WO2021031033A1 - 一种最小可用时间单元偏移值的确定方法及设备 - Google Patents

一种最小可用时间单元偏移值的确定方法及设备 Download PDF

Info

Publication number
WO2021031033A1
WO2021031033A1 PCT/CN2019/101209 CN2019101209W WO2021031033A1 WO 2021031033 A1 WO2021031033 A1 WO 2021031033A1 CN 2019101209 W CN2019101209 W CN 2019101209W WO 2021031033 A1 WO2021031033 A1 WO 2021031033A1
Authority
WO
WIPO (PCT)
Prior art keywords
time unit
offset value
bandwidth
available time
unit offset
Prior art date
Application number
PCT/CN2019/101209
Other languages
English (en)
French (fr)
Inventor
黄雯雯
铁晓磊
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/101209 priority Critical patent/WO2021031033A1/zh
Publication of WO2021031033A1 publication Critical patent/WO2021031033A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications technology, and in particular to a method and device for determining the offset value of the minimum available time unit.
  • the base station can indicate the minimum available time unit offset value to the terminal equipment, and the base station uses the physical downlink control channel (PDCCH) to schedule the physical equipment to the terminal equipment.
  • the base station uses the physical downlink control channel (PDCCH) to schedule the physical equipment to the terminal equipment.
  • the downlink shared channel physical downlink shared channel, PDSCH
  • physical uplink shared channel physical uplink shared channel, PUSCH
  • the time unit offset value between the PDCCH and the scheduled PDSCH or the scheduled PUSCH will not be less than the minimum available Time unit offset value.
  • the terminal device when the minimum available time slot offset value is greater than 0, the terminal device knows that the scheduled PDSCH or the scheduled PUSCH is not the same as the PDCCH before detecting the PDCCH One time slot, then the terminal device can reduce unnecessary data buffering and relax the processing time of the PDCCH, thereby achieving the effect of saving power consumption.
  • one downlink (DL) carrier can be configured with one or more downlink partial bandwidth (BWP), similarly, one uplink (UL) carrier can be configured with one Or multiple upstream BWPs.
  • BWP downlink partial bandwidth
  • UL uplink
  • only one DL BWP is activated in a downlink carrier
  • only one UL BWP is activated in an uplink carrier.
  • the base station and terminal equipment perform data or signal transmission on the activated DL BWP and UL BWP.
  • the base station can indicate the minimum available time unit offset value on the activated BWP to the terminal device through the PDCCH.
  • the base station can also instruct the terminal device to switch the activated DL BWP or UL BWP in the carrier through the PDCCH.
  • the activated DL BWP or UL BWP is switched, how to determine the initial minimum available time unit offset value of the newly activated BWP is a problem to be solved in this application.
  • the embodiment of the application provides a method and device for determining the minimum available time unit offset value, so as to determine the minimum time slot offset value of the newly activated BWP when the BWP is switched, so that the terminal device tries to maintain the original PDCCH Processing status.
  • a method for determining a minimum available time unit offset value includes: receiving first indication information on a first downlink partial bandwidth; according to the first indication information, activating the downlink Part of the bandwidth is switched from the first downstream part of the bandwidth to the second part of the bandwidth, where the second part of the bandwidth is the downstream part of the bandwidth; or, the part of the bandwidth activated in the upstream is switched from the third upstream part of the bandwidth to the second part of the bandwidth Partial bandwidth, wherein the second partial bandwidth is an uplink partial bandwidth; and according to the first minimum available time unit offset value associated with the first downlink partial bandwidth or the second partial bandwidth associated with the third uplink A minimum available time unit offset value to determine the second minimum available time unit offset value of the second part of the bandwidth.
  • the terminal device when the BWP is switched, by determining the second minimum available time unit offset value associated with the BWP activated after the handover according to the first minimum available time unit offset value associated with the BWP activated before the handover, The terminal device is made to maintain the original PDCCH processing state as much as possible, so that the power consumption saving effect of the terminal device is equivalent.
  • the first minimum available time unit offset value or the second minimum available time unit offset value refers to the minimum value of the available time unit offset value between the PDCCH and the PDSCH or PUSCH.
  • the first minimum available time unit offset value associated with the first downlink partial bandwidth is: the minimum available time unit offset value of the first downlink partial bandwidth, or according to the The minimum available time unit offset value of the first downlink part bandwidth, the minimum available time unit offset value determined by the subcarrier interval of the first downlink part bandwidth and the subcarrier interval of the second part bandwidth;
  • the first minimum available time unit offset value associated with the third uplink part bandwidth is: the minimum available time unit offset value of the third uplink part bandwidth, or according to the minimum available time of the third uplink part bandwidth
  • the first minimum available time unit offset value associated with the first downlink part bandwidth/third uplink part bandwidth may be the minimum available time of the first downlink part bandwidth/third uplink part bandwidth indicated by the PDCCH
  • the unit offset value can also be based on the minimum available time unit offset value of the first downlink part bandwidth/third uplink part bandwidth, the subcarrier spacing of the first downlink part bandwidth/third uplink part bandwidth, and the second part The minimum available time unit offset determined by the subcarrier spacing of the bandwidth.
  • the second minimum available time unit offset value may be determined according to the first minimum available time unit offset value associated with the first downlink part bandwidth/the third uplink part bandwidth determined according to the above two situations.
  • the method further includes: obtaining one or more first time unit offset values of the first downlink part bandwidth and one or more second time unit offset values of the second part bandwidth Or obtain one or more first time unit offset values of the third uplink partial bandwidth and one or more second time unit offset values of the second partial bandwidth.
  • the terminal device and the network device may predefine or receive the above-mentioned one or more first time unit offset values and one or more second time unit offset values configured by the network device, and the first minimum available time unit The offset value is one of the one or more first time unit offset values, and the second minimum available time unit offset value is one of the one or more second time unit offset values.
  • the first minimum available time unit offset value associated with the first downlink partial bandwidth or the first minimum available time unit offset value associated with the third uplink partial bandwidth is Determining the second minimum available time unit offset value of the second portion of bandwidth includes: when the one or more second time unit offset values include the first minimum available time unit offset value, setting The first minimum available time unit offset value is used as the second minimum available time unit offset value; or among the one or more second time unit offset values, a value greater than the first minimum available time is selected The unit offset value and the second time unit offset value with the smallest difference from the first minimum available time unit offset value is used as the second minimum available time unit offset value; or in the one or more In the second time unit offset value, a second time unit offset value that is smaller than the first minimum available time unit offset value and has the smallest difference from the first minimum available time unit offset value is selected as the The second smallest available time unit offset value. In this implementation, the second time unit offset value with the smallest difference from the first minimum available time unit offset value is selected as the second minimum available time unit offset
  • the first minimum available time unit offset value associated with the first downlink partial bandwidth or the first minimum available time unit offset value associated with the third uplink partial bandwidth is Determining the second minimum available time unit offset value of the second part of the bandwidth includes: among the one or more second time unit offset values, selecting the offset value from the first minimum available time unit offset value One or more second time unit offset values with the smallest difference; determining the second minimum available time unit offset value among the selected one or more second time unit offset values.
  • the second time unit offset value with the smallest difference from the first minimum available time unit offset value is selected as the second minimum available time unit offset value, so that the terminal device tries to maintain the original PDCCH processing status.
  • the first minimum available time unit offset value associated with the first downlink partial bandwidth or the first minimum available time unit offset value associated with the third uplink partial bandwidth is Determining the second minimum available time unit offset value of the second part of the bandwidth includes: when all the second time unit offset values are less than the first minimum available time unit offset value, selecting the one or The largest value among the plurality of second time unit offset values is used as the second minimum available time unit offset value. In this implementation, the second time unit offset value with the smallest difference from the first minimum available time unit offset value is selected as the second minimum available time unit offset value, so that the terminal device tries to maintain the original PDCCH processing status.
  • the method further includes: obtaining one or more candidate second minimum available time unit offset values of the second partial bandwidth; A minimum available time unit offset value or a first minimum available time unit offset value associated with the third uplink part bandwidth, and determining the second minimum available time unit offset value of the second part bandwidth includes: When the one or more candidate second minimum available time unit offset values include the first minimum available time unit offset value, use the first minimum available time unit offset value as the second minimum available time unit offset value Time unit offset value; or, among the one or more candidate second minimum available time unit offset values, select a value greater than the first minimum available time unit offset value and offset from the first minimum available time unit The candidate second minimum available time unit offset value with the smallest shift value difference is used as the second minimum available time unit offset value; or among the one or more candidate second minimum available time unit offset values, Select the candidate second minimum available time unit offset value that is less than the first minimum available time unit offset value and the smallest difference from the first minimum available time unit offset value as the second minimum available time unit The offset value.
  • the terminal device includes: obtaining one or
  • the method further includes: after the downlink activated partial bandwidth is switched from the first downlink partial bandwidth to the second partial bandwidth, receiving second indication information on the second partial bandwidth Or when the part of the bandwidth activated in the uplink is switched from the third part of the upstream bandwidth to the second part of the bandwidth, the second indication information is received on the first part of the downstream bandwidth; and according to the second The instruction information adjusts the offset value of the second minimum available time unit.
  • the terminal device may adjust the second minimum available time unit offset value according to the instruction information of the network device.
  • the unit of the time unit includes: radio frame, subframe, time slot, mini time slot, orthogonal frequency division multiplexing OFDM symbol, microsecond, or millisecond.
  • a method for determining a minimum available time unit offset value includes: sending first indication information on a first downlink partial bandwidth, where the first indication information includes a second partial bandwidth Instruction information; switch the downlink activated part of the bandwidth from the first downlink part of the bandwidth to the second part of the bandwidth, where the second part of the bandwidth is the downlink part of the bandwidth; or, the uplink activated part of the bandwidth from the third
  • the uplink partial bandwidth is switched to the second partial bandwidth, wherein the second partial bandwidth is the uplink partial bandwidth; and according to the first minimum available time unit offset value associated with the first downlink partial bandwidth or the The first minimum available time unit offset value associated with the third uplink partial bandwidth is determined to determine the second minimum available time unit offset value of the second partial bandwidth.
  • the first minimum available time unit offset value associated with the first downlink partial bandwidth is: the minimum available time unit offset value of the first downlink partial bandwidth, or according to the The minimum available time unit offset value of the first downlink part bandwidth, the minimum available time unit offset value determined by the subcarrier interval of the first downlink part bandwidth and the subcarrier interval of the second part bandwidth;
  • the first minimum available time unit offset value associated with the third uplink part bandwidth is: the minimum available time unit offset value of the third uplink part bandwidth, or according to the minimum available time of the third uplink part bandwidth
  • the method further includes: determining one or more first time unit offset values of the first downlink part bandwidth and one or more second time unit offset values of the second part bandwidth Or determine one or more first time unit offset values and the one or more second time unit offset values of the third uplink bandwidth.
  • the first minimum available time unit offset value associated with the first downlink partial bandwidth or the first minimum available time unit offset value associated with the third uplink partial bandwidth is Determining the second minimum available time unit offset value of the second portion of bandwidth includes: when the one or more second time unit offset values include the first minimum available time unit offset value, setting The first minimum available time unit offset value is used as the second minimum available time unit offset value; or among the one or more second time unit offset values, a value greater than the first minimum available time is selected The unit offset value and the second time unit offset value with the smallest difference from the first minimum available time unit offset value is used as the second minimum available time unit offset value; or in the one or more In the second time unit offset value, a second time unit offset value that is smaller than the first minimum available time unit offset value and has the smallest difference from the first minimum available time unit offset value is selected as the The second smallest available time unit offset value.
  • the first minimum available time unit offset value associated with the first downlink partial bandwidth or the first minimum available time unit offset value associated with the third uplink partial bandwidth is Determining the second minimum available time unit offset value of the second part of the bandwidth includes: among the one or more second time unit offset values, selecting the offset value from the first minimum available time unit offset value One or more second time unit offset values with the smallest difference; the second minimum available time unit offset value is determined from the selected one or more second time unit offset values.
  • the first minimum available time unit offset value associated with the first downlink partial bandwidth or the first minimum available time unit offset value associated with the third uplink partial bandwidth is Determining the second minimum available time unit offset value of the second part of the bandwidth includes: when all the second time unit offset values are less than the first minimum available time unit offset value, selecting the one or The largest value among the plurality of second time unit offset values is used as the second minimum available time unit offset value.
  • the method further includes: determining one or more candidate second minimum available time unit offset values of the second partial bandwidth; and the second minimum available time unit offset value is determined according to the first downlink partial bandwidth
  • a minimum available time unit offset value or a first minimum available time unit offset value associated with the third uplink part bandwidth, and determining the second minimum available time unit offset value of the second part bandwidth includes: When the one or more candidate second minimum available time unit offset values include the first minimum available time unit offset value, use the first minimum available time unit offset value as the second minimum available time unit offset value Time unit offset value; or, among the one or more candidate second minimum available time unit offset values, select a value greater than the first minimum available time unit offset value and offset from the first minimum available time unit The candidate second minimum available time unit offset value with the smallest shift value difference is used as the second minimum available time unit offset value; or among the one or more candidate second minimum available time unit offset values, Select the candidate second minimum available time unit offset value that is less than the first minimum available time unit offset value and the smallest difference from the first minimum available time unit offset
  • the method further includes: after the downlink activated partial bandwidth is switched from the first downlink partial bandwidth to the second partial bandwidth, sending second indication information on the second partial bandwidth Or when the part of the bandwidth activated in the upstream is switched from the third part of the upstream bandwidth to the second part of the bandwidth, the second indication information is sent on the first part of the downstream bandwidth, wherein the second The indication information is used to instruct to adjust the offset value of the second minimum available time unit.
  • the unit of the time unit includes: radio frame, subframe, time slot, mini time slot, orthogonal frequency division multiplexing OFDM symbol, microsecond, or millisecond.
  • a terminal device which can implement the above-mentioned first aspect or any of the communication methods implemented.
  • the terminal device may be a chip (such as a baseband chip, or a communication chip, etc.).
  • the above method can be implemented by software, hardware, or by hardware executing corresponding software.
  • the structure of the terminal device includes a processor and a memory; the processor is configured to support the apparatus to perform corresponding functions in the above communication method.
