线端口,用于传输DMRS的天线端口还可以称为DMRS天线端口。再进一步地,对于多个DMRS,可以将该多个DMRS的DMRS天线端口进行分组,得到码分复用(code division  multiplexing,CDM)分组。
示例性地,如表3所示,对应DMRS配置类型1,多个DMRS天线端口为端口0、端口1、端口2、端口3、端口4、端口5、端口6和端口7共8个天线端口,则第一个CDM分组(CDM分组0)中可以包括端口0、端口1、端口4和端口5,第二个CDM分组(CDM分组1)中可以包括端口2、端口3、端口6和端口7。
表3
天线端口 CDM分组
端口0 CDM分组0
端口1 CDM分组0
端口2 CDM分组1
端口3 CDM分组1
端口4 CDM分组0
端口5 CDM分组0
端口6 CDM分组1
端口7 CDM分组1
再示例性地,如表4所示,对应DMRS配置类型2,多个DMRS天线端口为端口00、端口01、端口02、端口03、端口04、端口05、端口06、端口07、端口08、端口09、端口10、端口11共12个天线端口,则第一个CDM分组(CDM分组0)中可以包括端口00、端口01、端口06和端口07,第二个CDM分组(CDM分组1)中可以包括端口02、端口03、端口08和端口09,第三个CDM分组(CDM分组2)中可以包括端口04、端口05、端口10和端口11。
表4
天线端口 CDM分组
端口00 CDM分组0
端口01 CDM分组0
端口02 CDM分组1
端口03 CDM分组1
端口04 CDM分组2
端口05 CDM分组2
端口06 CDM分组0
端口07 CDM分组0
端口08 CDM分组1
端口09 CDM分组1
端口10 CDM分组2
端口11 CDM分组2
其中,本申请各实施例中,PUSCH的DMRS的类型可以同PUSCH映射类型,PUSCH的DMRS的类型1同PUSCH映射类型的类型A,PUSCH的DMRS的类型2 同PUSCH映射类型的类型B。
对于一个BWP,基站为UE配置DMRS时,基站可以通过预配置或者半静态配置候选DMRS配置集合,对于该集合中的一个DMRS配置,其可以包括以下至少一个信息:该配置对应的索引或标识,DMRS天线端口的端口号、DMRS CDM分组个数、DMRS映射至的符号个数。其中,DMRS天线端口的端口号中可以包括至少一个端口号,该至少一个端口号对应的天线端口用于传输DMRS;如果DMRS CDM分组个数为
Figure PCTCN2019074555-appb-000072
则在CDM分组0至CDM分组
Figure PCTCN2019074555-appb-000073
所包括的DMRS天线端口对应的资源不映射PUSCH,即在CDM分组0至CDM分组
Figure PCTCN2019074555-appb-000074
所包括的DMRS天线端口对应的资源不传输PUSCH。对于不同的BWP,基站可以为不同的BWP独立配置候选DMRS配置集合。
对于一个BWP A,如果基站为UE配置了对应于该BWP的候选DMRS配置集合,该集合中包括N DMRS个DMRS配置,在BWP A的搜索空间中通过DCI A进行BWP A对应的调度时,DCI A中可以包括DMRS天线端口,DMRS天线端口对应的信息域中包括
Figure PCTCN2019074555-appb-000075
个比特,用于指示基站为UE配置的DMRS配置为该N DMRS个DMRS配置中哪一个,用于传输PUSCH对应的DMRS。
下面将给出BWP A的候选DMRS配置集合的示例。
示例性地,如果UE和基站进行数据传输时使用的波形是离散傅里叶扩展正交频分复用(discrete fourier transform spreading orthogonal frequency division multiplexing,DFT-s-OFDM),PUSCH的DMRS的类型为类型1,DMRS映射至的符号个数的最大值为2时,候选DMRS配置集合为表5所示,该集合中包括配置0至配置15共16个配置,该16个配置的索引分别为0至15。
表5
配置索引 DMRS CMD分组个数 DMRS天线端口的端口号 DMRS映射至的符号个数
0 2 0 1
1 2 1 1
2 2 2 1
3 2 3 1
4 2 0 2
5 2 1 2
6 2 2 2
7 2 3 2
8 2 4 2
9 2 5 2
10 2 6 2
11 2 7 2
12至15 保留 保留 保留
示例性地,如果UE和基站进行数据传输时使用的波形是循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM),PUSCH的DMRS的类型为类型1,DMRS映射至的符号个数的最大值为1,PUSCH的秩为1时,候选DMRS配置集合为表6所示,该集合中包括配置0至配置7共8个配置,该8个配置的索引分别为0至7。其中,在本申请实施例中,PUSCH的秩用于指示PUSCH传输 对应的流数。基站和UE传输PUSCH时,可以使用一个流传输PUSCH,用于提高PUSCH的传输鲁棒性,也可以使用多个流传输PUSCH,用于提高PUSCH的传输速率。
表6
配置索引 DMRS CDM分组个数 DMRS天线端口的端口号
0 1 0
1 1 1
2 2 0
3 2 1
4 2 2
5 2 3
6至7 保留 保留
示例性地,如果UE和基站进行数据传输时使用的波形是CP-OFDM,PUSCH的DMRS的类型为类型1,DMRS映射至的符号个数的最大值为2,PUSCH的秩为1时,候选DMRS配置集合为表7所示,该集合中包括配置0至配置15共16个配置,该16个配置的索引分别为0至15。
表7
配置索引 DMRS CDM分组个数 DMRS天线端口的端口号 DMRS映射至的符号个数
0 1 0 1
1 1 1 1
2 2 0 1
3 2 1 1
4 2 2 1
5 2 3 1
6 2 0 2
7 2 1 2
8 2 2 2
9 2 3 2
10 2 4 2
11 2 5 2
12 2 6 2
13 2 7 2
14-15 保留 保留 保留
示例性地,如果UE和基站进行数据传输时使用的波形是CP-OFDM,PUSCH的DMRS的类型为类型2,DMRS映射至的符号个数的最大值为1,PUSCH的秩为1时,候选DMRS配置集合为表8所示,该集合中包括配置0至配置15共16个配置,该16个配置的索引分别为0至15。
表8
配置索引 DMRS CDM分组个数 DMRS天线端口的端口号
0 1 0
1 1 1
2 2 0
3 2 1
4 2 2
5 2 3
6 3 0
7 3 1
8 3 2
9 3 3
10 3 4
11 3 5
12至15 保留 保留
示例性地,如果UE和基站进行数据传输时使用的波形是CP-OFDM,PUSCH的DMRS的类型为类型2,DMRS映射至的符号个数的最大值为2,PUSCH的秩为1时,候选DMRS配置集合为表9所示,该集合中包括配置0至配置31共32个配置,该32个配置的索引分别为0至31。
表9
配置索引 DMRS CDM分组个数 DMRS天线端口的端口号 DMRS映射至的符号个数
0 1 0 1
1 1 1 1
2 2 0 1
3 2 1 1
4 2 2 1
5 2 3 1
6 3 0 1
7 3 1 1
8 3 2 1
9 3 3 1
10 3 4 1
11 3 5 1
12 3 0 2
13 3 1 2
14 3 2 2
15 3 3 2
16 3 4 2
17 3 5 2
18 3 6 2
19 3 7 2
20 3 8 2
21 3 9 2
22 3 10 2
23 3 11 2
24 1 0 2
25 1 1 2
26 1 6 2
27 1 7 2
28-31 保留 保留 保留
在实际使用中,对于一个BWP A,基站为UE配置的候选DMRS配置集合还可以不同于以上表5至表9所示的示例,例如候选DMRS配置集合还可以为PUSCH的秩为2、3、或4时的候选DMRS配置集合。基站可以通过预配置或者半静态配置,配置BWP A对应的候选DMRS配置集合。
在一种可能的实现中,基于DCI进行BWP切换或者跨BWP调度时,基站在第一BWP的搜索空间中向UE发送第一DCI,第一DCI中包括DMRS天线端口指示,该DMRS天线端口指示用于指示在第二BWP为UE配置的DMRS配置。UE在第一BWP的搜索空间接收该第一DCI,根据该第一DCI中的DMRS天线端口指示确定在第二BWP为该UE配置的DMRS配置。第一DCI中的
Figure PCTCN2019074555-appb-000076
位DMRS天线端口指示中的
Figure PCTCN2019074555-appb-000077
位用于指示在第二BWP为UE配置的DMRS配置为Y个DMRS配置中哪一个,该Y个DMRS配置包括于
Figure PCTCN2019074555-appb-000078
个DMRS配置中,该
Figure PCTCN2019074555-appb-000079
个DMRS配置为第二BWP的候选DMRS配置。其中,可选地,第一DCI中
Figure PCTCN2019074555-appb-000080
位DMRS天线端口指示中除该
Figure PCTCN2019074555-appb-000081
位之外的
Figure PCTCN2019074555-appb-000082
位均为0。其中,Y和
Figure PCTCN2019074555-appb-000083
为正整数。进一步地,对于Y个DMRS配置中的DMRS配置,其对应的秩为1或2,即用于传输DMRS的天线端口为单天线端口或两天线端口,对应的天线端口的个数为1或2。
示例性地,第二DCI中的DMRS天线端口指示的大小
Figure PCTCN2019074555-appb-000084
第二DCI用于在第二BWP的搜索空间对该UE进行调度,第二DCI中的
Figure PCTCN2019074555-appb-000085
位DMRS天线端口用于指示在第二BWP为该UE配置的DMRS配置为
Figure PCTCN2019074555-appb-000086
个DMRS配置中哪一个。
示例性地,上述Y个DMRS配置为上述
Figure PCTCN2019074555-appb-000087
个DMRS配置中DMRS CDM分组个数较小的Y个DMRS配置,可选地,该DMRS CDM分组个数较小的Y个DMRS配置对应DMRS CDM分组个数为1和/或2。上述Y个DMRS配置还可以对应为上述
Figure PCTCN2019074555-appb-000088
个DMRS配置中DMRS映射至的符号个数较小的Y个DMRS配置,可选地,该DMRS映射至的符号个数较小的Y个DMRS配置对应DMRS映射至的符号个数为1。上述Y个DMRS配置还可以对应为上述
Figure PCTCN2019074555-appb-000089
个DMRS配置中CDM分组个数较小的且DMRS映射至的符号个数较小的Y个DMRS配置,可选地,该DMRS CDM分组个数较小的Y个DMRS配置对应DMRS CDM分组个数为1和/或2,该DMRS映射至的符号个数较小的Y个DMRS配置对应DMRS映射至的符号个数为1。再示例性地,上述Y个DMRS配置对应为上述
Figure PCTCN2019074555-appb-000090
个DMRS配置中前Y个,或者描述为该Y个时域资源分配信息位对应
Figure PCTCN2019074555-appb-000091
个DMRS配置的第0个至第Y-1个,且这Y个DMRS配置中的至少一个DMRS配置对应的DMRS CDM分组个数较小和/或DMRS映射至的符号个数较小,例如DMRS CDM分组个数为1和/或2,DMRS映射至的符号个数为1,UE假设第一DCI指示的DMRS配置是该至少一个DMRS配置中的一个。进一步地,对于Y个DMRS配置中的DMRS配置,其对应的秩为1或2,即用于传输DMRS的天线端口为单天线端口或两天线端口,对应的天线端口的个数为1或2。
在另一种可能的实现中,基于DCI进行BWP切换或者跨BWP调度时,使用预设DMRS天线端口配置传输DMRS,示例性地,预配置以下至少一个:DMRS配置对应的DMRS天线端口的个数为1、DMRS映射至的符号个数为1和DMR的类型为类型1。此时,可以认为第一DCI中包括的DMRS天线端口指示无意义,即UE不去理解该DMRS天线端口指示。
通过上述方法,可以满足PUSCH的秩的需求。进行BWP切换或跨BWP调度时,基站和UE可能没有确定出第二BWP上的信道状态信息,或者没有确定出及时准确的第二BWP上的信道状态信息,因此很难在BWP切换或跨BWP调度时使能多流传输,则可以通过上述方法假设基站和UE均需要假设较小的秩,从而保证BWP切换或跨BWP调度时数据传输的鲁棒性。
(d1) 预编码信息和层数
基站和UE进行数据传输时,例如进行PUSCH传输时,可以使用X1个天线端口传输X2层数据,X1和X2为正整数。可选地,X1大于或等于X2。使用X1个天线端口传输X2层数据时,可以通过预编码矩阵将该X2层数据映射至X1个天线端口,得到在各天线端口进行传输的数据。通过预编码矩阵将该X2层数据映射至X1个天线端口,可以将预编码矩阵乘以该X2层数据,得到在该X1个天线端口进行传输的数据。其中,可以将码本W配置为预编码矩阵,该码本可以为候选码本集合中的码本。层数X2可以等于PUSCH的秩。
示例性地,如果基站和UE进行上行数据传输时使用的波形为DFT-s-OFDM,且通过4天线端口传输1层数据时,候选码本集合中的码本可以如表10所示。其中,本申请实施例 中,作为预编码矩阵的码本的索引可以称为(transmission precoding matrix Indicator,TPMI)。
表10
Figure PCTCN2019074555-appb-000092
再示例性地,如果基站和UE进行上行数据传输时使用的波形为CP-OFDM,且通过4天线端口传输1层数据时,候选码本集合中的码本可以如表11所示。
表11
Figure PCTCN2019074555-appb-000093
再示例性地,如果基站和UE进行上行数据传输时,通过2天线端口传输1层数据时,候 选码本集合中的码本可以如表12所示。
表12
Figure PCTCN2019074555-appb-000094
