WO2019047535A1 - 一种信道跳频的确定方法及装置、计算机存储介质 - Google Patents

一种信道跳频的确定方法及装置、计算机存储介质 Download PDF

Info

Publication number
WO2019047535A1
WO2019047535A1 PCT/CN2018/083985 CN2018083985W WO2019047535A1 WO 2019047535 A1 WO2019047535 A1 WO 2019047535A1 CN 2018083985 W CN2018083985 W CN 2018083985W WO 2019047535 A1 WO2019047535 A1 WO 2019047535A1
Authority
WO
WIPO (PCT)
Prior art keywords
determining
configuration information
bandwidth
channel
frequency
Prior art date
Application number
PCT/CN2018/083985
Other languages
English (en)
French (fr)
Inventor
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP18854548.7A priority Critical patent/EP3657687B1/en
Priority to CN201880042385.4A priority patent/CN110870209A/zh
Priority to EP22165945.1A priority patent/EP4075684A1/en
Priority to ES18854548T priority patent/ES2921206T3/es
Priority to JP2020513921A priority patent/JP7153066B2/ja
Priority to KR1020207009982A priority patent/KR102466143B1/ko
Priority to AU2018328888A priority patent/AU2018328888B2/en
Priority to PCT/CN2018/097114 priority patent/WO2019047629A1/zh
Priority to ES18853277T priority patent/ES2916576T3/es
Priority to BR112020003984-5A priority patent/BR112020003984A2/pt
Priority to CN201880042501.2A priority patent/CN110785946A/zh
Priority to EP22165995.6A priority patent/EP4044452A1/en
Priority to CN202010087344.6A priority patent/CN111313929B/zh
Priority to MX2020002541A priority patent/MX2020002541A/es
Priority to RU2020112737A priority patent/RU2771349C2/ru
Priority to CA3074337A priority patent/CA3074337C/en
Priority to SG11202001883VA priority patent/SG11202001883VA/en
Priority to EP18853277.4A priority patent/EP3664315B1/en
Priority to TW107131637A priority patent/TWI766097B/zh
Publication of WO2019047535A1 publication Critical patent/WO2019047535A1/zh
Priority to US16/776,186 priority patent/US11245500B2/en
Priority to US16/802,460 priority patent/US11309934B2/en
Priority to ZA2020/01287A priority patent/ZA202001287B/en
Priority to US17/645,874 priority patent/US11962523B2/en
Priority to US17/652,889 priority patent/US12081259B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present invention relates to frequency hopping technologies in the field of mobile communications, and in particular, to a method and apparatus for determining channel hopping, and a computer storage medium.
  • the Physical Uplink Control CHannel can adopt frequency hopping technology to obtain frequency domain diversity gain and improve channel transmission performance.
  • the first and second steps of PUCCH frequency hopping are symmetric with the central mirror of the system bandwidth, as shown in Figure 1, the first step is the distance from the lower edge of the system bandwidth and the second step is the upper edge of the system bandwidth. The distance is the same, both D.
  • the foregoing design for PUCCH frequency hopping may distribute PUCCH on both sides of the system bandwidth, so as to leave the central part of the system bandwidth to the data channel, such as Physical Uplink Shared Channel (PUSCH), but will cause PUCCH of different terminals.
  • the frequency hopping steps are different. As shown in Figure 2, some terminals have larger hopping steps, PUCCH is closer to the system bandwidth edge, frequency domain diversity is better, and transmission performance is better. Other terminals have smaller hopping steps and PUCCH are closer. In the center of the system bandwidth, the frequency domain diversity effect is worse and the transmission performance is poor. It can be seen that the traditional PUCCH frequency hopping design causes the PUCCH frequency hopping step to be unstable. When the PUCCH capacity is large, the PUCCH transmission performance of some terminals is degraded.
  • PUSCH Physical Uplink Shared Channel
  • an embodiment of the present invention provides a method and apparatus for determining channel frequency hopping, and a computer storage medium.
  • the terminal determines a frequency domain location for transmitting an uplink channel based on a frequency hopping step corresponding to the uplink channel.
  • the terminal determines the first bandwidth corresponding to the bandwidth segment, including:
  • the terminal receives the first configuration information, and determines, according to the first configuration information, a first bandwidth corresponding to the bandwidth segment.
  • the terminal receives the first configuration information, including:
  • Radio resource control (RRC) signaling carrying the first configuration information
  • the terminal receives system information that carries the first configuration information.
  • the terminal receives the first configuration information, and determines, according to the first configuration information, the first bandwidth corresponding to the bandwidth segment, including:
  • the terminal When the terminal receives a first configuration information, determining, according to the one first configuration information, a first bandwidth corresponding to the bandwidth segment;
  • the terminal When the terminal receives the plurality of first configuration information, determining, according to the plurality of first configuration information, a plurality of candidate first bandwidths corresponding to the bandwidth segment; and selecting, by using the plurality of candidate first bandwidths The first bandwidth corresponding to the bandwidth segment.
  • the selecting the first bandwidth corresponding to the bandwidth segment from the multiple candidate first bandwidths includes:
  • the terminal receives the first control signaling, and selects a first bandwidth corresponding to the bandwidth segment from the plurality of candidate first bandwidths according to the first control signaling.
  • the first control signaling is: Downlink Control Information (DCI, Downlink Control Information) or Media Access Control Control Element (MAC CE).
  • DCI Downlink Control Information
  • MAC CE Media Access Control Control Element
  • the terminal determines, according to the first bandwidth corresponding to the bandwidth segment, a frequency hopping step corresponding to the uplink channel, including:
  • W H is a frequency hopping step corresponding to the uplink channel
  • W is a first bandwidth corresponding to the bandwidth segment
  • n is a proportional coefficient
  • n 1/m
  • m is a positive integer greater than 1.
  • W H nW W H is determined, or among them, Represents the smallest integer greater than nW, Represents the largest integer less than nW.
  • the frequency hopping step is equal to the integer multiple of the frequency domain scheduling unit. Therefore, the value of W H in the embodiment of the present invention is an integer.
  • the method further includes:
  • the terminal receives second configuration information, and determines the n or W H based on the second configuration information.
  • the terminal receiving the second configuration information includes:
  • the terminal receives system information that carries the second configuration information.
  • the second configuration information and the first configuration information are the same configuration information.
  • the terminal receives the second configuration information, and determines the n or W H based on the second configuration information, including:
  • the terminal receives a second plurality of configuration information, second configuration information based on the plurality of determining a plurality of candidate n or W H; selected from the n or the W H W H or plurality of candidate n .
  • the selecting the n or W H from the plurality of candidate n or W H includes:
  • the terminal receives the second control signaling, and selects the n or W H from the plurality of candidate n or W H according to the second control signaling.
  • the second control signaling is: DCI, or MAC CE.
  • the second control signaling and the first control signaling are the same control signaling.
  • the terminal determines, according to the frequency hopping step corresponding to the uplink channel, a frequency domain location for transmitting an uplink channel, including:
  • the frequency domain location of the first step of the frequency hopping and the frequency domain location of the second step of the frequency hopping are frequency domain locations for transmitting the uplink channel.
  • the method further includes:
  • the terminal receives third control signaling, and determines a frequency domain location of the first step of the frequency hopping based on the third control instruction.
  • the third control signaling is: DCI, or MAC CE.
  • the third control signaling is the same control signaling as at least one of the following: the first control signaling and the second control signaling.
  • a first determining unit configured to determine a first bandwidth corresponding to the bandwidth segment, where the first bandwidth corresponding to the bandwidth segment is smaller than the second bandwidth corresponding to the system bandwidth;
  • a second determining unit configured to determine a frequency hopping step corresponding to the uplink channel, based on the first bandwidth corresponding to the bandwidth segment;
  • the third determining unit is configured to determine a frequency domain location for transmitting the uplink channel based on a frequency hopping step corresponding to the uplink channel.
  • the first determining unit includes:
  • the first receiving subunit is configured to receive the first configuration information
  • the first determining subunit is configured to determine, according to the first configuration information, a first bandwidth corresponding to the bandwidth segment.
  • the first receiving sub-unit is configured to receive the RRC signaling that carries the first configuration information, or receive the system information that carries the first configuration information.
  • the first determining sub-unit is configured to: when receiving a first configuration information, determine, according to the one first configuration information, a first bandwidth corresponding to the bandwidth segment; when receiving Determining, according to the plurality of first configuration information, a plurality of candidate first bandwidths corresponding to the bandwidth segment, and selecting, by the plurality of candidate first bandwidths, the bandwidth segment corresponding to the plurality of first configuration information The first bandwidth.
  • the first determining unit further includes:
  • a second receiving subunit configured to receive the first control signaling
  • the first determining subunit is further configured to select, according to the first control signaling, a first bandwidth corresponding to the bandwidth segment from the plurality of candidate first bandwidths.
  • the first control signaling is: DCI, or MAC CE.
  • W H is a frequency hopping step corresponding to the uplink channel
  • W is a first bandwidth corresponding to the bandwidth segment
  • n is a proportional coefficient
  • n 1/m
  • m is a positive integer greater than 1.
  • W H nW W H is determined, or among them, Represents the smallest integer greater than nW, Represents the largest integer less than nW.
  • the frequency hopping step is equal to the integer multiple of the frequency domain scheduling unit. Therefore, the value of W H in the embodiment of the present invention is an integer.
  • the second determining unit includes:
  • a second determining subunit configured to determine the n or W H based on a preset value
  • a third receiving subunit configured to receive second configuration information
