WO2021114060A1 - 通信方法及相关装置、设备 - Google Patents

通信方法及相关装置、设备 Download PDF

Info

Publication number
WO2021114060A1
WO2021114060A1 PCT/CN2019/124145 CN2019124145W WO2021114060A1 WO 2021114060 A1 WO2021114060 A1 WO 2021114060A1 CN 2019124145 W CN2019124145 W CN 2019124145W WO 2021114060 A1 WO2021114060 A1 WO 2021114060A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain resource
pdcch
bwp
indication information
Prior art date
Application number
PCT/CN2019/124145
Other languages
English (en)
French (fr)
Inventor
胡丹
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19956090.5A priority Critical patent/EP4061076A4/en
Priority to PCT/CN2019/124145 priority patent/WO2021114060A1/zh
Priority to CN201980102443.2A priority patent/CN114731643A/zh
Publication of WO2021114060A1 publication Critical patent/WO2021114060A1/zh
Priority to US17/836,201 priority patent/US20220322400A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and related devices and equipment.
  • the typical bandwidth (ie system bandwidth) supported by the new radio (NR) of the fifth-generation (5th-generation, 5G) mobile communication is 100MHz (megahertz), and user equipment (UE) does not need to be connected to Network equipment (such as the base station gNB under the 5G standard) supports the same bandwidth, and the UE only sends and receives information within the working bandwidth.
  • a network device configures a partial bandwidth (BWP) for the UE to send and receive information, and the configured BWP is the working bandwidth of the UE.
  • a UE can be configured with up to 4 downlink partial bandwidths (downlink BWP, DL BWP) on a component carrier (CC).
  • a UE can only have one BWP in the active state, which is called an active BWP (active BWP), and the UE can only send and receive information in the active BWP.
  • active BWP active BWP
  • network equipment For broadcast/multicast/multicast downlink transmission, network equipment usually sends a physical downlink control channel (PDCCH) to a group of UEs.
  • PDCCH physical downlink control channel
  • This PDCCH is used to schedule a physical downlink shared channel (physical downlink control channel).
  • shared channel, PDSCH shared channel
  • this group of UEs will receive the PDSCH scheduled by the PDCCH on the same time-frequency resource.
  • the resources of the activated BWP of each UE in the frequency domain are independently configured.
  • the network equipment cannot send broadcast/multicast/multicast data to a group of UEs on a unified frequency domain resource, that is, the network equipment is in a frequency domain resource.
  • some UEs in this group of UEs may not be able to receive the PDCCH, because each UE can only send and receive information in its own active BWP, which means that it cannot be used on a unified frequency domain resource. Realize broadcast/multicast/multicast communication.
  • the embodiments of the present application provide a communication method, related devices, and equipment, which can realize broadcast/multicast/multicast communication for 5G NR, and can realize broadcast/multicast/multicast data transmission on a unified frequency domain resource.
  • the embodiments of the present application provide a communication method, which is suitable for 5G NR broadcast/multicast/multicast communication terminal equipment (such as UE).
  • the method includes: the terminal equipment receives the first communication method from the network equipment.
  • the first PDCCH may be received on the first BWP, and the second indication information may be received, and the first PDSCH scheduled by the first PDCCH may be received in the first frequency domain resource indicated by the first indication information.
  • the terminal device may analyze the received first PDSCH to obtain user data information carried on the first PDSCH, and the analysis range of the first PDSCH is the first frequency domain resource.
  • the first indication information may be used to indicate a first frequency domain resource, and the first frequency domain resource may be a subset or a proper subset of the frequency domain resource corresponding to the first BWP.
  • the first BWP is a dedicated BWP (UE dedicated BWP) for the terminal device, and the first BWP is the activated BWP of the terminal device, that is, the terminal device transmits and receives information in the first BWP.
  • the first PDCCH carries DCI and may be scrambled by G-RNTI.
  • the first PDCCH may also schedule the first PDSCH within the range of the first frequency domain resource, that is, the frequency domain resource allocation information field of the first PDCCH
  • the indication range of is the first frequency domain resource.
  • the first frequency domain resource may be a frequency domain resource corresponding to a sub-BWP (sub-BWP), and the sub-BWP may be a subset or a proper subset of the first BWP.
  • the role of the PDCCH may be determined by the RNTI that scrambles the PDCCH, and the first PDCCH scrambled by the G-RNTI is the PDCCH used for broadcast/multicast/multicast transmission.
  • the second indication information may also indicate the width of the first frequency domain or some parameters of the frequency domain in an implicit manner or in other ways, and the second indication information is associated with the second resource ,
  • the terminal device may determine the second frequency domain resource according to the mapping relationship between the second indication information and the second resource.
  • the second indication information includes a first frequency domain width
  • the first frequency domain width is used to determine the second frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource are configured independently by the network equipment, that is, the configuration of the first frequency domain resource does not depend on the configuration of the second frequency domain resource, and the terminal device can be configured according to the configuration of the second frequency domain resource.
  • the second frequency domain resource is directly confirmed without relying on the parameters notified in the process of configuring the first frequency domain resource. It is understandable that the starting frequency domain position of the first frequency domain resource is different from the starting frequency domain position of the second frequency domain resource, and/or the frequency domain width of the first frequency domain resource is different from the frequency domain width of the second frequency domain resource.
  • the frequency domain width of the domain resources is different.
  • the starting frequency domain position of the first frequency domain resource may be any subset of the frequency domain resources corresponding to the first BWP or the RB (lowest RB) with the smallest index number (ie sequence number) in the proper subset.
  • the starting frequency domain position of the second frequency domain resource is the control resource set (CORESET, control resource set) or predefined BWP that receives the first PDCCH (here, the first PDCCH refers to the PDCCH scrambled by the G-RNTI) or the predefined BWP The RB with the smallest index number (ie sequence number).
  • the frequency domain width of the first frequency domain resource is flexibly configurable, that is, the frequency domain width of the first frequency domain resource may be any number of RBs in the subset or proper subset of the frequency domain resource corresponding to the first BWP.
  • the frequency domain width of the second frequency domain resource (that is, the first frequency domain width) can be the number of consecutive RBs corresponding to CORESET0, where CORESET0 can be indicated by system messages or configured by high-level signaling, and the number of RBs for CORESET0 can be configured as 24, 48 , 96.
  • the terminal device in the embodiment of the present application receives the first frequency domain resource indicated by the network device through the indication information, receives and analyzes the first PDSCH scheduled by the first PDCCH on this first frequency domain resource, and obtains user data carried on the first PDSCH Information, because the first PDCCH is scrambled by G-RNTI, it indicates that the first PDCCH is a PDCCH used for broadcast/multicast/multicast transmission, and it also indicates that the data carried on the first PDSCH scheduled by the first PDCCH is broadcast/multicast.
  • Broadcast/multicast transmission data so the communication method provided in the embodiments of this application can realize broadcast/multicast/multicast communication for 5G NR, and can realize broadcast/multicast communication on a unified frequency domain resource (the first frequency domain resource). Multicast/multicast data transmission.
  • the terminal device receives the first PDCCH on the first BWP includes: the terminal device may receive the first PDCCH in the first frequency domain resource.
  • the terminal device may parse the received first PDCCH to obtain the DCI carried on the first PDCCH.
  • the parsing process here may include demodulation, decoding, and other processing.
  • the format of the DCI carried on the first PDCCH may be non-fallback DCI, such as DCI format 1_1.
  • the range indicated by the frequency domain resource allocation information field of the first PDCCH does not exceed the first frequency domain resource.
  • the terminal device of the embodiment of the present application directly receives and parses the first PDCCH on the first frequency domain resource, which reduces the frequency domain range for receiving downlink broadcast/multicast/multicast transmissions, improves processing efficiency, and reduces processing delay.
  • the method further includes: the terminal device may perform the second PDCCH in the frequency domain resource corresponding to the first BWP.
  • a PDCCH is analyzed to obtain the DCI carried on the first PDCCH.
  • the parsing process here may include demodulation, decoding, and other processing.
  • the format of the DCI carried on the first PDCCH may be non-fallback DCI, such as DCI format 1_1.
  • the range indicated by the frequency domain resource allocation information field of the first PDCCH does not exceed the frequency domain resource corresponding to the first BWP.
  • the terminal device of the embodiment of the present application analyzes the first PDCCH on the frequency domain resource corresponding to the first BWP, and can analyze to obtain a more complete DCI, which also indicates that the frequency domain resource of the first PDCCH may be the frequency domain resource corresponding to the first BWP , Can increase the flexibility of the frequency domain resources of the first PDCCH.
  • the method further includes: the terminal device receives third indication information from the network device, where the third indication information may It is used to indicate the format of the DCI carried by the first PDCCH, where the format of the DCI carried by the first PDCCH is non-fallback DCI.
  • the non-fallback DCI here may refer to DCI format 1_1, or DCI in other formats except for fallback DCI (DCI format 1_0).
  • the non-fallback DCI may include control information not included in the fallback DCI, such as carrier indication, BWP indication, physical resource block bundling size indicator, rate matching indicator, zero power channel state information reference signal trigger, sounding One or more of reference signal request, antenna port, transmission configuration indicator.
  • control information not included in the fallback DCI such as carrier indication, BWP indication, physical resource block bundling size indicator, rate matching indicator, zero power channel state information reference signal trigger, sounding One or more of reference signal request, antenna port, transmission configuration indicator.
  • the embodiment of this application can use non-fallback DCI to schedule PDSCH, and because the control information that can be carried by non-fallback DCI is richer than that of fallback DCI, it can support multi-antenna/multi-user transmission (this is because of non-fallback DCI). Including antenna ports and transmission configuration indicators), which can improve the flexibility of broadcast/multicast/multicast transmission under 5G NR.
  • the method further includes: the terminal device receives fourth indication information from the network device, where the fourth indication information may Used to indicate the first set of control resources.
  • the frequency domain resource corresponding to the first control resource set may be a subset or a proper subset of the foregoing first frequency domain resource.
  • the frequency domain resources corresponding to the first control resource set are limited to the first frequency domain resources, so that when the terminal device analyzes the first PDCCH in the first frequency domain resources, the complete DCI can also be obtained by analysis.
  • the method further includes: the terminal device receives fifth indication information from the network device, where the fifth indication information may It is used to indicate the first common search space associated with the above-mentioned first control resource set.
  • the first common search space can be used to detect the foregoing first PDCCH.
  • the first common search space may be common to all terminal devices or a group of terminal devices in the cell, that is, all terminal devices or a group of terminal devices can detect the first G-RNTI scrambled in the first common search space.
  • the first common search space may also be a search space configured for the first PDCCH scrambled by G-RNTI, that is, all terminal devices or a group of terminal devices are in the first common search space Only the first PDCCH scrambled by G-RNTI can be detected.
  • the terminal device in this embodiment of the present application receives the first control resource set and the first search space indicated by the network device, and can determine where the first PDCCH may be located The location can assist the terminal device to receive the first PDCCH.
  • the first indication information may include at least one of a starting frequency domain position, a frequency domain width, or a parameter set (numerology) of the first frequency domain resource.
  • the parameter set may include subcarrier spacing and cyclic prefix.
  • the parameter set of the first frequency domain resource is the same as the parameter set of the first BWP, that is, the subcarrier spacing of the first frequency domain resource and the subcarrier spacing of the first BWP Same, the cyclic prefix of the first frequency domain resource is the same as the cyclic prefix of the first BWP.
  • the embodiments of the present application provide another communication method, which is suitable for 5G NR broadcast/multicast/multicast communication network equipment (such as gNB).
  • the method includes: the network equipment can determine the first frequency Domain resources, and can send first indication information to a group of terminal devices, and then can send the first PDCCH to this group of terminal devices, and can also send second indication information including the first frequency domain width, in the first frequency domain resource
  • the first PDSCH is sent on.
  • this group of terminal devices may be a group of terminal devices that receive broadcast/multicast/multicast transmissions in a cell.
  • the first indication information may be used to indicate the first frequency domain resource, and the first frequency domain resource may be a subset or a proper subset of the frequency domain resource corresponding to the first BWP.
  • the first BWP is a dedicated BWP (UE dedicated BWP) for a terminal device, and the first BWP is an activated BWP of the terminal device, that is, the terminal device transmits and receives information in the first BWP.
  • the first PDCCH carries DCI and may be scrambled by G-RNTI.
  • the first PDCCH may also schedule the first PDSCH within the range of the first frequency domain resource, that is, the frequency domain resource allocation information field of the first PDCCH
  • the indication range of is the first frequency domain resource.
  • the first frequency domain resource may be a frequency domain resource corresponding to a sub-BWP (sub-BWP), and the sub-BWP may be a subset or a proper subset of the first BWP.
  • the role of the PDCCH may be determined by the RNTI that scrambles the PDCCH, and the first PDCCH scrambled by the G-RNTI is the PDCCH used for broadcast/multicast/multicast transmission.
  • the second indication information may also indicate the width of the first frequency domain or some parameters of the frequency domain in an implicit manner or in other ways, and the second indication information is associated with the second resource ,
  • the terminal device may determine the second frequency domain resource according to the mapping relationship between the second indication information and the second resource.
  • the second indication information includes a first frequency domain width
  • the first frequency domain width is used to determine the second frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource are configured independently by the network equipment, that is, the configuration of the first frequency domain resource does not depend on the configuration of the second frequency domain resource, and the terminal device can be configured according to the configuration of the second frequency domain resource.
  • the second frequency domain resource is directly confirmed without relying on the parameters notified in the process of configuring the first frequency domain resource. It is understandable that the starting frequency domain position of the first frequency domain resource is different from the starting frequency domain position of the second frequency domain resource, and/or the frequency domain width of the first frequency domain resource is different from the frequency domain width of the second frequency domain resource.
  • the frequency domain width of the domain resources is different.
  • the starting frequency domain position of the first frequency domain resource may be any subset of the frequency domain resources corresponding to the first BWP or the RB (lowest RB) with the smallest index number (ie sequence number) in the proper subset.
  • the starting frequency domain position of the second frequency domain resource is the control resource set (i.e. CORESET) for receiving the first PDCCH (here the first PDCCH refers to the PDCCH scrambled by the G-RNTI) or the index number in the predefined BWP (Ie serial number) the smallest RB.
  • the frequency domain width of the first frequency domain resource is flexibly configurable, that is, the frequency domain width of the first frequency domain resource may be any number of RBs in the subset or proper subset of the frequency domain resource corresponding to the first BWP.
  • the frequency domain width of the second frequency domain resource (that is, the first frequency domain width) can be the number of consecutive RBs corresponding to CORESET0, where CORESET0 can be indicated by system messages or configured by high-level signaling, and the number of RBs for CORESET0 is 24, 48, or 96 .
  • the network device of the embodiment of the application configures the first frequency domain resource used for broadcast/multicast/multicast transmission in the frequency domain resource corresponding to the dedicated BWP (UE dedicated BWP) of the terminal device.
  • UE dedicated BWP dedicated BWP
  • the terminal device needs to receive unicast transmission
  • the UE dedicated BWP is activated, and the terminal device can also receive multicast transmission in the activated BWP (this is because part of the frequency domain resources of the activated BWP are configured for broadcast/multicast/multicast transmission), which can be implemented in one Complete unicast and multicast transmission within the BWP. Therefore, there is no need to configure additional working bandwidth for broadcast/multicast/multicast transmission.
  • the terminal device needs to frequently receive unicast transmission and multicast transmission, there is no need to go back and forth between the unicast working bandwidth and the multicast working bandwidth. Handover, which can save handover delay.
  • the first PDCCH when the network device sends the first PDCCH, the first PDCCH may be sent in the first frequency domain resource.
  • the range indicated by the frequency domain resource allocation information field of the first PDCCH does not exceed the first frequency domain resource.
  • the method further includes: the network device may send third indication information to all terminal devices in the cell, and the third indication information may be used for Indicates the format of the DCI carried by the first PDCCH, where the format of the DCI carried by the first PDCCH is non-fallback DCI.
  • the non-fallback DCI here may refer to DCI format 1_1, or DCI in other formats except for fallback DCI (DCI format 1_0).
  • the non-fallback DCI may include control information not included in the fallback DCI, such as carrier indication, BWP indication, physical resource block bundling size indicator, rate matching indicator, zero power channel state information reference signal trigger, sounding One or more of reference signal request, antenna port, transmission configuration indicator.
  • control information not included in the fallback DCI such as carrier indication, BWP indication, physical resource block bundling size indicator, rate matching indicator, zero power channel state information reference signal trigger, sounding One or more of reference signal request, antenna port, transmission configuration indicator.
  • the method further includes: the network device may send fourth indication information, and the fourth indication information may be used to indicate the first control resource set .
  • the frequency domain resource corresponding to the first control resource set may be a subset or a proper subset of the foregoing first frequency domain resource.
  • the method further includes: the network device may send fifth indication information, and the fifth indication information may be used to indicate a connection with the first control
  • the first public search space associated with the resource collection can be used to detect the foregoing first PDCCH.
  • the first common search space may be common to all terminal devices or a group of terminal devices in the cell, that is, all terminal devices or a group of terminal devices can detect the first G-RNTI scrambled in the first common search space.
  • the first common search space may also be a search space configured for the first PDCCH scrambled by G-RNTI, that is, all terminal devices or a group of terminal devices are in the first common search space Only the first PDCCH scrambled by G-RNTI can be detected.
  • the first indication information may include at least one of a starting frequency domain position, a frequency domain width, or a parameter set (numerology) of the first frequency domain resource.
  • the parameter set may include subcarrier spacing and cyclic prefix.
  • the parameter set of the first frequency domain resource is the same as the parameter set of the first BWP, that is, the subcarrier spacing of the first frequency domain resource and the subcarrier spacing of the first BWP Same, the cyclic prefix of the first frequency domain resource is the same as the cyclic prefix of the first BWP.
  • an embodiment of the present application provides a terminal device, which includes a unit and/or module for executing the communication method provided by the first aspect and/or any one of the possible implementation manners of the first aspect Therefore, the beneficial effects (or advantages) of the communication method provided by the first aspect can also be achieved.
  • an embodiment of the present application provides a network device, which includes a unit and/or module for executing the communication method provided by the foregoing second aspect and/or any one of the possible implementation manners of the second aspect Therefore, the beneficial effects (or advantages) of the communication method provided by the second aspect can also be achieved.
  • an embodiment of the present application provides a terminal device, including a processor, a transceiver, and a memory, where the memory is used to store a computer program, the transceiver is used to send and receive various information, and the computer program includes program instructions.
  • the processor runs the program instructions, it executes the communication method of the first aspect described above.
  • an embodiment of the present application provides a network device, including a processor, a transceiver, and a memory, where the memory is used to store a computer program, the transceiver is used to send and receive various information, and the computer program includes program instructions.
  • the processor runs the program instructions, it executes the communication method of the second aspect described above.
  • an embodiment of the present application provides a computer-readable storage medium, and the computer-readable storage medium stores computer program instructions, and when the computer program instructions are executed on the computer, the computer executes the above-mentioned first aspect. Communication method.
  • an embodiment of the present application provides a computer-readable storage medium that stores computer program instructions, and when the computer program instructions are run on the computer, the computer executes the above-mentioned second aspect Communication method.
  • embodiments of the present application provide a computer program product, the computer program product including computer program code, when the computer program code runs on a computer, the computer executes the communication method of the first aspect.
  • an embodiment of the present application provides a computer program product, the computer program product including computer program code, when the computer program code runs on a computer, the computer executes the communication method of the second aspect.
  • an embodiment of the present application provides a communication device that has the function of a terminal device in any possible implementation manner of the foregoing first aspect.
  • These functions can be implemented by hardware, or can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units (or modules) corresponding to these functions.
  • an embodiment of the present application provides a communication device, which has the function of a network device in any possible implementation manner of the foregoing second aspect.
  • These functions can be implemented by hardware, or can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units (or modules) corresponding to these functions.
  • an embodiment of the present application provides a chip including a processor.
  • the processor is configured to read and execute a computer program stored in the memory to execute the communication method in any possible implementation manner of the above-mentioned first aspect or the above-mentioned second aspect.
  • the chip further includes a memory, and the memory and the processor are connected through a circuit or a wire.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, processes the data and/or information, and outputs the processing result through the communication interface.
  • the communication interface can be an input and output interface.
  • processors and memory may be physically independent units, or the memory may also be integrated with the processor.
  • an embodiment of the present application provides a communication system, which includes a terminal device and a network device, wherein: the terminal device is described in the foregoing first aspect or any one of the possible implementation manners of the foregoing first aspect
  • the terminal device in the communication method described above is the network device in the communication method described in the foregoing second aspect or any one of the possible implementation manners of the foregoing second aspect.
  • the implementation of the embodiments of this application can implement broadcast/multicast/multicast communication for 5G NR, and implement broadcast/multicast/multicast data transmission on a unified frequency domain resource.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the relationship between the sub-BWP and the first BWP, the second BWP, and the third BWP provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of the analysis range of the first PDCCH provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • UE dedicated BWP Dedicated bandwidth for terminal equipment
  • a UE can be configured with up to 4 DL BWPs on a component carrier through high-level parameters, such as high-level parameters BWP-Downlink or initialDownlinkBWP.
  • the types of DL BWP can be divided into three categories, namely initial BWP (initial BWP), dedicated BWP (dedicated BWP), and default BWP (default BWP).
  • the initial BWP is the BWP configured in the initial access phase of the UE, which can be used to transmit remaining minimum system information (RMSI), contention-based random access message 2 (message2, MSG2), and message 4 (message4, MSG4) PDSCH.
  • RMSI remaining minimum system information
  • MSG2 contention-based random access message 2
  • message 4 messagessage4, MSG4
  • the dedicated BWP is the BWP configured by the UE in the radio resource control (RRC) connection state. It can be used to transmit data services, such as ultra-high-definition video, augmented reality (AR), and virtual reality (VR). ) And other data services.
  • RRC radio resource control
  • the initial BWPs of all UEs are the same, and the dedicated BWPs of different UEs are independently configured, that is, the dedicated BWPs of different UEs may be different.
  • DCI downlink control information
  • DCI format 1_1 DCI format 1_1
  • BWP indicator The bandwidth part indication information field (or BWP indicator) in is used to indicate the activated DL BWP received in the downlink.
