WO2023273795A1 - 基于多播的资源分配方法、装置、基站、设备及存储介质 - Google Patents

基于多播的资源分配方法、装置、基站、设备及存储介质 Download PDF

Info

Publication number
WO2023273795A1
WO2023273795A1 PCT/CN2022/096985 CN2022096985W WO2023273795A1 WO 2023273795 A1 WO2023273795 A1 WO 2023273795A1 CN 2022096985 W CN2022096985 W CN 2022096985W WO 2023273795 A1 WO2023273795 A1 WO 2023273795A1
Authority
WO
WIPO (PCT)
Prior art keywords
multicast
rnti
resource allocation
semi
dci
Prior art date
Application number
PCT/CN2022/096985
Other languages
English (en)
French (fr)
Inventor
王蕾
李群
张志�
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023273795A1 publication Critical patent/WO2023273795A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of wireless communication technologies, and in particular to a multicast-based resource allocation method, device, base station, device, and storage medium.
  • the 4th Generation Mobile Communication Technology introduces multicast technology. Specifically, some users who perform specific services are divided into a multicast group, and a multicast group is established for each multicast group. An independent multicast channel allocates independent multicast PDCCH configuration and independent multicast DCI information, and then schedules multicast services through the multicast channel.
  • the wireless base station can support the allocation of corresponding multicast resources for users and the transmission of multicast service data based on these resources.
  • the method of resource allocation should be implemented on the basis of the existing protocol as much as possible.
  • An embodiment of the present application provides a method for resource allocation based on multicast, the method comprising: receiving a service request sent by a user equipment UE, wherein the service request carries multicast attribution information; determining according to the multicast attribution information The multicast group to which the UE belongs; obtain the group wireless network temporary identifier G-RNTI and semi-static configuration shared by all members in the multicast group, where the G-RNTI is a unicast wireless network temporary identifier, different The multicast groups have different G-RNTIs; generate downlink control information DCI according to the semi-static configuration and use the G-RNTI to scramble the PDCCH resources containing the DCI; the scrambled The PDCCH resource is delivered to the multicast group for the UE to activate corresponding multicast resources according to the DCI.
  • the embodiment of the present application also proposes a multicast-based resource allocation device, including: a receiving module, configured to receive a service request sent by a user equipment UE, wherein the service request carries multicast attribution information; a determining module, configured to Determine the multicast group to which the UE belongs according to the multicast attribution information; an acquisition module, configured to acquire a group wireless network temporary identifier G-RNTI and a semi-static configuration shared by all members of the multicast group, wherein the The G-RNTI is a unicast wireless network temporary identifier, and different multicast groups have different G-RNTIs; a generation module is configured to generate downlink control information DCI according to the semi-static configuration and utilize the G-RNTI The RNTI scrambles the PDCCH resource containing the DCI; the sending module is configured to deliver the scrambled PDCCH resource to the multicast group, so that the UE activates a corresponding multicast according to the DCI resource.
  • a receiving module configured to receive a
  • the embodiment of the present application also proposes a base station, including the multicast-based resource allocation device as described above.
  • the embodiment of the present application also provides a communication device, including: at least one processor; and a memory communicatively connected to the at least one processor; wherein, the memory stores information that can be executed by the at least one processor. Instructions, the instructions are executed by the at least one processor, so that the at least one processor can execute the resource allocation method based on multicast as described above.
  • the embodiment of the present application also provides a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the multicast-based resource allocation method as described above is implemented.
  • Fig. 1 is the flow chart of the multicast-based resource allocation method in the embodiment of the present application
  • FIG. 2 is a flow chart of a multicast-based resource allocation method including the step of determining the starting position of a CCE storing DCI in another embodiment of the present application;
  • FIG. 3 is a schematic diagram of the correspondence between multicast groups, UEs, G-RNTIs, and C-RNTIs involved in the embodiment of the present application;
  • FIG. 4 is a flowchart of a multicast-based resource allocation method including the step of determining multicast group division conditions related to multicast attribution information in another embodiment of the present application;
  • 5-6 are schematic diagrams of the corresponding relationship between multicast groups and bearer channels involved in another embodiment of the present application.
  • FIG. 7 is a flowchart of a multicast-based resource allocation method including a step of performing service data transmission based on allocated resources in another embodiment of the present application;
  • FIG. 8 is a schematic structural diagram of a multicast-based resource allocation device in another embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a communication device in another embodiment of the present application.
  • the main purpose of the embodiment of the present application is to propose a multicast-based resource allocation method, device, base station, equipment, and storage medium, aiming to implement multicast resource allocation for 5G users based on existing protocol content, so that based on allocation
  • the resource can transmit business data to users in multicast form, and can adapt to the subsequent multicast protocol.
  • a feasible multicast-based resource allocation method is provided for users, so that service data can be transmitted to users in a multicast manner based on allocated resources.
  • an embodiment of the present application provides a multicast-based resource allocation method: receiving a service request sent by a user equipment UE, wherein the service request carries multicast attribution information; and determining according to the multicast attribution information
  • the multicast group to which the UE belongs obtain the group wireless network temporary identifier G-RNTI and semi-static configuration shared by all members in the multicast group, where the G-RNTI is a unicast wireless network temporary identifier, different
  • the multicast groups have different G-RNTIs; generate downlink control information DCI according to the semi-static configuration and use the G-RNTI to scramble the PDCCH resources containing the DCI; the scrambled
  • the PDCCH resource is delivered to the multicast group for the UE to activate corresponding multicast resources according to the DCI.
  • the multicast group to which the user equipment belongs is determined according to the multicast attribution information carried in the service request. All multicast group members share the same group wireless network temporary identifier G-RNTI and the same set of semi-static configurations. Therefore, once the multicast group to which the user belongs is determined, the user equipment will be assigned the group wireless network corresponding to the multicast group.
  • the network temporarily identifies the G-RNTI and the semi-static configuration, so that the downlink control information DCI of the user equipment and the scrambling code used when the G-RNTI is determined to scramble the PDCCH resource containing the DCI can be determined according to the semi-static configuration, and then the scrambled After descrambling, the user equipment activates the corresponding semi-static resource as its own multicast resource according to the DCI, completes resource allocation, and then can transmit services to users in multicast form based on the allocated resources data to provide services to users.
  • the resource allocation process is realized on the basis of the existing protocol, without extending the protocol, and can Adapt to subsequent multicast protocols.
  • a multicast-based resource allocation method is applied to a base station.
  • the base station is not further limited in this embodiment.
  • the base station may be an LTE base station that accesses a Long Term Evolution (Long Term Evolution, LTE) system, and may It is a 5G NR base station connected to the 5G NR system, which specifically includes the following steps:
  • Step 101 receiving a service request sent by a user equipment UE, wherein the service request carries multicast attribution information.
  • Service requests generally carry information related to service data. This information can be used as multicast attribution information.
  • the base station can logically divide UEs watching TV program 1 into a multicast group. Therefore, when a When a user needs to watch TV program 1, the service request will carry information indicating TV program 1, and the base station can use the information as multicast attribution information to determine which multicast group the UE belongs to.
  • the sending of the service request may be in the scenario where the user accesses the base station or in the scenario where the user switches to the base station.
  • the above is only a specific example, and it can also be other scenarios where the service request needs to be sent , which will not be repeated here.
  • This embodiment also does not limit the UE, and the UE may be any terminal that supports a downlink Semi-Persistent Scheduling (Semi-Persistent Scheduling, SPS) function.
  • SPS Semi-Persistent Scheduling
  • Step 102 determine the multicast group to which the UE belongs according to the multicast attribution information.