  • a second determining subunit configured to determine the n or W H based on the second configuration information.
  • the third receiving sub-unit is configured to receive the RRC signaling that carries the second configuration information, or receive the system information that carries the second configuration information.
  • the second configuration information and the first configuration information are the same configuration information.
  • the second determining subunit is specifically configured to: when receiving a second configuration information, determine the n or W H based on the one second configuration information; when receiving multiple second when configuration information, second configuration information based on the plurality of determining a plurality of candidate n or W H; selected from the n or the W H W H or plurality of candidate n.
  • the second determining unit further includes: a fourth receiving subunit, configured to receive the second control signaling;
  • the second determining subunit is further configured to select the n or W H from the plurality of candidates n or W H according to the second control signaling.
  • the second control signaling is: DCI, or MAC CE.
  • the second control signaling and the first control signaling are the same control signaling.
  • the third determining unit is specifically configured to determine a frequency domain location of the second step of the frequency hopping according to the frequency domain location of the first step of the frequency hopping and the frequency hopping step corresponding to the uplink channel;
  • the frequency domain location of the first step of the frequency hopping and the frequency domain location of the second step of the frequency hopping are frequency domain locations for transmitting the uplink channel.
  • the third determining unit includes:
  • a fifth receiving subunit configured to receive the third control signaling
  • a third determining subunit configured to determine a frequency domain location of the first step of the frequency hopping based on the third control instruction.
  • the third control signaling is: DCI, or MAC CE.
  • the third control signaling is the same control signaling as at least one of the following: the first control signaling and the second control signaling.
  • the computer storage medium provided by the embodiment of the present invention has stored thereon computer executable instructions, and the computer executable instructions are implemented by the processor to implement the above method for determining channel frequency hopping.
  • the terminal determines the first bandwidth corresponding to the bandwidth segment, and the first bandwidth corresponding to the bandwidth segment is smaller than the second bandwidth corresponding to the system bandwidth; Determining, according to the first bandwidth, a frequency hopping step corresponding to the uplink channel; and determining, by the terminal, a frequency domain location for transmitting the uplink channel, according to the frequency hopping step corresponding to the uplink channel.
  • a stable frequency hopping step size can be achieved in a given bandwidth segmentation bandwidth, thereby obtaining a more stable frequency domain diversity gain and improving an uplink channel (especially uplink control). Transmission performance of the channel).
  • FIG. 1 is a schematic diagram 1 of a conventional PUCCH frequency domain structure
  • FIG. 2 is a schematic diagram 2 of a conventional PUCCH frequency domain structure
  • FIG. 3 is a schematic flowchart of a method for determining channel frequency hopping according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram 1 of a PUCCH frequency domain structure according to an embodiment of the present invention.
  • FIG. 5 is a second schematic diagram of a PUCCH frequency domain structure according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram 1 of a structure of a device for determining a frequency hopping frequency according to an embodiment of the present invention
  • FIG. 7 is a second schematic structural diagram of a device for determining a channel frequency hopping according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the fifth generation mobile communication (5G NR) system is the research direction of future mobile communication systems.
  • the 5G NR terminal in order to increase the flexibility of frequency domain resource allocation and reduce terminal power consumption, the 5G NR terminal can transmit signals in a bandwidth width smaller than the system bandwidth, when the bandwidth of the bandwidth is segmented. When it is small, the frequency hopping step of the central PUCCH will be further reduced, affecting the PUCCH transmission performance.
  • 5G NR introduces a series of new technologies, such as the new Multiple-Input Multiple-Output (MIMO) technology, a larger number of channel state information reporting (CSI report) is required, and the load of PUCCH is greatly increased. Increasing, this causes the PUCCH to occupy a larger proportion of frequency domain resources in the bandwidth segmentation, and the PUCCH frequency hopping step size near the center of the bandwidth segment becomes smaller, and the transmission performance is further deteriorated.
  • MIMO Multiple-Input Multiple-Output
  • the embodiment of the present invention provides a method for determining channel frequency hopping, which can achieve a stable frequency hopping step size under a given bandwidth segmentation bandwidth, thereby obtaining a more stable frequency domain diversity gain.
  • the transmission performance of the uplink channel (especially the uplink control channel) is improved.
  • FIG. 3 is a schematic flowchart of a method for determining channel frequency hopping according to an embodiment of the present invention. As shown in FIG. 3, the method for determining channel frequency hopping includes the following steps:
  • Step 301 The terminal determines a first bandwidth corresponding to the bandwidth segment, where the first bandwidth corresponding to the bandwidth segment is smaller than the second bandwidth corresponding to the system bandwidth.
  • the type of the terminal is not limited, and the terminal may be any type of a mobile phone, a notebook, a tablet, a desktop, an in-vehicle terminal, a smart home terminal, or the like.
  • the bandwidth supported by the base station is referred to as a system bandwidth, that is, a second bandwidth.
  • a terminal can transmit signals over the entire system bandwidth.
  • the terminal In the 5G NR system, the terminal only transmits signals in a part of the system bandwidth.
  • a part of the system bandwidth is called bandwidth segmentation, and the bandwidth utilization can effectively improve the resource utilization efficiency of the system bandwidth.
  • the uplink channel may be transmitted by using a frequency hopping method, and the frequency hopping includes two steps as an example.
  • the difference between the first step of frequency hopping and the second step of frequency hopping in the frequency domain is a frequency hopping step.
  • the length of the frequency hopping step determines the frequency domain diversity gain of the uplink channel.
  • the larger the frequency hopping step the larger the frequency domain diversity gain of the uplink channel.
  • the smaller the frequency hopping step the frequency domain diversity of the uplink channel. The smaller the gain.
  • the embodiment of the present invention determines the frequency hopping step corresponding to the uplink channel based on the first bandwidth corresponding to the bandwidth segment, so as to improve the transmission performance of the uplink channel (especially the uplink control channel). .
  • the terminal needs to first determine the first bandwidth corresponding to the bandwidth segment. Obviously, the first bandwidth corresponding to the bandwidth segment is smaller than the second bandwidth corresponding to the system bandwidth.
  • the terminal receives the first configuration information, and determines the first bandwidth corresponding to the bandwidth segment based on the first configuration information.
  • the terminal receiving the first configuration information can be implemented in the following two manners:
  • Manner 1 The terminal receives RRC signaling that carries the first configuration information.
  • Manner 2 The terminal receives system information that carries the first configuration information.
  • the number of the first configuration information received by the terminal may be one or plural.
  • the meaning of the plurality refers to two or more.
  • the terminal When the terminal receives the plurality of first configuration information, determining, according to the plurality of first configuration information, a plurality of candidate first bandwidths corresponding to the bandwidth segment; and selecting, by using the plurality of candidate first bandwidths The first bandwidth corresponding to the bandwidth segment.
  • the terminal receives the first control signaling, and selects a first bandwidth corresponding to the bandwidth segment from the plurality of candidate first bandwidths according to the first control signaling.
  • the first control signaling is: DCI, or MAC CE.
  • Step 302 The terminal determines a frequency hopping step corresponding to the uplink channel based on the first bandwidth corresponding to the bandwidth segment.
  • W H is a frequency hopping step corresponding to the uplink channel
  • W is a first bandwidth corresponding to the bandwidth segment
  • n is a proportional coefficient
  • n 1/m
  • m is a positive integer greater than 1.
  • W H nW W H is determined, or among them, Represents the smallest integer greater than nW, Represents the largest integer less than nW.
  • the frequency hopping step is equal to the integer multiple of the frequency domain scheduling unit. Therefore, the value of W H in the embodiment of the present invention is an integer.
  • n may be 1/2, 1/4, etc.
  • different terminals may correspond to the same value of n, or different terminals may correspond to different values of n.
  • the terminal needs to determine n or W H first. Specifically, the terminal determines the n or W H based on the preset value; or the terminal receives the second configuration information, and determines the n or the based on the second configuration information. W H .
  • the terminal receiving the second configuration information can be implemented in the following two ways:
  • Manner 1 The terminal receives RRC signaling carrying the second configuration information.
  • Manner 2 The terminal receives system information that carries the second configuration information.
  • the second configuration information and the first configuration information are the same configuration information.
  • the number of the second configuration information received by the terminal may be one or multiple.
  • the terminal receives a second plurality of configuration information, second configuration information based on the plurality of determining a plurality of candidate n or W H; selected from the n or the W H W H or plurality of candidate n .
  • the terminal receives the second control signaling, and selects the n or W H from the plurality of candidates n or W H according to the second control signaling.
  • the second control signaling is: DCI, or MAC CE.
  • the second control signaling and the first control signaling are the same control signaling.