对于一个BWP,对于PUSCH,基站为UE配置预编码信息和层数时,基站可以通过预配置或者半静态配置候选预编码信息和层数配置集合,对于该集合中的一个预编码信息和层数配置,其可以指示以下至少一个信息:该配置对应的索引或标识,层数(layer(s))和TPMI。对于不同的BWP,基站可以为不同的BWP独立配置候选预编码信息和层数配置集合。针对以下三个场景,可以分别配置候选预编码信息和层数配置集合:场景一,全相干码本、部分相干码本和非相干码本;场景二,部分相干码本和非相干码本;场景三,非相关码本。其中,全相干码本表示一个数据流映射到所有天线端口上,全相干码本中,预编码矩阵的每一列全为非0元素;部分相干码本表示一个数据流映射到部分天线端口上,部分相干码本中,预编码矩阵的每一列都存在至少一个0元素,且非0元素的个数大于1;非相干码本中,预编码矩阵的每一列只有1个非0元素。可选地,支持全相干码本的UE也支持部分相干码本和非相干码本,支持部分相干码本的UE也支持非相干码本。
对于一个BWP A,如果基站为UE配置了对应于该BWP的候选预编码信息和层数配置集合,该集合中包括N PM个预编码信息和层数配置,在BWP A的搜索空间中通过DCI A进行BWP A对应的调度时,DCI A中可以包括预编码信息和层数,预编码信息和层数对应的信息域中包括
Figure PCTCN2019074555-appb-000095
个比特,用于指示基站为UE配置的预编码信息和层数配置为该N PM个预编码信息和层数配置中哪一个,用于传输PUSCH。
下面将给出BWP A的候选预编码信息和层数配置集合的示例。
候选预编码信息和层数配置集合示例一:对于UE使用4天线端口的场景,如果UE和基站进行数据传输时使用的波形是CP-OFDM,或者如果UE和基站进行数据传输时使用的波形是CP-OFDM且PUSCH的秩最大为1、2、3或4,候选预编码信息和层数配置集合中包括表13中的第2行预编码信息和层数配置至第5行预编码信息和层数配置,即索引0至索引3对应的预编码信息和层数配置。
候选预编码信息和层数配置集合示例二:对于UE使用4天线端口的场景,如果UE和基站进行数据传输时使用的波形是CP-OFDM,或者如果UE和基站进行数据传输时使用的波形是CP-OFDM且PUSCH的秩最大为1、2、3或4,候选预编码信息和层数配置集合中包括表13中的第2行预编码信息和层数配置至第17行预编码信息和层数配置,即索引0至索引15对应的预编码信息和层数配置。
候选预编码信息和层数配置集合示例三:对于UE使用4天线端口的场景,如果UE和基站进行数据传输时使用的波形是DFT-s-OFDM,或者如果UE和基站进行数据传输时使用的波形是CP-OFDM且PUSCH的秩最大为1、2、3或4,候选预编码信息和层数配置集合中包括表13中的第2行预编码信息和层数配置至第33行预编码信息和层数配置,即索引0至索引31对应的预编码信息和层数配置。
表13
Figure PCTCN2019074555-appb-000096
Figure PCTCN2019074555-appb-000097
候选预编码信息和层数配置集合示例四:
对于UE支持2天线端口的场景,如果UE和基站进行数据传输时使用的波形是DFT-s-OFDM,或者如果UE和基站进行数据传输时使用的波形是CP-OFDM且PUSCH的秩最大为1或2,候选预编码信息和层数配置集合中包括表14中的第2行预编码信息和层数配置至第5行预编码信息和层数配置,即索引0至索引3对应的预编码信息和层数配置。
候选预编码信息和层数配置集合示例五:
对于UE支持2天线端口的场景,如果UE和基站进行数据传输时使用的波形是DFT-s-OFDM,或者如果UE和基站进行数据传输时使用的波形是CP-OFDM且PUSCH的秩最大为1或2,候选预编码信息和层数配置集合中包括表14中的第2行预编码信息和层数配置至第9行预编码信息和层数配置,即索引0至索引7对应的预编码信息和层数配置。
表14
Figure PCTCN2019074555-appb-000098
在一种可能的实现中,基于DCI进行BWP切换或者跨BWP调度时,基站在第一BWP的搜索空间中向UE发送第一DCI,第一DCI中包括预编码信息和层数,该预编码信息和层数用于指示在第二BWP为UE配置的层数和TPMI。UE在第一BWP的搜索空间接收该第一DCI,根据该第一DCI中的预编码信息和层数确定在第二BWP为该UE配置的层数和TPMI。第一DCI中的L PM位预编码信息和层数中的
Figure PCTCN2019074555-appb-000099
位用于指示在第二BWP为UE配置的层数和TPMI为Z个层数和TPMI配置中哪一个,该Z个层数和TPMI配置为第二BWP的候选层数和TPMI配置。可选地,上述L PM位预编码信息和层数中除上述
Figure PCTCN2019074555-appb-000100
位之外的
Figure PCTCN2019074555-appb-000101
位均为0。其中,L PM和Z为正整数。
示例性地,第二DCI用于在第二BWP的搜索空间对该UE进行调度,第二DCI中的
Figure PCTCN2019074555-appb-000102
位预编码信息和层数用于指示在第二BWP为该UE配置的层数和TPMI为
Figure PCTCN2019074555-appb-000103
个层数和TPMI配置中哪一个。
示例性地,上述Z个层数和TPMI配置对应为
Figure PCTCN2019074555-appb-000104
个层数和TPMI配置中层数较小的Z个层数和TPMI配置,
Figure PCTCN2019074555-appb-000105
个层数和TPMI配置为第二BWP的候选层数和TPMI配置,可选地,该层数较小的Z个层数和TPMI配置对应层数为1和/或2。
再示例性地,上述Z个层数和TPMI配置对应为上述
Figure PCTCN2019074555-appb-000106
个层数和TPMI配置中前Z个,或者描述为该Z个层数和TPMI配置对应上述
Figure PCTCN2019074555-appb-000107
个层数和TPMI配置的第0个至第Z-1个,且这Z个层数和TPMI配置中的至少一个层数和TPMI配置对应的层数较小,例如1和/或2,UE假设第一DCI指示的层数和TPMI配置是该至少一个层数和TPMI配置中的一个。
在另一种可能的实现中,基于DCI进行BWP切换或者跨BWP调度时,基站在第一BWP的搜索空间中向UE发送第一DCI,第一DCI中包括预编码信息和层数,该预编码信息和层数用于指示在第二BWP为UE配置的预编码矩阵和层数。UE在第一BWP的搜索空间接收该第一DCI,根据该第一DCI中的预编码信息和层数确定在第二BWP为该UE配置的预编码矩阵和层数。第一DCI中的预编码矩阵和层数中的
Figure PCTCN2019074555-appb-000108
位用于指示在第二BWP为UE配置的预编码信息和层数配置为L PMI个预编码信息和层数配置中哪一个,L PMI个预编码信息和层数配置包括于
Figure PCTCN2019074555-appb-000109
个预编码信息和层数配置中,
Figure PCTCN2019074555-appb-000110
个预编码信息和层数配置为第二BWP的候选预编码信息和层数配置。
示例性地,第二DCI用于在第二BWP的搜索空间对该UE进行调度,第二DCI中的
Figure PCTCN2019074555-appb-000111
位预编码矩阵和层数用于指示在第二BWP为UE配置的预编码信息和层数配置为
Figure PCTCN2019074555-appb-000112
个预编码信息和层数配置中哪一个。
示例性地,上述L PMI个预编码信息和层数配置为上述
Figure PCTCN2019074555-appb-000113
个预编码信息和层数配置中层数为1的配置中的第1个至第L PMI-1个。
再示例性地,上述L PMI个预编码信息和层数配置为第一候选预编码信息和层数配置集合中层数为1的配置中的第1个至第L PMI-1个,第一候选预编码信息和层数配置集合为回退集合,示例性地,该回退集合可以对应于较小的PUSCH的秩,如第一候选预编码信息和层数配置集合中包括表14中的预编码信息和层数配置。上述
Figure PCTCN2019074555-appb-000114
个预编码信息和层数配置为第二候选预编码信息和层数配置集合中的配置,第一候选预编码信息和层数配置集合和第二候选预编码信息和层数配置集合可以相同,也可以不同,本申请不做限制。
示例性地,L PMI个预编码信息和层数配置为上述
Figure PCTCN2019074555-appb-000115
个预编码信息和层数配置中层数为1的配置中的第1个至第L PMI个。
再示例性地,上述L PMI个预编码信息和层数配置为基站通过预配置或者通过半静态信令配置为UE配置的L PMI个预编码信息和层数配置。
通过上述方法,可以满足PUSCH的秩的需求。进行BWP切换或跨BWP调度时,基站和UE可能没有确定出第二BWP上的信道状态信息,或者没有确定出及时准确的第二BWP上的信道状态信息,因此很难在BWP切换或跨BWP调度时使能多流传输,则可以通过上述方法假设基站和UE均需要假设较小的秩。
(e1) 探测参考信号资源指示
基站可以为UE配置探测参考信号(sounding referece signal,SRS)资源。对于一个BWP A,基站可以配置该BWP A上PUSCH传输是基于码本的还是基于非码本的。当配置基于码本的PUSCH传输时,配置
Figure PCTCN2019074555-appb-000116
个SRS资源,基站通过SRS资源指示(SRS resource indicator,SRI)为UE配置该
Figure PCTCN2019074555-appb-000117
个SRS资源中的一个,用于UE确定预编码信息;当配置基于非码本的PUSCH传输时,配置
Figure PCTCN2019074555-appb-000118
个SRS资源,基站通过SRI为UE配置该
Figure PCTCN2019074555-appb-000119
个SRS资源中的至少一个SRS资源,用于UE确定预编码信息。可选地,
Figure PCTCN2019074555-appb-000120
小于等于
Figure PCTCN2019074555-appb-000121
示例性地,UE根据指示的SRS资源确定使用的天线端口个数和天线端口,若PUSCH传输是基于码本的,UE还可以根据天线端口个数确定候选预编码信息和层数配置集合,再根据DCI中的预编码信息和层数确定预编码和层数。
示例性地,基于DCI进行BWP切换或者跨BWP调度时,例如基于第一DCI从第一BWP切换至第二BWP,或者在第一BWP的搜索空间进行针对第二BWP的调度时,预配置UE在第二BWP的PUSCH传输也是基于非码本的。此时,可以认为,UE不需要使用该第一DCI中的预编码信息和层数。
示例性地,基于DCI进行BWP切换或者跨BWP调度时,第一BWP配置了基于非码本的PUSCH传输,则通过第一DCI指示的第二BWP上的PUSCH传输也是基于非码本的。示例性地,基于DCI进行BWP切换或者跨BWP调度时,基站在第一BWP的搜索空间中发送第一DCI,第一DCI中包括SRI,如果第一BWP配置了基于非码本的PUSCH传输,该SRI用于指示在第二BWP配置为UE配置的SRS资源为第二BWP的SRS资源中的一个或多个。示例性地,在第二BWP配置为UE配置的SRS资源为第二BWP的SRS资源中的一个。
再示例性地,第一BWP配置了基于码本的PUSCH传输,则通过第一DCI指示的第二BWP上的PUSCH传输也是基于码本的。示例性地,基于DCI进行BWP切换或者跨BWP调度时,基站在第一BWP的搜索空间中发送第一DCI,第一DCI中包括SRI,如果第一BWP配置了基于码本的PUSCH传输,该SRI用于指示在第二BWP配置为UE配置的SRS资源为第二BWP的SRS资源中的一个。
示例性地,第一BWP配置了基于非码本的PUSCH传输,第二BWP配置了基于码本的传输,则第一DCI中的
Figure PCTCN2019074555-appb-000122
个比特用于指示为UE配置的SRS资源为第二BWP上配置的
Figure PCTCN2019074555-appb-000123
个SRS资源中的哪一个。第一DCI中的
Figure PCTCN2019074555-appb-000124
位可以与上述预编码信息和层数配置一起用于指示第二BWP上的预编码信息和层数。其中,L SRI为第一DCI或第三DCI中的SRI的大小,其中,第三DCI用于在第一BWP的搜索空间进行针对第一BWP的调度。
示例性地,第一BWP配置了基于码本的PUSCH传输,第二BWP配置了基于非码本的传输,则可以使用第一联合信息域配置第二BWP上的SRS资源,第一联合信息域的大小小于或等于第三DCI中的预编码信息和层数的大小和第三DCI中的SRS资源指示的大小之和,或者第一联合信息域的大小小于或等于第一DCI中的预编码信息和层数的大小和第一DCI中的SRS资源指示的大小之和。其中,第三DCI用于在第一BWP的搜索空间进行针对第一BWP的调度。示例性地,第一联合信息域用于指示在第二BWP配置为UE配置的SRS资源为 第二BWP的
Figure PCTCN2019074555-appb-000125
个SRS资源中的一个或多个。示例性地,在第二BWP配置为UE配置的SRS资源为第二BWP的SRS资源中的一个。
(f1) CSI请求
基站和UE进行数据传输时,UE可以向基站上报信道状态信息(channel state information,CSI),该CSI用于确定PDSCH或PUSCH的传输参数。