  • the PDCCH carries scheduling and other control information, specifically including transmission format, resource preemption, uplink/downlink scheduling permission, power control, and uplink retransmission information.
  • the PDCCH is a collection of a group of physical resource particles, carrying downlink control information (DCI), including resource allocation and other control information on one or more UEs.
  • DCI downlink control information
  • DCI Downlink control information
  • the DCI is carried by the PDCCH and is the downlink control information sent by the network equipment to the UE, including uplink and downlink resource allocation, hybrid automatic repeat request (HARQ) information, power control, and so on.
  • the downlink scheduling permission DCI can include two formats, namely: DCI format 1_0 and DCI format 1_1.
  • DCI format 1_0 is the fallback DCI, which is used for downlink control information transmitted when the RRC initializes the access state or when the cell is switched.
  • DCI format1_0 can also be used to schedule PDSCH carrying paging information, initial access response information, and system messages.
  • DCI format 1_1 is non-fallback DCI, used to schedule PDSCH in RRC connected state.
  • the cyclic redundancy check (CRC) sequence used to scramble the DCI may be a radio network temporary identifier (RNTI).
  • RNTI radio network temporary identifier
  • the RNTI for scrambling DCI format 1_0 can include paging-radio network temporary identification (paging-RNTI, P-RNTI), random access-radio network temporary identification (random access-RNTI, RA-RNTI), system message- Temporary wireless network identification (system information-RNTI, SI-RNTI), cell wireless network temporary identification (cell-RNTI, C-RNTI), temporary cell wireless network temporary identification (temporary cell-RNTI, TC-RNTI), configured scheduling -Radio network temporary identification (configured scheduling-RNTI, CS-RNTI) or modulation and coding method-cell radio network temporary identification (modulation and coding scheme-cell-RNTI, MCS-C-RNTI).
  • paging-RNTI paging-RNTI, P-RNTI
  • random access-radio network temporary identification random access-radi
  • the search space refers to a collection of PDCCH (PDCCH candidates) under a certain aggregation level.
  • the aggregation level is the number of control channel elements (CCEs) constituting the PDCCH.
  • the CCE is the basic unit constituting the PDCCH.
  • One CCE occupies 6 resource element groups (REG) in the frequency domain.
  • the types of search spaces can include public search spaces and UE-specific search spaces. For the UE-specific search space, only one UE can detect the PDCCH in the search space; for the common search space, multiple UEs can detect the PDCCH in this search space.
  • Control resource set (CORESET)
  • the 5G NR system encapsulates information such as the frequency band occupied in the frequency domain of the PDCCH and the number of orthogonal frequency division multiplexing (OFDM) symbols occupied in the time domain in the control resource set; the starting OFDM symbol number of the PDCCH And information such as the monitoring period of the PDCCH is encapsulated in the search space.
  • the possible location of the PDCCH can be determined by controlling the resource collection and the search space.
  • Downlink shared physical channel (physical downlink shared channel, PDSCH)
  • the PDSCH can be used to carry data from the transport channel.
  • the smallest resource granularity is 1 OFDM symbol; in the frequency domain, the smallest resource granularity is 1 subcarrier.
  • One OFDM symbol in the time domain and one subcarrier in the frequency domain are referred to as one time-frequency resource element (RE).
  • the communication method provided in the embodiments of the present application can be applied to the NR system in the fifth-generation mobile communication system and/or the future mobile communication system.
  • the embodiment of the present application first briefly introduces the system architecture of the mobile communication system.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system provided by an embodiment of the present application.
  • the mobile communication system may include a network device 110 and at least two terminal devices (the terminal device 120, the terminal device 130, and the terminal device 140 in FIG. 1).
  • the terminal device can be connected to the network device wirelessly.
  • the terminal device can be a fixed location, or it can be movable.
  • Fig. 1 is only a schematic diagram.
  • the mobile communication system may also include other network devices, such as wireless relay devices and/or wireless backhaul devices, which are not shown in Fig. 1.
  • the embodiments of the present application do not limit the number of network devices and terminal devices included in the mobile communication system.
  • the network device may be an entity on the network side for transmitting or receiving signals, such as gNB.
  • the network equipment can also be the access equipment that the terminal equipment wirelessly accesses to the mobile communication system.
  • the network equipment can be a base station NodeB, an evolved NodeB (eNB), or a transmission reception point (TRP). ), the next generation NodeB (gNB) in the 5G mobile communication system, the base station in the future mobile communication system, or the access node in the WiFi system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation NodeB
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the terminal device may be an entity on the user side for receiving or transmitting signals, such as a mobile phone UE.
  • the terminal device may also be called a terminal, a UE, a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and so on.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, wireless terminals in industrial control, Wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety, and smart cities ( Wireless terminals in smart city, wireless terminals in smart home, and so on.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the network equipment and terminal equipment in the mobile communication system can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the surface of the water; it can also be deployed on airborne aircraft or mobile phones. On man-machines, balloons and satellites.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • the network device 110 shown in FIG. 1 can send a broadcast/multicast/multicast PDCCH to the terminal device 120, the terminal device 130, and the terminal device 140, but because the terminal device 120, the terminal device 130 And the terminal device 140 has its own activated BWP, and the activated BWP of each terminal device is independently configured, so the terminal devices 120, 130, and 140 may not be able to receive broadcast/multicast/multicast PDCCH. If a terminal device cannot receive the broadcast/multicast/multicast PDCCH, it cannot receive the PDSCH scheduled by the PDCCH, and it cannot receive the broadcast/multicast/multicast data carried on the PDSCH, that is, it cannot achieve broadcast/multicast data. Broadcast/multicast transmission and communication.
  • the embodiments of the present application provide a communication method that can realize 5G NR broadcast/multicast/multicast communication, and can realize broadcast/multicast/multicast downlink data transmission on a unified frequency domain resource.
  • the number of terminal devices in the communication method provided in the embodiments of the present application may be greater than or equal to two, and the number of network devices may be greater than or equal to one.
  • the three terminal devices may be the first terminal device, the second terminal device, and the third terminal device, respectively.
  • the first terminal device may be the terminal device 120 shown in FIG. 1
  • the second terminal device may be the terminal device 130 shown in FIG. 1
  • the third terminal device may be the terminal device 140 shown in FIG.
  • the communication method provided in the embodiment of the present application is communication (interaction) between a single network device and multiple terminal devices.
  • each terminal device can receive information sent by the network device, and each terminal device can only know its own behavior (For example, what information is received), it is impossible to know the behavior of other terminal devices in a group of terminal devices. Therefore, for the user side, the communication method provided by the embodiment of the present application is communication (interaction) between a single terminal device and a single network device.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the communication method provided by the embodiment of the present application includes but is not limited to the following steps:
  • the network device sends first instruction information.
  • the first terminal device, the second terminal device, and the third terminal device respectively receive the first indication information.
  • the above-mentioned first indication information may be high-layer signaling, for example, the first indication information is RRC signaling or a media access control layer control element (MAC CE).
  • the foregoing first indication information may be used to indicate a first frequency domain resource, and the first frequency domain resource may be a frequency domain resource configured by higher layer signaling.
  • the above-mentioned first frequency domain resource may be a subset of the frequency domain resource corresponding to the first BWP, and further, the first frequency domain resource may be a proper subset of the frequency domain resource corresponding to the first BWP .
  • the first BWP may be an activated BWP of a terminal device in a group of terminal devices, that is, the terminal device is configured to receive and/or send information within the first BWP, and the first BWP may be a dedicated BWP for the terminal device ( UE dedicated BWP).
  • the first BWP may be an activated BWP of a specific terminal, and the specific terminal may be configured or preset.
  • the first BWP may also be one BWP or multiple BWPs configured by the system.
  • the first indication information may include at least one of a frequency domain width, a starting frequency domain position, or a parameter set (numerology) of the first frequency domain resource.
  • the starting frequency domain position of the first frequency domain resource may be expressed as the smallest RB included in the first frequency domain resource (in one embodiment, if the index value is from low to high according to frequency or from The order of small to large, here may refer to the frequency offset between the RB with the smallest index value in the first frequency domain resource and point A, where point A is the common reference point of the resource block grid.
  • the bandwidth of the first frequency domain resource (that is, the frequency domain width) may be expressed as the number of RBs included in the first frequency domain resource, or the number of resource block groups (RBG), or the number of REGs.
  • the parameter set of the first frequency domain resource may be consistent with the parameter set of the first BWP, and the parameter set may include subcarrier spacing (SCS) and cyclic prefix (CP), that is, the first frequency
  • SCS subcarrier spacing
  • CP cyclic prefix
  • the first frequency domain resource may be a continuous and uninterrupted frequency domain resource, where "continuous and uninterrupted” may be physically continuous and uninterrupted; it may also refer to logically, indicating that The indexes of the RBs included in the first frequency domain resource may be continuous.
  • the above-mentioned first frequency domain resource indication domain (here, the frequency domain position and bandwidth of the first frequency domain resource) may be composed of a resource indication value (RIV).
  • the resource indicator value can be expressed as:
  • RB start represents the starting RB index of the first frequency domain resource
  • L RBs represents the number of RBs continuously allocated for the first frequency domain resource
  • the network device determines a group of terminal devices that receive broadcast/multicast/multicast transmissions.
  • This group of terminal equipment can be all terminal equipment in the cell where the network equipment is located, or part of the terminal equipment in the cell where the network equipment is located. In some extreme cases, a group of terminal equipment may also include only a single terminal equipment. Terminal Equipment.
  • the network device can configure and activate the BWP for each terminal device in this group of terminal devices.
  • the group of terminal devices may include a first terminal device, a second terminal device, and a third terminal device. Since the activated BWP of the terminal device is configured by the network device, the network device can determine the respective activated BWPs of the first terminal device, the second terminal device, and the third terminal device.
  • the first BWP described above is referred to as the activated BWP of the first terminal device
  • the activated BWP of the second terminal device is referred to as the second BWP
  • the activated BWP of the third terminal device is referred to as the third BWP.
  • the network device may configure the first frequency domain resource for the group of terminal devices (including the first terminal device, the second terminal device, and the third terminal device), and the first frequency domain resource is used to receive broadcast/multicast/multicast transmission. After determining the first frequency domain resource, the network device may send first indication information to the group of terminal devices to indicate the first frequency domain resource.
  • the first frequency domain resource may be a subset or a proper subset of the intersection of the frequency domain resource corresponding to the first BWP, the frequency domain resource corresponding to the second BWP, and the frequency domain resource corresponding to the third BWP.
  • the aforementioned first frequency domain resource may be a frequency domain resource corresponding to a sub-BWP (sub-BWP or sub-bandwidth sub-band), and the sub-BWP may be the first BWP, the second BWP, and the second BWP.
  • the foregoing first indication information may also include information related to the sub-BWP, such as related parameters, such as BWP-Common parameters.
  • the BWP-Common parameter in the first indication information may be used to indicate that the child BWP is a public BWP or a group public BWP.
  • the public BWP can be public to the cell, which means that the terminal devices in the entire cell can receive broadcast/multicast/multicast downlink transmissions on the BWP;
  • the group public BWP means that the terminal devices in the cell are divided into several groups, Among them, at least one group of terminal devices can receive broadcast/multicast/multicast downlink transmission on the BWP.
  • the information (or parameters) included in the above-mentioned first indication information may be indicated by the same or different information elements.
  • one cell indicates CP, SCS, the frequency domain location and bandwidth of the first frequency domain resource, and the other cell indicates information (or parameters) related to the sub-BWP, such as BWP-ID, BWP-common or BWP-dedicated .
  • FIG. 3 is a schematic diagram of the relationship between the sub-BWP and the first BWP, the second BWP, and the third BWP provided by an embodiment of the present application.
  • the first BWP is BWP1
  • the second BWP is BWP2
  • the third BWP is BWP3
  • the first terminal device is terminal device 120
  • the second terminal device is terminal device 130
  • the third terminal device is terminal device 130 .
  • the sub-BWP is the overlapping part of the BWP among the first BWP, the second BWP, and the third BWP.
  • the first terminal device may receive the above-mentioned first indication information sent by the network device, and the first frequency domain resource indicated by the first indication information may be a child of the frequency domain resource corresponding to the above-mentioned first BWP.
  • the first BWP may be a dedicated BWP for the first terminal device. Assuming that the first terminal device is UE#1, the first BWP is UE#1 dedicated BWP.
  • the second terminal device may receive the first indication information sent by the network device, and the first frequency domain resource indicated by the first indication information may be a subset or a proper subset of the frequency domain resources corresponding to the second BWP,
  • the second BWP may be a dedicated BWP for the second terminal device.
  • the second terminal device is UE#2
  • the second BWP is UE#2 dedicated BWP.
  • the third terminal device may receive the first indication information sent by the network device, and the first frequency domain resource indicated by the first indication information may be a subset or a proper subset of the frequency domain resources corresponding to the third BWP.
  • the third BWP may be a dedicated BWP for the third terminal device. Assuming that the third terminal device is UE#3, the third BWP is UE#3 dedicated BWP.
  • S202 The network device sends third instruction information.
  • the first terminal device, the second terminal device, and the third terminal device respectively receive the third indication information.
  • the foregoing third indication information may be used to indicate the format of the DCI carried by the first PDCCH, where the format of the DCI is non-fallback DCI, and the non-fallback DCI here may refer to DCI format 1_1, Or DCI in other formats except the fallback DCI (DCI format 1_0).
  • both fallback DCI (DCI format 1_0) and non-fallback DCI (such as DCI format 1_1) can be used to schedule the PDSCH, but the control information carried by the non-fallback DCI can be richer than the fallback DCI.
  • control information carried by the non-fallback DCI may include one or more of the following information: carrier indication, BWP indication, physical resource block (PRB) binding size indicator, rate matching indicator, zero Power channel state information reference signal (channel state information-reference signal, CSI-RS) trigger, sounding reference signal (sounding reference resource, SRS) request, antenna port, transmission configuration indicator, and the control information carried by the fallback DCI is not Include any of the above information.
  • the BWP indication can be used to indicate the activation of the BWP.
  • the foregoing third indication information directly indicates whether the format of the DCI carried by the first PDCCH is non-fallback DCI
  • the foregoing third indication information may be high-level parameter RRC signaling, for example, a non-fallback DCI switch (non-fallback DCI switch) parameter. If the non-fallback DCI switch parameter is set to ON, it means that the DCI carried by the first PDCCH is non-fallback DCI. If the non-fallback DCI switch parameter is set to OFF, it means that the DCI carried by the first PDCCH is a fallback DCI.
  • the DCI format can be directly determined by setting the non-fallback DCI switch parameter to ON or OFF. For example, if the non-fallback DCI switch parameter is set to OFF, It indicates DCI format 1_0.
  • the foregoing non-fallback DCI switch parameters may be included in the foregoing first indication information, and then the network device does not need to send a separate indication information (that is, the foregoing third indication information) to indicate the format of DCI or indicate the format of DCI.
  • the format is non-fallback DCI. It is understandable that if the non-fallback DCI switch parameter is included in the above-mentioned first indication information, step S202 in the embodiment of the present application may not be executed.
  • the network device may send the third indication information to all terminal devices in the cell where the network device is located. It is understandable that the third indication information acts on all UEs in the cell, rather than a specific UE (per UE). Correspondingly, all terminal devices in the cell where the network device is located can receive the third indication information. Of course, the first terminal device may receive the third indication information sent by the network device. Similarly, the third terminal device can receive the third indication information sent by the network device. In the same way, the third terminal device may receive the third indication information sent by the network device.
  • the network device informs the terminal device through the third indication information that the DCI format can be non-fallback DCI, that is, the network The device tells the terminal device that it can identify and receive non-fallback DCI, so after the network device sends the PDCCH that carries the non-fallback DCI, the terminal device can receive the PDCCH, and can demodulate the non-fallback DCI carried by the PDCCH. Decoding and other operations obtain the control information carried in the non-fallback DCI.
  • the embodiment of this application can use non-back-off DCI to schedule PDSCH, and because the control information that can be carried by non-back-off DCI is richer than that of back-off DCI, it can support multi-antenna/multi-user transmission (this is because non-back-back DCI).
  • the antenna port and transmission configuration indicator are included in the DCI, which can improve the flexibility of broadcast/multicast/multicast transmission under 5G NR.
  • S203 The network device sends the first PDCCH.
  • the above-mentioned first PDCCH carries DCI, and the format of the DCI may be non-fallback DCI, such as DCI format 1_1.
  • the first PDCCH can be scrambled by a group-radio network temporary identifier (G-RNTI), and the first PDCCH (or DCI format 1_1) can be scheduled within the range of the first frequency domain resource.
  • G-RNTI group-radio network temporary identifier
  • the role of the PDCCH may be determined by the RNTI that scrambles the PDCCH, and the PDCCH scrambled by the G-RNTI is a PDCCH used for broadcast/multicast/multicast transmission.
  • the UE can identify the PDCCH through the RNTI.
  • the PDCCH is scrambled by the G-RNTI, it means that the PDCCH is used to schedule broadcast/multicast/multicast transmission; if the PDCCH is identified by the paging-radio network temporary identification (paging -RNTI (P-RNTI) scrambling, it means that this PDCCH is used to schedule the PDSCH for paging; if the PDCCH is scrambled by random access-radio network temporary identification (random access-RNTI, RA-RNTI), it means this PDCCH PDSCH for scheduling random access.
  • paging-RNTI paging -RNTI
  • random access-RNTI random access-RNTI
  • the network device may send fourth indication information, where the fourth indication information indicates the first control resource set.
  • the first control resource set may be a group-control resource set (group-CORESET, G-CORESET).
  • the frequency domain resources corresponding to the first control resource set may be a subset or a proper subset of the foregoing first frequency domain resources.
  • the fourth indication information may include information related to the first control resource set, such as configuration information of the first control resource set.
  • the network device may further send fifth indication information, where the fifth indication information indicates the first common search space associated with the above-mentioned first control resource set.
  • the first common search space may be used to detect the above-mentioned first PDCCH.
  • the first common search space may be common to all terminal devices or a group of terminal devices in the cell where the network device is located, that is, all terminal devices or a group of terminal devices can detect the G-RNTI plus in the first common search space.
  • the fourth indication information and the fifth indication information may be the same indication information, that is, one indication information may be used to indicate the first control resource set and the information associated with the first control resource set.
  • the first public search space may be used to indicate the first control resource set and the information associated with the first control resource set.
  • the network device may report to a group of terminal devices (including the first terminal device, the second terminal device, and the first terminal device) within the above-mentioned first frequency domain resource.
  • a group of terminal devices including the first terminal device, the second terminal device, and the first terminal device.
  • Four terminal equipment sends the first PDCCH.
  • the network device may broadcast the second indication information.
  • the first terminal device, the second terminal device, and the third terminal device respectively receive the second indication information.
  • the foregoing second indication information may include a first frequency domain width, and the first frequency domain width may be used to determine the second frequency domain resource.
  • the second indication information may be included in a system message, and the second frequency domain resource may be a frequency domain resource configured by the system message.
  • the starting frequency domain position of the second frequency domain resource is the control resource set (i.e. CORESET) for receiving the first PDCCH (here the first PDCCH refers to the PDCCH scrambled by the G-RNTI) or the index number in the predefined BWP (Ie sequence number) The smallest RB (lowest RB).
  • the first frequency domain width (that is, the frequency domain width of the second frequency domain resource) may be the number of consecutive RBs corresponding to CORESET0, where CORESET0 is indicated by a system message or configured by high-level signaling, and the number of RBs of CORESET0 is 24, 48, or 96.
  • the second indication information may also indicate the width of the first frequency domain or some parameters of the frequency domain in an implicit manner or in other ways, and the second indication information is associated with the second resource ,
  • the terminal device may determine the second frequency domain resource according to the mapping relationship between the second indication information and the second resource.
  • the first frequency domain resource and the second frequency domain resource are independently configured by the network device, that is, the configuration of the first frequency domain resource does not depend on the configuration of the second frequency domain resource, and the terminal device can be configured according to the first frequency domain resource.
  • the configuration of the second frequency domain resource directly confirms the second frequency domain resource without relying on the parameters notified in the process of configuring the first frequency domain resource.
  • the first frequency domain resource is configured by higher layer signaling, and the second frequency domain resource is configured by system messages.
  • the independent configuration of the first frequency domain resource and the second frequency domain resource can be understood as: the starting frequency domain position of the first frequency domain resource is different from the starting frequency domain position of the second frequency domain resource, and /Or the frequency domain width of the first frequency domain resource is different from the frequency domain width of the second frequency domain resource. It can be further understood that the starting frequency domain positions of the first frequency domain resource and the second frequency domain resource are the same, and the frequency domain widths are different. Or, the start frequency domain positions of the first frequency domain resource and the second frequency domain resource are different, and the frequency domain widths are the same. Or, the start frequency domain positions of the first frequency domain resource and the second frequency domain resource are different, and the frequency domain widths are also different.
  • the starting frequency domain positions of the first frequency domain resource and the second frequency domain resource are both RB15
  • the frequency domain width of the first frequency domain resource is 50 RBs
  • the frequency domain width of the second frequency domain resource (that is, the first The frequency domain width) is 48 RBs, that is, the first frequency domain resources are RB15 to RB65
  • the second frequency domain resources are RB15 to RB63.
  • the starting frequency domain position of the first frequency domain resource is RB5
  • the starting frequency domain position of the second frequency domain resource is RB20
  • the frequency domain width of the first frequency domain resource and the frequency domain width of the second frequency domain resource is 96 RBs, that is, the first frequency domain resources are RB5 to RB101
  • the second frequency domain resources are RB20 to RB116.
  • the starting frequency domain position of the first frequency domain resource is RB12
  • the starting frequency domain position of the second frequency domain resource is RB25
  • the frequency domain width of the first frequency domain resource is 100 RBs
  • the second frequency domain resource The frequency domain width (ie, the first frequency domain width) is 24 RBs, that is, the first frequency domain resources are RB12 to RB112, and the second frequency domain resources are RB25 to RB49.
  • DCI may be carried on PDCCH, and DCI may be used to schedule PDSCH.
  • the fallback DCI (DCI format 1_0) may schedule the second PDSCH within the range of the second frequency domain resource, that is, the frequency domain resource of the second PDSCH is the second frequency domain resource.
  • the fallback DCI may be scrambled by RNTI different from G-RNTI.