  • Step 303 The terminal determines a frequency domain location for transmitting an uplink channel based on a frequency hopping step corresponding to the uplink channel.
  • the terminal determines the frequency domain location of the second step of the frequency hopping according to the frequency domain location of the first step of the frequency hopping and the frequency hopping step corresponding to the uplink channel; wherein the first step of the frequency hopping
  • the frequency domain location and the frequency domain location of the second step of the frequency hopping are frequency domain locations for transmitting the uplink channel.
  • the terminal receives the third control signaling, and determines a frequency domain location of the first step of the frequency hopping based on the third control instruction.
  • the third control signaling is: DCI, or MAC CE.
  • the third control signaling is the same control signaling as at least one of the following: the first control signaling and the second control signaling.
  • a uniform frequency hopping step is used within one bandwidth segment.
  • FIG. 4 is a schematic diagram 1 of a PUCCH frequency domain structure according to an embodiment of the present invention.
  • a bandwidth of a certain bandwidth segment or a certain bandwidth segment is W, and a frequency hopping step length W H of a PUCCH frequency domain is used.
  • the same W H is used for multiple terminals that use the same bandwidth segmentation.
  • the bandwidth size of the bandwidth segment 1 is W1
  • the bandwidth size of the bandwidth segment 2 is W2.
  • the same W H is used for multiple terminals that use the same size of bandwidth segmentation.
  • FIG. 5 is a schematic diagram 2 of a frequency domain structure of a PUCCH according to an embodiment of the present invention.
  • a bandwidth of a certain bandwidth segment or a certain bandwidth segment is W
  • a frequency hopping step length W H of the PUCCH frequency domain is The bandwidth size W of the bandwidth segment corresponds.
  • FIG. 6 is a first schematic structural diagram of a device for determining a channel frequency hopping according to an embodiment of the present invention. As shown in FIG.
  • the first determining unit 601 is configured to determine a first bandwidth corresponding to the bandwidth segment, where the first bandwidth corresponding to the bandwidth segment is smaller than the second bandwidth corresponding to the system bandwidth;
  • the second determining unit 602 is configured to determine, according to the first bandwidth corresponding to the bandwidth segment, a frequency hopping step corresponding to the uplink channel;
  • the third determining unit 603 is configured to determine a frequency domain location for transmitting the uplink channel based on a frequency hopping step corresponding to the uplink channel.
  • each unit in the channel hopping determining apparatus shown in FIG. 6 can be understood by referring to the related description of the foregoing method for determining channel hopping.
  • the function of each unit in the channel frequency hopping determining apparatus shown in FIG. 6 can be realized by a program running on a processor, or can be realized by a specific logic circuit.
  • FIG. 7 is a schematic structural diagram of a structure of a device for determining a frequency hopping frequency according to an embodiment of the present invention.
  • the apparatus for determining frequency hopping of a channel includes:
  • the first determining unit 701 is configured to determine a first bandwidth corresponding to the bandwidth segment, where the first bandwidth corresponding to the bandwidth segment is smaller than the second bandwidth corresponding to the system bandwidth;
  • the second determining unit 702 is configured to determine, according to the first bandwidth corresponding to the bandwidth segment, a frequency hopping step corresponding to the uplink channel;
  • the third determining unit 703 is configured to determine a frequency domain location for transmitting the uplink channel based on a frequency hopping step corresponding to the uplink channel.
  • the first determining unit 701 includes:
  • the first receiving subunit 7011 is configured to receive the first configuration information
  • the first determining subunit 7012 is configured to determine, according to the first configuration information, a first bandwidth corresponding to the bandwidth segment.
  • the first receiving sub-unit 7011 is configured to receive the RRC signaling that carries the first configuration information, or receive the system information that carries the first configuration information.
  • the first determining subunit 7012 is configured to: when receiving a first configuration information, determine, according to the first configuration information, a first bandwidth corresponding to the bandwidth segment; when receiving Determining, by the plurality of first configuration information, a plurality of candidate first bandwidths corresponding to the bandwidth segment, and selecting the bandwidth segment from the plurality of candidate first bandwidths Corresponding first bandwidth.
  • the first determining unit 701 further includes:
  • the second receiving subunit 7013 is configured to receive the first control signaling
  • the first determining subunit 7012 is further configured to select, according to the first control signaling, a first bandwidth corresponding to the bandwidth segment from the plurality of candidate first bandwidths.
  • the first control signaling is: DCI, or MAC CE.
  • W H is a frequency hopping step corresponding to the uplink channel
  • W is a first bandwidth corresponding to the bandwidth segment
  • n is a proportional coefficient
  • n 1/m
  • m is a positive integer greater than 1.
  • W H nW W H is determined, or among them, Represents the smallest integer greater than nW, Represents the largest integer less than nW.
  • the frequency hopping step is equal to the integer multiple of the frequency domain scheduling unit. Therefore, the value of W H in the embodiment of the present invention is an integer.
  • the second determining unit 702 includes:
  • a second determining subunit 7021 configured to determine the n or W H based on a preset value
  • the third receiving subunit 7022 is configured to receive the second configuration information.
  • the second determining subunit 7021 is configured to determine the n or W H based on the second configuration information.
  • the third receiving sub-unit 7022 is configured to receive the RRC signaling that carries the second configuration information, or receive the system information that carries the second configuration information.
  • the second configuration information and the first configuration information are the same configuration information.
  • the second determining sub-unit 7021 is configured to: when receiving a second configuration information, determine the n or W H based on the one second configuration information; second configuration information, second configuration information based on the plurality of determining a plurality of candidate n or W H; selected from the n or the W H W H or plurality of candidate n.
  • the second determining unit 702 further includes: a fourth receiving subunit 7023 configured to receive the second control signaling;
  • the second determining subunit 7021 is further configured to select the n or W H from the plurality of candidates n or W H according to the second control signaling.
  • the second control signaling is: DCI, or MAC CE.
  • the second control signaling and the first control signaling are the same control signaling.
  • the third determining unit 703 is specifically configured to determine a frequency domain location of the second step of the frequency hopping according to the frequency domain location of the first step of the frequency hopping and the frequency hopping step corresponding to the uplink channel;
  • the frequency domain location of the first step of the frequency hopping and the frequency domain location of the second step of the frequency hopping are frequency domain locations for transmitting the uplink channel.
  • the third determining unit 703 includes:
  • the fifth receiving subunit 7031 is configured to receive the third control signaling
  • the third determining subunit 7032 is configured to determine a frequency domain location of the first step of the frequency hopping based on the third control instruction.
  • the third control signaling is: DCI, or MAC CE.
  • the third control signaling is the same control signaling as at least one of the following: the first control signaling and the second control signaling.
  • each unit in the determining apparatus for channel frequency hopping shown in FIG. 7 can be understood by referring to the related description of the method for determining the frequency hopping of the foregoing channel.
  • the function of each unit in the channel frequency hopping determining apparatus shown in FIG. 7 can be realized by a program running on a processor, or can be realized by a specific logic circuit.
  • the device for determining the channel frequency hopping may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a separate product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • the embodiment of the present invention further provides a computer storage medium, wherein computer executable instructions are stored, and when the computer executable instructions are executed by the processor, the method for determining the channel frequency hopping of the embodiment of the present invention is implemented.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the terminal 80 may include one or more (only one shown) processor 802.
  • the processor 802 may include but is not limited to micro processing.
  • a processing device such as a Micro Controller Unit (MCU) or a Programmable Gate Array (FPGA), a memory 804 for storing data, and a transmission device 806 for communication functions.
  • MCU Micro Controller Unit
  • FPGA Programmable Gate Array
  • FIG. 8 is merely illustrative and does not limit the structure of the above electronic device.
  • terminal 80 may also include more or fewer components than shown in FIG. 8, or have a different configuration than that shown in FIG.
  • the memory 804 can be used to store software programs and modules of application software, such as program instructions/modules corresponding to the method for determining channel frequency hopping in the embodiment of the present invention, and the processor 802 runs the software programs and modules stored in the memory 804, thereby The above methods are implemented by performing various functional applications and data processing.
  • Memory 804 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 804 can further include memory remotely located relative to processor 802, which can be connected to terminal 80 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 806 is for receiving or transmitting data via a network.
  • the network specific examples described above may include a wireless network provided by a communication provider of the terminal 80.
  • the transmission device 806 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 806 can be a radio frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF radio frequency
  • the disclosed method and smart device may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one second processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种信道跳频的确定方法及装置、计算机存储介质,包括:终端确定带宽分段对应的第一带宽,所述带宽分段对应的第一带宽小于系统带宽对应的第二带宽;所述终端基于所述带宽分段对应的第一带宽,确定上行信道对应的跳频步长;所述终端基于所述上行信道对应的跳频步长,确定用于传输上行信道的频域位置。