  • the memory is used for coupling with the processor, and it stores the necessary programs (instructions) and/or data of the device.
  • the terminal device may further include a communication interface for supporting communication between the apparatus and other network elements.
  • the terminal device may include unit modules that perform corresponding functions or actions in the foregoing method.
  • a processor and a transceiver device are included, the processor is coupled with the transceiver device, and the processor is used to execute a computer program or instruction to control the transceiver device to receive and receive information. Send; when the processor executes the computer program or instruction, the processor is also used to implement the above method.
  • the transceiver device may be a transceiver, a transceiver circuit or an input/output interface.
  • the transceiving device is a transceiving circuit or an input/output interface.
  • the sending unit may be an output unit, such as an output circuit or a communication interface; the receiving unit may be an input unit, such as an input circuit or a communication interface.
  • the sending unit may be a transmitter or a transmitter; the receiving unit may be a receiver or a receiver.
  • a network device which can implement the above-mentioned second aspect or any of the communication methods implemented.
  • the network device may be a chip (such as a baseband chip, or a communication chip, etc.), and the foregoing method may be implemented by software, hardware, or execution of corresponding software by hardware.
  • the structure of the network device includes a processor and a memory; the processor is configured to support the device to perform corresponding functions in the foregoing communication method.
  • the memory is used to couple with the processor, and it stores the necessary programs (instructions) and data of the device.
  • the network device may further include a communication interface for supporting communication between the apparatus and other network elements.
  • the network device may include unit modules that perform corresponding actions in the foregoing method.
  • a processor and a transceiver device are included, the processor is coupled with the transceiver device, and the processor is used to execute a computer program or instruction to control the transceiver device to receive and receive information. Send; when the processor executes the computer program or instruction, the processor is also used to implement the above method.
  • the transceiver device may be a transceiver, a transceiver circuit or an input/output interface.
  • the transceiving device is a transceiving circuit or an input/output interface.
  • the receiving unit may be an input unit, such as an input circuit or a communication interface; the sending unit may be an output unit, such as an output circuit or a communication interface.
  • the receiving unit may be a receiver (also called a receiver); the sending unit may be a transmitter (also called a transmitter).
  • the hardware parts responsible for input and output in the network device can be integrated.
  • a computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the methods described in the above aspects.
  • a computer program product containing instructions which when run on a computer, causes the computer to execute the methods described in the above aspects.
  • a communication system which includes any of the aforementioned network devices and/or any terminal devices.
  • Figure 1 is a schematic diagram of simultaneous slot scheduling and cross-slot scheduling
  • FIG. 2 is a schematic diagram of a communication system involved in this application.
  • FIG. 3 is a schematic flowchart of a method for determining a minimum available time unit offset value provided by an embodiment of the application
  • Figure 4 is a schematic diagram of BWP dynamic switching
  • FIG. 5 is a schematic diagram of the relationship of time units corresponding to different subcarrier intervals
  • FIG. 6 is a schematic flowchart of another method for determining an offset value of a minimum available time unit provided by an embodiment of this application;
  • FIG. 7 is a schematic flowchart of another method for determining an offset value of a minimum available time unit provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of yet another terminal device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of another network device provided by an embodiment of this application.
  • the unit of the time unit includes: radio frame, subframe, time slot, mini time slot, orthogonal frequency division multiplexing (OFDM) symbol, microsecond, or millisecond.
  • OFDM orthogonal frequency division multiplexing
  • the time unit offset value refers to the time offset value between the PDCCH and the scheduled PDSCH.
  • K0>0 means that the PDCCH and the scheduled PDSCH are not in the same time slot.
  • the terminal device detects the PDCCH in time slot i and receives the PDSCH scheduled by the PDCCH in time slot i+1.
  • the control information carried by the PDCCH includes the slot offset value of the PDSCH and the start symbol and length of the PDSCH in the slot.
  • the time unit offset value refers to the time offset value between the PDCCH and the scheduled PUSCH.
  • the control information carried by the PDCCH includes the time slot offset value of the PUSCH and the start symbol and length of the PUSCH in the time slot.
  • Time domain resource allocation list (time domain resource allocation list)
  • the network device can configure the PDSCH time domain resource allocation list and the PUSCH time domain resource allocation list to the terminal device through radio resource control (radio resource control, RRC) signaling, and the time domain resources can also be predefined between the network device and the terminal device Distribution list.
  • the time domain resource allocation list may also be referred to as a time domain resource allocation set.
  • the time domain resource allocation list of PDSCH includes the set of K0, and the start symbol and length set of PDSCH in a time slot; the time domain resource allocation list of PUSCH contains the set of K2, and the set of PUSCH in a time slot The set of starting symbol and length.
  • the network device schedules the PDSCH or PUSCH through the PDCCH, it selects one of the slot offset values and the start symbol and length in the slot in the time domain resource allocation set.
  • the value of K0 in the K0 set can be greater than or equal to 0, and the number of values can be one or more.
  • the slot offset value K0 can be configured as ⁇ 0,1,2,3,4,5,6 ⁇ .
  • the value of K2 in the K2 set can also be greater than or equal to 0, and there can be one or more values.
  • the minimum available time unit offset value refers to the minimum available time unit offset value between the PDCCH and the scheduled PDSCH when the network device schedules the PDSCH through the PDCCH, and the PDCCH and the scheduled PDSCH The time unit offset value between will not be less than the minimum available time unit offset value.
  • the minimum available time slot offset value refers to the smallest available time slot offset value between the PDCCH and the scheduled PDSCH, which is recorded as the minimum time slot offset value minimum K0.
  • the minimum available time unit offset value refers to the minimum available time unit offset value between the PDCCH and the scheduled PUSCH when the network device schedules the PUSCH through the PDCCH, the PDCCH and the scheduled PUSCH
  • the time unit offset value between will not be less than the minimum available time unit offset value.
  • the minimum available time slot offset value refers to the minimum available time slot offset value between the PDCCH and the scheduled PUSCH, and is recorded as the minimum time slot offset value minimum K2.
  • the network device can indicate to the terminal device the minimum available time unit offset value for the downlink activated BWP or the subsequent scheduling on the uplink activated BWP through the PDCCH.
  • the network device can indicate the minimum K0 and minimum K2 through two downlink control information (DCI) respectively.
  • DCI downlink control information
  • the network device can also jointly indicate minimum K0 and minimum K2 through the same DCI, which means that as long as the minimum K0 or minimum K2 changes, the minimum K2 or minimum K0 will change accordingly, and the network side does not need to send two instructions to adjust the minimum K0 and minimum K0 and minimum K0 respectively.
  • minimum K2 There are two main ways of joint indication of minimum K0 and minimum K2:
  • minimum K0 and minimum K2 are defined or configured in the form of a combination, that is, combination 1 ⁇ minimum K0_1,minimum K2_1 ⁇ , combination 2 ⁇ minimum K0_2,minimum K2_2 ⁇ ,....
  • combination 1 is ⁇ 0,1 ⁇
  • combination 2 is ⁇ 1,2 ⁇ .
  • minimum K0 is indicated as minimum K0_1, then minimum K2 is automatically adjusted to minimum K2_1, and vice versa.
  • delta can be a predefined or configured value.
  • minimum K0 is indicated as minimum K0_1, then minimum K2 is adjusted to minimum K0_1+delta by default. Conversely, when minimum K2 is indicated as minimum K2_1, then minimum K0 is adjusted to minimum K2_1-delta by default.
  • the downstream activated BWP is switched, and the upstream activated BWP does not necessarily switch at the same time, and vice versa. Therefore, in the embodiment of the present invention, when the minimum K0 caused by the DL BWP switching changes, but the UL BWP does not switch, the minimum K2 of the UL BWP may remain unchanged, and vice versa.
  • FDD frequency division duplexing
  • FIG. 2 shows a schematic diagram of a communication system involved in this application.
  • the communication system may include at least one network device 100 (only one is shown) and one or more terminal devices 200 connected to the network device 100.
  • the network device 100 may be a device that can communicate with the terminal device 200.
  • the network device 100 may be any device with a wireless transceiver function. Including but not limited to: base station NodeB, evolved base station eNodeB, base station in the fifth generation (5G) communication system, base station or network equipment in future communication system, access node in WiFi system, wireless relay Nodes, wireless backhaul nodes, etc.
  • the network device 100 may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device 100 may also be a small station, a transmission reference point (TRP), etc.
  • TRP transmission reference point
  • the terminal device 200 is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water, such as a ship, etc.; it can also be deployed in the air, such as an airplane , Balloons and satellites.
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial control ( Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety
  • Terminal equipment can sometimes be referred to as user equipment (UE), access terminal equipment, UE unit, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, terminal, wireless communication equipment, UE Agent or UE device, etc.
  • system and “network” in the embodiments of this application can be used interchangeably.
  • Multiple refers to two or more. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application.
  • And/or describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • FIG. 3 is a schematic flowchart of a method for determining a minimum available time unit offset value according to an embodiment of the application, which is applied in a downlink transmission process.
  • the time units are all time slots as an example.
  • the time unit offset value is the time slot offset value
  • the minimum available time unit offset value is the minimum available time slot offset value.
  • the method may include the following steps:
  • the network device sends one or more first time unit offset values of the first downlink partial bandwidth and one or more second time unit offset values of the second partial bandwidth.
  • the second part of the bandwidth is the downstream part of the bandwidth.
  • the terminal device receives one or more first time unit offset values of the first downlink partial bandwidth and one or more second time unit offset values of the second partial bandwidth.
  • the time domain resource allocation list on each BWP is independently configured.
  • the time-domain resource allocation list includes one or more first slot offset values (referred to as “first slot offset value set”) between the PDCCH and the scheduled PDSCH, and the PDSCH The start symbol and length set in the slot.
  • first slot offset value set first slot offset values
  • second slot offset value set second slot offset values
  • the bandwidth of the first downlink part is BWP1
  • the bandwidth of the second part is BWP2.
  • the K0 set of BWP1 and the K0 set of BWP2 are independently configured.
  • the K0 set of BWP1 is ⁇ 0,1,2,3,4,5,6 ⁇
  • the K0 set of BWP2 is ⁇ 0,2,4,6,8 ⁇ .
  • the network device may send the K0 set of the above BWP to the terminal device through RRC signaling.
  • the time slot offset value set of the above-mentioned BWP may be predefined between the network equipment and the terminal equipment.
  • the network device sends first indication information on the first downlink partial bandwidth, where the first indication information includes indication information of the second partial bandwidth.
  • the terminal device receives the first indication information on the first downlink partial bandwidth.
  • Network equipment can configure multiple DL BWPs for each carrier.
  • a carrier only one DL BWP is active at the same time. For example, if the currently activated BWP is BWP1, the terminal device monitors the PDCCH on BWP1, and the network device sends the PDCCH to the terminal device through BWP1.
  • the first indication information includes indication information of part of the bandwidth switching activated in the downlink.
  • the foregoing first indication information may be DCI.
  • the network device sends the PDCCH on the BWP1.
  • the DCI carried on the PDCCH indicates the BWP identifier and the scheduling information of the PDSCH.
  • the scheduling information of the PDSCH includes the time slot offset value K0 and the frequency domain resource allocation information of the PDSCH. If the BWP identifier indicated by the DCI is BWP1, it means that the activated BWP has not been switched; if the BWP identifier indicated by the DCI is BWP2, it means that the activated BWP has switched.
  • the terminal device switches the downlink activated partial bandwidth from the first downlink partial bandwidth to the second partial bandwidth according to the first instruction information.
  • the network device after the network device sends the first indication information, it switches the downlink-activated partial bandwidth from the first downlink partial bandwidth to the second partial bandwidth, where the second partial bandwidth is the downlink partial bandwidth.
  • the terminal device parses the first indication information and obtains the indication information of the second part of the bandwidth.
  • the first indication information indicates the switching of the downlink activated part of the bandwidth, and switches the downlink activated part of the bandwidth from the first downlink part of the bandwidth to the second part of the bandwidth .
  • the current downlink activated BWP is BWP1
  • the network device sends first indication information on BWP1
  • the first indication information includes the identifier of BPW2
  • BWP2 is the downlink partial bandwidth
  • the downlink activated BWP is switched from BWP1 to BWP2.
  • the terminal The device will receive downlink information on BWP2, and the network device will send downlink information on BWP2.
  • the base station is configured with two BWPs, BWP1 is active, and the terminal device monitors the PDCCH on BWP1, and detects the partial bandwidth indicator (BWP indicator) field indication of the PDCCH in the second time slot If BWP2 is reached, the terminal device will switch to BWP2, that is, the activated BWP will switch from BWP1 to BWP2. After BWP2 is activated, the terminal device monitors the PDCCH on BWP2.
  • BWP indicator partial bandwidth indicator
  • step 102 and step 103 can also be replaced by the network device and the terminal device switching from the first downlink part of the bandwidth to the second part of the bandwidth through a timer or timer.
  • the network device may be configured with a timer or timer, and when the timer or timer expires or ends, the network device and the terminal device will switch from the first downlink part of the bandwidth to the second part of the bandwidth.
  • the network device and the terminal device respectively determine a second minimum available time unit offset value of the second part of the bandwidth according to the first minimum available time unit offset value associated with the first downlink part of the bandwidth.
  • the unit offset value is as close as possible to the first minimum available time unit offset value associated with the bandwidth of the first downlink part.
  • the first minimum available time unit offset value associated with the first downlink partial bandwidth is: the minimum available time unit offset value of the first downlink partial bandwidth.
  • the minimum available time unit offset value of the first downlink part bandwidth is the most recently effective minimum available time unit offset value on the first downlink part bandwidth, where, when the first downlink part bandwidth is in the active state, the network device
  • the DCI can be used to dynamically indicate the minimum available time unit offset value of the first downlink part bandwidth, and the specific DCI indication manner is not limited in the present invention.
  • the network device may add a new bit field in the DCI to indicate the value or index of the minimum available time unit offset value of the first downlink part of the bandwidth.
  • the network device may also use the existing bit field to reinterpret the minimum available time unit offset value of the first downlink part of the bandwidth. For example, when the bits of the frequency domain resource allocation field of the PDCCH are all zero, the bits of the time domain resource allocation field of the PDCCH indicate the minimum available time unit offset value of the first downlink bandwidth.
  • the first minimum available time unit offset value associated with the first downlink part bandwidth is: The minimum available time unit offset value of the first downlink part bandwidth, the subcarrier interval of the first downlink part bandwidth, and the minimum available time unit offset value determined by the subcarrier interval of the second part bandwidth.
  • the second minimum available time unit offset value is determined after conversion according to the ratio of the size of the subcarrier interval.
  • the first minimum available time unit offset value associated with the first downlink partial bandwidth (BWP1) is a value converted according to the ratio of the size of the subcarrier spacing between BWP1 and BWP2: Among them, ⁇ _bwp1 is the scale factor of the sub-carrier spacing of BWP1, ⁇ _bwp2 is the scale factor of the sub-carrier spacing of BWP2, and BWP1minimumK0 is the smallest available time slot offset value that BWP1 has recently taken effect.
  • the second minimum available time unit offset value is defined as a value in the second time unit offset value set of BWP2, and the second minimum available time unit offset value is based on A certain value. The second minimum available time unit offset value is used as the initial minimum time unit offset value of the second partial bandwidth.
  • each gray-filled grid represents an OFDM symbol with a corresponding subcarrier interval.
  • the BWP is switched, and the subcarrier interval of the activated BWP (BWP2) and the original BWP (BWP1) may be different.
  • the converted value is based on the ratio of the sub-carrier spacing Then find the value closest to 2 in the K0 set of BWP2 as the minimum K0 of BWP2.