  • the fallback DCI can be scrambled by any of the following RNTIs: cell-radio network temporary identification (cell-RNTI, C-RNTI), configured scheduling-radio network temporary identification (configured scheduling-RNTI, CS-RNTI) , Temporary Cell-Radio Network Temporary Identifier (temporary cell-RNTI, TC-RNTI), Paging-Radio Network Temporary Identifier (paging-RNTI, P-RNTI), System Message-Radio Network Temporary Identifier (system information-RNTI, SI) -RNTI), random access-radio network temporary identification (random access-RNTI, RA-RNTI) or SPS-RNTI.
  • RNTI cell-radio network temporary identification
  • C-RNTI configured scheduling-radio network temporary identification
  • scheduling-RNTI configured scheduling-RNTI, CS-RNTI
  • Temporary Cell-Radio Network Temporary Identifier temporary cell-RNTI, TC-RNTI
  • Paging-Radio Network Temporary Identifier pag
  • the first terminal device receives the first PDCCH on the first BWP, and parses the first PDCCH.
  • the second terminal device receives the first PDCCH on the second BWP, and parses the first PDCCH.
  • the third terminal device receives the first PDCCH on the third BWP, and analyzes the first PDCCH.
  • the first terminal device may receive the foregoing fourth indication information and/or the foregoing fifth indication information.
  • the second terminal device may receive the fourth instruction information and/or the fifth instruction information; the third terminal device may receive the fourth instruction information and/or the fifth instruction information.
  • the fourth indication information is used to indicate the first control resource set, and the fourth indication information includes configuration information of the first control resource set.
  • the configuration information of the first control resource set may include:
  • TCI-PresentInDCI parameter Use the TCI-PresentInDCI parameter to indicate whether there is transmission configuration indication information (transmission configuration indication, TCI) in the DCI format 1_1 transmitted through the PDCCH in CORESET p.
  • the fifth indication information is used to indicate the first common search space associated with the first control resource set.
  • each terminal device can be configured with S search space sets, where S is greater than 0 and not greater than 10.
  • the network device configures the terminal device through signaling:
  • the time unit can be a time slot, a sub-slot, or a mini-slot;
  • the time unit can be a time slot, a sub-slot, or a mini-slot;
  • the first terminal device may receive the network device transmission on the first BWP (that is, the activated BWP of the first terminal device) or in the first frequency domain resource according to the first control resource set and the first common search space.
  • the above-mentioned first PDCCH After receiving the first PDCCH, the first terminal device may analyze the first PDCCH in the first frequency domain resource to obtain the DCI carried on the first PDCCH.
  • the resolution range of the first PDCCH may be the first frequency domain resource. It is also understandable that the range indicated by the frequency domain resource allocation information field of the first PDCCH does not exceed the first frequency domain resource.
  • the first terminal device may analyze the first PDCCH in the frequency domain resource corresponding to the first BWP to obtain the DCI carried on the first PDCCH.
  • the analysis range of the first PDCCH may also be the frequency domain resource corresponding to the first BWP.
  • the range indicated by the frequency domain resource allocation information field of the first PDCCH does not exceed the frequency domain resource corresponding to the first BWP.
  • the analysis process can include demodulation, decoding, and other processing.
  • the DCI carried on the first PDCCH may include one or more of the following information: PDSCH time domain resource allocation information, frequency domain resource allocation information, modulation and coding scheme (MCS), redundancy version , HARQ process number, downlink allocation index, scheduling physical uplink control channel (PUCCH) power control command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator.
  • MCS modulation and coding scheme
  • FIG. 4 is a schematic diagram of the analysis range of the first PDCCH provided by an embodiment of the present application.
  • the frequency domain resource corresponding to the first BWP includes 6 RBs, and the 6 RBs are indicated by 6 bits respectively.
  • the first frequency domain resource is the middle 4 RBs of the 6 RBs, and the middle 4 bits of the 6 bits are used to indicate respectively.
  • the first terminal device may analyze the first PDCCH on the RB indicated by the middle 4 bits, that is, the analysis range of the first PDCCH is the RB indicated by the middle 4 bits.
  • the analysis range of the first PDCCH is the RB indicated by the middle 4 bits.
  • the first terminal device may analyze the first PDCCH on the RB indicated by the 6 bits, that is, the analysis range of the first PDCCH is the RB indicated by the 6 bits.
  • the first bit and the last bit of the 6bit can be set to 0 to make it invalid, that is, the first RB and the last RB in the frequency domain resource corresponding to the first BWP may not carry information (that is, the carried The information is empty) or carries the control information for unicast transmission.
  • the specific implementation of the first terminal device receiving the first PDCCH sent by the network device on the first BWP according to the first control resource set and the first common search space may be as follows: The device receives the first PDCCH in the first control resource set, and detects the first PDCCH in the first common search space.
  • the PDCCH candidate may be included in the first common search space.
  • the first terminal device performs decoding and cyclic redundancy check (CRC) on all candidate PDCCHs in the first common search space. If the CRC check passes, the content of the decoded PDCCH is considered valid for the first terminal device, and the information obtained by the decoding (such as transmission scheduling indication, slot format indication, power control command, etc.) is used for subsequent operations.
  • CRC cyclic redundancy check
  • the second terminal device may receive the foregoing first PDCCH sent by the network device on the foregoing second BWP (that is, the activated BWP of the second terminal device), and may The first PDCCH is parsed in the first frequency domain resource or the frequency domain resource corresponding to the second BWP to obtain the DCI carried on the first PDCCH.
  • the third terminal device may receive the first PDCCH sent by the network device on the third BWP (that is, the activated BWP of the third terminal device), and may be in the first frequency domain resource or the frequency domain corresponding to the third BWP
  • the first PDCCH is parsed in the resource to obtain the DCI carried on the first PDCCH.
  • the implementation process of the second terminal device and the third terminal device can refer to the implementation of the aforementioned first terminal device, which will not be repeated here. Since the first frequency domain resource is a subset or a proper subset of the intersection of the frequency domain resources corresponding to the first BWP, the frequency domain resources corresponding to the second BWP, and the frequency domain resources corresponding to the third BWP, the first terminal device , Both the second terminal device and the third terminal device can receive the first PDCCH on a unified frequency domain resource (that is, the first frequency domain resource), and parse it to obtain the DCI.
  • a unified frequency domain resource that is, the first frequency domain resource
  • the network device sends the first PDSCH on the first frequency domain resource.
  • the above-mentioned first PDSCH may carry broadcast/multicast/multicast user data information.
  • the frequency domain resource corresponding to the first PDSCH may be the same as the above-mentioned first frequency domain resource, or may not be completely the same.
  • the starting RB position of the first PDSCH is the same as the starting RB position of the first frequency domain resource
  • the number of RBs of the first PDSCH is the same as the number of RBs of the first frequency domain resource.
  • the starting RB position of the first PDSCH is the same as the starting RB position of the first frequency domain resource, and the number of RBs of the first PDSCH is less than the number of RBs of the first frequency domain resource, or it may be the starting RB of the first PDSCH The position is different from the starting RB position of the first frequency domain resource, and the number of RBs of the first PDSCH is smaller than the number of RBs of the first frequency domain resource.
  • the same or different start positions mentioned here can be replaced with the same or different end positions respectively.
  • the start position can also mean that the RB numbering starts from the lowest RB in the CORESET that receives the DCI (RB numbering starts from the lowest RB). of the CORESET in which the DCI was received).
  • the network device may send the first PDSCH to a group of terminal devices (including the first terminal device, the second terminal device, and the third terminal device) on the above-mentioned first frequency domain resource.
  • the frequency domain resource configuration corresponding to the first PDSCH is the same or not exactly the same as the first frequency domain resource, and because the first frequency domain resource is more flexible (this is because the first frequency domain resource is a group of terminal equipment Activates the subset or proper subset of the intersection between the frequency domain resources corresponding to the BWP), so the flexibility of frequency domain resource configuration for multicast transmission can be improved, that is, the starting RB position and the number of RBs of the first PDSCH can be flexibly configured , Non-fixed, that is, the number of RBs for broadcast/multicast/multicast PDSCH is not limited to a certain or a few fixed values (such as 24, 48 or 96 RBs corresponding to CORESET0), it can be any value, and can be based on broadcast The size of the user data transmitted by /multicast/multicast determines the number of RBs in the PDSCH.
  • step S207 can be executed before step S204-step S206, step S207 can also be executed after step S204-step S206, step S207 can also be executed simultaneously with step S204-step S206, and so on.
  • the first terminal device, the second terminal device, and the third terminal device receive the first PDSCH on the first frequency domain resource.
  • the first terminal device may receive the first PDSCH sent by the network device on the foregoing first BWP (that is, the activated BWP of the first terminal device) or the foregoing first frequency domain resource, and may perform according to the foregoing
  • the DCI carried by the first PDCCH performs operations such as demodulation and decoding on the first PDSCH in the first frequency domain resource to obtain broadcast/multicast/multicast user data information carried on the first PDSCH. It can be understood that the resolution range of the first PDSCH may be the first frequency domain resource.
  • the frequency domain position corresponding to the first PDSCH may be the same as the frequency domain position of the first frequency domain resource (that is, the starting RB position is the same), and the bandwidth (that is, the frequency domain width) corresponding to the first PDSCH may also be the same as the frequency domain position of the first frequency domain resource.
  • the bandwidths of the first frequency domain resources are the same (that is, the number of RBs is the same).
  • the frequency domain resource corresponding to the first PDSCH may be a subset or a proper subset of the first frequency domain resource.
  • the terminal device in the embodiment of the present application receives the first PDCCH in its own activated BWP, and receives the first PDSCH scheduled by the first PDCCH in its own activated BWP or the first frequency domain resource, and compares it in the first frequency domain resource.
  • the first PDSCH is parsed to obtain the broadcast/multicast/multicast user data information carried on the first PDSCH, thereby realizing broadcast/multicast/multicast communication, and realizes a unified frequency domain resource Broadcast/multicast/multicast data transmission.
  • the second terminal device may receive the first PDSCH sent by the network device on the second BWP or the first frequency domain resource, and may perform the pairing in the first frequency domain resource according to the DCI carried by the first PDCCH.
  • the first PDSCH performs operations such as demodulation and decoding to obtain broadcast/multicast/multicast user data carried on the first PDSCH.
  • the third terminal device may receive the first PDSCH sent by the network device on the third BWP or the first frequency domain resource, and may be in the first frequency domain resource according to the DCI carried by the first PDCCH Performing operations such as demodulation and decoding on the first PDSCH to obtain user data carrying broadcast/multicast/multicast on the first PDSCH.
  • the network device configures the first frequency domain resource used for broadcast/multicast/multicast transmission in the frequency domain resource corresponding to the terminal device dedicated BWP (UE dedicated BWP).
  • the UE dedicated BWP will be activated when it needs to receive unicast transmission, and the terminal device can also receive multicast transmission in the activated BWP (this is because part of the frequency domain resources of the activated BWP are configured for broadcast/multicast/multicast transmission), That is, unicast and multicast transmission can be completed within a BWP. Therefore, there is no need to configure additional working bandwidth for broadcast/multicast/multicast transmission.
  • the terminal device When the terminal device needs to frequently receive unicast transmission and multicast transmission, there is no need to go back and forth between the unicast working bandwidth and the multicast working bandwidth. Handover, which can save handover delay.
  • the UE dedicated BWP of one or several terminal devices in a group of terminal devices switches, the first frequency domain resource used for broadcast/multicast/multicast transmission will change with the UE dedicated BWP switch.
  • Handover that is, when the UE dedicated BWP changes, the first frequency domain resource also changes accordingly. This is because the first frequency domain resource is a subset or a proper subset of the intersection between the frequency domain resources corresponding to the activated BWP of a group of terminal devices. Therefore, it can also support UE dedicated BWP dynamic switching during broadcast/multicast/multicast transmission.
  • FIG. 5 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 100 may include:
  • the first transceiver unit 101 is configured to receive first indication information, receive a first PDCCH on a first BWP, receive second indication information, and receive the first PDCCH within a first frequency domain resource indicated by the first indication information
  • the first indication information may be used to indicate a first frequency domain resource, and the first frequency domain resource may be a subset or a proper subset of the frequency domain resource corresponding to the first BWP.
  • the first BWP is a dedicated BWP for terminal equipment.
  • the first PDCCH may be scrambled by G-RNTI, and the first PDSCH may be scheduled within the range of the first frequency domain resource, that is, the indication range of the frequency domain resource allocation information field of the first PDCCH is the first frequency domain Resources.
  • the analysis range of the first PDSCH is the first frequency domain resource.
  • the second indication information may include a first frequency domain width, and the first frequency domain width may be used to determine a second frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource are independently configured by the network equipment, that is, the configuration of the first frequency domain resource does not depend on the configuration of the second frequency domain resource, and the terminal device can be configured according to the second frequency domain resource.
  • the second frequency domain resource is directly confirmed without relying on the parameters notified in the process of configuring the first frequency domain resource. It is understandable that the starting frequency domain position of the first frequency domain resource is different from the starting frequency domain position of the second frequency domain resource, and/or the frequency domain width of the first frequency domain resource is different from the frequency domain width of the second frequency domain resource.
  • the frequency domain width of the domain resources is different.
  • the start frequency domain position of the second frequency domain resource is a control resource set (ie CORESET) or a predefined one that receives the first PDCCH (here the first PDCCH refers to the PDCCH scrambled by G-RNTI)
  • the RB lower RB with the smallest index number (ie sequence number) in the BWP.
  • the frequency domain width of the second frequency domain resource (that is, the first frequency domain width) can be the number of consecutive RBs corresponding to CORESET0, where CORESET0 can be indicated by system messages or configured by high-level signaling, and the number of RBs for CORESET0 is 24, 48, or 96 .
  • the above-mentioned first transceiving unit 101 is specifically configured to receive the first PDCCH in the first frequency domain resource.
  • the aforementioned first transceiving unit 101 is further configured to receive third indication information, the third indication information being used to indicate the format of the DCI carried by the first PDCCH, and the DCI carried by the first PDCCH The format is non-fallback DCI.
  • the above-mentioned first indication information includes at least one of a starting frequency domain position, a frequency domain width, or a parameter set of the first frequency domain resource, and the parameter set includes subcarrier spacing and cyclic prefix,
  • the parameter set of the first frequency domain resource is the same as the parameter set of the first BWP.
  • the terminal device 100 may further include a processing unit 102 configured to parse the first PDSCH received by the above-mentioned transceiver unit 101 to obtain user data carried on the first PDSCH information.
  • a processing unit 102 configured to parse the first PDSCH received by the above-mentioned transceiver unit 101 to obtain user data carried on the first PDSCH information.
  • each module or unit can also correspond to the corresponding description of the terminal device in the method embodiment shown in FIG. 2 to execute the method and function performed by the terminal device in the above embodiment.
  • the terminal device of the embodiment of the present application receives the first frequency domain resource indicated by the network device through the indication information, receives and analyzes the first PDSCH scheduled by the first PDCCH on this first frequency domain resource, to obtain the users carried on the first PDSCH Data, because the first PDCCH is scrambled by G-RNTI, it indicates that the first PDCCH is a PDCCH used for broadcast/multicast/multicast transmission, and it also indicates that the data carried on the first PDSCH scheduled by the first PDCCH is broadcast/multicast. Broadcast/multicast transmission data, so the communication method provided in the embodiments of this application can realize broadcast/multicast/multicast communication for 5G NR, and can realize broadcast/multicast communication on a unified frequency domain resource (the first frequency domain resource). Multicast/multicast data transmission.
  • the network device 200 may include:
  • the second transceiver unit 201 is configured to send first indication information indicating the first frequency domain resource and the first PDCCH, send second indication information including the first frequency domain width, and send the first PDSCH on the first frequency domain resource .
  • the first indication information may be used to indicate a first frequency domain resource, and the first frequency domain resource may be a subset or a proper subset of the frequency domain resource corresponding to the first BWP.
  • the first BWP is a dedicated BWP for terminal equipment.
  • the first PDCCH may be scrambled by G-RNTI, and the first PDSCH may be scheduled within the range of the first frequency domain resource, that is, the indication range of the frequency domain resource allocation information field of the first PDCCH is the first frequency domain Resources.
  • the analysis range of the first PDSCH is the first frequency domain resource.
  • the second indication information may include a first frequency domain width, and the first frequency domain width may be used to determine a second frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource are respectively independently configured by the network equipment, that is, the configuration of the first frequency domain resource does not depend on the configuration of the second frequency domain resource, and the terminal device can be configured according to the configuration of the second frequency domain resource
  • the second frequency domain resource is directly confirmed without relying on the parameters notified in the process of configuring the first frequency domain resource.
  • the starting frequency domain position of the first frequency domain resource is different from the starting frequency domain position of the second frequency domain resource, and/or the frequency domain width of the first frequency domain resource is different from the frequency domain width of the second frequency domain resource.
  • the frequency domain width of the domain resources is different.
  • the start frequency domain position of the second frequency domain resource is a control resource set (ie CORESET) or a predefined one that receives the first PDCCH (here the first PDCCH refers to the PDCCH scrambled by G-RNTI)
  • the RB lower RB with the smallest index number (ie sequence number) in the BWP.
  • the frequency domain width of the second frequency domain resource (that is, the first frequency domain width) can be the number of consecutive RBs corresponding to CORESET0, where CORESET0 can be indicated by system messages or configured by high-level signaling, and the number of RBs for CORESET0 is 24, 48, or 96 .
  • the aforementioned network device 200 further includes a determining unit 202.
  • the determining unit 202 is configured to determine the first frequency domain resource before sending the above-mentioned first indication information.
  • the above-mentioned second transceiver unit 201 is specifically configured to send the first PDCCH in the first frequency domain resource.
  • the second transceiving unit 201 is further configured to send third indication information.
  • the third indication information is used to indicate the format of the DCI carried by the first PDCCH.
  • the format is non-fallback DCI.
  • the above-mentioned first indication information includes at least one of a starting frequency domain position, a frequency domain width, or a parameter set of the first frequency domain resource, and the parameter set includes subcarrier spacing and cyclic prefix,
  • the parameter set of the first frequency domain resource is the same as the parameter set of the first BWP.
  • the aforementioned determining unit 202 may be a processing unit.
  • each module or unit can also refer to the corresponding description of the network device in the method embodiment shown in FIG. 2 to execute the method and function performed by the network device in the above embodiment.
  • the network device of the embodiment of the application configures the first frequency domain resource used for broadcast/multicast/multicast transmission in the frequency domain resource corresponding to the dedicated BWP (UE dedicated BWP) of the terminal device.
  • UE dedicated BWP dedicated BWP
  • the terminal device needs to receive unicast transmission
  • the UE dedicated BWP is activated, and the terminal device can also receive multicast transmission in the activated BWP (this is because part of the frequency domain resources of the activated BWP are configured for broadcast/multicast/multicast transmission), which can be implemented in one Complete unicast and multicast transmission within the BWP. Therefore, there is no need to configure additional working bandwidth for broadcast/multicast/multicast transmission.
  • the terminal device needs to frequently receive unicast transmission and multicast transmission, there is no need to go back and forth between the unicast working bandwidth and the multicast working bandwidth. Handover, which can save handover delay.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 provided by the embodiment of the present application includes a processor 1001, a memory 1002, a transceiver 1003, and a bus system 1004.
  • the communication device provided in the embodiment of the present application may be any one of a terminal device and a network device.
  • processor 1001, memory 1002, and transceiver 1003 are connected through a bus system 1004.
  • the aforementioned memory 1002 is used to store programs. Specifically, the program may include program code, and the program code includes computer operation instructions.
  • the memory 1002 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM). Only one memory is shown in FIG. 7. Of course, the memory can also be set to multiple as required.
  • the memory 1002 may also be a memory in the processor 1001, which is not limited here.
  • the memory 1002 stores the following elements, executable units or data structures, or their subsets, or their extended sets:
  • Operating instructions including various operating instructions, used to implement various operations.
  • Operating system Including various system programs, used to implement various basic services and process hardware-based tasks.
  • the aforementioned processor 1001 controls the operation of the communication device 1000.
  • the processor 1001 may be one or more central processing units (CPU).
  • CPU central processing units
  • the CPU may be a single-core CPU. It can also be a multi-core CPU.
  • bus system 1004 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • bus system 1004 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • various buses are marked as the bus system 1004 in FIG. 7.
  • FIG. 7 is only schematically drawn.
  • the method of the terminal device in FIG. 2 provided in the embodiment of the present application; or the method of the network device in FIG. 2 provided in the embodiment of the present application may be applied to the processor 1001 or implemented by the processor 1001.
  • the processor 1001 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 1001 or instructions in the form of software.
  • the above-mentioned processor 1001 may be a general-purpose processor, a digital signal processing (digital signal processing, DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1002, and the processor 1001 reads the information in the memory 1002 and executes the method steps of the terminal device described in FIG. 2 in combination with its hardware; or executes the method steps of the network device described in FIG. 2 in combination with its hardware.
  • the embodiment of the present application also provides a computer program product, the computer program product includes computer program code, when the computer program code runs on a computer, the computer executes the method steps of the terminal device described in FIG. 2; or when the computer program code When the computer program code runs on a computer, the computer executes the method steps of the network device described in FIG. 2.
  • the embodiment of the present application also provides a chip including a processor.
  • the processor is used to read and execute the computer program stored in the memory to execute the communication method in any possible implementation manner of FIG. 2.
  • the chip further includes a memory, and the memory and the processor are connected through a circuit or a wire.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, processes the data and/or information, and outputs the processing result through the communication interface.
  • the communication interface can be an input and output interface.
  • processors and memory may be physically independent units, or the memory may also be integrated with the processor.
  • a communication system in another embodiment, and the communication system includes a terminal and a base station.
  • the terminal in the communication system may be any terminal device in the communication method provided in FIG. 2, or the terminal in the communication system may be the terminal device 100 described in FIG. 5 above.
  • the base station in the communication system may be the network device in the communication method provided in FIG. 2, or the base station in the communication system may be the network device 200 described in FIG. 6 above.
  • the process can be completed by a computer program instructing relevant hardware.
  • the program can be stored in a computer readable storage medium. , May include the processes of the above-mentioned method embodiments.
  • the aforementioned storage media include: ROM or random storage RAM, magnetic disks or optical disks and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法及相关装置、设备,该方法包括:终端设备接收第一指示信息,该第一指示信息用于指示第一频域资源,该第一频域资源为第一部分带宽BWP对应的频域资源的子集,该第一BWP为该终端设备专用BWP;终端设备在该第一BWP上接收第一PDCCH,该第一PDCCH由G-RNTI加扰,该第一PDCCH在该第一频域资源的范围内调度第一PDSCH;终端设备接收包括第一频域宽度的第二指示信息;终端设备在该第一频域资源上接收该第一PDSCH。采用本申请实施例,可以针对5G NR实现广播/多播/组播通信,并可以在统一的频域资源上实现广播/多播/组播的数据传输。