  • the base station creates a multicast group for the UE, and when other UEs send service requests later, if there are other UEs belonging to the multicast group multicast group, add other UEs to the created multicast group; if the UE is not the first multicast group member in the multicast group, the base station will search the UE in the existing multicast group according to the multicast attribution information The multicast group to which the UE actually belongs, and adds the UE to the found multicast group.
  • Step 103 obtain the group wireless network temporary identifier G-RNTI and semi-static configuration shared by all members of the multicast group, wherein, G-RNTI is a unicast wireless network temporary identifier, and different multicast groups have different G-RNTI .
  • the base station assigns a multicast group different from other multicast groups after creating a multicast group for the UE. (Group Radio Network Temporary Identifier, G-RNTI) and semi-static configuration; if the UE is not the first member of the multicast group in the multicast group, the base station will assign the G-RNTI and semi-static configuration already allocated for the multicast group to UE.
  • G-RNTI Group Radio Network Temporary Identifier
  • the semi-persistent configuration includes the semi-persistent scheduling period and time-frequency resources.
  • Step 103 actually allocates the same G-RNTI, the same semi-persistent scheduling period and the same time-frequency resources to all UEs belonging to a certain multicast group , in this way, all UEs belonging to a certain multicast group will periodically receive service data on a fixed and the same time-frequency resource, that is, receive data synchronously, and realize multicast.
  • the multicast groups can be distinguished according to the G-RNTI.
  • the G-RNTI is a Semi-Persistent Scheduling Radio Network Temporary Identifier (Semi-Persistent Scheduling Radio Network Temporary Identifier , SPS-RNTI); when the UE accesses the 5G NR system, that is, the UE sends a service request to the 5G NR base station in the 5G NR system, and the G-RNTI is the Configured Scheduling Radio Network Temporary Identifier (CS -RNTI).
  • SPS-RNTI Semi-Persistent Scheduling Radio Network Temporary Identifier
  • the improvement of this embodiment can be applied to the LTE system, not just to the 5G NR system, but to the 4G Compatible with 5G, improving the practicability of the multicast-based resource allocation method.
  • RNTI Radio Network Temporary Identifier
  • Step 104 Generate downlink control information DCI according to the semi-static configuration and use G-RNTI to scramble the PDCCH resource containing the DCI.
  • the semi-static configuration mainly refers to the parameters of the semi-static configuration, such as the semi-static scheduling period, scheduled time-frequency resources, etc., and the downlink control information (Downlink Control Information, DCI) includes instructions for use by the UE.
  • Control information such as the semi-persistent scheduling period and available time-frequency resources, etc.
  • DCI is actually included in the PDCCH resource in the Physical Downlink Control Channel (PDCCH). Therefore, the actually delivered control signaling is actually It is the PDCCH resource, and before sending the PDCCH, it is necessary to use the G-RNTI as a scrambling code to scramble the PDCCH resource.
  • the DCI primarily includes SPS-config information.
  • a step of determining the initial location of the CCE storing the DCI is also included. Specifically, before step 103, the following steps are further included:
  • Step 106 assigning a cell radio network temporary identifier C-RNTI to the UE.
  • the base station assigns a cell radio network temporary identifier (CellRadio Network Temporary Identifier, C-RNTI) to each user sending a service request as a unique identification label of the UE, wherein each UE corresponds to A unique C-RNTI.
  • C-RNTI CellRadio Network Temporary Identifier
  • Step 107 determine the starting position of the control channel element CCE occupied by the DCI in the PDCCH resource according to the C-RNTI.
  • CCE Control Channel Element
  • Multicast group 1 and multicast group 2 each contain a plurality of different UEs. 1 corresponds to G-RNTI1, multicast group 2 corresponds to G-RNTI2, and UE1, UE2 and UE3 in multicast group 1 correspond to C-RNTI1, C-RNTI2 and C-RNTI3 respectively.
  • G-RNTI is activated at the cell level.
  • other multicast group members When activating a UE to achieve resource allocation, other multicast group members will also receive and analyze If the DCI is issued, other UEs in the multicast group will be reconfigured, and the robustness is not high.
  • the DCI sent through the PDCCH scrambled by the G-RNTI requires all multicast UEs in the cell to monitor simultaneously and receive the PDCCH to achieve synchronization of the broadcast service. If some UEs cannot receive it, some UEs cannot receive the multicast picture.
  • each UE since each UE is assigned a unique corresponding C-RNTI, different UEs will have different starting positions of the Control Channel Element (CCE) according to their own corresponding C-RNTIs due to different UEs. There is a difference, but the corresponding DCI information is scrambled by the same semi-static G-RNTI.
  • the time-frequency resource information corresponding to the periodically scheduled Physical Downlink Shared Channel (PDSCH) and the G-RNTI are the same for UEs in the same multicast group.
  • the time to activate the semi-static multicast configuration is different, but the final received PDSCH transmission data is exactly the same purpose. Because the DCI for activating semi-persistent scheduling is the CCE starting position calculated by the C-RNTI, it only affects the PDCCH reception of a certain UE, and has no impact on other terminals that are already watching multicast services.
  • Step 105 deliver the scrambled DCI to the multicast group, so as to activate the multicast resource of the UE.
  • the scrambled DCI is sent to the UE through the PDCCH.
  • the UE descrambles the DCI by using the allocated G-RNTI, thereby searching for the corresponding DCI according to the C-RNTI to obtain a semi-static Scheduling cycle and time-frequency resources used, that is, activating semi-static resources as its own multicast resources, and finally being able to periodically obtain service data in the same time-frequency resources with other UEs in the multicast group.
  • Multicast resource allocation method For a certain UE, it can only perceive its own semi-static configuration, that is, it does not need to make adaptive improvements to the UE, and the UE can also implement the existing terminal products based on the configuration provided by this embodiment. Multicast resource allocation method.
  • the resource allocation follows the semi-static allocation strategy, which saves the resource overhead of the control channel PDCCH, increases the number of multicast users, and supports the coexistence of different multicast groups .
  • the UE will search for the RNTI in the search space of the PDCCH, where the search space of the PDCCH is the search space associated with the G-RNTI, and this embodiment does not limit the type of the search space to public
  • the search space (CommonSearch Space, CSS) can also be a user-specific search space (UE SpecificSearch Space, SSS). That is, regardless of whether the search space associated with the G-RNTI is CSS or USS, UEs in the same multicast group can all be allocated to the same time-frequency resource.
  • the multicast attribution information is usually defined by the base station, which is the information already included in the existing service request, but the base station uses this information to determine the multicast to which the UE belongs. Group.
  • some identifiers may also be determined through negotiation between the terminal and the base station to determine the multicast group to which the UE belongs.
  • the multicast-based resource allocation method further includes:
  • Step 108 determine the multicast group division condition, the multicast group division condition is related to the multicast attribution information.
  • step 109 several multicast groups are divided according to the multicast group division condition.
  • the multicast attribution information can be the type of service data source or service data, etc., such as dividing users who watch the same program into a multicast group according to the type of the program, and dividing users who watch the same data Users of the source program are divided into a multicast group.
  • Step 110 each multicast group is mapped to a bearer channel for the multicast members in the multicast group to receive service data from the corresponding bearer channel.
  • the wireless base station groups service data corresponding to different multicast groups according to different mapping ports, and maps them to bearer channels.
  • This embodiment does not specifically limit the corresponding relationship between multicast groups and bearer channels. Referring to FIG. 5 and FIG. 6 , different multicast groups may be mapped to different bearer channels, or may be mapped to the same bearer channel.
  • service data transmission can be performed based on the allocated resources.
  • the following steps are further included:
  • Step 111 periodically send service data to the multicast group according to the semi-persistent scheduling, so that all members of the multicast group in the multicast group can receive the service data.