  • the network device schedules the PDSCH to the terminal device through the PDCCH, and the PDCCH indicates one or more of the second part of the bandwidth
  • a second time unit offset value in the second time unit offset value, and the second time unit offset value should be greater than or equal to the aforementioned second minimum available time unit offset value.
  • the terminal equipment periodically monitors the PDCCH. When the second minimum available time unit offset value is greater than 0, the terminal device only needs to detect the PDCCH and does not need to buffer the possible PDSCH in the current time unit, thereby saving power consumption of the terminal device. If the terminal device detects that the PDCCH schedules the PDSCH, the terminal device receives the PDSCH at the time position corresponding to the second time unit offset value indicated by the PDCCH.
  • S104 includes the following implementation A to implementation D:
  • Implementation mode A When the one or more second time unit offset values include the first minimum available time unit offset value, use the first minimum available time unit offset value as the second The minimum available time unit offset value.
  • the second minimum available time unit offset value of BWP2 is equal to the minimum K0 of BWP1.
  • Implementation manner B Among the one or more second time unit offset values, select a value greater than the first minimum available time unit offset value and the smallest difference from the first minimum available time unit offset value The second time unit offset value of is used as the second minimum available time unit offset value.
  • the difference between the above two refers to the absolute value of the difference between the two.
  • the second minimum available time slot offset value of BWP2 is greater than the minimum K0 of BWP1 in the K0 set of BWP2, and the difference with the minimum K0 of BWP1 is the smallest The K0 value.
  • the K0 set of BWP1 is ⁇ 0,1,2,3,4,5,6 ⁇
  • the K0 set of BWP2 is ⁇ 0,2,4,6,8 ⁇
  • the minimum K0 of BWP1 is 1, then BWP2’s
  • the second minimum available time unit offset value is equal to 2.
  • method B if one or more second time unit offset values of the second part of the bandwidth are all less than the first minimum available time unit offset value, then one or more second time units The maximum value among the unit offset values is used as the second minimum available time unit offset value.
  • Implementation manner C Among the one or more second time unit offset values, select the offset value that is smaller than the first minimum available time unit offset value and has the smallest difference from the first minimum available time unit offset value
  • the second time unit offset value of is used as the second minimum available time unit offset value.
  • the difference between the above two refers to the absolute value of the difference between the two.
  • the second minimum available time unit offset of BWP2 is smaller than the minimum K0 of BWP1 in the K0 set of BWP2, and the difference from the minimum K0 of BWP1 is the smallest.
  • the K0 value if there is no value for the minimum K0 of BWP1 in the K0 set of BWP2, then the second minimum available time unit offset of BWP2 is smaller than the minimum K0 of BWP1 in the K0 set of BWP2, and the difference from the minimum K0 of BWP1 is the smallest.
  • the K0 value if there is no value for the minimum K0 of BWP1 in the K0 set of BWP2, then the second minimum available time unit offset of BWP2 is smaller than the minimum K0 of BWP1 in the K0 set of BWP2, and the difference from the minimum K0 of BWP1 is the smallest. The K0 value.
  • the K0 set of BWP1 is ⁇ 0,1,2,3,4,5,6 ⁇
  • the K0 set of BWP2 is ⁇ 0,4,6,8 ⁇
  • the minimum K0 of BWP1 is 1, then the second of BWP2
  • the minimum available time unit offset value is equal to zero.
  • Implementation mode D Among the one or more second time unit offset values, the second time unit offset value with the smallest difference from the first minimum available time unit offset value is selected as the second The minimum available time unit offset value.
  • the difference between the above two refers to the absolute value of the difference between the two.
  • the second slot offset value with the smallest difference from the first minimum available time unit offset value may be greater than the first minimum available time unit offset value, or may be smaller than the first minimum available time unit offset value value.
  • the second minimum available time unit offset value of BWP2 is the K0 value with the smallest difference between the K0 set of BWP2 and the minimum K0 of BWP1.
  • the K0 set of BWP1 is ⁇ 0,1,2,3,4,5,6 ⁇
  • the K0 set of BWP2 is ⁇ 0,4,6,8 ⁇
  • the minimum K0 of BWP1 is 1, then the second of BWP2
  • the minimum available time unit offset value is equal to zero.
  • the second time unit offset value x and the second time unit offset value y are both offset from the first minimum available time unit
  • the difference between the values is the smallest and the difference is equal, where x is greater than the first minimum available time unit offset value, and y is less than the first minimum available time unit offset value, then the second minimum available time unit can be determined by one of the following selection methods
  • Time unit offset value Method 1: Take the second time unit offset value x;
  • Method 2 Take the second time unit offset value y.
  • Mode 1 or Mode 2 can be pre-defined between the network device and the terminal device.
  • the K0 set of BWP1 is ⁇ 0,1,2,3,4,5,6 ⁇
  • the K0 set of BWP2 is ⁇ 0,4,6,8 ⁇
  • the minimum K0 of BWP1 is 2
  • K0 0 of BWP2
  • the second minimum available time unit offset value of BWP2 is equal to 4
  • the second minimum available time unit offset value of BWP2 is equal to 0.
  • Step S103 and step S104 may not be prioritized, for example, they may be performed simultaneously.
  • the offset value of the BWP after the handover is determined according to the first minimum available time unit offset value associated with the BWP before the handover.
  • the second smallest available time unit offset value when the one or more second time unit offset values of the second part of the bandwidth do not include the first minimum available time unit offset value of the first downlink part of the bandwidth, the second part of the bandwidth of the second part of the bandwidth is determined according to the above rules. Second, the minimum available time unit offset value can make the terminal device maintain the original PDCCH processing state as much as possible, so that the power consumption saving effect of the terminal device is equivalent.
  • FIG. 6 is a schematic flowchart of a method for determining a minimum available time unit offset value provided by an embodiment of the application, which is applied in an uplink transmission process.
  • the time units are all time slots as an example.
  • the time unit offset value is the time slot offset value
  • the minimum available time unit offset value is the minimum available time slot offset value.
  • the method may include the following steps:
  • the network device sends one or more first time unit offset values of the third uplink partial bandwidth and one or more second time unit offset values of the second partial bandwidth.
  • the second part of the bandwidth is the upstream part of the bandwidth.
  • the terminal device receives one or more first time unit offset values of the third uplink partial bandwidth and one or more second time unit offset values of the second partial bandwidth.
  • the time domain resource allocation list on each BWP is independently configured.
  • the time domain resource allocation list includes one or more first slot offset values between the PDCCH and the scheduled PUSCH, and a set of the PUSCH start symbol and length in the slot.
  • the time domain resource allocation list includes one or more second slot offset values between the PDCCH and the scheduled PUSCH, and a set of the start symbol and length of the PUSCH in the slot.
  • the bandwidth of the third uplink part is BWP3, and the bandwidth of the second part is BWP2.
  • the K2 set of BWP3 and the K2 set of BWP2 are independently configured.
  • the K2 set of BWP3 is ⁇ 0,1,2,3,4,5,6 ⁇
  • the K2 set of BWP2 is ⁇ 0,2,4,6,8 ⁇ .
  • the network device may send the above-mentioned K2 set of BWP to the terminal device through RRC signaling.
  • the time slot offset value set of the above-mentioned BWP may be predefined between the network equipment and the terminal equipment.
  • the network device sends first indication information on the first downlink partial bandwidth, where the first indication information includes indication information of the second partial bandwidth.
  • the terminal device receives the first indication information on the first downlink partial bandwidth.
  • Network equipment can configure multiple UL BWPs for one uplink carrier.
  • a carrier only one UL BWP is active at the same time.
  • the terminal device monitors the PDCCH on BWP1, and the terminal device sends uplink data to the network device on BWP3.
  • the first indication information includes indication information of partial bandwidth switching of the uplink set.
  • the foregoing first indication information may be DCI.
  • the network device sends the PDCCH on the BWP1.
  • the DCI carried on the PDCCH indicates the BWP identifier and the scheduling information of the PUSCH.
  • the scheduling information of the PUSCH includes the time slot offset value K2 and the frequency domain resource allocation information of the PUSCH. If the BWP indicator indicated by the DCI is BWP3, it means that the uplink activated BWP has not been switched; if the BWP indicator indicated by the DCI is BWP2, it means that the uplink activated BWP has been switched.
  • the first indication information indicates the switching of the upstream active part of the bandwidth
  • the second part of the bandwidth represents the upstream part of the bandwidth.
  • the network device For switching of the part of the bandwidth activated in the uplink, the network device also sends the above-mentioned first indication information to the terminal equipment through the part of the bandwidth activated in the downlink.
  • the terminal device switches the uplink-activated partial bandwidth from the third uplink partial bandwidth to the second partial bandwidth according to the first instruction information.
  • the uplink activated partial bandwidth is switched from the third uplink partial bandwidth to the second partial bandwidth, where the second Part of the bandwidth is the upstream part of the bandwidth.
  • the terminal device parses the first indication information and obtains the indication information of the second part of the bandwidth.
  • the first indication information indicates the switching of the uplink activated part of the bandwidth, and switches the uplink activated part of the bandwidth from the third uplink part of the bandwidth to the second part of the bandwidth.
  • the currently activated BWP in the downlink is BWP1
  • the BWP activated in the uplink is BWP3.
  • the network device sends the first indication information on BWP1.
  • the first indication information includes the identifier of BWP2, and BWP2 is the uplink partial bandwidth, then the uplink activated BWP is switched from BWP3 To BWP2, after BWP2 is activated, terminal equipment will send uplink information on BWP2, and network equipment will also receive uplink information on BWP2.
  • the network device and the terminal device respectively determine the second minimum available time unit offset value of the second part of the bandwidth according to the first minimum available time unit offset value associated with the third uplink part of the bandwidth.
  • the available time unit offset value is as close as possible to the first minimum available time unit offset value associated with the third uplink part bandwidth.
  • the first minimum available time unit offset value associated with the third uplink part bandwidth is: the minimum available time unit offset value of the third uplink part bandwidth.
  • the minimum available time unit offset value of the third uplink part bandwidth is the smallest available time unit offset value that took effect recently on the third uplink part bandwidth, where, when the third uplink part bandwidth is in the active state, the network device can pass the DCI
  • the minimum available time unit offset value of the third uplink bandwidth is dynamically indicated, and the specific DCI indication method is not limited in the present invention.
  • the network device may add a new bit field in the DCI to indicate the value or index of the minimum available time unit offset value of the third uplink bandwidth.
  • the network device may also use the existing bit field to reinterpret the minimum available time unit offset value of the third uplink bandwidth. For example, when the bits of the frequency domain resource allocation field of the PDCCH are all zero, the bits of the time domain resource allocation field of the PDCCH indicate the minimum available time unit offset value of the third uplink bandwidth.
  • the first minimum available time unit offset value associated with the third uplink part bandwidth is: 3.
  • the second minimum available time unit offset value is determined after conversion according to the ratio of the size of the subcarrier interval.
  • the first minimum available time unit offset value associated with the third uplink part bandwidth is a value converted according to the ratio of the subcarrier spacing between BWP3 and BWP2: Among them, ⁇ _bwp3 is the scale factor of the sub-carrier spacing of BWP3, ⁇ _bwp2 is the scale factor of the sub-carrier spacing of BWP2, and BWP3minimumK0 is the smallest available time slot offset value that BWP3 recently took effect.
  • the second minimum available time unit offset value is defined as a value in the second time unit offset value set of BWP2, and the second minimum available time unit offset value is based on A certain value.
  • the second minimum available time unit offset value is used as the initial minimum time unit offset value of the second partial bandwidth.
  • each gray-filled grid represents an OFDM symbol with a corresponding subcarrier interval.
  • the activated BWP is switched, and the subcarrier spacing of the newly activated BWP (BWP2) and the original BWP (BWP3) may be different.
  • Step 203 and step 204 may not be prioritized, for example, they may be performed simultaneously.
  • the offset value after the handover is determined according to the first minimum available time unit offset value associated with the BWP before the handover.
  • the second minimum available time unit offset value of the BWP when one or more second time unit offset values of the second part of the bandwidth do not include the first minimum available time unit offset value associated with the third uplink part of the bandwidth, the second part of the bandwidth is determined according to the above rules
  • the second minimum available time unit offset value can enable the terminal device to maintain the original PDCCH processing state as much as possible, so that the power consumption saving effect of the terminal device is equivalent.
  • FIG. 7 is a schematic flowchart of another method for determining an offset value of a minimum available time unit provided by an embodiment of the application. This embodiment will be described as an example of downstream transmission. This embodiment is also applicable to uplink transmission, and the uplink transmission process can be obtained with reference to this embodiment and the embodiment shown in FIG. 6. Illustratively, the method may include the following steps:
  • the network device sends one or more first time unit offset values of the first downlink partial bandwidth and one or more second time unit offset values of the second partial bandwidth.
  • the second part of the bandwidth is the downstream part of the bandwidth.
  • the terminal device receives one or more first time unit offset values of the first downlink partial bandwidth and one or more second time unit offset values of the second partial bandwidth.
  • the network device sends one or more candidate second minimum available time unit offset values of the second partial bandwidth.
  • the terminal device receives one or more candidate second minimum available time unit offset values of the second partial bandwidth.
  • the terminal device also obtains one or more candidate second minimum available time unit offset values (referred to as “candidate second minimum available time unit offset values" set"). After the BWP is switched, the network device/terminal device selects the second minimum available time unit offset value from the candidate second minimum available time unit offset value set.
  • the network device may send the aforementioned candidate second minimum available time unit offset value set to the terminal device through RRC signaling.
  • the above-mentioned candidate second minimum available time unit offset value set may also be predefined between the network device and the terminal device.
  • the set of candidate second minimum available time unit offset values may be a subset of one or more second time unit offset values, and the one or more second time unit offset values include candidate second minimum available time unit offset values The candidate second smallest available time unit offset value in the set.
  • the network device sends first indication information on the first downlink partial bandwidth, where the first indication information includes indication information of the second partial bandwidth.
  • the terminal device receives the first indication information on the first downlink partial bandwidth.
  • the network device and the terminal device respectively switch the downlink activated partial bandwidth from the first downlink partial bandwidth to the second partial bandwidth according to the first indication information, where the second partial bandwidth is the downlink partial bandwidth.
  • step S104 For the first minimum available time unit offset value, refer to step S104 in the embodiment shown in FIG. 3 or step S204 in the embodiment shown in FIG. 6.
  • S305 includes the following implementation manners E to H:
  • Implementation manner E When the one or more candidate second minimum available time unit offset values include the first minimum available time unit offset value, the first minimum available time unit offset value is used as the The second minimum available time unit offset value.
  • Implementation F Among the one or more candidate second minimum available time unit offset values, select those that are greater than the first minimum available time unit offset value and are different from the first minimum available time unit offset value The candidate second smallest available time unit offset value with the smallest difference is used as the second smallest available time unit offset value.
  • Implementation manner G among the one or more candidate second minimum available time unit offset values, select those that are less than the first minimum available time unit offset value and are offset from the first minimum available time unit offset value
  • the candidate second smallest available time unit offset value with the smallest difference is used as the second smallest available time unit offset value.
  • Implementation manner H Among the one or more candidate second minimum available time unit offset values, select the candidate second minimum available time unit offset with the smallest difference from the first minimum available time unit offset value Value as the second minimum available time unit offset value.
  • the determined second minimum available time unit offset value is the candidate second minimum available time A value in the set of cell offset values.
  • Step 304 and step 305 may not be prioritized, for example, they may be performed simultaneously.
  • the terminal device receives the above-mentioned second indication information.