Description

通信方法及相关装置、设备 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及相关装置、设备。
背景技术
目前,第五代(5th-generation,5G)移动通信新空口(new radio,NR)支持的典型带宽(即系统带宽)为100MHz(兆赫兹),而用户设备(user equipment,UE)不需要与网络设备(如5G制式下的基站gNB)支持同等大小的带宽,UE仅在工作带宽内收发信息。通常,网络设备给UE配置部分带宽(bandwidth part,BWP)来收发信息,配置的BWP就为UE的工作带宽。在5G NR的下行传输中,一个UE在一个单元载波(component carrier,CC)上可以被配置最多4个下行部分带宽(downlink BWP,DL BWP)。但同一时刻一个UE只能有一个BWP是激活状态,称为激活BWP(active BWP),UE只能在激活BWP中收发信息。
对于广播/多播/组播的下行传输来说,网络设备通常会发送一个物理下行控制信道(physical downlink control channel,PDCCH)给一组UE,这个PDCCH用于调度一个下行共享物理信道(physical downlink shared channel,PDSCH),这一组UE会在同一时频资源上接收PDCCH调度的PDSCH。然而,由于接收同一广播/多播/组播下行传输的一组UE中每个UE都有各自的激活BWP,每个UE的激活BWP在频域上的资源都是独立配置的。故如果每个UE的激活BWP在频域上无法对齐,则网络设备就无法在统一的频域资源上向一组UE发送广播/多播/组播数据,即,网络设备在一个频域资源上向一组UE发送PDCCH时,这一组UE中的部分UE可能无法接收到该PDCCH,因为每个UE只能在自己的激活BWP内收发信息,这也就无法在统一的频域资源上实现广播/多播/组播通信。
发明内容
本申请实施例提供一种通信方法及相关装置、设备,可以针对5G NR实现广播/多播/组播通信,并可以在统一的频域资源上实现广播/多播/组播的数据传输。
下面从不同的方面介绍本申请,应理解的是,下面的不同方面的实施方式和有益效果可以互相参考。
第一方面,本申请实施例提供一种通信方法,该方法适用于5G NR的广播/多播/组播通信的终端设备(如UE)中,该方法包括:终端设备从网络设备接收第一指示信息,并可以在第一BWP上接收第一PDCCH,还可以接收第二指示信息,在该第一指示信息指示的第一频域资源内接收该第一PDCCH调度的第一PDSCH。可选的,终端设备可以对接收到的该第一PDSCH进行解析以得到该第一PDSCH上承载的用户数据信息,该第一PDSCH的解析范围为该第一频域资源。其中,该第一指示信息可以用于指示第一频域资源,该第一频域资源可以为该第一BWP对应的频域资源的子集或真子集。该第一BWP为终端设备专用BWP(UE dedicated BWP),且该第一BWP为终端设备的激活BWP,即终端设备在 第一BWP内收发信息。该第一PDCCH上承载DCI,并可以由G-RNTI加扰,该第一PDCCH还可以在该第一频域资源的范围内调度第一PDSCH,即该第一PDCCH的频域资源分配信息域的指示范围为第一频域资源。可选的,该第一频域资源可以为子BWP(sub-BWP)对应的频域资源,该子BWP可以为该第一BWP的子集或真子集。可选的,PDCCH的作用可以由加扰该PDCCH的RNTI确定,G-RNTI加扰的第一PDCCH是用于广播/多播/组播传输的PDCCH。
作为一个可选的实施例,该第二指示信息也可以通过隐式方式或其它方式指示该第一频域宽度,或者频域的某些参数,该第二指示信息与该第二资源相关联,终端设备可以根据该第二指示信息与第二资源的映射关系确定第二频域资源。
可选的,该第二指示信息包括第一频域宽度,该第一频域宽度用于确定第二频域资源。该第一频域资源与第二频域资源分别为网络设备独立配置的,即第一频域资源的配置不依赖于第二频域资源的配置,终端设备可以根据第二频域资源的配置直接确认第二频域资源,而无需依赖在配置第一频域资源过程中通知的参数。可以理解的,该第一频域资源的起始频域位置与该第二频域资源的起始频域位置不相同,和/或该第一频域资源的频域宽度与该第二频域资源的频域宽度不相同。该第一频域资源的起始频域位置可以为上述第一BWP对应的频域资源的任一子集或真子集中索引号(即序号)最小的RB(lowest RB)。该第二频域资源的起始频域位置为接收上述第一PDCCH(这里的第一PDCCH指由G-RNTI加扰的PDCCH)的控制资源集合(CORESET,control resource set)或预定义的BWP中索引号(即序号)最小的RB。该第一频域资源的频域宽度是可灵活配置的,即该第一频域资源的频域宽度可以为上述第一BWP对应的频域资源的子集或真子集中的任意RB数。该第二频域资源的频域宽度(即第一频域宽度)可以为CORESET0对应的连续RB数,其中CORESET0可以由系统消息指示或高层信令配置,CORESET0的RB数可以配置为24、48、96。
本申请实施例的终端设备接收网络设备通过指示信息指示的第一频域资源,在这个第一频域资源上接收并解析第一PDCCH调度的第一PDSCH,得到第一PDSCH上承载的用户数据信息,又因为第一PDCCH由G-RNTI加扰,说明第一PDCCH是用于广播/多播/组播传输的PDCCH,也说明第一PDCCH调度的第一PDSCH上承载的数据是广播/多播/组播传输的数据,故本申请实施例提供的通信方法针对5G NR可以实现广播/多播/组播通信,并可以在统一的频域资源(第一频域资源)上实现广播/多播/组播的数据传输。
结合第一方面,在一种可能的实施方式中,终端设备在上述第一BWP上接收第一PDCCH包括:终端设备可以在上述第一频域资源内接收该第一PDCCH。可选的,终端设备可以对接收到的该第一PDCCH进行解析,以得到该第一PDCCH上承载的DCI。其中,这里的解析过程可以包括解调、解码等处理。该第一PDCCH上承载的DCI的格式可以为非回退DCI,如DCI format 1_1。该第一PDCCH的频域资源分配信息域所指示的范围不超过该第一频域资源。
本申请实施例的终端设备直接在第一频域资源上接收并解析第一PDCCH,缩小了接收下行广播/多播/组播传输的频域范围,可以提高处理效率,缩小处理时延。
结合第一方面,在一种可能的实施方式中,终端设备在上述第一BWP上接收第一 PDCCH之后,该方法还包括:终端设备可以在该第一BWP对应的频域资源内对该第一PDCCH进行解析,以得到该第一PDCCH上承载的DCI。其中,这里的解析过程可以包括解调、解码等处理。该第一PDCCH上承载的DCI的格式可以为非回退DCI,如DCI format1_1。该第一PDCCH的频域资源分配信息域所指示的范围不超过该第一BWP对应的频域资源。
本申请实施例的终端设备在第一BWP对应的频域资源上解析第一PDCCH,可以解析得到更完整的DCI,也说明第一PDCCH的频域资源可以为该第一BWP对应的频域资源,可以增加第一PDCCH的频域资源的灵活性。
结合第一方面,在一种可能的实施方式中,终端设备在上述第一BWP上接收第一PDCCH之前,该方法还包括:终端设备从网络设备接收第三指示信息,该第三指示信息可以用于指示上述第一PDCCH承载的DCI的格式,其中该第一PDCCH承载的DCI的格式为非回退DCI。这里的非回退DCI可以指DCI format 1_1,或者除回退DCI(DCI format 1_0)外的其他格式的DCI。非回退DCI中可以包括回退DCI中不包括的控制信息,比如,载波指示、BWP指示、物理资源块绑定尺寸指示器、速率匹配指示器、零功率信道状态信息参考信号触发器、探测参考信号请求、天线端口、传输配置指示器中的一种或多种。
本申请实施例可以采用非回退DCI来调度PDSCH,又因为非回退DCI可承载的控制信息相较于回退DCI更丰富,可以支持多天线/多用户传输(这是因为非回退DCI中包括天线端口和传输配置指示器),可以提高5G NR下广播/多播/组播传输的灵活性。
结合第一方面,在一种可能的实施方式中,终端设备在上述第一BWP上接收第一PDCCH之前,该方法还包括:终端设备从网络设备接收第四指示信息,该第四指示信息可以用于指示第一控制资源集合。其中,该第一控制资源集合对应的频域资源可以为上述第一频域资源的子集或真子集。
本申请实施例将第一控制资源集合对应的频域资源限定在第一频域资源内,使得终端设备在第一频域资源内解析第一PDCCH时,也可以解析得到完整的DCI。
结合第一方面,在一种可能的实施方式中,终端设备在上述第一BWP上接收第一PDCCH之前,该方法还包括:终端设备从网络设备接收第五指示信息,该第五指示信息可以用于指示与上述第一控制资源集合关联的第一公共搜索空间。其中,该第一公共搜索空间可以用于检测上述第一PDCCH。该第一公共搜索空间可以为小区内的所有终端设备或一组终端设备公共的,即所有终端设备或一组终端设备在该第一公共搜索空间内可以检测到G-RNTI加扰的第一PDCCH和其他RNTI加扰的PDCCH;该第一公共搜索空间也可以是为G-RNTI加扰的第一PDCCH配置的搜索空间,即所有终端设备或一组终端设备在该第一公共搜索空间内只能检测到G-RNTI加扰的第一PDCCH。
因为通过控制资源集合和公共搜索空间可以确定出PDCCH可能所在的位置,所以本申请实施例的终端设备接收网络设备指示的第一控制资源集合和第一搜索空间,可以确定第一PDCCH可能所在的位置,可以辅助终端设备将第一PDCCH接收下来。
结合第一方面,在一种可能的实施方式中,上述第一指示信息中可以包括上述第一频域资源的起始频域位置、频域宽度或参数集(numerology)中的至少一项。参数集中可以包括子载波间隔和循环前缀,该第一频域资源的参数集与该第一BWP的参数集相同,即该 第一频域资源的子载波间隔与该第一BWP的子载波间隔相同、该第一频域资源的循环前缀与该第一BWP的循环前缀相同。
第二方面,本申请实施例提供另一种通信方法,该方法适用于5G NR的广播/多播/组播通信的网络设备(如gNB)中,该方法包括:网络设备可以确定第一频域资源,并可以向一组终端设备发送第一指示信息,再可以向这一组终端设备发送第一PDCCH,还可以发送包括第一频域宽度的第二指示信息,在第一频域资源上发送第一PDSCH。其中,这一组终端设备可以为小区内接收广播/多播/组播传输的一组终端设备。该第一指示信息可以用于指示该第一频域资源,该第一频域资源可以为第一BWP对应的频域资源的子集或真子集。该第一BWP为终端设备专用BWP(UE dedicated BWP),且该第一BWP为终端设备的激活BWP,即终端设备在第一BWP内收发信息。该第一PDCCH上承载DCI,并可以由G-RNTI加扰,该第一PDCCH还可以在该第一频域资源的范围内调度第一PDSCH,即该第一PDCCH的频域资源分配信息域的指示范围为第一频域资源。该第一PDSCH上承载用户数据信息。可选的,该第一频域资源可以为子BWP(sub-BWP)对应的频域资源,该子BWP可以为该第一BWP的子集或真子集。可选的,PDCCH的作用可以由加扰该PDCCH的RNTI确定,G-RNTI加扰的第一PDCCH是用于广播/多播/组播传输的PDCCH。
作为一个可选的实施例,该第二指示信息也可以通过隐式方式或其它方式指示该第一频域宽度,或者频域的某些参数,该第二指示信息与该第二资源相关联,终端设备可以根据该第二指示信息与第二资源的映射关系确定第二频域资源。
可选的,该第二指示信息包括第一频域宽度,该第一频域宽度用于确定第二频域资源。该第一频域资源与第二频域资源分别为网络设备独立配置的,即第一频域资源的配置不依赖于第二频域资源的配置,终端设备可以根据第二频域资源的配置直接确认第二频域资源,而无需依赖在配置第一频域资源过程中通知的参数。可以理解的,该第一频域资源的起始频域位置与该第二频域资源的起始频域位置不相同,和/或该第一频域资源的频域宽度与该第二频域资源的频域宽度不相同。该第一频域资源的起始频域位置可以为上述第一BWP对应的频域资源的任一子集或真子集中索引号(即序号)最小的RB(lowest RB)。该第二频域资源的起始频域位置为接收上述第一PDCCH(这里的第一PDCCH指由G-RNTI加扰的PDCCH)的控制资源集合(即CORESET)或预定义的BWP中索引号(即序号)最小的RB。该第一频域资源的频域宽度是可灵活配置的,即该第一频域资源的频域宽度可以为上述第一BWP对应的频域资源的子集或真子集中的任意RB数。该第二频域资源的频域宽度(即第一频域宽度)可以为CORESET0对应的连续RB数,其中CORESET0可以由系统消息指示或高层信令配置,CORESET0的RB数为24、48或96。
本申请实施例的网络设备将用于广播/多播/组播传输的第一频域资源配置在终端设备专用BWP(UE dedicated BWP)对应的频域资源中,当终端设备需要接收单播传输时会激活UE dedicated BWP,同时终端设备也可以在激活BWP中接收组播传输(这是因为激活BWP的部分频域资源被配置用于广播/多播/组播传输),即可以实现在一个BWP内完成单播和组播传输。因此,就不需要为广播/多播/组播传输额外配置工作带宽,当终端设备需要频繁接收单播传输和组播传输时,则不需要在单播工作带宽和组播工作带宽之间来回切换,从而可以节省切换时延。
结合第二方面,在一种可能的实施方式中,网络设备发送第一PDCCH时,可以在该第一频域资源内发送该第一PDCCH。该第一PDCCH的频域资源分配信息域所指示的范围不超过该第一频域资源。
结合第二方面,在一种可能的实施方式中,网络设备发送第一PDCCH之前,该方法还包括:网络设备可以向小区内所有终端设备发送第三指示信息,该第三指示信息可以用于指示该第一PDCCH承载的DCI的格式,其中该第一PDCCH承载的DCI的格式为非回退DCI。这里的非回退DCI可以指DCI format 1_1,或者除回退DCI(DCI format 1_0)外的其他格式的DCI。非回退DCI中可以包括回退DCI中不包括的控制信息,比如,载波指示、BWP指示、物理资源块绑定尺寸指示器、速率匹配指示器、零功率信道状态信息参考信号触发器、探测参考信号请求、天线端口、传输配置指示器中的一种或多种。
结合第二方面,在一种可能的实施方式中,网络设备发送第一PDCCH之前,该方法还包括:网络设备可以发送第四指示信息,该第四指示信息可以用于指示第一控制资源集合。其中,该第一控制资源集合对应的频域资源可以为上述第一频域资源的子集或真子集。
结合第二方面,在一种可能的实施方式中,网络设备发送第一PDCCH之前,该方法还包括:网络设备可以发送第五指示信息,该第五指示信息可以用于指示与上述第一控制资源集合关联的第一公共搜索空间。其中,该第一公共搜索空间可以用于检测上述第一PDCCH。该第一公共搜索空间可以为小区内的所有终端设备或一组终端设备公共的,即所有终端设备或一组终端设备在该第一公共搜索空间内可以检测到G-RNTI加扰的第一PDCCH和其他RNTI加扰的PDCCH;该第一公共搜索空间也可以是为G-RNTI加扰的第一PDCCH配置的搜索空间,即所有终端设备或一组终端设备在该第一公共搜索空间内只能检测到G-RNTI加扰的第一PDCCH。
结合第二方面,在一种可能的实施方式中,上述第一指示信息中可以包括上述第一频域资源的起始频域位置、频域宽度或参数集(numerology)中的至少一项。参数集中可以包括子载波间隔和循环前缀,该第一频域资源的参数集与该第一BWP的参数集相同,即该第一频域资源的子载波间隔与该第一BWP的子载波间隔相同、该第一频域资源的循环前缀与该第一BWP的循环前缀相同。
第三方面,本申请实施例提供一种终端设备,该终端设备包括用于执行上述第一方面和/或第一方面的任意一种可能的实现方式所提供的通信方法的单元和/或模块,因此也能实现第一方面提供的通信方法所具备的有益效果(或优点)。
第四方面,本申请实施例提供一种网络设备,该网络设备包括用于执行上述第二方面和/或第二方面的任意一种可能的实现方式所提供的通信方法的单元和/或模块,因此也能实现第二方面提供的通信方法所具备的有益效果(或优点)。
第五方面,本申请实施例提供一种终端设备,包括处理器、收发器和存储器,其中,该存储器用于存储计算机程序,该收发器用于收发各种信息,该计算机程序包括程序指令,当该处理器运行该程序指令时,执行上述第一方面的通信方法。
第六方面,本申请实施例提供一种网络设备,包括处理器、收发器和存储器,其中,该存储器用于存储计算机程序,该收发器用于收发各种信息,该计算机程序包括程序指令,当该处理器运行该程序指令时,执行上述第二方面的通信方法。
第七方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储计算机程序指令,当该计算机程序指令在该计算机上运行时,使得该计算机执行上述第一方面中的通信方法。
第八方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储计算机程序指令,当该计算机程序指令在该计算机上运行时,使得该计算机执行上述第二方面中的通信方法。
第九方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述第一方面的通信方法。
第十方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述第二方面的通信方法。
第十一方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面的任意可能的实现方式中终端设备的功能。这些功能可以通过硬件实现,或者,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与这些功能相对应的单元(或模块)。
第十二方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第二方面的任意可能的实现方式中网络设备的功能。这些功能可以通过硬件实现,或者,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与这些功能相对应的单元(或模块)。
第十三方面,本申请实施例提供一种芯片,包括处理器。该处理器用于读取并执行存储器中存储的计算机程序,以执行上述第一方面或上述第二方面的任意可能的实现方式中的通信方法。可选的,该芯片还包括存储器,该存储器与该处理器通过电路或电线连接。进一步可选的,该芯片还包括通信接口,该处理器与该通信接口连接。该通信接口用于接收需要处理的数据和/或信息,该处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
可选的,上述的处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
第十四方面,本申请实施例提供一种通信系统,该通信系统包括终端设备和网络设备,其中:该终端设备为上述第一方面或上述第一方面的任一种可能的实现方式中描述的通信方法中的终端设备,该网络设备为上述第二方面或上述第二方面的任一种可能的实现方式中描述的通信方法中的网络设备。
实施本申请实施例,可以针对5G NR实现广播/多播/组播通信,并可以在统一的频域资源上实现广播/多播/组播的数据传输。
附图说明
图1是本申请实施例提供的移动通信系统的架构示意图;
图2是本申请实施例提供的通信方法的示意流程图;
图3是本申请实施例提供的子BWP与第一BWP、第二BWP以及第三BWP的关系示意图;
图4是本申请实施例提供的第一PDCCH的解析范围的示意图;
图5是本申请实施例提供的终端设备的结构示意图;
图6是本申请实施例提供的网络设备的结构示意图;