对于一个BWP A,在BWP A的搜索空间中通过DCI A进行BWP A对应的调度时,DCI A中可以包括CSI请求,用于使能UE向基站上报BWP A的CSI,示例性地,用于使能UE向基站非周期第上报CSI;UE接收到DCI A后,根据DCI中包括的CSI请求向基站上报CSI。示例性地,该CSI用于使能UE向基站上报CSI时,该CSI请求可以指示UE上报CSI时使用的CSI资源,例如CSI请求可以指示UE上报CSI时使用的CSI资源为至少一个CSI资源中的哪一个。其中,该至少一个CSI资源可以是基站通过半静态信令为UE配置的。对于该至少一个CSI资源中的任一个CSI资源,该CSI资源中可以包括定时偏移k offset,k offset可以用于指示用于传输包括CSI请求的DCI的时隙和用于传输该DCI使能的CSI的时隙之间的间隔,该定时偏移的单位可以为时隙。如果DCI A中包括CSI请求,则UE认为使能了UE向基站上报CSI。如果用于传输DCI A的时隙为时隙n 0,当DCI A中没有调度PUSCH传输时,则UE在时隙n 0+k offset向基站上报CSI;当DCI A中调度了PUSCH传输时,UE在时隙n 0+k1向基站上报CSI,其中,k1为用于传输该DCI的时隙和用于传输该DCI对应的PUSCH的时隙间的距离,k1的单位为时隙。示例性地,k1包括于DCI中的时域资源分配指示中。DCI A中没有调度了PUSCH传输可以通过DCI A中新传数据指示(new data indicator,NDI)翻转,预定义的指示重传的调制编码策略(modulation and coding schemes,MCS)和冗余版本(redundancy version,RV)置0来判断,也可以根据预定义的指示重传的MCS和调度的RB数来确定CSI上报时没有PUSCH传输。
基于DCI进行BWP切换或者跨BWP调度时,基站在第一BWP的搜索空间中向UE发送第一DCI,第一DCI中包括CSI请求,该CSI请求用于使能UE向基站上报第二BWP的CSI。UE在第一BWP的搜索空间接收该第一DCI,根据该第一DCI中的CSI请求,在第二BWP向基站上报第二BWP的CSI。第一DCI中的L CSI位CSI请求中的
Figure PCTCN2019074555-appb-000126
位用于指示UE根据V个CSI资源中哪一个上报第二BWP的CSI,其中,该V个CSI资源包括于
Figure PCTCN2019074555-appb-000127
个CSI资源中,该
Figure PCTCN2019074555-appb-000128
个CSI资源包括于第二BWP的候选CSI资源中。可选地,该L CSI位时域资源分配指示中除
Figure PCTCN2019074555-appb-000129
位之外的
Figure PCTCN2019074555-appb-000130
位均为0。
示例性地,第二DCI用于在第二BWP中使能UE向基站上报第二BWP的CSI,第二DCI中的
Figure PCTCN2019074555-appb-000131
位CSI请求用于指示UE根据
Figure PCTCN2019074555-appb-000132
个CSI资源中哪一个上报第二BWP的CSI。
示例性地,上述V个CSI资源为上述
Figure PCTCN2019074555-appb-000133
个CSI资源中k offset的最大V个。通过该方法,可以满足UE从第一BWP切换到第二BWP的切换时延。
再示例性地,上述V个CSI资源为上述
Figure PCTCN2019074555-appb-000134
个CSI资源资源中的前V个资源,例如为该
Figure PCTCN2019074555-appb-000135
中的第0个至第V-1个资源。示例性地,该V个CSI资源中的至少一个CSI资源对应的k offset能够满足UE从第一BWP切换到第二BWP的切换时延,即该CSI资源对应的k offset大于或等于UE从第一BWP切换到第二BWP的切换时延,该切换时延可以包括射频切换时间、PDCCH处理时间、波束准备时间中的至少一个,UE假设第一DCI指示的CSI资源是该至少一个CSI资源中的一个。通过该方法,可以使得基站配置CSI资源满足UE从第一BWP切换 到第二BWP的切换时延。示例性地,UE假设当第一DCI指示的CSI资源对应的k offset小于UE从第一BWP切换到第二BWP的切换时延时,第一DCI中同时调度了PUSCH的传输。通过该方法,当UE在时隙n 0+k1向基站上报CSI时,k1为用于传输该DCI的时隙和用于传输该DCI对应的PUSCH的时隙间的距离,即k offset不用于确定上报CSI的时隙时,可以不限制该L CSI个CSI资源中的CSI资源的k offset,当k1大于或等于UE从第一BWP切换到第二BWP的切换时延时即可以满足时延需求。
(二) 下行调度DCI
(a2)频域资源分配
下行调度DCI中可以包括频域资源分配指示,用于指示基站在下行BWP中为UE分配的频域资源,该BWP为该DCI中的BWP指示所指示的BWP。
对于一个下行BWP A,在BWP A的搜索空间中通过DCI A进行BWP A对应的调度,DCI A中包括频域资源分配指示,用于指示基站在BWP A中为UE分配的频域资源。其中,对应的资源分配方法类似上行调度DCI中相应的介绍,这里不再赘述。
对于下行,通过第一DCI进行BWP切换或跨BWP调度时,第一DCI中的截断频域资源分配指示的设计类似上行调度DCI中相应的介绍,这里不再赘述。
示例性地,上行调度DCI对应的资源分配方法中的BWP为上行BWP,下行DCI对应的资源分配方法中的BWP为下行BWP。再示例性地,如果资源分配类型为类型1、或者类型0和类型1时,相对上行调度DCI中的频域资源分配指示,下行调度DCI中频域资源分配指示中可以不包括频域跳频使能指示信息。
(b2)时域资源分配指示
DCI中的时域资源分配指示可以用于指示时域资源分配信息,时域资源分配信息中包括以下至少一个:用于传输该DCI的时隙和用于传输该DCI对应的PDSCH的时隙间的距离k0、在用于传输该DCI对应的PDSCH的时隙中PDSCH的起始符号和连续符号个数指示值(staring and length indication value,SLIV)。
示例性地,UE在时隙n接收到DCI,该DCI携带于PDCCH中,则在时隙n+k0中传输该DCI对应的PDSCH,即该DCI中包括该PDSCH对应的调度信息。在时隙n+k0中,从SLIV指示的起始符号起,在SLIV指示的连续符号中传输PDSCH。
类型上行调度DCI中对于相应内容的介绍,对于一个下行BWP A,在BWP A的搜索空间中通过DCI A进行BWP A对应的调度时,基站可以通过DCI A为UE配置多个时域资源分配信息中的一个,用于该DCI A对应的PDSCH的传输。
对于下行,通过第一DCI进行BWP切换或跨BWP调度时,第一DCI中的截断时域资源分配指示的设计类型上行调度DCI中相应的介绍,这里不再赘述。该方法中,下行调度DCI中的k0类似上行调度DCI中的k1,k1为用于传输该DCI的时隙和用于传输该DCI对应的PUSCH的时隙间的距离,k0为用于传输该DCI的时隙和用于传输该DCI对应的PDSCH的时隙间的距离。
(c2)DMRS天线端口
下行调度DCI涉及的DMRS为PDSCH的DMRS,该DMRS用于对PDSCH进行解调;上行调度DCI涉及的DMRS为PUSCH的DMRS,用于对PUSCH进行解调。PDSCH的DMRS的DMRS配置的可以类似PUSCH的DMRS的DMRS配置,这里不再赘述。对于上行和下行,可以独立配置DMRS配置,例如独立配置候选DMRS配置集合。
对于上行和下行,DMRS配置中包括的信息也可以独立设置。
示例性地,如果PDSCH的DMRS的类型为类型1,DMRS映射至的符号个数的最大值为2,候选DMRS配置集合为表15所示,该集合中包括配置0至配置31共32个配置,该32个配置的索引分别为0至31。其中,本申请实施例中,码字0对应于第一个传输块(传输块0),码字1对应于第二个传输块(传输块1)。
表15
Figure PCTCN2019074555-appb-000136
示例性地,如果PDSCH的DMRS的类型为类型2,DMRS映射至的符号个数的最大值为1,候选DMRS配置集合为表16所示,该集合中包括配置0至配置31共32个配置,该32个配置的索引分别为0至31。
表16
Figure PCTCN2019074555-appb-000137
示例性地,如果PDSCH的DMRS的类型为类型2,DMRS映射至的符号个数的最大值为2,候选DMRS配置集合为表17所示,该集合中包括配置0至配置63共64个配置,该64个配置的索引分别为0至63。
表17
Figure PCTCN2019074555-appb-000138
Figure PCTCN2019074555-appb-000139
在一种可能的实现中,基于DCI进行BWP切换或者跨BWP调度时,基站在第一BWP的搜索空间中向UE发送第一DCI,第一DCI中包括DMRS天线端口指示,该DMRS天线端口指示用于指示在第二BWP为UE配置的DMRS配置。UE在第一BWP的搜索空间接收该第一DCI,根据该第一DCI中的DMRS天线端口指示确定在第二BWP为该UE配置的DMRS配置。第一DCI中的
Figure PCTCN2019074555-appb-000140
位DMRS天线端口指示中的
Figure PCTCN2019074555-appb-000141
位用于指示在第二BWP为UE配置的DMRS配置为Y D个DMRS配置中哪一个,该Y D个DMRS配置包括于
Figure PCTCN2019074555-appb-000142
个DMRS配置中,该
Figure PCTCN2019074555-appb-000143
个DMRS配置为第二BWP的候选DMRS配置。其中,可选地,第一DCI中
Figure PCTCN2019074555-appb-000144
位DMRS天线端口指示中除该
Figure PCTCN2019074555-appb-000145
位之外的
Figure PCTCN2019074555-appb-000146
位均为0。其中,Y D
Figure PCTCN2019074555-appb-000147
为正整数。
示例性地,第二DCI中的DMRS天线端口指示的大小
Figure PCTCN2019074555-appb-000148
第二DCI用于在第二BWP的搜索空间对该UE进行调度,第二DCI中的
Figure PCTCN2019074555-appb-000149
位DMRS天线端口用于指示在第二BWP为该UE配置的DMRS配置为
Figure PCTCN2019074555-appb-000150
个DMRS配置中哪一个。
示例性地,上述Y D个DMRS配置为上述
Figure PCTCN2019074555-appb-000151
个DMRS配置中DMRS CDM分组个数较小的Y D个DMRS配置,可选地,该DMRS CDM分组个数较小的Y D个DMRS配置对应DMRS CDM分组个数为1和/或2。上述Y D个DMRS配置还可以对应为上述
Figure PCTCN2019074555-appb-000152
个DMRS配置中DMRS映射至的符号个数较小的Y D个DMRS配置,可选地,该DMRS映射至的符号个数较小的Y D个DMRS配置对应DMRS映射至的符号个数为1。上述Y D个DMRS配置还可以对应为上述
Figure PCTCN2019074555-appb-000153
个DMRS配置中DMRS天线端口数较少的Y D个DMRS配置,可选地,上述Y D个DMRS配置还可以对应为上述
Figure PCTCN2019074555-appb-000154
个DMRS配置中DMRS天线端口数为1个和/或2个的Y D个DMRS配置。上述Y D个DMRS配置还可以对应为上述
Figure PCTCN2019074555-appb-000155
个DMRS配置中DMRS天线端口数较少且DMRS CDM分组个数较小的Y D个DMRS配置,可选地,上述Y D个DMRS配置还可以对应为上述
Figure PCTCN2019074555-appb-000156
个DMRS配置中DMRS天线端口数为1和/或2、且DMRS CDM分组个数为1和/或2的Y D个DMRS配置。上述Y D个DMRS配置 还可以对应为上述
Figure PCTCN2019074555-appb-000157
个DMRS配置中DMRS天线端口数较少且DMRS映射至的符号个数较小的Y D个DMRS配置,可选地,上述Y D个DMRS配置还可以对应为上述
Figure PCTCN2019074555-appb-000158
个DMRS配置中DMRS天线端口数为1个和/或2个且DMRS映射至的符号个数为1个的Y D个DMRS配置。上述Y D个DMRS配置还可以对应为上述
Figure PCTCN2019074555-appb-000159
个DMRS配置中CDM分组个数较小的且DMRS映射至的符号个数较小的Y D个DMRS配置,可选地,该DMRS CDM分组个数较小的Y D个DMRS配置对应DMRS CDM分组个数为1和/或2,该DMRS映射至的符号个数较小的Y D个DMRS配置对应DMRS映射至的符号个数为1。上述Y D个DMRS配置还可以对应为上述
Figure PCTCN2019074555-appb-000160
个DMRS配置中DMRS天线端口数较少、DMRS映射至的符号个数较小、且DMRS CDM分组个数较小的Y D个DMRS配置,可选地,上述Y D个DMRS配置还可以对应为上述
Figure PCTCN2019074555-appb-000161
个DMRS配置中DMRS天线端口数为1和/或2、DMRS映射至的符号个数为2、且DMRS CDM分组个数为1和/或2的Y D个DMRS配置。
再示例性地,上述Y D个DMRS配置对应为上述
Figure PCTCN2019074555-appb-000162
个DMRS配置中前Y D个,或者描述为该Y D个时域资源分配信息位对应
Figure PCTCN2019074555-appb-000163
个DMRS配置的第0个至第Y D-1个,且这Y D个DMRS配置中的至少一个DMRS配置满足一下至少一个:对应的DMRS CDM分组个数较小、DMRS映射至的符号个数较小、和DMRS天线端口数较少,例如DMRS CDM分组个数为1和/或2,DMRS映射至的符号个数为1,DMRS天线端口数为1个和/或2个,UE假设第一DCI指示的DMRS配置是该至少一个DMRS配置中的一个。进一步地,对于Y D个DMRS配置中的DMRS配置,其对应的秩为1或2,即用于传输DMRS的天线端口为单天线端口或两天线端口,对应的天线端口的个数为1或2。
在另一种可能的实现中,基于DCI进行BWP切换或者跨BWP调度时,使用预设DMRS天线端口配置传输DMRS,示例性地,预配置以下至少一个:DMRS配置对应的DMRS天线端口的个数为1、DMRS映射至的符号个数为1和DMR的类型为类型1。此时,可以认为第一DCI中包括的DMRS天线端口指示无意义,即UE不去理解该DMRS天线端口指示。