  • the base station provides multiple program data as service data, and different programs correspond to different multicast groups, and UEs in different multicast groups share a unique G-RNTI, and the G-RNTIs of different multicast groups are different.
  • the GRNTI is associated with the USS search space.
  • the base station is a 5G NR base station in the 5G NR system, and UE1 and UE3 are watching broadcast channel 1, corresponding to bearer 1, UE2 and UE4 are watching broadcast channel 2, corresponding to bearer 2, and the G-RNTI1 assigned to UE1 and UE3 is CS - RNTI1, the G-RNTI allocated to UE2 and UE4 is CS-RNTI2.
  • both CS-RNTI1 and CS-RNTI2 are associated with the USS, and UE1-UE4 are assigned different C-RNTI values, respectively C-RNTI1, C-RNTI2, C-RNTI3 and C-RNTI4, and the process is as follows:
  • UE1 first opens the broadcast channel 1, and the 5G NR base station activates the semi-static resource through G-RNTI1 as the multicast resource of UE1, and transmits the content of program 1.
  • UE1 calculates the starting position of the CCE through its own C-RNTI1, and uses the USS of G-RNTI1 to Blind detection of DCI1 series, if DCI1 information scrambled by G-RNTI1 is detected, broadcast program 1 is received on fixed time-frequency resources.
  • the UE3 then opens the broadcast channel 1, and the 5G NR base station activates the semi-static resource as the multicast resource of UE3 through G-RNTI1.
  • the multicast resource of UE3 is the same as that of UE1, and transmits the content of program 1.
  • the DCI1 series is blindly detected. If the DCI1 information scrambled by G-RNTI1 is detected, broadcast programs are received on fixed time-frequency resources. Because the starting position of the CCE of UE3 is different from that of UE1, UE1 cannot detect the DCI information of this GRNTI, and has no impact on UE1.
  • UE1 is still receiving data continuously, and UE3 then receives the same data as UE1.
  • the programs of UE1 and UE3 are synchronized.
  • UE2 first opens the broadcast channel 2, and the 5G NR base station activates the semi-static resource through G-RNTI2 as the multicast resource of UE2, and transmits the content of program 2.
  • UE2 calculates the starting position of CCE through its own C-RNTI2, according to the USS of G-RNTI2 Remove the DCI1 series from blind detection, and if the DCI1 information scrambled by G-RNTI2 is detected, broadcast program 2 is received on the fixed time-frequency resource.
  • UE4 then opens the broadcast channel 2, and the 5G NR base station activates the semi-static resource through G-RNTI2 as the multicast resource of UE4, and transmits the content of program 2.
  • UE4 calculates the starting position of the CCE through its own C-RNTI4, and uses the USS of G-RNTI2 to Blind detection of DCI1 series, if DCI1 information scrambled by G-RNTI2 is detected, broadcast programs are received on fixed time-frequency resources. Since the starting position of the CCE of UE4 is different from that of UE2, UE4 cannot detect the DCI information of GRNTI2 and has no impact on UE2. UE2 continues to receive data, and UE4 then receives the same data as UE2. UE2 and UE4 programs are synchronized.
  • the base station provides multiple program data as service data, and a specific user is divided into a multicast group, and a specific user can watch different programs, and UEs in different multicast groups share a unique G-RNTI, And the G-RNTI is associated with the USS.
  • the base station is a 5G NR base station in the 5G NR system
  • UE1 is watching broadcast channel 1, which corresponds to bearer 1
  • UE2 is watching broadcast channel 2, which corresponds to bearer 1
  • UE1 and UE2 are assigned the same G-RNTI1, specifically CS-RNTI1
  • CS-RNTI1 is associated to the USS
  • UE1 and UE2 are assigned different C-RNTI values, which are C-RNTI1 and C-RNTI2 respectively.
  • UE1 first opens the broadcast channel 1, and the 5G NR base station activates semi-static resources for UE1 through G-RNTI1, and transmits the content of program 1 and program 2.
  • UE1 calculates the starting position of CCE through its own CRNTI1, and performs blind detection according to the USS search space of GRNTI1 DCI1 series. DCI1 information scrambled by GRNTI1 is detected, and broadcast programs are received on fixed time-frequency resources. The terminal only displays the picture of program 1.
  • UE2 opens the broadcast channel 2, and the 5G NR base station activates the semi-static resource as the multicast resource of UE1 through G-RNTI1, and transmits the content of program 1 and program 2.
  • UE2 calculates the starting position of CCE through its own C-RNTI2, according to G-RNTI2
  • the USS of RNTI1 deblindly detects DCI1 series, and if it detects DCI1 information scrambled by G-RNTI1, it receives broadcast programs on fixed time-frequency resources. Since the starting position of the CCE of UE2 is different from that of UE1, UE1 cannot detect the DCI information of the GRNTI, which has no impact on UE1.
  • UE1 is still receiving data continuously, and UE2 then receives the same data as UE1.
  • UE1 displays program 1, and UE2 displays program 2.
  • the associated search space may be CSS, and others are roughly the same as the above examples, and will not be repeated here.
  • the base station provides a plurality of program data as service data, and supports UE concurrent functions of unicast service and multicast service, that is to say, both unicast-based resource allocation and multicast-based resource allocation are performed.
  • the multicast service uses the G-RNTI for resource allocation
  • the unicast service uses the C-RNTI for resource allocation
  • both the G-RNTI and the C-RNTI are associated with the USS.
  • the base station is a 5G NR base station in the 5G NR system
  • UE1 is watching broadcast channel 1, corresponding to bearer 1
  • UE1 is also downloading a movie, corresponding to bearer 2.
  • the G-RNTI1 allocated to UE1 is CS-RNTI1, and the CS-RNTI1 is associated with the USS, and the UE1 is also allocated with a C-RNTI, specifically C-RNTI1, and the C-RNTI1 is associated with the USS.
  • UE1 first opens the broadcast channel 1, and the 5G NR base station activates the semi-static resource through G-RNTI1 as the multicast resource of UE1, and transmits the content of program 1.
  • UE1 calculates the starting position of CCE through its own C-RNTI1, according to the USS of G-RNTI1 Remove the DCI1 series for blind detection, and if the DCI1 information scrambled by G-RNTI1 is detected, broadcast programs are received on fixed time-frequency resources.
  • UE1 starts to download the movie.
  • the base station schedules the data corresponding to the movie service through C-RNTI1.
  • UE1 calculates the CCE start position through C-RNTI1.
  • the movie data is received on the indicated time-frequency resource.
  • the multicast resources activated by the base station through the G-RNTI and the resources allocated through the C-RNTI1 unicast cannot be the same, and the allocated resources need to be staggered.
  • the base station provides multiple program data as service data, and supports concurrent functions of UE unicast service and multicast service, that is to say, both unicast-based resource allocation and multicast-based resource allocation are performed .
  • the multicast service uses the G-RNTI for resource allocation
  • the unicast service uses the C-RNTI for resource allocation
  • the G-RNTI is associated with the CSS
  • the CRNTI is associated with the USS.
  • base station N is a 5G NR base station in a 5G NR system
  • UE1 is watching broadcast channel 1, corresponding to bearer 1
  • UE1 is also downloading a movie, corresponding to bearer 2.
  • UE1 assigns a CRNTI value of CRNTI1, and CRNTI1 is associated with the USS search space.
  • UE1 first opens the broadcast channel 1, and the 5G NR base station activates the semi-static resource through G-RNTI1 as the multicast resource of UE1, and transmits the content of program 1.