图7是本申请实施例提供的通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
为便于更好地理解本申请实施例所提供的通信方法,下面将对本申请实施例提供的通信方法中所涉及的部分术语(名词)进行简单说明:
一、终端设备专用部分带宽(UE dedicated BWP)
一个UE在一个单元载波上可以通过高层参数被配置最多4个DL BWP,如高层参数BWP-Downlink或者initialDownlinkBWP。DL BWP的类型可以分为三类,分别为初始BWP(initial BWP)、专用BWP(dedicated BWP)和默认BWP(default BWP)。其中,初始BWP为UE初始接入阶段配置的BWP,可以用于传输剩余最小系统信息(remaining minimum system information,RMSI)、基于竞争的随机接入消息2(message2,MSG2)以及消息4(message4,MSG4)的PDSCH。专用BWP为UE在无线资源控制(radio resource control,RRC)连接态时配置的BWP,可以用于传输数据业务,比如超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等数据业务。在一个小区(cell)中,所有UE的初始BWP相同,不同UE的专用BWP是独立配置的,即不同UE的专用BWP可以不同。
二、激活BWP(active BWP)
对于一个UE来说,每个时刻只能有一个BWP处于激活状态,这个处于激活状态的BWP就称为激活BWP,UE只能在激活BWP中收发信息。激活BWP的选择和切换可以通过以下几种方式实现:(1)通过PDCCH承载的下行控制信息(downlink control information,DCI)动态指示,例如,采用DCI格式1_1(DCI format 1_1)激活DL BWP,DCI中的带宽部分指示信息域(或BWP指示器)用于指示下行接收的激活DL BWP。(2)通过BWP非激活定时器(bwp-Inactivity Timer)控制BWP的激活和去激活(当BWP非激活定时器超时,表示当前BWP去激活)。(3)通过RRC信令半静态配置。(4)通过媒体接入控制(media access control,MAC)实体自身触发随机接入过程。
三、物理下行控制信道(physical downlink control channel,PDCCH)
PDCCH承载调度以及其他控制信息,具体包含传输格式、资源抢占、上/下行调度许可、功率控制以及上行重传信息等。PDCCH是一组物理资源粒子的集合,承载的是下行控制信息(DCI),包含一个或多个UE上的资源分配和其他的控制信息。
四、下行控制信息(downlink control information,DCI)
DCI由PDCCH承载,是网络设备发给UE的下行控制信息,其中包括上下行资源分配、 自动重传请求(hybrid automatic repeat request,HARQ)信息、功率控制等。下行调度许可DCI可以包括两种格式,分别为:DCI format 1_0和DCI format 1_1。其中,DCI format 1_0为回退DCI,用于在RRC初始化接入状态时或小区切换时传输的下行控制信息。DCI format1_0还可用于调度承载寻呼信息、初始接入响应信息、系统消息的PDSCH。DCI format 1_1为非回退DCI,用于在RRC连接态下调度PDSCH。用于加扰DCI的循环冗余校验(cyclic redundancy check,CRC)的序列可以为无线网络临时标识(radio network temporary identifier,RNTI)。比如,加扰DCI format 1_0的RNTI可以包括寻呼-无线网络临时标识(paging-RNTI,P-RNTI)、随机接入-无线网络临时标识(random access-RNTI,RA-RNTI)、系统消息-无线网络临时标识(system information-RNTI,SI-RNTI)、小区无线网络临时标识(cell-RNTI,C-RNTI)、临时小区无线网络临时标识(temporary cell-RNTI,TC-RNTI)、配置的调度-无线网络临时标识(configured scheduling-RNTI,CS-RNTI)或调制编码方式-小区无线网络临时标识(modulation and coding scheme-cell-RNTI,MCS-C-RNTI)。
五、搜索空间(search space)
搜索空间是指某个聚合等级下候选PDCCH(PDCCH candidate)的集合。聚合等级为构成PDCCH的控制信道元素(control channel element,CCE)数量,CCE是构成PDCCH的基本单位,一个CCE占用频域上6个资源单元组(resource element group,REG)。搜索空间的种类可以包括公共搜索空间和UE专用搜索空间。对于UE专用搜索空间,只有一个UE能在该搜索空间内检测PDCCH;对于公共搜索空间,多个UE可以在此搜索空间内检测PDCCH。
六、控制资源集合(control resource set,CORESET)
5G NR系统将PDCCH频域上占据的频段和时域上占用的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号数等信息封装在控制资源集合中;将PDCCH的起始OFDM符号编号以及PDCCH的监测周期等信息封装在搜索空间中。通过控制资源集合和搜索空间可以确定出PDCCH可能所在的位置。
七、下行共享物理信道(physical downlink shared channel,PDSCH)
PDSCH可以用于承载来自传输信道的数据。
八、资源块(resource block,RB)
在时域上,最小的资源粒度是1个OFDM符号;在频域上,最小的资源粒度是1个子载波。时域上1个OFDM符号与频域上1个子载波称为1个时频资源单元(resource element,RE)。物理层在进行资源映射时,以RE为基本单位。1个时隙内的所有OFDM符号与频域上连续12个子载波组成1个资源块RB,即1个RB=12个子载波。1个RB的带宽为12*子载波间隔。每连续4个RE称为1个资源单元组(resource element group,REG)。每9个REG为1个CCE。
上述内容简要阐述了本申请实施例提供的通信方法中所涉及的部分术语(名词),下面将对本申请实施例提供的通信方法的系统架构进行说明。
本申请实施例提供的通信方法可以应用于第五代移动通信系统中的NR系统和/或未来的移动通信系统。为便于理解,本申请实施例先对移动通信系统的系统架构进行简要介绍。
参见图1,图1是本申请实施例提供的移动通信系统的架构示意图。如图1所示,该移动通信系统可以包括网络设备110和至少两个终端设备(如图1中的终端设备120、终端设备130以及终端设备140)。终端设备可以通过无线的方式与网络设备连接。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该移动通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和/或无线回传设备,在图1中未画出。本申请实施例对该移动通信系统中包括的网络设备和终端设备的数量不做限定。
其中,网络设备可以是网络侧的一种用于发射或接收信号的实体,如gNB。网络设备也可以为终端设备通过无线方式接入到该移动通信系统中的接入设备,如网络设备可以是基站NodeB、演进型基站(evolved NodeB,eNB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
终端设备可以是用户侧的一种用于接收或发射信号的实体,如手机UE。终端设备也可以称为终端Terminal、UE、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(VR)终端设备、增强现实(AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
在一些可行的实施方式中,该移动通信系统中的网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、无人机、气球和卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
在一些可行的实施方式中,图1所示的网络设备110可以向终端设备120、终端设备130以及终端设备140发送一个广播/多播/组播的PDCCH,但由于终端设备120、终端设备130以及终端设备140都有各自的激活BWP,且每个终端设备的激活BWP都是独立配置的,故终端设备120、130以及140并不一定都能接收到广播/多播/组播的PDCCH。如果某个终端设备无法接收到广播/多播/组播的PDCCH,则无法接收PDCCH调度的PDSCH,也就无法接收到PDSCH上承载的广播/多播/组播数据,即无法实现广播/多播/组播传输和通信。
因此,本申请实施例提供一种通信方法,可以实现5G NR的广播/多播/组播通信,并可以在统一的频域资源上实现广播/多播/组播的下行数据传输。
下面将结合附图2至附图4,对本申请实施例提供的通信方法进行详细说明。
可理解的,在实际应用中,本申请实施例提供的通信方法中终端设备的数量可以大于或等于2,网络设备的数量可以大于或等于1。为便于理解,下面仅以3个终端设备和1个网络设备为例对本申请实施例提供的通信方法进行说明。其中,这3个终端设备可以分别为第一终端设备、第二终端设备以及第三终端设备。可选的,第一终端设备可以为图1所 示的终端设备120,第二终端设备可以为图1所示的终端设备130,第三终端设备可以为图1所示的终端设备140。
可理解的,对于网络侧的网络设备来说,网络设备要与一组终端设备实现广播/多播/组播下行传输,则网络设备需要知道这一组终端设备的信息,可以说明,在网络侧,网络设备可以得到这一组终端设备中每个终端设备的信息,也可以为这一组终端设备配置信息。因此,对于网络侧来说,本申请实施例提供的通信方法是单个网络设备与多个终端设备的通信(交互)。
还可理解的,对于用户侧的终端设备来说,在广播/多播/组播的下行传输时,每个终端设备可以接收网络设备发送的信息,且每个终端设备仅能够知道自身的行为(如接收了什么信息),无法得知一组终端设备中其他终端设备的行为。因此,对于用户侧来说,本申请实施例提供的通信方法是单个终端设备与单个网络设备的通信(交互)。
参见图2,图2是本申请实施例提供的通信方法的示意流程图。如图2所示,本申请实施例提供的通信方法包括但不限于以下步骤:
S201,网络设备发送第一指示信息。相应地,第一终端设备、第二终端设备以及第三终端设备分别接收第一指示信息。
在一些可行的实施方式中,上述第一指示信息可以为高层信令,比如,第一指示信息为RRC信令或媒体接入控制层控制元素(media access control layer control element,MAC CE)。上述第一指示信息可以用于指示第一频域资源,该第一频域资源可以为高层信令配置的频域资源。
在一些可行的实施方式中,上述第一频域资源可以为第一BWP对应的频域资源的子集,进一步的,该第一频域资源可以为第一BWP对应的频域资源的真子集。该第一BWP可以为一组终端设备中一个终端设备的激活BWP,即该终端设备被配置为在该第一BWP内收和/或发信息,该第一BWP可以为该终端设备专用BWP(UE dedicated BWP)。另一个实施例中,所述第一BWP可以为某特定终端的激活BWP,所述特定终端可以是配置的,或者是预设的。所述第一BWP也可以是系统配置的一个BWP或多个BWP。具体的,该第一指示信息中可以包括该第一频域资源的频域宽度、起始频域位置或参数集(numerology)中的至少一项。
在一些可行的实施方式中,上述第一频域资源的起始频域位置可以表示为该第一频域资源包括的最小RB(一个实施例中,若索引值按照频率从低到高或由小到大的排序,这里可以指该第一频域资源中索引值最小的RB)与point A之间的频率偏移,point A为资源块网格的公共参考点。该第一频域资源的带宽(即频域宽度)可以表示为该第一频域资源中包括的RB数目、或资源块组(resource block group,RBG)数目,或REG数目。该第一频域资源的参数集可以与该第一BWP的参数集保持一致,该参数集中可以包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP),即该第一频域资源的SCS与该第一BWP的SCS相同、该第一频域资源的CP与该第一BWP的CP相同。可选的,该第一频域资源可以为连续的、不间断的频域资源,这里的“连续和不间断”可以是物理上的连续和不间断;也可以是指逻辑上的,说明该第一频域资源中包括的RB的索引可以是连续的。
在一些可行的实施方式中,上述第一频域资源指示域(这里指第一频域资源的频域位置和带宽)可以由资源指示值(resource indication value,RIV)组成。该资源指示值可以表示为:
如果
Figure PCTCN2019124145-appb-000001
Figure PCTCN2019124145-appb-000002
否则,即
Figure PCTCN2019124145-appb-000003
Figure PCTCN2019124145-appb-000004
其中,
Figure PCTCN2019124145-appb-000005
RB start表示上述第一频域资源的起始RB索引,L RBs表示上述第一频域资源连续分配的RB数,
Figure PCTCN2019124145-appb-000006
表示上述第一BWP所占的物理资源块数目(即RB数)。
在一些可行的实施方式中,网络设备确定接收广播/多播/组播传输的一组终端设备。这一组终端设备可以为这个网络设备所在的小区内的所有终端设备,也可以为这个网络设备所在的小区内的部分终端设备,在某些极端情况下,一组终端设备也可以只包括单一终端设备。网络设备可以为这一组终端设备中的每个终端设备配置激活BWP。举例说明,该组终端设备可以包括第一终端设备、第二终端设备以及第三终端设备。由于终端设备的激活BWP是网络设备配置的,所以网络设备可以确定出第一终端设备、第二终端设备以及第三终端设备各自的激活BWP。为便于描述,下面将上述第一BWP作为第一终端设备的激活BWP,将第二终端设备的激活BWP称为第二BWP,第三终端设备的激活BWP称为第三BWP。网络设备可以为该组终端设备(包括第一终端设备、第二终端设备以及第三终端设备)配置第一频域资源,该第一频域资源用于接收广播/多播/组播传输。网络设备确定该第一频域资源后,可以向该组终端设备发送第一指示信息指示该第一频域资源。相应地,该组终端设备中的第一终端设备、第二终端设备以及第三终端设备中的至少一个终端设备接收该第一指示信息。其中,该第一频域资源可以为该第一BWP对应的频域资源、该第二BWP对应的频域资源以及该第三BWP对应的频域资源之间的交集的子集或真子集。
可选的,上述第一频域资源可以为子BWP(sub-BWP或者称为子带宽sub-band)对应的频域资源,该子BWP可以为该第一BWP、该第二BWP以及该第三BWP之间的交集的子集或真子集。上述第一指示信息还可以包括与子BWP相关的信息,例如相关参数,比如,BWP-Common参数。该第一指示信息中的BWP-Common参数可以用于表示子BWP为公共BWP或组公共BWP。其中,公共BWP可以是小区公共的,表示整个小区内的终端设备都可以在该BWP上接收广播/多播/组播下行传输;组公共BWP表示小区中的终端设备被分为若干个组,其中有至少一组终端设备可以在该BWP上接收广播/多播/组播下行传输。进一步可选的,上述第一指示信息中包括的信息(或参数)可以由相同或不同的信元指示。例如,一个信元指示CP、SCS、第一频域资源的频域位置及带宽,另一个信元指示与子BWP相关的信息(或参数),如BWP-ID、BWP-common or BWP-dedicated。
例如,如图3所示,图3是本申请实施例提供的子BWP与第一BWP、第二BWP以及第三BWP的关系示意图。如图3所示,第一BWP为BWP1,第二BWP为BWP2,第三BWP为BWP3;第一终端设备为终端设备120,第二终端设备为终端设备130,第三终端设备为终端设备130。如图3所示,子BWP为第一BWP、第二BWP以及第三BWP之 间重叠的部分BWP。
在一些可行的实施方式中,第一终端设备可以接收网络设备发送的上述第一指示信息,该第一指示信息所指示的第一频域资源可以为上述第一BWP对应的频域资源的子集或真子集,该第一BWP可以为第一终端设备专用BWP。假设,第一终端设备为UE#1,则第一BWP为UE#1dedicated BWP。同理,第二终端设备可以接收网络设备发送的上述第一指示信息,该第一指示信息所指示的第一频域资源可以为上述第二BWP对应的频域资源的子集或真子集,该第二BWP可以为第二终端设备专用BWP。假设,第二终端设备为UE#2,则第二BWP为UE#2dedicated BWP。再同理,第三终端设备可以接收网络设备发送的上述第一指示信息,该第一指示信息所指示的第一频域资源可以为上述第三BWP对应的频域资源的子集或真子集,该第三BWP可以为第三终端设备专用BWP。假设,第三终端设备为UE#3,则第三BWP为UE#3dedicated BWP。
S202,网络设备发送第三指示信息。相应地,第一终端设备、第二终端设备以及第三终端设备分别接收第三指示信息。
在一些可行的实施方式中,上述第三指示信息可以用于指示第一PDCCH承载的DCI的格式,其中,该DCI的格式为非回退DCI,这里的非回退DCI可以指DCI format 1_1,或者除回退DCI(DCI format 1_0)外的其他格式的DCI。可选的,回退DCI(DCI format 1_0)和非回退DCI(如DCI format 1_1)都可以用于调度PDSCH,但非回退DCI承载的控制信息可以比回退DCI更丰富。比如,非回退DCI承载的控制信息可以包括以下信息中的一种或多种:载波指示、BWP指示、物理资源块(physical resource block,PRB)绑定尺寸指示器、速率匹配指示器、零功率信道状态信息参考信号(channel state information-reference signal,CSI-RS)触发器、探测参考信号(sounding reference resource,SRS)请求、天线端口、传输配置指示器,而回退DCI承载的控制信息不包括上述信息中的任一种。其中,BWP指示可以用于指示激活BWP。
在一些可行的实施方式中,上述第三指示信息直接指示第一PDCCH承载的DCI的格式是否为非回退DCI,上述第三指示信息可以为高层参数RRC信令,比如,非回退DCI开关(non-fallback DCI switch)参数。若非回退DCI开关参数置ON,则表示第一PDCCH承载的DCI为非回退DCI。若非回退DCI开关参数置OFF,则表示第一PDCCH承载的DCI为回退DCI,可以通过设置非回退DCI开关参数为ON或OFF直接确定DCI格式,例如若非回退DCI开关参数置OFF,则指示DCI format 1_0。
可选的,上述非回退DCI开关参数可以包含在上述第一指示信息内,则此时网络设备不需要单独发送一个指示信息(即上述第三指示信息)来指示DCI的格式或指示DCI的格式为非回退DCI。可以理解的,如果非回退DCI开关参数包含在上述第一指示信息内,则本申请实施例的步骤S202可以不执行。