Description

一种信道跳频的确定方法及装置、计算机存储介质 技术领域
本发明涉及移动通信领域中的跳频技术,尤其涉及一种信道跳频的确定方法及装置、计算机存储介质。
背景技术
在长期演进(LTE,Long Term Evolution)系统中,物理上行控制信道(PUCCH,Physical Uplink Control CHannel)可采用跳频技术,以获得频域分集增益,提高信道传输性能。在LTE中,PUCCH跳频的第一步和第二步是以系统带宽的中心镜像对称的,如图1所示,第一步与系统带宽下边缘的距离和第二步与系统带宽上边缘的距离保持一致,均为D。
上述针对PUCCH跳频的设计可以将PUCCH分布在系统带宽两侧,以便将系统带宽的中央部分留给数据信道,如物理上行共享信道(PUSCH,Physical Uplink Shared Channel),但将造成不同终端的PUCCH跳频步长不同。如图2所示,一些终端的跳频步长较大,PUCCH更靠近系统带宽边缘,频域分集效果更佳,传输性能更好;而另一些终端的跳频步长较小,PUCCH更靠近系统带宽中央,频域分集效果更差,传输性能较差。可见,传统的PUCCH跳频的设计造成PUCCH跳频步长不稳定,在PUCCH容量较大时,导致部分终端的PUCCH传输性能下降。
发明内容
为解决上述技术问题,本发明实施例提供了一种信道跳频的确定方法及装置、计算机存储介质。
本发明实施例提供的信道跳频的确定方法,包括:
终端确定带宽分段对应的第一带宽,所述带宽分段对应的第一带宽小于系统带宽对应的第二带宽;
所述终端基于所述带宽分段对应的第一带宽,确定上行信道对应的跳频步长;
所述终端基于所述上行信道对应的跳频步长,确定用于传输上行信道的频域位置。
本发明实施例中,所述终端确定带宽分段对应的第一带宽,包括:
所述终端接收第一配置信息,基于所述第一配置信息确定所述带宽分段对应的第一带宽。
本发明实施例中,所述终端接收第一配置信息,包括:
所述终端接收携带所述第一配置信息的无线资源控制(RRC,Radio Resource Control)信令;或者,
所述终端接收携带所述第一配置信息的系统信息。
本发明实施例中,所述终端接收第一配置信息,基于所述第一配置信息确定所述带宽分段对应的第一带宽,包括:
所述终端接收到一个第一配置信息时,基于所述一个第一配置信息确定所述带宽分段对应的第一带宽;
所述终端接收到多个第一配置信息时,基于所述多个第一配置信息确定所述带宽分段对应的多个候选第一带宽;从所述多个候选第一带宽中选择出所述带宽分段对应的第一带宽。
本发明实施例中,所述从所述多个候选第一带宽中选择出所述带宽分段对应的第一带宽,包括:
所述终端接收第一控制信令,根据所述第一控制信令从所述多个候选第一带宽中选择出所述带宽分段对应的第一带宽。
本发明实施例中,所述第一控制信令为:下行控制信令(DCI,Downlink Control Information)、或媒体介入控制层的控制信令(MAC CE,Media Access Control Control Element)。
本发明实施例中,所述终端基于所述带宽分段对应的第一带宽,确定上行信道对应的跳频步长,包括:
所述终端基于以下公式确定所述上行信道对应的跳频步长:W H=nW,
其中,W H为上行信道对应的跳频步长,W为带宽分段对应的第一带宽,n为比例系数,n=1/m,m为大于1的正整数。
基于公式W H=nW确定所述W H时,
Figure PCTCN2018083985-appb-000001
Figure PCTCN2018083985-appb-000002
其中,
Figure PCTCN2018083985-appb-000003
表示大于nW的最小整数,
Figure PCTCN2018083985-appb-000004
表示小于nW的最大整数。
考虑到跳频步长等于频域调度单元的整数倍才有实际意义,因此本发明实施例中W H的取值为整数。
本发明实施例中,所述方法还包括:
所述终端基于预设值确定所述n或W H;或者,
所述终端接收第二配置信息,基于所述第二配置信息确定所述n或W H
本发明实施例中,所述终端接收第二配置信息,包括:
所述终端接收携带所述第二配置信息的RRC信令;或者,
所述终端接收携带所述第二配置信息的系统信息。
本发明实施例中,所述第二配置信息与所述第一配置信息为同一配置信息。
本发明实施例中,所述终端接收第二配置信息,基于所述第二配置信息确定所述n或W H,包括:
所述终端接收到一个第二配置信息时,基于所述一个第二配置信息确 定所述n或W H
所述终端接收到多个第二配置信息时,基于所述多个第二配置信息确定多个候选n或W H;从所述多个候选n或W H中选择出所述n或W H
本发明实施例中,所述从所述多个候选n或W H中选择出所述n或W H,包括:
所述终端接收第二控制信令,根据所述第二控制信令从所述多个候选n或W H中选择出所述n或W H
本发明实施例中,所述第二控制信令为:DCI、或MAC CE。
本发明实施例中,所述第二控制信令与所述第一控制信令为同一控制信令。
本发明实施例中,所述终端基于所述上行信道对应的跳频步长,确定用于传输上行信道的频域位置,包括:
所述终端根据跳频第一步的频域位置以及所述上行信道对应的跳频步长,确定跳频第二步的频域位置;
其中,所述跳频第一步的频域位置以及所述跳频第二步的频域位置为用于传输上行信道的频域位置。
本发明实施例中,所述方法还包括:
所述终端接收第三控制信令,基于所述第三控制指令确定所述跳频第一步的频域位置。
本发明实施例中,所述第三控制信令为:DCI、或MAC CE。
本发明实施例中,所述第三控制信令与以下至少之一为同一控制信令:所述第一控制信令、所述第二控制信令。
本发明实施例提供的信道跳频的确定装置,包括:
第一确定单元,配置为确定带宽分段对应的第一带宽,所述带宽分段对应的第一带宽小于系统带宽对应的第二带宽;
第二确定单元,配置为基于所述带宽分段对应的第一带宽,确定上行信道对应的跳频步长;
第三确定单元,配置为基于所述上行信道对应的跳频步长,确定用于传输上行信道的频域位置。
本发明实施例中,所述第一确定单元包括:
第一接收子单元,配置为接收第一配置信息;
第一确定子单元,配置为基于所述第一配置信息确定所述带宽分段对应的第一带宽。
本发明实施例中,所述第一接收子单元,具体配置为接收携带所述第一配置信息的RRC信令;或者,接收携带所述第一配置信息的系统信息。
本发明实施例中,所述第一确定子单元,具体配置为当接收到一个第一配置信息时,基于所述一个第一配置信息确定所述带宽分段对应的第一带宽;当接收到多个第一配置信息时,基于所述多个第一配置信息确定所 述带宽分段对应的多个候选第一带宽;从所述多个候选第一带宽中选择出所述带宽分段对应的第一带宽。
本发明实施例中,所述第一确定单元还包括:
第二接收子单元,配置为接收第一控制信令;
所述第一确定子单元,还配置为根据所述第一控制信令从所述多个候选第一带宽中选择出所述带宽分段对应的第一带宽。
本发明实施例中,所述第一控制信令为:DCI、或MAC CE。
本发明实施例中,所述第二确定单元,具体配置为基于以下公式确定所述上行信道对应的跳频步长:W H=nW,
其中,W H为上行信道对应的跳频步长,W为带宽分段对应的第一带宽,n为比例系数,n=1/m,m为大于1的正整数。
基于公式W H=nW确定所述W H时,
Figure PCTCN2018083985-appb-000005
Figure PCTCN2018083985-appb-000006
其中,
Figure PCTCN2018083985-appb-000007
表示大于nW的最小整数,
Figure PCTCN2018083985-appb-000008
表示小于nW的最大整数。
考虑到跳频步长等于频域调度单元的整数倍才有实际意义,因此本发明实施例中W H的取值为整数。
本发明实施例中,所述第二确定单元,包括:
第二确定子单元,配置为基于预设值确定所述n或W H
或者,
第三接收子单元,配置为接收第二配置信息;
第二确定子单元,配置为基于所述第二配置信息确定所述n或W H
本发明实施例中,所述第三接收子单元,具体配置为接收携带所述第二配置信息的RRC信令;或者,接收携带所述第二配置信息的系统信息。
本发明实施例中,所述第二配置信息与所述第一配置信息为同一配置信息。
本发明实施例中,所述第二确定子单元,具体配置为当接收到一个第二配置信息时,基于所述一个第二配置信息确定所述n或W H;当接收到多个第二配置信息时,基于所述多个第二配置信息确定多个候选n或W H;从所述多个候选n或W H中选择出所述n或W H
本发明实施例中,所述第二确定单元,还包括:第四接收子单元,配置为接收第二控制信令;