  • UE1 calculates the starting position of CCE through its own C-RNTI1, according to the CSS of G-RNTI1 Remove the DCI1 series for blind detection, and if the DCI1 information scrambled by G-RNTI1 is detected, broadcast programs are received on fixed time-frequency resources.
  • UE1 starts to download the movie.
  • the base station schedules the data corresponding to the movie service through C-RNTI1.
  • UE1 calculates the CCE start position through C-RNTI1.
  • the movie data is received on the indicated time-frequency resource.
  • the multicast resources activated by the base station through the G-RNTI and the resources dynamically allocated through the C-RNTI1 cannot be the same, and the two can schedule the same resources in time division, or can schedule different resources at the same time.
  • the embodiment of the present application also provides a multicast-based resource allocation device, referring to FIG. 8 , including:
  • the receiving module 801 is configured to receive a service request sent by a user equipment UE, wherein the service request carries multicast attribution information.
  • the determining module 802 is configured to determine the multicast group to which the UE belongs according to the multicast affiliation information.
  • the obtaining module 803 is used to obtain the group wireless network temporary identifier G-RNTI shared by all members in the multicast group and the semi-static configuration, wherein, the G-RNTI is a unicast wireless network temporary identifier, and different multicast groups have different G-RNTI.
  • the generating module 804 is configured to generate downlink control information DCI according to the semi-static configuration and use the G-RNTI to scramble the PDCCH resource containing the DCI.
  • the sending module 805 is configured to deliver the scrambled PDCCH resource to the multicast group, so that the UE activates the corresponding multicast resource according to the DCI.
  • this embodiment is an apparatus embodiment corresponding to the method embodiment, and this embodiment can be implemented in cooperation with the method embodiment.
  • the relevant technical details mentioned in the method embodiments are still valid in this embodiment, and will not be repeated here in order to reduce repetition.
  • the related technical details mentioned in this embodiment can also be applied in the method embodiment.
  • modules involved in this embodiment are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, or multiple physical units. Combination of units.
  • units that are not closely related to solving the technical problem proposed in the present application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • the embodiment of the present application also provides a base station, including a multicast-based resource allocation device,
  • the multicast-based resource allocation apparatus includes a receiving module, configured to receive a service request sent by a user equipment UE, wherein the service request carries multicast attribution information; a determining module, configured to determine the multicast to which the UE belongs according to the multicast attribution information.
  • obtaining module used to obtain group wireless network temporary identifier G-RNTI and semi-static configuration shared by all members in the multicast group, wherein, G-RNTI is a unicast wireless network temporary identifier, and different multicast groups have different The G-RNTI; the generation module is used to generate the downlink control information DCI according to the semi-static configuration and use the G-RNTI to scramble the PDCCH resources containing the DCI; the sending module is used to deliver the scrambled PDCCH resources to multiple The multicast group is used for the UE to activate corresponding multicast resources according to the DCI.
  • the embodiment of the present application also provides, as shown in FIG. 9 , including: including at least one processor 901; Instructions to be executed, the instructions are executed by at least one processor 901, so that at least one processor 901 can execute the filter shape detection method described in any method embodiment above.
  • the memory 902 and the processor 901 are connected by a bus, and the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors 901 and various circuits of the memory 902 together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the data processed by the processor 901 is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor 1101 .