在一些可行的实施方式中,网络设备可以向网络设备所在的小区内的所有终端设备发送第三指示信息。可理解的,该第三指示信息作用于小区中的全部UE,而不是特定的一个UE(per UE)。相应地,网络设备所在的小区内的所有终端设备均可以接收到该第三指示信息。当然,第一终端设备可以接收网络设备发送的第三指示信息。同理,第三终端设备可 以接收网络设备发送的第三指示信息。再同理,第三终端设备可以接收网络设备发送的第三指示信息。
由于第三指示信息用于指示第一PDCCH承载的DCI的格式,或指示DCI的格式为非回退DCI,网络设备通过第三指示信息告知终端设备,DCI格式可以为非回退DCI,即网络设备告诉了终端设备可以去识别和接收非回退DCI,所以网络设备发送承载非回退DCI的PDCCH之后,终端设备可以接收这个PDCCH,并可以对这个PDCCH承载的非回退DCI进行解调、解码等操作得到该非回退DCI中携带的控制信息。因此,本申请实施例可以采用非回退DCI来调度PDSCH,又因为非回退DCI可承载的控制信息相较于回退DCI更丰富,可以支持多天线/多用户传输(这是因为非回退DCI中包括天线端口和传输配置指示器),可以提高5G NR下广播/多播/组播传输的灵活性。
S203,网络设备发送第一PDCCH。
在一些可行的实施方式中,上述第一PDCCH上承载DCI,该DCI的格式可以为非回退DCI,如DCI format 1_1。该第一PDCCH可以由组-无线网络临时标识(group-radio network temporary identifier,G-RNTI)加扰,该第一PDCCH(或DCI format 1_1)可以在上述第一频域资源的范围内调度第一PDSCH。可选的,PDCCH的作用可以由加扰该PDCCH的RNTI确定,G-RNTI加扰的PDCCH是用于广播/多播/组播传输的PDCCH。具体的,UE可以通过RNTI来识别PDCCH,例如,如果PDCCH由G-RNTI加扰,则说明这个PDCCH用于调度广播/多播/组播传输;如果PDCCH由寻呼-无线网络临时标识(paging-RNTI,P-RNTI)加扰,则说明这个PDCCH用于调度寻呼的PDSCH;如果PDCCH由随机接入-无线网络临时标识(random access-RNTI,RA-RNTI)加扰,则说明这个PDCCH用于调度随机接入的PDSCH。
在一些可行的实施方式中,网络设备发送第一PDCCH之前,可以发送第四指示信息,该第四指示信息指示第一控制资源集合。该第一控制资源集合可以为组-控制资源集合(group-CORESET,G-CORESET)。该第一控制资源集合对应的频域资源可以为上述第一频域资源的子集或真子集。该第四指示信息中可以包括与该第一控制资源集合相关的信息,比如该第一控制资源集合的配置信息。
在一些可行的实施方式中,网络设备发送第一PDCCH之前,还可以发送第五指示信息,该第五指示信息指示与上述第一控制资源集合关联的第一公共搜索空间。该第一公共搜索空间可以用于检测上述第一PDCCH。该第一公共搜索空间可以为网络设备所在的小区内的所有终端设备或一组终端设备公共的,即所有终端设备或一组终端设备在该第一公共搜索空间内可以检测到G-RNTI加扰的第一PDCCH和其他RNTI加扰的PDCCH;该第一公共搜索空间也可以是为G-RNTI加扰的第一PDCCH配置的搜索空间,即所有终端设备或一组终端设备在该第一公共搜索空间内只能检测到G-RNTI加扰的第一PDCCH。
在另一些可行的实施方式中,上述第四指示信息和上述第五指示信息可以为同一个指示信息,即一个指示信息可以用于指示第一控制资源集合和与该第一控制资源集合关联的第一公共搜索空间。
在一些可行的实施方式中,网络设备发送第四指示信息和/或第五指示信息之后,可以 在上述第一频域资源内向一组终端设备(包括第一终端设备、第二终端设备以及第四终端设备)发送第一PDCCH。
作为一个可选实施例,网络设备可以广播发送第二指示信息。相应地,第一终端设备、第二终端设备以及第三终端设备分别接收该第二指示信息。
在一些可行的实施方式中,上述第二指示信息中可以包括第一频域宽度,该第一频域宽度可以用于确定第二频域资源。该第二指示信息可以包括在系统消息中,该第二频域资源可以为系统消息配置的频域资源。该第二频域资源的起始频域位置为接收上述第一PDCCH(这里的第一PDCCH指由G-RNTI加扰的PDCCH)的控制资源集合(即CORESET)或预定义的BWP中索引号(即序号)最小的RB(lowest RB)。该第一频域宽度(即第二频域资源的频域宽度)可以为CORESET0对应的连续RB数,其中CORESET0由系统消息指示或高层信令配置,CORESET0的RB数为24、48或96。
作为一个可选的实施例,该第二指示信息也可以通过隐式方式或其它方式指示该第一频域宽度,或者频域的某些参数,该第二指示信息与该第二资源相关联,终端设备可以根据该第二指示信息与第二资源的映射关系确定第二频域资源。
可选的,上述第一频域资源和上述第二频域资源是网络设备独立配置的,即该第一频域资源的配置不依赖于该第二频域资源的配置,终端设备可以根据第二频域资源的配置直接确认第二频域资源,而无需依赖在配置第一频域资源过程中通知的参数。该第一频域资源为高层信令配置的,该第二频域资源为系统消息配置的。另一实施例中,第一频域资源和第二频域资源独立配置可以理解为:第一频域资源的起始频域位置与第二频域资源的起始频域位置不相同,和/或该第一频域资源的频域宽度与该第二频域资源的频域宽度不相同。进一步可理解的,第一频域资源和第二频域资源的起始频域位置相同,频域宽度不相同。或,第一频域资源和第二频域资源的起始频域位置不相同,频域宽度相同。或,第一频域资源和第二频域资源的起始频域位置不相同,频域宽度也不相同。
例如,第一频域资源和第二频域资源的起始频域位置均为RB15,第一频域资源的频域宽度为50个RB,第二频域资源的频域宽度(即第一频域宽度)为48个RB,即第一频域资源为RB15至RB65,第二频域资源为RB15至RB63。又如,第一频域资源的起始频域位置为RB5,第二频域资源的起始频域位置为RB20,第一频域资源的频域宽度与第二频域资源的频域宽度(即第一频域宽度)均为96个RB,即第一频域资源为RB5至RB101,第二频域资源为RB20至RB116。再如,第一频域资源的起始频域位置为RB12,第二频域资源的起始频域位置为RB25,第一频域资源的频域宽度为100个RB,第二频域资源的频域宽度(即第一频域宽度)为24个RB,即第一频域资源为RB12至RB112,第二频域资源为RB25至RB49。
在一些可行的实施方式中,PDCCH上可以承载DCI,DCI可以用于调度PDSCH。回退DCI(DCI format 1_0)可以在上述第二频域资源的范围内调度第二PDSCH,即该第二PDSCH的频域资源为该第二频域资源。该回退DCI可以由不同于G-RNTI的RNTI加扰。比如,该回退DCI可以由以下任意一种RNTI加扰:小区-无线网络临时标识(cell-RNTI,C-RNTI),配置的调度-无线网络临时标识(configured scheduling-RNTI,CS-RNTI),临时 小区-无线网络临时标识(temporary cell-RNTI,TC-RNTI),寻呼-无线网络临时标识(paging-RNTI,P-RNTI),系统消息-无线网络临时标识(system information-RNTI,SI-RNTI),随机接入-无线网络临时标识(random access-RNTI,RA-RNTI)或SPS-RNTI。
S204,第一终端设备在第一BWP上接收第一PDCCH,并对第一PDCCH进行解析。
S205,第二终端设备在第二BWP上接收第一PDCCH,并对第一PDCCH进行解析。
S206,第三终端设备在第三BWP上接收第一PDCCH,并对第一PDCCH进行解析。
在一些可行的实施方式中,第一终端设备可以接收上述第四指示信息和/或上述第五指示信息。同理,第二终端设备可以接收上述第四指示信息和/或上述第五指示信息;第三终端设备可以接收上述第四指示信息和/或上述第五指示信息。其中,该第四指示信息用于指示第一控制资源集合,该第四指示信息中包括第一控制资源集合的配置信息。
可选的,第一控制资源集合的配置信息可以包括:
(a)通过controlResourceSetId参数配置控制资源集合ID p,其中0≤p<12;
(b)通过pdcch-DMRS-ScramblingID参数配置解调参考信号(demodulation reference signal,DMRS)加扰序列初始值;
(c)通过precoderGranularity参数配置UE可以假设的在频域上采用相同DMRS预编码器的多个REG的预编码粒度;
(d)通过cce-REG-MappingType参数配置CCE到REG映射参数;
(e)通过TCI-Stat参数指示的一组天线端口准共址中选取一个天线端口准共址,用于指示各个CORESET中接收PDCCH的DMRS天线端口的准共址信息;
(f)通过TCI-PresentInDCI参数指示CORESET p中通过PDCCH传输的DCI格式1_1中是否存在传输配置指示信息(transmission configuration indication,TCI)。
上述第五指示信息用于指示与上述第一控制资源集合关联的第一公共搜索空间。对于每个下行BWP,每个终端设备可以被配置S个搜索空间集合,S大于0且不大于10。对于S个搜索空间集合中的每个搜索空间,网络设备通过信令给终端设备配置:
(A)通过searchSpaceId参数配置搜索空间集合索引s,0≤s<40;
(B)通过controlResourceSetId参数配置搜索空间集合s与控制资源集合p的关联关系;
(C)通过monitoringSlotPeriodicityAndOffset参数配置PDCCH检测周期k s个时间单元和PDCCH检测偏移O s个时间单元,其中时间单元可以是时隙、子时隙、微时隙、OFDM符号;
(D)通过monitoringSymbolsWithinSlot参数配置一个时间单元中PDCCH检测方式,指示一个时间单元内用于PDCCH检测的CORESET的第一个符号,时间单元可以是时隙、子时隙、微时隙;
(E)通过duration参数配置持续时间T s<k s个时间单元,指示搜索空间集合s所在的时间单元数,时间单元可以是时隙、子时隙、微时隙;
(F)通过searchSpaceType参数指示搜索空间集合s是公共搜索空间或者UE专用搜索空间;
(G)通过nrofCandidates参数指示每个CCE聚合等级L的PDCCH候选数目。
因此,第一终端设备可以根据上述第一控制资源集合和上述第一公共搜索空间在上述第一BWP(即第一终端设备的激活BWP)上或在上述第一频域资源内接收网络设备发送的上述第一PDCCH。第一终端设备接收到该第一PDCCH之后,可以在上述第一频域资源内对该第一PDCCH进行解析,以得到该第一PDCCH上承载的DCI。可理解的,该第一PDCCH的解析范围可以为该第一频域资源。还可理解的,该第一PDCCH的频域资源分配信息域所指示的范围不超过该第一频域资源。或者,第一终端设备接收到该第一PDCCH之后,可以在该第一BWP对应的频域资源内对该第一PDCCH进行解析,以得到该第一PDCCH上承载的DCI。可理解的,该第一PDCCH的解析范围也可以为该第一BWP对应的频域资源。还可理解的,该第一PDCCH的频域资源分配信息域所指示的范围不超过该第一BWP对应的频域资源。其中,解析的过程可以包括解调、解码等处理。该第一PDCCH上承载的DCI中可以包括以下信息中的一项或多项:PDSCH的时域资源分配信息、频域资源分配信息、调制编码方式(modulation and coding scheme,MCS)、冗余版本、HARQ进程号、下行链路分配索引、调度物理上行控制信道(physical uplink control channel,PUCCH)的功率控制命令、PUCCH资源指示器、PDSCH到HARQ的反馈定时指示器。
例如,如图4所示,图4是本申请实施例提供的第一PDCCH的解析范围的示意图。假设第一BWP对应的频域资源包括6个RB,这6个RB分别用6比特(bit)指示。假设第一频域资源为这6个RB的中间4个RB,分别用这6bit的中间4bit指示。如图4的4a所示,第一终端设备可以在中间4bit所指示的RB上对第一PDCCH进行解析,即第一PDCCH的解析范围为中间4bit所指示的RB。或者,如图4的4b所示,第一终端设备可以在这6bit所指示的RB上对该第一PDCCH进行解析,即第一PDCCH的解析范围为这6bit所指示的RB。其中,这6bit的第一个bit位和最后一个bit位可以置0,使其无效,即第一BWP对应的频域资源中第一个RB和最后一个RB上可以不承载信息(即承载的信息为空)或承载单播传输的控制信息。
在一些可行的实施方式中,第一终端设备根据上述第一控制资源集合和上述第一公共搜索空间在上述第一BWP上接收网络设备发送的上述第一PDCCH的具体实现可以如下:第一终端设备在第一控制资源集合中接收第一PDCCH,在第一公共搜索空间检测第一PDCCH。该第一公共搜索空间中可以包括候选PDCCH。第一终端设备在该第一公共搜索空间内对所有候选PDCCH进行译码和循环冗余校验(CRC)。如果CRC校验通过,则认为所译码的PDCCH的内容对第一终端设备有效,并利用译码所获得的信息(如传输调度指示、时隙格式指示、功率控制命令等)进行后续操作。
在一些可行的实施方式中,与前述第一终端设备同理,第二终端设备可以在上述第二BWP(即第二终端设备的激活BWP)上接收网络设备发送的上述第一PDCCH,并可以在上述第一频域资源内或该第二BWP对应的频域资源内对该第一PDCCH进行解析,以得到该第一PDCCH上承载的DCI。第三终端设备可以在上述第三BWP(即第三终端设备的激活BWP)上接收网络设备发送的上述第一PDCCH,并可以在上述第一频域资源内或该第三BWP对应的频域资源内对该第一PDCCH进行解析,以得到该第一PDCCH上承载的DCI。可理解的,第二终端设备和第三终端设备的实现过程可参考前述第一终端设备的实 现,在此不再赘述。由于,第一频域资源是第一BWP对应的频域资源、第二BWP对应的频域资源以及第三BWP对应的频域资源之间的交集的子集或真子集,所以第一终端设备、第二终端设备以及第三终端设备均可以在统一的频域资源(即第一频域资源)上接收到第一PDCCH,并对其进行解析,得到DCI。
S207,网络设备在第一频域资源上发送第一PDSCH。
在一些可行的实施方式中,上述第一PDSCH上可以承载广播/多播/组播的用户数据信息。该第一PDSCH对应的频域资源可以与上述第一频域资源相同,也可以不完全相同。例如,第一PDSCH的起始RB位置与第一频域资源的起始RB位置相同,且第一PDSCH的RB数与第一频域资源的RB数相同。或者,第一PDSCH的起始RB位置与第一频域资源的起始RB位置相同,且第一PDSCH的RB数小于第一频域资源的RB数,也可以是第一PDSCH的起始RB位置与第一频域资源的起始RB位置不同,且第一PDSCH的RB数小于第一频域资源的RB数。又一个实施例中,这里说的起始位置相同或不同可以分别替换为终止位置相同或不同,起始位置也可以指RB编号从接收DCI的CORESET中最低RB开始(RB numbering starts from the lowest RB of the CORESET in which the DCI was received)。网络设备可以在上述第一频域资源上向一组终端设备(包括第一终端设备、第二终端设备以及第三终端设备)发送第一PDSCH。
本申请实施例通过将第一PDSCH对应的频域资源配置与第一频域资源相同或不完全相同,又因为第一频域资源较灵活(这是因为第一频域资源是一组终端设备的激活BWP对应的频域资源之间的交集的子集或真子集),故可以提高组播传输的频域资源配置的灵活性,即第一PDSCH的起始RB位置和RB数可以灵活配置、非固定,也即广播/多播/组播PDSCH的RB数不限于某个或某几个固定值(比如CORESET0对应的24、48或96个RB),可以是任意值,并可以根据广播/多播/组播传输的用户数据的大小确定PDSCH的RB数。
在一些可行的实施方式中,本申请实施例的步骤S207与步骤S204-步骤S206之间的执行顺序不做限定。例如,步骤S207可以在步骤S204-步骤S206之前执行,步骤S207也可以在步骤S204-步骤S206之后执行,步骤S207还可以与步骤S204-步骤S206同时执行,等等。
S208,第一终端设备、第二终端设备以及第三终端设备在第一频域资源上接收第一PDSCH。
在一些可行的实施方式中,第一终端设备可以在上述第一BWP(即第一终端设备的激活BWP)或上述第一频域资源上接收网络设备发送的上述第一PDSCH,并可以根据上述第一PDCCH承载的DCI在上述第一频域资源内对该第一PDSCH进行解调、解码等操作,以得到该第一PDSCH上承载的广播/多播/组播用户数据信息。可以理解的,该第一PDSCH的解析范围可以为该第一频域资源。其中,该第一PDSCH对应的频域位置可以与该第一频域资源的频域位置相同(即起始RB位置相同),该第一PDSCH对应的带宽(即频域宽度)也可以与该第一频域资源的带宽相同(即RB数目相同)。可选的,该第一PDSCH对应的频域资源可以为该第一频域资源的子集或真子集。本申请实施例的终端设备在自己的 激活BWP内接收第一PDCCH,并在自己的激活BWP或第一频域资源内接收该第一PDCCH调度的第一PDSCH,在第一频域资源内对该第一PDSCH进行解析,以获得该第一PDSCH上承载的广播/多播/组播用户数据信息,从而实现了广播/多播/组播通信,并实现了在统一的频域资源上进行广播/多播/组播的数据传输。
同理,第二终端设备可以在上述第二BWP或上述第一频域资源上接收网络设备发送的上述第一PDSCH,并可以根据上述第一PDCCH承载的DCI在上述第一频域资源内对该第一PDSCH进行解调、解码等操作,以得到该第一PDSCH上承载广播/多播/组播的用户数据。再同理,第三终端设备可以在上述第三BWP或该第一频域资源上接收网络设备发送的上述第一PDSCH,并可以根据上述第一PDCCH承载的DCI在上述第一频域资源内对该第一PDSCH进行解调、解码等操作,以得到该第一PDSCH上承载广播/多播/组播的用户数据。
在本申请实施例中,一方面,网络设备将用于广播/多播/组播传输的第一频域资源配置在终端设备专用BWP(UE dedicated BWP)对应的频域资源中,当终端设备需要接收单播传输时会激活UE dedicated BWP,同时终端设备也可以在激活BWP中接收组播传输(这是因为激活BWP的部分频域资源被配置用于广播/多播/组播传输),即可以实现在一个BWP内完成单播和组播传输。因此,就不需要为广播/多播/组播传输额外配置工作带宽,当终端设备需要频繁接收单播传输和组播传输时,则不需要在单播工作带宽和组播工作带宽之间来回切换,从而可以节省切换时延。另一方面,当一组终端设备中某个或某几个终端设备的UE dedicated BWP切换时,用于广播/多播/组播传输的第一频域资源会随着UE dedicated BWP的切换而切换,即UE dedicated BWP发生变化时,第一频域资源也相应的变化。这是因为第一频域资源是一组终端设备的激活BWP对应的频域资源之间的交集的子集或真子集。从而在广播/多播/组播传输时,也可支持UE dedicated BWP的动态切换。
上述详细阐述了本申请实施例的通信方法,为了便于更好地实施本申请实施例的上述方案,本申请实施例还提供了相应的设备。
参见图5,图5是本申请实施例提供的终端设备的结构示意图。如图5所示,该终端设备100可包括:
