WO2020200187A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2020200187A1
WO2020200187A1 PCT/CN2020/082313 CN2020082313W WO2020200187A1 WO 2020200187 A1 WO2020200187 A1 WO 2020200187A1 CN 2020082313 W CN2020082313 W CN 2020082313W WO 2020200187 A1 WO2020200187 A1 WO 2020200187A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
information
resource allocation
domain resource
offset value
Prior art date
Application number
PCT/CN2020/082313
Other languages
English (en)
French (fr)
Inventor
黄雯雯
铁晓磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910760953.0A external-priority patent/CN111800868A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2021558872A priority Critical patent/JP7460653B2/ja
Priority to EP20782490.5A priority patent/EP3952524A4/en
Publication of WO2020200187A1 publication Critical patent/WO2020200187A1/zh
Priority to US17/492,165 priority patent/US20220030609A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • the power consumption of terminal equipment in a communication system is an important aspect of user experience.
  • the 3rd generation partnership project (3GPP) version proposes to optimize the terminal equipment in the new radio (NR) system Power consumption.
  • 3GPP 3rd generation partnership project
  • Release16 proposes to optimize the terminal equipment in the new radio (NR) system Power consumption.
  • One content of optimizing the power consumption of terminal equipment is to enhance the mechanism of base station scheduling data. The following will introduce the process of base station scheduling data of the existing protocol.
  • the base station configures the terminal equipment through radio resource control (radio resource control, RRC) signaling or predefines the physical downlink shared channel (PDSCH) time domain resources between the base station and the terminal equipment
  • Radio resource control radio resource control, RRC
  • PDSCH physical downlink shared channel
  • Time domain resource allocation list time domain resource allocation list
  • physical uplink shared channel physical uplink shared channel, PUSCH
  • time domain resource allocation list contains the physical downlink control channel
  • the value of the time slot offset in the time domain resource allocation list can be greater than or equal to 0, and the number of values can be configured multiple.
  • the time slot offset can be configured as ⁇ 0,1,2,3,4,5, 6 ⁇ , when the base station actually schedules to the terminal equipment, one of the time slot offsets is indicated through the PDCCH, which indicates the time domain position of the currently scheduled PDSCH or PUSCH. If the time slot offset indicated by the PDCCH is 0, it indicates the scheduled PDSCH or PUSCH and PDCCH are in the same time slot.
  • the terminal device can only determine the current scheduled time slot offset after completing the PDCCH detection, so the terminal device always assumes the time slot offset indicated by the PDCCH when it starts to detect the PDCCH It may be the minimum value in the time domain resource allocation list. If the value in the time domain resource allocation list contains 0, it means that the base station may schedule PDSCH or PUSCH and PDCCH in the same time slot, and even the start symbols of PDSCH and PDCCH are the same.
  • the terminal device must buffer the data on the entire bandwidth each time it detects the PDCCH, because it does not know the time-frequency domain resource location of the PDSCH or even whether the PDSCH is scheduled before completing the PDCCH detection.
  • the power consumption of the terminal equipment is wasted; for the uplink, the similar reasoning is that the terminal equipment does not know the location of the PUSCH scheduled by the PDCCH, or even if the PUSCH is scheduled. It is possible that the PDCCH and the PUSCH are in the same time slot, which requires the terminal equipment The PDCCH detection must be completed as soon as possible, otherwise the terminal device will not have time to send PUSCH data, which will also cause waste of power consumption.
  • the time slot offset K of uplink or downlink scheduling can be set to not include 0 (that is, the terminal device has known that it is cross-slot scheduling before PDCCH detection), that is, K>x, x is greater than or equal to 0, then the terminal device can start from Save power consumption in the following aspects:
  • Relaxing the PDCCH processing time can improve both uplink and downlink scheduling.
  • the terminal equipment if the PDCCH processing time is very tight, the terminal equipment requires relatively high clock frequency and voltage, and the power consumption is relatively large. If the PDCCH processing time is sufficient, the terminal requires relatively low clock frequency and voltage, The consumption is also relatively small.
  • the present application provides a communication method and device, so that when performing data scheduling, the power consumption and transmission delay of the terminal device can be considered.
  • a communication method includes: receiving first information from a network device at a first time, the first information being carried on a first physical downlink control channel PDCCH, wherein At a time, the first PDCCH schedules a first physical downlink shared channel PDSCH according to a first time domain resource allocation set, and the first information is used to determine a second time domain resource allocation set for scheduling a second PDSCH after the first time
  • the first PDCCH carrying the first information also includes scheduling information of the first PDSCH; receiving data sent by the network device through the first PDSCH; sending feedback of the data to the network device Information; and at a second time after sending the data feedback information, scheduling the second PDSCH according to the second time domain resource allocation set, wherein the second time is after the first time.
  • the time domain resource allocation set used at different times can be clearly indicated according to actual needs, thereby taking into account the power consumption and transmission delay of the terminal device, and avoiding the leakage of the terminal device.
  • the problem of inconsistent behavior of the base station and terminal equipment caused by the detection ensures the reliability of the dynamic handover time domain resource allocation set.
  • the first PDCCH that carries the first information does not include the scheduling information of the first PDSCH
  • the method further includes: sending feedback information of the first PDCCH to the network device; At a third time after sending the feedback information of the first PDCCH, the second PDSCH is scheduled according to the second time domain resource allocation set.
  • the new time domain resource allocation set can take effect after sending the feedback information of the first PDCCH.
  • a communication method comprising: sending first information to a terminal device at a first time, the first information being carried on a first physical downlink control channel PDCCH, wherein Time, the first PDCCH schedules a first physical downlink shared channel PDSCH according to a first time domain resource allocation set, and the first information is used to determine a second time domain resource allocation set for scheduling a second PDSCH after the first time;
  • the first PDCCH carrying the first information also includes scheduling information of the first PDSCH; sending data to the terminal device through the first PDSCH; receiving feedback information of the data from the terminal device And at a second time after receiving the feedback information of the data, scheduling the second PDSCH according to the second time domain resource allocation set, wherein the second time is after the first time.
  • the time domain resource allocation set used at different times can be clearly indicated according to actual needs, thereby taking into account the power consumption and transmission delay of the terminal device.
  • the first PDCCH that carries the first information does not include scheduling information of the first PDSCH
  • the method further includes: receiving feedback information of the first PDCCH from the terminal device; And at a third time after receiving the feedback information of the first PDCCH, schedule the second PDSCH according to the second time domain resource allocation set.
  • a communication method includes: receiving first information from a network device at a first time, wherein the first information is carried on a first physical downlink control channel PDCCH, and the first The PDCCH includes scheduling information of the first physical uplink shared channel PUSCH.
  • the first PUSCH is scheduled at the first time according to the first time domain resource allocation set, and the first information is used to determine the scheduling of the first PUSCH after the first time.
  • Two PUSCH second time domain resource allocation set according to the scheduling information of the first PUSCH, send data to the network device through the first PUSCH; and within the second time after sending the data, according to the The second time domain resource allocation set schedules the second PUSCH, where the second time is after the first time.
  • the time domain resource allocation set used at different times can be clearly indicated according to actual needs, thereby taking into account the power consumption and transmission delay of the terminal device, and avoiding the leakage of the terminal device.
  • the problem of inconsistent behavior of the base station and terminal equipment caused by the detection ensures the reliability of the dynamic handover time domain resource allocation set.
  • a communication method comprising: sending first information to a terminal device at a first time, wherein the first information is carried on a first physical downlink control channel PDCCH, and the first PDCCH Including the scheduling information of the first physical uplink shared channel PUSCH, the first PUSCH is scheduled at the first time according to the first time domain resource allocation set, and the first information is used to determine the second scheduling after the first time The second time domain resource allocation set of the PUSCH; receiving the data sent by the terminal device via the first PUSCH; and at a second time after receiving the data, scheduling the allocating resources according to the second time domain resource allocation set The second PUSCH, wherein the second time is after the first time.
  • the first time domain resource allocation set includes one or more time slot offset values, and the time slot offset If the value is greater than or equal to 0, the second time domain resource allocation set includes one or more time slot offset values, and the time slot offset value is greater than 0; or the first time domain resource allocation set includes one or more time slot offset values. Time slot offset values, the time slot offset value is greater than 0, the second time domain resource allocation set includes one or more time slot offset values, and the time slot offset value is greater than or equal to 0.
  • a communication method includes: receiving first information from a network device at a first time, wherein the first information is carried on a first physical downlink control channel PDCCH, and the At a time, the first PDCCH schedules the first physical downlink shared channel PDSCH or the first physical uplink shared channel PUSCH according to the first time domain resource allocation set; when the bits of the frequency domain resource allocation domain of the first PDCCH are all zero, Determine a second time domain resource allocation set for scheduling a second PDSCH or a second PUSCH after the first time according to the bits of the time domain resource allocation field of the first PDCCH; and at the second time according to the determined The first time domain resource allocation set schedules the second PDSCH or the second PUSCH, where the second time is after the first time.
  • the bits of the time domain resource allocation field of the first information can be used to indicate the time domain resource allocation set, so that the time domain used at different times can be clearly indicated according to actual needs.
  • the domain resource allocation set takes into account the power consumption and transmission delay of the terminal device, and at the same time avoids the problem of inconsistent behavior of the base station and the terminal device due to the missed detection of the terminal device, and ensures the reliability of the dynamic switching time domain resource allocation set.
  • the bits of the frequency domain resource allocation field of the first PDCCH when the bits of the frequency domain resource allocation field of the first PDCCH are all zero, it is determined according to the bits of the time domain resource allocation field of the first PDCCH to be used for scheduling the first time after the first time. 2.
  • the second time domain resource allocation set of the PDSCH or the second PUSCH including: when the bits of the frequency domain resource allocation field of the first PDCCH are all zero, determine according to the bits of the time domain resource allocation field of the first PDCCH The minimum slot offset value or the index of the minimum slot offset value of the first time domain resource allocation set.
  • a communication method includes: sending first information to a terminal device at a first time, wherein the first information is carried on a first physical downlink control channel PDCCH, and the At time, the first PDCCH schedules the first physical downlink shared channel PDSCH or the first physical uplink shared channel PUSCH according to the first time domain resource allocation set, the bits of the frequency domain resource allocation domain of the first PDCCH are all zero, the The bits of the time domain resource allocation field of the first PDCCH are used to determine the second time domain resource allocation set for scheduling the second PDSCH or the second PUSCH after the first time; and at the second time according to the determined first time domain resource allocation set A time domain resource allocation set schedules the second PDSCH or the second PUSCH, wherein the second time is after the first time.
  • a communication method comprising: receiving first downlink control information from a network device, wherein the first downlink control information is carried on a first physical downlink control channel PDCCH; and according to The first domain of the first downlink control information determines the first minimum time slot offset value, where the first domain includes at least one of the following domains: frequency domain resource allocation domain, time domain resource allocation domain, modulation and coding scheme Field, new data indication field or redundancy version field; wherein, the first minimum slot offset value represents the smallest available slot offset value for receiving the physical downlink shared channel PDSCH or transmitting the physical uplink shared channel PUSCH.
  • multiplexing the first field of the downlink control information is used to determine the minimum time slot offset value.
  • the control information bits may not be added to reduce the control information overhead. It may also be combined with HARQ-ACK feedback to improve signaling reliability.
  • the first downlink control information further includes first indication information, and the first indication information is used to indicate that the first field carries indication information of a first minimum slot offset value.
  • the current multiplexing of the first domain is clearly indicated through the first indication information, and the first domain is used to carry indication information of the minimum slot offset value.
  • the determining the minimum slot offset value according to the first field of the first downlink control information includes: when one or more of the first fields of the first downlink control information When the domain is the first set value, the value of the time domain resource allocation domain is obtained, and the value of the time domain resource allocation domain is used to indicate the first minimum time slot offset value. In this implementation, when one or more domains in the first domain are the first set value, the value of the time domain resource allocation domain is used to indicate the minimum time slot offset value. It can be understood that one or more domains in the first domain are the first setting value, and the setting value corresponding to each domain may be different.
  • the determining the first minimum slot offset value according to the first field of the first downlink control information includes: when one of the first fields of the first downlink control information or When the multiple domains are the first set value, the pre-configured or predefined first minimum time slot offset value is acquired.
  • the minimum slot offset value may be a pre-configured or predefined value.
  • the receiving the first downlink control information from the network device includes: receiving the first downlink control information at a first moment, wherein the application moment of the first downlink control information is not Earlier than the second time; the method further includes: receiving second downlink control information at a third time, wherein the third time is between the first time and the second time, and the second downlink control information Used to indicate the second minimum time slot offset value, the application time of the second downlink control information is not earlier than the fourth time; and determined according to the first downlink control information and/or the second downlink control information The minimum time slot offset value used and the application moment of the minimum time slot offset value used, wherein the minimum time slot offset value used is the first minimum time slot offset value and the first minimum time slot offset value.
  • One of the two minimum time slot offset values, and the used application time is not earlier than one of the second time and the fourth time.
  • the minimum time slot offset used is determined according to the first downlink control information and/or the second downlink control information Value and the application time of the minimum slot offset value used to resolve conflicts between the minimum slot offset values indicated by multiple downlink control information.
  • the first domain is a frequency domain resource allocation domain
  • the method further includes: determining a first minimum slot offset value according to the first domain of the first downlink control information, including: if The frequency domain resource allocation mode is frequency domain resource allocation mode type 0. When the bits of the frequency domain resource allocation field are all 0, the bits of the time domain resource allocation field indicate the first minimum time slot offset value ; If the frequency domain resource allocation mode is frequency domain resource allocation mode type 1, when the bits of the frequency domain resource allocation field are all 1, the bits of the time domain resource allocation field indicate the first minimum slot offset Shift value.
  • the method further includes: receiving first configuration information from the network device, where the first configuration information includes the configured frequency domain resource allocation manner.
  • a communication method includes: sending first downlink control information, wherein the first downlink control information is carried on a first physical downlink control channel PDCCH, and the first downlink control information
  • the first domain of the control information is used to determine the first minimum slot offset value, where the first domain includes at least one of the following domains: frequency domain resource allocation domain, time domain resource allocation domain, modulation and coding mode domain, and new data
  • the first minimum time slot offset value is used to indicate the minimum available time slot offset value for transmitting the physical downlink shared channel PDSCH or receiving the physical uplink shared channel PUSCH.
  • the first downlink control information further includes first indication information, and the first indication information is used to indicate that the first field carries indication information of a first minimum slot offset value.
  • the sending the first downlink control information includes: sending the first downlink control information at a first moment, wherein the application moment of the first information is not earlier than the second moment;
  • the method further includes: sending and receiving second downlink control information at a third time, where the third time is between the first time and the second time, and the second downlink control information is used to indicate the second time.
  • a small time slot offset value the application time of the second downlink control information is not earlier than the fourth time; and the minimum time slot offset to be used is determined according to the first downlink control information and/or the second downlink control information Shift value and the application moment of the used minimum time slot offset value, wherein the used minimum time slot offset value is the first minimum time slot offset value and the second minimum time slot offset One of the values, the used application time is not earlier than one of the second time and the fourth time.
  • the first domain is a frequency domain resource allocation domain
  • the first domain of the first downlink control information is used to determine a first minimum slot offset value, including: if the frequency domain resource The allocation method is frequency domain resource allocation method type 0. When the bits of the frequency domain resource allocation field are all 0, the bits of the time domain resource allocation field indicate the first minimum time slot offset value; if the frequency The domain resource allocation mode is frequency domain resource allocation mode type 1. When the bits of the frequency domain resource allocation field are all 1, the bits of the time domain resource allocation field indicate the first minimum time slot offset value.
  • the method further includes: sending first configuration information, where the first configuration information includes the configured frequency domain resource allocation mode.
  • a communication method includes: receiving downlink control information on a first bandwidth part BWP, wherein the downlink control information includes a time slot offset value and BWP identification indication information; and When the BWP identification indication information indicates the second BWP, the time slot offset value is used as the minimum time slot offset value of the second BWP.
  • the minimum time slot offset value of the target BWP can be indicated at the same time without adding new bits, and without affecting the scheduling opportunity to reduce the transmission delay.
  • the minimum slot offset value can be updated from a larger value to a smaller value, and the scheduling opportunity is not affected to reduce the transmission delay.
  • the downlink control information is also used to indicate that the physical downlink shared channel PDSCH is received or the physical uplink shared channel PUSCH is sent on the second BWP at the first moment, and the first moment is the downlink control information The time slot in which the time slot is located plus the time slot offset value of the receiving time slot.
  • the method further includes: when the BWP identification indication information indicates the first BWP, if the time slot offset value is less than the minimum time slot offset value of the first BWP, perform Receive the PDSCH or transmit the PUSCH at the moment, and the second moment is the receiving slot of the downlink control information plus the smallest slot offset of the first BWP timeslot; and The time slot offset value is used as the new minimum time slot offset value of the first BWP.
  • the BWP does not switch, and if the time slot offset value carried by the downlink control information is less than the minimum time slot offset value of the first BWP, data transmission is still performed according to the minimum time slot offset value of the first BWP. , And then use the time slot offset value carried in the downlink control information as the new minimum time slot offset value of the first BWP.
  • the method further includes: when the BWP identifier indication information indicates the second BWP, if the time slot offset value is less than the delay required for BWP switching, receiving the downlink control information The time slot plus the time delay required for the BWP handover is used to receive the PDSCH or transmit the PUSCH.
  • the time slot offset value carried by the downlink control information is less than the time delay required for the BWP switch, data transmission needs to be performed after the BWP switch is completed, and the BWP switch is added to the receiving time slot of the downlink control information. Data transmission is performed on the time slot where the delay is required to ensure that the minimum time slot offset value of the second BWP is indicated and the scheduling opportunity is not affected.
  • a communication method comprising: sending downlink control information on a first bandwidth part BWP, wherein the downlink control information includes a time slot offset value and BWP identification indication information; and When the BWP identification indication information indicates the second BWP, the time slot offset value is used as the minimum time slot offset value of the second BWP.
  • the downlink control information is also used to indicate that the physical downlink shared channel PDSCH or the physical uplink shared channel PUSCH are received on the second BWP at the first moment, and the first moment is the downlink control information The time slot in which the time slot is located plus the time slot offset value of the receiving time slot.
  • the method further includes: when the BWP identification indication information indicates the first BWP, if the time slot offset value is less than the minimum time slot offset value of the first BWP, perform Send the PDSCH or receive the PUSCH at a time, and the second time is the time slot in which the downlink control information is received plus the minimum time slot offset of the first BWP; and The time slot offset value is used as the new minimum time slot offset value of the first BWP.
  • the method further includes: when the BWP identifier indication information indicates the second BWP, if the time slot offset value is less than the delay required for BWP switching, receiving the downlink control information The time slot plus the time delay required for the BWP handover is used to transmit the PDSCH or receive the PUSCH.
  • a communication device which can implement the aforementioned first aspect, third aspect, fifth aspect, seventh aspect, ninth aspect or any one of the implemented communication methods.
  • the communication device may be a chip (such as a baseband chip, or a communication chip, etc.) or a terminal device.
  • the above method can be implemented by software, hardware, or by hardware executing corresponding software.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform the corresponding functions in the foregoing communication method.
  • the memory is used for coupling with the processor, and it stores the necessary programs (instructions) and/or data of the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication device may include a unit module that performs the corresponding function or action in the foregoing method.
  • a processor and a transceiver device are included, the processor is coupled with the transceiver device, and the processor is used to execute a computer program or instruction to control the transceiver device to receive and receive information. Send; when the processor executes the computer program or instruction, the processor is also used to implement the above method.
  • the transceiver device may be a transceiver, a transceiver circuit or an input/output interface.
  • the transceiving device is a transceiving circuit or an input/output interface.
  • the sending unit may be an output unit, such as an output circuit or a communication interface; the receiving unit may be an input unit, such as an input circuit or a communication interface.
  • the sending unit may be a transmitter or a transmitter; the receiving unit may be a receiver or a receiver.
  • a communication device which can implement the above-mentioned second aspect, fourth aspect, sixth aspect, eighth aspect, tenth aspect, or any of the implemented communication methods.
  • the communication device may be a chip (such as a baseband chip, or a communication chip, etc.) or a network device, and the foregoing method may be implemented by software, hardware, or by hardware executing corresponding software.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform the corresponding functions in the foregoing communication method.
  • the memory is used to couple with the processor, and it stores the necessary programs (instructions) and data of the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication device may include unit modules that perform corresponding actions in the foregoing method.
  • a processor and a transceiver device are included, the processor is coupled with the transceiver device, and the processor is used to execute a computer program or instruction to control the transceiver device to receive and receive information. Send; when the processor executes the computer program or instruction, the processor is also used to implement the above method.
  • the transceiver device may be a transceiver, a transceiver circuit or an input/output interface.
  • the transceiving device is a transceiving circuit or an input/output interface.
  • the receiving unit may be an input unit, such as an input circuit or a communication interface; the sending unit may be an output unit, such as an output circuit or a communication interface.
  • the receiving unit may be a receiver (also called a receiver); the sending unit may be a transmitter (also called a transmitter).
  • the hardware parts responsible for input and output in the communication device can be integrated.
  • a computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the methods described in the above aspects.
  • a computer program product containing instructions which when run on a computer, causes the computer to execute the methods described in the above aspects.
  • a communication system including any one of the aforementioned network device-side communication devices, and/or any one of the terminal device-side communication devices.
  • Figure 1 is a schematic diagram of a communication system involved in this application.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 3 is an exemplary schematic diagram of time domain resource allocation set switching
  • FIG. 4 is a schematic diagram of another exemplary time domain resource allocation set switching
  • FIG. 5 is a schematic diagram of another exemplary time domain resource allocation set switching
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of another exemplary time domain resource allocation set switching
  • FIG. 8 is a schematic flowchart of yet another communication method provided by an embodiment of this application.
  • FIG. 9a is a schematic diagram of indicating a time domain resource allocation set through bits in the time domain resource allocation field of DCI;
  • FIG. 9b is a schematic diagram of indicating PDSCH or PUSCH frequency domain resources through RIV;
  • FIG. 10 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 11 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • Figure 12 is a schematic diagram of the application of downlink control information
  • FIG. 13 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • Figure 14 is a schematic diagram of partial switching of bandwidth
  • 15 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of a simplified terminal device provided by an embodiment of this application.
  • FIG. 18 is a schematic structural diagram of a simplified network device provided by an embodiment of this application.
  • FIG. 1 shows a schematic diagram of a communication system involved in this application.
  • the communication system may include at least one network device 100 (only one is shown) and one or more terminal devices 200 connected to the network device 100.
  • the network device 100 may be a device that can communicate with the terminal device 200.
  • the network device 100 may be any device with a wireless transceiver function. Including but not limited to: base station NodeB, evolved base station eNodeB, base station in the fifth generation (5G) communication system, base station or network equipment in future communication system, access node in WiFi system, wireless relay Nodes, wireless backhaul nodes, etc.
  • the network device 100 may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device 100 may also be a small station, a transmission reference point (TRP), etc.
  • TRP transmission reference point
  • the terminal device 200 is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water, such as a ship, etc.; it can also be deployed in the air, such as an airplane , Balloons and satellites.
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial control ( Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety
  • Terminal equipment can sometimes be referred to as user equipment (UE), access terminal equipment, UE unit, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, terminal, wireless communication equipment, UE Agent or UE device, etc.
  • system and “network” in the embodiments of this application can be used interchangeably.
  • Multiple refers to two or more. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application.
  • And/or describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • Fig. 2 is a schematic flowchart of a communication method provided by an embodiment of the application, including the following steps:
  • the network device sends first information to the terminal device at the first time.
  • the terminal device receives the first information.
  • the first information is carried on the first PDCCH.
  • the first information is downlink control information (DCI).
  • DCI downlink control information
  • the first PDCCH schedules the first PDSCH according to the first time domain resource allocation set.
  • DCI1 is the above-mentioned first information.
  • the DCI1 is carried on the first PDCCH.
  • the first PDCCH uses time domain resource allocation set 1 for scheduling, that is, the time domain resource allocation set valid at the first time is time domain resource allocation set 1, and this DCI1 carries the scheduling information of PDSCH1, including PDSCH1 Slot offset.
  • the slot offset of PDSCH1 is a value in the time domain resource allocation set 1.
