WO2020030048A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2020030048A1
WO2020030048A1 PCT/CN2019/099804 CN2019099804W WO2020030048A1 WO 2020030048 A1 WO2020030048 A1 WO 2020030048A1 CN 2019099804 W CN2019099804 W CN 2019099804W WO 2020030048 A1 WO2020030048 A1 WO 2020030048A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
time interval
user equipment
uplink data
parameter set
Prior art date
Application number
PCT/CN2019/099804
Other languages
English (en)
French (fr)
Inventor
王磊
陈雁
徐修强
王轶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19846366.3A priority Critical patent/EP3826214B1/en
Publication of WO2020030048A1 publication Critical patent/WO2020030048A1/zh
Priority to US17/169,669 priority patent/US20210168791A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • LTE long term evolution
  • a user equipment when a user equipment performs uplink communication with a network device, the user equipment is in a synchronized state, that is, when the user equipment maintains uplink synchronization with the network device, it can give the network device Send uplink services.
  • a way for the user equipment to maintain uplink synchronization is to adjust a timing of sending an uplink signal by receiving a timing advance (TA) command from a network device.
  • TA timing advance
  • the network device can send TA commands to the user equipment in two ways: 1) The user equipment first sends a random access preamble to the network device, and the network device performs timing measurement according to the preamble, and the measurement results are fed back through the TA command To the user equipment; 2) after the user equipment enters a radio resource control (RRC) connection state, the network device will demodulate the uplink signal (e.g., sounding reference signal (SRS)), demodulation Reference signals (demodulation reference signal (DMRS), etc.) are used for timing measurement, and a TA command is fed back to the user equipment through a media access control (MAC) control unit (CE).
  • RRC radio resource control
  • the advantage of synchronous transmission is the high reliability of communication, but there are two disadvantages: 1. Large transmission overhead. In order to maintain uplink synchronization, the user equipment needs to first send a preamble for initial synchronization, and maintain the synchronization state through signaling interaction. Therefore, when transmitting small packet services in this way, the transmission overhead occupies a large proportion, which reduces the transmission efficiency; 2. Transmission delay is large. The user equipment needs to send a preamble first, and then waits for the network equipment to feedback the TA for synchronization. Therefore, the transmission delay is large, which is not suitable for a short delay scenario.
  • the new wireless (NR) communication system is a new generation communication system that covers enhanced mobile bandwidth (eMBB), ultra-reliable low latency (uRLLC), and massive machine communication (massive machine) communication (mMTC).
  • eMBB enhanced mobile bandwidth
  • uRLLC ultra-reliable low latency
  • mMTC massive machine communication
  • eMBB enhanced mobile bandwidth
  • uRLLC ultra-reliable low latency
  • mMTC massive machine communication
  • eMBB scenario requires high throughput
  • the uRLLC scenario requires high reliability and low latency
  • mMTC scenario emphasizes massive connections.
  • synchronous transmission cannot meet the communication requirements.
  • some user equipment may be allowed to perform asynchronous uplink transmission (or asynchronous transmission), that is, the user equipment may not have valid uplink TA information.
  • the network equipment sends uplink services.
  • an orthogonal frequency division multiplexing (OFDM) technology framework is still used, and a cyclic prefix is added before each symbol. If the timing deviation (plus channel extension) of asynchronous transmission is less than Cyclic prefix length, so asynchronous transmission will not introduce intersymbol interference. If the timing deviation of asynchronous transmission is greater than the cyclic prefix length, inter-symbol interference will be introduced, thereby reducing the reliability of the transmission. In a scenario with a large cell range, the uplink timing deviation is large, and the cyclic prefix of OFDM cannot solve the problem of asynchronous transmission. In addition, two detrimental effects of asynchronous transmission need to be considered.
  • OFDM orthogonal frequency division multiplexing
  • NR systems there may be configurations where multiple users transmit simultaneously on the same time-frequency resource, such as multiple-input multiple-output output (MIMO), non-orthogonal multiple access (NOMA).