通过上述方法,可以满足PDSCH的秩的需求。进行BWP切换或跨BWP调度时,基站和UE可能没有确定出第二BWP上的信道状态信息,或者没有确定出及时准确的第二BWP上的信道状态信息,因此很难在BWP切换或跨BWP调度时使能多流传输,则可以通过上述方法假设基站和UE均需要假设较小的秩,从而保证BWP切换或跨BWP调度时数据传输的鲁棒性。
(d2) 速率匹配指示
速率匹配指示可以为UE指示是否使能速率匹配资源。
使能速率匹配资源时,不用于映射PDSCH,即不在速率匹配资源中传输PDSCH。示例性地,基站通过上述频域资源分配指示为UE配置的资源中,可能包括速率匹配资源中的部分资源A或全部资源A,如果使能了该速率匹配资源,则基站和UE不在资源A中传输PDSCH。不使能速率匹配资源时,可以映射PDSCH,即可以在速率匹配资源中传输PDSCH。
对于一个BWP A,基站可以通过预配置或者半静态配置为UE配置多个速率匹配资源,每个速率匹配资源可以对应唯一的一个标识,基站可以通过DCI A为UE使能该多个速率匹配资源中的至少一个。该多个速率匹配资源可以包括于至少一个资源组 中,至少一个资源组可以称为该BWP的资源组,该至少一个资源组中的任一个资源组中可以包括至少一个速率匹配资源。对于不同的BWP,可以为各BWP独立配置资源组,各BWP的资源组可以相同也可以不同,本申请不做限制。
对于一个BWP A,通过DCI A在BWP A中进行BWP A对应的调度时,DCI A中可以包括速率匹配指示,用于使能BWP A的速率匹配资源。示例性地,如果BWP A的速率匹配资源中包括1个资源组,DCI A中的速率匹配指示可以为1比特,当该1比特的值为0时,使能该1个资源组中的速率匹配资源;当该1比特的值为1时,不使能该1个资源组中的速率匹配资源。再示例性地,如果BWP A的速率匹配资源中包括2个资源组,该2个资源组分别为资源组0和资源组1,DCI A中的速率匹配指示可以为2比特,当该2比特的值为00时,使能资源组0和资源组1中的速率匹配资源;当该2比特的值为01时,使能资源组0中的速率匹配资源;当该2比特的值为10时,使能资源组1中的速率匹配资源;当该2比特的值为11时,不使能资源组0和资源组1中的速率匹配资源。
示例性地,通过DCI进行BWP切换或跨BWP调度时,基站在第一BWP的搜索空间中向UE发送第一DCI,如果第一DCI中不包括速率匹配指示,则基站为UE使能第二BWP的各资源组中的速率匹配资源。UE在第一BWP接收该第一DCI,如果第一DCI中不包括速率匹配指示,则UE认为使能第二BWP的各资源组中的速率匹配资源。示例性地,如果第二BWP的资源组包括资源组0,如果第一DCI中不包括速率匹配指示,则UE接收到第一DCI后,认为使能第二BWP的资源组0中的速率匹配资源。再示例性地,如果第二BWP的资源组包括资源组0和资源组1,如果第一DCI中不包括速率匹配指示,则UE接收到第一DCI后,认为使能第二BWP的资源组0和资源组1中的速率匹配资源。
再示例性地,通过DCI进行BWP切换或跨BWP调度时,例如在第一BWP的搜索空间中通过第一DCI进行针对第二BWP的调度时,预配置不使能第二BWP的资源组0和资源1的的速率匹配资源;或者预配置使能第二BWP的资源组0和资源1的速率匹配资源;或者预配置使能资源组0的速率匹配资源,不使能资源1的速率匹配资源;或者预配置使能资源组1的速率匹配资源,不使能资源0的速率匹配资源。
再示例性地,通过DCI进行BWP切换或跨BWP调度时,基站在第一BWP的搜索空间中向UE发送第一DCI,第一DCI中包括1比特速率匹配指示,用于使能2个资源组中的资源组的速率匹配资源,该2个资源组为第二BWP的资源组。
示例性地,当第一DCI中速率匹配指示为t1时,表示使能第二BWP上的资源组0和资源组1中的速率匹配资源;当第一DCI中速率匹配指示为t2时,表示不使能资源组0和资源组1中的速率匹配资源。
示例性地,当第一DCI中速率匹配指示为t1时,表示使能第二BWP上的资源组0和资源组1中的速率匹配资源;当第一DCI中速率匹配指示为t2时,表示不使能资源组0中的速率匹配资源,使能第二BWP上的资源组1中的速率匹配资源。
示例性地,当第一DCI中速率匹配指示为t1时,表示使能第二BWP上的资源组0中的速率匹配资源,不使能第二BWP上的资源组1中的速率匹配资源;当第一DCI中速率匹配指示为t2时,表示不使能资源组0和资源组1中的速率匹配资源。
示例性地,当第一DCI中速率匹配指示为t1时,表示使能第二BWP上的资源组1中的速率匹配资源,不使能第二BWP上的资源组0中的速率匹配资源;当第一DCI中速率匹配指示为t2时,表示不使能资源组0和资源组1中的速率匹配资源。
再示例性地,当第一DCI中速率匹配指示为t1时,表示使能第二BWP上的资源组0和资源组1中的速率匹配资源,当第一DCI中速率匹配指示为t2时,表示使能资源组0中的速率匹配资源,不使能资源组1中的速率匹配资源。示例性地,t1=0,t2=1。本示例中,资源组0和资源组1可以互换,不做限制。
示例性地,第二DCI中包括2比特速率匹配指示,第二DCI用于在第二BWP的搜索空间对UE进行调度,第二DCI中的速率匹配指示用于使能2个资源组中的资源组的速率匹配资源,该2个资源组为第二BWP的资源组0和资源组1。
再示例性地,通过DCI进行BWP切换或跨BWP调度时,基站在第一BWP的搜索空间中向UE发送第一DCI,第一DCI中包括1比特速率匹配指示,第二DCI中包括2比特速率匹配指示,第二DCI用于在第二BWP的搜索空间对该UE进行调度,第二DCI中的速率匹配指示用于使能2个资源组中的资源组的速率匹配资源。UE忽略第一DCI中的速率匹配指示,不使能第二BWP上的速率匹配资源。
通过上述方法,可以优先使能第二BWP的速率匹配资源,从而可以避免在第二BWP的速率匹配资源为PDSCH的传输引入干扰,从而使得第二BWP的数据传输的鲁棒性更高。
(e2)零功率CSI RS资源
零功率CSI RS资源的功能类似速率匹配资源,零功率CSI RS资源类似速率匹配资源,通过第一DCI使能第二BWP的零功率CSI RS资源的设计类似通过第一DCI使能第二BWP中的速率匹配资源的设计。
设计方案二:丢弃信息域/保留部分信息域
在本申请各实施例中,可以将DCI的大小量化为Q比特,Q为正整数,示例性地,Q为40、60、90、小于42的正整数、大于42且小于83的正整数或其它正整数。此时,DCI中还可以包括补零信息域,用于量化该DCI的大小。补零信息域的大小(位数或比特数)等于Q-W sum,W sum为该DCI中除补零信息域以外的其它信息域的大小之和,或者描述为W sum为该DCI中除补零信息域以外的其它信息域的位数之和。示例性地,DCI中除补零信息域以外还包括U个信息域,该U个信息域中第i个信息域的大小(位数)为W i,i=0,1,…,U-1,则该DCI中的补零信息域的大小为
Figure PCTCN2019074555-appb-000164
当补零信息位的大小为0时,可以认为该DCI中不包括补零信息域。该方法中,DCI可以是上行调度DCI,也可以是下行调度DCI。对于上行调度DCI和下行调度DCI,DCI的大小的量化值Q可以相同,也可以不相同,本申请不做限制。通过该方法,可以控制DCI大小的种类,从而可以降低UE检测DCI时的功耗。
通过较小DCI进行BWP切换或者跨BWP调度时,即通过较小的第一DCI在第一 BWP指示针对第二BWP的调度时,第一DCI的大小可能小于第二DCI的大小。其中,第二DCI的大小是根据第二BWP的配置确定的,具体地第二DCI中的信息域的大小是根据第二BWP的配置确定的。此时,对于第二DCI中的一个信息域,第一DCI中可能不包括该信息域,即第一DCI相对于第二DCI保留了第二DCI中的部分信息域,或者描述为第一DCI相对于第二DCI丢弃了第二DCI中的部分信息域。此时,如何通过较小DCI进行BWP切换时的调度或者跨BWP调度即如何通过部分信息域进行BWP切换时的调度或跨BWP调度。基于该技术问题,以下将分别针对上行调度DCI和下行调度DCI,描述设计方案二对应的方法实施例。
基站在第一BWP向UE发送第一DCI,该第一DCI用于指示第二BWP的调度信息,该第一DCI中包括Y1个信息域,UE在第一BWP接收该第一DCI,根据该第一DCI确定第二BWP的调度信息。其中,该Y1个信息域为Y2个信息域中优先级较高的Y1个信息域,该Y2个信息域包括于第二DCI中,第二DCI用于在第二BWP的搜索空间对UE进行对应于第二BWP的调度,其中,Y1和Y2为正整数。类似地,可以认为包括于该Y2个信息域但不包括于该Y1个信息域的信息域为优先级较低的信息域。可选地,对于丢弃的信息域,可以预配置该信息域指示的参数的值,从而可以通过较小的DCI进行调度。
以下将基于信息域的具体内容给出上述方法的具体实施例。
(a3) 丢弃第二传输块的指示信息域
基站在第一BWP向UE发送第一DCI,该第一DCI用于指示第二BWP的PDSCH调度信息,该第一DCI中不包括与第二传输块(transport block,TB)指示相关信息域。示例性地,该与第二TB相关的信息域包括指示调制编码策略(modulation and coding scheme,MCS)的信息域、指示新传数据指示(new data indicator,NDI)的信息域和指示冗余版本(redundancy version,RV)的信息域中的至少一个。
类似地,还可以将该方法中的对于第二TB的指示信息域替换为对于第一TB的指示信息域。
通过该方法,只使能第二BWP中一个TB的传输,从而可以通过较小的第一DCI满足第二BWP的调度需求。进行BWP切换或跨BWP调度时,基站和UE可能没有确定出第二BWP上的信道状态信息,或者没有确定出及时准确的第二BWP上的信道状态信息,因此很难在BWP切换或跨BWP调度时使能多流传输,从而无法使能2个TB的传输,即可以只使能1个TB的传输,因此第一DCI中丢弃对于第二TB的信息域可以满足第二BWP的调度需求。
(b3) 丢弃码块组传输的指示信息域
一个TB可以被划分为多个码块组(code block group,CBG),每个码块组中包含至少一个码块(code block,CB)。在基于CBG的传输时,当发生传输错误时,可以仅重传该多个CBG中的部分CBG,而不用重传整个TB。对于基于CBG的PDSCH传输,UE需要针对每个CBG反馈应答响应,同时还要针对整个TB反馈应答响应。
基站在第一BWP向UE发送第一DCI,该第一DCI用于指示第二BWP的调度信息,该第一DCI中不包括与CBG传输相关的指示信息域。示例性地,该与CBG传输 相关的指示信息域包括指示CBG索引的信息域和指示是否使能CBG传输的信息域中至少一个。此时,UE假设第一DCI调度整个TB被传输或被重传。
通过该方法,可以通过教学的第一DCI满足第二BWP的调度需求。
(c3) 丢弃DMRS指示信息域
基站在第一BWP向UE发送第一DCI,该第一DCI用于指示第二BWP的调度信息,该第一DCI中不包括DMRS指示信息域。示例性地,该DMRS指示信息域包括指示DMRS天线端口配置的信息域和指示用于确定DMRS序列的初始化参数的信息域中的至少一个。此时,UE使用预设初始化参数确定DMRS序列,使用预设的DMRS天线端口配置传输DMRS,示例性地,预设的DMRS天线端口配置对应的DMRS天线端口的个数为1,DMRS映射至的符号个数为1。
(d3) 丢弃PRB绑定指示信息域
基站可以通过半静态信令为UE配置半静态的PRB绑定大小,基站还可以通过半静态信令为UE配置PRB绑定大小集合,并通过DCI指示UE使用该PRB绑定大小集合中的一个。基站可以通过半静态信令指示UE是使用半静态的PRB绑定大小,还是根据DCI确定PRB绑定大小。UE根据指示PRB绑定大小确定PRB绑定,并假设在一个PRB绑定中使用相同的预编码。
基站在第一BWP向UE发送第一DCI,该第一DCI用于指示第二BWP的调度信息,该第一DCI中不包括PRB绑定指示信息域。此时,UE使用半静态的PRB绑定大小确定PRB绑定。
在设计方案二中,上述(a4)至的方法可以任意组合。例如,上述Y1个信息域中不包括对于第二TB的指示信息域、CBG的指示信息域、DMRS指示信息域和PRB绑定指示信息域中至少一个。
在设计方案二中,对于一个信息域,第一DCI中该信息域的大小可以等于第二DCI中该信息域的大小;第一DCI中该信息域的大小还可以小于第二DCI中该信息域的大小,即第一DCI中该信息域为截断信息域。对于一个信息域,当第一DCI中该信息域为截断信息域时,可以使用本申请实施例中设计方案一中描述的相应的方法进行BWP切换时的调度或者跨BWP调度,这里不再赘述。示例性地,可以优先对优先级低的信息域进行信息域的截断。再示例性地,可以按照信息域的优先级配置信息域的截断比例。对于一个信息域,信息域的截断比例可以是
Figure PCTCN2019074555-appb-000165
或其它通过
Figure PCTCN2019074555-appb-000166
Figure PCTCN2019074555-appb-000167
进行线性运算得到的值,其中,
Figure PCTCN2019074555-appb-000168
为第一DCI中该信息域的大小,
Figure PCTCN2019074555-appb-000169
为第一DCI中该信息域的大小。
在设计方案一或设计方案二中,对于一个信息域,第一DCI中该信息域的大小可以等于第三DCI中该信息域的大小,第三是在第一BWP对第一BWP进行调度的DCI。第三DCI中的信息域的大小可以是根据第一BWP的配置确定的。
设计方案三:根据DCI类型确定搜索空间
在本申请实施例中,对于一个BWP,对于PDCCH,基站可以通过预配置或者信令通知的方法为UE配置多个搜索空间集合。不同UE的搜索空间集合的配置可以相同,也可以不同,本申请不做限制。其中,每个搜索空间对应的配置信息可以包括以下至 少一个:
-聚合等级,用于指示用于传输PDCCH的资源的大小;
在本申请各实施例中,PDCCH的聚合等级可以是PDCCH中包括的控制资源元素(control channel element,CCE)的个数,其中,一个CCE中可以包括正整数个RE。对于一个搜索空间集合,可以配置一个或多个聚合等级。