所述第二确定子单元,还配置为根据所述第二控制信令从所述多个候选n或W H中选择出所述n或W H
本发明实施例中,所述第二控制信令为:DCI、或MAC CE。
本发明实施例中,所述第二控制信令与所述第一控制信令为同一控制信令。
本发明实施例中,所述第三确定单元,具体配置为根据跳频第一步的频域位置以及所述上行信道对应的跳频步长,确定跳频第二步的频域位置;
其中,所述跳频第一步的频域位置以及所述跳频第二步的频域位置为 用于传输上行信道的频域位置。
本发明实施例中,所述第三确定单元包括:
第五接收子单元,配置为接收第三控制信令;
第三确定子单元,配置为基于所述第三控制指令确定所述跳频第一步的频域位置。
本发明实施例中,所述第三控制信令为:DCI、或MAC CE。
本发明实施例中,所述第三控制信令与以下至少之一为同一控制信令:所述第一控制信令、所述第二控制信令。
本发明实施例提供的计算机存储介质,其上存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现上述的信道跳频的确定方法。
本发明实施例的技术方案中,终端确定带宽分段对应的第一带宽,所述带宽分段对应的第一带宽小于系统带宽对应的第二带宽;所述终端基于所述带宽分段对应的第一带宽,确定上行信道对应的跳频步长;所述终端基于所述上行信道对应的跳频步长,确定用于传输上行信道的频域位置。采用本发明实施例的技术方案,可以在给定带宽分段的宽带大小的情况下,实现稳定的跳频步长,从而获得更稳定的频域分集增益,改善了上行信道(尤其是上行控制信道)的传输性能。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为现有的PUCCH频域结构的示意图一;
图2为现有的PUCCH频域结构的示意图二;
图3为本发明实施例的信道跳频的确定方法的流程示意图;
图4为本发明实施例的PUCCH频域结构的示意图一;
图5为本发明实施例的PUCCH频域结构的示意图二;
图6为本发明实施例的信道跳频的确定装置的结构组成示意图一;
图7为本发明实施例的信道跳频的确定装置的结构组成示意图二;
图8为本发明实施例的终端的结构组成示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
第五代移动通信(5G NR)系统是未来移动通信系统研究的方向。在5G NR系统中,一方面,为了增加频域资源分配的灵活性、降低终端耗电, 5G NR终端可以在小于系统带宽的带宽分段(Bandwidth Part)中传输信号,当带宽分段的带宽较小时,位于中央的PUCCH的跳频步长会进一步缩小,影响PUCCH传输性能。另一方面,由于5G NR引入了一系列新技术,如新型多入多出(MIMO,Multiple-Input Multiple-Output)技术,需要更大数量的信道状态信息上报(CSI report),PUCCH的负载大幅增大,这会造成PUCCH在带宽分段中占用更大比例的频域资源,靠近带宽分段中央的PUCCH跳频步长变得更小,传输性能进一步恶化。
为此,本发明实施例提出了一种信道跳频的确定方法,可以在给定带宽分段的宽带大小的情况下,实现稳定的跳频步长,从而获得更稳定的频域分集增益,改善了上行信道(尤其是上行控制信道)的传输性能。
图3为本发明实施例的信道跳频的确定方法的流程示意图,如图3所示,所述信道跳频的确定方法包括以下步骤:
步骤301:终端确定带宽分段对应的第一带宽,所述带宽分段对应的第一带宽小于系统带宽对应的第二带宽。
本发明实施例中,终端的类型并不受限制,终端可以是手机、笔记本、平板电脑、台式机、车载终端、智能家居终端等任意类型。
本发明实施例中,将基站支持的带宽称为系统带宽,也即第二带宽。在LTE中,终端可以在整个系统带宽范围内传输信号。在5G NR系统中,终端只在系统带宽的一部分传输信号,这里,系统带宽的一部分称为带宽分段,通过带宽分段能够有效提高系统带宽的资源利用效率。
本发明实施例中,上行信道可以采用跳频方式进行传输,以跳频包括两步为例,跳频的第一步与跳频的第二步在频域上的差值即为跳频步长,跳频步长的大小决定了上行信道的频域分集增益,跳频步长越大,上行信道的频域分集增益越大,相反,跳频步长越小,上行信道的频域分集增益越小。为了得到稳定且较大的频域分集增益,本发明实施例基于带宽分段对应的第一带宽来确定上行信道对应的跳频步长,以改善上行信道(尤其是上行控制信道)的传输性能。
具体地,终端需要首先确定带宽分段对应的第一带宽,显然,带宽分段对应的第一带宽小于系统带宽对应的第二带宽。
本发明实施例中,终端接收第一配置信息,基于所述第一配置信息确定所述带宽分段对应的第一带宽。
这里,终端接收第一配置信息可以通过以下两种方式实现:
方式一:终端接收携带所述第一配置信息的RRC信令。
方式二:终端接收携带所述第一配置信息的系统信息。
上述方案中,终端接收到的第一配置信息的个数可以是一个,也可以是多个,这里,多个的意思是指大于等于两个。
所述终端接收到一个第一配置信息时,基于所述一个第一配置信息确定所述带宽分段对应的第一带宽。
所述终端接收到多个第一配置信息时,基于所述多个第一配置信息确定所述带宽分段对应的多个候选第一带宽;从所述多个候选第一带宽中选择出所述带宽分段对应的第一带宽。
这里,终端接收第一控制信令,根据所述第一控制信令从所述多个候选第一带宽中选择出所述带宽分段对应的第一带宽。其中,所述第一控制信令为:DCI、或令MAC CE。
步骤302:所述终端基于所述带宽分段对应的第一带宽,确定上行信道对应的跳频步长。
本发明实施例中,终端基于以下公式确定所述上行信道对应的跳频步长:W H=nW,
其中,W H为上行信道对应的跳频步长,W为带宽分段对应的第一带宽,n为比例系数,n=1/m,m为大于1的正整数。
基于公式W H=nW确定所述W H时,
Figure PCTCN2018083985-appb-000009
Figure PCTCN2018083985-appb-000010
其中,
Figure PCTCN2018083985-appb-000011
表示大于nW的最小整数,
Figure PCTCN2018083985-appb-000012
表示小于nW的最大整数。
考虑到跳频步长等于频域调度单元的整数倍才有实际意义,因此本发明实施例中W H的取值为整数。
例如,n可以是1/2,1/4等,不同的终端可以对应相同的n值,或者,不同的终端对应不同的n值。
上述方案中,终端需要先确定n或W H,具体地,终端基于预设值确定所述n或W H;或者,终端接收第二配置信息,基于所述第二配置信息确定所述n或W H
这里,终端接收第二配置信息可以通过以下两种方式实现:
方式一:终端接收携带所述第二配置信息的RRC信令。
方式二:终端接收携带所述第二配置信息的系统信息。
在本发明一实施方式中,所述第二配置信息与所述第一配置信息为同一配置信息。
上述方案中,终端接收到的第二配置信息的个数可以是一个,也可以是多个。
所述终端接收到一个第二配置信息时,基于所述一个第二配置信息确定所述n或W H
所述终端接收到多个第二配置信息时,基于所述多个第二配置信息确定多个候选n或W H;从所述多个候选n或W H中选择出所述n或W H
这里,终端接收第二控制信令,根据所述第二控制信令从所述多个候选n或W H中选择出所述n或W H。其中,所述第二控制信令为:DCI、或MAC CE。
在本发明一实施方式中,所述第二控制信令与所述第一控制信令为同一控制信令。
步骤303:所述终端基于所述上行信道对应的跳频步长,确定用于传输 上行信道的频域位置。
本发明实施例中,终端根据跳频第一步的频域位置以及所述上行信道对应的跳频步长,确定跳频第二步的频域位置;其中,所述跳频第一步的频域位置以及所述跳频第二步的频域位置为用于传输上行信道的频域位置。
这里,终端接收第三控制信令,基于所述第三控制指令确定所述跳频第一步的频域位置。其中,所述第三控制信令为:DCI、或MAC CE。
本发明实施例中,所述第三控制信令与以下至少之一为同一控制信令:所述第一控制信令、所述第二控制信令。
以下结合具体应用示例对本发明实施例的技术方案做进一步详细描述。
应用示例一:
本示例中,针对PUCCH频域,一个带宽分段内采用统一的跳频步长。
图4为本发明实施例的PUCCH频域结构的示意图一,如图4所示,某个带宽分段或某种带宽分段的带宽大小为W,PUCCH频域的跳频步长W H与带宽分段的带宽大小W对应,例如,W H=W/2。
在一实施方式中,对于采用相同带宽分段的多个终端,均采用相同的W H。例如:带宽分段1的带宽大小为W1,带宽分段2的带宽大小为W2,那么,带宽分段1内的多个终端采用相同的W H=W1/2,带宽分段2内的多个终端采用相同的W H=W2/2。