  • MIMO multiple-input multiple-output output
  • NOMA non-orthogonal multiple access
  • the channels of multiple users are not aligned in time, which will increase interference between multiple users.
  • the uplink timing deviation will also cause the user's signal to linearly rotate the phase in the frequency domain (time domain delay, etc.) (Effective for phase rotation in the frequency domain), resulting in a decrease in the accuracy of the channel estimation. Therefore, under the OFDM framework, the existing transmission methods will cause the reliability of the transmission to decrease.
  • the present application provides a communication method and device, so as to consider transmission efficiency and transmission reliability during uplink transmission.
  • a communication method including: when a time interval between a current time and a last time when uplink timing information is received is less than or equal to a first time interval, using a first transmission parameter set for uplink data transmission; and When a time interval between the time and the last time the uplink timing information is received is greater than the first time interval, using a second transmission parameter set for uplink data transmission; wherein the first transmission parameter set and the second transmission parameter
  • the collection contains different transmission parameters.
  • the performing uplink data transmission by using the first transmission parameter set includes: performing uplink data transmission by using the first repeated transmission times; and performing uplink by using the second transmission parameter set.
  • Data transmission includes: adopting a second repeated transmission number for uplink data transmission, wherein the first repeated transmission number is less than the second repeated transmission number.
  • the uplink timing information when the time interval between the current time and the last time the uplink timing information is received is less than or equal to the first time interval, the uplink timing information may still be valid, and the transmission is performed with a relatively small number of repeated transmissions, or does not repeat Can improve transmission efficiency; when the time interval between the current time and the last time that the uplink timing information is received is greater than the first time interval, the uplink timing information has expired, and a relatively large number of repeated transmissions is used to improve the transmission Reliability.
  • a time interval between the current time and the last time the uplink timing information is received is greater than a second time interval and less than Or when the first time interval is equal to, using the first transmission parameter set for uplink data transmission, the second time interval is less than the first time interval; the method further includes: When the time interval for receiving the uplink timing information is less than or equal to the second time interval, a third transmission parameter set is used for uplink data transmission, where the third transmission parameter set includes the transmission parameters and the first transmission.
  • the transmission parameters included in the parameter set are different, and the transmission parameters included in the third transmission parameter set and the transmission parameters included in the second transmission parameter set are different.
  • the performing uplink data transmission by using the third transmission parameter set includes: performing uplink data transmission according to a third number of repeated transmissions, where: The third repeated transmission number is less than the first repeated transmission number.
  • the uplink data transmission using the first set of transmission parameters includes: uplink data transmission according to a first frame format, wherein the first frame format does not include a preamble; and the uplink data transmission using the second set of transmission parameters includes : Performing uplink data transmission according to a second frame format, wherein the second frame format includes a preamble.
  • the uplink timing information when the time interval between the current time and the last time the uplink timing information was received is less than or equal to the first time interval, the uplink timing information may still be valid, and only the data is sent without the preamble, and the network device can still be correct
  • Demodulating data can improve transmission efficiency; when the time interval between the current time and the last time the uplink timing information is received is greater than the first time interval, the uplink timing information has expired, and the preamble can be sent at the same time as the data, which can improve the data
  • the reliability of demodulation can improve the reliability of transmission.
  • the using the first transmission parameter set for uplink data transmission includes: performing uplink data transmission according to a first transmission block size; and using the second transmission parameter set for uplink data transmission.
  • the method includes: performing uplink data transmission according to a second transport block size, wherein the second transport block size is smaller than the first transport block size.
  • the uplink timing information when the time interval between the current time and the last time the uplink timing information is received is less than or equal to the first time interval, the uplink timing information may still be valid.
  • Using a larger transmission block size to transmit data can improve transmission efficiency.
  • the uplink timing information has expired, and the data is transmitted using a relatively small transmission block size, and the amount of data transmitted is small, corresponding to The bit rate of channel coding is low, which can improve the reliability of transmission.