在本申请各实施例中,对于一个搜索空间集合,UE在该搜索空间中检测PDCCH时,认为该PDCCH的聚合等级可以是该搜索空间集合中的任一个聚合等级。
-候选资源集合中候选资源的个数;
在本申请各实施例中,对于一个聚合等级,UE在搜索空间集合中使用该聚合等级检测PDCCH时,认为该PDCCH可以在与该聚合等级对应候选资源集合中的任一个候选资源中进行传输。此时,UE可以在候选资源集合中的候选资源进行盲检测。示例性地,对于一个PDCCH,UE从候选资源集合中第一个候选资源开始检测该PDCCH,如果UE在该候选资源集合中的一个候选资源检测到了该PDCCH,则UE可以停止检测。在一个搜索空间集合,UE可以检测一个或多个PDCCH。
在本申请各实施例中,对于一个搜索空间集合,如果该搜索空间对应的配置信息中包括多个聚合等级,则不同聚合等级对应的候选资源集合中候选资源的个数可以相同,也可以不同,本申请不做限制。
-DCI大小,用于指示该PDCCH中携带的DCI的大小,或者用于指示该PDCCH中携带的DCI的量化大小,UE使用该DCI大小检测该PDCCH。
在本申请各实施例中,对于一个搜索空间集合,针对不同的DCI格式,DCI大小可以相同,也可以不同,本申请不做限制。
对于配置了多个搜索空间集合的场景,本申请实施例提出了设计方案三相应的方法。
在设计方案三中,示例性地,UE在同一调度周期、同一时隙或同一时间范围内检测第一DCI和第四DCI。其中,UE在第一候选资源中检测第一DCI,该第一候选资源包括于PDCCH的第一候选资源集合中,该第一候选资源集合对应于PDCCH的第一搜索空间集合,该第一搜索空间集合对应第一DCI大小,第四DCI大小大于第一DCI大小,UE在第二候选资源中检测第四DCI,该第二候选资源包括于PDCCH的第二候选资源集合中,该第二候选资源集合对应于PDCCH的第二搜索空间集合,该第二搜索空间集合对应第四DCI大小。第一搜索空间集合为对应于第一BWP的搜索空间,第二搜索空间集合可以对应于第一BWP的搜索空间,也可以不对应第一BWP的搜索空间,本申请不做限制。示例性地,第一DCI用于调度PDSCH,第四DCI用于调度PUSCH。第四DCI可以是对应于第一BWP的DCI,也可以是对应于第二BWP的DCI,还可以是对应于其它BWP的DCI,本申请不做限制。当第一DCI用于在第一搜索空间集合指示第二BWP的调度信息时,所需比特数可能大于第一DCI大小时,UE可以在第二搜索空间集合中第二候选资源集合中的第二候选资源集合上使用第四DCI大小检测第一DCI。进一步地,UE还可以在第一搜索空间集合中第一候选资源集合上使用 第一DCI大小检测第一DCI,在第二搜索空间集合中第二候选资源集合上使用第四DCI大小检测第四DCI。
通过该设计,将用于BWP切换或者跨BWP调度的DCI在较大DCI大小对应的候选资源传输,可以降低该DCI大小不能满足第二BWP调度需求的概率。或者,在第二搜索空间集合中第二候选资源集合上使用第二DCI大小检测第一DCI和第四DCI不会增加UE检测PDCCH的最大次数。
可选地,设计方案三的上述方法可以结合设计方案一和/或设计方案二中的方法,即第一DCI中的信息域可以是截断信息域,和/或第一DCI是保留部分信息域的DCI。
上述本申请提供的实施例中,从基站和UE交互的角度对本申请实施例提供的方法进行了介绍。为了实现本申请实施例提供的方法中的各功能,基站和UE可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图5是本申请实施例提供的装置500的结构示意图。其中,装置500可以是UE,能够实现本申请实施例提供的方法中UE的功能;装置500也可以是能够支持UE实现本申请实施例提供的方法中UE的功能的装置。装置500可以是硬件结构、软件模块、或硬件结构加软件模块。装置500可以由芯片系统实现。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
如图5所示,装置500中包括通信模块502,还可以包括DCI处理模块504,通信模块502可以和DCI处理模块504耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
通信模块502用于接收第一DCI,通信模块502还可以用于接收以下至少一个:第二DCI、第三DCI和PDSCH,通信模块502还可以用于发送PUSCH。通信模块502用于装置500和其它模块进行通信,其可以是电路、器件、接口、总线、软件模块、收发器或者其它任意可以实现通信的装置。
DCI处理模块504用于处理通信模块502接收到的DCI。示例性地,DCI处理模块504用于对通信模块502接收到的DCI进行解码。再示例性地,DCI处理模块504用于根据通信模块502接收到的DCI确定调度信息。
装置500中还可以包括PUSCH生成模块506,PUSCH生成模块506和通信模块502耦合,PUSCH生成模块506用于根据通信模块502接收到的上行调度DCI生成PUSCH,其中,上行调度DCI可以是第一DCI、第二DCI和第三DCI中至少一个。
装置500中还可以包括PDSCH处理模块508,PDSCH处理模块508和通信模块502耦合,PDSCH处理模块508用于根据通信模块502接收到下行调度DCI对通信模块502接收到的PDSCH进行解码,其中,下行调度DCI可以是第一DCI、第二DCI中第三DCI至少一个。
图6是本申请实施例提供的装置600的结构示意图。其中,装置600可以是基站, 能够实现本申请实施例提供的方法中基站的功能;装置600也可以是能够支持基站实现本申请实施例提供的方法中基站的功能的装置。装置600可以是硬件结构、软件模块、或硬件结构加软件模块。装置600可以由芯片系统实现。
如图6所示,装置600中包括DCI生成模块604和通信模块602,通信模块602和DCI生成模块604耦合。
DCI生成模块604用于生成第一DCI,还可以用于生成第二DCI或第三DCI。
通信模块602用于发送第一DCI,通信模块602还可以用于发送以下至少一个:第二DCI、第三DCI和PDSCH,通信模块602还可以用于接收PUSCH。通信模块602用于装置600和其它模块进行通信,其可以是电路、器件、接口、总线、软件模块、收发器或者其它任意可以实现通信的装置。
装置600中还可以包括PUSCH处理模块606,PUSCH处理模块606和通信模块602耦合,PUSCH处理模块606用于处理通信模块602接收到的PUSCH。例如,PUSCH处理模块606用于对通信模块602接收到的PUSCH进行解码。
装置600中还可以包括PDSCH生成模块608,PDSCH生成模块608和通信模块602耦合,PDSCH生成模块608用于生成PDSCH。
图7是本申请实施例提供的装置700的结构示意图。其中,装置700可以是UE,能够实现本申请实施例提供的方法中UE的功能;装置700也可以是能够支持UE实现本申请实施例提供的方法中UE的功能的装置。
如图7中所示,装置700包括处理系统702,用于实现或者用于支持UE实现本申请实施例提供的方法中UE的功能。处理系统702可以是一种电路,该电路可以由芯片系统实现。处理系统702中包括一个或多个处理器722,可以用于实现或者用于支持UE实现本申请实施例提供的方法中UE的功能。当处理系统702中包括除处理器722以外的其它装置时,处理器722还可以用于管理处理系统702中包括的其它装置,示例性地,该其它装置可能为下述存储器724、总线726和总线接口728中一个或多个。
本申请实施例中,处理器可以是中央处理器(central processing unit,CPU),通用处理器网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器还可以是其它任意具有处理功能的装置,例如电路、器件或软件模块。
处理系统702中还可以包括一个或多个存储器724,用于存储程序指令和/或数据。进一步地,存储器724还可以包括于处理器722中。如果处理系统702中包括存储器724,处理器722可以和存储器724耦合。处理器722可以和存储器724协同操作。处理器722可以执行存储器724中存储的程序指令。当处理器722执行存储器724中存储的程序指令时,可以实现或者支持UE实现本申请实施例提供的方法中UE的功能。处理器722还可能读取存储器724中存储的数据。存储器724还可能存储处理器722执行程序指令时得到的数据。
本申请实施例中,存储器包括易失性存储器(volatile memory),例如随机存取 存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合;存储器还可以包括其它任何具有存储功能的装置,例如电路、器件或软件模块。
处理器722实现或者支持UE实现本申请实施例提供的方法时,处理器722可以接收和处理第一DCI,处理器722还可以接收和处理以下至少一个:第二DCI、第三DCI和PDSCH,处理器722还可以生成和发送PUSCH。
处理系统702还可以包括总线接口728,用于提供总线726和其它装置之间的接口。
装置700中还可以包括收发器706,用于通过传输介质和其它通信设备进行通信,从而用于装置700中的其它装置可以和其它通信设备进行通信。其中,该其它装置可能是处理系统702。示例性地,装置700中的其它装置可能利用收发器706和其它通信设备进行通信,接收和/或发送相应的信息。还可以描述为,装置700中的其它装置可能接收相应的信息,其中,该相应的信息由收发器706通过传输介质进行接收,该相应的信息可以通过总线接口728或者通过总线接口728和总线726在收发器706和装置700中的其它装置之间进行交互;和/或,装置700中的其它装置可能发送相应的信息,其中,该相应的信息由收发器706通过传输介质进行发送,该相应的信息可以通过总线接口728或者通过总线接口728和总线726在收发器706和装置700中的其它装置之间进行交互。
装置700还可能包括用户接口704,用户接口704是用户和装置700之间的接口,可能用于用户和装置700进行信息交互。示例性地,用户接口704可能是键盘、鼠标、显示器、扬声器(speaker)、麦克风和操作杆中至少一个。
上述主要从装置700的角度描述了本申请实施例提供的一种装置结构。在该装置中,处理系统702包括处理器722,还可以包括存储器724、总线726和总线接口728中一个或多个,用于实现本申请实施例提供的方法。处理系统702也在本申请的保护范围。
图8是本申请实施例提供的装置800的结构示意图。其中,装置800可以是基站,能够实现本申请实施例提供的方法中基站的功能;装置800也可以是能够支持基站实现本申请实施例提供的方法中基站的功能的装置。
如图8中所示,装置800包括处理系统802,用于实现或者用于支持基站实现本申请实施例提供的方法中基站的功能。处理系统802可以是一种电路,该电路可以由芯片系统实现。处理系统802中包括一个或多个处理器822,可以用于实现或者用于支持基站实现本申请实施例提供的方法中基站的功能。当处理系统802中包括除处理器822以外的其它装置时,处理器822还可以用于管理处理系统802中包括的其它装置,示例性地,该其它装置可能为下述存储器824、总线826和总线接口828中一个或多个。
处理系统802中还可以包括一个或多个存储器824,用于存储程序指令和/或数据。进一步地,存储器824还可以包括于处理器822中。如果处理系统802包括存储器824,处理器822可以和存储器824耦合。处理器822可以和存储器824协同操作。处理器 822可以执行存储器824中存储的程序指令。当处理器822执行存储器824中存储的程序指令时,可以实现或者支持基站实现本申请实施例提供的方法中基站的功能。处理器1822还可能读取存储器824中存储的数据。存储器824还可能存储处理器822执行程序指令时得到的数据。
处理器822实现或者支持基站实现本申请实施例提供的方法时,处理器822可以生成和发送第一DCI,处理器822还可以生成和发送以下至少一个:第二DCI、第三DCI和PDSCH,处理器822还可以接收和处理PUSCH。
处理系统802还可以包括总线接口828,用于提供总线826和其它装置之间的接口。
装置800还可能包括收发器806,用于通过传输介质和其它通信设备进行通信,从而用于装置800中的其它装置可以和其它通信设备进行通信。其中,该其它装置可能是处理系统802。示例性地,装置800中的其它装置可能利用收发器806和其它通信设备进行通信,接收和/或发送相应的信息。还可以描述为,装置800中的其它装置可能接收相应的信息,其中,该相应的信息由收发器806通过传输介质进行接收,该相应的信息可以通过总线接口828或者通过总线接口828和总线826在收发器806和装置800中的其它装置之间进行交互;和/或,装置800中的其它装置可能发送相应的信息,其中,该相应的信息由收发器806通过传输介质进行发送,该相应的信息可以通过总线接口828或者通过总线接口828和总线826在收发器806和装置800中的其它装置之间进行交互。
装置800还可能包括用户接口804,用户接口804是用户和装置800之间的接口,可能用于用户和装置800进行信息交互。示例性地,用户接口804可能是键盘、鼠标、显示器、扬声器(speaker)、麦克风和操作杆中至少一个。
上述主要从装置800的角度描述了本申请实施例提供的一种装置结构。在该装置中,处理系统802包括处理器822,还可以包括存储器824、总线826和总线接口828中一个或多个,用于实现本申请实施例提供的方法。处理系统802也在本申请的保护范围。
本申请的装置实施例中,装置的模块划分是一种逻辑功能划分,实际实现时可以有另外的划分方式。例如,装置的各功能模块可以集成于一个模块中,也可以是各个功能模块单独存在,也可以两个或两个以上功能模块集成在一个模块中。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存 取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
以上各实施例仅用以说明本申请的技术方案,并不用于限定其保护范围。凡在本申请的技术方案的基础上所做的修改、等同替换、改进等,均应包括在本申请的保护范围之内。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。