在另一实施方式中,对于采用相同大小的带宽分段的多个终端,均采用相同的W H。例如:带宽分段1和带宽分段2的带宽大小均为W,那么,带宽分段1和带宽分段2内的多个终端均采用相同的W H=W/2。
应用示例二:
本示例中,针对PUCCH频域,一个带宽分段内采用多种跳频步长。
图5为本发明实施例的PUCCH频域结构的示意图二,如图5所示,某个带宽分段或某种带宽分段的带宽大小为W,PUCCH频域的跳频步长W H与带宽分段的带宽大小W对应。对于采用相同带宽分段或相同大小的带宽分段的多个终端,可以采用不同的W H配置,如终端1的W H=W/4,终端2的W H=W/2,也即:终端1和终端2采用不同的n配置,即终端1的n=4,终端2的n=2。
图6为本发明实施例的信道跳频的确定装置的结构组成示意图一,如图6所示,所述信道跳频的确定装置包括:
第一确定单元601,配置为确定带宽分段对应的第一带宽,所述带宽分段对应的第一带宽小于系统带宽对应的第二带宽;
第二确定单元602,配置为基于所述带宽分段对应的第一带宽,确定上行信道对应的跳频步长;
第三确定单元603,配置为基于所述上行信道对应的跳频步长,确定用 于传输上行信道的频域位置。
本领域技术人员应当理解,图6所示的信道跳频的确定装置中的各单元的实现功能可参照前述信道跳频的确定方法的相关描述而理解。图6所示的信道跳频的确定装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
图7为本发明实施例的信道跳频的确定装置的结构组成示意图二,如图7所示,所述信道跳频的确定装置包括:
第一确定单元701,配置为确定带宽分段对应的第一带宽,所述带宽分段对应的第一带宽小于系统带宽对应的第二带宽;
第二确定单元702,配置为基于所述带宽分段对应的第一带宽,确定上行信道对应的跳频步长;
第三确定单元703,配置为基于所述上行信道对应的跳频步长,确定用于传输上行信道的频域位置。
本发明实施例中,所述第一确定单元701包括:
第一接收子单元7011,配置为接收第一配置信息;
第一确定子单元7012,配置为基于所述第一配置信息确定所述带宽分段对应的第一带宽。
本发明实施例中,所述第一接收子单元7011,具体配置为接收携带所述第一配置信息的RRC信令;或者,接收携带所述第一配置信息的系统信息。
本发明实施例中,所述第一确定子单元7012,具体配置为当接收到一个第一配置信息时,基于所述一个第一配置信息确定所述带宽分段对应的第一带宽;当接收到多个第一配置信息时,基于所述多个第一配置信息确定所述带宽分段对应的多个候选第一带宽;从所述多个候选第一带宽中选择出所述带宽分段对应的第一带宽。
本发明实施例中,所述第一确定单元701还包括:
第二接收子单元7013,配置为接收第一控制信令;
所述第一确定子单元7012,还配置为根据所述第一控制信令从所述多个候选第一带宽中选择出所述带宽分段对应的第一带宽。
本发明实施例中,所述第一控制信令为:DCI、或MAC CE。
本发明实施例中,所述第二确定单元702,具体配置为基于以下公式确定所述上行信道对应的跳频步长:W H=nW,
其中,W H为上行信道对应的跳频步长,W为带宽分段对应的第一带宽,n为比例系数,n=1/m,m为大于1的正整数。
基于公式W H=nW确定所述W H时,
Figure PCTCN2018083985-appb-000013
Figure PCTCN2018083985-appb-000014
其中,
Figure PCTCN2018083985-appb-000015
表示大于nW的最小整数,
Figure PCTCN2018083985-appb-000016
表示小于nW的最大整数。
考虑到跳频步长等于频域调度单元的整数倍才有实际意义,因此本发明实施例中W H的取值为整数。
本发明实施例中,所述第二确定单元702,包括:
第二确定子单元7021,配置为基于预设值确定所述n或W H
或者,
第三接收子单元7022,配置为接收第二配置信息;
第二确定子单元7021,配置为基于所述第二配置信息确定所述n或W H
本发明实施例中,所述第三接收子单元7022,具体配置为接收携带所述第二配置信息的RRC信令;或者,接收携带所述第二配置信息的系统信息。
本发明实施例中,所述第二配置信息与所述第一配置信息为同一配置信息。
本发明实施例中,所述第二确定子单元7021,具体配置为当接收到一个第二配置信息时,基于所述一个第二配置信息确定所述n或W H;当接收到多个第二配置信息时,基于所述多个第二配置信息确定多个候选n或W H;从所述多个候选n或W H中选择出所述n或W H
本发明实施例中,所述第二确定单元702,还包括:第四接收子单元7023,配置为接收第二控制信令;
所述第二确定子单元7021,还配置为根据所述第二控制信令从所述多个候选n或W H中选择出所述n或W H
本发明实施例中,所述第二控制信令为:DCI、或MAC CE。
本发明实施例中,所述第二控制信令与所述第一控制信令为同一控制信令。
本发明实施例中,所述第三确定单元703,具体配置为根据跳频第一步的频域位置以及所述上行信道对应的跳频步长,确定跳频第二步的频域位置;
其中,所述跳频第一步的频域位置以及所述跳频第二步的频域位置为用于传输上行信道的频域位置。
本发明实施例中,所述第三确定单元703包括:
第五接收子单元7031,配置为接收第三控制信令;
第三确定子单元7032,配置为基于所述第三控制指令确定所述跳频第一步的频域位置。
本发明实施例中,所述第三控制信令为:DCI、或MAC CE。
本发明实施例中,所述第三控制信令与以下至少之一为同一控制信令:所述第一控制信令、所述第二控制信令。
本领域技术人员应当理解,图7所示的信道跳频的确定装置中的各单元的实现功能可参照前述信道跳频的确定方法的相关描述而理解。图7所示的信道跳频的确定装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
本发明实施例上述信道跳频的确定装置如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,其中存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现本发明实施例的上述信道跳频的确定方法。
图8为本发明实施例的终端的结构组成示意图,如图8所示,终端80可以包括一个或多个(图中仅示出一个)处理器802(处理器802可以包括但不限于微处理器(MCU,Micro Controller Unit)或可编程逻辑器件(FPGA,Field Programmable Gate Array)等的处理装置)、用于存储数据的存储器804、以及用于通信功能的传输装置806。本领域普通技术人员可以理解,图8所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,终端80还可包括比图8中所示更多或者更少的组件,或者具有与图8所示不同的配置。
存储器804可用于存储应用软件的软件程序以及模块,如本发明实施例中的信道跳频的确定方法对应的程序指令/模块,处理器802通过运行存储在存储器804内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器804可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器804可进一步包括相对于处理器802远程设置的存储器,这些远程存储器可以通过网络连接至终端80。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置806用于经由一个网络接收或者发送数据。上述的网络具体实例可包括终端80的通信供应商提供的无线网络。在一个实例中,传输装置806包括一个网络适配器(NIC,Network Interface Controller),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置806可以为射频(RF,Radio Frequency)模块,其用于通过无线方式与互联网进行通讯。
本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
在本发明所提供的几个实施例中,应该理解到,所揭露的方法和智能 设备,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个第二处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。