  • a communication method including: when the time interval between the current time and the last time to send uplink timing information to the user equipment is less than or equal to the first time interval, using a first transmission parameter set to receive data from the user equipment. Receiving uplink data from the user equipment when the time interval between the current time and the last time to send uplink timing information to the user equipment is greater than the first time interval, using the second transmission parameter set; The first transmission parameter set and the second transmission parameter set contain different transmission parameters.
  • the receiving the uplink data from the user equipment by using the first transmission parameter set includes: receiving the uplink from the user equipment according to a first number of repeated transmissions. Data; and the receiving the uplink data from the user equipment by using the second transmission parameter set includes: receiving the uplink data from the user equipment according to a second number of repeated transmissions, wherein the first number of repeated transmissions is less than The second number of repeated transmissions.
  • a time interval between the current time and the last time the uplink timing information is sent to the user equipment is greater than a second time
  • the time interval is less than or equal to the first time interval
  • using the first transmission parameter set to receive uplink data from the user equipment the second time interval is less than the first time interval
  • the method further Including: when the time interval between the current time and the last time the uplink timing information is sent to the user equipment is less than or equal to the second time interval, using a third transmission parameter set to receive uplink data from the user equipment, where The transmission parameter included in the third transmission parameter set is different from the transmission parameter included in the first transmission parameter set, and the transmission parameter included in the third transmission parameter set is different from the transmission parameter included in the second transmission parameter set .
  • the receiving the uplink data from the user equipment by using the third transmission parameter set includes: The uplink data of the user equipment, wherein the third repeated transmission times is less than the first repeated transmission times.
  • the receiving the uplink data from the user equipment by using the first transmission parameter set includes: receiving the uplink data from the user equipment according to a first frame format, wherein the first frame format does not include a preamble;
  • the receiving the uplink data from the user equipment by using the second transmission parameter set includes: receiving the uplink data from the user equipment according to a second frame format, wherein the second frame format includes a preamble.
  • the receiving the uplink data from the user equipment by using the first transmission parameter set includes: receiving the uplink data from the user equipment according to a first transmission block size;
  • the receiving the uplink data from the user equipment by using the second transmission parameter set includes: receiving the uplink data from the user equipment according to a second transmission block size, wherein the second transmission block size is smaller than the first transmission block size.
  • the first transmission parameter set or the second transmission parameter set includes one or more of the following parameters: time-frequency The number of resources, the number of repeated transmissions, whether or not to send a preamble, the transmission block size, the modulation order, the number of non-orthogonal transmission layers, the number of MIMO transmission layers, the time-frequency resources occupied by the pilot, and the transmission power.
  • a communication device which can implement the communication method in the first aspect.
  • the communication device may be a chip (such as a communication chip) or a user equipment.
  • the above method may be implemented by software, hardware, or by executing corresponding software by hardware.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform a corresponding function in the foregoing communication method.
  • the memory is coupled to a processor and stores programs (instructions) and / or data necessary for the device.
  • the communication device may further include a communication interface to support communication between the device and other network elements.
  • the communication apparatus may include a unit module that performs a corresponding action in the foregoing method.
  • a processor and a transceiver device are included, the processor is coupled to the transceiver device, and the processor is configured to execute a computer program or an instruction to control the transceiver device to receive and process information. Sending; when the processor executes the computer program or instructions, the processor is further configured to implement the foregoing method.
  • the transceiver may be a transceiver, a transceiver circuit, or an input / output interface.
  • the transceiver device is a transceiver circuit or an input / output interface.
  • the structure of the communication device includes a processor; the processor is configured to support the device to perform a corresponding function in the foregoing communication method.
  • the structure of the communication device includes a processor, and the processor is configured to be coupled to the memory, read an instruction in the memory, and implement the foregoing method according to the instruction.
  • a structure of the communication device includes a transceiver, which is configured to implement the foregoing communication method.