  • Processor 901 is responsible for managing the bus and general processing, and may also provide various functions, including timing, peripheral interface, voltage regulation, power management, and other control functions. And the memory 902 may be used to store data used by the processor 901 when performing operations.
  • Embodiments of the present application also provide a computer-readable storage medium storing a computer program.
  • the computer program is executed by the processor, the embodiment of the above filter shape detection method is realized.
  • a storage medium includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及无线通信技术领域,公开了一种基于多播的资源分配方法、装置、基站、设备及存储介质,基于多播的资源分配方法包括:接收用户设备UE发送的业务请求,其中,业务请求携带多播归属信息;根据多播归属信息确定UE所属的多播组;获取多播组中所有成员共享的群组无线网络临时标识G-RNTI和半静态配置,其中,G-RNTI为单播无线网络临时标识,不同的多播组具有不同的G-RNTI;根据半静态配置生成下行控制信息DCI并利用G-RNTI对包含DCI的PDCCH资源进行加扰;将加扰后的PDCCH资源下发给多播组,以供UE根据DCI激活相应的多播资源。

Description

基于多播的资源分配方法、装置、基站、设备及存储介质
相关申请的交叉引用
本申请基于申请号为“202110739017.9”、申请日为2021年6月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请的实施例涉及无线通信技术领域,特别涉及一种基于多播的资源分配方法、装置、基站、设备及存储介质。
背景技术
在一个小区中,不同的用户可能需要的是相同的业务数据,如大量用户正在收看同一款电视节目,此时,若采用单播的方式,即点对点地为用户提供电视节目的数据,那么需要为每个用户分别建立数据承载,这样非常浪费资源。基于此,第四代移动通信技术(The 4th Generation Mobile Communication Technology,4G)中引入多播技术,具体地,将某些进行特定业务的用户划分为一个多播组,为每个多播组建立独立的多播信道,分配独立的多播PDCCH配置和独立的多播DCI信息,然后通过多播信道调度多播业务,其中,如何为多播组成员进行资源分配是一个重点。目前的第五代移动通信技术(The 5th Generation Mobile Communication Technology,5G)的标准还在演进中,5G新空口(New Radio,NR)技术中的多播协议还未确定,从已有的公开专利以及标准讨论方向来看,其实现资源分配的趋势仍然是为每个多播组建立一个公共的多播信道,然后为该多播信道配置相应的广播参数。
然而,5G用户对多播技术的需求却是真实存在且迫切的,需要在协议标准制定之前,使得无线基站能够支持为用户分配相应的多播资源以及进行基于这些资源进行多播业务数据传输。此外,为了适应后续制定的多播协议,资源分配的方法应该尽可能地在现有协议的基础上实现。
发明内容
本申请实施例提供了一种基于多播的资源分配方法,所述方法包括:接收用户设备UE发送的业务请求,其中,所述业务请求携带多播归属信息;根据所述多播归属信息确定所述UE所属的多播组;获取所述多播组中所有成员共享的群组无线网络临时标识G-RNTI和半静态配置,其中,所述G-RNTI为单播无线网络临时标识,不同的所述多播组具有不同的所述G-RNTI;根据所述半静态配置生成下行控制信息DCI并利用所述G-RNTI对包含所述DCI的PDCCH资源进行加扰;将加扰后的所述PDCCH资源下发给所述多播组,以供所述UE根据所述DCI激活相应的多播资源。
本申请实施例还提出了一种基于多播的资源分配装置,包括:接收模块,用于接收用户设备UE发送的业务请求,其中,所述业务请求携带多播归属信息;确定模块,用于根据所述多播归属信息确定所述UE所属的多播组;获取模块,用于获取所述多播组中所有成员共享的群组无线网络临时标识G-RNTI和半静态配置,其中,所述G-RNTI为单播无线网络临时标识,不同的所述多播组具有不同的所述G-RNTI;生成模块,用于根据所述半静态配置生 成下行控制信息DCI并利用所述G-RNTI对包含所述DCI的PDCCH资源进行加扰;发送模块,用于将加扰后的所述PDCCH资源下发给所述多播组,以供所述UE根据所述DCI激活相应的多播资源。
本申请实施例还提出了一种基站,包括如上所述的基于多播的资源分配装置。
本申请实施例还提出了一种通信设备,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述基于多播的资源分配方法。
本申请实施例还提出了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的基于多播的资源分配方法。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定。
图1是本申请实施例中的基于多播的资源分配方法的流程图;
图2是本申请另一实施例中的包括确定存放DCI的CCE的起始位置的步骤的基于多播的资源分配方法的流程图;
图3是本申请实施例涉及的多播组、UE、G-RNTI和C-RNTI对应关系的示意图;
图4是本申请另一实施例中的包括确定与多播归属信息有关地多播组划分条件步骤的基于多播的资源分配方法的流程图;
图5-6是本申请另一实施例中的涉及的多播组和承载通道对应关系的示意图;
图7是本申请另一实施例中的包括基于分配的资源进行业务数据传输步骤的基于多播的资源分配方法的流程图;
图8是本申请另一实施例中的基于多播的资源分配装置的结构示意图;
图9是本申请另一实施例中的通信设备的结构示意图。
具体实施方式
本申请实施例的主要目的在于提出一种基于多播的资源分配方法、装置、基站、设备及存储介质,旨在实现基于现有的协议内容,对5G用户实现多播资源分配,使得基于分配的资源能够向用户以多播形式传输业务数据,并能够适应后续制定的多播协议。
由背景技术可知,5G中多播协议还在商讨,但是用户对多播协议的需求却是真实且迫切的,而多播实现中如何实现资源分配是重点之一,需要在多播协议确定之前为用户提供一种可行的基于多播的资源分配方法,使得能够基于分配的资源向用户以多播方式进行业务数据传输。
为解决上述问题,本申请实施例提供了一种基于多播的资源分配方法:接收用户设备UE发送的业务请求,其中,所述业务请求携带多播归属信息;根据所述多播归属信息确定所述UE所属的多播组;获取所述多播组中所有成员共享的群组无线网络临时标识G-RNTI和半静态配置,其中,所述G-RNTI为单播无线网络临时标识,不同的所述多播组具有不同的所述G-RNTI;根据所述半静态配置生成下行控制信息DCI并利用所述G-RNTI对包含所述DCI 的PDCCH资源进行加扰;将加扰后的所述PDCCH资源下发给所述多播组,以供所述UE根据所述DCI激活相应的多播资源。
本申请实施例提出的基于多播的资源分配方法,当接收到用户设备发送的业务请求后,根据业务请求中携带的多播归属信息确定用户设备所属的多播组,由于多播组中的所有多播组成员都共享同一个群组无线网络临时标识G-RNTI和同一套半静态配置,因此,一旦确定用户归属的多播组,用户设备就会被分配多播组对应的群组无线网络临时标识G-RNTI和半静态配置,从而根据半静态配置能够确定用户设备的下行控制信息DCI以及确定G-RNTI为包含有DCI的PDCCH资源加扰时使用的扰码,然后将加扰后的PDCCH资源下发给用户设备,使得用户设备解扰后,根据DCI激活相应的半静态资源作为自身的多播资源,完成资源分配,进而后续能够基于分配的资源以多播形式向用户传输业务数据,为用户提供服务。并且由于资源分配过程中使用的参数都是现有协议规定的参数以及相应的通信过程也和协议规定一致,因此,资源的分配是在现有协议的基础上实现的,不需要扩展协议,能够适应后续制定的多播协议。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
下面将结合图1-图6对本实施例的基于多播的资源分配方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
参考图1,在一些实施例中,基于多播的资源分配方法应用于基站,本实施例不对基站进行进一步限定,基站可以是接入长期演进(Long Term Evolution,LTE)系统的LTE基站,可以是接入5G NR系统的5G NR基站,具体包括如下步骤:
步骤101,接收用户设备UE发送的业务请求,其中,业务请求携带多播归属信息。
具体的说,本实施例中,在用户具有观看电视节目、进行视频会议等需求时,通过在用户设备(User Equipment,UE)上进行相关的操作,然后UE会生成相应的业务请求向基站请求业务数据,业务请求中一般都会携带与业务数据有关的信息,这些信息可以作为多播归属信息,如基站可以将观看电视节目1的UE在逻辑上划分为一个多播组,因此,当某个用户需要观看电视节目1时,业务请求会携带用于指示电视节目1的信息,而基站就可以将该信息作为多播归属信息,用于确定UE属于哪个多播组。