Claims (46)

  1. 一种下行控制信息DCI传输方法,其特征在于,包括:
    经由第一带宽部分BWP接收第一DCI,所述第一DCI包括BWP指示和第一频域资源分配指示,所述BWP指示所指示的BWP为第二BWP,
    如果第二BWP的资源分配类型包括第一类型和第二类型,且所述第一频域资源分配指示的信息域尺寸小于第二频域资源分配指示的信息域尺寸,则所述第一频域资源分配指示使用所述第一类型指示在所述第二BWP中的频域资源,所述第二频域资源分配指示用于经由所述第二BWP指示在所述第二BWP中的频域资源。
  2. 根据权利要求1所述的方法,其特征在于,所述方法包括:使用所述第一类型,根据所述第一频域资源分配指示确定在所述第二BWP中的频域资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一类型是类型0,所述第二类型是类型1。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一频域资源分配指示使用所述第一类型指示在所述第二BWP中的频域资源,包括:
    所述第一频域资源分配指示中包括N个比特,所述N个比特分别对应于所述第二BWP中的资源块组RBG 0至RBG N-1,其中,N为大于等于1的整数;
    对于所述N个比特中的一个比特,当所述一个比特的值为1时,则在所述第二BWP中的频域资源包括所述一个比特对应的一个RBG;当所述一个比特的值不为1时,则在所述第二BWP中的频域资源不包括所述一个比特对应的一个RBG。
  5. 根据权利要求4所述的方法,其特征在于,所述N等于所述第二BWP中包括的RBG的个数。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,第二DCI中包括所述第二频域资源分配指示,其中,所述第二DCI是用于在所述第二BWP中传输的DCI。
  7. 一种下行控制信息传输方法,其特征在于,包括:
    经由第一带宽部分BWP发送第一DCI,所述第一DCI包括BWP指示和第一频域资源分配指示,所述BWP指示所指示的BWP为第二BWP,
    如果第二BWP的资源分配类型包括第一类型和第二类型,且所述第一频域资源分配指示的信息域尺寸小于第二频域资源分配指示的信息域尺寸,则所述第一频域资源分配指示使用所述第一类型指示在所述第二BWP中的频域资源,所述第二频域资源分配指示用于经由所述第二BWP指示在所述第二BWP中的频域资源。
  8. 根据权利要求7所述的方法,其特征在于,所述第一类型是类型0,所述第二类型是类型1。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一频域资源分配指示使用所述第一类型指示在所述第二BWP中的频域资源,包括:
    所述第一频域资源分配指示中包括N个比特,所述N个比特分别对应于所述第二BWP中的资源块组RBG 0至RBG N-1,其中,N为大于等于1的整数;
    对于所述N个比特中的一个比特,当所述一个比特的值为1时,在所述第二BWP中的频域资源包括所述一个比特对应的一个RBG;当所述一个比特的值不为1时,在所述第二BWP中的频域资源不包括所述一个比特对应的一个RBG。
  10. 根据权利要求9所述的方法,其特征在于,所述N等于所述第二BWP中包括的RBG的个数。
  11. 根据权利要求7-10任一项所述的方法,其特征在于,第二DCI中包括所述第二频域资源分配指示,其中,所述第二DCI是用于在所述第二BWP中传输的DCI。
  12. 一种通信装置,用于实现权利要求1-6任一项所述的方法。
  13. 一种通信装置,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于:
    经由第一带宽部分BWP接收第一DCI,所述第一DCI包括BWP指示和第一频域资源分配指示,所述BWP指示所指示的BWP为第二BWP,
    如果第二BWP的资源分配类型包括第一类型和第二类型,且所述第一频域资源分配指示的信息域尺寸小于第二频域资源分配指示的信息域尺寸,则所述第一频域资源分配指示使用所述第一类型指示在所述第二BWP中的频域资源,所述第二频域资源分配指示用于经由所述第二BWP指示在所述第二BWP中的频域资源。
  14. 根据权利要求13所述的通信装置,其特征在于,所述处理器用于使用所述第一类型,根据所述第一频域资源分配指示确定在所述第二BWP中的频域资源。
  15. 根据权利要求13或14所述的通信装置,其特征在于,所述第一类型是类型0,所述第二类型是类型1。
  16. 根据权利要求13至15任一项所述的通信装置,其特征在于,所述第一频域资源分配指示使用所述第一类型指示在所述第二BWP中的频域资源,包括:
    所述第一频域资源分配指示中包括N个比特,所述N个比特分别对应于所述第二BWP中的资源块组RBG 0至RBG N-1,其中,N为大于等于1的整数;
    对于所述N个比特中的一个比特,当所述一个比特的值为1时,在所述第二BWP中的频域资源包括所述一个比特对应的一个RBG;当所述一个比特的值不为1时,在所述第二BWP中的频域资源不包括所述一个比特对应的一个RBG。
  17. 根据权利要求16所述的通信装置,其特征在于,所述N等于所述第二BWP中包括的RBG的个数。
  18. 根据权利要求13-17任一项所述的通信装置,其特征在于,第二DCI中包括所述第二频域资源分配指示,其中,所述第二DCI是用于在所述第二BWP中传输的DCI。
  19. 根据权利要求13-18任一项所述的通信装置,其特征在于,所处通信装置包 括收发器,所述收发器用于所述通信装置和网络设备进行通信。
  20. 一种通信装置,用于实现权利要求7-11任一项所述的方法。
  21. 一种通信装置,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于:
    经由第一带宽部分BWP发送第一DCI,所述第一DCI包括BWP指示和第一频域资源分配指示,所述BWP指示所指示的BWP为第二BWP,
    如果第二BWP的资源分配类型包括第一类型和第二类型,且所述第一频域资源分配指示的信息域尺寸小于第二频域资源分配指示的信息域尺寸,则所述第一频域资源分配指示使用所述第一类型指示在所述第二BWP中的频域资源,所述第二频域资源分配指示用于经由所述第二BWP指示在所述第二BWP中的频域资源。
  22. 根据权利要求21所述的通信装置,其特征在于,所述第一类型是类型0,所述第二类型是类型1。
  23. 根据权利要求21或22所述的通信装置,其特征在于,所述第一频域资源分配指示使用所述第一类型指示在所述第二BWP中的频域资源,包括:
    所述第一频域资源分配指示中包括N个比特,所述N个比特分别对应于所述第二BWP中的资源块组RBG 0至RBG N-1,其中,N为大于等于1的整数;
    对于所述N个比特中的一个比特,当所述一个比特的值为1时,在所述第二BWP中的频域资源包括所述一个比特对应的一个RBG;当所述一个比特的值不为1时,在所述第二BWP中的频域资源不包括所述一个比特对应的一个RBG。
  24. 根据权利要求23所述的通信装置,其特征在于,所述N等于所述第二BWP中包括的RBG的个数。
  25. 根据权利要求21-24任一项所述的通信装置,其特征在于,第二DCI中包括所述第二频域资源分配指示,其中,所述第二DCI是用于在所述第二BWP中传输的DCI。
  26. 根据权利要求21-25任一项所述的通信装置,其特征在于,所处通信装置包括收发器,所述收发器用于所述通信装置和终端设备进行通信。
  27. 一种下行控制信息传输方法,其特征在于,包括:
    在第一带宽部分BWP中接收第一DCI,所述第一DCI中包括BWP指示,所述BWP指示所指示的BWP为第二BWP,所述第一DCI中包括所述第二BWP的第一传输块TB的信息域,且所述第一DCI中不包括所述第二BWP的第二TB的信息域。
  28. 一种下行控制信息传输方法,其特征在于,包括:
    在第一带宽部分BWP接收第一DCI,所述第一DCI中包括BWP指示,所述BWP指示所指示的BWP为第二BWP,所述第一DCI中包括所述第二BWP的第一传输块TB的信息域;
    忽略所述第一DCI中的第二BWP的第二TB的信息域。
  29. 根据权利要求27或28所述的方法,其特征在于,所述第一TB的信息域中包括以下至少一个信息域:
    调制编码策略MCS信息域、新传数据指示NDI信息域和冗余版本RV信息域。
  30. 根据权利要求27-29任一项所述的方法,其特征在于,所述第二BWP的TB的最大个数为2。
  31. 一种下行控制信息传输方法,其特征在于,包括:
    在第一带宽部分BWP中发送第一DCI,所述第一DCI中包括BWP指示,所述BWP指示所指示的BWP为第二BWP,所述第一DCI中包括所述第二BWP的第一传输块TB的信息域,且所述第一DCI中不包括所述第二BWP的第二TB的信息域。
  32. 根据权利要求31所述的方法,其特征在于,所述第一TB的信息域中包括以下至少一个信息域:
    调制编码策略MCS信息域、新传数据指示NDI信息域和冗余版本RV信息域。
  33. 根据权利要求31或32所述的方法,其特征在于,所述第二BWP的TB的最大个数为2。
  34. 一种通信装置,用于实现权利要求27-30任一项所述的方法。
  35. 一种通信装置,包括处理器和存储器,所述处理器和存储器耦合,
    所述处理器用于在第一带宽部分BWP中接收第一DCI,所述第一DCI中包括BWP指示,所述BWP指示所指示的BWP为第二BWP,所述第一DCI中包括所述第二BWP的第一传输块TB的信息域,且所述第一DCI中不包括所述第二BWP的第二TB的信息域。
  36. 一种通信装置,包括处理器和存储器,所述处理器和存储器耦合,所述处理器用于:
    在第一带宽部分BWP接收第一DCI,所述第一DCI中包括BWP指示,所述BWP指示所指示的BWP为第二BWP,所述第一DCI中包括所述第二BWP的第一传输块TB的信息域;
    忽略所述第一DCI中的第二BWP的第二TB的信息域。
  37. 根据权利要求35或36所述的通信装置,其特征在于,所述第一TB的信息域中包括以下至少一个信息域:
    调制编码策略MCS信息域、新传数据指示NDI信息域和冗余版本RV信息域。
  38. 根据权利要求35-37任一项所述的通信装置,其特征在于,所述第二BWP的TB的最大个数为2。
  39. 根据权利要求35-38任一项所述的通信装置,其特征在于,所处通信装置包括收发器,所述收发器用于所述通信装置和网络设备进行通信。
  40. 一种通信装置,用于实现权利要求31-33任一项所述的方法。
  41. 一种通信装置,包括处理器和存储器,所述处理器和存储器耦合,
    所述处理器用于在第一带宽部分BWP中发送第一DCI,所述第一DCI中包括BWP指示,所述BWP指示所指示的BWP为第二BWP,所述第一DCI中包括所述第二BWP的第一传输块TB的信息域,且所述第一DCI中不包括所述第二BWP的第二TB的信息域。
  42. 根据权利要求41所述的通信装置,其特征在于,所述第一TB的信息域中包括以下至少一个信息域:
    调制编码策略MCS信息域、新传数据指示NDI信息域和冗余版本RV信息域。
  43. 根据权利要求41或42所述的通信装置,其特征在于,所述第二BWP的TB的最大个数为2。
  44. 根据权利要求41-43任一项所述的通信装置,其特征在于,所处通信装置包括收发器,所述收发器用于所述通信装置和终端设备进行通信。
  45. 一种通信系统,其特征在于,包括权利要求12-19任一项所述的通信装置和权利要求20-26任一项所述的通信装置,或者包括权利要求34-39任一项所述的通信装置和权利要求40-44任一项所述的通信装置。
  46. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至11任一项所述的方法,或者使得计算机执行权利要求27至33任一项所述的方法。
PCT/CN2019/074555 2018-02-14 2019-02-02 下行控制信息传输方法 WO2019158005A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020552091A JP7059393B2 (ja) 2018-02-14 2019-02-02 ダウンリンク制御情報伝送方法
BR112020016565-4A BR112020016565A2 (pt) 2018-02-14 2019-02-02 Método de transmissão de informação de controle de enlace descendente
EP23158129.9A EP4221403A3 (en) 2018-02-14 2019-02-02 Downlink control information transmission method
EP19754092.5A EP3709740B1 (en) 2018-02-14 2019-02-02 Method for transmitting downlink control information
US16/890,006 US11445536B2 (en) 2018-02-14 2020-06-02 Downlink control information transmission method
JP2022066633A JP7449974B2 (ja) 2018-02-14 2022-04-13 ダウンリンク制御情報伝送方法
US17/891,927 US11930508B2 (en) 2018-02-14 2022-08-19 Downlink control information transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810152331.5A CN110166209B (zh) 2018-02-14 2018-02-14 下行控制信息传输方法
CN201810152331.5 2018-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/890,006 Continuation US11445536B2 (en) 2018-02-14 2020-06-02 Downlink control information transmission method