  • the second minimum available time unit offset value determined according to the foregoing steps is used as the initial second minimum available time unit offset value of the second part of the bandwidth activated after the handover.
  • the second minimum available time unit offset value can be adjusted or updated.
  • the network device sends second indication information on the second part of the bandwidth, where the second indication information includes the adjusted second minimum available time unit offset value.
  • the network device may instruct to activate the updated second minimum available time unit offset value on the BWP through the PDCCH.
  • the network device and the terminal device respectively adjust the second minimum available time unit offset value according to the second indication information.
  • the offset value of the minimum available time unit associated with the BWP activated before the switch is determined and the set after the switch
  • the second minimum available time unit offset value associated with the BWP when one or more candidate second minimum available time unit offset values of the second part of the bandwidth do not include the first minimum available time unit associated with the first downlink part of the bandwidth
  • the time unit offset value or one or more candidate second minimum available time unit offset values of the second part of the bandwidth does not include the first minimum available time unit offset value associated with the third uplink part of the bandwidth
  • an embodiment of the present application also provides a terminal device 1000, which can be applied to the foregoing FIG. 4, In the method shown in Figure 6, Figure 7.
  • the terminal device 1000 may be a terminal device as shown in FIG. 3, or a component (such as a chip) applied to the terminal device.
  • the terminal device 1000 includes: a transceiver unit 11 and a processing unit 12.
  • the transceiver unit 11 is configured to receive the first indication information on the first downlink partial bandwidth
  • the processing unit 12 is configured to switch the downlink activated partial bandwidth from the first downlink partial bandwidth to the second partial bandwidth according to the first indication information, where the second partial bandwidth is the downlink partial bandwidth; or, Switching the part of the bandwidth activated upstream from the third part of the bandwidth to the second part of the bandwidth, where the second part of the bandwidth is the part of the upstream bandwidth;
  • the processing unit 12 is further configured to use the first minimum available time unit offset value associated with the first downlink part bandwidth or the first minimum available time unit offset value associated with the third uplink part bandwidth , Determining the second minimum available time unit offset value of the second partial bandwidth.
  • the first minimum available time unit offset value associated with the first downlink partial bandwidth is:
  • the minimum available time unit offset value of the first downlink part bandwidth or
  • the minimum available time unit offset value determined according to the minimum available time unit offset value of the first downlink part bandwidth, the subcarrier interval of the first downlink part bandwidth, and the subcarrier interval of the second part bandwidth ;
  • the offset value of the first minimum available time unit associated with the third uplink partial bandwidth is:
  • the minimum available time unit offset value of the third uplink bandwidth or
  • processing unit 12 is further configured to:
  • processing unit 12 is configured to:
  • the one or more second time unit offset values include the first minimum available time unit offset value, use the first minimum available time unit offset value as the second minimum available time unit Offset value;
  • the second time unit offset values select the second time that is greater than the first minimum available time unit offset value and has the smallest difference from the first minimum available time unit offset value A unit offset value as the second minimum available time unit offset value;
  • the unit offset value is used as the second minimum available time unit offset value.
  • processing unit 12 is configured to:
  • the one or more candidate second minimum available time unit offset values include the first minimum available time unit offset value, use the first minimum available time unit offset value as the second minimum Available time unit offset value;
  • the one that is greater than the first minimum available time unit offset value and has the smallest difference from the first minimum available time unit offset value is selected.
  • the candidate second minimum available time unit offset value is used as the second minimum available time unit offset value;
  • the one that is smaller than the first minimum available time unit offset value and has the smallest difference from the first minimum available time unit offset value is selected
  • the candidate second minimum available time unit offset value is used as the second minimum available time unit offset value.
  • the transceiving unit 11 is further configured to receive the first downlink bandwidth on the second partial bandwidth after the downlink activated partial bandwidth is switched from the first downlink partial bandwidth to the second partial bandwidth. 2. Indication information; or when the part of the uplink activated bandwidth is switched from the third uplink part of the bandwidth to the second part of the bandwidth, receiving the second indication information on the first downlink part of the bandwidth;
  • the processing unit 12 is further configured to adjust the second minimum available time unit offset value according to the second indication information.
  • the unit of the time unit includes: radio frame, subframe, time slot, mini time slot, orthogonal frequency division multiplexing OFDM symbol, microsecond, or millisecond.
  • transceiver unit 11 and processing unit 12 For a more detailed description of the foregoing transceiver unit 11 and processing unit 12, reference may be made to the relevant description of the terminal device in the method embodiments shown in FIG. 4, FIG. 6, and FIG. 7, which will not be repeated here.
  • the second minimum available time unit associated with the BWP activated after the handover is determined according to the first minimum available time unit offset value associated with the BWP activated before the handover.
  • the time unit offset value can make the terminal equipment maintain the original PDCCH processing state as much as possible.
  • an embodiment of the present application also provides a network device 2000, which can be applied to the foregoing FIG. 4, In the method shown in Figure 6, Figure 7.
  • the network device 2000 may be a network device as shown in FIG. 3, or a component (for example, a chip) applied to the network device.
  • the network device 2000 includes: a transceiver unit 21 and a processing unit 22.
  • the transceiver unit 21 is configured to send first indication information on the first downlink part of the bandwidth, where the first indication information includes indication information of the second part of the bandwidth;
  • the processing unit 22 is configured to switch the downlink activated part of the bandwidth from the first downlink part of the bandwidth to the second part of the bandwidth, where the second part of the bandwidth is the downlink part of the bandwidth; or, the uplink activated part of the bandwidth Switching from the third upstream part of the bandwidth to the second part of the bandwidth, where the second part of the bandwidth is the upstream part of the bandwidth;
  • the processing unit 22 is further configured to use the first minimum available time unit offset value associated with the first downlink part bandwidth or the first minimum available time unit offset value associated with the third uplink part bandwidth , Determining the second minimum available time unit offset value of the second partial bandwidth.
  • the first minimum available time unit offset value associated with the first downlink partial bandwidth is:
  • the minimum available time unit offset value of the first downlink part bandwidth or
  • the minimum available time unit offset value determined according to the minimum available time unit offset value of the first downlink part bandwidth, the subcarrier interval of the first downlink part bandwidth, and the subcarrier interval of the second part bandwidth ;
  • the offset value of the first minimum available time unit associated with the third uplink partial bandwidth is:
  • the minimum available time unit offset value of the third uplink bandwidth or
  • processing unit 22 is further configured to:
  • processing unit 22 is further configured to:
  • the one or more second time unit offset values include the first minimum available time unit offset value, use the first minimum available time unit offset value as the second minimum available time unit Offset value;
  • the second time unit offset values select the second time that is greater than the first minimum available time unit offset value and has the smallest difference from the first minimum available time unit offset value A unit offset value as the second minimum available time unit offset value;
  • the unit offset value is used as the second minimum available time unit offset value.
  • processing unit 22 is configured to:
  • the one or more candidate second minimum available time unit offset values include the first minimum available time unit offset value, use the first minimum available time unit offset value as the second minimum Available time unit offset value;
  • the one that is greater than the first minimum available time unit offset value and has the smallest difference from the first minimum available time unit offset value is selected.
  • the candidate second minimum available time unit offset value is used as the second minimum available time unit offset value;
  • the one that is smaller than the first minimum available time unit offset value and has the smallest difference from the first minimum available time unit offset value is selected
  • the candidate second minimum available time unit offset value is used as the second minimum available time unit offset value.
  • the transceiving unit 21 is further configured to send the second partial bandwidth on the second partial bandwidth after the downlink activated partial bandwidth is switched from the first downlink partial bandwidth to the second partial bandwidth 2. Indication information; or when the part of the uplink activated bandwidth is switched from the third uplink part of the bandwidth to the second part of the bandwidth, the second indication information is sent on the first downlink part of the bandwidth, where all The second indication information is used to instruct to adjust the offset value of the second minimum available time unit.
  • the unit of the time unit includes: radio frame, subframe, time slot, mini time slot, orthogonal frequency division multiplexing OFDM symbol, microsecond, or millisecond.
  • transceiver unit 21 and processing unit 22 For a more detailed description of the foregoing transceiver unit 21 and processing unit 22, reference may be made to the relevant description of the network device in the method embodiments shown in FIG. 4, FIG. 6, and FIG. 7, which will not be repeated here.
  • the second minimum available time unit associated with the BWP activated after the handover is determined according to the first minimum available time unit offset value associated with the BWP activated before the handover
  • the time unit offset value can make the terminal equipment maintain the original PDCCH processing state as much as possible.
  • the embodiment of the present application also provides a terminal device/network device, which is used to execute the above-mentioned method for determining the offset value of the minimum available time unit.
  • a terminal device/network device which is used to execute the above-mentioned method for determining the offset value of the minimum available time unit.
  • Part or all of the above-mentioned method for determining the offset value of the minimum available time unit may be implemented by hardware or software.
  • the terminal device/network device may be a chip or an integrated circuit in specific implementation.
  • the terminal device/network device when part or all of the method for determining the offset value of the minimum available time unit in the foregoing embodiment is implemented by software, includes: a processor for executing a program, and when the program is executed , So that the terminal device/network device can implement the method for determining the offset value of the minimum usable time unit provided in the above embodiments.
  • the terminal device/network device may also include a memory for storing necessary programs. These related programs can be stored in the The terminal equipment/network equipment is loaded into the memory when it leaves the factory, or it can be loaded into the memory when needed later.
  • the foregoing memory may be a physically independent unit, or may be integrated with the processor.
  • the terminal device/network device may also only include a processor.
  • the memory used for storing the program is located outside the terminal device/network device, and the processor is connected to the memory through a circuit/wire for reading and executing the program stored in the memory.
  • the processor may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processor may include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL generic array logic
  • the memory may include volatile memory (volatile memory), such as random-access memory (RAM); the memory may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory) , Hard disk drive (HDD) or solid-state drive (SSD); the memory may also include a combination of the foregoing types of memory.
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • flash memory flash memory
  • HDD Hard disk drive
  • SSD solid-state drive
  • the memory may also include a combination of the foregoing types of memory.
  • Fig. 10 shows a simplified structural diagram of a terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, and may also include a radio frequency circuit, an antenna, and an input and output device.
  • the processor can be used to process communication protocols and communication data, and can also be used to control terminal devices, execute software programs, and process data in software programs.
  • the terminal device may also include a memory.
  • the memory is mainly used to store software programs and data. These related programs can be loaded into the memory when the communication device leaves the factory, or can be loaded into the memory when needed later.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 10. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function can be regarded as the receiving unit and the transmitting unit (also collectively referred to as the transceiver unit) of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device .
  • the terminal device includes a receiving unit 31, a processing unit 32, and a sending unit 33.
  • the receiving unit 31 may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit 33 may also be called a transmitter, a transmitter, a transmitter, a transmitting circuit, etc.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the receiving unit 31 is used to perform the functions of the terminal device in steps S101 and S102 in the embodiment shown in FIG. 3; and the processing unit 32 is used to perform steps S103 and S103 in the embodiment shown in FIG. 3 The function of the terminal device in S104.
  • the receiving unit 31 is configured to perform the functions of the terminal device in steps S201 and S202 in the embodiment shown in FIG. 6; and the processing unit 32 is configured to perform step S203 in the embodiment shown in FIG. And the function of the terminal equipment in S204.
  • the receiving unit 31 is used to perform the functions of the terminal device in steps S301 to S303 and S306 in the embodiment shown in FIG. 7; and the processing unit 32 is used to perform the functions in the embodiment shown in FIG. The functions of the terminal device in steps S304 to S305 and S307.
  • FIG 11 shows a simplified schematic diagram of a network device.
  • the network equipment includes a radio frequency signal transceiving and converting part and a part 42.
  • the radio frequency signal transceiving and converting part includes a receiving unit 41 and a sending unit 43 (also collectively referred to as a transceiver unit).
  • the radio frequency signal transceiver and conversion part is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals; part 42 is mainly used for baseband processing and control of network equipment.
  • the receiving unit 41 may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit 43 may also be called a transmitter, a transmitter, a transmitter, a transmitting circuit, etc.
  • the 42 part is usually the control center of the network device, which can be generally called a processing unit, and is used to control the network device to execute the steps performed by the network device in the above-mentioned Figure 4, Figure 6, and Figure 7.
  • a processing unit which can be generally called a central processing unit, and is used to control the network device to execute the steps performed by the network device in the above-mentioned Figure 4, Figure 6, and Figure 7.
  • the 42 part can include one or more single boards, and each single board can include one or more processors and one or more memories.
  • the processor is used to read and execute the programs in the memory to realize the baseband processing function and the network equipment. control. If there are multiple boards, the boards can be interconnected to increase processing capacity. As an optional implementation, multiple boards may share one or more processors, or multiple boards may share one or more memories, or multiple boards may share one or more processing at the same time. Device.
  • the sending unit 43 is used to perform the functions of the network device in steps S101 and S102 in the embodiment shown in FIG. 3; and the part 42 is used to perform steps S103 and S104 in the embodiment shown in FIG. 3 The function of the network equipment.
  • the sending unit 43 is used to perform the functions of the network device in steps S201 and S202 in the embodiment shown in FIG. 6; and part 42 is used to perform steps S203 and S203 in the embodiment shown in FIG. 6 The function of the network device in S204.
  • the sending unit 43 is used to perform the functions of the network device in steps S301 to S303 and S306 in the embodiment shown in FIG. 7; and part 42 is used to perform the steps in the embodiment shown in FIG. 7 Functions of network equipment in S304 and S305.
  • the disclosed system, device, and method may be implemented in other ways.
  • the division of the unit is only a logical function division. In actual implementation, there can be other divisions.
  • multiple units or components can be combined or integrated into another system, or some features can be ignored or not. carried out.
  • the displayed or discussed mutual coupling, or direct coupling, or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer instructions can be sent from one website, computer, server, or data center to another via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) A website, computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium can be read-only memory (ROM), random access memory (RAM), or magnetic medium, such as floppy disk, hard disk, magnetic tape, magnetic disk, or optical medium, for example, Digital versatile disc (DVD), or semiconductor media, for example, solid state disk (SSD), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种最小可用时间单元偏移值的确定方法及设备。在BWP发生切换时,通过根据与切换前激活的BWP关联的第一最小可用时间单元偏移值确定与切换后激活的BWP关联的第二最小可用时间单元偏移值,可以使得终端设备尽量维持原来的PDCCH的处理状态,使得终端设备功耗节省的效果相当。