Claims (39)

  1. 一种信道跳频的确定方法,所方法包括:
    终端确定带宽分段对应的第一带宽,所述带宽分段对应的第一带宽小于系统带宽对应的第二带宽;
    所述终端基于所述带宽分段对应的第一带宽,确定上行信道对应的跳频步长;
    所述终端基于所述上行信道对应的跳频步长,确定用于传输上行信道的频域位置。
  2. 根据权利要求1所述的信道跳频的确定方法,其中,所述终端确定带宽分段对应的第一带宽,包括:
    所述终端接收第一配置信息,基于所述第一配置信息确定所述带宽分段对应的第一带宽。
  3. 根据权利要求2所述的信道跳频的确定方法,其中,所述终端接收第一配置信息,包括:
    所述终端接收携带所述第一配置信息的无线资源控制RRC信令;或者,
    所述终端接收携带所述第一配置信息的系统信息。
  4. 根据权利要求2所述的信道跳频的确定方法,其中,所述终端接收第一配置信息,基于所述第一配置信息确定所述带宽分段对应的第一带宽,包括:
    所述终端接收到一个第一配置信息时,基于所述一个第一配置信息确定所述带宽分段对应的第一带宽;
    所述终端接收到多个第一配置信息时,基于所述多个第一配置信息确定所述带宽分段对应的多个候选第一带宽;从所述多个候选第一带宽中选择出所述带宽分段对应的第一带宽。
  5. 根据权利要求4所述的信道跳频的确定方法,其中,所述从所述多个候选第一带宽中选择出所述带宽分段对应的第一带宽,包括:
    所述终端接收第一控制信令,根据所述第一控制信令从所述多个候选第一带宽中选择出所述带宽分段对应的第一带宽。
  6. 根据权利要求5所述的信道跳频的确定方法,其中,所述第一控制信令为:下行控制信令DCI、或媒体介入控制层的控制信令MAC CE。
  7. 根据权利要求1或2所述的信道跳频的确定方法,其中,所述终端基于所述带宽分段对应的第一带宽,确定上行信道对应的跳频步长,包括:
    所述终端基于以下公式确定所述上行信道对应的跳频步长:W H=nW,
    其中,W H为上行信道对应的跳频步长,W为带宽分段对应的第一带 宽,n为比例系数,n=1/m,m为大于1的正整数。
  8. 根据权利要求7所述的信道跳频的确定方法,基于公式W H=nW确定所述W H时,
    Figure PCTCN2018083985-appb-100001
    Figure PCTCN2018083985-appb-100002
    其中,
    Figure PCTCN2018083985-appb-100003
    表示大于nW的最小整数,
    Figure PCTCN2018083985-appb-100004
    表示小于nW的最大整数。
  9. 根据权利要求7或8所述的信道跳频的确定方法,其中,所述方法还包括:
    所述终端基于预设值确定所述n或W H;或者,
    所述终端接收第二配置信息,基于所述第二配置信息确定所述n或W H
  10. 根据权利要求9所述的信道跳频的确定方法,其中,所述终端接收第二配置信息,包括:
    所述终端接收携带所述第二配置信息的RRC信令;或者,
    所述终端接收携带所述第二配置信息的系统信息。
  11. 根据权利要求10所述的信道跳频的确定方法,其中,所述第二配置信息与所述第一配置信息为同一配置信息。
  12. 根据权利要求9所述的信道跳频的确定方法,其中,所述终端接收第二配置信息,基于所述第二配置信息确定所述n或W H,包括:
    所述终端接收到一个第二配置信息时,基于所述一个第二配置信息确定所述n或W H
    所述终端接收到多个第二配置信息时,基于所述多个第二配置信息确定多个候选n或W H;从所述多个候选n或W H中选择出所述n或W H
  13. 根据权利要求12所述的信道跳频的确定方法,其中,所述从所述多个候选n或W H中选择出所述n或W H,包括:
    所述终端接收第二控制信令,根据所述第二控制信令从所述多个候选n或W H中选择出所述n或W H
  14. 根据权利要求13所述的信道跳频的确定方法,其中,所述第二控制信令为:DCI、或MAC CE。
  15. 根据权利要求14所述的信道跳频的确定方法,其中,所述第二控制信令与所述第一控制信令为同一控制信令。
  16. 根据权利要求1所述的信道跳频的确定方法,其中,所述终端基于所述上行信道对应的跳频步长,确定用于传输上行信道的频域位置,包括:
    所述终端根据跳频第一步的频域位置以及所述上行信道对应的跳频步长,确定跳频第二步的频域位置;
    其中,所述跳频第一步的频域位置以及所述跳频第二步的频域位置为用于传输上行信道的频域位置。
  17. 根据权利要求16所述的信道跳频的确定方法,其中,所述方法 还包括:
    所述终端接收第三控制信令,基于所述第三控制指令确定所述跳频第一步的频域位置。
  18. 根据权利要求17所述的信道跳频的确定方法,其中,所述第三控制信令为:DCI、或MAC CE。
  19. 根据权利要求18所述的信道跳频的确定方法,其中,所述第三控制信令与以下至少之一为同一控制信令:所述第一控制信令、所述第二控制信令。
  20. 一种信道跳频的确定装置,所述装置包括:
    第一确定单元,配置为确定带宽分段对应的第一带宽,所述带宽分段对应的第一带宽小于系统带宽对应的第二带宽;
    第二确定单元,配置为基于所述带宽分段对应的第一带宽,确定上行信道对应的跳频步长;
    第三确定单元,配置为基于所述上行信道对应的跳频步长,确定用于传输上行信道的频域位置。
  21. 根据权利要求20所述的信道跳频的确定装置,其中,所述第一确定单元包括:
    第一接收子单元,配置为接收第一配置信息;
    第一确定子单元,配置为基于所述第一配置信息确定所述带宽分段对应的第一带宽。
  22. 根据权利要求21所述的信道跳频的确定装置,其中,所述第一接收子单元,具体配置为接收携带所述第一配置信息的RRC信令;或者,接收携带所述第一配置信息的系统信息。
  23. 根据权利要求21所述的信道跳频的确定装置,其中,所述第一确定子单元,具体配置为当接收到一个第一配置信息时,基于所述一个第一配置信息确定所述带宽分段对应的第一带宽;当接收到多个第一配置信息时,基于所述多个第一配置信息确定所述带宽分段对应的多个候选第一带宽;从所述多个候选第一带宽中选择出所述带宽分段对应的第一带宽。
  24. 根据权利要求23所述的信道跳频的确定装置,其中,所述第一确定单元还包括:
    第二接收子单元,配置为接收第一控制信令;
    所述第一确定子单元,还配置为根据所述第一控制信令从所述多个候选第一带宽中选择出所述带宽分段对应的第一带宽。
  25. 根据权利要求24所述的信道跳频的确定装置,其中,所述第一控制信令为:DCI、或MAC CE。
  26. 根据权利要求20或21所述的信道跳频的确定装置,其中,所述第二确定单元,具体配置为基于以下公式确定所述上行信道对应的跳 频步长:W H=nW,
    其中,W H为上行信道对应的跳频步长,W为带宽分段对应的第一带宽,n为比例系数,n=1/m,m为大于1的正整数。
  27. 根据权利要求26所述的信道跳频的确定装置,基于公式W H=nW确定所述W H时,
    Figure PCTCN2018083985-appb-100005
    Figure PCTCN2018083985-appb-100006
    其中,
    Figure PCTCN2018083985-appb-100007
    表示大于nW的最小整数,
    Figure PCTCN2018083985-appb-100008
    表示小于nW的最大整数。
  28. 根据权利要求26或27所述的信道跳频的确定装置,其中,所述第二确定单元,包括:
    第二确定子单元,配置为基于预设值确定所述n或W H
    或者,
    第三接收子单元,配置为接收第二配置信息;
    第二确定子单元,配置为基于所述第二配置信息确定所述n或W H
  29. 根据权利要求28所述的信道跳频的确定装置,其中,所述第三接收子单元,具体配置为接收携带所述第二配置信息的RRC信令;或者,接收携带所述第二配置信息的系统信息。
  30. 根据权利要求29所述的信道跳频的确定装置,其中,所述第二配置信息与所述第一配置信息为同一配置信息。
  31. 根据权利要求28所述的信道跳频的确定装置,其中,所述第二确定子单元,具体配置为当接收到一个第二配置信息时,基于所述一个第二配置信息确定所述n或W H;当接收到多个第二配置信息时,基于所述多个第二配置信息确定多个候选n或W H;从所述多个候选n或W H中选择出所述n或W H
  32. 根据权利要求31所述的信道跳频的确定装置,其中,所述第二确定单元,还包括:第四接收子单元,配置为接收第二控制信令;
    所述第二确定子单元,还配置为根据所述第二控制信令从所述多个候选n或W H中选择出所述n或W H
  33. 根据权利要求32所述的信道跳频的确定装置,其中,所述第二控制信令为:DCI、或MAC CE。
  34. 根据权利要求33所述的信道跳频的确定装置,其中,所述第二控制信令与所述第一控制信令为同一控制信令。
  35. 根据权利要求20所述的信道跳频的确定装置,其中,所述第三确定单元,具体配置为根据跳频第一步的频域位置以及所述上行信道对应的跳频步长,确定跳频第二步的频域位置;
    其中,所述跳频第一步的频域位置以及所述跳频第二步的频域位置为用于传输上行信道的频域位置。
  36. 根据权利要求35所述的信道跳频的确定装置,其中,所述第三确定单元包括:
    第五接收子单元,配置为接收第三控制信令;
    第三确定子单元,配置为基于所述第三控制指令确定所述跳频第一步的频域位置。
  37. 根据权利要求36所述的信道跳频的确定装置,其中,所述第三控制信令为:DCI、或MAC CE。
  38. 根据权利要求37所述的信道跳频的确定装置,其中,所述第三控制信令与以下至少之一为同一控制信令:所述第一控制信令、所述第二控制信令。
  39. 一种计算机存储介质,其上存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现权利要求1-19任一项所述的方法步骤。
PCT/CN2018/083985 2017-09-08 2018-04-20 一种信道跳频的确定方法及装置、计算机存储介质 WO2019047535A1 (zh)

Priority Applications (24)

Application Number Priority Date Filing Date Title
EP18854548.7A EP3657687B1 (en) 2017-09-08 2018-04-20 Method and apparatus for determining frequency hopping of channel, and computer storage medium
CN201880042385.4A CN110870209A (zh) 2017-09-08 2018-04-20 一种信道跳频的确定方法及装置、计算机存储介质
EP22165945.1A EP4075684A1 (en) 2017-09-08 2018-04-20 Method and apparatus for determining frequency hopping for a channel, and computer storage medium
ES18854548T ES2921206T3 (es) 2017-09-08 2018-04-20 Método y aparato para determinar saltos de frecuencia de canal, y medio de almacenamiento informático
JP2020513921A JP7153066B2 (ja) 2017-09-08 2018-04-20 チャネルの周波数ホッピングの決定方法及び装置、コンピュータ記憶媒体
KR1020207009982A KR102466143B1 (ko) 2017-09-08 2018-04-20 채널 주파수 호핑 결정 방법 및 장치, 컴퓨터 저장 매체
AU2018328888A AU2018328888B2 (en) 2017-09-08 2018-04-20 Method and apparatus for determining frequency hopping of channel, and computer storage medium
EP22165995.6A EP4044452A1 (en) 2017-09-08 2018-07-25 Method and apparatus for determining frequency hopping for a channel, and computer storage medium
SG11202001883VA SG11202001883VA (en) 2017-09-08 2018-07-25 Method and apparatus for determining frequency hopping of channel, and computer storage medium
BR112020003984-5A BR112020003984A2 (pt) 2017-09-08 2018-07-25 método para determinar saltos de frequência para um canal, aparelho para determinar saltos de frequência para um canal e sistema de computador
CN201880042501.2A CN110785946A (zh) 2017-09-08 2018-07-25 一种信道跳频的确定方法及装置、计算机存储介质
PCT/CN2018/097114 WO2019047629A1 (zh) 2017-09-08 2018-07-25 一种信道跳频的确定方法及装置、计算机存储介质
CN202010087344.6A CN111313929B (zh) 2017-09-08 2018-07-25 一种信道跳频的确定方法及装置、计算机存储介质
MX2020002541A MX2020002541A (es) 2017-09-08 2018-07-25 Metodo y aparato para la determinacion de salto de frecuencia para un canal, y medio de almacenamiento de computadora.
RU2020112737A RU2771349C2 (ru) 2017-09-08 2018-07-25 Способ и устройство для определения скачкообразной перестройки частоты канала и компьютерный носитель данных
CA3074337A CA3074337C (en) 2017-09-08 2018-07-25 Method and apparatus for determining frequency hopping of channel, and computer storage medium
ES18853277T ES2916576T3 (es) 2017-09-08 2018-07-25 Método y aparato para determinar saltos de frecuencia de canal, y medio de almacenamiento informático
EP18853277.4A EP3664315B1 (en) 2017-09-08 2018-07-25 Method and apparatus for determining frequency hopping of channel, and computer storage medium
TW107131637A TWI766097B (zh) 2017-09-08 2018-09-07 一種通道跳頻的確定方法及裝置
US16/776,186 US11245500B2 (en) 2017-09-08 2020-01-29 Method and apparatus for determining frequency hopping for a channel, and computer storage medium
US16/802,460 US11309934B2 (en) 2017-09-08 2020-02-26 Method and apparatus for determining frequency hopping of channel, and computer storage medium
ZA2020/01287A ZA202001287B (en) 2017-09-08 2020-02-28 Method and apparatus for determining frequency hopping of channel, and computer storage medium
US17/645,874 US11962523B2 (en) 2017-09-08 2021-12-23 Method and apparatus for determining frequency hopping for a channel, and computer storage medium
US17/652,889 US12081259B2 (en) 2017-09-08 2022-02-28 Method and apparatus for determining frequency hopping of channel, and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2017/101093 2017-09-08
PCT/CN2017/101093 WO2019047171A1 (zh) 2017-09-08 2017-09-08 一种信道跳频的确定方法及装置、计算机存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/802,460 Continuation US11309934B2 (en) 2017-09-08 2020-02-26 Method and apparatus for determining frequency hopping of channel, and computer storage medium