还需要说明的是,业务请求的发送可能是在用户接入基站的场景下也可能是在用户切入基站的场景下,当然,以上仅为具体举例说明,还可以是其他需要发送业务请求的场景,此处就不再一一赘述了。本实施例也不对UE进行限定,UE可以是任何一种支持下行半静态调度(Semi-Persistent Scheduling,SPS)功能的终端。
步骤102,根据多播归属信息确定UE所属的多播组。
具体的说,本实施例中,若UE是多播组中的第一个多播组成员,则基站为UE创建一个多播组,后续当其他UE发送业务请求时,若存在其他UE属于该多播组,则将其他UE加入创建的多播组中;若UE不是多播组中的第一个多播组成员,则基站将UE根据多播归属 信息在已有的多播组中查找UE实际所属的多播组,并将UE加入查找到的多播组。
步骤103,获取多播组中所有成员共享的群组无线网络临时标识G-RNTI和半静态配置,其中,G-RNTI为单播无线网络临时标识,不同的多播组具有不同的G-RNTI。
具体地说,本实施例中,若UE是多播组中的第一个多播组成员,则基站在为UE创建一个多播组后为该多播组分配一个与其他多播组不同的(Group Radio Network Temporary Identifier,G-RNTI)和半静态配置;若UE不是多播组中的第一个多播组成员,基站将已经为多播组分配的G-RNTI和半静态配置分配给UE。
需要说明的是,半静态配置包括半静态调度周期以及时频资源,步骤103实际是为所有属于某个多播组的UE分配同一个G-RNTI、同一个半静态调度周期和同一时频资源,这样,属于某个多播组的所有UE会周期性地,在固定的、相同的时频资源上接收业务数据,即同步接受数据,实现多播。
还需要说明的是,由于多播组内共享G-RNTI,不同的多播组共享不同的G-RNTI,因此,根据G-RNTI即能对多播组进行区分。
在一些实施例中,当UE接入的是LTE系统时,即UE向LTE系统中的LTE基站发送业务请求,此时G-RNTI为半静态无线网络临时标识(Semi-Persistent Scheduling Radio Network Temporary Identifier,SPS-RNTI);当UE接入的是5G NR系统时,即UE向5G NR系统中的5G NR基站发送业务请求,G-RNTI为配置调度无线网络临时标识(Configured SchedulingRadio Network Temporary Identifier,CS-RNTI)。
值得一提的是,通过对无线网络临时标识(Radio Network Temporary Identifier,RNTI)的具体内容进行限定,能够将本实施例的改进应用到LTE系统,而不仅仅是5G NR系统,而是对4G和5G都能够兼容,提高基于多播的资源分配方法的实用性。
步骤104,根据半静态配置生成下行控制信息DCI并利用G-RNTI对包含DCI的PDCCH资源进行加扰。
具体地说,本实施例中,半静态配置主要是指半静态配置的参数,如半静态调度周期、调度的时频资源等,下行控制信息(Downlink Control Information,DCI)中包括指示UE使用的半静态调度周期、可占用的时频资源等控制信息,DCI实际是在物理下行控制信道(Physical Downlink Control Channel,PDCCH)中包含在PDCCH资源中下发,因此,实际下发的控制信令实际是PDCCH资源,然后在下发PDCCH之前还需要将G-RNTI作为扰码,对PDCCH资源进行加扰。
在一个例子中,DCI主要包括SPS-config信息。
在一些实施例中,参考图2,还包括确定存放DCI的CCE的起始位置的步骤,具体地,在步骤103之前,还包括以下步骤:
步骤106,为UE分配小区无线网络临时标识C-RNTI。
具体地说,本实施例中基站为每个发送业务请求的用户分配一个小区无线网络临时标识(CellRadio Network Temporary Identifier,C-RNTI),作为UE的唯一识别出标签,其中,每一个UE都对应一个唯一的C-RNTI。
步骤107,根据C-RNTI确定DCI所占用的控制信道单元CCE在PDCCH资源中的起始位置。
需要说明的是,控制信道单元(Control Channel Element,CCE)起始位置的计算和现有 的技术大致相同,此处就不再一一赘述了。
为了更好地说明本实施例中多播组、UE、G-RNTI和C-RNTI的关系,具体参见图3,多播组1和多播组2各自包含多个不同的UE,多播组1对应G-RNTI1,多播组2对应G-RNTI2,多播组1中的UE1、UE2和UE3分别对应C-RNTI1、C-RNTI2和C-RNTI3。
值得一提的是,目前标准正在讨论的半静态调度多播业务的调度机制中,G-RNTI是小区级激活,激活一个UE以实现资源分配时,由于其他多播组成员也会接收并解析出DCI,即也会戳多播组内的其他UE重新配置,鲁棒性不高。且由G-RNTI加扰的通过PDCCH下发的DCI,需要小区中所有多播UE同时监听且要接收到此PDCCH才可以做到广播业务的同步。如果有部分UE收不到会导致部分UE接收不到多播画面。而本实施例由于每一个UE都被分配一个唯一对应的C-RNTI,因此,不同的UE根据自身对应的C-RNTI的控制信道单元(Control Channel Element,CCE)起始位置会由于UE的不同存在不同,而对应的DCI信息,而是通过相同的半静态G-RNTI加扰。激活成功之后,周期性调度的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)对应的时频资源信息以及G-RNTI对于同一多播组内的UE都相同,这样就达到了不同UE在接入小区时,激活半静态多播配置时刻不一样,但最终收到的PDSCH的传输数据完全一致的目的。因为激活半静态调度的DCI是通过C-RNTI计算的CCE起始位置,所以只影响某个UE的PDCCH接收,对其他已经在收看多播业务的终端来说无影响。
步骤105,将加扰后的DCI下发给多播组,以激活UE的多播资源。
具体的说,本实施例通过PDCCH将加扰后的DCI下发给UE,UE在接收到DCI通过利用被分配的G-RNTI进行解扰,从而根据C-RNTI搜索相应的DCI,获得半静态调度周期和使用的时频资源,即激活半静态资源作为自身的多播资源,最后能够和多播组中的其他UE一起周期性在同一时频资源中获取业务数据。
值得一提的是,对于某个UE而言,只能感知到自身的半静态配置,即不需要对UE进行适应性改进,直接UE为现有的终端产品也能够实现本实施例提供的基于多播的资源分配方法。
还值得一提的是,通过分配半静态资源作为多播资源,即资源分配遵从半静态分配策略,节省控制信道PDCCH的资源开销,提高了多播用户数,且支持不同多播群组的共存。
需要说明的是,UE在接收到的PDCCH后会在PDCCH的搜索空间中查找RNTI,其中,PDCCH的搜索空间是与G-RNTI关联的搜索空间,本实施例不限定搜索空间的类型可以是公共搜索空间(CommonSearch Space,CSS),也可以是用户专有搜索空间(UE SpecificSearch Space,SSS)。即不论G-RNTI关联的搜索空间无论是CSS还是USS都可以使得处于同一多播组的UE都分配到相同的时频资源上。
需要说明的是,上述基于多播的资源分配方法实施例中,多播归属信息通常是基站定义的,为现有的业务请求中已经包含的信息,只是基站使用该信息确定UE所属的多播组。当然在其他实施例中,还可以是通过终端和基站双方协商确定的一些标识,用来确定UE所属的多播组。
在一些实施例中,还包括确定与多播归属信息有关地多播组划分条件,具体地,参考图4,在步骤101之前,基于多播的资源分配方法还包括:
步骤108,确定多播组划分条件,多播组划分条件与多播归属信息有关。
步骤109,根据多播组划分条件划分出若干个多播组。
本实施例中,多播归属信息可以是业务数据源的类型或业务数据的类型等,如根据节目的类型将观看同一节目的用户划分为一个多播组、根据节目数据的来源将观看同一数据源的节目的用户划分为一个多播组。
步骤110,将每个多播组映射到承载通道,供多播组中的多播成员从相应的承载通道中接收业务数据。
本实施例中,无线基站将不同多播组对应的业务数据根据不同的映射端口分组,并映射到承载通道。本实施例不对多播组和承载通道的对应关系进行具体限定,参考图5和图6,可以将不同的多播组映射到不同的承载通道,也可以映射到同一承载通道。
当资源分配完成之后,能够基于分配的资源进行业务数据传输,在一些实施例中,参考图7,步骤105之后,还包括如下步骤:
步骤111,根据半静态调度周期性向多播组发送业务数据,供多播组中的所有多播组成员接收业务数据。
为了帮助本领域技术人员更好地理解本申请提供的基于多播的资源分配方法,以下将以各种不同场景下的实际应用进行说明。
在一个例子中,基站提供多个节目数据作为业务数据,不同节目对应不同的多播组,不同多播组中的UE共享一个唯一的G-RNTI,不同的多播组的G-RNTI不同,且GRNTI关联的是USS搜索空间。假设基站为5G NR系统中的5G NR基站,且UE1、UE3在观看广播频道1,对应承载1,UE2、UE4在观看广播频道2,对应承载2,给UE1、UE3分配的G-RNTI1为CS-RNTI1,给UE2、UE4分配的G-RNTI为CS-RNTI2。同时,CS-RNTI1和CS-RNTI2都关联到USS,UE1-UE4各自分配不同的C-RNTI值,分别为C-RNTI1,C-RNTI2,C-RNTI3和C-RNTI4,则有如下过程:
UE1先打开广播频道1,5G NR基站通过G-RNTI1激活半静态资源作为UE1的多播资源,传输节目1内容,UE1通过自身的C-RNTI1计算CCE起始位置,根据G-RNTI1的USS去盲检DCI1系列,若检测到G-RNTI1加扰的DCI1信息,在固定的时频资源上接收广播节目1。
UE3接着打开广播频道1,5G NR基站通过G-RNTI1激活半静态资源作为UE3的多播资源,UE3的多播资源和UE1的一样,传输节目1内容,UE3通过自身的C-RNTI3计算CCE起始位置,根据G-RNTI1的USS去盲检DCI1系列,若检测到G-RNTI1加扰的DCI1信息,在固定的时频资源上接收广播节目。因为UE3的CCE的起始位置和UE1的不一样,所以UE1检测不到此GRNTI的DCI信息,对UE1无影响。UE1还在持续接收数据,UE3接着接收和UE1一样的数据。UE1和UE3节目同步。