第一收发单元101,用于接收第一指示信息,并在第一BWP上接收第一PDCCH,接收第二指示信息,在该第一指示信息指示的第一频域资源内接收该第一PDCCH调度的第一PDSCH。其中,该第一指示信息可以用于指示第一频域资源,该第一频域资源可以为该第一BWP对应的频域资源的子集或真子集。该第一BWP为终端设备专用BWP。该第一PDCCH可以由G-RNTI加扰,并可以在该第一频域资源的范围内调度该第一PDSCH,即该第一PDCCH的频域资源分配信息域的指示范围为第一频域资源。该第一PDSCH的解析范围为该第一频域资源。该第二指示信息可以包括第一频域宽度,该第一频域宽度可以用于确定第二频域资源。该第一频域资源和第二频域资源分别为网络设备独立配置的,即第一频域资源的配置不依赖于第二频域资源的配置,终端设备可以根据第二频域资源的配置直接确认第二频域资源,而无需依赖在配置第一频域资源过程中通知的参数。可以理解的,该第一频域资源的起始频域位置与该第二频域资源的起始频域位置不相同,和/或该第一频 域资源的频域宽度与该第二频域资源的频域宽度不相同。
可选的,该第二频域资源的起始频域位置为接收该第一PDCCH(这里的第一PDCCH指由G-RNTI加扰的PDCCH)的控制资源集合(即CORESET)或预定义的BWP中索引号(即序号)最小的RB(lowest RB)。该第二频域资源的频域宽度(即第一频域宽度)可以为CORESET0对应的连续RB数,其中CORESET0可以由系统消息指示或高层信令配置,CORESET0的RB数为24、48或96。
在一些可行的实施方式中,上述第一收发单元101具体用于:在该第一频域资源内接收第一PDCCH。
在一些可行的实施方式中,上述第一收发单元101,还用于接收第三指示信息,该第三指示信息用于指示该第一PDCCH承载的DCI的格式,其中该第一PDCCH承载的DCI的格式为非回退DCI。
在一些可行的实施方式中,上述第一指示信息中包括该第一频域资源的起始频域位置、频域宽度或参数集中的至少一项,该参数集包括子载波间隔和循环前缀,该第一频域资源的参数集与该第一BWP的参数集相同。
在一些可行的实施方式中,该终端设备100还可以包括处理单元102,该处理单元102用于对上述收发单元101接收到的第一PDSCH进行解析,以得到该第一PDSCH上承载的用户数据信息。
具体实现中,各个模块或单元的实现还可以对应参照图2所示的方法实施例中终端设备的相应描述,执行上述实施例中终端设备所执行的方法和功能。
本申请实施例的终端设备接收网络设备通过指示信息指示的第一频域资源,在这个第一频域资源上接收并解析第一PDCCH调度的第一PDSCH,以得到第一PDSCH上承载的用户数据,又因为第一PDCCH由G-RNTI加扰,说明第一PDCCH是用于广播/多播/组播传输的PDCCH,也说明第一PDCCH调度的第一PDSCH上承载的数据是广播/多播/组播传输的数据,故本申请实施例提供的通信方法针对5G NR可以实现广播/多播/组播通信,并可以在统一的频域资源(第一频域资源)上实现广播/多播/组播的数据传输。
参见图6,图6是本申请实施例提供的网络设备的结构示意图。如图6所示,该网络设备200可包括:
第二收发单元201,用于发送指示第一频域资源的第一指示信息和第一PDCCH,发送包括第一频域宽度的第二指示信息,并在第一频域资源上发送第一PDSCH。其中,该第一指示信息可以用于指示第一频域资源,该第一频域资源可以为该第一BWP对应的频域资源的子集或真子集。该第一BWP为终端设备专用BWP。该第一PDCCH可以由G-RNTI加扰,并可以在该第一频域资源的范围内调度该第一PDSCH,即该第一PDCCH的频域资源分配信息域的指示范围为第一频域资源。该第一PDSCH的解析范围为该第一频域资源。该第二指示信息可以包括第一频域宽度,该第一频域宽度可以用于确定第二频域资源。该第一频域资源和第二频域资源分别为网络设备独立配置的,即第一频域资源的配置不依赖于第二频域资源的配置,终端设备可以根据第二频域资源的配置直接确认第二频域资源,而无需依赖在配置第一频域资源过程中通知的参数。可以理解的,该第一频域资源的起始 频域位置与该第二频域资源的起始频域位置不相同,和/或该第一频域资源的频域宽度与该第二频域资源的频域宽度不相同。
可选的,该第二频域资源的起始频域位置为接收该第一PDCCH(这里的第一PDCCH指由G-RNTI加扰的PDCCH)的控制资源集合(即CORESET)或预定义的BWP中索引号(即序号)最小的RB(lowest RB)。该第二频域资源的频域宽度(即第一频域宽度)可以为CORESET0对应的连续RB数,其中CORESET0可以由系统消息指示或高层信令配置,CORESET0的RB数为24、48或96。
在一些可行的实施方式中,上述网络设备200还包括确定单元202。该确定单元202,用于在发送上述第一指示信息之前,确定第一频域资源。
在一些可行的实施方式中,上述第二收发单元201具体用于在该第一频域资源内发送第一PDCCH。
在一些可行的实施方式中,上述第二收发单元201还用于发送第三指示信息,该第三指示信息用于指示该第一PDCCH承载的DCI的格式,其中该第一PDCCH承载的DCI的格式为非回退DCI。
在一些可行的实施方式中,上述第一指示信息中包括该第一频域资源的起始频域位置、频域宽度或参数集中的至少一项,该参数集包括子载波间隔和循环前缀,该第一频域资源的参数集与该第一BWP的参数集相同。
其中,上述确定单元202可以为处理单元。
具体实现中,各个模块或单元的实现还可以对应参照图2所示的方法实施例中网络设备的相应描述,执行上述实施例中网络设备所执行的方法和功能。
本申请实施例的网络设备将用于广播/多播/组播传输的第一频域资源配置在终端设备专用BWP(UE dedicated BWP)对应的频域资源中,当终端设备需要接收单播传输时会激活UE dedicated BWP,同时终端设备也可以在激活BWP中接收组播传输(这是因为激活BWP的部分频域资源被配置用于广播/多播/组播传输),即可以实现在一个BWP内完成单播和组播传输。因此,就不需要为广播/多播/组播传输额外配置工作带宽,当终端设备需要频繁接收单播传输和组播传输时,则不需要在单播工作带宽和组播工作带宽之间来回切换,从而可以节省切换时延。
参见图7,图7是本申请实施例提供的通信装置的结构示意图。如图7所示,本申请实施例提供的通信装置1000包括处理器1001、存储器1002、收发器1003和总线系统1004。本申请实施例提供的通信装置可以为终端设备和网络设备中的任意一种。
其中,上述处理器1001、存储器1002和收发器1003通过总线系统1004连接。
上述存储器1002用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器1002包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。图7中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。存储器1002也可以是处理器1001中的存储器,在此不做限制。
存储器1002存储了如下的元素,可执行单元或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
上述处理器1001控制通信装置1000的操作,处理器1001可以是一个或多个中央处理器(central processing unit,CPU),在处理器1001是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
具体的应用中,通信装置1000的各个组件通过总线系统1004耦合在一起,其中总线系统1004除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图7中将各种总线都标为总线系统1004。为便于表示,图7中仅是示意性画出。
上述本申请实施例提供的图2的终端设备的方法;或者上述本申请实施例提供的图2的网络设备的方法可以应用于处理器1001中,或者由处理器1001实现。处理器1001可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1001中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1001可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的信息,结合其硬件执行图2所描述的终端设备的方法步骤;或者结合其硬件执行图2所描述的网络设备的方法步骤。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2所描述的终端设备的方法步骤;或者当该计算机程序代码在计算机上运行时,使得该计算机执行图2所描述的网络设备的方法步骤。
本申请实施例还提供一种芯片,包括处理器。该处理器用于读取并执行存储器中存储的计算机程序,以执行图2的任意可能的实现方式中的通信方法。可选的,该芯片还包括存储器,该存储器与该处理器通过电路或电线连接。进一步可选的,该芯片还包括通信接口,该处理器与该通信接口连接。该通信接口用于接收需要处理的数据和/或信息,该处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
可选的,上述的处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
本申请的另一实施例中,还提供一种通信系统,该通信系统包括终端和基站。其中, 示例性的,该通信系统中的终端可以为图2所提供的通信方法中的任一终端设备,或该通信系统中的终端可以是上述图5所述的终端设备100。该通信系统中的基站可以为图2所提供的通信方法中的网络设备,或该通信系统中的基站可以是上述图6所述的网络设备200。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收第一指示信息,所述第一指示信息用于指示第一频域资源,所述第一频域资源为第一部分带宽BWP对应的频域资源的子集,所述第一BWP为所述终端设备专用BWP;
    所述终端设备在所述第一BWP上接收第一物理下行控制信道PDCCH,所述第一PDCCH由组-无线网络临时标识G-RNTI加扰,所述第一PDCCH在所述第一频域资源的范围内调度第一下行共享物理信道PDSCH;
    所述终端设备接收第二指示信息,所述第二指示信息包括第一频域宽度,所述第一频域宽度用于确定第二频域资源,所述第二频域资源的起始频域位置为接收所述第一PDCCH的控制资源集合或预定义的BWP中序号最小的资源块RB;
    所述终端设备在所述第一频域资源上接收所述第一PDSCH。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备在所述第一BWP上接收第一物理下行控制信道PDCCH包括:
    所述终端设备在所述第一频域资源内接收所述第一PDCCH。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备在所述第一BWP上接收第一物理下行控制信道PDCCH之前,所述方法还包括:
    所述终端设备接收第三指示信息,所述第三指示信息用于指示所述第一PDCCH承载的下行控制信息DCI的格式,其中所述第一PDCCH承载的DCI的格式为非回退DCI。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一指示信息中包括所述第一频域资源的起始频域位置、频域宽度或参数集中的至少一项,所述参数集包括子载波间隔和循环前缀,所述第一频域资源的参数集与所述第一BWP的参数集相同。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一频域宽度为控制资源集合CORESET 0对应的连续RB数。
  6. 一种通信方法,其特征在于,包括:
    网络设备发送第一指示信息,所述第一指示信息用于指示第一频域资源,所述第一频域资源为第一BWP对应的频域资源的子集,所述第一BWP为所述终端设备专用BWP;
    所述网络设备发送第一PDCCH,所述第一PDCCH由G-RNTI加扰,所述第一PDCCH在所述第一频域资源的范围内调度第一PDSCH;
    所述网络设备发送第二指示信息,所述第二指示信息包括第一频域宽度,所述第一频域宽度用于确定第二频域资源,所述第二频域资源的起始频域位置为接收所述第一PDCCH的控制资源集合或预定义的BWP中序号最小的资源块RB;
    所述网络设备在所述第一频域资源上发送所述第一PDSCH。
  7. 根据权利要求6所述的方法,其特征在于,所述网络设备发送第一PDCCH包括:
    所述网络设备在所述第一频域资源内发送第一PDCCH。
  8. 根据权利要求5或7所述的方法,其特征在于,所述网络设备发送第一PDCCH之前,所述方法还包括:
    所述网络设备发送第三指示信息,所述第三指示信息用于指示所述第一PDCCH承载的DCI的格式,其中所述第一PDCCH承载的DCI的格式为非回退DCI。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,所述第一指示信息中包括所述第一频域资源的起始频域位置、频域宽度或参数集中的至少一项,所述参数集包括子载波间隔和循环前缀,所述第一频域资源的参数集与所述第一BWP的参数集相同。
  10. 根据权利要求6-9任一项所述的方法,其特征在于,所述第一频域宽度为控制资源集合CORESET 0对应的连续RB数。
  11. 一种终端设备,其特征在于,包括:
    第一收发单元,用于接收第一指示信息,所述第一指示信息用于指示第一频域资源,所述第一频域资源为第一BWP对应的频域资源的子集,所述第一BWP为所述终端设备专用BWP;
    所述第一收发单元,还用于在所述第一BWP上接收第一PDCCH,所述第一PDCCH由G-RNTI加扰,所述第一PDCCH在所述第一频域资源的范围内调度第一PDSCH;
    所述第一收发单元,还用于接收第二指示信息,所述第二指示信息包括第一频域宽度,所述第一频域宽度用于确定第二频域资源,所述第二频域资源的起始频域位置为接收所述第一PDCCH的控制资源集合或预定义的BWP中序号最小的资源块RB;
    所述第一收发单元,还用于在所述第一频域资源上接收所述第一PDSCH。
  12. 根据权利要求11所述的终端设备,其特征在于,所述第一收发单元具体用于:
    在所述第一频域资源内接收第一PDCCH。
  13. 根据权利要求11或12所述的终端设备,其特征在于,所述第一收发单元,还用于接收第三指示信息,所述第三指示信息用于指示所述第一PDCCH承载的DCI的格式,其中所述第一PDCCH承载的DCI的格式为非回退DCI。
  14. 根据权利要求11-13任一项所述的终端设备,其特征在于,所述第一指示信息中包括所述第一频域资源的起始频域位置、频域宽度或参数集中的至少一项,所述参数集包括子载波间隔和循环前缀,所述第一频域资源的参数集与所述第一BWP的参数集相同。
  15. 根据权利要求11-14任一项所述的终端设备,其特征在于,所述第一频域宽度为控制资源集合CORESET 0对应的连续RB数。
  16. 一种网络设备,其特征在于,包括:
    第二收发单元,用于发送第一指示信息,所述第一指示信息用于指示第一频域资源,所述第一频域资源为第一BWP对应的频域资源的子集,所述第一BWP为所述终端设备专用BWP;
    所述第二收发单元,还用于发送第一PDCCH,所述第一PDCCH由G-RNTI加扰,所述第一PDCCH在所述第一频域资源的范围内调度第一PDSCH;
    所述第二收发单元,还用于发送第二指示信息,所述第二指示信息包括第一频域宽度,所述第一频域宽度用于确定第二频域资源,所述第二频域资源的起始频域位置为接收所述第一PDCCH的控制资源集合或预定义的BWP中序号最小的资源块RB;
    所述第二收发单元,还用于在所述第一频域资源上发送所述第一PDSCH。
  17. 根据权利要求16所述的网络设备,其特征在于,所述第三收发单元具体用于:
    在所述第一频域资源内发送第一PDCCH。
  18. 根据权利要求16或17所述的网络设备,其特征在于,所述第二收发单元还用于:
    发送第三指示信息,所述第三指示信息用于指示所述第一PDCCH承载的DCI的格式,其中所述第一PDCCH承载的DCI的格式为非回退DCI。
  19. 根据权利要求16-18任一项所述的网络设备,其特征在于,所述第一指示信息中包括所述第一频域资源的起始频域位置、频域宽度或参数集中的至少一项,所述参数集包括子载波间隔和循环前缀,所述第一频域资源的参数集与所述第一BWP的参数集相同。
  20. 根据权利要求16-19任一项所述的网络设备,其特征在于,所述第一频域宽度为控制资源集合CORESET 0对应的连续RB数。
  21. 一种终端设备,其特征在于,包括处理器、收发器和存储器,其中,所述存储器用于存储计算机程序,所述收发器用于收发信息,所述计算机程序包括程序指令,当所述处理器运行所述程序指令时,使所述终端设备执行如权利要求1-5任一项所述的方法。
  22. 一种网络设备,其特征在于,包括处理器、收发器和存储器,其中,所述存储器用于存储计算机程序,所述收发器用于收发信息,所述计算机程序包括程序指令,当所述处理器运行所述程序指令时,使所述网络设备执行如权利要求6-10任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储计算机程序指令,当所述计算机程序指令在所述计算机上运行时,使得所述计算机执行如权利要 求1-5任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储计算机程序指令,当所述计算机程序指令在所述计算机上运行时,使得所述计算机执行如权利要求6-10任一项所述的方法。
PCT/CN2019/124145 2019-12-09 2019-12-09 通信方法及相关装置、设备 WO2021114060A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19956090.5A EP4061076A4 (en) 2019-12-09 2019-12-09 COMMUNICATION METHOD, ASSOCIATED APPARATUS AND DEVICES
PCT/CN2019/124145 WO2021114060A1 (zh) 2019-12-09 2019-12-09 通信方法及相关装置、设备
CN201980102443.2A CN114731643A (zh) 2019-12-09 2019-12-09 通信方法及相关装置、设备
US17/836,201 US20220322400A1 (en) 2019-12-09 2022-06-09 Communication method, and related apparatus and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/124145 WO2021114060A1 (zh) 2019-12-09 2019-12-09 通信方法及相关装置、设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/836,201 Continuation US20220322400A1 (en) 2019-12-09 2022-06-09 Communication method, and related apparatus and device