  • the transceiver unit may be an input / output unit, such as an input / output circuit or a communication interface.
  • the transceiver unit may be a transmitter / receiver or a transmitter / receiver.
  • a communication device which can implement the communication method in the second aspect.
  • the communication device may be a chip (such as a baseband chip, a communication chip, or the like) or a network device, and the foregoing method may be implemented by software, hardware, or by executing corresponding software by hardware.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform a corresponding function in the foregoing communication method.
  • the memory is coupled to the processor and holds programs (instructions) and data necessary for the device.
  • the communication device may further include a communication interface to support communication between the device and other network elements.
  • the communication device may include a unit module that performs a corresponding action in the foregoing method.
  • a processor and a transceiver device are included, the processor is coupled to the transceiver device, and the processor is configured to execute a computer program or an instruction to control the transceiver device to receive and process information. Sending; when the processor executes the computer program or instructions, the processor is further configured to implement the foregoing method.
  • the transceiver may be a transceiver, a transceiver circuit, or an input / output interface.
  • the transceiver device is a transceiver circuit or an input / output interface.
  • the structure of the communication device includes a processor; the processor is configured to support the device to perform a corresponding function in the foregoing communication method.
  • the structure of the communication device includes a processor, and the processor is configured to be coupled to the memory, read an instruction in the memory, and implement the foregoing method according to the instruction.
  • a structure of the communication device includes a transceiver, which is configured to implement the foregoing communication method.
  • the transceiver unit may be an input / output unit, such as an input / output circuit or a communication interface.
  • the transceiver unit may be a transmitter / receiver (also referred to as a transmitter / receiver).
  • a computer-readable storage medium stores a computer program or instructions. When the computer programs or instructions are executed, the methods described in the foregoing aspects are implemented.
  • a computer program product containing instructions, and when the instructions are run on a computer, the computer is caused to execute the methods described in the above aspects.
  • a communication system including the foregoing communication device.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another communication method according to an embodiment of the present application.
  • 4 is a schematic diagram of an example of uplink transmission
  • FIG. 5 is a schematic flowchart of another communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another uplink transmission according to an example
  • FIG. 7 is a schematic flowchart of another communication method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another uplink transmission according to an example.
  • FIG. 9 is a schematic flowchart of another communication method according to an embodiment of the present application.
  • FIG. 10a is a schematic diagram of another uplink transmission according to an example
  • FIG. 10b is a schematic diagram of another uplink transmission according to an example.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of still another communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of still another communication device according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system may include at least one network device 100 (only one is shown) and one or more user equipment 200 connected to the network device 100.
  • the network device 100 may be a device capable of communicating with a user equipment (UE) 200.
  • the network device 100 may be any device having a wireless transmitting and receiving function. Including but not limited to: base station NodeB, eNodeB evolved base station, base stations in the fifth generation (5G) communication system, base stations or network equipment in future communication systems, wireless fidelity (Wi-Fi) ) Access nodes, wireless relay nodes, wireless backhaul nodes, etc. in the system.
  • the network device 100 may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the network device 100 may also be a small station, a transmission node (TRP), or the like.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • User equipment 200 is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water, such as on a ship; it can also be deployed in the air, such as an aircraft , Balloons and satellites.
  • the user equipment may be a mobile phone, a tablet, a computer with a wireless transceiver function, a virtual reality (VR) user equipment, an augmented reality (AR) user equipment, or an industrial control ( wireless terminal in industrial control, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety Wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • the embodiment of the present application does not limit the application scenario.
  • the user equipment may also be referred to as a terminal device, an access user equipment, a UE unit, a mobile station, a mobile station, a remote station, a remote user equipment, a mobile device, a terminal, a wireless communication device, a UE agent, or a UE device.
  • “Multiple” means two or more. In view of this, in the embodiments of the present invention, “multiple” can also be understood as “at least two”.
  • “And / or” describes the association relationship of the associated objects, and indicates that there can be three kinds of relationships. For example, A and / or B can mean: there are three cases of A alone, A and B, and B alone.