然后UE2先打开广播频道2,5G NR基站通过G-RNTI2激活半静态资源作为UE2的多播资源,传输节目2内容,UE2通过自身的C-RNTI2计算CCE起始位置,根据G-RNTI2的USS去盲检DCI1系列,若检测到G-RNTI2加扰的DCI1信息,在固定的时频资源上接收广播节目2。
UE4接着打开广播频道2,5G NR基站通过G-RNTI2激活半静态资源作为UE4的多播资源,传输节目2内容,UE4通过自身的C-RNTI4计算CCE起始位置,根据G-RNTI2的USS去盲检DCI1系列,若检测到G-RNTI2加扰的DCI1信息,在固定的时频资源上接收广播节目。因为UE4的CCE的起始位置和UE2的不一样,所以UE4检测不到GRNTI2的DCI信息,对UE2无影响。UE2还在持续接收数据,UE4接着接收和UE2一样的数据。UE2和UE4节目同步。
在另一个例子中,基站提供多个节目数据作为业务数据,同一个特定用户划分为一个多 播组,特定用户可以观看不同的节目,不同多播组中的UE共享一个唯一的G-RNTI,且G-RNTI关联的是USS。假设基站为5G NR系统中的5G NR基站,UE1在观看广播频道1,对应承载1,UE2在观看广播频道2,对应承载1,给UE1、UE2分配相同的G-RNTI1,具体为CS-RNTI1,CS-RNTI1关联到USS,UE1和UE2分配不同的C-RNTI值,分别为C-RNTI1和C-RNTI2。
UE1先打开广播频道1,5G NR基站给UE1通过G-RNTI1激活半静态资源,传输节目1和节目2的内容,UE1通过自身的CRNTI1计算CCE起始位置,根据GRNTI1的USS搜索空间去盲检DCI1系列。检测到GRNTI1加扰的DCI1信息,在固定的时频资源上接收广播节目。终端只显示节目1的画面。
然后UE2打开广播频道2,5G NR基站通过G-RNTI1激活半静态资源作为UE1的多播资源,传输节目1和节目2的内容,UE2通过自身的C-RNTI2计算CCE起始位置,根据G-RNTI1的USS去盲检DCI1系列,若检测到G-RNTI1加扰的DCI1信息,在固定的时频资源上接收广播节目。因为UE2的CCE的起始位置和UE1的不一样,所以UE1检测不到GRNTI的DCI信息,对UE1无影响。UE1还在持续接收数据,UE2接着接收和UE1一样的数据。UE1显示节目1,UE2显示节目2。
当然,上述举例说明中,关联的搜索空间可以是CSS,其他与上述举例大致相同,此处就不再一一赘述了。
在一个例子中,基站提供多个节目数据作为业务数据,且支持UE单播业务和多播业务的并发功能,也就是说既进行基于单播的资源分配,也进行基于多播的资源分配。多播业务利用G-RNTI进行资源分配,单播业务利用C-RNTI进行资源分配,且G-RNTI和C-RNTI关联的都是USS。假设基站为5G NR系统中的5G NR基站,UE1在观看广播频道1,对应承载1,UE1同时也在下载一部电影,对应承载2。给UE1分配的G-RNTI1为CS-RNTI1,CS-RNTI1关联到USS,还为UE1分配C-RNTI,具体为C-RNTI1,C-RNTI1关联到USS。
UE1先打开广播频道1,5G NR基站通过G-RNTI1激活半静态资源作为UE1的多播资源,传输节目1的内容,UE1通过自身的C-RNTI1计算CCE起始位置,根据G-RNTI1的USS去盲检DCI1系列,若检测到G-RNTI1加扰的DCI1信息,在固定的时频资源上接收广播节目。
接着UE1开始下载电影,基站通过C-RNTI1调度电影业务对应的数据,UE1通过C-RNTI1计算CCE起始位置,根据C-RNTI1的USS盲检DCI1系列,若检测到C-RNTI1加扰的DCI信息时,就在指示的时频资源上接收电影数据。需要说明的是,基站通过G-RNTI激活的多播资源和通过C-RNTI1单播分配的资源不能相同,需要错开分配的资源。
在另一个例子中,基站提供多个节目数据作为业务数据,且支持UE单播业务和多播业务的并发功能,也就是说既进行基于单播的资源分配,也进行基于多播的资源分配。多播业务利用G-RNTI进行资源分配,单播业务利用C-RNTI进行资源分配,且G-RNTI关联的是CSS,CRNTI关联的是USS。假设N基站为5G NR系统中的5G NR基站,UE1在观看广播频道1,对应承载1,UE1同时也在下载一部电影,对应承载2。给UE1分配半静态GRNTI1为cs-RNTI1,csRNTI1关联到CSS搜索空间。UE1分配CRNTI值为CRNTI1,CRNTI1关联到USS搜索空间。
UE1先打开广播频道1,5G NR基站通过G-RNTI1激活半静态资源作为UE1的多播资源,传输节目1的内容,UE1通过自身的C-RNTI1计算CCE起始位置,根据G-RNTI1的CSS去盲检DCI1系列,若检测到G-RNTI1加扰的DCI1信息,在固定的时频资源上接收广播节目。
接着UE1开始下载电影,基站通过C-RNTI1调度电影业务对应的数据,UE1通过C-RNTI1 计算CCE起始位置,根据C-RNTI1的USS盲检DCI1系列,若检测到C-RNTI1加扰的DCI信息时,就在指示的时频资源上接收电影数据。基站通过G-RNTI激活的多播资源和通过C-RNTI1动态分配的资源不能相同,两者可以分时调度相同的资源,也可以在同一时刻调度不同的资源。
此外,应当理解的是,上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请的实施例还提供了一种基于多播的资源分配装置,参考图8,包括:
接收模块801,用于接收用户设备UE发送的业务请求,其中,业务请求携带多播归属信息。
确定模块802,用于根据多播归属信息确定UE所属的多播组。
获取模块803,用于获取多播组中所有成员共享的群组无线网络临时标识G-RNTI和半静态配置,其中,G-RNTI为单播无线网络临时标识,不同的多播组具有不同的G-RNTI。
生成模块804,用于根据半静态配置生成下行控制信息DCI并利用G-RNTI对包含DCI的PDCCH资源进行加扰。
发送模块805,用于将加扰后的PDCCH资源下发给多播组,以供UE根据DCI激活相应的多播资源。
不难发现,本实施例为与方法实施例相对应的装置实施例,本实施例可与方法实施例互相配合实施。方法实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在方法实施例中。
值得一提的是,本实施例中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
本申请的实施例还提供了一种基站,包括基于多播的资源分配装置,
其中,基于多播的资源分配装置包括接收模块,用于接收用户设备UE发送的业务请求,其中,业务请求携带多播归属信息;确定模块,用于根据多播归属信息确定UE所属的多播组;获取模块,用于获取多播组中所有成员共享的群组无线网络临时标识G-RNTI和半静态配置,其中,G-RNTI为单播无线网络临时标识,不同的多播组具有不同的G-RNTI;生成模块,用于根据半静态配置生成下行控制信息DCI并利用G-RNTI对包含DCI的PDCCH资源进行加扰;发送模块,用于将加扰后的PDCCH资源下发给多播组,以供UE根据DCI激活相应的多播资源。
本申请的实施例还提供了如图9所示,包括:包括至少一个处理器901;以及,与至少一个处理器901通信连接的存储器902;其中,存储器902存储有可被至少一个处理器901执行的指令,指令被至少一个处理器901执行,以使至少一个处理器901能够执行上述任一方法实施例所描述的滤波器形状的检测方法。
其中,存储器902和处理器901采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器901和存储器902的各种电路连接在一起。总线还可以将 诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器901处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传输给处理器1101。
处理器901负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器902可以被用于存储处理器901在执行操作时所使用的数据。
本申请的实施例还提供了一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述滤波器形状的检测方法的实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (12)

  1. 一种基于多播的资源分配方法,包括:
    接收用户设备UE发送的业务请求,其中,所述业务请求携带多播归属信息;
    根据所述多播归属信息确定所述UE所属的多播组;
    获取所述多播组中所有成员共享的群组无线网络临时标识G-RNTI和半静态配置,其中,所述G-RNTI为单播无线网络临时标识,不同的所述多播组具有不同的所述G-RNTI;
    根据所述半静态配置生成下行控制信息DCI并利用所述G-RNTI对包含所述DCI的PDCCH资源进行加扰;
    将加扰后的所述PDCCH资源下发给所述多播组,以供所述UE根据所述DCI激活相应的多播资源。
  2. 根据权利要求1所述的基于多播的资源分配方法,其中,所述根据所述半静态配置生成下行控制信息DCI之前,所述方法还包括:
    为所述UE分配小区无线网络临时标识C-RNTI;
    根据所述C-RNTI确定所述DCI所占用的控制信道单元CCE在所述PDCCH资源中的起始位置。
  3. 根据权利要求1或2所述的基于多播的资源分配方法,其中,所述接收用户设备UE发送的业务请求之前,所述方法还包括:
    确定多播组划分条件,所述多播组划分条件与所述多播归属信息有关;
    根据所述多播组划分条件划分出若干个所述多播组;
    将每个所述多播组映射到承载通道,供所述多播组中的所述多播成员从相应的所述承载通道中接收业务数据。
  4. 根据权利要求3所述的基于多播的资源分配方法,其中,当所述UE接入的是长期演进LTE系统时,所述G-RNTI为半静态无线网络临时标识SPS-RNTI;