  • the time slot offset values of the time domain resource allocation set 1 are all greater than 0, that is, the first PDCCH performs cross-slot scheduling.
  • the first information is used to determine the second time domain resource allocation set used for scheduling the second PDSCH after the first time. That is, the first information is used to indicate that the value range of the time slot offset of the second PDCCH scheduling the second PDSCH after the first time has changed, for example, the time slot offset includes 0 after the first time. As shown in Figure 3, DCI1 schedules PDSCH1, and indicates that PDCCH scheduling PDSCH can be scheduled at the same time after the first time. That is, the first time domain resource allocation set includes a value whose time slot offset value is greater than or equal to 0. In this embodiment, the first information is used to determine that the value range of the time slot offset of the PDSCH when the second PDCCH schedules the PDSCH after the first time has changed.
  • the specific indication method is not limited.
  • the first information may be a display indication or Implicit indication; it can indicate the minimum value of the time slot offset or the index value corresponding to the minimum value of the time slot offset.
  • the time-domain resource allocation set in the present invention can also be embodied as the minimum time slot offset.
  • the first PDCCH that carries the first information further includes scheduling information of the first PDSCH, and the network device sends data to the terminal device through the first PDSCH.
  • the terminal device receives the data.
  • the first PDCCH that carries the first information also includes scheduling information of the first PDSCH. Therefore, according to the scheduling information, the network device sends data to the terminal device through the first PDSCH.
  • the first PDCCH carrying DCI1 is also used to schedule PDSCH1, and the network device sends data to the terminal device through PDSCH1.
  • DCI2 still schedules PDSCH2 according to the time domain resource allocation set 1, and the network device sends data to the terminal device on PDSCH2.
  • S103 The terminal device sends data feedback information to the network device.
  • the network device receives the feedback information of the data.
  • the terminal device After the terminal device receives the data sent by the network device through the first PDSCH, it needs to send feedback information to the network device.
  • the feedback information includes a correct response (acknowledgement, ACK) and an error response (non-acknowledgement, NACK), indicating whether the terminal device The data sent by the PDSCH is correctly received.
  • the terminal device sends NACK1 to the network device; for the data sent by the network device on PDSCH2, the terminal device sends ACK2 to the network device.
  • the terminal device sends the feedback of the data of the first PDSCH.
  • the second PDCCH schedules the second PDSCH according to the second time domain resource allocation set. It should be noted that the second PDSCH may be one or more, and the second PDSCH refers to all PDSCHs scheduled in the second time.
  • the network device can determine that the terminal device has received the above-mentioned first information, that is, the terminal device has not missed the PDCCH carrying the first information, and the first information is used to determine after the first time
  • the second PDCCH schedules the second time domain resource allocation set of the second PDSCH, and the terminal device and the network device can simultaneously validate the PDSCH time domain resource allocation set as the second time domain resource allocation set after the feedback information of the first PDSCH data .
  • the second PDCCH can use time domain resource allocation set 2 for scheduling, that is, after sending NACK1, the effective time domain resource allocation set is time domain resource allocation set 2.
  • the second PDCCH scheduling PDSCH includes simultaneous slot scheduling.
  • DCI3 and PDSCH3 are simultaneous slot scheduling.
  • the first PDCCH carrying the first information may not include the scheduling information of the first PDSCH.
  • S102 and S103 may be replaced by: the terminal device sends the feedback information of the first PDCCH to the network device. Indicates that the terminal device receives the first message.
  • S104 may be replaced by: scheduling the second PDSCH according to the second time domain resource allocation set at a third time after sending the feedback information of the first PDCCH.
  • the terminal device may send the feedback information of the first PDCCH to the network device.
  • the second PDSCH is scheduled according to the second time domain resource allocation set.
  • the network device after the network device instructs to switch the time domain resource allocation set through the DCI, before the first information takes effect, that is, before the terminal device sends the feedback message, the network device still uses the current time domain resource allocation set for scheduling, as shown in Figure 3
  • the scheduling of DCI2 still conforms to set 1, but the scheduled PDSCH2 is after the effective time, which is undesirable.
  • the scheduling of DCI2 as shown in Figure 3 should still conform to set 1, and the scheduled PDSCH2 should be before the effective time, so that network equipment and terminal equipment can truly implement simultaneous slot scheduling immediately after the signaling takes effect.
  • the current protocol does not support scheduling disorder, that is, for two HARQ processes, if the end symbol position of DCI3 is not earlier than the end symbol position of DCI2, and the start symbol position of PDSCH3 is earlier than the end symbol position of PDSCH2 , This kind of scheduling is not supported. Therefore, if the PDCCH scheduling PDSCH in the time period after the first information indicates to before the first information becomes effective is not restricted, the PDSCH cannot be scheduled after the time when the first information becomes effective, and the DCI2 scheduling PDSCH2 in Figure 5 occurs. The handover signaling takes effect, and DCI3 cannot schedule PDSCH3 at the same time.
  • the terminal device if the terminal device is in cross-slot scheduling, the time slot offset value in the real-time domain resource allocation set is all greater than 0, once the terminal device sends a scheduling request to the network device. , SR), the terminal device falls back to the default configuration of the PDSCH time domain resource allocation set, that is, the time slot offset value may include 0, and simultaneous slot scheduling is possible. After the network device receives the SR sent by the terminal device, the network device will also fall back to the default time domain resource allocation set, that is, the time slot offset includes 0, and simultaneous slot scheduling can be performed.
  • the time domain resource allocation set used at different times can be clearly indicated according to actual needs, thereby taking into account the power consumption and transmission delay of the terminal device. At the same time, the problem of inconsistent behavior between the network equipment and the terminal equipment caused by the missed detection of the terminal equipment is avoided, and the reliability of the dynamic switching time domain resource allocation set is guaranteed.
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of this application, including the following steps:
  • S201 The network device sends first information to the terminal device at the first time.
  • the terminal device receives the first information.
  • the first information is carried on the first PDCCH, and the first PDCCH that carries the first information also includes scheduling information of the first PUSCH.
  • the first PUSCH is scheduled at the first time according to the first time domain resource allocation set, and the first information is used for The second time domain resource allocation set for scheduling the second PUSCH after the first time is determined.
  • the terminal device sends data to the network device through the first PUSCH according to the scheduling information of the first PUSCH.
  • the slot offset of the first PUSCH is a value in the first time domain resource allocation set.
  • the network device receives the data.
  • the first information is used to determine the time domain resource allocation set for uplink scheduling.
  • the network device will not send HARQ-ACK information to the terminal device, and the first PDCCH is allocated according to the first time domain resource at the first time
  • the terminal device may schedule the second PUSCH according to the second time domain resource allocation set at the second time after sending data through the first PUSCH.
  • the first time domain resource allocation set is a different set from the foregoing second time domain resource allocation set.
  • the first PDCCH schedules the first PUSCH according to the first time domain resource allocation set, and the slot offset value in the first time domain resource allocation set is greater than or equal to 0, that is, simultaneous slot scheduling is possible;
  • the time slot offset values in the second time domain resource allocation set are all greater than 0, that is, cross-slot scheduling is possible, but simultaneous slot scheduling is not possible.
  • the first PDCCH is scheduled according to the first time domain resource allocation set, and the time slot offset value in the first time domain resource allocation set is greater than 0, that is, it can be scheduled across time slots, but cannot be scheduled at the same time.
  • the first time domain resource allocation set may also be a subset of the second time domain resource allocation set, or the second time domain resource allocation set may also be a subset of the first time domain resource allocation set.
  • the first information is used to determine that the value range of the time slot offset for scheduling the second PUSCH after the first time has changed.
  • the specific indication method is not limited.
  • the first information may be a display indication or an implicit indication. ; It can indicate the minimum time slot offset, and can also indicate the index value corresponding to the minimum time slot offset.
  • the time domain resource allocation set in the present invention can also be expressed as the minimum time slot offset.
  • the first PDCCH carrying DCI1 at the first time is scheduled according to time-domain resource allocation set 1, for example, PUSCH1 is scheduled, and the slot offset of PUSCH1 is time-domain resource allocation A value in set 1, that is, the effective time domain resource allocation set is time domain resource allocation set 1.
  • the time domain offset value K in the time domain resource allocation set 1 is greater than zero.
  • DCI1 scheduling PUSCH1 is cross-slot scheduling
  • DCI2 scheduling PUSCH2 is cross-slot scheduling.
  • the DCI1 indicates that the resource allocation set 2 is used at the second time, that is, it indicates that the second time is switched to simultaneous slot scheduling.
  • the indication takes effect.
  • the PUSCH is scheduled according to the time domain resource allocation set 2 at the second time, for example, the PDCCH carrying DCI3 schedules the PUSCH 3 according to the time domain resource allocation set 2.
  • Real-time domain resource allocation set 2 is valid.
  • the time domain offset value K in the time domain resource allocation set 2 is greater than or equal to zero.
  • DCI3 and PUSCH3 can be scheduled at the same time.
  • the second time is after the first time.
  • the time slot offset value in the real-time domain resource allocation set is greater than 0.
  • the terminal device sends a scheduling request to the network device, the terminal device Fall back to the default configuration of the PDSCH time domain resource allocation set, that is, the time slot offset value may include 0, and simultaneous slot scheduling is possible.
  • the network device receives the SR sent by the terminal device, the network device will also fall back to the default time domain resource allocation set, that is, the time slot offset includes 0, and simultaneous slot scheduling can be performed.
  • the time domain resource allocation set used at different times can be clearly indicated according to actual needs, thereby taking into account the power consumption and transmission delay of the terminal device. At the same time, the problem of inconsistent behavior between the network equipment and the terminal equipment caused by the missed detection of the terminal equipment is avoided, and the reliability of the dynamic switching time domain resource allocation set is guaranteed.
  • FIG. 8 is a schematic flowchart of another communication method provided by an embodiment of this application, including the following steps:
  • the network device sends the first information to the terminal device at the first time.
  • the terminal device receives the first information.
  • the first information is carried on the first PDCCH.
  • the first PDCCH schedules the first PDSCH according to the first time domain resource allocation set.
  • the first information is DCI.
  • the DCI adopts an existing UE-specific DCI format (DCI format).
  • the terminal device determines to use the bits in the time domain resource assignment (time domain resource assignment) field of the first PDCCH for the first PDCCH.
  • the second time domain resource allocation set of the second PDSCH or the second PUSCH is scheduled after time.
  • the terminal device parses the DCI of the PDCCH to obtain bits in the frequency domain resource allocation domain and bits in the time domain resource allocation domain.
  • the bits in the frequency domain resource allocation field of DCI are not all zeros, that is, PDSCH or PUSCH needs to occupy certain frequency domain resources, and the terminal device can consider the first information to be normal scheduling information , Then the bits in the time domain resource allocation domain indicate the time domain position of the currently scheduled PDSCH or PUSCH.
  • the bits in the frequency domain resource allocation field of the first information are all zeros, it can be considered that the first information is not current PDSCH or PUSCH scheduling information, and the bits in the time domain resource allocation field represent the foregoing second time domain resource allocation set.
  • the foregoing first time domain resource allocation set may also be a subset of the second time domain resource allocation set, or the second time domain resource allocation set may also be a subset of the first time domain resource allocation set.
  • the bits of the time domain resource allocation field represent the minimum time slot offset value or the index of the minimum time slot offset value of the second time domain resource allocation set.
  • S302 includes: when the bits of the frequency domain resource allocation field of the first PDCCH are all zeros, determining the minimum time slot offset value or the maximum value of the second PDSCH or the second PUSCH according to the bits of the time domain resource allocation field of the first PDCCH. The index of the mini-slot offset value.
  • the minimum time slot offset value of the bit indication of the time domain resource allocation field when the minimum time slot offset value of the bit indication of the time domain resource allocation field is 0, it can be determined that the time slot offset value in the second time domain resource allocation set is greater than or equal to 0; the bit indication of the time domain resource allocation field When the minimum time slot offset value is a certain value greater than 0, it can be determined that the time slot offset value in the second time domain resource allocation set is greater than 0.
  • Frequency domain resource allocation takes Type0 as an example.
  • a bitmap is used to indicate the resource block group (RBG) allocated to the terminal device (a RBG can be composed of multiple RBs). If a certain RBG is allocated to If a certain terminal device is detected, the corresponding bit in the bitmap is set to 1; otherwise, it is set to 0.
  • FIG. 9a is a schematic diagram of indicating PDSCH or PUSCH frequency domain resources through the frequency domain resource allocation domain of DCI. If the PDSCH/PUSCH scheduled by DCI, then at least one RB must be indicated in the frequency domain, then at least one of the bitmaps is non-zero.
  • the terminal device detects that the frequency domain resource allocation bitmap of DCI is all 0s, that is, 0000000000000, the terminal device considers that the DCI is used to determine the first time domain resource allocation for scheduling the second PDSCH or the second PUSCH after the first time.
  • the field of the corresponding time domain resource allocation field is understood as the minimum slot offset or the index corresponding to the minimum slot offset.
  • the second PDCCH is scheduled according to the second time domain resource allocation set determined above.
  • the second time domain resource allocation set may be a different set from the foregoing first time domain resource allocation set. For example, at the first time, scheduling is performed according to the first time-domain resource allocation set, and the slot offset value in the first time-domain resource allocation set is greater than or equal to 0, that is, simultaneous slot scheduling is possible; at the second time, the second The time slot offset value in the time domain resource allocation set is greater than 0, that is, it can be scheduled across time slots.
  • the first PDCCH is scheduled according to the first time domain resource allocation set, and the time slot offset value in the first time domain resource allocation set is greater than 0, that is, it can be scheduled across time slots; at the second time , The time slot offset value in the second time domain resource allocation set is greater than or equal to 0, that is, simultaneous slot scheduling is possible.
  • the first information is used to determine that the value range of the time slot offset for scheduling the second PDSCH after the first time has changed, and the specific indication method is not limited.
  • the first information may be a display indication or an implicit indication. ; It can indicate the minimum time slot offset, and can also indicate the index value corresponding to the minimum time slot offset.
  • the time domain resource allocation set in the present invention can also be embodied as the minimum time slot offset.
  • the bits of the time domain resource allocation field of the first information can be used to indicate the time domain resource allocation set, so that it can be clearly indicated according to actual needs.
  • a collection of time-domain resource allocations used at different times thus taking into account the power consumption and transmission delay of the terminal equipment, while avoiding the problem of inconsistent behavior between the network equipment and the terminal equipment due to the missed detection of the terminal equipment, and ensuring the dynamic switching time domain The reliability of the resource allocation set.
  • the first field of downlink control information is used for data scheduling.
  • the first field of downlink control information can be multiplexed to determine the minimum time slot offset value.
  • FIG. 10 is a schematic flowchart of another communication method provided by an embodiment of this application. Illustratively, the method may include the following steps:
  • S401 The network device sends downlink control information to the terminal device.
  • the terminal device receives the downlink control information.
  • the downlink control information is carried on the PDCCH.
  • the terminal device determines a minimum time slot offset value according to the first field of the downlink control information.
  • the downlink control information has a corresponding first domain. If the downlink control information is used for data scheduling, the first domain may be called an uplink authorized domain (scheduled PUSCH) or a downlink assigned domain (scheduled PDSCH). In this application, the downlink control information is not used for data scheduling, but the first field is multiplexed to determine the minimum time slot offset value.
  • the minimum time slot offset value may also be referred to as the minimum time slot offset value.
  • the minimum slot offset value indicates the smallest available slot offset value (minimum K0) for receiving PDSCH or the smallest available slot offset value (minimum K2) for transmitting PUSCH, that is, when there is actual scheduling.
  • the network equipment uses the minimum time slot offset to schedule the PDSCH or PUSCH, that is, when the network equipment schedules the PDSCH or PUSCH, the time slot offset value of the PDSCH or PUSCH is greater than or equal to the minimum time slot offset value, and the terminal device receives The time slot offset value of PDSCH or PUSCH transmission is greater than or equal to the minimum time slot offset value.
  • the minimum slot offset value may also indicate the smallest available slot offset value for receiving aperiodic CSI-RS or the smallest available slot offset value for aperiodic SRS or the smallest HARQ-ACK feedback corresponding to PDSCH. Available slot offset value.
  • the above-mentioned first domain includes at least one of the following domains: frequency domain resource allocation domain, time domain resource allocation domain, modulation and coding scheme (MCS) domain, new data indicator (NDI) domain, or redundant The remaining version (redundancy version, RV) domain.
  • MCS modulation and coding scheme
  • NDI new data indicator
  • RV redundant The remaining version
  • the downlink control information further includes first indication information, and the first indication information is used to indicate that the first field carries indication information of a minimum time slot offset value. That is, it can be clearly indicated that the first field of the aforementioned downlink control information is used to determine the minimum time slot offset value, rather than used for data scheduling.
  • the first indication information is a 1-bit value. When the first indication information is in the first state, it means that the first field is used to determine the minimum slot offset value; when the first indication information is in the second state, it means that One domain is used for data scheduling.
  • the first field of the aforementioned downlink control information is used for determining the minimum time slot offset value instead of being used for data scheduling.
  • the first field of the aforementioned downlink control information is a set value, it can be determined that the first field of the downlink control information is used to determine the minimum time slot offset value.
  • S402 includes: when one or more fields in the first field of the downlink control information are the first set value, acquiring the value of the time domain resource allocation field, and the time The value of the domain resource allocation field is used to indicate the minimum slot offset value.
  • the value of the time domain resource allocation field can take different values, and different values correspond to different minimum slot offset values.
  • the value of the frequency domain resource allocation field is a pre-configured or predefined specific value
  • the value of the time domain resource allocation field represents minimum K0 or minimum K2.
  • the frequency domain resource The specific value of the allocation domain is different, and the specific values can be as follows:
  • the network-side device is only configured with frequency domain resource allocation mode type 0 (type0) through RRC signaling, and a bitmap is used to indicate the resource block group (RBG) (one RBG) allocated to the terminal device. It can be composed of multiple RBs), and each bit corresponds to one RBG. If a certain RBG is allocated to a certain terminal device, the corresponding bit in the bitmap is set to 1; otherwise, it is set to 0. As shown in Figure 9a, RBG4 to RBG9 and RBG11 to RBG12 are allocated to a certain terminal device, and their bits are set to 1, and the remaining bits are set to 0.
  • RBG4 to RBG9 and RBG11 to RBG12 are allocated to a certain terminal device, and their bits are set to 1, and the remaining bits are set to 0.
  • the network side device only configures frequency domain resource allocation mode type 1 (type 1) through RRC signaling, allocates several consecutive resource blocks (resource blocks, RB) to the terminal device, and allocates resources in units of RBs.
  • the resource indication value (RIV) is used to indicate the start position of the resource block RB start and the number of consecutively allocated RBs L RB .
  • Fig. 9b is a schematic diagram of indicating PDSCH or PUSCH frequency domain resources through RIV.
  • the number of bits in the frequency domain resource allocation domain of type1 is Indicates the number of RBs of the activated uplink BWP or the activated downlink BWP.
  • the bits of the time domain resource allocation field indicate minimum K0 or minimum K2.
  • the 7 bits of the number of bits in the frequency domain resource allocation domain are 11111111. If there is a frequency hopping flag (frequency hopping flag) field in the downlink control information, the bit of the frequency hopping flag field is set to "disabled".
  • the network side device is configured with frequency domain resource allocation method type0 and frequency domain resource allocation method type1 through RRC signaling, then the number of bits in the frequency domain resource allocation domain is 1 bit of the most significant bit (MSB) of the frequency domain resource allocation domain can dynamically indicate whether the current frequency domain resource allocation method is type0 or type1, and the 1 bit of the MSB is "0" indicating that the current frequency domain resource allocation method type0 , 1 bit of the MSB is "1", indicating that the current frequency domain resource allocation method is type1. If the frequency domain resource allocation mode of the dynamic indication is type0, the least significant bit (LSB) is N RBG bits or the LSB When the bits are all 0s, the bits of the time domain resource allocation field indicate minimum K0 or minimum K2.
  • MSB most significant bit
  • the LSB Bits or LSB When the bits are all 1, the bits of the time domain resource allocation field indicate minimum K0 or minimum K2. If there is a frequency-domain frequency hopping identification field in the downlink control information, the bits of the frequency-domain frequency hopping identification field are set to "disabled".
  • the modulation and coding mode field indicates a value in the MCS index number corresponding to the mark "reserved" in the MCS table, such as the MCS index number 28 to 31 in the MCS table example in Table 1, NDI
  • the indication is 0, and/or, when the RV indication is 0, the value of the time domain resource allocation field indicates minimum K0 or minimum K2.
  • Which domains of the first domain are set as the set values above can be determined according to actual needs. It is understandable that one or more domains in the first domain are the first setting value, and the first setting value corresponding to each domain may be the same or different.
  • S402 includes: when one or more of the first domains of the downlink control information is the first set value, obtaining a pre-configured or predefined minimum time slot offset value.
  • the minimum time slot offset value is a pre-configured or predefined value, and there is no need to display the field in the downlink control information to indicate the minimum time slot offset value. Therefore, when one or more domains in the first domain are the first set value, the minimum time slot offset value is determined to be the above-mentioned pre-configured or predefined minimum time slot offset value.
  • the network device may also determine the minimum time slot offset value according to the first field of the downlink control information.
  • the downlink control information when one or more fields in the first field of the downlink control information are the first set value, the downlink control information does not actually schedule data, but the UE may still follow the downlink control information.
  • the first field of downlink control information is multiplexed to determine the minimum time slot offset value.
  • the control information bit may not be added to reduce the control information overhead, and it may also be combined with HARQ -ACK feedback improves the reliability of signaling.
  • the minimum time slot offset value can be applied/validated after a period of time.
  • the network device may send the second downlink control information to the terminal device before the minimum time slot offset value carried in the first downlink control information is applied/validated.
  • the foregoing first downlink control information and second downlink control information are both used to indicate the minimum time slot offset value, so there is a problem of how the terminal device determines the actual minimum time slot offset value.
  • FIG. 11 is a schematic flowchart of another communication method provided by an embodiment of this application. Illustratively, the method may include the following steps:
  • S501 The network device sends first downlink control information to the terminal device at the first moment.
  • the terminal device receives the aforementioned first downlink control information at the first moment.
  • the first downlink control information is used to indicate the first minimum slot offset value.
  • the manner of determining the first minimum slot offset value according to the first downlink control information can refer to the previous embodiment.
  • the terminal device will apply/validate the first minimum time slot offset value after time slot n+K or time slot n+K.
  • the first minimum slot offset value cannot be used before slot n+K. Where K can be greater than zero.
  • the network device dynamically switches/indicates the first minimum time slot offset value, and there is a time interval between the indication signaling and the effective time of the new first minimum time slot offset value. This time interval is called the application time/effective time K.
  • the new first minimum slot offset value will be applied/validated only after the terminal device feeds back the HARQ-ACK or the terminal device sends the PUSCH described in the previous embodiment, that is, K depends on the downlink control information to the HARQ-ACK feedback Or the time interval between PUSCHs; for another example, K is equal to the old first minimum time slot offset value, or expressed as, the above-mentioned new first minimum time slot offset value has not yet taken effect, and K is the currently valid first minimum time slot offset value. Small slot offset value.
  • the size of K can also be related to the PDCCH decoding time.
  • the time slot where the indication signaling is located plus the above time interval is called the application time or the effective time.
  • the terminal device receives the first downlink control information at the first time, the first downlink control information will not be applied immediately, and the application time of the first downlink control information is no earlier than the second time.
  • the second time is later than the first time, and there is a certain time interval between the second time and the first time.
  • the start position of the application time of the new minimum slot offset value may be the symbol or the start position of the slot of the DCI, or the end position of the symbol or the slot of the DCI.
  • S502 The network device sends second downlink control information to the terminal device at the third moment.
  • the terminal device receives the foregoing second downlink control information at the third time.
  • the terminal device receives new downlink control information, that is, second downlink control information, at the third moment.
  • the third time is between the first time and the second time
  • the second downlink control information is used to indicate a second minimum slot offset value
  • the application time of the second downlink control information is not Earlier than the fourth moment.
  • the terminal device determines the minimum time slot offset value used and the application time of the minimum time slot offset value used according to the first downlink control information and/or the second downlink control information, where The minimum time slot offset value used is one of the first minimum time slot offset value and the second minimum time slot offset value, and the used application time is no earlier than the second time and One of the fourth moments.
  • the terminal device determines that the second minimum time slot offset value indicated by the nearest DCI (ie, the second DCI) is The minimum time slot offset value used, and the time when the application time for determining the second minimum time slot offset value ends is the application time of the minimum time slot offset value used.
  • the timing of the application time of the minimum slot offset value to be used is updated from the start position of the first DCI to the start position of the second DCI, or the application time of the minimum slot offset value to be used is changed from that of the first DCI
  • the end position is updated to the end position of the second DCI.
  • the terminal device determines the second minimum slot offset indicated by the nearest DCI (ie, the second DCI)
  • the shift value is the minimum time slot offset value used, and the time when the application time for determining the second minimum time slot offset value ends is the application time of the minimum time slot offset value used.
  • the terminal device does not update the application time and still uses the first minimum time slot offset value indicated by the first DCI Is the minimum time slot offset value used, and the time at which the application time for determining the first minimum time slot offset value ends is the application time of the minimum time slot offset value used.
  • FIG. 10 mainly describes how to determine the minimum time slot offset value to be used.
  • FIG. 11 also describes how to determine the minimum time slot offset value used. The moment of application of the value.
  • the second downlink control information is received before the first downlink control information is applied/validated, then according to the first downlink control information and/or the second downlink control information
  • the minimum time slot offset value used and the application time of the used minimum time slot offset value are determined to resolve conflicts between the minimum time slot offset values indicated by multiple downlink control information.
  • the terminal device supports the configuration of multiple bandwidth parts (BWP)