  • the character "/”, unless otherwise specified, generally indicates that the related objects are an "or" relationship.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application. among them:
  • the user equipment uses the first transmission parameter set for uplink data transmission.
  • the network device uses the first transmission parameter set to receive the uplink data from the user equipment.
  • the network equipment will receive uplink timing information (for example, TA command) fed back by the network equipment at certain times.
  • uplink timing information for example, TA command
  • the network equipment will feedback the uplink timing information to the user equipment in two ways: 1) After receiving the preamble, the network equipment will feedback the uplink timing to the user equipment through a random access response (RAR). Information; 2) The network device may also feed back the uplink timing information to the user equipment through the MAC CE.
  • RAR random access response
  • the uplink timing information sent by the network device is time-effective. As time passes, the uplink timing information gradually becomes invalid (for example, the user equipment moves, the channel environment changes, and the user equipment crystal oscillator offset will cause the uplink timing information to gradually fail). Therefore, it can be approximated that the longer the time point from when the uplink timing information is delivered, the more serious the time deviation of the uplink transmission of the user equipment, that is, the lower the reliability of the uplink transmission of the user equipment.
  • the user equipment selects different transmission parameter sets according to the current time when an uplink transmission is performed and the time interval between the latest uplink timing information setting or updating.
  • the current time refers to a time when the user equipment starts to transmit uplink data by using a transmission parameter set, and may also be referred to as a start time of uplink data transmission.
  • the uplink transmission parameters of user equipment are mostly configured by network equipment.
  • the user equipment adjusts the uplink transmission parameter set according to the timeliness of the current uplink timing information. Improve transmission efficiency when uplink timing information is relatively accurate, and improve transmission reliability when uplink timing information is inaccurate.
  • the user equipment agrees with the network equipment in advance on a plurality of sets of uplink transmission parameters.
  • Each set of uplink transmission parameters corresponds to different transmission reliability and transmission efficiency.
  • the user equipment determines the time interval between the current time and the last time the uplink timing information was received. According to different time intervals, the user equipment selects different transmission parameter sets.
  • the parameter selection rules can be agreed in advance by the user equipment and the network equipment. In order to ensure the reliability of transmission and take into account the efficiency of transmission, the selection rules are: the longer the time interval, the user equipment selects the transmission parameter set with higher transmission reliability; the closer the time interval, the user equipment selects the transmission parameter with higher transmission efficiency set.
  • the transmission parameter set includes one or more uplink transmission parameters.
  • Different sets of transmission parameters can mean different types of uplink transmission parameters in the set, or different values of some or all of the uplink transmission parameters in the set, or different uplink transmission parameters with different values of the parameters. The types are also different.
  • the uplink transmission parameter set may include one or more of the following uplink transmission parameters: time-frequency resource parameters, number of repeated transmissions (or minimum number of repeated transmissions), transmission time interval bundling size (TTI bundling size) (or TTI bundling size) Minimum number of times), whether to send a preamble, transport block size (TBS), modulation related parameters (for example, modulation and coding strategy (MCS) level, modulation order), non-orthogonal transmission parameters, MIMO related parameters (for example, the number of MIMO layers), pilot (for example, DMRS) configuration parameters, power control parameters, and the like.
  • TTI bundling size transmission time interval bundling size
  • MCS modulation and coding strategy
  • non-orthogonal transmission parameters MIMO related parameters (for example, the number of MIMO layers), pilot (for example, DMRS) configuration parameters, power control parameters, and the like.
  • the above uplink transmission parameters can be configured with different values according to different time intervals. An example of the relationship between the above uplink transmission
  • the above-mentioned multiple sets of uplink transmission parameters are agreed in advance by the network equipment and the user equipment.
  • the selection rules of multiple sets of parameters can also be agreed in advance by the network equipment and the user equipment.