Description

一种最小可用时间单元偏移值的确定方法及设备 技术领域
本申请涉及通信技术领域,尤其涉及一种最小可用时间单元偏移值的确定方法及设备。
背景技术
随着通信技术的不断发展,在进行无线通信的过程中,越来越注重降低终端设备的功耗。为了降低终端设备的功耗,更好地节省终端设备的电量,基站可以向终端设备指示最小可用时间单元偏移值,基站通过物理下行控制信道(physical downlink control channel,PDCCH)向终端设备调度物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行共享信道(physical uplink shared channel,PUSCH)时,PDCCH与被调度的PDSCH或被调度的PUSCH之间的时间单元偏移值不会小于最小可用时间单元偏移值。以最小可用时间单元偏移值为最小时隙偏移值为例,当最小可用时隙偏移值大于0,终端设备在检测PDCCH之前就知道被调度的PDSCH或被调度的PUSCH与PDCCH不在同一个时隙,那么终端设备可以减少不必要的数据缓存,以及放松PDCCH的处理时间,从而可以达到节省功耗的效果。
新无线(new radio,NR)系统中一个下行(downlink,DL)载波上可以配置一个或多个下行部分带宽(bandwidth part,BWP),同样地,一个上行(uplink,UL)载波上可以配置一个或多个上行BWP。在同一时间,一个下行载波内只有一个DL BWP是激活的,一个上行载波内也只有一个UL BWP是激活的。基站和终端设备在激活的DL BWP和UL BWP上进行数据或信号传输。在激活的BWP内,基站可以通过PDCCH向终端设备指示该激活BWP上的最小可用时间单元偏移值。当一个载波上配置了多个BWP,基站还可以通过PDCCH向终端设备指示切换载波内激活的DL BWP或UL BWP。当激活的DL BWP或UL BWP发生切换,如何确定新激活的BWP的初始的最小可用时间单元偏移值,是本申请需要解决的问题。
发明内容
本申请实施例提供了一种最小可用时间单元偏移值的确定方法及设备,以在BWP发生切换时,确定新激活的BWP的最小时隙偏移值,使得终端设备尽量维持原来的PDCCH的处理状态。
第一方面,提供了一种最小可用时间单元偏移值的确定方法,所述方法包括:在第一下行部分带宽上接收第一指示信息;根据所述第一指示信息,将下行激活的部分带宽从所述第一下行部分带宽切换到第二部分带宽,其中所述第二部分带宽为下行部分带宽;或,将上行激活的部分带宽从第三上行部分带宽切换到所述第二部分带宽,其中,所述第二部分带宽为上行部分带宽;以及根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值。在该方面中,在BWP发生切换时,通过根据与切换前激活的BWP关联的第一最小可用时间单元偏移值确定与切换后激活的BWP关联的第二最小可用时间单元偏移值,可以使得终端设备尽量维持原来的PDCCH的处理状态,使 得终端设备功耗节省的效果相当。
其中,第一最小可用时间单元偏移值或第二最小可用时间单元偏移值,指PDCCH与PDSCH或PUSCH之间可用的时间单元偏移值的最小值。
在一个实现中,所述与所述第一下行部分带宽关联的第一最小可用时间单元偏移值为:所述第一下行部分带宽的最小可用时间单元偏移值,或者根据所述第一下行部分带宽的最小可用时间单元偏移值、所述第一下行部分带宽的子载波间隔和所述第二部分带宽的子载波间隔确定的最小可用时间单元偏移值;所述与所述第三上行部分带宽关联的第一最小可用时间单元偏移值为:所述第三上行部分带宽的最小可用时间单元偏移值,或者根据所述第三上行部分带宽的最小可用时间单元偏移值、所述第三上行部分带宽的子载波间隔和所述第二部分带宽的子载波间隔确定的最小可用时间单元偏移值。在该实现中,与第一下行部分带宽/第三上行部分带宽关联的第一最小可用时间单元偏移值可以是PDCCH指示的第一下行部分带宽/第三上行部分带宽的最小可用时间单元偏移值,也可以是根据第一下行部分带宽/第三上行部分带宽的最小可用时间单元偏移值、第一下行部分带宽/第三上行部分带宽的子载波间隔和第二部分带宽的子载波间隔确定的最小可用时间单元偏移。可以根据上述两种情形确定的与第一下行部分带宽/第三上行部分带宽关联的第一最小可用时间单元偏移值,来确定第二最小可用时间单元偏移值。
在又一个实现中,所述方法还包括:获取所述第一下行部分带宽的一个或多个第一时间单元偏移值以及所述第二部分带宽的一个或多个第二时间单元偏移值;或获取所述第三上行部分带宽的一个或多个第一时间单元偏移值以及所述第二部分带宽的一个或多个第二时间单元偏移值。在该实现中,终端设备可以与网络设备预先定义或者接收网络设备配置的上述一个或多个第一时间单元偏移值和一个或多个第二时间单元偏移值,第一最小可用时间单元偏移值为上述一个或多个第一时间单元偏移值中的一个值,第二最小可用时间单元偏移值为上述一个或多个第二时间单元偏移值中的一个值。
在又一个实现中,所述根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值,包括:当所述一个或多个第二时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或在所述一个或多个第二时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值;或在所述一个或多个第二时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值。在该实现中,选取与第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为第二最小可用时间单元偏移值,以使得终端设备尽量维持原来的PDCCH的处理状态。
在又一个实现中,所述根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值,包括:在所述一个或多个第二时间单元偏移值中,选取与所述第一最小可用时间单元偏移值的差值最小的一个或多个第二时间单元偏移值; 在选取的所述一个或多个第二时间单元偏移值中确定所述第二最小可用时间单元偏移值。在该实现中,选取与第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为第二最小可用时间单元偏移值,以使得终端设备尽量维持原来的PDCCH的处理状态。
在又一个实现中,所述根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值,包括:当所有的第二时间单元偏移值均小于所述第一最小可用时间单元偏移值时,选取所述一个或多个第二时间单元偏移值中最大的值作为所述第二最小可用时间单元偏移值。在该实现中,选取与第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为第二最小可用时间单元偏移值,以使得终端设备尽量维持原来的PDCCH的处理状态。
在又一个实现中,所述方法还包括:获取所述第二部分带宽的一个或多个候选第二最小可用时间单元偏移值;所述根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值,包括:当所述一个或多个候选第二最小可用时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或在所述一个或多个候选第二最小可用时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或在所述一个或多个候选第二最小可用时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值。在该实现中,终端设备可以与网络设备预先定义或接收网络设备配置的一个或多个候选第二最小可用时间单元偏移值,从这一个或多个候选第二最小可用时间单元偏移值中选取第二最小可用时间单元偏移值。
在又一个实现中,所述方法还包括:当下行激活的部分带宽从所述第一下行部分带宽切换到所述第二部分带宽后,在所述第二部分带宽上接收第二指示信息;或当上行激活的部分带宽从所述第三上行部分带宽切换到所述第二部分带宽后,在所述第一下行部分带宽上接收所述第二指示信息;以及根据所述第二指示信息调整所述第二最小可用时间单元偏移值。在该实现中,终端设备可以根据网络设备的指示信息,调整第二最小可用时间单元偏移值。
在又一个实现中,所述时间单元的单位包括:无线帧,子帧,时隙,迷你时隙,正交频分复用OFDM符号,微秒,或毫秒。
第二方面,提供了一种最小可用时间单元偏移值的确定方法,所述方法包括:在第一下行部分带宽上发送第一指示信息,所述第一指示信息包括第二部分带宽的指示信息;将下行激活的部分带宽从所述第一下行部分带宽切换到所述第二部分带宽,其中所述第二部分带宽为下行部分带宽;或,将上行激活的部分带宽从第三上行部分带宽切换到所述第二部分带宽,其中,所述第二部分带宽为上行部分带宽;以及根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间 单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值。
在一个实现中,所述与所述第一下行部分带宽关联的第一最小可用时间单元偏移值为:所述第一下行部分带宽的最小可用时间单元偏移值,或者根据所述第一下行部分带宽的最小可用时间单元偏移值、所述第一下行部分带宽的子载波间隔和所述第二部分带宽的子载波间隔确定的最小可用时间单元偏移值;所述与所述第三上行部分带宽关联的第一最小可用时间单元偏移值为:所述第三上行部分带宽的最小可用时间单元偏移值,或者根据所述第三上行部分带宽的最小可用时间单元偏移值、所述第三上行部分带宽的子载波间隔和所述第二部分带宽的子载波间隔确定的最小可用时间单元偏移值。
在又一个实现中,所述方法还包括:确定所述第一下行部分带宽的一个或多个第一时间单元偏移值以及所述第二部分带宽的一个或多个第二时间单元偏移值;或确定所述第三上行部分带宽的一个或多个第一时间单元偏移值以及所述一个或多个第二时间单元偏移值。
在又一个实现中,所述根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值,包括:当所述一个或多个第二时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或在所述一个或多个第二时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值;或在所述一个或多个第二时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值。
在又一个实现中,所述根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值,包括:在所述一个或多个第二时间单元偏移值中,选取与所述第一最小可用时间单元偏移值的差值最小的一个或多个第二时间单元偏移值;在选取的所述一个或多个第二时间单元偏移值中确定所述第二最小可用时间单元偏移值。
在又一个实现中,所述根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值,包括:当所有的第二时间单元偏移值均小于所述第一最小可用时间单元偏移值时,选取所述一个或多个第二时间单元偏移值中最大的值作为所述第二最小可用时间单元偏移值。
在又一个实现中,所述方法还包括:确定所述第二部分带宽的一个或多个候选第二最小可用时间单元偏移值;所述根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值,包括:当所述一个或多个候选第二最小可用时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或在所述一个或多个候选第二最小可用时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单 元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或在所述一个或多个候选第二最小可用时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值。
在又一个实现中,所述方法还包括:当下行激活的部分带宽从所述第一下行部分带宽切换到所述第二部分带宽后,在所述第二部分带宽上发送第二指示信息;或当上行激活的部分带宽从所述第三上行部分带宽切换到所述第二部分带宽后,在所述第一下行部分带宽上发送所述第二指示信息,其中,所述第二指示信息用于指示调整所述第二最小可用时间单元偏移值。
在又一个实现中,所述时间单元的单位包括:无线帧,子帧,时隙,迷你时隙,正交频分复用OFDM符号,微秒,或毫秒。
第三方面,提供了一种终端设备,可以实现上述第一方面或任一实现的通信方法。例如所述终端设备可以是芯片(如基带芯片,或通信芯片等)。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述终端设备的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和/或数据。可选的,所述终端设备还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述终端设备,可以包括执行上述方法中相应功能或动作的单元模块。
在又一种可能的实现方式中,包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现上述方法。示例性的,所述收发装置可以为收发器、收发电路或输入输出接口。当所述终端设备为芯片时,所述收发装置为收发电路或输入输出接口。
当所述终端设备为芯片时,发送单元可以是输出单元,比如输出电路或者通信接口;接收单元可以是输入单元,比如输入电路或者通信接口。当所述终端设备为网络设备时,发送单元可以是发射器或发射机;接收单元可以是接收器或接收机。
第四方面,提供了一种网络设备,可以实现上述第二方面或任一实现的通信方法。例如所述网络设备可以是芯片(如基带芯片,或通信芯片等),可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述网络设备的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和数据。可选的,所述网络设备还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述网络设备,可以包括执行上述方法中的相应动作的单元模块。
在又一种可能的实现方式中,包括处理器和收发装置,所述处理器与所述收发装置耦 合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现上述方法。示例性的,所述收发装置可以为收发器、收发电路或输入输出接口。当所述网络设备为芯片时,所述收发装置为收发电路或输入输出接口。
当所述网络设备为芯片时,接收单元可以是输入单元,比如输入电路或者通信接口;发送单元可以是输出单元,比如输出电路或者通信接口。当所述网络设备为终端设备时,接收单元可以是接收器(也可以称为接收机);发送单元可以是发射器(也可以称为发射机)。
可以理解的是,本申请实施例中,网络设备中负责输入和输出的硬件部分可以集成在一起。
第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第六方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第七方面,提供一种通信系统,包括前述的任一网络设备,和/或,任一终端设备。
附图说明
图1为同时隙调度和跨时隙调度的示意图;
图2为本申请涉及的一种通信系统的示意图;
图3为本申请实施例提供的一种最小可用时间单元偏移值的确定方法的流程示意图;
图4为BWP动态切换示意图;
图5为不同子载波间隔对应的时间单元关系示意图;
图6为本申请实施例提供的又一种最小可用时间单元偏移值的确定方法的流程示意图;
图7为本申请实施例提供的又一种最小可用时间单元偏移值的确定方法的流程示意图;
图8为本申请实施例提供的一种终端设备的结构示意图;
图9为本申请实施例提供的一种网络设备的结构示意图;
图10为本申请实施例提供的又一种终端设备的结构示意图;
图11为本申请实施例提供的又一种网络设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请涉及的几个概念:
时间单元
时间单元的单位包括:无线帧,子帧,时隙,迷你时隙,正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,微秒,或毫秒。当BWP的子载波间隔不同时,时隙,迷你时隙,OFDM符号的时间长度不同。
时间单元偏移值
对于下行调度而言,时间单元偏移值是指PDCCH与被调度的PDSCH之间的时间偏移值。以时间单元是时隙为例,时隙偏移值是指PDCCH与被调度的PDSCH之间的时隙偏移值,记为K0,K0=0表示PDCCH与被调度的PDSCH在同一个时隙。K0﹥0表示PDCCH与被调度的PDSCH不在同一个时隙。如图1所示的同时隙调度和跨时隙调度的示意图,在图1的左侧图所示,K0=0,为同时隙调度,终端设备在时隙i检测到PDCCH,并接收PDSCH;如图1的右侧图所示,K0=1,为跨时隙调度,终端设备在时隙i检测到PDCCH,在时隙i+1接收该PDCCH调度的PDSCH。网络设备通过PDCCH调度PDSCH时,PDCCH承载的控制信息包括PDSCH的时隙偏移值以及PDSCH在时隙内的起始符号和长度。
对于上行调度而言,时间单元偏移值是指PDCCH与被调度的PUSCH之间的时间偏移值。以时间单元是时隙为例,时隙偏移值是指PDCCH与被调度的PUSCH之间的时隙偏移值,记为K2,K2=0表示PDCCH与被调度PUSCH在同一个时隙。K2﹥0,表示PDCCH与被调度PUSCH不在同一个时隙。网络设备通过PDCCH调度PUSCH时,PDCCH承载的控制信息包括PUSCH的时隙偏移值以及PUSCH在时隙内的起始符号和长度。
时域资源分配列表(time domain resource allocation list)
网络设备可以通过无线资源控制(radio resource control,RRC)信令向终端设备配置PDSCH的时域资源分配列表和PUSCH的时域资源分配列表,网络设备和终端设备之间也可以预定义时域资源分配列表。时域资源分配列表也可以称作时域资源分配集合。PDSCH的时域资源分配列表包含了K0的集合,以及PDSCH在一个时隙内的起始符号和长度的集合;PUSCH的时域资源分配列表包含了K2的集合,以及PUSCH在一个时隙内的起始符号和长度的集合。网络设备通过PDCCH调度PDSCH或PUSCH时,在时域资源分配集合选择其中一个时隙偏移值以及时隙内的起始符号和长度。
K0集合中的K0取值可以大于或等于0,值的个数可以有一个或多个。例如,时隙偏移值K0可以配置为{0,1,2,3,4,5,6}。同样地,K2集合中的K2取值也可以大于或等于0,值的个数可以有一个或多个。
最小可用时间单元偏移值
对于下行调度而言,最小可用时间单元偏移值是指:网络设备通过PDCCH调度PDSCH时,PDCCH与被调度的PDSCH之间的时间单元偏移值中可用的最小值,PDCCH与被调度的PDSCH之间的时间单元偏移值不会小于最小可用时间单元偏移值。以时间单元是时隙为例,最小可用时隙偏移值是指PDCCH与被调度的PDSCH之间的时隙偏移值中可用的最小值,记为最小时隙偏移值minimum K0。
对于上行调度而言,最小可用时间单元偏移值是指:网络设备通过PDCCH调度PUSCH时,PDCCH与被调度的PUSCH之间的时间单元偏移值中可用的最小值,PDCCH与被调度的PUSCH之间的时间单元偏移值不会小于最小可用时间单元偏移值。以时间单元是时隙为例,最小可用时隙偏移值是指PDCCH与被调度的PUSCH之间的时隙偏移值中可用的最小值,记为最小时隙偏移值minimum K2。
以PDSCH为例,K0的集合为{0,1,2,3,4,5,6},minimum K0=2,那么网络设备通过PDCCH调度PDSCH时,PDCCH指示的K0不能小于2,只能为{2,3,4,5,6}中的一个值。
在下行激活的BWP上,网络设备可以通过PDCCH向终端设备指示用于该下行激活的 BWP或上行激活的BWP上后续调度的最小可用时间单元偏移值。