  • the time domain resource allocation sets of different BWPs are different, and the minimum time slot offset value of the first BWP may not be applicable to the second BWP.
  • the network device can switch the BWP while scheduling data, and it needs to solve the problem of how to indicate the minimum time slot offset value of the BWP after the switch.
  • FIG. 13 is a schematic flowchart of another communication method provided by an embodiment of this application. Illustratively, the method may include the following steps:
  • the network device sends downlink control information on the first bandwidth part, where the downlink control information includes a time slot offset value and BWP identification indication information.
  • the terminal device receives the aforementioned downlink control information on the first BWP.
  • the network device can switch the BWP while scheduling data.
  • the network device sends the first DCI on the first BWP, where the first DCI includes a time slot offset value for scheduling the PDSCH or PUSCH and BWP identification indication information.
  • the BWP identifier indication information indicates the identifier of the BWP for PDSCH or PUSCH data transmission.
  • the BWP identifier indication information includes the identifier of the first BWP, it means that the BWP is not switched, data transmission is still performed on the first BWP, and the terminal device is still working on the first BWP; if the BWP identifier indication information includes the identifiers of other BWPs, For example, the identifier of the second BWP indicates that it is switched to the second BWP, that is, the second BWP is activated, and the terminal device will work on the second BWP and perform data transmission on the second BWP.
  • the terminal device uses the time slot offset value as the minimum time slot offset value of the second BWP.
  • the terminal device When the BWP identification indication information indicates the second BWP, that is, the terminal device will switch from the first BWP to the second BWP for data transmission, and the terminal device still uses the time slot offset value indicated by the first DCI as the minimum time of the second BWP Gap offset value.
  • the network device uses the above-mentioned slot offset value indicated in the first DCI as the minimum slot offset value of the second BWP. In this way, after the second BWP is activated, the network device does not need to send control information on the second BWP to again indicate the minimum time slot offset value of the second BWP, which saves signaling overhead and improves communication efficiency.
  • the aforementioned downlink control information is also used to instruct the terminal device to receive PDSCH or send PUSCH on the second BWP at the first moment, and accordingly, the network device sends PDSCH or receives PUSCH on the second BWP at the first moment.
  • the first moment is the time slot in which the received time slot of the downlink control information plus the time slot offset value indicated by the first DCI. For example, if the terminal device receives DCI in time slot n, the first moment is n plus the time slot in which shift is located, where shift is the time slot offset value of the first DCI scheduling PDSCH or PUSCH.
  • the network device when the BWP identification indication information indicates the first BWP, if the time slot offset value is less than the minimum time slot offset value of the first BWP, the network device is in the first BWP The PDSCH is transmitted or the PUSCH is received at the second time, and correspondingly, the terminal device receives the PDSCH or transmits the PUSCH at the second time.
  • the second moment is the time slot in which the received time slot of the downlink control information plus the minimum time slot offset value of the first BWP is located.
  • the terminal device uses the time slot offset value as the new minimum time slot offset value of the first BWP, that is, updates the minimum time slot offset value of the first BWP to the time slot offset value.
  • the new minimum slot offset value application time or effective time can refer to the previous embodiment.
  • the transmission time slot of the PDSCH or PUSCH scheduled by the DCI is the receiving time slot of the DCI plus the first time slot.
  • the minimum slot offset of a BWP is the slot in which the slot is located.
  • the time slot offset value of the downlink control information scheduling PDSCH or PUSCH is less than the delay required for BWP switching, the time required for BWP switching The delay can also be expressed as the time slot required for BWP switching, and data transmission is performed on the time slot where the receiving time slot of the downlink control information plus the time slot required for BWP switching is located. Therefore, if the time slot offset value is less than the time delay required for BWP switching, the network device transmits on the time slot where the receiving time slot of the downlink control information plus the time slots required for BWP switching is located. The PDSCH or the PUSCH is received.
  • the terminal equipment receives the PDSCH or transmits the PUSCH in the time slot where the receiving time slot of the downlink control information plus the time slots required for the BWP switching is located.
  • the terminal device receives DCI in the first BWP in time slot n
  • the BWP identification indication information of the DCI indicates the second BWP
  • the time slot offset value indicated by the DCI is X, Where X is less than M
  • the terminal device receives PDSCH or sends PUSCH in the time slot where n plus M is located, where M is the time slot required for BWP switching.
  • the terminal device adds the handover delay to the DCI receiving time slot
  • the time slot in which the M time slots are located receives the PDSCH on the BWP2 and uses the time slot offset value as the minimum time slot offset value for the DCI scheduling PDSCH on the BWP2.
  • process of the embodiment shown in FIG. 13 can also be run independently from the process of the foregoing embodiment, or can be run in combination.
  • the minimum time slot offset value of the target BWP can be indicated at the same time without adding new bits, and without affecting scheduling opportunities to reduce transmission delay.
  • the minimum slot offset value can be updated from a larger value to a smaller value, and the scheduling opportunity is not affected to reduce the transmission delay. If the base station and the UE wish to switch the minimum slot offset value from a smaller value to a larger value, the previous embodiment can be adopted.
  • an embodiment of the present application also provides a communication device 100, which can be applied to the foregoing FIG. 2, FIG. 6, FIG. 8, and FIG. 10.
  • Figure 11, Figure 13 shows the communication method.
  • the communication device 100 may be a terminal device as shown in FIG. 1 or a component (such as a chip) applied to the terminal device.
  • the communication device 100 includes a transceiver unit 11 and a processing unit 12.
  • the transceiver unit 11 is configured to receive first information from a network device at a first time, and the first information is carried on the first physical downlink control channel PDCCH, where the At a time, the first PDCCH schedules a first physical downlink shared channel PDSCH according to a first time domain resource allocation set, and the first information is used to determine a second time domain resource allocation set for scheduling a second PDSCH after the first time
  • the first PDCCH carrying the first information also includes scheduling information of the first PDSCH;
  • the transceiver unit 11 is further configured to receive data sent by the network device through the first PDSCH;
  • the transceiver unit 11 is further configured to send feedback information of the data to the network device;
  • the processing unit 12 is configured to schedule the second PDSCH according to the second time domain resource allocation set at a second time after sending the feedback information of the data, where the second time is at the first time. After time.
  • the first PDCCH that carries the first information does not include the scheduling information of the first PDSCH;
  • the transceiver unit 11 is further configured to send feedback information of the first PDCCH to the network device;
  • the processing unit 12 is further configured to schedule the second PDSCH according to the second time domain resource allocation set at a third time after sending the feedback information of the first PDCCH.
  • transceiver unit 11 and processing unit 12 can be obtained by referring to the relevant description of the terminal device in the method embodiment shown in FIG. 2, which is not repeated here.
  • the above transceiver unit may be an integrated device with transceiver function, or it may be composed of an independent receiving unit with receiving function and a transmitting unit with transmitting function, logically called "transceiving unit" .
  • the transceiver unit 11 is configured to receive first information from a network device at a first time, where the first information is carried on a first physical downlink control channel PDCCH, and the first information A PDCCH includes scheduling information of the first physical uplink shared channel PUSCH, the first PUSCH is scheduled at the first time according to the first time domain resource allocation set, and the first information is used to determine the scheduling after the first time A second time domain resource allocation set of the second PUSCH;
  • the transceiver unit 11 is further configured to send data to the network device through the first PUSCH according to the scheduling information of the first PUSCH;
  • the processing unit 12 is configured to schedule the second PUSCH according to the second time domain resource allocation set within a second time after the data is sent, where the second time is after the first time.
  • transceiver unit 11 and processing unit 12 For a more detailed description of the foregoing transceiver unit 11 and processing unit 12, reference may be made to the relevant description of the terminal device in the method embodiment shown in FIG. 6, which is not repeated here.
  • the transceiver unit 11 is configured to receive first information from a network device at a first time, where the first information is carried on the first physical downlink control channel PDCCH, and the At the first time, the first PDCCH schedules the first physical downlink shared channel PDSCH or the first physical uplink shared channel PUSCH according to the first time domain resource allocation set;
  • the processing unit 12 is configured to, when the bits of the frequency domain resource allocation field of the first PDCCH are all zero, determine, according to the bits of the time domain resource allocation field of the first PDCCH, to be used for scheduling a second time after the first time.
  • the processing unit 12 is further configured to schedule the second PDSCH or the second PUSCH according to the determined first time domain resource allocation set at a second time, where the second time is after the first time .
  • the processing unit 12 is configured to, when the bits of the frequency domain resource allocation field of the first PDCCH are all zero, determine the first PDCCH according to the bits of the time domain resource allocation field of the first PDCCH.
  • transceiver unit 11 and processing unit 12 can be obtained by referring to the relevant description of the terminal device in the method embodiment shown in FIG. 8, which is not repeated here.
  • the transceiver unit 11 is configured to receive first downlink control information from a network device, where the first downlink control information is carried on the first physical downlink control channel PDCCH; processing The unit 12 is configured to determine a first minimum slot offset value according to a first domain of the first downlink control information, where the first domain includes at least one of the following domains: frequency domain resource allocation domain, time domain resource Allocation field, modulation and coding mode field, new data indication field or redundancy version field; wherein the first minimum time slot offset value represents the smallest available time slot for receiving the physical downlink shared channel PDSCH or transmitting the physical uplink shared channel PUSCH The offset value.
  • the first downlink control information further includes first indication information, and the first indication information is used to indicate that the first field carries indication information of a first minimum slot offset value.
  • the processing unit 12 is configured to obtain the time domain resource allocation domain when one or more domains in the first domain of the first downlink control information are the first set value
  • the value of the time domain resource allocation field is used to indicate the first minimum slot offset value.
  • the processing unit 12 is configured to obtain a pre-configured or predefined first field when one or more fields in the first field of the first downlink control information are the first set value.
  • a minimum slot offset value is configured to obtain a pre-configured or predefined first field when one or more fields in the first field of the first downlink control information are the first set value.
  • transceiver unit 11 and processing unit 12 For a more detailed description of the foregoing transceiver unit 11 and processing unit 12, reference may be made to the relevant description of the terminal device in the method embodiment shown in FIG. 10, which is not repeated here.
  • the transceiver unit 11 is configured to receive the first downlink control information at a first moment, where the first downlink control information is used to indicate the first minimum time slot deviation Shift value, the application time of the first downlink control information is not earlier than the second time; the transceiver unit 11 is also used to receive the second downlink control information at the third time, where the third time is at the Between the first time and the second time, the second downlink control information is used to indicate a second minimum slot offset value, and the application time of the second downlink control information is not earlier than the fourth time; and The processing unit 12 is configured to determine a used minimum time slot offset value and an application time of the used minimum time slot offset value according to the first downlink control information and/or the second downlink control information, where , The used minimum time slot offset value is one of the first minimum time slot offset value and the second minimum time slot offset value, and the used application time is no earlier than the second One of the time and the fourth time.
  • transceiver unit 11 and processing unit 12 For a more detailed description of the foregoing transceiver unit 11 and processing unit 12, reference may be made to the relevant description of the terminal device in the method embodiment shown in FIG. 11, and details are not repeated here.
  • the transceiver unit 11 is configured to receive downlink control information on the first bandwidth part BWP, where the downlink control information includes a time slot offset value and BWP identification indication information; and processing The unit 12 is configured to use the time slot offset value as the minimum time slot offset value of the second BWP when the BWP identification indication information indicates the second BWP.
  • the downlink control information is also used to indicate that the physical downlink shared channel PDSCH is received or the physical uplink shared channel PUSCH is sent on the second BWP at the first moment, and the first moment is the downlink control information The time slot in which the time slot is located plus the time slot offset value of the receiving time slot.
  • the transceiver unit 11 is configured to, when the BWP identification indication information indicates the first BWP, if the time slot offset value is less than the minimum time slot offset value of the first BWP, Receiving the PDSCH or sending the PUSCH at a second time, where the second time is the time slot in which the received time slot of the downlink control information plus the minimum time slot offset value of the first BWP is located; And the processing unit 12 is configured to use the slot offset value as the new minimum slot offset value of the first BWP.
  • the transceiver unit 11 is configured to add the time slot required for BWP switching to the receiving time slot of the downlink control information if the time slot offset value is less than the time delay required for BWP switching. Receive the PDSCH or transmit the PUSCH in the time slot where the extension is located.
  • transceiver unit 11 and processing unit 12 For a more detailed description of the foregoing transceiver unit 11 and processing unit 12, reference may be made to the relevant description of the terminal device in the method embodiment shown in FIG. 13, which will not be repeated here.
  • an embodiment of the present application also provides a communication device 200, which can be applied to the communication devices shown in FIG. 2, FIG. 6, and FIG. Communication method.
  • the communication device 100 may be a network device as shown in FIG. 1 or a component (such as a chip) applied to the network device.
  • the communication device 200 includes a transceiver unit 21 and a processing unit 22.
  • the transceiver unit 21 is configured to send first information to the terminal device at a first time, and the first information is carried on the first physical downlink control channel PDCCH, where the Time, the first PDCCH schedules a first physical downlink shared channel PDSCH according to a first time domain resource allocation set, and the first information is used to determine a second time domain resource allocation set for scheduling a second PDSCH after the first time;
  • the first PDCCH that carries the first information also includes scheduling information of the first PDSCH;
  • the transceiver unit 21 is further configured to send data to the terminal device through the first PDSCH;
  • the transceiver unit 21 is further configured to receive feedback information of the data from the terminal device;
  • the processing unit 22 is configured to schedule the second PDSCH according to the second time domain resource allocation set at a second time after receiving the feedback information of the data, where the second time is at the first time. After time.
  • the first PDCCH that carries the first information does not include the scheduling information of the first PDSCH;
  • the transceiving unit 21 is further configured to receive feedback information of the first PDCCH from the terminal device;
  • the processing unit 22 is further configured to schedule the second PDSCH according to the second time domain resource allocation set at a third time after receiving the feedback information of the first PDCCH.
  • transceiver unit 21 and processing unit 22 For a more detailed description of the foregoing transceiver unit 21 and processing unit 22, reference may be made to the relevant description of the network device in the method embodiment shown in FIG. 2, which will not be repeated here. It should be noted that the above transceiver unit may be an integrated device with transceiver function, or it may be composed of an independent receiving unit with receiving function and a transmitting unit with transmitting function, logically called "transceiving unit" .
  • the transceiver unit 21 is configured to send first information to the terminal device at a first time, where the first information is carried on the first physical downlink control channel PDCCH, and the first The PDCCH includes scheduling information of the first physical uplink shared channel PUSCH.
  • the first PUSCH is scheduled at the first time according to the first time domain resource allocation set, and the first information is used to determine the scheduling of the first PUSCH after the first time. 2.
  • the transceiving unit 21 is further configured to receive data sent by the terminal device through the first PUSCH;
  • the processing unit 22 is configured to schedule the second PUSCH according to the second time domain resource allocation set at a second time after receiving the data, where the second time is after the first time.
  • transceiver unit 21 and processing unit 22 For a more detailed description of the foregoing transceiver unit 21 and processing unit 22, reference may be made to the relevant description of the network device in the method embodiment shown in FIG. 6, which is not repeated here.
  • the transceiver unit 21 is configured to send first information to the terminal device at a first time, where the first information is carried on the first physical downlink control channel PDCCH, and the At a time, the first PDCCH schedules the first physical downlink shared channel PDSCH or the first physical uplink shared channel PUSCH according to the first time domain resource allocation set, and the bits of the frequency domain resource allocation domain of the first PDCCH are all zero, so The bits of the time domain resource allocation field of the first PDCCH are used to determine a second time domain resource allocation set for scheduling a second PDSCH or a second PUSCH after the first time;
  • the processing unit 22 is configured to schedule the second PDSCH or the second PUSCH according to the determined first time domain resource allocation set at a second time, where the second time is after the first time.
  • transceiver unit 21 and processing unit 22 For a more detailed description of the foregoing transceiver unit 21 and processing unit 22, reference may be made to the relevant description of the network device in the method embodiment shown in FIG. 8, which is not repeated here.
  • the transceiver unit 21 is configured to send first downlink control information, where the first downlink control information is carried on a first physical downlink control channel PDCCH, and the first downlink control information
  • the first field of the row control information is used to determine the first minimum time slot offset value, where the first field includes at least one of the following fields: frequency domain resource allocation domain, time domain resource allocation domain, modulation and coding method domain, new In the data indication field or the redundancy version field, the first minimum time slot offset value is used to indicate the minimum available time slot offset value for transmitting the physical downlink shared channel PDSCH or receiving the physical uplink shared channel PUSCH.
  • the first downlink control information further includes first indication information, and the first indication information is used to indicate that the first field carries indication information of a first minimum slot offset value.
  • transceiver unit 21 and processing unit 22 For a more detailed description of the foregoing transceiver unit 21 and processing unit 22, reference may be made to the related description of the network device in the method embodiment shown in FIG. 10, which is not repeated here.
  • the transceiver unit 21 is configured to send the first downlink control information at a first moment, where the application moment of the first information is not earlier than the second moment;
  • the transceiver unit 21 is further configured to send and receive second downlink control information at a third time, where the third time is between the first time and the second time, and the second downlink control information is used to indicate the first time.
  • Two minimum time slot offset values the application time of the second downlink control information is not earlier than the fourth time; and the processing unit 22 is configured to perform according to the first downlink control information and/or the second downlink control
  • the information determines the minimum time slot offset value used and the application moment of the used minimum time slot offset value, wherein the minimum time slot offset value used is the first minimum time slot offset value and the time For one of the second minimum slot offset values, the used application time is not earlier than one of the second time and the fourth time.
  • transceiver unit 21 and processing unit 22 For a more detailed description of the foregoing transceiver unit 21 and processing unit 22, reference may be made to the related description of the network device in the method embodiment shown in FIG. 11, which is not repeated here.
  • the transceiver unit 21 is configured to send downlink control information on the first bandwidth part BWP, where the downlink control information includes the time slot offset value and BWP identification indication information; and processing The unit 22 is configured to use the time slot offset value as the minimum time slot offset value of the second BWP when the BWP identification indication information indicates the second BWP.
  • the downlink control information is also used to indicate that the physical downlink shared channel PDSCH or the physical uplink shared channel PUSCH are received on the second BWP at the first moment, and the first moment is the downlink control information The time slot in which the time slot is located plus the time slot offset value of the receiving time slot.
  • the transceiver unit 21 is configured to, when the BWP identification indication information indicates the first BWP, if the time slot offset value is less than the minimum time slot offset value of the first BWP, Transmitting the PDSCH or receiving the PUSCH at a second time, where the second time is the time slot in which the received time slot of the downlink control information is plus the minimum time slot offset value of the first BWP; And the processing unit 22 is configured to use the time slot offset value as the new minimum time slot offset value of the first BWP.
  • the transceiver unit 21 is configured to add the time slot required for BWP switching to the receiving time slot of the downlink control information if the time slot offset value is less than the time delay required for BWP switching. Transmit the PDSCH or receive the PUSCH in the time slot where the extension is located.
  • transceiver unit 21 and processing unit 22 For a more detailed description of the foregoing transceiver unit 21 and processing unit 22, reference may be made to the relevant description of the network device in the method embodiment shown in FIG. 13, which is not repeated here.
  • An embodiment of the present application also provides a communication device, which is used to execute the above-mentioned communication method. Part or all of the above communication methods can be implemented by hardware or software.
  • the communication device may be a chip or an integrated circuit during specific implementation.
  • the communication device when part or all of the communication method in the foregoing embodiment is implemented by software, the communication device includes: a processor, configured to execute a program, and when the program is executed, the communication device can implement what is provided in the foregoing embodiment
  • the communication device may further include a memory for storing necessary programs. These related programs can be loaded into the memory when the communication device leaves the factory, or can be loaded into the memory when needed later.
  • the foregoing memory may be a physically independent unit, or may be integrated with the processor.
  • the communication device may also only include a processor.
  • the memory for storing the program is located outside the communication device, and the processor is connected to the memory through a circuit/wire for reading and executing the program stored in the memory.
  • the processor may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processor may include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL generic array logic
  • the memory may include volatile memory (volatile memory), such as random-access memory (RAM); the memory may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory) , Hard disk drive (HDD) or solid-state drive (solid-state drive, SSD); the memory may also include a combination of the above types of memory.
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • flash memory flash memory
  • HDD Hard disk drive
  • SSD solid-state drive
  • Figure 17 shows a simplified schematic diagram of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, and may also include a radio frequency circuit, an antenna, and an input and output device.
  • the processor can be used to process communication protocols and communication data, and can also be used to control terminal devices, execute software programs, and process data in software programs.
  • the terminal device may also include a memory.
  • the memory is mainly used to store software programs and data. These related programs can be loaded into the memory when the communication device leaves the factory, or can be loaded into the memory when needed later.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 17. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function can be regarded as the receiving unit and the transmitting unit (also collectively referred to as the transceiver unit) of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device .
  • the terminal device includes a receiving unit 31, a processing unit 32, and a sending unit 33.
  • the receiving unit 31 may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit 33 may also be called a transmitter, a transmitter, a transmitter, a transmitting circuit, etc.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the receiving unit 31 is used to perform the functions of the terminal device in steps S101 and S102 of the embodiment shown in FIG. 2; the sending unit 33 is used to perform the functions of the terminal device in step S103 of the embodiment shown in FIG. Function; and the processing unit 32 is used to execute step S104 of the embodiment shown in FIG. 2.
  • the receiving unit 31 is used to perform the function of the terminal device in step S201 of the embodiment shown in FIG. 6; the sending unit 33 is used to perform the function of the terminal device in step S202 of the embodiment shown in FIG. ; And the processing unit 32 is configured to execute step S203 of the embodiment shown in FIG. 6.
  • the receiving unit 31 is used to perform the function of the terminal device in step S301 of the embodiment shown in FIG. 8; and the processing unit 32 is used to perform steps S302 and S303 of the embodiment shown in FIG. 8.
  • the receiving unit 31 is used to execute the function of the terminal device in step S401 of the embodiment shown in FIG. 10; and the processing unit 32 is used to execute step S402 of the embodiment shown in FIG. 10.
  • the receiving unit 31 is used to perform the functions of the terminal device in steps S501 and S502 in the embodiment shown in FIG. 11; and the processing unit 32 is used to perform step S503 in the embodiment shown in FIG. 11.
  • the receiving unit 31 is configured to execute step S601 of the embodiment shown in FIG. 12; and the processing unit 32 is configured to execute step S602 of the embodiment shown in FIG.
  • FIG 18 shows a simplified schematic diagram of the network side device.
  • the network side equipment includes a radio frequency signal transceiver and conversion part and a part 42.
  • the radio frequency signal transceiver and conversion part includes a receiving unit 41 and a sending unit 43 (also collectively referred to as a transceiver unit).
  • the RF signal transceiver and conversion part is mainly used for the transceiver and the conversion of RF signals and baseband signals; the 42 part is mainly used for baseband processing and control of network side equipment.
  • the receiving unit 41 may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit 43 may also be called a transmitter, a transmitter, a transmitter, a transmitting circuit, etc.
  • the 42 part is usually the control center of the network-side equipment, and can usually be referred to as a processing unit, which is used to control the network-side equipment to execute the steps performed by the network-side equipment in Figure 4, Figure 6, and Figure 8 above.
  • a processing unit which is used to control the network-side equipment to execute the steps performed by the network-side equipment in Figure 4, Figure 6, and Figure 8 above.
  • the 42 part can include one or more single boards, and each single board can include one or more processors and one or more memories.
  • the processor is used to read and execute the programs in the memory to realize the baseband processing function and to the network side. Control of equipment. If there are multiple boards, the boards can be interconnected to increase processing capacity. As an optional implementation, multiple boards may share one or more processors, or multiple boards may share one or more memories, or multiple boards may share one or more processing at the same time. Device.
  • the sending unit 43 is used to perform the functions of the network device in steps S101 and S102 in the embodiment shown in FIG. 2; and the receiving unit 41 is used to perform the network device in step S103 in the embodiment shown in FIG. Function.
  • the sending unit 43 is used to perform the function of the network device in step S201 of the embodiment shown in FIG. 6; and the receiving unit 41 is used to perform the function of the network device in step S202 of the embodiment shown in FIG. Features.
  • the sending unit 43 is configured to perform the function of the network device in step S301 of the embodiment shown in FIG. 8.
  • the sending unit 43 is configured to perform the function of the network device in step S401 of the embodiment shown in FIG. 10.
  • the sending unit 43 is configured to perform the functions of the network device in steps S501 and S502 of the embodiment shown in FIG. 11.
  • the sending unit 43 is configured to perform the function of the network device in step S601 of the embodiment shown in FIG. 12.
  • the disclosed system, device, and method may be implemented in other ways.
  • the division of the unit is only a logical function division. In actual implementation, there can be other divisions.
  • multiple units or components can be combined or integrated into another system, or some features can be ignored or not. carried out.
  • the displayed or discussed mutual coupling, or direct coupling, or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer instructions can be sent from one website, computer, server, or data center to another via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) A website, computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium can be read-only memory (ROM), random access memory (RAM), or magnetic medium, such as floppy disk, hard disk, magnetic tape, magnetic disk, or optical medium, for example, Digital versatile disc (DVD) or semiconductor media, for example, solid state disk (SSD), etc.