Publications (1)

Publication Number Publication Date
WO2019047535A1 true WO2019047535A1 (zh) 2019-03-14

Family

ID=65634567

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/101093 WO2019047171A1 (zh) 2017-09-08 2017-09-08 一种信道跳频的确定方法及装置、计算机存储介质
PCT/CN2018/083985 WO2019047535A1 (zh) 2017-09-08 2018-04-20 一种信道跳频的确定方法及装置、计算机存储介质

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101093 WO2019047171A1 (zh) 2017-09-08 2017-09-08 一种信道跳频的确定方法及装置、计算机存储介质

Country Status (9)

Country Link
US (2) US11309934B2 (zh)
EP (2) EP3657687B1 (zh)
JP (1) JP7153066B2 (zh)
KR (1) KR102466143B1 (zh)
CN (2) CN110870209A (zh)
AU (1) AU2018328888B2 (zh)
ES (1) ES2921206T3 (zh)
TW (1) TWI766097B (zh)
WO (2) WO2019047171A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424972B2 (en) * 2018-02-15 2022-08-23 Ntt Docomo, Inc. User terminal and radio communication method
US11716114B2 (en) 2020-11-25 2023-08-01 Hyphy Usa Inc. Encoder and decoder circuits for the transmission of video media using spread spectrum direct sequence modulation
CN115413028A (zh) * 2021-05-10 2022-11-29 华为技术有限公司 一种信息传输的方法与装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283581A (zh) * 2013-07-01 2015-01-14 中兴通讯股份有限公司 一种确定探测参考信号跳频图案的方法及系统
US20160269939A1 (en) * 2015-03-11 2016-09-15 Samsung Electronics Co., Ltd Resource allocation for repetitions of transmissions in a communication system
CN106160988A (zh) * 2015-04-23 2016-11-23 电信科学技术研究院 一种pucch传输方法及装置
CN106464296A (zh) * 2014-08-07 2017-02-22 华为技术有限公司 传输数据的方法、设备及系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100483977C (zh) 2004-10-29 2009-04-29 清华大学 多媒体信息传输中时频矩阵二维信道动态分配方法
TW201028024A (en) * 2006-08-18 2010-07-16 Fujitsu Ltd Communication systems
CN101030801B (zh) * 2007-03-20 2011-05-11 中兴通讯股份有限公司 一种群跳频的方法及其信令传输方法
CN101272175B (zh) * 2007-03-21 2013-02-13 电信科学技术研究院 时分双工ofdma系统上行控制信令传输方法与装置
CN101400065B (zh) 2007-09-29 2012-11-28 中兴通讯股份有限公司 跳频资源的信令表示方法
KR101448653B1 (ko) 2007-10-01 2014-10-15 엘지전자 주식회사 주파수 호핑 패턴 및 이를 이용한 상향링크 신호 전송 방법
RU2531386C2 (ru) 2009-05-29 2014-10-20 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Устройство беспроводной связи и способ скачкообразной перестройки частоты
CN101815325B (zh) * 2010-03-09 2012-05-23 上海华为技术有限公司 跳频的实现方法、装置和通信系统
CN102781110B (zh) 2011-05-12 2015-04-01 中兴通讯股份有限公司 具有跳频功能的资源位置分配方法及装置
US8675605B2 (en) * 2011-06-02 2014-03-18 Broadcom Corporation Frequency hopping in license-exempt/shared bands
CN103517344B (zh) * 2012-06-20 2016-06-29 普天信息技术研究院有限公司 上行侦听参考信号的传输方法
JP6526174B2 (ja) 2014-08-15 2019-06-05 インターデイジタル パテント ホールディングス インコーポレイテッド 低減された帯域幅を用いるwtruに対してアップリンク送信およびmbmsをサポートするための方法および装置
CN109039560B (zh) * 2015-02-17 2019-11-19 华为技术有限公司 一种上行参考信号的通信装置及方法
US9654902B2 (en) 2015-05-22 2017-05-16 Hyukjun Oh Methods for performing machine type communication for the purpose of coverage enhancement apparatuses and systems for performing the same
CN106470499B (zh) * 2015-08-18 2021-10-15 北京三星通信技术研究有限公司 一种d2d通信中调度信息发送和接收的方法与设备
GB2552947A (en) * 2016-08-09 2018-02-21 Nec Corp Communication System
CN108631976B (zh) * 2017-03-23 2021-07-16 华为技术有限公司 一种通信方法及装置
US11483810B2 (en) 2017-04-03 2022-10-25 Huawei Technologies Co., Ltd. Methods and systems for resource configuration of wireless communication systems
KR102630998B1 (ko) 2017-05-04 2024-01-30 삼성전자 주식회사 단일 반송파 광대역 동작을 위한 대역폭 부분 구성
US11431464B2 (en) 2017-05-05 2022-08-30 Samsung Electronics Co., Ltd. Method and apparatus for uplink transmission in wireless communication system
KR20190027705A (ko) 2017-09-07 2019-03-15 엘지전자 주식회사 무선 통신 시스템에서 자원 할당 방법 및 상기 방법을 이용하는 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283581A (zh) * 2013-07-01 2015-01-14 中兴通讯股份有限公司 一种确定探测参考信号跳频图案的方法及系统
CN106464296A (zh) * 2014-08-07 2017-02-22 华为技术有限公司 传输数据的方法、设备及系统
US20160269939A1 (en) * 2015-03-11 2016-09-15 Samsung Electronics Co., Ltd Resource allocation for repetitions of transmissions in a communication system
CN106160988A (zh) * 2015-04-23 2016-11-23 电信科学技术研究院 一种pucch传输方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KT CORP: "Considerations on Frequency Hopping for PUCCH,", 3GPP TSG RAN WG1 MEETING #90 PRAGUE, R1-1714475, 25 August 2017 (2017-08-25), Czech ia., XP051317252 *
SAMSUNG: "Bandwidth Part Hopping for CORESETS", R1-1713621. 3GPP TSG RAN WG1 #90, 25 August 2017 (2017-08-25), Prague, Czech Republic, XP051316421 *
See also references of EP3657687A4 *

Also Published As

Publication number Publication date
ES2921206T3 (es) 2022-08-19
JP2020533875A (ja) 2020-11-19
CN111327346A (zh) 2020-06-23
CN110870209A (zh) 2020-03-06
CN111327346B (zh) 2021-11-23
AU2018328888B2 (en) 2023-02-23
EP3657687A1 (en) 2020-05-27
KR20200052334A (ko) 2020-05-14
KR102466143B1 (ko) 2022-11-10
AU2018328888A1 (en) 2020-03-19
TW201914237A (zh) 2019-04-01
JP7153066B2 (ja) 2022-10-13
WO2019047171A1 (zh) 2019-03-14
US20220190873A1 (en) 2022-06-16
US12081259B2 (en) 2024-09-03
US11309934B2 (en) 2022-04-19
US20200195298A1 (en) 2020-06-18
TWI766097B (zh) 2022-06-01
EP3657687B1 (en) 2022-06-01
EP3657687A4 (en) 2020-08-26
EP4075684A1 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
WO2018202215A1 (zh) 配置上行信号的方法及装置、确定上行信号的方法及装置
KR102126614B1 (ko) 웨이크-업 라디오 링크 적응
US12081259B2 (en) Method and apparatus for determining frequency hopping of channel, and computer storage medium
CN106068620B (zh) 定向方向选择方法、装置及系统
WO2019137299A1 (zh) 通信的方法和通信设备
CN108513728B (zh) 系统信息发送方法、系统信息接收方法及装置
US11962523B2 (en) Method and apparatus for determining frequency hopping for a channel, and computer storage medium
CN113938902B (zh) 小区选择方法和装置
TWI762715B (zh) 一種通道跳頻的確定方法及裝置
WO2019047629A1 (zh) 一种信道跳频的确定方法及装置、计算机存储介质
WO2018157719A1 (en) Network node, user device, and method for wireless communication system
WO2019140588A1 (zh) 一种时域资源确定方法及装置、计算机存储介质
WO2019165607A1 (zh) 下行传输资源的分配方法和装置
WO2022022482A1 (zh) 一种信息传输方法和通信装置
WO2018171778A1 (zh) 通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018854548

Country of ref document: EP

Effective date: 20200220

ENP Entry into the national phase

Ref document number: 2020513921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018328888

Country of ref document: AU

Date of ref document: 20180420

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207009982

Country of ref document: KR

Kind code of ref document: A