    当所述UE接入的是第五代通信系统系统时,所述G-RNTI为配置调度无线网络临时标识CS-RNTI。
  5. 根据权利要求1至4中任一项所述的基于多播的资源分配方法,其中,所述半静态配置包括时频资源分配信息和半静态调度周期。
  6. 根据权利要求5所述的基于多播的资源分配方法,其中,所述将加扰后的所述DCI下发给所述多播组后,所述方法还包括:
    根据所述半静态调度周期性向所述多播组发送业务数据,供所述多播组中的所有所述多 播组成员接收业务数据。
  7. 根据权利要求1至6中任一项所述的基于多播的资源分配方法,其中,所述G-RNTI关联的搜索空间为公共搜索空间CSS或用户专有搜索空间USS。
  8. 根据权利要求1至7中任一项所述的基于多播的资源分配方法,其中,所述多播归属信息为业务数据源的类型或业务数据的类型。
  9. 一种基于多播的资源分配装置,包括:
    接收模块,用于接收用户设备UE发送的业务请求,其中,所述业务请求携带多播归属信息;
    确定模块,用于根据所述多播归属信息确定所述UE所属的多播组;
    获取模块,用于获取所述多播组中所有成员共享的群组无线网络临时标识G-RNTI和半静态配置,其中,所述G-RNTI为单播无线网络临时标识,不同的所述多播组具有不同的所述G-RNTI;
    生成模块,用于根据所述半静态配置生成下行控制信息DCI并利用所述G-RNTI对包含所述DCI的PDCCH资源进行加扰;
    发送模块,用于将加扰后的所述PDCCH资源下发给所述多播组,以供所述UE根据所述DCI激活相应的多播资源。
  10. 一种基站,包括如权利要求9所述的基于多播的资源分配装置。
  11. 一种通信设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至8中任一项所述基于多播的资源分配方法。
  12. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至8中任一项所述的基于多播的资源分配方法。
PCT/CN2022/096985 2021-06-30 2022-06-02 基于多播的资源分配方法、装置、基站、设备及存储介质 WO2023273795A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110739017.9 2021-06-30
CN202110739017.9A CN115550852A (zh) 2021-06-30 2021-06-30 基于多播的资源分配方法、装置、基站、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023273795A1 true WO2023273795A1 (zh) 2023-01-05

Family

ID=84692534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096985 WO2023273795A1 (zh) 2021-06-30 2022-06-02 基于多播的资源分配方法、装置、基站、设备及存储介质

Country Status (2)

Country Link
CN (1) CN115550852A (zh)
WO (1) WO2023273795A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547592A (zh) * 2012-01-06 2012-07-04 电信科学技术研究院 一种数据传输方法及装置
US20180035340A1 (en) * 2015-04-10 2018-02-01 Kyocera Corporation Base station and user terminal in mobile communication system
US20180049224A1 (en) * 2016-08-10 2018-02-15 Ofinno Technologies, Llc Multiple Semi Persistent Scheduling in a Wireless Network
CN109983789A (zh) * 2016-11-21 2019-07-05 高通股份有限公司 用于窄带通信的控制信道上的数据多播或广播
CN109982266A (zh) * 2017-12-28 2019-07-05 华为技术有限公司 一种通信方法、及相关产品
CN111601231A (zh) * 2019-02-01 2020-08-28 成都华为技术有限公司 一种基于位置的组播方法及装置
WO2021114060A1 (zh) * 2019-12-09 2021-06-17 华为技术有限公司 通信方法及相关装置、设备
WO2021120018A1 (zh) * 2019-12-17 2021-06-24 华为技术有限公司 一种通信方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547592A (zh) * 2012-01-06 2012-07-04 电信科学技术研究院 一种数据传输方法及装置
US20180035340A1 (en) * 2015-04-10 2018-02-01 Kyocera Corporation Base station and user terminal in mobile communication system
US20180049224A1 (en) * 2016-08-10 2018-02-15 Ofinno Technologies, Llc Multiple Semi Persistent Scheduling in a Wireless Network
CN109983789A (zh) * 2016-11-21 2019-07-05 高通股份有限公司 用于窄带通信的控制信道上的数据多播或广播
CN109982266A (zh) * 2017-12-28 2019-07-05 华为技术有限公司 一种通信方法、及相关产品
CN111601231A (zh) * 2019-02-01 2020-08-28 成都华为技术有限公司 一种基于位置的组播方法及装置
WO2021114060A1 (zh) * 2019-12-09 2021-06-17 华为技术有限公司 通信方法及相关装置、设备
WO2021120018A1 (zh) * 2019-12-17 2021-06-24 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN115550852A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
US11464003B2 (en) Control information transmission method, user equipment, and base station
US10805923B2 (en) Allocating transmission resources in communication networks that provide low latency services
CN105359604B (zh) 一种使用非授权频谱通信的方法、设备及系统
JP4559486B2 (ja) マルチキャストブロードキャストサービスの資源指示を実現する方法、システム及び装置
EP2852236B1 (en) Resource allocation method and device
EP3324666B1 (en) Sc-mcch resource configuration method and apparatus
EP3337199A1 (en) Resource configuration method, system, and device for single-cell multicast control channel (sc-mcch)
CN110932833A (zh) 信息传输方法和装置
WO2020113996A1 (zh) 配置授权的确认方法、终端和网络侧设备
WO2020143617A1 (zh) 一种下行控制信道的传输方法、终端和网络侧设备
CN107920333B (zh) 组播调度方法、harq信息接收方法、用户设备和基站
WO2016070425A1 (zh) 一种信息传输方法和用户设备以及基站
US20230074542A1 (en) Communication method and apparatus
EP3091805B1 (en) Resource indication method, and apparatus
US10397967B2 (en) Communications device
CN113055812B (zh) 一种数据传输方法、基站及核心网网元
CN112042143B (zh) Pdcch的监听方法、装置、设备及系统
CA3025695A1 (en) Identifier management method, apparatus, and system
WO2019076303A1 (zh) 控制信息的发送方法、检测方法、网络设备及终端
JP2020524462A (ja) ダウンリンク制御チャネルリソース特定方法、装置、ユーザ機器および基地局
CN116325817A (zh) 用于无线电通信的方法和装置
WO2023273795A1 (zh) 基于多播的资源分配方法、装置、基站、设备及存储介质
CN109151832B (zh) 免授权资源访问方法、调度方法及装置、存储介质、终端、基站
WO2014000165A1 (zh) 信息传输方法、网络节点、用户设备及系统
CN108632952B (zh) 一种系统信息传输方法、装置和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831616

Country of ref document: EP

Kind code of ref document: A1