Abstract

一种通信方法及装置。该方法包括:在第一时间接收来自网络设备的第一信息,第一信息承载在第一PDCCH,其中,在第一时间第一PDCCH使用第一时域资源分配集合调度第一PDSCH,第一信息用于确定第一时间以后调度第二PDSCH的第二时域资源分配集合;承载第一信息的第一PDCCH还包括第二PDSCH的调度信息,接收网络设备通过第一PDSCH发送的数据;向网络设备发送数据的反馈信息;以及在发送完数据的反馈信息后的第二时间,根据第二时域资源分配集合调度第二PDSCH。本申请在进行数据调度时,可以根据实际需要,明确指示在不同时间内采用的时域资源分配集合,从而兼顾了终端设备的功耗和传输时延。

Description

通信方法及装置
本申请要求于2019年4月2日提交中国国家知识产权局,申请号为201910263102.5、发明名称为“通信方法及装置”的中国专利申请的优先权,以及要求于2019年6月29日提交中国国家知识产权局,申请号为201910581390.9、发明名称为“通信方法及装置”的中国专利申请的优先权,以及要求于2019年8月16日提交中国国家知识产权局,申请号为201910760953.0、发明名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在通信系统中终端设备的功耗是用户体验的一个重要方面,第三代合作伙伴计划(3rd generation partnership project,3GPP)版本(Release16)提出要优化新无线(new radio,NR)系统中终端设备的功耗。优化终端设备功耗的一项内容就是增强基站调度数据的机制,下面将介绍现有协议的基站调度数据的过程。
在3GPP Release15的协议中,基站通过无线资源控制(radio resource control,RRC)信令向终端设备配置或者基站和终端设备之间预定义物理下行共享信道(physical downlink shared channel,PDSCH)的时域资源分配列表(time domain resource allocation list)或者物理上行共享信道(physical uplink shared channel,PUSCH)的时域资源分配列表(或者称时域资源分配集合),这个时域资源分配列表包含了物理下行控制信道(physical downlink control channel,PDCCH)与被调度的PDSCH或者PDCCH与被调度的PUSCH之间的时隙偏移,以及PDSCH或者PUSCH在时隙内的起始符号和长度。时域资源分配列表中的时隙偏移的取值可以大于或等于0,值的个数可以配置多个,比如时隙偏移可以配置为{0,1,2,3,4,5,6},当基站实际向终端设备调度时,通过PDCCH指示其中一个时隙偏移,表示当前调度的PDSCH或者PUSCH的时域位置,如果PDCCH指示的时隙偏移为0,则表示被调度的PDSCH或者PUSCH与PDCCH在同一个时隙。因为基站可以调度时域资源分配列表中的任一个值,终端设备只有完成PDCCH检测才能确定当前调度的时隙偏移,因此终端设备在开始检测PDCCH时总是要假设PDCCH指示的时隙偏移可能是时域资源分配列表中的最小值。如果时域资源分配列表中的取值包含0,也就是基站有可能调度的PDSCH或PUSCH和PDCCH在同一个时隙,甚至PDSCH和PDCCH的起始符号都是相同的。对于下行调度而言,终端设备每次检测PDCCH的同时都要缓存整个带宽上的数据,因为在完成PDCCH检测之前不知道PDSCH的时频域资源位置甚至不知道有没有调度PDSCH,这样会带来终端设备的功耗浪费;对于上行而言,类似的道理,终端设备不知道PDCCH调度的PUSCH的位置,甚至不知道有没有调度PUSCH,有可能PDCCH和PUSCH在同一时隙,这样就要求终端设备要尽快的完成PDCCH检测,否则终端设备来不及发送PUSCH的数据,同样会带来功耗浪费。
基于此,可以设置上行或者下行调度的时隙偏移K不包括0(即终端设备在PDCCH检测之前已经知道是跨时隙调度),即K>x,x大于等于0,那么终端设备可以从以下方面节省功耗:
减少不必要的缓存,主要是指PDSCH缓存;
放松PDCCH处理时间,在上行和下行调度都可以改善。在终端设备实现上,如果PDCCH处理时间很紧张,终端设备对时钟频率和电压要求比较高,带来的功耗也比较大,如果PDCCH处理时间充裕,终端对时钟频率和电压要求比较低,功耗也比较小。
虽然K>x可以节省终端设备功耗,但是相比时域资源分配列表包含0即K>=0(即同时隙调度),K>x的缺点是会增加时延,也就是说基站调度时PDSCH或者PUSCH与PDCCH之间有一定的间隙(gap),增加了传输时延。因此,考虑到时延和功耗两方面因素,需要动态切换用于调度的时域资源分配集合。然而,现有技术并没有提供可靠地动态切换时域资源分配集合的方案。
发明内容
本申请提供一种通信方法及装置,以在进行数据调度时,可以兼顾终端设备的功耗和传输时延。
第一方面,提供了一种通信方法,所述方法包括:在第一时间接收来自网络设备的第一信息,所述第一信息承载在第一物理下行控制信道PDCCH,其中,在所述第一时间所述第一PDCCH根据第一时域资源分配集合调度第一物理下行共享信道PDSCH,所述第一信息用于确定所述第一时间以后调度第二PDSCH的第二时域资源分配集合;承载所述第一信息的所述第一PDCCH还包括所述第一PDSCH的调度信息;接收所述网络设备通过所述第一PDSCH发送的数据;向所述网络设备发送所述数据的反馈信息;以及在发送完所述数据的反馈信息后的第二时间,根据所述第二时域资源分配集合调度所述第二PDSCH,其中,所述第二时间在所述第一时间以后。在该方面中,在进行数据调度时,可以根据实际需要,明确指示在不同时间内采用的时域资源分配集合,从而兼顾了终端设备的功耗和传输时延,同时避免由于终端设备的漏检造成基站和终端设备行为不一致的问题,保证了动态切换时域资源分配集合的可靠性。
在一个实现中,承载所述第一信息的所述第一PDCCH未包括所述第一PDSCH的调度信息,所述方法还包括:向所述网络设备发送所述第一PDCCH的反馈信息;在发送完所述第一PDCCH的反馈信息后的第三时间,根据所述第二时域资源分配集合调度所述第二PDSCH。在该实现中,为了防止漏检第一信息,导致网络侧和终端设备侧对调度信息理解不一致,可以在发送了第一PDCCH的反馈信息之后,新的时域资源分配集合才生效。
第二方面,提供了一种通信方法,所述方法包括:在第一时间向终端设备发送第一信息,所述第一信息承载在第一物理下行控制信道PDCCH,其中,在所述第一时间所述第一PDCCH根据第一时域资源分配集合调度第一物理下行共享信道PDSCH,所述第一信息用于确定所述第一时间以后调度第二PDSCH的第二时域资源分配集合;承载所述第一信息的所述第一PDCCH还包括所述第一PDSCH的调度信息;通过所述第一PDSCH向所述终端设备发送数据;接收来自所述终端设备的所述数据的反馈信息;以及在接收到所述数据 的反馈信息后的第二时间,根据所述第二时域资源分配集合调度所述第二PDSCH,其中,所述第二时间在所述第一时间以后。在该方面中,在进行数据调度时,可以根据实际需要,明确指示在不同时间内采用的时域资源分配集合,从而兼顾了终端设备的功耗和传输时延。
在一个实现中,承载所述第一信息的所述第一PDCCH未包括所述第一PDSCH的调度信息,所述方法还包括:接收来自所述终端设备的所述第一PDCCH的反馈信息;以及在接收到所述第一PDCCH的反馈信息后的第三时间,根据所述第二时域资源分配集合调度所述第二PDSCH。
第三方面,提供了一种通信方法,所述方法包括:在第一时间接收来自网络设备的第一信息,其中,所述第一信息承载在第一物理下行控制信道PDCCH,所述第一PDCCH包括第一物理上行共享信道PUSCH的调度信息,在所述第一时间根据第一时域资源分配集合调度所述第一PUSCH,所述第一信息用于确定所述第一时间以后调度第二PUSCH的第二时域资源分配集合;根据所述第一PUSCH的调度信息,通过所述第一PUSCH向所述网络设备发送数据;以及在发送所述数据之后的第二时间内,根据所述第二时域资源分配集合调度所述第二PUSCH,其中,所述第二时间在所述第一时间以后。在该方面中,在进行数据调度时,可以根据实际需要,明确指示在不同时间内采用的时域资源分配集合,从而兼顾了终端设备的功耗和传输时延,同时避免由于终端设备的漏检造成基站和终端设备行为不一致的问题,保证了动态切换时域资源分配集合的可靠性。
第四方面,提供了一种通信方法,所述方法包括:在第一时间向终端设备发送第一信息,其中,所述第一信息承载在第一物理下行控制信道PDCCH,所述第一PDCCH包括第一物理上行共享信道PUSCH的调度信息,在所述第一时间根据第一时域资源分配集合调度所述第一PUSCH,所述第一信息用于确定所述第一时间以后调度第二PUSCH的第二时域资源分配集合;接收所述终端设备通过所述第一PUSCH发送的数据;以及在接收到所述数据之后的第二时间,根据所述第二时域资源分配集合调度所述第二PUSCH,其中,所述第二时间在所述第一时间以后。
结合以上第一方面至第四方面的任一个方面或任一个实现,在又一个实现中,所述第一时域资源分配集合包括一个或多个时隙偏移值,所述时隙偏移值大于或等于0,所述第二时域资源分配集合包括一个或多个时隙偏移值,所述时隙偏移值大于0;或者所述第一时域资源分配集合包括一个或多个时隙偏移值,所述时隙偏移值大于0,所述第二时域资源分配集合包括一个或多个时隙偏移值,所述时隙偏移值大于或等于0。
第五方面,提供了一种通信方法,所述方法包括:在第一时间接收来自网络设备的第一信息,其中,所述第一信息承载在第一物理下行控制信道PDCCH,在所述第一时间所述第一PDCCH根据第一时域资源分配集合调度第一物理下行共享信道PDSCH或第一物理上行共享信道PUSCH;当所述第一PDCCH的频域资源分配域的比特全为零,根据所述第一PDCCH的时域资源分配域的比特确定用于所述第一时间以后调度第二PDSCH或第二PUSCH的第二时域资源分配集合;以及在第二时间根据确定的所述第一时域资源分配集合调度所述第二PDSCH或第二PUSCH,其中,所述第二时间在所述第一时间以后。在该方面中,在第一信息不用于调度时,可以通过第一信息的时域资源分配域的比特来指示时域资源分配集合,从而可以根据实际需要,明确指示在不同时间内采用的时域资源分配集合, 从而兼顾了终端设备的功耗和传输时延,同时避免由于终端设备的漏检造成基站和终端设备行为不一致的问题,保证了动态切换时域资源分配集合的可靠性。
在一个实现中,所述当所述第一PDCCH的频域资源分配域的比特全为零,根据所述第一PDCCH的时域资源分配域的比特确定用于所述第一时间以后调度第二PDSCH或第二PUSCH的第二时域资源分配集合,包括:当所述第一PDCCH的频域资源分配域的比特全为零,根据所述第一PDCCH的时域资源分配域的比特确定所述第一时域资源分配集合的最小时隙偏移值或最小时隙偏移值的索引。
第六方面,提供了一种通信方法,所述方法包括:在第一时间向终端设备发送第一信息,其中,所述第一信息承载在第一物理下行控制信道PDCCH,在所述第一时间所述第一PDCCH根据第一时域资源分配集合调度第一物理下行共享信道PDSCH或第一物理上行共享信道PUSCH,所述第一PDCCH的频域资源分配域的比特全为零,所述第一PDCCH的时域资源分配域的比特用于确定用于所述第一时间以后调度第二PDSCH或第二PUSCH的第二时域资源分配集合;以及在第二时间根据确定的所述第一时域资源分配集合调度所述第二PDSCH或第二PUSCH,其中,所述第二时间在所述第一时间以后。
第七方面,提供了一种通信方法,所述方法包括:接收来自网络设备的第一下行控制信息,其中,所述第一下行控制信息承载在第一物理下行控制信道PDCCH;以及根据所述第一下行控制信息的第一域确定第一最小时隙偏移值,其中,所述第一域包括以下至少一个域:频域资源分配域、时域资源分配域、调制编码方式域、新数据指示域或冗余版本域;其中,所述第一最小时隙偏移值表示接收物理下行共享信道PDSCH或者发送物理上行共享信道PUSCH的最小的可用时隙偏移值。在该方面中,复用下行控制信息的第一域,用于确定最小时隙偏移值,可以不增加控制信息的比特,减少控制信息的开销,还可以结合HARQ-ACK反馈提高信令的可靠性。
在一个实现中,所述第一下行控制信息还包括第一指示信息,所述第一指示信息用于指示所述第一域携带第一最小时隙偏移值的指示信息。在该实现中,通过第一指示信息明确地指示当前复用第一域,第一域用于携带最小时隙偏移值的指示信息。
在又一个实现中,所述根据所述第一下行控制信息的第一域确定最小时隙偏移值,包括:当所述第一下行控制信息的第一域中的一个或者多个域为第一设定值时,获取所述时域资源分配域的值,所述时域资源分配域的值用于指示所述第一最小时隙偏移值。在该实现中,当第一域中的一个或多个域为第一设定值时,时域资源分配域的值用于指示最小时隙偏移值。可以理解的是,第一域中的一个或多个域为第一设定值,每个域对应的设定值可以不同。
在又一个实现中,所述根据所述第一下行控制信息的第一域确定第一最小时隙偏移值,包括:当所述第一下行控制信息的第一域中的一个或者多个域为第一设定值时,获取预先配置或者预定义的第一最小时隙偏移值。在该实现中,当第一域中的一个或多个域为第一设定值时,最小时隙偏移值可以是预先配置或预定义的值。
在又一个实现中,所述接收来自网络设备的第一下行控制信息,包括:在第一时刻接收所述第一下行控制信息,其中,所述第一下行控制信息的应用时刻不早于第二时刻;所述方法还包括:在第三时刻接收第二下行控制信息,其中,所述第三时刻在所述第一时刻 和所述第二时刻之间,第二下行控制信息用于指示第二最小时隙偏移值,所述第二下行控制信息的应用时刻不早于第四时刻;以及根据所述第一下行控制信息和/或所述第二下行控制信息确定使用的最小时隙偏移值以及所述使用的最小时隙偏移值的应用时刻,其中,所述使用的最小时隙偏移值为所述第一最小时隙偏移值和所述第二最小时隙偏移值中的一个,所述使用的应用时刻不早于所述第二时刻和所述第四时刻中的一个。在该实现中,如果在第一下行控制信息应用时刻前,又接收到了第二下行控制信息,则根据第一下行控制信息和/或第二下行控制信息确定使用的最小时隙偏移值以及使用的最小时隙偏移值的应用时刻,以解决多个下行控制信息所指示的最小时隙偏移值之间的冲突。
在又一个实现中,所述第一域为频域资源分配域,所述方法还包括:根据所述第一下行控制信息的第一域确定第一最小时隙偏移值,包括:如果所述频域资源分配方式为频域资源分配方式类型0,当所述频域资源分配域的比特全为0时,则时域资源分配域的比特指示所述第一最小时隙偏移值;如果所述频域资源分配方式为频域资源分配方式类型1,当所述频域资源分配域的比特全为1时,则时域资源分配域的比特指示所述第一最小时隙偏移值。
在又一个实现中,所述方法还包括:接收来自所述网络设备的第一配置信息,所述第一配置信息包括配置的所述频域资源分配方式。
第八方面,提供了一种通信方法,所述方法包括:发送第一下行控制信息,其中,所述第一下行控制信息承载在第一物理下行控制信道PDCCH,所述第一下行控制信息的第一域用于确定第一最小时隙偏移值,其中,所述第一域包括以下至少一个域:频域资源分配域、时域资源分配域、调制编码方式域、新数据指示域或冗余版本域,所述第一最小时隙偏移值用于表示发送物理下行共享信道PDSCH或者接收物理上行共享信道PUSCH的最小的可用时隙偏移值。
在一个实现中,所述第一下行控制信息还包括第一指示信息,所述第一指示信息用来指示所述第一域携带第一最小时隙偏移值的指示信息。
在又一个实现中,所述发送第一下行控制信息,包括:在第一时刻发送所述第一下行控制信息,其中,所述第一信息的应用时刻不早于第二时刻;所述方法还包括:在第三时刻发送接收第二下行控制信息,其中,所述第三时刻在所述第一时刻和所述第二时刻之间,第二下行控制信息用于指示第二最小时隙偏移值,所述第二下行控制信息的应用时刻不早于第四时刻;以及根据所述第一下行控制信息和/或所述第二下行控制信息确定使用的最小时隙偏移值以及所述使用的最小时隙偏移值的应用时刻,其中,所述使用的最小时隙偏移值为所述第一最小时隙偏移值和所述第二最小时隙偏移值中的一个,所述使用的应用时刻不早于所述第二时刻和所述第四时刻中的一个。
在又一个实现中,所述第一域为频域资源分配域,所述第一下行控制信息的第一域用于确定第一最小时隙偏移值,包括:如果所述频域资源分配方式为频域资源分配方式类型0,当所述频域资源分配域的比特全为0时,则时域资源分配域的比特指示所述第一最小时隙偏移值;如果所述频域资源分配方式为频域资源分配方式类型1,当所述频域资源分配域的比特全为1时,则时域资源分配域的比特指示所述第一最小时隙偏移值。
在又一个实现中,所述方法还包括:发送第一配置信息,所述第一配置信息包括配置 的所述频域资源分配方式。
第九方面,提供了一种通信方法,所述方法包括:在第一带宽部分BWP上接收下行控制信息,其中,所述下行控制信息包括时隙偏移值和BWP标识指示信息;以及当所述BWP标识指示信息指示第二BWP时,将所述时隙偏移值作为所述第二BWP的最小时隙偏移值。在该方面中,当BWP动态切换时,可以同时指示目标BWP的最小时隙偏移值,不需要增加新的比特,并且不影响调度机会减少传输时延。当BWP不发生切换时,不需要增加新的比特域,可以将最小时隙偏移值从一个较大的值更新为较小的值,并且不影响调度机会减少传输时延。
在一个实现中,所述下行控制信息还用于指示在第一时刻在所述第二BWP上接收物理下行共享信道PDSCH或发送物理上行共享信道PUSCH,所述第一时刻为所述下行控制信息的接收时隙加上时隙偏移值个时隙所在的时隙。
在又一个实现中,所述方法还包括:当所述BWP标识指示信息指示第一BWP时,如果所述时隙偏移值小于所述第一BWP的最小时隙偏移值,在第二时刻接收所述PDSCH或发送所述PUSCH,所述第二时刻为所述下行控制信息的接收时隙加上所述第一BWP的最小时隙偏移值个时隙所在的时隙;以及将所述时隙偏移值作为所述第一BWP的新的最小时隙偏移值。在该实现中,如果BWP不发生切换,如果下行控制信息携带的时隙偏移值小于第一BWP的最小时隙偏移值,当前仍根据第一BWP的最小时隙偏移值进行数据传输,然后将下行控制信息携带的时隙偏移值作为第一BWP的新的最小时隙偏移值。
在又一个实现中,所述方法还包括:当所述BWP标识指示信息指示第二BWP时,如果所述时隙偏移值小于BWP切换所需的时延,在所述下行控制信息的接收时隙加上所述BWP切换所需时延所在的时隙上接收所述PDSCH或发送所述PUSCH。在该实现中,如果下行控制信息携带的时隙偏移值小于BWP切换所需的时延,则需要在完成BWP切换后进行数据传输,则在下行控制信息的接收时隙加上BWP切换所需时延所在的时隙上进行数据传输,以保证指示第二BWP的最小时隙偏移值的同时不影响调度机会。
第十方面,提供了一种通信方法,所述方法包括:在第一带宽部分BWP上发送下行控制信息,其中,所述下行控制信息包括时隙偏移值和BWP标识指示信息;以及当所述BWP标识指示信息指示第二BWP时,将所述时隙偏移值作为所述第二BWP的最小时隙偏移值。
在一个实现中,所述下行控制信息还用于指示在第一时刻在所述第二BWP上发送物理下行共享信道PDSCH或接收物理上行共享信道PUSCH,所述第一时刻为所述下行控制信息的接收时隙加上时隙偏移值个时隙所在的时隙。
在又一个实现中,所述方法还包括:当所述BWP标识指示信息指示第一BWP时,如果所述时隙偏移值小于所述第一BWP的最小时隙偏移值,在第二时刻发送所述PDSCH或接收所述PUSCH,所述第二时刻为所述下行控制信息的接收时隙加上所述第一BWP的最小时隙偏移值个时隙所在的时隙;以及将所述时隙偏移值作为所述第一BWP的新的最小时隙偏移值。