在激活的BWP不发生切换的情况下,网络设备可以通过两个下行控制信息(downlink control information,DCI)分别指示minimum K0和minimum K2。网络设备也可以通过同一个DCI联合指示minimum K0和minimum K2,也就是说只要minimum K0或minimum K2发生改变,minimum K2或minimum K0会相应改变,网络侧不需要发送两次指令分别调整minimum K0和minimum K2。minimum K0和minimum K2联合指示的方式主要有两种:
a)方式1:minimum K0和minimum K2以组合的形式定义或配置,即,组合1{minimum K0_1,minimum K2_1},组合2{minimum K0_2,minimum K2_2},……。例如,组合1为{0,1},组合2为{1,2}。当minimum K0被指示为minimum K0_1,那么minimum K2就自动调整为minimum K2_1,反之亦然。
b)方式2:minimum K2等于minimum K0加上一个偏置(delta),delta可以是预定义或者配置的值。当minimum K0被指示为minimum K0_1,那么minimum K2就默认调整为minimum K0_1+delta。反之,当minimum K2被指示为minimum K2_1,那么minimum K0就默认调整为minimum K2_1–delta。
在频分双工(frequency division duplexing,FDD)系统中,下行激活的BWP发生切换,上行激活的BWP并不一定会同时发生切换,反之亦然。因此,在本发明实施例中,当DL BWP切换导致的minimum K0发生变化,但是UL BWP没有发生切换,UL BWP的minimum K2可以保持不变,反之亦然。
图2给出了本申请涉及的一种通信系统的示意图。该通信系统可以包括至少一个网络设备100(仅示出1个)以及与网络设备100连接的一个或多个终端设备200。
网络设备100可以是能和终端设备200通信的设备。网络设备100可以是任意一种具有无线收发功能的设备。包括但不限于:基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点等。网络设备100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备100还可以是小站,传输节点(transmission reference point,TRP)等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
终端设备200是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,如飞机、气球和卫星上等。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、接入终端设备、UE单元、移动 站、移动台、远方站、远程终端设备、移动设备、终端(terminal)、无线通信设备、UE代理或UE装置等。
需要说明的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
请参阅图3,图3为本申请实施例提供的一种最小可用时间单元偏移值的确定方法的流程示意图,应用于下行传输过程中。本实施例中时间单元均以时隙为例,对应的,时间单元偏移值为时隙偏移值,最小可用时间单元偏移值为最小可用时隙偏移值。示例性地,该方法可以包括以下步骤:
S101、网络设备发送第一下行部分带宽的一个或多个第一时间单元偏移值以及第二部分带宽的一个或多个第二时间单元偏移值。第二部分带宽为下行部分带宽。
相应地,终端设备接收所述第一下行部分带宽的一个或多个第一时间单元偏移值以及所述第二部分带宽的一个或多个第二时间单元偏移值。
在一个载波上配置了多个DL BWP时,每个BWP上的时域资源分配列表是独立配置的。对于第一下行部分带宽,时域资源分配列表包括PDCCH与被调度的PDSCH之间的一个或多个第一时隙偏移值(简称“第一时隙偏移值集合”),以及PDSCH在时隙内的起始符号和长度的集合。对于第二部分带宽,时域资源分配列表包括PDCCH与被调度的PDSCH之间的一个或多个第二时隙偏移值(简称“第二时间单元偏移值集合”),以及PDSCH在时隙内的起始符号和长度的集合。
具体地,假设一个载波上有2个DL BWP,第一下行部分带宽为BWP1,第二部分带宽为BWP2。BWP1的K0集合和BWP2的K0集合是独立配置的。例如,BWP1的K0集合为{0,1,2,3,4,5,6},BWP2的K0集合为{0,2,4,6,8}。
网络设备可以通过RRC信令发送上述BWP的K0集合给终端设备。
可选的,网络设备和终端设备之间还可以预定义上述BWP的时隙偏移值集合。
S102、网络设备在第一下行部分带宽上发送第一指示信息,所述第一指示信息包括第二部分带宽的指示信息。
相应地,终端设备在第一下行部分带宽上接收第一指示信息。
网络设备可以为每个载波配置多个DL BWP。在一个载波内,同一时间只有一个DL BWP处于激活状态。例如,当前激活的BWP为BWP1,则终端设备在BWP1上监听PDCCH,网络设备通过BWP1向终端设备发送PDCCH。在本实施例中,第一指示信息包括下行激活的部分带宽切换的指示信息。
上述第一指示信息可以是DCI。网络设备在BWP1上发送PDCCH,PDCCH上承载的DCI指示了BWP标识以及PDSCH的调度信息,PDSCH的调度信息包括时隙偏移值K0以及PDSCH的频域资源分配信息。如果DCI指示的BWP标识是BWP1,表示激活的BWP没有发生切换;如果DCI指示的BWP标识是BWP2,表示激活的BWP发生了切换。
S103、终端设备根据所述第一指示信息,将下行激活的部分带宽从所述第一下行部分 带宽切换到第二部分带宽。
相应的,网络设备发送第一指示信息后,则将下行激活的部分带宽从第一下行部分带宽切换到第二部分带宽,其中,第二部分带宽为下行部分带宽。终端设备解析第一指示信息,获取第二部分带宽的指示信息,第一指示信息指示了下行激活的部分带宽的切换,将下行激活的部分带宽从第一下行部分带宽切换到第二部分带宽。例如,当前下行激活的BWP为BWP1,网络设备在BWP1上发送第一指示信息,第一指示信息包括BPW2的标识,BWP2为下行部分带宽,下行激活BWP从BWP1切换到BWP2,BWP2激活以后,终端设备将会在BWP2上接收下行信息,网络设备在BWP2上发送下行信息。
如图4所示的BWP动态切换示意图,基站配置了两个BWP,BWP1处于激活状态,终端设备在BWP1上监听PDCCH,在第二个时隙检测到PDCCH的部分带宽指示(BWP indicator)域指示了BWP2,那么终端设备就会切换到BWP2,即激活的BWP从BWP1切换到BWP2。BWP2激活以后,终端设备在BWP2上监听PDCCH。
可选的,步骤102和步骤103也可以替换为网络设备和终端设备通过定时器或计时器从第一下行部分带宽切换到第二部分带宽。具体的,网络设备可以配置一个定时器或计时器,当定时器或计时器超时/结束,网络设备和终端设备将从第一下行部分带宽切换到第二部分带宽。
S104、网络设备、终端设备分别根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值。
激活的BWP发生切换时,为了使得终端设备尽量维持原来的处理状态,例如尽量维持PDCCH的时钟频率和电压不变,使得功耗节省的效果相当,应该使得第二部分带宽的第二最小可用时间单元偏移值和与第一下行部分带宽关联的第一最小可用时间单元偏移值尽量接近。
在一个实现中,与第一下行部分带宽关联的第一最小可用时间单元偏移值为:第一下行部分带宽的最小可用时间单元偏移值。该第一下行部分带宽的最小可用时间单元偏移值为第一下行部分带宽上最近生效的最小可用时间单元偏移值,其中,在第一下行部分带宽处于激活状态时,网络设备可以通过DCI动态指示第一下行部分带宽的最小可用时间单元偏移值,具体DCI指示方式本发明不限制。
例如,网络设备可以在DCI中增加新的比特域指示第一下行部分带宽的最小可用时间单元偏移值的取值或索引。
再例如,网络设备还可以利用现有的比特域重解释为第一下行部分带宽的最小可用时间单元偏移值。例如,当PDCCH的频域资源分配域的比特全为零时,根据PDCCH的时域资源分配域的比特指示上述第一下行部分带宽的最小可用时间单元偏移值。
在另一个实现中,如果切换后激活的BWP和原BWP(切换前激活的BWP)的子载波间隔不同,则与第一下行部分带宽关联的第一最小可用时间单元偏移值为:根据第一下行部分带宽的最小可用时间单元偏移值、第一下行部分带宽的子载波间隔和第二部分带宽的子载波间隔确定的最小可用时间单元偏移值。
具体地,按照子载波间隔大小的比例折算后确定第二最小可用时间单元偏移值。比如,BWP的子载波间隔大小表示为15*2 μkHz,μ=0,1,2,3,4,可以认为15kHz是基线子载波间隔,μ是子载波间隔的比例因子。与第一下行部分带宽(BWP1)关联的第一最小可用时间 单元偏移值为按照BWP1和BWP2的子载波间隔大小的比例折算后的值:
Figure PCTCN2019101209-appb-000001
其中,μ_bwp1为BWP1的子载波间隔的比例因子,μ_bwp2为BWP2的子载波间隔的比例因子,BWP1minimumK0为BWP1最近生效的最小可用时隙偏移值。第二最小可用时间单元偏移值定义为BWP2的第二时间单元偏移值集合中的一个值,第二最小可用时间单元偏移值为根据
Figure PCTCN2019101209-appb-000002
确定的一个值。所述第二最小可用时间单元偏移值作为第二部分带宽的初始的最小时间单元偏移值。
这是因为子载波间隔越大,一个OFDM符号的时间长度越短,一个时隙长度也越短。为了方便理解,参见图5的示意图,其中每个灰色填充的格子表示相应子载波间隔的一个OFDM符号。
因此,在本实施例中,BWP发生切换,激活BWP(BWP2)和原BWP(BWP1)的子载波间隔可能不同。例如BWP2的子载波间隔为30KHz,即μ=1;BWP1的子载波间隔为15KHz,即μ=0,假设BWP1的minimum K0=1,那么按照子载波间隔大小的比例折算后的值为
Figure PCTCN2019101209-appb-000003
然后在BWP2的K0集合中找最接近2的值作为BWP2的minimum K0。
这样,在确定了第二最小可用时间单元偏移值之后,当在第二部分带宽上进行下行数据传输时,网络设备通过PDCCH向终端设备调度PDSCH,PDCCH指示第二部分带宽的一个或多个第二时间单元偏移值中的一个第二时间单元偏移值,该第二时间单元偏移值应该大于或等于上述第二最小可用时间单元偏移值。对应的,终端设备周期性地监听PDCCH。当该第二最小可用时间单元偏移值大于0时,终端设备只需要检测PDCCH,不需要缓存本时间单元内可能的PDSCH,从而节省终端设备的功耗。如果终端设备检测到PDCCH调度了PDSCH,则终端设备在PDCCH指示的第二时间单元偏移值对应的时间位置接收PDSCH。
具体地,S104包括以下实现方式A~实现方式D:
实现方式A、当所述一个或多个第二时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值。
例如,如果BWP2的K0集合有BWP1的minimum K0的取值,那么BWP2的第二最小可用时间单元偏移值就等于BWP1的minimum K0。
实现方式B、在所述一个或多个第二时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值。其中,上述两者之间的差值是指两者之间的差值的绝对值。
例如,如果BWP2的K0集合中没有BWP1的minimum K0的取值,那么BWP2的第二最小可用时隙偏移值为BWP2的K0集合中大于BWP1的minimum K0并且与BWP1的minimum K0的差值最小的K0值。
例如,BWP1的K0集合为{0,1,2,3,4,5,6},BWP2的K0集合为{0,2,4,6,8},BWP1的minimum K0=1,那么BWP2的第二最小可用时间单元偏移值等于2。
另外,作为方式B的一种特例,如果第二部分带宽的一个或多个第二时间单元偏移值 都小于所述第一最小可用时间单元偏移值,则将一个或多个第二时间单元偏移值中的最大值作为所述第二最小可用时间单元偏移值。
实现方式C、在所述一个或多个第二时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值。其中,上述两者之间的差值是指两者之间的差值的绝对值。
例如,如果BWP2的K0集合中没有BWP1的minimum K0的取值,那么BWP2的第二最小可用时间单元偏移值为BWP2的K0集合中小于BWP1的minimum K0并且与BWP1的minimum K0的差值最小的K0值。
例如,BWP1的K0集合为{0,1,2,3,4,5,6},BWP2的K0集合为{0,4,6,8},BWP1的minimum K0=1,那么BWP2的第二最小可用时间单元偏移值等于0。
实现方式D、在所述一个或多个第二时间单元偏移值中,选取与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值。其中,上述两者之间的差值是指两者之间的差值的绝对值。
在该实现中,与第一最小可用时间单元偏移值的差值最小的第二时隙偏移值可能大于第一最小可用时间单元偏移值,也可能小于第一最小可用时间单元偏移值。
例如,如果BWP2的K0集合中没有BWP1的minimum K0的取值,那么BWP2的第二最小可用时间单元偏移值为BWP2的K0集合中与BWP1的minimum K0的差值最小的K0值。
例如,BWP1的K0集合为{0,1,2,3,4,5,6},BWP2的K0集合为{0,4,6,8},BWP1的minimum K0=1,那么BWP2的第二最小可用时间单元偏移值等于0。BWP1的minimum K0=3,那么BWP2的第二最小可用时间单元偏移值等于4。
作为方式D的一个特例,在所述一个或多个第二时间单元偏移值中,第二时间单元偏移值x、第二时间单元偏移值y均与第一最小可用时间单元偏移值的差值最小并且差值相等,其中x大于第一最小可用时间单元偏移值,y小于第一最小可用时间单元偏移值,那么可以由以下选取方式中的一种确定第二最小可用时间单元偏移值:方式1:取第二时间单元偏移值x;方式2:取第二时间单元偏移值y。网络设备和终端设备之间可以预定义采用方式1或者方式2。
例如,BWP1的K0集合为{0,1,2,3,4,5,6},BWP2的K0集合为{0,4,6,8},BWP1的minimum K0=2,BWP2的K0=0与2的差值和K0=4与2的差值相等。根据上述方式1,则BWP2的第二最小可用时间单元偏移值等于4;根据上述方式2,则BWP2的第二最小可用时间单元偏移值等于0。
步骤S103和步骤S104可以不区分先后,例如,可以同时进行。
根据本申请实施例提供的一种最小可用时间单元偏移值的确定方法,在BWP发生切换时,通过根据与切换前的BWP关联的第一最小可用时间单元偏移值确定切换后的BWP的第二最小可用时间单元偏移值。当所述第二部分带宽的一个或多个第二时间单元偏移值中不包括第一下行部分带宽的第一最小可用时间单元偏移值时,根据上述规则确定第二部分带宽的第二最小可用时间单元偏移值,可以使得终端设备尽量维持原来的PDCCH的处理 状态,使得终端设备功耗节省的效果相当。
请参阅图6,图6为本申请实施例提供的一种最小可用时间单元偏移值的确定方法的流程示意图,应用于上行传输过程中。本实施例中时间单元均以时隙为例,对应的,时间单元偏移值为时隙偏移值,最小可用时间单元偏移值为最小可用时隙偏移值。示意性地,该方法可以包括以下步骤:
S201、网络设备发送第三上行部分带宽的一个或多个第一时间单元偏移值以及第二部分带宽的一个或多个第二时间单元偏移值。第二部分带宽为上行部分带宽。
相应地,终端设备接收所述第三上行部分带宽的一个或多个第一时间单元偏移值以及所述第二部分带宽的一个或多个第二时间单元偏移值。
在一个载波上配置了多个UL BWP时,每个BWP上的时域资源分配列表是独立配置的。对于第三上行部分带宽,时域资源分配列表包括PDCCH与被调度的PUSCH之间的一个或多个第一时隙偏移值,以及PUSCH在时隙内的起始符号和长度的集合。对于第二部分带宽,时域资源分配列表包括PDCCH与被调度的PUSCH之间的一个或多个第二时隙偏移值,以及PUSCH在时隙内的起始符号和长度的集合。
具体地,假设一个载波上有2个UL BWP,第三上行部分带宽为BWP3,第二部分带宽为BWP2。BWP3的K2集合和BWP2的K2集合是独立配置的。例如,BWP3的K2集合为{0,1,2,3,4,5,6},BWP2的K2集合为{0,2,4,6,8}。
网络设备可以通过RRC信令向终端设备发送上述BWP的K2集合。
可选的,网络设备和终端设备之间还可以预定义上述BWP的时隙偏移值集合。
S202、网络设备在第一下行部分带宽上发送第一指示信息,所述第一指示信息包括第二部分带宽的指示信息。
相应地,终端设备在第一下行部分带宽上接收第一指示信息。
网络设备可以为一个上行载波配置多个UL BWP。在一个载波内,同一时间只有一个UL BWP处于激活状态。例如,当前UL激活的BWP为BWP3,则终端设备在BWP1上监听PDCCH,终端设备在BWP3上向网络设备发送上行数据。在本实施例中,第一指示信息包括上行集合的部分带宽切换的指示信息。
上述第一指示信息可以是DCI。网络设备在BWP1上发送PDCCH,PDCCH上承载的DCI指示了BWP标识以及PUSCH的调度信息,PUSCH的调度信息包括时隙偏移值K2以及PUSCH的频域资源分配信息。如果DCI指示的BWP标识是BWP3,表示上行激活的BWP没有发生切换;如果DCI指示的BWP标识是BWP2,表示上行激活的BWP发生了切换。
需要说明的是,在本实施例中,第一指示信息指示的是上行激活的部分带宽的切换,第二部分带宽表示上行部分带宽。对于上行激活的部分带宽的切换,网络设备也是通过下行激活的部分带宽向终端设备发送上述第一指示信息。
S203、终端设备根据所述第一指示信息,将上行激活的部分带宽从第三上行部分带宽切换到所述第二部分带宽。
相应的,网络设备发送第一指示信息后,第一指示信息指示了上行激活的部分带宽的 切换,则将上行激活的部分带宽从第三上行部分带宽切换到第二部分带宽,其中,第二部分带宽为上行部分带宽。终端设备解析第一指示信息,获取第二部分带宽的指示信息,第一指示信息指示了上行激活的部分带宽的切换,将上行激活的部分带宽从第三上行部分带宽切换到第二部分带宽。例如,当前下行激活的BWP为BWP1,上行激活的BWP为BWP3,网络设备在BWP1上发送第一指示信息,第一指示信息包括BWP2的标识,BWP2为上行部分带宽,则上行激活BWP从BWP3切换到BWP2,BWP2激活以后,终端设备将在BWP2上发送上行信息,网络设备也会在BWP2上接收上行信息。
S204、网络设备、终端设备分别根据与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值。
激活的BWP发生切换时,为了使得终端设备尽量维持原来的处理状态,例如尽量维持PDCCH的时钟频率和电压不变,使得终端设备功耗节省的效果相当,应该使得第二部分带宽的第二最小可用时间单元偏移值和与第三上行部分带宽关联的第一最小可用时间单元偏移值尽量接近。
在一个实现中,与第三上行部分带宽关联的第一最小可用时间单元偏移值为:第三上行部分带宽的最小可用时间单元偏移值。该第三上行部分带宽的最小可用时间单元偏移值为第三上行部分带宽上最近生效的最小可用时间单元偏移值,其中,在第三上行部分带宽处于激活状态时,网络设备可以通过DCI动态指示第三上行部分带宽的最小可用时间单元偏移值,具体DCI指示方式本发明不限制。
例如,网络设备可以在DCI中增加新的比特域指示第三上行部分带宽的最小可用时间单元偏移值的取值或索引。
再例如,网络设备还可以利用现有的比特域重解释为第三上行部分带宽的最小可用时间单元偏移值。例如,当PDCCH的频域资源分配域的比特全为零时,根据PDCCH的时域资源分配域的比特指示上述第三上行部分带宽的最小可用时间单元偏移值。
在另一个实现中,如果切换后激活的BWP和原BWP(切换前激活的BWP)的子载波间隔不同,则与第三上行部分带宽关联的第一最小可用时间单元偏移值为:根据第三上行部分带宽的最小可用时间单元偏移值、第三上行部分带宽的子载波间隔和第二部分带宽的子载波间隔确定的最小可用时间单元偏移值。
具体地,按照子载波间隔大小的比例折算后确定第二最小可用时间单元偏移值。比如,BWP的子载波间隔大小表示为15*2 μkHz,μ=0,1,2,3,4,可以认为15kHz是基线子载波间隔,μ是子载波间隔的比例因子。与第三上行部分带宽(BWP3)关联的第一最小可用时间单元偏移值为按照BWP3和BWP2的子载波间隔大小的比例折算后的值:
Figure PCTCN2019101209-appb-000004
其中,μ_bwp3为BWP3的子载波间隔的比例因子,μ_bwp2为BWP2的子载波间隔的比例因子,BWP3minimumK0为BWP3最近生效的最小可用时隙偏移值。第二最小可用时间单元偏移值定义为BWP2的第二时间单元偏移值集合中的一个值,第二最小可用时间单元偏移值为根据
Figure PCTCN2019101209-appb-000005
确定的一个值。所述第二最小可用时间单元偏移值作为第二部分带宽的初始的最小时间单元偏移值。
这是因为子载波间隔越大,一个OFDM符号的时间长度越短,一个时隙长度也越短。为了方便理解,参见图5的示意图,其中每个灰色填充的格子表示相应子载波间隔的一个 OFDM符号。
因此,在本实施例中,激活的BWP发生切换,新激活的BWP(BWP2)和原BWP(BWP3)的子载波间隔可能不同。例如BWP2的子载波间隔为30KHz,即μ=1;BWP3的子载波间隔为15KHz,即μ=0,假设BWP3的minimum K0=1,那么按照子载波间隔大小的比例折算后的值为
Figure PCTCN2019101209-appb-000006
然后在BWP2的K0集合中找最接近2的值作为BWP2的minimum K0。
确定第二最小可用时间单元偏移值的具体的实现方式可参考上述实施例的实现方式A~D。
步骤203和步骤204可以不区分先后,例如,可以同时进行。
根据本申请实施例提供的一种最小可用时间单元偏移值的确定方法,在激活的BWP发生切换时,通过根据与切换前的BWP关联的第一最小可用时间单元偏移值确定切换后的BWP的第二最小可用时间单元偏移值。当所述第二部分带宽的一个或多个第二时间单元偏移值中不包括与第三上行部分带宽关联的第一最小可用时间单元偏移值时,根据上述规则确定第二部分带宽的第二最小可用时间单元偏移值,可以使得终端设备尽量维持原来的PDCCH的处理状态,使得终端设备功耗节省的效果相当。
请参阅图7,图7为本申请实施例提供的又一种最小可用时间单元偏移值的确定方法的流程示意图。该实施例以下行传输为例进行描述,本实施例同样适用于上行传输,上行传输的过程可参考本实施例和图6所示的实施例得到。示意性地,该方法可以包括以下步骤:
S301、网络设备发送第一下行部分带宽的一个或多个第一时间单元偏移值以及第二部分带宽的一个或多个第二时间单元偏移值。第二部分带宽为下行部分带宽。
相应地,终端设备接收所述第一下行部分带宽的一个或多个第一时间单元偏移值以及所述第二部分带宽的一个或多个第二时间单元偏移值。
该步骤的具体实现可参考图3所示实施例中的步骤S101或图6所示实施例的步骤S201。
S302、网络设备发送所述第二部分带宽的一个或多个候选第二最小可用时间单元偏移值。
相应地,终端设备接收所述第二部分带宽的一个或多个候选第二最小可用时间单元偏移值。
与前述实施例不同的是,在本实施例中,终端设备还获取第二部分带宽的一个或多个候选第二最小可用时间单元偏移值(简称“候选第二最小可用时间单元偏移值集合”)。在切换BWP后,网络设备/终端设备从该候选第二最小可用时间单元偏移值集合中选取第二最小可用时间单元偏移值。
网络设备可以通过RRC信令向终端设备发送上述候选第二最小可用时间单元偏移值集合。
可选的,网络设备和终端设备之间还可以预定义上述候选第二最小可用时间单元偏移值集合。
候选第二最小可用时间单元偏移值集合可以是一个或多个第二时间单元偏移值的子集,一个或多个第二时间单元偏移值包括候选第二最小可用时间单元偏移值集合中的候选第二最小可用时间单元偏移值。
需要说明的是,S301、S302的执行顺序不分先后。
S303、网络设备在第一下行部分带宽上发送第一指示信息,所述第一指示信息包括第二部分带宽的指示信息。
相应地,终端设备在第一下行部分带宽上接收第一指示信息。
该步骤的具体实现可参考图3所示实施例的步骤S102或图6所示实施例的步骤S202。
S304、网络设备、终端设备分别根据所述第一指示信息,将下行激活的部分带宽从所述第一下行部分带宽切换到第二部分带宽,其中所述第二部分带宽为下行部分带宽。
该步骤的具体实现可参考图3所示实施例的步骤S103或图6所示实施例的步骤S203。
S305、根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值。
第一最小可用时间单元偏移值可参考图3所示实施例的步骤S104或图6所示实施例的步骤S204。
具体地,S305包括以下实现方式E~H:
实现方式E、当所述一个或多个候选第二最小可用时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值。
实现方式F、在所述一个或多个候选第二最小可用时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值。
实现方式G、在所述一个或多个候选第二最小可用时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值。
实现方式H、在所述一个或多个候选第二最小可用时间单元偏移值中,选取与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值。
上述实现方式E~H的具体实现可分别参考图3所示实施例中的实现方式A~D,所不同的是,所确定的第二最小可用时间单元偏移值为候选第二最小可用时间单元偏移值集合中的一个值。
步骤304和步骤305可以不区分先后,例如,可以同时进行。
S306、当下行激活的部分带宽从所述第一下行部分带宽切换到所述第二部分带宽后,网络设备在所述第二部分带宽上发送第二指示信息。
相应地,终端设备接收上述第二指示信息。
根据上述步骤确定的第二最小可用时间单元偏移值作为切换后激活的第二部分带宽的初始的第二最小可用时间单元偏移值。针对数据传输的需要,该第二最小可用时间单元偏移值是可以调整或更新的。具体地,网络设备在第二部分带宽上发送第二指示信息,该第 二指示信息包括调整的第二最小可用时间单元偏移值。具体地,网络设备可以通过PDCCH指示激活BWP上更新的第二最小可用时间单元偏移值。
S307、网络设备、终端设备分别根据所述第二指示信息调整所述第二最小可用时间单元偏移值。
根据本申请实施例提供的一种最小可用时间单元偏移值的确定方法,在BWP发生切换时,通过根据与切换前激活的BWP关联的第一最小可用时间单元偏移值确定与切换后集合的BWP关联的第二最小可用时间单元偏移值,当第二部分带宽的一个或多个候选第二最小可用时间单元偏移值中不包括与第一下行部分带宽关联的第一最小可用时间单元偏移值或者第二部分带宽的一个或多个候选第二最小可用时间单元偏移值中不包括与第三上行部分带宽关联的第一最小可用时间单元偏移值时,根据上述规则确定第二部分带宽的第二最小可用时间单元偏移值,可以使得终端设备尽量维持原来的PDCCH的处理状态,使得终端设备节省功耗的效果相当。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
基于上述实施例中的最小可用时间单元偏移值的确定方法的同一构思,如图8所示,本申请实施例还提供了一种终端设备1000,该终端设备1000可应用于上述图4、图6、图7所示的方法中。该终端设备1000可以是如图3所示的终端设备,也可以是应用于该终端设备的一个部件(例如芯片)。该终端设备1000包括:收发单元11和处理单元12。
示例性的,在一个实施例中,收发单元11,用于在第一下行部分带宽上接收第一指示信息;
处理单元12,用于根据所述第一指示信息,将下行激活的部分带宽从所述第一下行部分带宽切换到第二部分带宽,其中所述第二部分带宽为下行部分带宽;或,将上行激活的部分带宽从第三上行部分带宽切换到所述第二部分带宽,其中,所述第二部分带宽为上行部分带宽;
所述处理单元12,还用于根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值。
在一个实现中,所述与所述第一下行部分带宽关联的第一最小可用时间单元偏移值为:
所述第一下行部分带宽的最小可用时间单元偏移值,或者
根据所述第一下行部分带宽的最小可用时间单元偏移值、所述第一下行部分带宽的子载波间隔和所述第二部分带宽的子载波间隔确定的最小可用时间单元偏移值;
所述与所述第三上行部分带宽关联的第一最小可用时间单元偏移值为:
所述第三上行部分带宽的最小可用时间单元偏移值,或者
根据所述第三上行部分带宽的最小可用时间单元偏移值、所述第三上行部分带宽的子载波间隔和所述第二部分带宽的子载波间隔确定的最小可用时间单元偏移值。
在又一个实现中,所述处理单元12,还用于:
获取所述第一下行部分带宽的一个或多个第一时间单元偏移值以及所述第二部分带宽的一个或多个第二时间单元偏移值;或
获取所述第三上行部分带宽的一个或多个第一时间单元偏移值以及所述第二部分带宽的一个或多个第二时间单元偏移值。
在又一个实现中,所述处理单元12,用于:
当所述一个或多个第二时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
在所述一个或多个第二时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值;或
在所述一个或多个第二时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值。
在又一个实现中,所述处理单元12,用于:
获取所述第二部分带宽的一个或多个候选第二最小可用时间单元偏移值;
当所述一个或多个候选第二最小可用时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
在所述一个或多个候选第二最小可用时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
在所述一个或多个候选第二最小可用时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值。
在又一个实现中,所述收发单元11,还用于当下行激活的部分带宽从所述第一下行部分带宽切换到所述第二部分带宽后,在所述第二部分带宽上接收第二指示信息;或当上行激活的部分带宽从所述第三上行部分带宽切换到所述第二部分带宽后,在所述第一下行部分带宽上接收所述第二指示信息;
所述处理单元12,还用于根据所述第二指示信息调整所述第二最小可用时间单元偏移值。
在又一个实现中,所述时间单元的单位包括:无线帧,子帧,时隙,迷你时隙,正交频分复用OFDM符号,微秒,或毫秒。
有关上述收发单元11和处理单元12更详细的描述可以参考上述图4、图6、图7所示的方法实施例中终端设备的相关描述得到,这里不加赘述。
根据本申请实施例提供的一种终端设备,在BWP发生切换时,通过根据与切换前激活的BWP关联的第一最小可用时间单元偏移值确定与切换后激活的BWP关联的第二最小可用时间单元偏移值,可以使得终端设备尽量维持原来的PDCCH的处理状态。
基于上述实施例中的最小可用时间单元偏移值的确定方法的同一构思,如图9所示,本申请实施例还提供了一种网络设备2000,该网络设备2000可应用于上述图4、图6、图 7所示的方法中。该网络设备2000可以是如图3所示的网络设备,也可以是应用于该网络设备的一个部件(例如芯片)。该网络设备2000包括:收发单元21和处理单元22。
示例性地,在一个实施例中,收发单元21,用于在第一下行部分带宽上发送第一指示信息,所述第一指示信息包括第二部分带宽的指示信息;
处理单元22,用于将下行激活的部分带宽从所述第一下行部分带宽切换到所述第二部分带宽,其中所述第二部分带宽为下行部分带宽;或,将上行激活的部分带宽从第三上行部分带宽切换到所述第二部分带宽,其中,所述第二部分带宽为上行部分带宽;
所述处理单元22,还用于根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值。
在一个实现中,所述与所述第一下行部分带宽关联的第一最小可用时间单元偏移值为:
所述第一下行部分带宽的最小可用时间单元偏移值,或者
根据所述第一下行部分带宽的最小可用时间单元偏移值、所述第一下行部分带宽的子载波间隔和所述第二部分带宽的子载波间隔确定的最小可用时间单元偏移值;
所述与所述第三上行部分带宽关联的第一最小可用时间单元偏移值为:
所述第三上行部分带宽的最小可用时间单元偏移值,或者
根据所述第三上行部分带宽的最小可用时间单元偏移值、所述第三上行部分带宽的子载波间隔和所述第二部分带宽的子载波间隔确定的最小可用时间单元偏移值。
在又一个实现中,所述处理单元22,还用于:
确定所述第一下行部分带宽的一个或多个第一时间单元偏移值以及所述第二部分带宽的一个或多个第二时间单元偏移值;或
确定所述第三上行部分带宽的一个或多个第一时间单元偏移值以及所述一个或多个第二时间单元偏移值。
在又一个实现中,所述处理单元22,还用于:
当所述一个或多个第二时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
在所述一个或多个第二时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值;或
在所述一个或多个第二时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值。
在又一个实现中,所述处理单元22,用于:
确定所述第二部分带宽的一个或多个候选第二最小可用时间单元偏移值;
当所述一个或多个候选第二最小可用时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
在所述一个或多个候选第二最小可用时间单元偏移值中,选取大于所述第一最小可用 时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
在所述一个或多个候选第二最小可用时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值。
在又一个实现中,所述收发单元21,还用于当下行激活的部分带宽从所述第一下行部分带宽切换到所述第二部分带宽后,在所述第二部分带宽上发送第二指示信息;或当上行激活的部分带宽从所述第三上行部分带宽切换到所述第二部分带宽后,在所述第一下行部分带宽上发送所述第二指示信息,其中,所述第二指示信息用于指示调整所述第二最小可用时间单元偏移值。
在又一个实现中,所述时间单元的单位包括:无线帧,子帧,时隙,迷你时隙,正交频分复用OFDM符号,微秒,或毫秒。
有关上述收发单元21和处理单元22更详细的描述可以参考上述图4、图6、图7所示的方法实施例中网络设备的相关描述得到,这里不加赘述。
根据本申请实施例提供的一种网络设备,在BWP发生切换时,通过根据与切换前激活的BWP关联的第一最小可用时间单元偏移值确定与切换后激活的BWP关联的第二最小可用时间单元偏移值,可以使得终端设备尽量维持原来的PDCCH的处理状态。
本申请实施例还提供一种终端设备/网络设备,该终端设备/网络设备用于执行上述最小可用时间单元偏移值的确定方法。上述最小可用时间单元偏移值的确定方法中的部分或全部可以通过硬件来实现也可以通过软件来实现。
可选的,终端设备/网络设备在具体实现时可以是芯片或者集成电路。
可选的,当上述实施例的最小可用时间单元偏移值的确定方法中的部分或全部通过软件来实现时,终端设备/网络设备包括:处理器,用于执行程序,当程序被执行时,使得终端设备/网络设备可以实现上述实施例提供的最小可用时间单元偏移值的确定方法,该终端设备/网络设备还可以包括存储器,用于存储必要的程序,这些涉及的程序可以在该终端设备/网络设备出厂时即装载再存储器中,也可以在后期需要的时候再装载入存储器。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
可选的,当上述实施例的最小可用时间单元偏移值的确定方法中的部分或全部通过软件实现时,终端设备/网络设备也可以只包括处理器。用于存储程序的存储器位于终端设备/网络设备之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
可选的,处理器可以包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
图10示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图10中,终端设备以手机作为例子。如图10所示,终端设备包括处理器,还可以包括射频电路、天线以及输入输出装置。其中,处理器可用于对通信协议以及通信数据进行处理,还可以用于对终端设备进行控制,执行软件程序,处理软件程序的数据等。该终端设备还可以包括存储器,存储器主要用于存储软件程序和数据,这些涉及的程序可以在该通信装置出厂时即装载再存储器中,也可以在后期需要的时候再装载入存储器。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图10中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端设备的处理单元。如图10所示,终端设备包括接收单元31、处理单元32和发送单元33。接收单元31也可以称为接收器、接收机、接收电路等,发送单元33也可以称为发送器、发射器、发射机、发射电路等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。
例如,在一个实施例中,接收单元31用于执行图3所示实施例中的步骤S101和S102中终端设备的功能;以及处理单元32用于执行图3所示实施例中的步骤S103和S104中终端设备的功能。
又例如,在一个实施例中,接收单元31用于执行图6所示实施例中的步骤S201和S202中终端设备的功能;以及处理单元32用于执行图6所示实施例中的步骤S203和S204中终端设备的功能。
又例如,在一个实施例中,接收单元31用于执行图7所示实施例中的步骤S301~S303、S306中终端设备的功能;以及处理单元32用于执行图7所示实施例中的步骤S304~S305、S307中终端设备的功能。
图11示出了一种简化的网络设备的结构示意图。网络设备包括射频信号收发及转换部分以及42部分,该射频信号收发及转换部分又包括接收单元41部分和发送单元43部分(也 可以统称为收发单元)。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;42部分主要用于基带处理,对网络设备进行控制等。接收单元41也可以称为接收器、接收机、接收电路等,发送单元43也可以称为发送器、发射器、发射机、发射电路等。42部分通常是网络设备的控制中心,通常可以称为处理单元,用于控制网络设备执行上述图4、图6、图7中关于网络设备所执行的步骤。具体可参见上述相关部分的描述。
42部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络设备的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一个实施例中,发送单元43用于执行图3所示实施例中的步骤S101和S102中网络设备的功能;以及42部分用于执行图3所示实施例中的步骤S103和S104中网络设备的功能。
又例如,在一个实施例中,发送单元43用于执行图6所示实施例中的步骤S201和S202中网络设备的功能;以及42部分用于执行图6所示实施例中的步骤S203和S204中网络设备的功能。
又例如,在一个实施例中,发送单元43用于执行图7所示实施例中的步骤S301~S303、S306中网络设备的功能;以及42部分用于执行图7所示实施例中的步骤S304和S305中网络设备的功能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。所显示或讨论的相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者通过该计算机可读存储介质进行传输。该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或 无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是只读存储器(read-only memory,ROM),或随机存储存储器(random access memory,RAM),或磁性介质,例如,软盘、硬盘、磁带、磁碟、或光介质,例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质,例如,固态硬盘(solid state disk,SSD)等。