Publications (1)

Publication Number Publication Date
WO2019158005A1 true WO2019158005A1 (zh) 2019-08-22

Family

ID=67134916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074555 WO2019158005A1 (zh) 2018-02-14 2019-02-02 下行控制信息传输方法

Country Status (6)

Country Link
US (2) US11445536B2 (zh)
EP (2) EP3709740B1 (zh)
JP (2) JP7059393B2 (zh)
CN (2) CN109995497B (zh)
BR (1) BR112020016565A2 (zh)
WO (1) WO2019158005A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245586A (zh) * 2020-01-10 2020-06-05 北京紫光展锐通信技术有限公司 Dci的生成方法、小区的调度方法、系统、设备和介质
WO2021114060A1 (zh) * 2019-12-09 2021-06-17 华为技术有限公司 通信方法及相关装置、设备
CN113473611A (zh) * 2020-03-31 2021-10-01 维沃移动通信有限公司 资源调度方法、装置及ue
CN113543345A (zh) * 2020-04-13 2021-10-22 维沃移动通信有限公司 资源确定方法、指示方法及设备
CN114041312A (zh) * 2020-02-14 2022-02-11 华为技术有限公司 一种资源指示和确定方法及相关装置
EP4089971A4 (en) * 2020-01-20 2023-01-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. FREQUENCY HOPPING METHOD, ELECTRONIC DEVICE AND STORAGE MEDIA