在又一个实现中,所述方法还包括:当所述BWP标识指示信息指示第二BWP时,如果所述时隙偏移值小于BWP切换所需的时延,在所述下行控制信息的接收时隙加上所述 BWP切换所需时延所在的时隙上发送所述PDSCH或接收所述PUSCH。
第十一方面,提供了一种通信装置,可以实现上述第一方面、第三方面、第五方面、第七方面、第九方面或任一实现的通信方法。例如所述通信装置可以是芯片(如基带芯片,或通信芯片等)或者终端设备。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和/或数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置,可以包括执行上述方法中相应功能或动作的单元模块。
在又一种可能的实现方式中,包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现上述方法。示例性的,所述收发装置可以为收发器、收发电路或输入输出接口。当所述通信装置为芯片时,所述收发装置为收发电路或输入输出接口。
当所述通信装置为芯片时,发送单元可以是输出单元,比如输出电路或者通信接口;接收单元可以是输入单元,比如输入电路或者通信接口。当所述通信装置为网络设备时,发送单元可以是发射器或发射机;接收单元可以是接收器或接收机。
第十二方面,提供了一种通信装置,可以实现上述第二方面、第四方面、第六方面、第八方面、第十方面或任一实现的通信方法。例如所述通信装置可以是芯片(如基带芯片,或通信芯片等)或者网络设备,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置,可以包括执行上述方法中的相应动作的单元模块。
在又一种可能的实现方式中,包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现上述方法。示例性的,所述收发装置可以为收发器、收发电路或输入输出接口。当所述通信装置为芯片时,所述收发装置为收发电路或输入输出接口。
当所述通信装置为芯片时,接收单元可以是输入单元,比如输入电路或者通信接口;发送单元可以是输出单元,比如输出电路或者通信接口。当所述通信装置为终端设备时,接收单元可以是接收器(也可以称为接收机);发送单元可以是发射器(也可以称为发射机)。
可以理解的是,本申请实施例中,通信装置中负责输入和输出的硬件部分可以集成在 一起。
第十三方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十四方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十五方面,提供一种通信系统,包括前述的任一网络设备侧通信装置,和/或,任一终端设备侧通信装置。
附图说明
下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请涉及的一种通信系统的示意图;
图2为本申请实施例提供的一种通信方法的流程示意图;
图3为示例的一个时域资源分配集合切换示意图;
图4为示例的又一个时域资源分配集合切换示意图;
图5为示例的又一个时域资源分配集合切换示意图;
图6为本申请实施例提供的又一种通信方法的流程示意图;
图7为示例的又一个时域资源分配集合切换示意图;
图8为本申请实施例提供的又一种通信方法的流程示意图;
图9a为通过DCI的时域资源分配域的比特指示时域资源分配集合的示意图;
图9b为通过RIV指示PDSCH或者PUSCH频域资源的示意图;
图10为本申请实施例提供的又一种通信方法的流程示意图;
图11为本申请实施例提供的又一种通信方法的流程示意图;
图12为下行控制信息的应用示意图;
图13为本申请实施例提供的又一种通信方法的流程示意图;
图14为带宽部分切换的示意图;
图15为本申请实施例提供的一种通信装置的结构示意图;
图16为本申请实施例提供的又一种通信装置的结构示意图;
图17为本申请实施例提供的一种简化的终端设备的结构示意图;
图18为本申请实施例提供的一种简化的网络设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
图1给出了本申请涉及的一种通信系统的示意图。该通信系统可以包括至少一个网络设备100(仅示出1个)以及与网络设备100连接的一个或多个终端设备200。
网络设备100可以是能和终端设备200通信的设备。网络设备100可以是任意一种具有无线收发功能的设备。包括但不限于:基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点等。网络设备100还可以是云无线接入网络(cloud radio  access network,CRAN)场景下的无线控制器。网络设备100还可以是小站,传输节点(transmission reference point,TRP)等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
终端设备200是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,如飞机、气球和卫星上等。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、接入终端设备、UE单元、移动站、移动台、远方站、远程终端设备、移动设备、终端(terminal)、无线通信设备、UE代理或UE装置等。
需要说明的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
图2为本申请实施例提供的一种通信方法的流程示意图,包括如下步骤:
S101、网络设备在第一时间向终端设备发送第一信息。
相应地,终端设备接收该第一信息。
其中,第一信息承载在第一PDCCH。例如,该第一信息为下行控制信息(downlink control information,DCI)。其中,在第一时间该第一PDCCH根据第一时域资源分配集合调度第一PDSCH。
如图3示例的一个时域资源分配集合切换示意图,在第一时间,DCI1为上述第一信息。该DCI1承载在第一PDCCH。在第一时间,第一PDCCH使用时域资源分配集合1进行调度,即在第一时间有效的时域资源分配集合为时域资源分配集合1,该DCI1承载了PDSCH1的调度信息,包括PDSCH1的时隙偏移,PDSCH1的时隙偏移为时域资源分配集合1中的一个值。例如,时域资源分配集合1的时隙偏移值均大于0,即第一PDCCH进行跨时隙调度。
在本实施例中,该第一信息用于确定用于第一时间以后调度第二PDSCH的第二时域资源分配集合。即该第一信息用于指示第一时间以后第二PDCCH调度第二PDSCH的时隙偏移的取值范围发生了变化,例如,第一时间以后时隙偏移包括0。如图3所示,DCI1调度了PDSCH1,同时指示第一时间以后PDCCH调度PDSCH可以同时隙调度。即第一时域资源分配集合包括时隙偏移值大于或等于0的值。本实施例中第一信息用于确定第一时间以后第二PDCCH调度PDSCH时PDSCH的时隙偏移的取值范围发生了变化,具体指示方式不限制,第一信息可以是显示指示,也可以隐式指示;可以指示时隙偏移的最小值,也可以指示时隙偏移的最小值对应的索引值。本发明中时域资源分配集合也可以体现为时隙 偏移的最小值。
S102、承载第一信息的第一PDCCH还包括第一PDSCH的调度信息,网络设备通过第一PDSCH向终端设备发送数据。
相应地,终端设备接收该数据。
在本实施例中,承载第一信息的第一PDCCH还包括第一PDSCH的调度信息,因此,根据该调度信息,网络设备通过第一PDSCH向终端设备发送数据。
如图3所示,在第一时间,承载DCI1的第一PDCCH还用于调度PDSCH1,则网络设备通过PDSCH1向终端设备发送数据。此外,DCI2仍根据时域资源分配集合1调度PDSCH2,则网络设备在PDSCH2向终端设备发送数据。
S103、终端设备向网络设备发送数据的反馈信息。
相应地,网络设备接收该数据的反馈信息。
终端设备在接收到网络设备通过第一PDSCH发送的数据后,需要向网络设备发送反馈信息,该反馈信息包括正确应答(acknowledgement,ACK)和错误应答(non-acknowledgement,NACK),表示终端设备是否正确接收到PDSCH发送的数据。
如图3所示,针对网络设备在PDSCH1上发送的数据,终端设备向网络设备发送NACK1;针对网络设备在PDSCH2上发送的数据,终端设备向网络设备发送ACK2。
S104、在发送完第一PDSCH的数据的反馈信息后的第二时间,根据第二时域资源分配集合调度第二PDSCH,其中,第二时间在第一时间以后。
在本实施例中,无论第一PDSCH对应的反馈消息是ACK还是NACK,网络设备在收到终端设备发送的对应第一PDSCH的反馈信息之后,即在终端设备发送完第一PDSCH的数据的反馈信息后的第二时间,第二PDCCH根据第二时域资源分配集合调度第二PDSCH。需要说明的是,该第二PDSCH可以是一个或多个,该第二PDSCH是指第二时间内调度的所有PDSCH。由于网络设备接收到终端设备发送的反馈信息,网络设备可以确定终端设备接收到了上述第一信息,即终端设备没有漏检承载第一信息的PDCCH,且该第一信息用于确定第一时间以后第二PDCCH调度第二PDSCH的第二时域资源分配集合,则终端设备和网络设备可以在第一PDSCH的数据的反馈信息后同时生效PDSCH的时域资源分配集合为第二时域资源分配集合。
如图3所示,终端设备在发送完NACK1之后,则第二PDCCH可以使用时域资源分配集合2进行调度,即在发送完NACK1之后,有效的时域资源分配集合为时域资源分配集合2,即第二PDCCH调度PDSCH时包括同时隙调度。例如,DCI3和PDSCH3为同时隙调度。
另外,承载第一信息的第一PDCCH可能未包括第一PDSCH的调度信息,则在另一个实施例中,S102和S103可替换为:终端设备向网络设备发送第一PDCCH的反馈信息。表示终端设备收到第一信息。
S104可替换为:在发送完第一PDCCH的反馈信息后的第三时间,根据第二时域资源分配集合调度第二PDSCH。
在该替换的实施例中,如果承载第一信息的第一PDCCH未包括第一PDSCH的调度信息,则为了防止第一信息被漏检,终端设备可以向网络设备发送第一PDCCH的反馈信息, 在发送完第一PDCCH的反馈信息后的第三时间,根据第二时域资源分配集合调度第二PDSCH。其实现过程可参考上述实施例。
此外,在网络设备通过DCI指示切换时域资源分配集合以后,在第一信息生效之前,即终端设备发送反馈消息结束之前,网络设备仍然采用当前的时域资源分配集合进行调度,例如如图3中的集合1表示的跨时隙调度,但是,在该时间段内(指示切换信令以后,信令生效之前)PDCCH调度的PDSCH不能在第一信息生效的时间之后,即PDCCH调度的PDSCH不能在第一PDSCH的反馈消息或者第一PDCCH的反馈消息之后。例如图4所示,DCI2的调度仍然符合集合1,但是调度的PDSCH2在生效时间之后,这种情况是不希望的。而是应该如图3中DCI2的调度仍然符合集合1,并且调度的PDSCH2在生效时间之前,这样网络设备和终端设备能够真正实现在信令生效以后立刻进行同时隙调度。
有上述约束的原因是因为当前协议不支持调度乱序,即对于两个HARQ进程,如果DCI3的结束符号位置不早于DCI2的结束符号位置,而PDSCH3的开始符号位置比PDSCH2的结束符号位置早,这种调度是不支持的。因此,如果不约束在第一信息指示以后至第一信息生效之前的时间段的PDCCH调度PDSCH时,PDSCH不能在第一信息生效的时间之后,出现了图5中DCI2调度PDSCH2的情况,那么即使切换信令生效了,DCI3也并不能在同时隙调度PDSCH3。
需要说明的是,在本实施例中,如果终端设备正处于跨时隙调度,即时域资源分配集合中的时隙偏移值均大于0,一旦终端设备向网络设备发送了调度请求(scheduling request,SR),终端设备回退到PDSCH的时域资源分配集合的默认配置,即时隙偏移值可以包括0,可以同时隙调度。网络设备接收终端设备发送的SR以后,网络设备也会回退到默认的时域资源分配集合,即时隙偏移包括0,可以进行同时隙调度。
根据本申请实施例提供的一种通信方法,在进行数据调度时,可以根据实际需要,明确指示在不同时间内采用的时域资源分配集合,从而兼顾了终端设备的功耗和传输时延,同时避免由于终端设备的漏检造成网络设备和终端设备行为不一致的问题,保证了动态切换时域资源分配集合的可靠性。
图6为本申请实施例提供的又一种通信方法的流程示意图,包括如下步骤:
S201、网络设备在第一时间向终端设备发送第一信息。
相应地,终端设备接收该第一信息。
其中,第一信息承载在第一PDCCH,承载第一信息的第一PDCCH还包括第一PUSCH的调度信息,在第一时间根据第一时域资源分配集合调度第一PUSCH,第一信息用于确定第一时间以后调度第二PUSCH的第二时域资源分配集合。
S202、终端设备根据第一PUSCH的调度信息通过第一PUSCH向网络设备发送数据。第一PUSCH的时隙偏移为第一时域资源分配集合中的一个值。
相应的,网络设备接收该数据。
S203、在发送第一PUSCH的数据之后的第二时间,根据第二时域资源分配集合调度第二PUSCH,其中,第二时间在第一时间以后。
与图2所示实施例不同的是,该第一信息用于确定上行调度的时域资源分配集合。对于上行调度而言,由于没有HARQ-ACK反馈,终端设备向网络设备发送PUSCH之后,网 络设备不会向终端设备发送HARQ-ACK信息,则在第一时间第一PDCCH根据第一时域资源分配集合调度第一PUSCH,则终端设备可以在通过第一PUSCH发送数据之后,在第二时间,根据第二时域资源分配集合调度第二PUSCH。
该第一时域资源分配集合是和上述第二时域资源分配集合不同的集合。例如,在第一时间,第一PDCCH根据第一时域资源分配集合调度第一PUSCH,第一时域资源分配集合中的时隙偏移值大于或等于0,即可以同时隙调度;在第二时间,第二时域资源分配集合中的时隙偏移值均大于0,即可以跨时隙调度,不可以同时隙调度。或者反之,在第一时间,第一PDCCH根据第一时域资源分配集合进行调度,第一时域资源分配集合中的时隙偏移值大于0,即可以跨时隙调度,不可以同时隙调度;在第二时间,第二时域资源分配集合中的时隙偏移值大于或等于0,即可以同时隙调度。第一时域资源分配集合还可以是第二时域资源分配集合的子集,或者,第二时域资源分配集合还可以是第一时域资源分配集合的子集。
本实施例中第一信息用于确定第一时间以后调度第二PUSCH的时隙偏移的取值范围发生了变化,具体指示方式不限制,第一信息可以是显示指示,也可以隐式指示;可以指示时隙偏移的最小值,也可以指示时隙偏移的最小值对应的索引值。本发明中时域资源分配集合也可以表述为时隙偏移的最小值。
如图7示例的又一个时域资源分配集合切换示意图,在第一时间承载DCI1的第一PDCCH根据时域资源分配集合1进行调度,例如调度PUSCH1,PUSCH1的时隙偏移为时域资源分配集合1中的一个值,即有效的时域资源分配集合为时域资源分配集合1。在该实施例中,时域资源分配集合1中时域偏移值K大于0。例如,在第一时间,DCI1调度PUSCH1为跨时隙调度,DCI2调度PUSCH2为跨时隙调度。该DCI1指示第二时间使用资源分配集合2,即指示第二时间切换为同时隙调度。在终端设备发送完PUSCH1之后,该指示生效。则在第二时间根据时域资源分配集合2调度PUSCH,例如,承载DCI3的PDCCH根据时域资源分配集合2调度PUSCH3。即时域资源分配集合2有效。在该实例中,时域资源分配集合2中时域偏移值K大于或等于0。例如,DCI3和PUSCH3可以同时隙调度。第二时间在第一时间以后。
需要说明的是,在本实施例中,如果终端设备正处于跨时隙调度,即时域资源分配集合中的时隙偏移值均大于0,一旦终端设备向网络设备发送了调度请求,终端设备回退到PDSCH的时域资源分配集合的默认配置,即时隙偏移值可以包括0,可以同时隙调度。网络设备接收终端设备发送的SR以后,网络设备也会回退到默认的时域资源分配集合,即时隙偏移包括0,可以进行同时隙调度。
根据本申请实施例提供的一种通信方法,在进行数据调度时,可以根据实际需要,明确指示在不同时间内采用的时域资源分配集合,从而兼顾了终端设备的功耗和传输时延,同时避免由于终端设备的漏检造成网络设备和终端设备行为不一致的问题,保证了动态切换时域资源分配集合的可靠性。
图8为本申请实施例提供的又一种通信方法的流程示意图,包括如下步骤:
S301、网络设备在第一时间向终端设备发送第一信息。
相应地,终端设备接收该第一信息。
其中,第一信息承载在第一PDCCH。在第一时间第一PDCCH根据第一时域资源分配集合调度第一PDSCH。例如,该第一信息为DCI。该DCI采用现有的UE专用的DCI格式(DCI format)。
S302、当第一PDCCH的频域资源分配(frequency domain resource assignment)域的比特全为零时,终端设备根据第一PDCCH的时域资源分配(time domain resource assignment)域的比特确定用于第一时间以后调度第二PDSCH或第二PUSCH的第二时域资源分配集合。
终端设备解析该PDCCH的DCI,得到频域资源分配域的比特和时域资源分配域的比特。当该DCI用于调度PDSCH或者PUSCH时,则DCI的频域资源分配域的比特不全为零,即PDSCH或者PUSCH需占用一定的频域资源,终端设备可以认为该第一信息是正常的调度信息,那么时域资源分配域的比特表示当前调度的PDSCH或者PUSCH的时域位置。
当第一信息的频域资源分配域的比特全为零时,可以认为该第一信息不是当前PDSCH或者PUSCH的调度信息,那么时域资源分配域的比特表示上述第二时域资源分配集合。
上述第一时域资源分配集合还可以是第二时域资源分配集合的子集,或者,第二时域资源分配集合还可以是第一时域资源分配集合的子集。
具体地,时域资源分配域的比特表示第二时域资源分配集合的最小时隙偏移值或最小时隙偏移值的索引。则S302包括:当第一PDCCH的频域资源分配域的比特全为零时,根据第一PDCCH的时域资源分配域的比特确定第二PDSCH或者第二PUSCH的最小时隙偏移值或最小时隙偏移值的索引。例如,当时域资源分配域的比特指示最小时隙偏移值为0时,则可以确定第二时域资源分配集合中的时隙偏移值大于或等于0;当时域资源分配域的比特指示最小时隙偏移值为某个大于0的值时,则可以确定第二时域资源分配集合中的时隙偏移值大于0。
频域资源分配以Type0为例,通过一个比特映射(bitmap)来指示分配给终端设备的资源块组(resource block group,RBG)(一个RBG可以由多个RB组成),如果某个RBG分配给了某个终端设备,则bitmap中对应比特置为1;否则置为0。
例如,RBGSize=2,共有13个RBG,如果对应的BitMap域为0000111111011B(二进制)时,所占用的RBG如图9a所示。图9a为通过DCI的频域资源分配域指示PDSCH或者PUSCH频域资源的示意图。如果DCI调度的PDSCH/PUSCH,那么频域上至少要指示一个RB,那么bitmap中至少有一个非0。相反,如果终端设备检测到DCI的频域资源分配bitmap是全0,即0000000000000,那么终端设备认为该DCI用于确定第一时间以后的调度第二PDSCH或第二PUSCH的第一时域资源分配集合,对应的时域资源分配域的字段理解为最小时隙偏移或者最小时隙偏移对应的索引。
S303、在第二时间根据确定的第二时域资源分配集合调度第二PDSCH或第二PUSCH,其中,第二时间在第一时间以后。