Publications (1)

Publication Number Publication Date
WO2021114060A1 true WO2021114060A1 (zh) 2021-06-17

Family

ID=76329225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124145 WO2021114060A1 (zh) 2019-12-09 2019-12-09 通信方法及相关装置、设备

Country Status (4)

Country Link
US (1) US20220322400A1 (zh)
EP (1) EP4061076A4 (zh)
CN (1) CN114731643A (zh)
WO (1) WO2021114060A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023273795A1 (zh) * 2021-06-30 2023-01-05 中兴通讯股份有限公司 基于多播的资源分配方法、装置、基站、设备及存储介质
WO2023019410A1 (zh) * 2021-08-16 2023-02-23 北京小米移动软件有限公司 一种传输下行控制信息dci的方法及其装置
WO2023115491A1 (zh) * 2021-12-23 2023-06-29 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022082107A1 (en) * 2020-10-16 2022-04-21 Hua Zhou Bandwidth part for multicast and broadcast services
WO2022099181A2 (en) * 2020-11-09 2022-05-12 Ofinno, Llc Discontinuous reception operation of multicast and broadcast services

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190215807A1 (en) * 2018-01-11 2019-07-11 Lg Electronics Inc. Method for receiving downlink signal in wireless communication system and terminal using the same
WO2019158005A1 (zh) * 2018-02-14 2019-08-22 华为技术有限公司 下行控制信息传输方法
US20190274032A1 (en) * 2018-02-16 2019-09-05 Intel Corporation Downlink control information format for ultra-reliable physical downlink control channel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547592B (zh) * 2012-01-06 2015-02-18 电信科学技术研究院 一种数据传输方法及装置
CN111434067B (zh) * 2017-11-09 2021-08-31 北京小米移动软件有限公司 基于无线装置能力的通信方法、装置及基站
US20190222404A1 (en) * 2018-01-12 2019-07-18 Qualcomm Incorporated Signaling techniques for bandwidth parts
US10873423B2 (en) * 2018-02-15 2020-12-22 Huawei Technologies Co., Ltd. Systems and methods for allocation of uplink control channel resources in unlicensed spectrum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190215807A1 (en) * 2018-01-11 2019-07-11 Lg Electronics Inc. Method for receiving downlink signal in wireless communication system and terminal using the same
WO2019158005A1 (zh) * 2018-02-14 2019-08-22 华为技术有限公司 下行控制信息传输方法
US20190274032A1 (en) * 2018-02-16 2019-09-05 Intel Corporation Downlink control information format for ultra-reliable physical downlink control channel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "3GPP TSG RAN WG1 Meeting 91 R1-1719929", DISCUSSION ON RESOURCE ALLOCATION AND TBS DETERMINATION, 1 December 2017 (2017-12-01), XP051369642 *
See also references of EP4061076A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023273795A1 (zh) * 2021-06-30 2023-01-05 中兴通讯股份有限公司 基于多播的资源分配方法、装置、基站、设备及存储介质
WO2023019410A1 (zh) * 2021-08-16 2023-02-23 北京小米移动软件有限公司 一种传输下行控制信息dci的方法及其装置
WO2023115491A1 (zh) * 2021-12-23 2023-06-29 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN114731643A (zh) 2022-07-08
EP4061076A4 (en) 2022-11-02
US20220322400A1 (en) 2022-10-06
EP4061076A1 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
CN112740611B (zh) 用于突发传输的方法和装置
US10631308B2 (en) Methods and devices for data transmission without grant during measurement gap
US20220279479A1 (en) User Equipment (UE) Grouping Criteria and Mechanisms for False Paging Reduction
WO2021114060A1 (zh) 通信方法及相关装置、设备
US20220132534A1 (en) Method and apparatus for uplink data repetitive transmission and reception for network cooperative communication
KR101707792B1 (ko) 모바일 네트워크에서의 통신 방법
US20220232478A1 (en) Communication method and apparatus
TWI768429B (zh) 處理接收的裝置及方法
CN113169851A (zh) 无线通信系统中的对物理下行控制信道(pdcch)进行盲解码的方法和装置
WO2018166421A1 (zh) 传输控制信息的方法、设备和系统
CN111865479B (zh) 一种通信方法及装置
CN112153724B (zh) 搜索空间的监测方法及装置
JP2021518719A (ja) ページング・メッセージ・モニタリング方法、指示情報送信方法、デバイス、及びシステム
WO2018171426A1 (zh) 波束配置方法、移动台和基站
JP7046169B2 (ja) 情報伝送方法および装置
WO2021204196A1 (zh) 控制信息传输方法、装置及系统
CN110547025B (zh) 发送和接收上行数据的方法、用户设备和基站
US9544892B2 (en) System and method for searching for a control channel
EP3886507A1 (en) Method and apparatus for reducing terminal power consumption in wireless communication system
JP6891302B2 (ja) 無線通信ネットワークにおいて通信するための装置および方法
US20220255700A1 (en) Method and apparatus for reporting channel state information through repeated uplink data transmission in network cooperative communication
WO2024070599A1 (ja) 端末及び基地局
CN116234070A (zh) 一种传输指示方法及通信装置
CN113922922A (zh) 通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019956090

Country of ref document: EP

Effective date: 20220613

NENP Non-entry into the national phase

Ref country code: DE