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159000A1 (en) * 2018-02-14 2019-08-22 Lenovo (Singapore)Pte. Ltd. Activating a bandwidth part
CN109995497B (zh) * 2018-02-14 2020-08-07 华为技术有限公司 下行控制信息传输方法
DK3602951T3 (da) * 2018-03-27 2021-06-07 Ericsson Telefon Ab L M Signalering af frekvensdomæne-ressourcetildeling
US11032001B2 (en) 2018-04-05 2021-06-08 Qualcomm Incorporated Timing parameter management for bandwidth part switching
EP4274137A3 (en) * 2018-04-05 2024-02-14 LG Electronics Inc. Method for transmitting and receiving downlink data channel and apparatus therefor
US20200022144A1 (en) * 2018-07-09 2020-01-16 Samsung Electronics Co., Ltd. Overhead reduction and reliability enhancements for dl control signaling
BR112021004023A2 (pt) 2018-09-18 2021-05-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. método de alocação de recurso, e dispositivo terminal
EP3857803A4 (en) * 2018-09-28 2021-12-22 Huawei Technologies Co., Ltd. RESOURCES ALLOCATION FOR TRANSFER WITH CONFIGURED AUTHORIZATION IN AN UNLICENSED SPECTRUM
US11166269B2 (en) * 2019-03-28 2021-11-02 Ofinno, Llc Interaction between power saving adaptation and bandwidth part adaptation
CN110546996B (zh) * 2019-07-23 2022-07-15 北京小米移动软件有限公司 直连通信方法及装置
CN112399627B (zh) * 2019-08-14 2023-09-01 华为技术有限公司 一种dmrs端口确定方法及通信装置
CN112399575B (zh) * 2019-08-15 2024-04-09 华为技术有限公司 通信方法及装置
WO2021031033A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 一种最小可用时间单元偏移值的确定方法及设备
WO2021031041A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 一种通信方法及装置
WO2021035734A1 (zh) * 2019-08-30 2021-03-04 北京小米移动软件有限公司 数据传输方法、装置及存储介质
CN112583546B (zh) * 2019-09-27 2022-07-19 维沃移动通信有限公司 资源配置方法、装置、设备及存储介质
CN116963243A (zh) * 2019-09-30 2023-10-27 大唐移动通信设备有限公司 一种节能信息传输方法、终端和网络侧设备
CN112804755B (zh) * 2019-11-14 2022-09-23 维沃移动通信有限公司 一种上行资源确定方法、指示方法、终端和网络设备
US11985643B2 (en) * 2020-04-10 2024-05-14 Qualcomm Incorporated DCI design for multi-cross carrier scheduling
CN113543037A (zh) * 2020-04-14 2021-10-22 华为技术有限公司 一种通信方法及装置
JP7493057B2 (ja) * 2020-04-29 2024-05-30 エルジー エレクトロニクス インコーポレイティド 複数のtrpのための上りリンク送受信方法及びそのための装置
US11968681B2 (en) * 2020-04-30 2024-04-23 Qualcomm Incorporated Resource allocation for piggyback downlink control information
CN113677024A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 资源确定方法及装置
CN113677013A (zh) * 2020-05-15 2021-11-19 维沃移动通信有限公司 Pusch资源分配方法、装置及电子设备
CN113556821B (zh) * 2020-08-17 2022-05-03 中兴通讯股份有限公司 调度方法、基站及存储介质
WO2022077234A1 (zh) * 2020-10-13 2022-04-21 北京小米移动软件有限公司 下行控制信息调度方法、装置及存储介质
CN112804757B (zh) * 2020-12-30 2023-05-02 联想未来通信科技(重庆)有限公司 一种频域资源分配类型的切换方法、装置及可读存储介质
CN115087107A (zh) * 2021-03-15 2022-09-20 华为技术有限公司 通信方法和装置
CN115379571A (zh) * 2021-05-21 2022-11-22 华为技术有限公司 一种资源指示方法及相关设备
US20230021331A1 (en) * 2021-07-26 2023-01-26 Qualcomm Incorporated Indication of a cancelled hybrid automatic repeat request (harq) codebook
CN115915436A (zh) * 2021-08-06 2023-04-04 大唐移动通信设备有限公司 资源指示方法、终端、网络侧设备、装置和存储介质
CN115767621A (zh) * 2021-09-03 2023-03-07 华为技术有限公司 数据传输方法及通信装置
CN114640424B (zh) * 2022-02-16 2024-04-23 成都中科微信息技术研究院有限公司 一种基于窄带dmrs配置的pdcch盲检测方法、存储介质及计算装置
CN117280810A (zh) * 2022-04-14 2023-12-22 北京小米移动软件有限公司 资源配置的方法、装置、通信设备及存储介质
CN117880985A (zh) * 2022-09-30 2024-04-12 大唐移动通信设备有限公司 信息处理方法、配置方法、装置、终端及网络侧设备
CN118158803A (zh) * 2022-12-06 2024-06-07 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015169037A1 (zh) * 2014-05-09 2015-11-12 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034047A (ja) 2011-08-01 2013-02-14 Sharp Corp 移動通信システム、基地局装置、移動局装置および通信方法
JP5902835B2 (ja) * 2012-02-11 2016-04-13 エルジー エレクトロニクス インコーポレイティド 多元セルベースの無線通信システムにおける下りリンクデータチャネル受信方法及びそのための装置
CN102595385B (zh) * 2012-03-02 2014-06-18 电信科学技术研究院 一种下行传输方法及装置
CN107453840B (zh) * 2016-05-30 2021-08-10 北京三星通信技术研究有限公司 一种资源的调度方法和设备
US10512046B2 (en) * 2016-06-09 2019-12-17 Samsung Electronics Co., Ltd. Method and apparatus for measurement reference signal and synchronization
US20180279289A1 (en) * 2017-03-23 2018-09-27 Huawei Technologies Co., Ltd. System and Method for Signaling for Resource Allocation for One or More Numerologies
US10887903B2 (en) * 2017-10-26 2021-01-05 Ofinno, Llc Wireless device processes with bandwidth part switching
CA3081218A1 (en) * 2017-10-30 2019-05-09 Lg Electronics Inc. Method for determining resource area to be allocated to bandwidth part in wireless communication system, and apparatus therefor
EP3744142A4 (en) * 2018-02-12 2021-01-20 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR TRANSMISSION OF UPLINK INFORMATION
CN109995497B (zh) * 2018-02-14 2020-08-07 华为技术有限公司 下行控制信息传输方法
WO2019193768A1 (ja) * 2018-04-06 2019-10-10 株式会社Nttドコモ ユーザ端末及び無線基地局
EP3567789B1 (en) * 2018-05-11 2020-11-25 ASUSTek Computer Inc. Method and apparatus for determining slot configuration in a wireless communication system
CA3043817A1 (en) * 2018-05-21 2019-11-21 Comcast Cable Communications, Llc Random access procedures using multiple active bandwidth parts
KR102648869B1 (ko) * 2018-09-07 2024-03-19 삼성전자주식회사 무선 통신 시스템에서 다중 mcs를 이용한 데이터 통신 방법 및 장치
US11089585B2 (en) * 2018-09-14 2021-08-10 Ofinno, Llc Transmission structure and access for a radio system
US11083018B2 (en) * 2018-09-17 2021-08-03 Ofinno, Llc Transmission structure with beamforming for a radio system
US11259331B2 (en) * 2018-09-27 2022-02-22 Ofinno, Llc RACH type switching
US20200107319A1 (en) * 2018-09-28 2020-04-02 Lenovo (Singapore) Pte. Ltd. Method and apparatus for generating a csi report
US11399393B2 (en) * 2019-01-09 2022-07-26 Ofinno, Llc Random access backoff indicator
KR20200087465A (ko) * 2019-01-11 2020-07-21 삼성전자주식회사 무선 통신 시스템에서 피드백 송수신 방법 및 장치
US11026223B2 (en) * 2019-01-24 2021-06-01 Qualcomm Incorporated Bandwidth part (BWP) selection
KR20210081931A (ko) * 2019-12-24 2021-07-02 삼성전자주식회사 무선 통신 시스템에서 단말의 전력 소모 감소 방법 및 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015169037A1 (zh) * 2014-05-09 2015-11-12 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Remaining Issues on BWP,", 3GPP TSG RAN WGI MEETING AH 1801 RL-1800283, vol. RAN WG1, 12 January 2018 (2018-01-12), XP051384305 *
CATT: "Remaining Issues on BWP Operation,", 3GPP TSG RAN WGI MEETING NR AD HOC RL-1800262, vol. RAN WG1, 13 January 2018 (2018-01-13), XP051384740 *
NOKIA ET AL.: "On Remaining Aspects of BWPs,", 3GPP TSG-RAN WGI MEETING #9L RL-1720511, vol. RAN WG1, 17 November 2017 (2017-11-17) - 1 December 2017 (2017-12-01), XP051369239 *
QUALCOMM INCORPORATED: "Remaining Issues on BWP,", 3GPP TSG RAN WGI MEETING AH 1801 RL-1800879, vol. RAN WG1, 13 January 2018 (2018-01-13), XP051385148 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021114060A1 (zh) * 2019-12-09 2021-06-17 华为技术有限公司 通信方法及相关装置、设备
EP4061076A4 (en) * 2019-12-09 2022-11-02 Huawei Technologies Co., Ltd. COMMUNICATION METHOD, ASSOCIATED APPARATUS AND DEVICES
CN111245586A (zh) * 2020-01-10 2020-06-05 北京紫光展锐通信技术有限公司 Dci的生成方法、小区的调度方法、系统、设备和介质
CN111245586B (zh) * 2020-01-10 2022-03-25 北京紫光展锐通信技术有限公司 Dci的生成方法、小区的调度方法、系统、设备和介质
EP4089971A4 (en) * 2020-01-20 2023-01-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. FREQUENCY HOPPING METHOD, ELECTRONIC DEVICE AND STORAGE MEDIA
CN114041312A (zh) * 2020-02-14 2022-02-11 华为技术有限公司 一种资源指示和确定方法及相关装置
EP4096320A4 (en) * 2020-02-14 2023-03-15 Huawei Technologies Co., Ltd. RESOURCE DETERMINATION AND INDICATION METHOD AND ASSOCIATED APPARATUS
CN113473611A (zh) * 2020-03-31 2021-10-01 维沃移动通信有限公司 资源调度方法、装置及ue
EP4117366A4 (en) * 2020-03-31 2023-08-09 Vivo Mobile Communication Co., Ltd. RESOURCE PLANNING METHOD AND APPARATUS AND USER DEVICE
CN113543345A (zh) * 2020-04-13 2021-10-22 维沃移动通信有限公司 资源确定方法、指示方法及设备
CN113543345B (zh) * 2020-04-13 2023-07-07 维沃移动通信有限公司 资源确定方法、指示方法及设备

Also Published As

Publication number Publication date
US11930508B2 (en) 2024-03-12
US20230053070A1 (en) 2023-02-16
JP2022106776A (ja) 2022-07-20
CN110166209A (zh) 2019-08-23
EP3709740A1 (en) 2020-09-16
US20200296758A1 (en) 2020-09-17
EP4221403A2 (en) 2023-08-02
EP4221403A3 (en) 2023-10-18
EP3709740A4 (en) 2020-12-09
EP3709740B1 (en) 2023-03-29
US11445536B2 (en) 2022-09-13
JP7449974B2 (ja) 2024-03-14
CN109995497A (zh) 2019-07-09
JP7059393B2 (ja) 2022-04-25
CN110166209B (zh) 2024-05-24
BR112020016565A2 (pt) 2020-12-22
JP2021507650A (ja) 2021-02-22
CN109995497B (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
WO2019158005A1 (zh) 下行控制信息传输方法
US11936587B2 (en) Method and apparatus for processing signal of sidelink feedback channel in wireless communication system
US11490376B2 (en) Methods, base station, UE and computer medium for transmitting data, HARQ-ACK, and OFDM symbols
WO2017041683A1 (zh) 用于上行数据传输的方法、网络设备和终端设备
CN113796142B (zh) 在无线通信系统中发送和接收旁路控制信息的方法和装置
EP2836043B1 (en) Method and device for allocating channel resources of wlan and wireless local area network communication system
US11363499B2 (en) Resource configuration method, apparatus, and system
CN110612693B (zh) 用于在无线通信系统中传输下行链路控制信道的方法和装置
WO2014176967A1 (zh) 一种解调参考信号图样信息的选取方法、系统及装置
WO2017133306A1 (zh) 传输导频信号的方法和装置
US11337188B2 (en) Method and device for transmitting/receiving uplink control information in wireless communication system
WO2019062585A1 (zh) 一种资源调度方法、网络设备以及通信设备
CN117856996A (zh) 通信方法和通信装置
WO2020048481A1 (zh) 通信方法及装置
WO2020169063A1 (zh) 一种数据传输方法及通信装置
WO2020029949A1 (zh) 时域资源配置方法
WO2021189213A1 (zh) 一种控制信息的发送、接收方法及装置
CN116057880A (zh) 用于在无线协作通信系统中发射/接收控制信息的方法和装置
US9877323B1 (en) OFDMA mapping for clients with various bandwidths
WO2019029306A1 (zh) 传输下行控制信息的方法、装置和系统
WO2021031948A1 (zh) 处理数据的方法和通信装置
WO2019047874A1 (zh) 数据发送的方法及装置
WO2024031463A1 (zh) Sl通信方法、装置、设备、存储介质及程序产品
US20240073867A1 (en) Resource selection method and apparatus, device and storage medium
WO2016187854A1 (zh) 通信方法、接入点和站点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020552091

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019754092

Country of ref document: EP

Effective date: 20200612

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020016565

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020016565

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200814