在第二时间,第二PDCCH根据上述确定的第二时域资源分配集合进行调度。该第二时域资源分配集合可以是和上述第一时域资源分配集合不同的集合。例如,在第一时间,根据第一时域资源分配集合进行调度,第一时域资源分配集合中的时隙偏移值大于或等于0,即可以同时隙调度;在第二时间,第二时域资源分配集合中的时隙偏移值大于0,即可 以跨时隙调度。或者反之,在第一时间,第一PDCCH根据第一时域资源分配集合进行调度,第一时域资源分配集合中的时隙偏移值大于0,即可以跨时隙调度;在第二时间,第二时域资源分配集合中的时隙偏移值大于或等于0,即可以同时隙调度。
本实施例中第一信息用于确定第一时间以后调度第二PDSCH的时隙偏移的取值范围发生了变化,具体指示方式不限制,第一信息可以是显示指示,也可以隐式指示;可以指示时隙偏移的最小值,也可以指示时隙偏移的最小值对应的索引值。本发明中时域资源分配集合也可以体现为时隙偏移的最小值。
根据本申请实施例提供的一种通信方法,在第一信息不用于调度时,可以通过第一信息的时域资源分配域的比特来指示时域资源分配集合,从而可以根据实际需要,明确指示在不同时间内采用的时域资源分配集合,从而兼顾了终端设备的功耗和传输时延,同时避免由于终端设备的漏检造成网络设备和终端设备行为不一致的问题,保证了动态切换时域资源分配集合的可靠性。
一般地,下行控制信息的第一域用于数据的调度,本申请中,可以复用下行控制信息的第一域,用于确定最小时隙偏移值。
图10为本申请实施例提供的又一种通信方法的流程示意图,示例性地,该方法可以包括以下步骤:
S401、网络设备向终端设备发送下行控制信息。
相应地,终端设备接收该下行控制信息。
其中,该下行控制信息承载在PDCCH。
S402、终端设备根据所述下行控制信息的第一域确定最小时隙偏移值。
下行控制信息具有对应的第一域,如果该下行控制信息用于数据调度,则该第一域可以称为上行授权的域(调度PUSCH)或下行分配的域(调度PDSCH)。在本申请中,该下行控制信息不作数据调度,而是复用该第一域用于确定最小时隙偏移值,最小时隙偏移值也可以称为时隙偏移的最小值。其中,所述最小时隙偏移值表示接收PDSCH的最小的可用时隙偏移值(minimum K0)或者发送PUSCH的最小的可用时隙偏移值(minimum K2),即当存在实际调度时,网络设备采用该最小时隙偏移调度PDSCH或PUSCH,也就是说,网络设备调度PDSCH或PUSCH时,该PDSCH或PUSCH的时隙偏移值大于或者等于该最小时隙偏移值,终端设备接收PDSCH或发送PUSCH的时隙偏移值大于或者等于该最小时隙偏移值。所述最小时隙偏移值还可以表示接收非周期CSI-RS的最小的可用时隙偏移值或者非周期SRS的最小的可用时隙偏移值或者PDSCH对应的HARQ-ACK反馈的最小的可用时隙偏移值。
其中,上述第一域包括以下至少一个域:频域资源分配域、时域资源分配域、调制编码方式(modulation and coding scheme,MCS)域、新数据指示(new data indicator,NDI)域或冗余版本(redundancy version,RV)域。
可选地,该下行控制信息还包括第一指示信息,所述第一指示信息用来指示所述第一域携带最小时隙偏移值的指示信息。即可以明确地指示上述下行控制信息的第一域用于确定最小时隙偏移值,而不是用于数据调度。例如,第一指示信息为1比特的值,当第一指示信息为第一状态时,表示第一域用于确定最小时隙偏移值;当第一指示信息为第二状态 时,表示第一域用于数据调度。
当然,也可以是隐式地指示上述下行控制信息的第一域用于确定最小时隙偏移值,而不是用于数据调度。例如,上述下行控制信息的第一域为一个设定的值,则可以确定该下行控制信息的第一域是用于确定最小时隙偏移值。
具体地,在一个实现中,S402包括:当所述下行控制信息的第一域中的一个或者多个域为第一设定值时,获取所述时域资源分配域的值,所述时域资源分配域的值用于指示所述最小时隙偏移值。在该实现中,时域资源分配域的值可以取不同的值,不同的值对应不同的最小时隙偏移值。例如,频域资源分配域的值为一个预先配置的或者预定义的特定值时,时域资源分配域的值表示minimum K0或者minimum K2,对于不同的频域资源分配方式,所述频域资源分配域的特定值不同,具体的可以有以下几种情况:
a)网络侧设备通过RRC信令只配置了频域资源分配方式类型0(type0),通过一个比特映射(bitmap)来指示分配给终端设备的资源块组(resource block group,RBG)(一个RBG可以由多个RB组成),每一个比特对应一个RBG。如果某个RBG分配给了某个终端设备,则bitmap中对应比特置为1;否则置为0。如图9a所示,RBG4~RBG9、RBG11~RBG12分配给了某个终端设备,其对于比特置为1,其余比特置为0。type0的频域资源分配域的比特数为N RBG,N RBG等于激活的上行BWP或者激活的下行BWP的RBG的数量。如图9a所示,N RBG=13。当N RBG个比特全为0时,则时域资源分配域的比特指示minimum K0或者minimum K2,例如,N RBG=13,bitmap等于0000000000000。
b)网络侧设备通过RRC信令只配置了频域资源分配方式类型1(type1),向终端设备分配连续的若干个资源块(resource block,RB),以RB为单位进行资源分配。通过资源指示值(resource indication value,RIV)来指示资源块起始位置RB start,以及连续分配的RB个数L RB。图9b为通过RIV指示PDSCH或者PUSCH频域资源的示意图。type1的频域资源分配域的比特数为
Figure PCTCN2020082313-appb-000001
Figure PCTCN2020082313-appb-000002
表示激活的上行BWP或者激活的下行BWP的RB数。如图9b所示,
Figure PCTCN2020082313-appb-000003
Figure PCTCN2020082313-appb-000004
Figure PCTCN2020082313-appb-000005
个比特全为1时,则时域资源分配域的比特指示minimum K0或者minimum K2。以
Figure PCTCN2020082313-appb-000006
为例,频域资源分配域的比特数的7个比特为1111111。如果所述下行控制信息中还存在频域跳频标识(frequency hopping flag)域,则将频域跳频标识域的比特设置为“去使能(disabled)”。
c)网络侧设备通过RRC信令配置了频域资源分配方式type0和频域资源分配方式type1,那么频域资源分配域的比特数为
Figure PCTCN2020082313-appb-000007
频域资源分配域的最高有效位(most significant bit,MSB)的1比特可以动态指示当前频域资源分配方式是type0还是type1,MSB的1比特为“0”表示当前是频域资源分配方式type0,MSB的1比特为“1”表示当前是频域资源分配方式type1。如果动态指示的频域资源分配方式为type0,最低有效位(least significant bit,LSB)的N RBG个比特或者LSB的
Figure PCTCN2020082313-appb-000008
个比特全为0时,则时域资源分配域的比特指示minimum K0或者minimum K2。如果动态指示的频域资源分配方式为type1,LSB的
Figure PCTCN2020082313-appb-000009
个比特或者LSB的
Figure PCTCN2020082313-appb-000010
个比特全为1时,则时域资源分配域的比特指示minimum K0或者minimum K2。如果所述下行控制信息中还存在频域跳频标识域,则将频域跳频标识域的比特设置为“去使能”。
又例如,当调制编码方式域指示为MCS表格中标记为“reserved(预留的)”对应的MCS索引号中的一个值,如表1示例的MCS表格中的MCS索引号28~31,NDI指示为0,和/或,RV指示为0时,时域资源分配域的值指示minimum K0或者minimum K2。以上将第一域的哪几个域设置为设定值,可以根据实际需要而定。可以理解的是,第一域中的一个或者多个域为第一设定值,每个域对应的第一设定值可以相同或不同。
表1
Figure PCTCN2020082313-appb-000011
Figure PCTCN2020082313-appb-000012
在又一个实现中,S402包括:当所述下行控制信息的第一域中的一个或者多个域为第一设定值时,获取预先配置或者预定义的最小时隙偏移值。与前面的实现方式不同的是,本实现方式中,最小时隙偏移值为预先配置或预定义的值,不需要下行控制信息中的域显示指示最小时隙偏移值。因此,当第一域中的一个或多个域为第一设定值时,确定最小时隙偏移值为上述预先配置或者预定义的最小时隙偏移值。
可选地,网络设备也可以根据下行控制信息的第一域确定最小时隙偏移值。
在本申请实施例中,当所述下行控制信息的第一域中的一个或者多个域为第一设定值时,该下行控制信息不实际调度数据,但是UE可以仍然按照该下行控制信息中指示的ACK/NACK资源反馈HARQ-ACK,例如,对于所述下行控制信息,终端设备总是反馈ACK或者总是反馈NACK。
根据本申请实施例提供的一种通信方法,复用下行控制信息的第一域,用于确定最小时隙偏移值,可以不增加控制信息的比特,减少控制信息的开销,还可以结合HARQ-ACK反馈提高信令的可靠性。
现有技术中,网络设备发送了携带最小时隙偏移值的第一下行控制信息之后,该最小时隙偏移值一段时间之后才能应用/生效。然而,网络设备有可能在第一下行控制信息携带的最小时隙偏移值应用/生效之前,向终端设备发送第二下行控制信息。上述第一下行控制信息和第二下行控制信息均用于指示最小时隙偏移值,则存在终端设备如何确定实际的最小时隙偏移值的问题。
图11为本申请实施例提供的又一种通信方法的流程示意图,示例性地,该方法可以包括以下步骤:
S501、网络设备在第一时刻向终端设备发送第一下行控制信息。
相应地,终端设备在第一时刻接收上述第一下行控制信息。
其中,第一下行控制信息用于指示第一最小时隙偏移值。根据第一下行控制信息确定第一最小时隙偏移值的方式可以参考前面的实施例。
假设终端设备在时隙n接收到第一最小时隙偏移值的指示,那么终端设备将在时隙n+K或者时隙n+K以后应用/生效该第一最小时隙偏移值。在时隙n+K之前不能使用该第一最小时隙偏移值。其中K可以大于0。
网络设备动态切换/指示第一最小时隙偏移值,指示信令和新的第一最小时隙偏移值生效之间会有一个时间间隔,该时间间隔称为应用时间/生效时间K。例如,前面实施例中描 述的终端设备反馈HARQ-ACK之后或者终端设备发送PUSCH之后,才会应用/生效新的第一最小时隙偏移值,即K取决于下行控制信息到HARQ-ACK反馈或者PUSCH之间的时间间隔;再例如,K等于老的第一最小时隙偏移值,或者表述为,上述新的第一最小时隙偏移值尚未生效,K为当前有效的第一最小时隙偏移值。K的大小还可以与PDCCH译码时间有关。指示信令所在时隙加上上述时间间隔以后所在的时隙称之为应用时刻或生效时刻,在新的第一最小时隙偏移值生效之前,网络设备和终端设备仍然按照老的第一最小时隙偏移值调度数据。
因此,终端设备在第一时刻接收到上述第一下行控制信息,该第一下行控制信息不会马上被应用,上述第一下行控制信息的应用时刻不早于第二时刻。其中,第二时刻晚于第一时刻,第二时刻与第一时刻之间有一定的时间间隔。
如图12所示的下行控制信息的应用示意图,当前接收PDSCH的最小时隙偏移值K0 min=2,并且接收到第一DCI,该第一DCI指示K0 min=1,第一DCI或K0 min=1的应用时刻为如图所示的应用时间1结束所在的时刻,即应用时间1结束之前仍然使用K0 min=2,在应用时间1结束之后,则采用新的最小时隙偏移值。
可选的,新的最小时隙偏移值的应用时间的起始位置可以是DCI的所在符号或者所在时隙的起始位置,或者是DCI所在符号或所在时隙的结束位置。
S502、网络设备在第三时刻向终端设备发送第二下行控制信息。
相应地,终端设备在第三时刻接收上述第二下行控制信息。
在上述第一下行控制信息应用之前,终端设备在第三时刻接收到新的下行控制信息,即第二下行控制信息。其中,所述第三时刻在所述第一时刻和所述第二时刻之间,第二下行控制信息用于指示第二最小时隙偏移值,所述第二下行控制信息的应用时刻不早于第四时刻。
仍然参考上述图12,在接收到第一DCI之后,且在第一DCI或者K0 min=1应用之前,又接收到第二DCI,该第二DCI指示K0 min=0,第二DCI或K0 min=0的应用时刻为如图所示的应用时间2结束所在的时刻,应用时间2结束时刻晚于应用时间1。
S503、终端设备根据所述第一下行控制信息和/或所述第二下行控制信息确定使用的最小时隙偏移值以及所述使用的最小时隙偏移值的应用时刻,其中,所述使用的最小时隙偏移值为所述第一最小时隙偏移值和所述第二最小时隙偏移值中的一个,所述使用的应用时刻不早于所述第二时刻和所述第四时刻中的一个。
一个实施例中,不论第一最小时隙偏移值和第二最小时隙偏移值是否相同,终端设备确定最近的DCI(即第二DCI)所指示的第二最小时隙偏移值为使用的最小时隙偏移值,以及确定第二最小时隙偏移值的应用时间结束的时为使用的最小时隙偏移值的应用时刻。即将使用的最小时隙偏移值的应用时间的计时从第一DCI的起始位置更新为第二DCI的起始位置,或者将使用的最小时隙偏移值的应用时刻从第一DCI的结束位置更新为第二DCI的结束位置。
如图12所示,最终确定使用的最小时隙偏移值为K0 min=0,以及使用的最小时隙偏移值的应用时刻为上述应用时间2结束的时刻。
在另一个实施例中,如果第一最小时隙偏移值和第二最小时隙偏移值不相同,则终端 设备确定最近的DCI(即第二DCI)所指示的第二最小时隙偏移值为使用的最小时隙偏移值,以及确定第二最小时隙偏移值的应用时间结束的时刻为使用的最小时隙偏移值的应用时刻。
在又一个情况下,如果第一最小时隙偏移值和第二最小时隙偏移值相同,则终端设备不更新应用时刻,仍以第一DCI所指示的第一最小时隙偏移值为使用的最小时隙偏移值,以及确定第一最小时隙偏移值的应用时间结束的时刻为使用的最小时隙偏移值的应用时刻。
可以理解的是,本实施例和图10所示的实施例的流程可以相互独立,也可以合并在一起。图10所示实施例主要描述了如何确定使用的最小时隙偏移值,图11则除了描述了如何确定使用的最小时隙偏移值之外,还描述了确定使用的最小时隙偏移值的应用时刻。
根据本申请实施例提供的一种通信方法,如果在第一下行控制信息应用/生效之前,又接收到了第二下行控制信息,则根据第一下行控制信息和/或第二下行控制信息确定使用的最小时隙偏移值以及使用的最小时隙偏移值的应用时刻,以解决多个下行控制信息所指示的最小时隙偏移值之间的冲突。
如果终端设备支持配置多个带宽部分(bandwidth part,BWP),不同BWP的时域资源分配集合不一样,第一BWP的最小时隙偏移值不一定适用于第二BWP。网络设备在调度数据的同时可以切换BWP,则需要解决如何指示切换后的BWP的最小时隙偏移值的问题。
图13为本申请实施例提供的又一种通信方法的流程示意图,示例性地,该方法可以包括以下步骤:
S601、网络设备在第一带宽部分上发送下行控制信息,其中,所述下行控制信息包括时隙偏移值和BWP标识指示信息。
相应地,终端设备在第一BWP上接收上述下行控制信息。
如果网络设备向终端设备配置了多个BWP,网络设备在调度数据的同时可以切换BWP。网络设备在第一BWP上发送第一DCI,其中,该第一DCI包括调度PDSCH或PUSCH的时隙偏移值和BWP标识指示信息。该BWP标识指示信息指示了进行PDSCH或者PUSCH数据传输的BWP的标识。如果该BWP标识指示信息包括第一BWP的标识,则表示不切换BWP,仍然在第一BWP进行数据传输,终端设备仍然工作在第一BWP上;如果该BWP标识指示信息包括其它BWP的标识,例如第二BWP的标识,则表示切换到第二BWP,即第二BWP被激活,终端设备将工作在第二BWP上,在第二BWP上进行数据传输。
S602、当所述BWP标识指示信息指示第二BWP时,终端设备将所述时隙偏移值作为所述第二BWP的最小时隙偏移值。
当BWP标识指示信息指示第二BWP时,即终端设备将由第一BWP切换到第二BWP上进行数据传输,终端设备仍然将第一DCI所指示的时隙偏移值作为第二BWP的最小时隙偏移值。相应地,网络设备将上述在第一DCI中所指示的时隙偏移值作为第二BWP的最小时隙偏移值。这样,无需在第二BWP激活之后,网络设备在第二BWP上发送控制信息重新指示第二BWP的最小时隙偏移值,节省了信令开销,提高了通信效率。
具体地,上述下行控制信息还用于指示终端设备在第一时刻在所述第二BWP上接收PDSCH或发送PUSCH,相应地,网络设备在第一时刻在第二BWP上发送PDSCH或接收 PUSCH。其中,所述第一时刻为所述下行控制信息的接收时隙加上所述第一DCI所指示的时隙偏移值个时隙所在的时隙。例如,终端设备在时隙n接收DCI,则第一时刻为n加上shift所在的时隙,其中,shift为所述第一DCI调度PDSCH或PUSCH的时隙偏移值。
可选地,在另外的实施例中,当所述BWP标识指示信息指示第一BWP时,如果所述时隙偏移值小于所述第一BWP的最小时隙偏移值,网络设备在第二时刻发送PDSCH或接收PUSCH,相应地,终端设备在第二时刻接收所述PDSCH或发送所述PUSCH。其中,所述第二时刻为所述下行控制信息的接收时隙加上所述第一BWP的最小时隙偏移值个时隙所在的时隙。以及终端设备将所述时隙偏移值作为所述第一BWP的新的最小时隙偏移值,即将第一BWP的最小时隙偏移值更新为所述时隙偏移值。新的最小时隙偏移值得应用时间或者生效时间可以参考前面的实施例。
也就是说,BWP未发生切换,当前第二时刻使用第一BWP的最小时隙偏移值进行数据传输,该DCI所调度的PDSCH或PUSCH的传输时隙为该DCI的接收时隙加上第一BWP的最小时隙偏移值个时隙所在的时隙。
可选地,在另外的实施例中,当BWP标识指示信息指示第二BWP,如果下行控制信息调度PDSCH或PUSCH的时隙偏移值小于BWP切换所需的时延,BWP切换所需的时延也可表示为BWP切换所需时隙,则在所述下行控制信息的接收时隙加上BWP切换所需时隙个时隙所在的时隙上进行数据传输。从而,如果所述时隙偏移值小于BWP切换所需的时延,网络设备在所述下行控制信息的接收时隙加上所述BWP切换所需时隙个时隙所在的时隙上发送所述PDSCH或接收所述PUSCH。相应地,终端设备在所述下行控制信息的接收时隙加上所述BWP切换所需时隙个时隙所在的时隙上接收所述PDSCH或发送所述PUSCH。例如,如图14所示的BWP切换示意图,终端设备在时隙n在第一BWP接收到DCI,该DCI的BWP标识指示信息指示第二BWP,该DCI指示的时隙偏移值为X,其中X小于M,则终端设备在n加上M所在的时隙接收PDSCH或发送PUSCH,其中,M为BWP切换所需的时隙。
如图14所示的BWP切换示意图,以下行调度为例,BWP1上的DCI中所指示的时隙偏移值小于BWP切换时延M,则终端设备在DCI的接收时隙加上切换时延M个时隙所在的时隙在BWP2上接收PDSCH并且将所述时隙偏移值作为BWP2上DCI调度PDSCH的最小时隙偏移值。
可以理解的是,图13所示的实施例的流程也可与前述实施例的流程独立运行,也可以合并运行。
根据本申请实施例提供的一种通信方法,当BWP动态切换时,可以同时指示目标BWP的最小时隙偏移值,不需要增加新的比特,并且不影响调度机会减少传输时延。当BWP不发生切换时,不需要增加新的比特域,可以将最小时隙偏移值从一个较大的值更新为较小的值,并且不影响调度机会减少传输时延。如果基站和UE希望将最小时隙偏移值从较小的值切换到较大的值,则可以采用前面的实施例。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