Claims (30)

  1. 一种最小可用时间单元偏移值的确定方法,其特征在于,所述方法包括:
    在第一下行部分带宽上接收第一指示信息;
    根据所述第一指示信息,将下行激活的部分带宽从所述第一下行部分带宽切换到第二部分带宽,其中所述第二部分带宽为下行部分带宽;或,将上行激活的部分带宽从第三上行部分带宽切换到所述第二部分带宽,其中,所述第二部分带宽为上行部分带宽;
    根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值。
  2. 根据权利要求1所述的方法,其特征在于,
    所述与所述第一下行部分带宽关联的第一最小可用时间单元偏移值为:
    所述第一下行部分带宽的最小可用时间单元偏移值,或者
    根据所述第一下行部分带宽的最小可用时间单元偏移值、所述第一下行部分带宽的子载波间隔和所述第二部分带宽的子载波间隔确定的最小可用时间单元偏移值;
    所述与所述第三上行部分带宽关联的第一最小可用时间单元偏移值为:
    所述第三上行部分带宽的最小可用时间单元偏移值,或者
    根据所述第三上行部分带宽的最小可用时间单元偏移值、所述第三上行部分带宽的子载波间隔和所述第二部分带宽的子载波间隔确定的最小可用时间单元偏移值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    获取所述第一下行部分带宽的一个或多个第一时间单元偏移值以及所述第二部分带宽的一个或多个第二时间单元偏移值;或
    获取所述第三上行部分带宽的一个或多个第一时间单元偏移值以及所述第二部分带宽的一个或多个第二时间单元偏移值。
  4. 根据权利要求3所述的方法,其特征在于,所述根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值,包括:
    当所述一个或多个第二时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
    在所述一个或多个第二时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值;或
    在所述一个或多个第二时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二 最小可用时间单元偏移值。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    获取所述第二部分带宽的一个或多个候选第二最小可用时间单元偏移值;
    所述根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值,包括:
    当所述一个或多个候选第二最小可用时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
    在所述一个或多个候选第二最小可用时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
    在所述一个或多个候选第二最小可用时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    当下行激活的部分带宽从所述第一下行部分带宽切换到所述第二部分带宽后,在所述第二部分带宽上接收第二指示信息;或当上行激活的部分带宽从所述第三上行部分带宽切换到所述第二部分带宽后,在所述第一下行部分带宽上接收所述第二指示信息;
    根据所述第二指示信息调整所述第二最小可用时间单元偏移值。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述时间单元的单位包括:
    无线帧,子帧,时隙,迷你时隙,正交频分复用OFDM符号,微秒,或毫秒。
  8. 一种最小可用时间单元偏移值的确定方法,其特征在于,所述方法包括:
    在第一下行部分带宽上发送第一指示信息,所述第一指示信息包括第二部分带宽的指示信息;
    将下行激活的部分带宽从所述第一下行部分带宽切换到所述第二部分带宽,其中所述第二部分带宽为下行部分带宽;或,将上行激活的部分带宽从第三上行部分带宽切换到所述第二部分带宽,其中,所述第二部分带宽为上行部分带宽;
    根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值。
  9. 根据权利要求8所述的方法,其特征在于,
    所述与所述第一下行部分带宽关联的第一最小可用时间单元偏移值为:
    所述第一下行部分带宽的最小可用时间单元偏移值,或者
    根据所述第一下行部分带宽的最小可用时间单元偏移值、所述第一下行部分带宽的子载波间隔和所述第二部分带宽的子载波间隔确定的最小可用时间单元偏移值;
    所述与所述第三上行部分带宽关联的第一最小可用时间单元偏移值为:
    所述第三上行部分带宽的最小可用时间单元偏移值,或者
    根据所述第三上行部分带宽的最小可用时间单元偏移值、所述第三上行部分带宽的子载波间隔和所述第二部分带宽的子载波间隔确定的最小可用时间单元偏移值。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    确定所述第一下行部分带宽的一个或多个第一时间单元偏移值以及所述第二部分带宽的一个或多个第二时间单元偏移值;或
    确定所述第三上行部分带宽的一个或多个第一时间单元偏移值以及所述一个或多个第二时间单元偏移值。
  11. 根据权利要求10所述的方法,其特征在于,所述根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值,包括:
    当所述一个或多个第二时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
    在所述一个或多个第二时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值;或
    在所述一个或多个第二时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值。
  12. 根据权利要求8-10任一项所述的方法,所述方法还包括:
    确定所述第二部分带宽的一个或多个候选第二最小可用时间单元偏移值;
    所述根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值,包括:
    当所述一个或多个候选第二最小可用时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
    在所述一个或多个候选第二最小可用时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
    在所述一个或多个候选第二最小可用时间单元偏移值中,选取小于所述第一最小可用 时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述方法还包括:
    当下行激活的部分带宽从所述第一下行部分带宽切换到所述第二部分带宽后,在所述第二部分带宽上发送第二指示信息;或当上行激活的部分带宽从所述第三上行部分带宽切换到所述第二部分带宽后,在所述第一下行部分带宽上发送所述第二指示信息,其中,所述第二指示信息用于指示调整所述第二最小可用时间单元偏移值。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述时间单元的单位包括:
    无线帧,子帧,时隙,迷你时隙,正交频分复用OFDM符号,微秒,或毫秒。
  15. 一种终端设备,其特征在于,包括:
    收发单元,用于在第一下行部分带宽上接收第一指示信息;
    处理单元,用于根据所述第一指示信息,将下行激活的部分带宽从所述第一下行部分带宽切换到第二部分带宽,其中所述第二部分带宽为下行部分带宽;或,将上行激活的部分带宽从第三上行部分带宽切换到所述第二部分带宽,其中,所述第二部分带宽为上行部分带宽;
    所述处理单元,还用于根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值。
  16. 根据权利要求15所述的终端设备,其特征在于,
    所述与所述第一下行部分带宽关联的第一最小可用时间单元偏移值为:
    所述第一下行部分带宽的最小可用时间单元偏移值,或者
    根据所述第一下行部分带宽的最小可用时间单元偏移值、所述第一下行部分带宽的子载波间隔和所述第二部分带宽的子载波间隔确定的最小可用时间单元偏移值;
    所述与所述第三上行部分带宽关联的第一最小可用时间单元偏移值为:
    所述第三上行部分带宽的最小可用时间单元偏移值,或者
    根据所述第三上行部分带宽的最小可用时间单元偏移值、所述第三上行部分带宽的子载波间隔和所述第二部分带宽的子载波间隔确定的最小可用时间单元偏移值。
  17. 根据权利要求15或16所述的终端设备,其特征在于,所述处理单元,还用于:
    获取所述第一下行部分带宽的一个或多个第一时间单元偏移值以及所述第二部分带宽的一个或多个第二时间单元偏移值;或
    获取所述第三上行部分带宽的一个或多个第一时间单元偏移值以及所述第二部分带宽的一个或多个第二时间单元偏移值。
  18. 根据权利要求17所述的终端设备,其特征在于,所述处理单元,用于:
    当所述一个或多个第二时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
    在所述一个或多个第二时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值;或
    在所述一个或多个第二时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值。
  19. 根据权利要求15-17任一项所述的终端设备,其特征在于,所述处理单元,用于:
    获取所述第二部分带宽的一个或多个候选第二最小可用时间单元偏移值;
    当所述一个或多个候选第二最小可用时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
    在所述一个或多个候选第二最小可用时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
    在所述一个或多个候选第二最小可用时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值。
  20. 根据权利要求15-19任一项所述的终端设备,其特征在于:
    所述收发单元,还用于当下行激活的部分带宽从所述第一下行部分带宽切换到所述第二部分带宽后,在所述第二部分带宽上接收第二指示信息;或当上行激活的部分带宽从所述第三上行部分带宽切换到所述第二部分带宽后,在所述第一下行部分带宽上接收所述第二指示信息;
    所述处理单元,还用于根据所述第二指示信息调整所述第二最小可用时间单元偏移值。
  21. 根据权利要求15-20任一项所述的终端设备,其特征在于,所述时间单元的单位包括:
    无线帧,子帧,时隙,迷你时隙,正交频分复用OFDM符号,微秒,或毫秒。
  22. 一种网络设备,其特征在于,包括:
    收发单元,用于在第一下行部分带宽上发送第一指示信息,所述第一指示信息包括第二部分带宽的指示信息;
    处理单元,用于将下行激活的部分带宽从所述第一下行部分带宽切换到所述第二部分带宽,其中所述第二部分带宽为下行部分带宽;或,将上行激活的部分带宽从第三上行部 分带宽切换到所述第二部分带宽,其中,所述第二部分带宽为上行部分带宽;
    所述处理单元,还用于根据与所述第一下行部分带宽关联的第一最小可用时间单元偏移值或与所述第三上行部分带宽关联的第一最小可用时间单元偏移值,确定所述第二部分带宽的第二最小可用时间单元偏移值。
  23. 根据权利要求22所述的网络设备,其特征在于,
    所述与所述第一下行部分带宽关联的第一最小可用时间单元偏移值为:
    所述第一下行部分带宽的最小可用时间单元偏移值,或者
    根据所述第一下行部分带宽的最小可用时间单元偏移值、所述第一下行部分带宽的子载波间隔和所述第二部分带宽的子载波间隔确定的最小可用时间单元偏移值;
    所述与所述第三上行部分带宽关联的第一最小可用时间单元偏移值为:
    所述第三上行部分带宽的最小可用时间单元偏移值,或者
    根据所述第三上行部分带宽的最小可用时间单元偏移值、所述第三上行部分带宽的子载波间隔和所述第二部分带宽的子载波间隔确定的最小可用时间单元偏移值。
  24. 根据权利要求22或23所述的网络设备,其特征在于,所述处理单元,还用于:
    确定所述第一下行部分带宽的一个或多个第一时间单元偏移值以及所述第二部分带宽的一个或多个第二时间单元偏移值;或
    确定所述第三上行部分带宽的一个或多个第一时间单元偏移值以及所述一个或多个第二时间单元偏移值。
  25. 根据权利要求24所述的网络设备,其特征在于,所述处理单元,还用于:
    当所述一个或多个第二时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
    在所述一个或多个第二时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值;或
    在所述一个或多个第二时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的第二时间单元偏移值作为所述第二最小可用时间单元偏移值。
  26. 根据权利要求22-24任一项所述的网络设备,所述处理单元,用于:
    确定所述第二部分带宽的一个或多个候选第二最小可用时间单元偏移值;
    当所述一个或多个候选第二最小可用时间单元偏移值中包括所述第一最小可用时间单元偏移值时,将所述第一最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值;或
    在所述一个或多个候选第二最小可用时间单元偏移值中,选取大于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时 间单元偏移值作为所述第二最小可用时间单元偏移值;或
    在所述一个或多个候选第二最小可用时间单元偏移值中,选取小于所述第一最小可用时间单元偏移值且与所述第一最小可用时间单元偏移值的差值最小的候选第二最小可用时间单元偏移值作为所述第二最小可用时间单元偏移值。
  27. 根据权利要求22-26任一项所述的网络设备,其特征在于,所述收发单元,还用于当下行激活的部分带宽从所述第一下行部分带宽切换到所述第二部分带宽后,在所述第二部分带宽上发送第二指示信息;或当上行激活的部分带宽从所述第三上行部分带宽切换到所述第二部分带宽后,在所述第一下行部分带宽上发送所述第二指示信息,其中,所述第二指示信息用于指示调整所述第二最小可用时间单元偏移值。
  28. 根据权利要求22-27任一项所述的网络设备,其特征在于,所述时间单元的单位包括:
    无线帧,子帧,时隙,迷你时隙,正交频分复用OFDM符号,微秒,或毫秒。
  29. 一种终端设备,其特征在于,包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如权利要求1-7任一项所述的方法。
  30. 一种网络设备,其特征在于,包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如权利要求8-14任一项所述的方法。
PCT/CN2019/101209 2019-08-16 2019-08-16 一种最小可用时间单元偏移值的确定方法及设备 WO2021031033A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/101209 WO2021031033A1 (zh) 2019-08-16 2019-08-16 一种最小可用时间单元偏移值的确定方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/101209 WO2021031033A1 (zh) 2019-08-16 2019-08-16 一种最小可用时间单元偏移值的确定方法及设备

Publications (1)

Publication Number Publication Date
WO2021031033A1 true WO2021031033A1 (zh) 2021-02-25

Family

ID=74660439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101209 WO2021031033A1 (zh) 2019-08-16 2019-08-16 一种最小可用时间单元偏移值的确定方法及设备

Country Status (1)

Country Link
WO (1) WO2021031033A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886787A (zh) * 2017-07-28 2018-11-23 北京小米移动软件有限公司 获取控制信息的方法、装置和系统
US20190090299A1 (en) * 2017-09-20 2019-03-21 Qualcomm Incorporated Techniques and apparatuses for bandwidth part wake-up signaling
CN109586881A (zh) * 2017-09-29 2019-04-05 株式会社Kt 用于在新无线电中切换带宽部分的方法和装置
US20190149213A1 (en) * 2017-11-16 2019-05-16 Hua Zhou Channel State Information Report on Bandwidth Part
CN109788553A (zh) * 2017-11-10 2019-05-21 华为技术有限公司 一种带宽切换方法及装置
CN109995497A (zh) * 2018-02-14 2019-07-09 华为技术有限公司 下行控制信息传输方法
US20190215847A1 (en) * 2018-01-11 2019-07-11 Huawei Technologies Co., Ltd. Methods and apparatus for switching between bandwidth parts

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886787A (zh) * 2017-07-28 2018-11-23 北京小米移动软件有限公司 获取控制信息的方法、装置和系统
US20190090299A1 (en) * 2017-09-20 2019-03-21 Qualcomm Incorporated Techniques and apparatuses for bandwidth part wake-up signaling
CN109586881A (zh) * 2017-09-29 2019-04-05 株式会社Kt 用于在新无线电中切换带宽部分的方法和装置
CN109788553A (zh) * 2017-11-10 2019-05-21 华为技术有限公司 一种带宽切换方法及装置
US20190149213A1 (en) * 2017-11-16 2019-05-16 Hua Zhou Channel State Information Report on Bandwidth Part
US20190215847A1 (en) * 2018-01-11 2019-07-11 Huawei Technologies Co., Ltd. Methods and apparatus for switching between bandwidth parts
CN109995497A (zh) * 2018-02-14 2019-07-09 华为技术有限公司 下行控制信息传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "PDCCH-based power saving channel design", 3GPP DRAFT; R1-1907294 PDCCH-BASED POWER SAVING CHANNEL DESIGN, vol. RAN WG1, 4 May 2019 (2019-05-04), Reno, USA, pages 1 - 16, XP051709317 *

Similar Documents

Publication Publication Date Title
CA3092288A1 (en) Methods and apparatuses for transmitting and receiving control signaling, and method for determining information
JP7084499B2 (ja) リソースを選択するための方法および装置
CN111602449B (zh) 一种通信方法及装置
JP2024023656A (ja) 情報確定方法、情報調整方法、閾値使用方法、端末、及び基地局
WO2019096195A1 (zh) 通信方法及装置
CN111586878B (zh) 通信方法及装置
CN111885683B (zh) 通信方法及装置
WO2020200001A1 (zh) 一种速率匹配方法、装置和存储介质
CN110351058B (zh) 一种信号传输方法及通信设备
CN110890947B (zh) 通信方法及装置
WO2018227636A1 (zh) 一种业务传输方法、设备及系统
WO2022042689A1 (zh) 传输方法、装置、通信设备及终端
WO2020063831A1 (zh) 通信方法及装置
WO2020063728A1 (zh) 一种资源配置的方法、装置及系统
AU2018248184B2 (en) Method and device for determining resources and storage medium
WO2022028468A1 (zh) 信息确定方法、信息发送方法、终端及网络侧设备
WO2020200187A1 (zh) 通信方法及装置
CN109392130B (zh) 确定物理信道时域位置的方法、用户终端和网络侧设备
WO2023098684A1 (zh) 信息传输方法及设备
JP7449992B2 (ja) 方法、装置、及びコンピュータプログラム
WO2021031033A1 (zh) 一种最小可用时间单元偏移值的确定方法及设备
JP6994105B2 (ja) Hrssi測定方法、ネットワークデバイス及び端末デバイス
CN108243438B (zh) 一种通道配置的方法以及基站
WO2019047535A1 (zh) 一种信道跳频的确定方法及装置、计算机存储介质
WO2020192344A1 (zh) 一种边链路发射功率计算方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941945

Country of ref document: EP

Kind code of ref document: A1