基于上述实施例中的通信方法的同一构思,如图15所示,本申请实施例还提供了一种 通信装置100,该通信装置100可应用于上述图2、图6、图8、图10、图11、图13所示的通信方法中。该通信装置100可以是如图1所示的终端设备,也可以是应用于该终端设备的一个部件(例如芯片)。该通信装置100包括收发单元11和处理单元12。
示例性的,在一个实施例中,收发单元11,用于在第一时间接收来自网络设备的第一信息,所述第一信息承载在第一物理下行控制信道PDCCH,其中,在所述第一时间所述第一PDCCH根据第一时域资源分配集合调度第一物理下行共享信道PDSCH,所述第一信息用于确定所述第一时间以后调度第二PDSCH的第二时域资源分配集合;承载所述第一信息的所述第一PDCCH还包括所述第一PDSCH的调度信息;
所述收发单元11,还用于接收所述网络设备通过所述第一PDSCH发送的数据;
所述收发单元11,还用于向所述网络设备发送所述数据的反馈信息;
处理单元12,用于在发送完所述数据的反馈信息后的第二时间,根据所述第二时域资源分配集合调度所述第二PDSCH,其中,所述第二时间在所述第一时间以后。
在一个实现中,承载所述第一信息的所述第一PDCCH未包括所述第一PDSCH的调度信息;
所述收发单元11,还用于向所述网络设备发送所述第一PDCCH的反馈信息;
所述处理单元12,还用于在发送完所述第一PDCCH的反馈信息后的第三时间,根据所述第二时域资源分配集合调度所述第二PDSCH。
有关上述收发单元11和处理单元12更详细的描述可以参考上述图2所示的方法实施例中终端设备的相关描述得到,这里不加赘述。需要说明的是,上述收发单元可以是集成的、具有收发功能的器件,也可以是由独立的、分别具有接收功能的接收单元和具有发送功能的发送单元组成,逻辑上称为“收发单元”。
示例性的,在又一个实施例中,收发单元11,用于在第一时间接收来自网络设备的第一信息,其中,所述第一信息承载在第一物理下行控制信道PDCCH,所述第一PDCCH包括第一物理上行共享信道PUSCH的调度信息,在所述第一时间根据第一时域资源分配集合调度所述第一PUSCH,所述第一信息用于确定所述第一时间以后调度第二PUSCH的第二时域资源分配集合;
所述收发单元11,还用于根据所述第一PUSCH的调度信息,通过所述第一PUSCH向所述网络设备发送数据;
处理单元12,用于在发送所述数据之后的第二时间内,根据所述第二时域资源分配集合调度所述第二PUSCH,其中,所述第二时间在所述第一时间以后。
有关上述收发单元11和处理单元12更详细的描述可以参考上述图6所示的方法实施例中终端设备的相关描述得到,这里不加赘述。
示例性的,在又一个实施例中,收发单元11,用于在第一时间接收来自网络设备的第一信息,其中,所述第一信息承载在第一物理下行控制信道PDCCH,在所述第一时间所述第一PDCCH根据第一时域资源分配集合调度第一物理下行共享信道PDSCH或第一物理上行共享信道PUSCH;
处理单元12,用于当所述第一PDCCH的频域资源分配域的比特全为零,根据所述第一PDCCH的时域资源分配域的比特确定用于所述第一时间以后调度第二PDSCH或第二 PUSCH的第二时域资源分配集合;
所述处理单元12,还用于在第二时间根据确定的所述第一时域资源分配集合调度所述第二PDSCH或第二PUSCH,其中,所述第二时间在所述第一时间以后。
在一个实现中,所述处理单元12,用于当所述第一PDCCH的频域资源分配域的比特全为零,根据所述第一PDCCH的时域资源分配域的比特确定所述第一时域资源分配集合的最小时隙偏移值或最小时隙偏移值的索引。
有关上述收发单元11和处理单元12更详细的描述可以参考上述图8所示的方法实施例中终端设备的相关描述得到,这里不加赘述。
示例性的,在又一个实施例中,收发单元11,用于接收来自网络设备的第一下行控制信息,其中,所述第一下行控制信息承载在第一物理下行控制信道PDCCH;处理单元12,用于根据所述第一下行控制信息的第一域确定第一最小时隙偏移值,其中,所述第一域包括以下至少一个域:频域资源分配域、时域资源分配域、调制编码方式域、新数据指示域或冗余版本域;其中,所述第一最小时隙偏移值表示接收物理下行共享信道PDSCH或者发送物理上行共享信道PUSCH的最小的可用时隙偏移值。
在一个实现中,所述第一下行控制信息还包括第一指示信息,所述第一指示信息用于指示所述第一域携带第一最小时隙偏移值的指示信息。
在又一个实现中,所述处理单元12,用于当所述第一下行控制信息的第一域中的一个或者多个域为第一设定值时,获取所述时域资源分配域的值,所述时域资源分配域的值用于指示所述第一最小时隙偏移值。
在又一个实现中,所述处理单元12,用于当所述第一下行控制信息的第一域中的一个或者多个域为第一设定值时,获取预先配置或者预定义的第一最小时隙偏移值。
有关上述收发单元11和处理单元12更详细的描述可以参考上述图10所示的方法实施例中终端设备的相关描述得到,这里不加赘述。
示例性的,在又一个实施例中,收发单元11,用于在第一时刻接收所述第一下行控制信息,其中,所述第一下行控制信息用于指示第一最小时隙偏移值,所述第一下行控制信息的应用时刻不早于第二时刻;所述收发单元11,还用于在第三时刻接收第二下行控制信息,其中,所述第三时刻在所述第一时刻和所述第二时刻之间,所述第二下行控制信息用于指示第二最小时隙偏移值,所述第二下行控制信息的应用时刻不早于第四时刻;以及处理单元12,用于根据所述第一下行控制信息和/或所述第二下行控制信息确定使用的最小时隙偏移值以及所述使用的最小时隙偏移值的应用时刻,其中,所述使用的最小时隙偏移值为所述第一最小时隙偏移值和所述第二最小时隙偏移值中的一个,所述使用的应用时刻不早于所述第二时刻和所述第四时刻中的一个。
有关上述收发单元11和处理单元12更详细的描述可以参考上述图11所示的方法实施例中终端设备的相关描述得到,这里不加赘述。
示例性地,在又一个实施例中,收发单元11,用于在第一带宽部分BWP上接收下行控制信息,其中,所述下行控制信息包括时隙偏移值和BWP标识指示信息;以及处理单元12,用于当所述BWP标识指示信息指示第二BWP时,将所述时隙偏移值作为所述第二BWP的最小时隙偏移值。
在一个实现中,所述下行控制信息还用于指示在第一时刻在所述第二BWP上接收物理下行共享信道PDSCH或发送物理上行共享信道PUSCH,所述第一时刻为所述下行控制信息的接收时隙加上时隙偏移值个时隙所在的时隙。
在又一个实现中,所述收发单元11,用于当所述BWP标识指示信息指示第一BWP时,如果所述时隙偏移值小于所述第一BWP的最小时隙偏移值,在第二时刻接收所述PDSCH或发送所述PUSCH,所述第二时刻为所述下行控制信息的接收时隙加上所述第一BWP的最小时隙偏移值个时隙所在的时隙;以及所述处理单元12,用于将所述时隙偏移值作为所述第一BWP的新的最小时隙偏移值。
在又一个实现中,所述收发单元11,用于如果所述时隙偏移值小于BWP切换所需的时延,在所述下行控制信息的接收时隙加上所述BWP切换所需时延所在的时隙上接收所述PDSCH或发送所述PUSCH。
有关上述收发单元11和处理单元12更详细的描述可以参考上述图13所示的方法实施例中终端设备的相关描述得到,这里不加赘述。
基于上述实施例中的通信方法的同一构思,如图16所示,本申请实施例还提供了一种通信装置200,该通信装置200可应用于上述图2、图6、图8所示的通信方法中。该通信装置100可以是如图1所示的网络设备,也可以是应用于该网络设备的一个部件(例如芯片)。该通信装置200包括收发单元21和处理单元22。
示例性的,在一个实施例中,收发单元21,用于在第一时间向终端设备发送第一信息,所述第一信息承载在第一物理下行控制信道PDCCH,其中,在所述第一时间所述第一PDCCH根据第一时域资源分配集合调度第一物理下行共享信道PDSCH,所述第一信息用于确定所述第一时间以后调度第二PDSCH的第二时域资源分配集合;承载所述第一信息的所述第一PDCCH还包括所述第一PDSCH的调度信息;
所述收发单元21,还用于通过所述第一PDSCH向所述终端设备发送数据;
所述收发单元21,还用于接收来自所述终端设备的所述数据的反馈信息;
处理单元22,用于在接收到所述数据的反馈信息后的第二时间,根据所述第二时域资源分配集合调度所述第二PDSCH,其中,所述第二时间在所述第一时间以后。
在一个实现中,承载所述第一信息的所述第一PDCCH未包括所述第一PDSCH的调度信息;
所述收发单元21,还用于接收来自所述终端设备的所述第一PDCCH的反馈信息;
所述处理单元22,还用于在接收到所述第一PDCCH的反馈信息后的第三时间,根据所述第二时域资源分配集合调度所述第二PDSCH。
有关上述收发单元21和处理单元22更详细的描述可以参考上述图2所示的方法实施例中网络设备的相关描述得到,这里不加赘述。需要说明的是,上述收发单元可以是集成的、具有收发功能的器件,也可以是由独立的、分别具有接收功能的接收单元和具有发送功能的发送单元组成,逻辑上称为“收发单元”。
示例性的,在又一个实施例中,收发单元21,用于在第一时间向终端设备发送第一信息,其中,所述第一信息承载在第一物理下行控制信道PDCCH,所述第一PDCCH包括第 一物理上行共享信道PUSCH的调度信息,在所述第一时间根据第一时域资源分配集合调度所述第一PUSCH,所述第一信息用于确定所述第一时间以后调度第二PUSCH的第二时域资源分配集合;
所述收发单元21,还用于接收所述终端设备通过所述第一PUSCH发送的数据;
处理单元22,用于在接收到所述数据之后的第二时间,根据所述第二时域资源分配集合调度所述第二PUSCH,其中,所述第二时间在所述第一时间以后。
有关上述收发单元21和处理单元22更详细的描述可以参考上述图6所示的方法实施例中网络设备的相关描述得到,这里不加赘述。
示例性的,在又一个实施例中,收发单元21,用于在第一时间向终端设备发送第一信息,其中,所述第一信息承载在第一物理下行控制信道PDCCH,在所述第一时间所述第一PDCCH根据第一时域资源分配集合调度第一物理下行共享信道PDSCH或第一物理上行共享信道PUSCH,所述第一PDCCH的频域资源分配域的比特全为零,所述第一PDCCH的时域资源分配域的比特用于确定用于所述第一时间以后调度第二PDSCH或第二PUSCH的第二时域资源分配集合;
处理单元22,用于在第二时间根据确定的所述第一时域资源分配集合调度所述第二PDSCH或第二PUSCH,其中,所述第二时间在所述第一时间以后。
有关上述收发单元21和处理单元22更详细的描述可以参考上述图8所示的方法实施例中网络设备的相关描述得到,这里不加赘述。
示例性的,在又一个实施例中,收发单元21,用于发送第一下行控制信息,其中,所述第一下行控制信息承载在第一物理下行控制信道PDCCH,所述第一下行控制信息的第一域用于确定第一最小时隙偏移值,其中,所述第一域包括以下至少一个域:频域资源分配域、时域资源分配域、调制编码方式域、新数据指示域或冗余版本域,所述第一最小时隙偏移值用于表示发送物理下行共享信道PDSCH或者接收物理上行共享信道PUSCH的最小的可用时隙偏移值。
在一个实现中,所述第一下行控制信息还包括第一指示信息,所述第一指示信息用来指示所述第一域携带第一最小时隙偏移值的指示信息。
有关上述收发单元21和处理单元22更详细的描述可以参考上述图10所示的方法实施例中网络设备的相关描述得到,这里不加赘述。
示例性的,在又一个实施例中,收发单元21,用于在第一时刻发送所述第一下行控制信息,其中,所述第一信息的应用时刻不早于第二时刻;所述收发单元21,还用于在第三时刻发送接收第二下行控制信息,其中,所述第三时刻在所述第一时刻和所述第二时刻之间,第二下行控制信息用于指示第二最小时隙偏移值,所述第二下行控制信息的应用时刻不早于第四时刻;以及处理单元22,用于根据所述第一下行控制信息和/或所述第二下行控制信息确定使用的最小时隙偏移值以及所述使用的最小时隙偏移值的应用时刻,其中,所述使用的最小时隙偏移值为所述第一最小时隙偏移值和所述第二最小时隙偏移值中的一个,所述使用的应用时刻不早于所述第二时刻和所述第四时刻中的一个。
有关上述收发单元21和处理单元22更详细的描述可以参考上述图11所示的方法实施例中网络设备的相关描述得到,这里不加赘述。
示例性的,在又一个实施例中,收发单元21,用于在第一带宽部分BWP上发送下行控制信息,其中,所述下行控制信息包括时隙偏移值和BWP标识指示信息;以及处理单元22,用于当所述BWP标识指示信息指示第二BWP时,将所述时隙偏移值作为所述第二BWP的最小时隙偏移值。
在一个实现中,所述下行控制信息还用于指示在第一时刻在所述第二BWP上发送物理下行共享信道PDSCH或接收物理上行共享信道PUSCH,所述第一时刻为所述下行控制信息的接收时隙加上时隙偏移值个时隙所在的时隙。
在又一个实现中,所述收发单元21,用于当所述BWP标识指示信息指示第一BWP时,如果所述时隙偏移值小于所述第一BWP的最小时隙偏移值,在第二时刻发送所述PDSCH或接收所述PUSCH,所述第二时刻为所述下行控制信息的接收时隙加上所述第一BWP的最小时隙偏移值个时隙所在的时隙;以及所述处理单元22,用于将所述时隙偏移值作为所述第一BWP的新的最小时隙偏移值。
在又一个实现中,所述收发单元21,用于如果所述时隙偏移值小于BWP切换所需的时延,在所述下行控制信息的接收时隙加上所述BWP切换所需时延所在的时隙上发送所述PDSCH或接收所述PUSCH。
有关上述收发单元21和处理单元22更详细的描述可以参考上述图13所示的方法实施例中网络设备的相关描述得到,这里不加赘述。
本申请实施例还提供一种通信装置,该通信装置用于执行上述通信方法。上述通信方法中的部分或全部可以通过硬件来实现也可以通过软件来实现。
可选的,通信装置在具体实现时可以是芯片或者集成电路。
可选的,当上述实施例的通信方法中的部分或全部通过软件来实现时,通信装置包括:处理器,用于执行程序,当程序被执行时,使得通信装置可以实现上述实施例提供的通信方法,该通信装置还可以包括存储器,用于存储必要的程序,这些涉及的程序可以在该通信装置出厂时即装载再存储器中,也可以在后期需要的时候再装载入存储器。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
可选的,当上述实施例的通信方法中的部分或全部通过软件实现时,通信装置也可以只包括处理器。用于存储程序的存储器位于通信装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
可选的,处理器可以包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD); 存储器还可以包括上述种类的存储器的组合。
图17示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图17中,终端设备以手机作为例子。如图17所示,终端设备包括处理器,还可以包括射频电路、天线以及输入输出装置。其中,处理器可用于对通信协议以及通信数据进行处理,还可以用于对终端设备进行控制,执行软件程序,处理软件程序的数据等。该终端设备还可以包括存储器,存储器主要用于存储软件程序和数据,这些涉及的程序可以在该通信装置出厂时即装载再存储器中,也可以在后期需要的时候再装载入存储器。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图17中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端设备的处理单元。如图17所示,终端设备包括接收单元31、处理单元32和发送单元33。接收单元31也可以称为接收器、接收机、接收电路等,发送单元33也可以称为发送器、发射器、发射机、发射电路等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。
例如,在一个实施例中,接收单元31用于执行图2所示实施例的步骤S101和S102中终端设备的功能;发送单元33用于执行图2所示实施例的步骤S103中终端设备的功能;以及处理单元32用于执行图2所示实施例的步骤S104。
例如,在又一个实施例中,接收单元31用于执行图6所示实施例的步骤S201中终端设备的功能;发送单元33用于执行图6所示实施例的步骤S202中终端设备的功能;以及处理单元32用于执行图6所示实施例的步骤S203。
例如,在又一个实施例中,接收单元31用于执行图8所示实施例的步骤S301中终端设备的功能;以及处理单元32用于执行图8所示实施例的步骤S302和S303。
例如,在又一个实施例中,接收单元31用于执行图10所示实施例的步骤S401中终端设备的功能;以及处理单元32用于执行图10所示实施例的步骤S402。
例如,在又一个实施例中,接收单元31用于执行图11所示实施例的步骤S501和S502中终端设备的功能;以及处理单元32用于执行图11所示实施例的步骤S503。
例如,在又一个实施例中,接收单元31用于执行图12所示实施例的步骤S601;以及处理单元32用于执行图12所示实施例的步骤S602。
图18示出了一种简化的网络侧设备的结构示意图。网络侧设备包括射频信号收发及转换部分以及42部分,该射频信号收发及转换部分又包括接收单元41部分和发送单元43部分(也可以统称为收发单元)。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;42部分主要用于基带处理,对网络侧设备进行控制等。接收单元41也可以称为接收器、接收机、接收电路等,发送单元43也可以称为发送器、发射器、发射机、发射电路等。42部分通常是网络侧设备的控制中心,通常可以称为处理单元,用于控制网络侧设备执行上述图4、图6、图8中关于网络侧设备所执行的步骤。具体可参见上述相关部分的描述。
42部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络侧设备的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一个实施例中,发送单元43用于执行图2所示实施例的步骤S101和S102中网络设备的功能;以及接收单元41用于执行图2所示实施例的步骤S103中网络设备的功能。
例如,在又一个实施例中,发送单元43用于执行图6所示实施例的步骤S201中网络设备的功能;以及接收单元41用于执行图6所示实施例的步骤S202中网络设备的功能。
例如,在又一个实施例中,发送单元43用于执行图8所示实施例的步骤S301中网络设备的功能。
例如,在又一个实施例中,发送单元43用于执行图10所示实施例的步骤S401中网络设备的功能。
例如,在又一个实施例中,发送单元43用于执行图11所示实施例的步骤S501和S502中网络设备的功能。
例如,在又一个实施例中,发送单元43用于执行图12所示实施例的步骤S601中网络设备的功能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。所显示或讨论的相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。 当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者通过该计算机可读存储介质进行传输。该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是只读存储器(read-only memory,ROM),或随机存储存储器(random access memory,RAM),或磁性介质,例如,软盘、硬盘、磁带、磁碟、或光介质,例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质,例如,固态硬盘(solid state disk,SSD)等。

Claims (42)

  1. 一种通信方法,其特征在于,所述方法包括:
    在第一时间接收来自网络设备的第一信息,所述第一信息承载在第一物理下行控制信道PDCCH,其中,在所述第一时间所述第一PDCCH根据第一时域资源分配集合调度第一物理下行共享信道PDSCH,所述第一信息用于确定所述第一时间以后调度第二PDSCH的第二时域资源分配集合;承载所述第一信息的所述第一PDCCH还包括所述第一PDSCH的调度信息;
    接收所述网络设备通过所述第一PDSCH发送的数据;
    向所述网络设备发送所述数据的反馈信息;
    在发送完所述数据的反馈信息后的第二时间,根据所述第二时域资源分配集合调度所述第二PDSCH,其中,所述第二时间在所述第一时间以后。
  2. 根据权利要求1所述的方法,其特征在于,承载所述第一信息的所述第一PDCCH未包括所述第一PDSCH的调度信息,所述方法还包括:
    向所述网络设备发送所述第一PDCCH的反馈信息;
    在发送完所述第一PDCCH的反馈信息后的第三时间,根据所述第二时域资源分配集合调度所述第二PDSCH。
  3. 一种通信方法,其特征在于,所述方法包括:
    在第一时间向终端设备发送第一信息,所述第一信息承载在第一物理下行控制信道PDCCH,其中,在所述第一时间所述第一PDCCH根据第一时域资源分配集合调度第一物理下行共享信道PDSCH,所述第一信息用于确定所述第一时间以后调度第二PDSCH的第二时域资源分配集合;承载所述第一信息的所述第一PDCCH还包括所述第一PDSCH的调度信息;
    通过所述第一PDSCH向所述终端设备发送数据;
    接收来自所述终端设备的所述数据的反馈信息;
    在接收到所述数据的反馈信息后的第二时间,根据所述第二时域资源分配集合调度所述第二PDSCH,其中,所述第二时间在所述第一时间以后。
  4. 根据权利要求3所述的方法,其特征在于,承载所述第一信息的所述第一PDCCH未包括所述第一PDSCH的调度信息,所述方法还包括:
    接收来自所述终端设备的所述第一PDCCH的反馈信息;
    在接收到所述第一PDCCH的反馈信息后的第三时间,根据所述第二时域资源分配集合调度所述第二PDSCH。
  5. 一种通信方法,其特征在于,所述方法包括:
    在第一时间接收来自网络设备的第一信息,其中,所述第一信息承载在第一物理下行控制信道PDCCH,所述第一PDCCH包括第一物理上行共享信道PUSCH的调度信息,在所述第一时间根据第一时域资源分配集合调度所述第一PUSCH,所述第一信息用于确定所述第一时间以后调度第二PUSCH的第二时域资源分配集合;
    根据所述第一PUSCH的调度信息,通过所述第一PUSCH向所述网络设备发送数据;
    在发送所述数据之后的第二时间内,根据所述第二时域资源分配集合调度所述第二PUSCH,其中,所述第二时间在所述第一时间以后。
  6. 一种通信方法,其特征在于,所述方法包括:
    在第一时间向终端设备发送第一信息,其中,所述第一信息承载在第一物理下行控制信道PDCCH,所述第一PDCCH包括第一物理上行共享信道PUSCH的调度信息,在所述第一时间根据第一时域资源分配集合调度所述第一PUSCH,所述第一信息用于确定所述第一时间以后调度第二PUSCH的第二时域资源分配集合;
    接收所述终端设备通过所述第一PUSCH发送的数据;
    在接收到所述数据之后的第二时间,根据所述第二时域资源分配集合调度所述第二PUSCH,其中,所述第二时间在所述第一时间以后。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,所述第一时域资源分配集合包括一个或多个时隙偏移值,所述时隙偏移值大于或等于0,所述第二时域资源分配集合包括一个或多个时隙偏移值,所述时隙偏移值大于0;或者
    所述第一时域资源分配集合包括一个或多个时隙偏移值,所述时隙偏移值大于0,所述第二时域资源分配集合包括一个或多个时隙偏移值,所述时隙偏移值大于或等于0。
  8. 一种通信方法,其特征在于,所述方法包括:
    在第一时间接收来自网络设备的第一信息,其中,所述第一信息承载在第一物理下行控制信道PDCCH,在所述第一时间所述第一PDCCH根据第一时域资源分配集合调度第一物理下行共享信道PDSCH或第一物理上行共享信道PUSCH;
    当所述第一PDCCH的频域资源分配域的比特全为零,根据所述第一PDCCH的时域资源分配域的比特确定用于所述第一时间以后调度第二PDSCH或第二PUSCH的第二时域资源分配集合;
    在第二时间根据确定的所述第一时域资源分配集合调度所述第二PDSCH或所述第二PUSCH,其中,所述第二时间在所述第一时间以后。
  9. 根据权利要求8所述的方法,其特征在于,所述当所述第一PDCCH的频域资源分配域的比特全为零,根据所述第一PDCCH的时域资源分配域的比特确定用于所述第一时间以后调度第二PDSCH或第二PUSCH的第二时域资源分配集合,包括:
    当所述第一PDCCH的频域资源分配域的比特全为零,根据所述第一PDCCH的时域资源分配域的比特确定所述第一时域资源分配集合的最小时隙偏移值或最小时隙偏移值的 索引。
  10. 一种通信方法,其特征在于,所述方法包括:
    在第一时间向终端设备发送第一信息,其中,所述第一信息承载在第一物理下行控制信道PDCCH,在所述第一时间所述第一PDCCH根据第一时域资源分配集合调度第一物理下行共享信道PDSCH或第一物理上行共享信道PUSCH,所述第一PDCCH的频域资源分配域的比特全为零,所述第一PDCCH的时域资源分配域的比特用于确定用于所述第一时间以后调度第二PDSCH或第二PUSCH的第二时域资源分配集合;
    在第二时间根据确定的所述第一时域资源分配集合调度所述第二PDSCH或第二PUSCH,其中,所述第二时间在所述第一时间以后。
  11. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于在第一时间接收来自网络设备的第一信息,所述第一信息承载在第一物理下行控制信道PDCCH,其中,在所述第一时间所述第一PDCCH根据第一时域资源分配集合调度第一物理下行共享信道PDSCH,所述第一信息用于确定所述第一时间以后调度第二PDSCH的第二时域资源分配集合;承载所述第一信息的所述第一PDCCH还包括所述第一PDSCH的调度信息;
    所述收发单元,还用于接收所述网络设备通过所述第一PDSCH发送的数据;
    所述收发单元,还用于向所述网络设备发送所述数据的反馈信息;
    处理单元,用于在发送完所述数据的反馈信息后的第二时间,根据所述第二时域资源分配集合调度所述第二PDSCH,其中,所述第二时间在所述第一时间以后。
  12. 根据权利要求11所述的装置,其特征在于,承载所述第一信息的所述第一PDCCH未包括所述第一PDSCH的调度信息;
    所述收发单元,还用于向所述网络设备发送所述第一PDCCH的反馈信息;
    所述处理单元,还用于在发送完所述第一PDCCH的反馈信息后的第三时间,根据所述第二时域资源分配集合调度所述第二PDSCH。
  13. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于在第一时间向终端设备发送第一信息,所述第一信息承载在第一物理下行控制信道PDCCH,其中,在所述第一时间所述第一PDCCH根据第一时域资源分配集合调度第一物理下行共享信道PDSCH,所述第一信息用于确定所述第一时间以后调度第二PDSCH的第二时域资源分配集合;承载所述第一信息的所述第一PDCCH还包括所述第一PDSCH的调度信息;
    所述收发单元,还用于通过所述第一PDSCH向所述终端设备发送数据;
    所述收发单元,还用于接收来自所述终端设备的所述数据的反馈信息;
    处理单元,用于在接收到所述数据的反馈信息后的第二时间,根据所述第二时域资源分配集合调度所述第二PDSCH,其中,所述第二时间在所述第一时间以后。
  14. 根据权利要求13所述的装置,其特征在于,承载所述第一信息的所述第一PDCCH未包括所述第一PDSCH的调度信息;
    所述收发单元,还用于接收来自所述终端设备的所述第一PDCCH的反馈信息;
    所述处理单元,还用于在接收到所述第一PDCCH的反馈信息后的第三时间,根据所述第二时域资源分配集合调度所述第二PDSCH。
  15. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于在第一时间接收来自网络设备的第一信息,其中,所述第一信息承载在第一物理下行控制信道PDCCH,所述第一PDCCH包括第一物理上行共享信道PUSCH的调度信息,在所述第一时间根据第一时域资源分配集合调度所述第一PUSCH,所述第一信息用于确定所述第一时间以后调度第二PUSCH的第二时域资源分配集合;
    所述收发单元,还用于根据所述第一PUSCH的调度信息,通过所述第一PUSCH向所述网络设备发送数据;
    处理单元,用于在发送所述数据之后的第二时间内,根据所述第二时域资源分配集合调度所述第二PUSCH,其中,所述第二时间在所述第一时间以后。
  16. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于在第一时间向终端设备发送第一信息,其中,所述第一信息承载在第一物理下行控制信道PDCCH,所述第一PDCCH包括第一物理上行共享信道PUSCH的调度信息,在所述第一时间根据第一时域资源分配集合调度所述第一PUSCH,所述第一信息用于确定所述第一时间以后调度第二PUSCH的第二时域资源分配集合;
    所述收发单元,还用于接收所述终端设备通过所述第一PUSCH发送的数据;
    处理单元,用于在接收到所述数据之后的第二时间,根据所述第二时域资源分配集合调度所述第二PUSCH,其中,所述第二时间在所述第一时间以后。
  17. 根据权利要求11~16任一项所述的装置,其特征在于,所述第一时域资源分配集合包括一个或多个时隙偏移值,所述时隙偏移值大于或等于0,所述第二时域资源分配集合包括一个或多个时隙偏移值,所述时隙偏移值大于0;或者
    所述第一时域资源分配集合包括一个或多个时隙偏移值,所述时隙偏移值大于0,所述第二时域资源分配集合包括一个或多个时隙偏移值,所述时隙偏移值大于或等于0。
  18. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于在第一时间接收来自网络设备的第一信息,其中,所述第一信息承载在第一物理下行控制信道PDCCH,在所述第一时间所述第一PDCCH根据第一时域资源分配集合调度第一物理下行共享信道PDSCH或第一物理上行共享信道PUSCH;
    处理单元,用于当所述第一PDCCH的频域资源分配域的比特全为零,根据所述第一PDCCH的时域资源分配域的比特确定用于所述第一时间以后调度第二PDSCH或第二 PUSCH的第二时域资源分配集合;
    所述处理单元,还用于在第二时间根据确定的所述第一时域资源分配集合调度所述第二PDSCH或第二PUSCH,其中,所述第二时间在所述第一时间以后。
  19. 根据权利要求18所述的装置,其特征在于,所述处理单元,用于当所述第一PDCCH的频域资源分配域的比特全为零,根据所述第一PDCCH的时域资源分配域的比特确定所述第一时域资源分配集合的最小时隙偏移值或最小时隙偏移值的索引。
  20. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于在第一时间向终端设备发送第一信息,其中,所述第一信息承载在第一物理下行控制信道PDCCH,在所述第一时间所述第一PDCCH根据第一时域资源分配集合调度第一物理下行共享信道PDSCH或第一物理上行共享信道PUSCH,所述第一PDCCH的频域资源分配域的比特全为零,所述第一PDCCH的时域资源分配域的比特用于确定用于所述第一时间以后调度第二PDSCH或第二PUSCH的第二时域资源分配集合;
    处理单元,用于在第二时间根据确定的所述第一时域资源分配集合调度所述第二PDSCH或第二PUSCH,其中,所述第二时间在所述第一时间以后。
  21. 一种通信方法,其特征在于,所述方法包括:
    接收来自网络设备的第一下行控制信息,其中,所述第一下行控制信息承载在第一物理下行控制信道PDCCH;
    根据所述第一下行控制信息的第一域确定第一最小时隙偏移值,其中,所述第一域包括以下至少一个域:频域资源分配域、时域资源分配域、调制编码方式域、新数据指示域或冗余版本域;
    其中,所述第一最小时隙偏移值表示接收物理下行共享信道PDSCH或者发送物理上行共享信道PUSCH的最小的可用时隙偏移值。
  22. 根据权利要求21所述的方法,其特征在于,所述第一下行控制信息还包括第一指示信息,所述第一指示信息用于指示所述第一域携带第一最小时隙偏移值的指示信息。
  23. 根据权利要求21或22所述的方法,其特征在于,所述根据所述第一下行控制信息的第一域确定最小时隙偏移值,包括:
    当所述第一下行控制信息的第一域中的一个或者多个域为第一设定值时,获取所述时域资源分配域的值,所述时域资源分配域的值用于指示所述第一最小时隙偏移值。
  24. 根据权利要求21或22所述的方法,其特征在于,所述根据所述第一下行控制信息的第一域确定第一最小时隙偏移值,包括:
    当所述第一下行控制信息的第一域中的一个或者多个域为第一设定值时,获取预先配置或者预定义的第一最小时隙偏移值。
  25. 根据权利要求21~24任一项所述的方法,其特征在于,所述接收来自网络设备的第一下行控制信息,包括:
    在第一时刻接收所述第一下行控制信息,其中,所述第一下行控制信息的应用时刻不早于第二时刻;
    所述方法还包括:
    在第三时刻接收第二下行控制信息,其中,所述第三时刻在所述第一时刻和所述第二时刻之间,所述第二下行控制信息用于指示第二最小时隙偏移值,所述第二下行控制信息的应用时刻不早于第四时刻;
    根据所述第一下行控制信息和/或所述第二下行控制信息确定使用的最小时隙偏移值以及所述使用的最小时隙偏移值的应用时刻,其中,所述使用的最小时隙偏移值为所述第一最小时隙偏移值和所述第二最小时隙偏移值中的一个,所述使用的应用时刻不早于所述第二时刻和所述第四时刻中的一个。
  26. 一种通信方法,其特征在于,所述方法包括:发送第一下行控制信息,其中,所述第一下行控制信息承载在第一物理下行控制信道PDCCH,所述第一下行控制信息的第一域用于确定第一最小时隙偏移值,其中,所述第一域包括以下至少一个域:频域资源分配域、时域资源分配域、调制编码方式域、新数据指示域或冗余版本域,所述第一最小时隙偏移值用于表示发送物理下行共享信道PDSCH或者接收物理上行共享信道PUSCH的最小的可用时隙偏移值。
  27. 根据权利要求26所述的方法,其特征在于,所述第一下行控制信息还包括第一指示信息,所述第一指示信息用来指示所述第一域携带第一最小时隙偏移值的指示信息。
  28. 根据权利要求26或27所述的方法,其特征在于,所述发送第一下行控制信息,包括:
    在第一时刻发送所述第一下行控制信息,其中,所述第一信息的应用时刻不早于第二时刻;
    所述方法还包括:
    在第三时刻发送接收第二下行控制信息,其中,所述第三时刻在所述第一时刻和所述第二时刻之间,第二下行控制信息用于指示第二最小时隙偏移值,所述第二下行控制信息的应用时刻不早于第四时刻;
    根据所述第一下行控制信息和/或所述第二下行控制信息确定使用的最小时隙偏移值以及所述使用的最小时隙偏移值的应用时刻,其中,所述使用的最小时隙偏移值为所述第一最小时隙偏移值和所述第二最小时隙偏移值中的一个,所述使用的应用时刻不早于所述第二时刻和所述第四时刻中的一个。
  29. 一种通信方法,其特征在于,所述方法包括:
    在第一带宽部分BWP上接收下行控制信息,其中,所述下行控制信息包括时隙偏移值和BWP标识指示信息;
    当所述BWP标识指示信息指示第二BWP时,将所述时隙偏移值作为所述第二BWP的最小时隙偏移值。
  30. 根据权利要求29所述的方法,其特征在于,所述下行控制信息还用于指示在第一时刻在所述第二BWP上接收物理下行共享信道PDSCH或发送物理上行共享信道PUSCH,所述第一时刻为所述下行控制信息的接收时隙加上时隙偏移值个时隙所在的时隙。
  31. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    当所述BWP标识指示信息指示第一BWP时,如果所述时隙偏移值小于所述第一BWP的最小时隙偏移值,在第二时刻接收所述PDSCH或发送所述PUSCH,所述第二时刻为所述下行控制信息的接收时隙加上所述第一BWP的最小时隙偏移值个时隙所在的时隙;
    将所述时隙偏移值作为所述第一BWP的新的最小时隙偏移值。
  32. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    如果所述时隙偏移值小于BWP切换所需的时延,在所述下行控制信息的接收时隙加上所述BWP切换所需时延所在的时隙上接收所述PDSCH或发送所述PUSCH。
  33. 一种通信方法,其特征在于,所述方法包括:
    在第一带宽部分BWP上发送下行控制信息,其中,所述下行控制信息包括时隙偏移值和BWP标识指示信息;
    当所述BWP标识指示信息指示第二BWP时,将所述时隙偏移值作为所述第二BWP的最小时隙偏移值。
  34. 根据权利要求33所述的方法,其特征在于,所述下行控制信息还用于指示在第一时刻在所述第二BWP上发送物理下行共享信道PDSCH或接收物理上行共享信道PUSCH,所述第一时刻为所述下行控制信息的接收时隙加上时隙偏移值个时隙所在的时隙。
  35. 根据权利要求33所述的方法,其特征在于,所述方法还包括:
    当所述BWP标识指示信息指示第一BWP时,如果所述时隙偏移值小于所述第一BWP的最小时隙偏移值,在第二时刻发送所述PDSCH或接收所述PUSCH,所述第二时刻为所述下行控制信息的接收时隙加上所述第一BWP的最小时隙偏移值个时隙所在的时隙;
    将所述时隙偏移值作为所述第一BWP的新的最小时隙偏移值。
  36. 根据权利要求33所述的方法,其特征在于,所述方法还包括:
    如果所述时隙偏移值小于BWP切换所需的时延,在所述下行控制信息的接收时隙加上所述BWP切换所需时延所在的时隙上发送所述PDSCH或接收所述PUSCH。
  37. 一种通信装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如权利要求21至25中任一项所述的方法。
  38. 一种通信装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如权利要求26至28中任一项所述的方法。
  39. 一种通信装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如权利要求29至32中任一项所述的方法。
  40. 一种通信装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如权利要求33至36中任一项所述的方法。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1~10、21~36中任一项所述的方法。
  42. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1~10、21~36中任一项所述的方法。
PCT/CN2020/082313 2019-04-02 2020-03-31 通信方法及装置 WO2020200187A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021558872A JP7460653B2 (ja) 2019-04-02 2020-03-31 通信方法及び装置
EP20782490.5A EP3952524A4 (en) 2019-04-02 2020-03-31 COMMUNICATION METHOD AND APPARATUS
US17/492,165 US20220030609A1 (en) 2019-04-02 2021-10-01 Communication method and apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910263102 2019-04-02
CN201910263102.5 2019-04-02
CN201910581390.9 2019-06-29
CN201910581390 2019-06-29
CN201910760953.0A CN111800868A (zh) 2019-04-02 2019-08-16 通信方法及装置
CN201910760953.0 2019-08-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/492,165 Continuation US20220030609A1 (en) 2019-04-02 2021-10-01 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020200187A1 true WO2020200187A1 (zh) 2020-10-08

Family

ID=72664532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082313 WO2020200187A1 (zh) 2019-04-02 2020-03-31 通信方法及装置

Country Status (4)

Country Link
US (1) US20220030609A1 (zh)
EP (1) EP3952524A4 (zh)
JP (1) JP7460653B2 (zh)
WO (1) WO2020200187A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022226991A1 (zh) * 2021-04-30 2022-11-03 华为技术有限公司 一种资源指示方法、装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160150541A1 (en) * 2014-11-25 2016-05-26 Electronics And Telecommunications Research Institute Method and apparatus for configuring resources of random access channel in wireless communication system
CN107332646A (zh) * 2016-04-29 2017-11-07 中兴通讯股份有限公司 Harq-ack的发送方法及装置
WO2019052348A1 (zh) * 2017-09-14 2019-03-21 Oppo广东移动通信有限公司 一种确定时域资源的方法、设备、存储介质及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4236547A3 (en) * 2017-03-17 2023-09-20 Ntt Docomo, Inc. User terminal and radio communication method
IL269331B1 (en) * 2017-03-20 2024-03-01 Guangdong Oppo Mobile Telecommunications Corp Ltd Data transmission method, terminal device and network device
US10588171B2 (en) * 2017-05-12 2020-03-10 Qualcomm Incorporated Techniques for multi-state DRX in new radio
US11330575B2 (en) * 2018-07-17 2022-05-10 Samsung Electronics Co., Ltd. Adaptation of communication parameters for a user equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160150541A1 (en) * 2014-11-25 2016-05-26 Electronics And Telecommunications Research Institute Method and apparatus for configuring resources of random access channel in wireless communication system
CN107332646A (zh) * 2016-04-29 2017-11-07 中兴通讯股份有限公司 Harq-ack的发送方法及装置
WO2019052348A1 (zh) * 2017-09-14 2019-03-21 Oppo广东移动通信有限公司 一种确定时域资源的方法、设备、存储介质及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "3GPP TSG RAN WG1 Meeting #95 R1-1812184", CORRECTIONS ON SCHEDULING AND HARQ, 16 November 2018 (2018-11-16), XP051554053, DOI: 20200604085909Y *
See also references of EP3952524A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022226991A1 (zh) * 2021-04-30 2022-11-03 华为技术有限公司 一种资源指示方法、装置及系统

Also Published As

Publication number Publication date
JP2022528110A (ja) 2022-06-08
JP7460653B2 (ja) 2024-04-02
EP3952524A1 (en) 2022-02-09
US20220030609A1 (en) 2022-01-27
EP3952524A4 (en) 2022-06-08

Similar Documents

Publication Publication Date Title
US11641249B2 (en) Method and apparatus for determining a duration of a repetition of a transport block
JP6513812B2 (ja) 無線端末、無線通信ネットワークのノード、及びこれらの運用方法
JP2022500933A (ja) 減少された電力消耗を有するue動作
US20210274494A1 (en) Uplink control information transmission method and apparatus
EP3101982A1 (en) Base station, transmission method, mobile station, and retransmission control method
WO2017024559A1 (zh) 数据传输的方法、终端设备、基站和通信系统
JP7254229B2 (ja) Dciにおける情報ドメイン値を特定する方法及び装置
CN111800868A (zh) 通信方法及装置
JP2022520589A (ja) 送信動作および受信動作を実行するユーザ機器およびシステム
EP3501150B1 (en) Wireless communication transceiver and wireless communication method
WO2017076197A1 (zh) 一种发送和接收反馈的方法及设备
CN109391377B (zh) 通信方法、接入网设备和终端
WO2019095940A1 (zh) 一种中继网络中时域资源的指示方法,网络设备及用户设备
US20190124705A1 (en) Identifier management method, apparatus, and system
WO2019095739A1 (zh) 一种带宽指示方法、网络设备及终端设备
WO2020200187A1 (zh) 通信方法及装置
WO2020199767A1 (zh) 通信方法、通信装置和系统
WO2020164573A1 (zh) 传输方法、接收方法、终端及网络设备
WO2020030048A1 (zh) 通信方法及装置
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置
WO2019056974A1 (zh) 上行链路调度方式确定方法、用户设备和基站
EP4336933A1 (en) Communication device, base station, and method
EP4336930A1 (en) Communication device, base station, and communication method
EP4336931A1 (en) Communication device, base station, and communication method
WO2021032022A1 (zh) 一种调度方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558872

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021019762

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020782490

Country of ref document: EP

Effective date: 20211102

ENP Entry into the national phase

Ref document number: 112021019762

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211001