  • the preset uplink transmission parameters and uplink parameter selection rules can be implemented in the following ways: 1) system presets without any signaling interaction; 2) network devices broadcast messages (such as system information block (system information block) , SIB) to configure; 3)
  • SIB system information block
  • the network device is configured through user-specific RRC signaling;
  • the network device can configure the user equipment to enter the non-connected state. Configuration is performed in signaling (for example, configuration is performed through RRC connection release signaling).
  • cyclic prefix length configurations there are two types of cyclic prefix length configurations (normal cyclic prefix (normal CP) and extended cyclic prefix (extended CP)) in the LTE and NR systems. This embodiment can be applied to the configuration modes of these two CPs.
  • the above time interval can be determined by setting one or more timers.
  • the user equipment receives the uplink timing information, it sets one or more timers.
  • the user equipment selects different transmission parameter sets according to whether one or more timers have expired.
  • a timer may be set when the user equipment receives uplink timing information. Before the timer expires, it can be considered that the time interval between the user equipment's uplink data transmission at the current time and the last time it received uplink timing information is less than or equal to the first time interval; after the timer expires, the user equipment can be considered The time interval between the uplink data transmission and the last time the uplink timing information is received is greater than the first time interval.
  • the duration of the timer may be specified by a protocol or configured by the network device for the user equipment (for example, configured by RRC signaling).
  • the network device may also set one or more timers after sending the uplink timing information.
  • the network device selects different transmission parameter sets according to whether one or more timers have expired. Therefore, when receiving uplink data transmitted by the user, different receiving and decoding methods can also be adopted according to different time intervals to reduce the impact of non-synchronous errors.
  • the user equipment can use the first transmission parameter set for uplink data transmission, thereby improving data transmission efficiency.
  • the uplink transmission parameters in the table on the right of Table 1 are used.
  • the user equipment uses a second transmission parameter set to perform uplink data transmission; wherein the first transmission parameter The set and the second transmission parameter set contain different transmission parameters.
  • the network device uses the second transmission parameter set to receive the uplink data from the user equipment.
  • the user equipment may use the second transmission parameter set to perform uplink data transmission, thereby improving the reliability of the uplink data transmission.
  • the uplink transmission parameters in the table on the left of Table 1 are used.
  • FIG. 3 is a schematic flowchart of another communication method according to an embodiment of the present application. among them:
  • the user equipment uses the first repeated transmission times to perform uplink data transmission.
  • the network device receives the uplink data from the user equipment according to a first number of repeated transmissions.
  • the user equipment After receiving the uplink timing information, the user equipment starts a timer. Before the timer expires, the time interval between the time when the user equipment sends uplink data and the time when the last time the uplink timing information is received is less than or equal to the first time interval, and the user equipment may use the first repeated transmission times for uplink data transmission.
  • the number of repeated transmissions can also be replaced with a TTI bundle size.
  • TTI Bundling and repeated transmission are not distinguished. Their common feature is that for the same transport block (transport block, TB), coding and modulation are performed first, and then resource mapping is performed, and resource mapping is mapped to time-frequency resources corresponding to multiple transmission time intervals (TTI). on.
  • TTI is a time domain resource allocation unit.
  • the TTI may be 1 subframe, 1 slot, or multiple OFDM symbols. Time-frequency resources of multiple TTIs may or may not be adjacent.
  • the first repeated transmission number is 1, that is, the uplink data is transmitted only once, for example , Only transmitted on the time-frequency resource of one TTI, without repeated transmission.
  • the first repeated transmission times may also be set to a smaller value. If no retransmission times are configured, the uplink data (data packet) to be transmitted is transmitted only once by default. It should be noted that the number of repeated transmissions can be understood as including the current transmission.
  • the number of repeated transmissions is 1, the current transmission is included, and the uplink data (data packet) to be transmitted is transmitted only once.
  • the number of transmissions is only the number of repeated transmissions, that is, the current transmission is not included. For example, if the number of repeated transmissions is 1, the transmission is repeated once in addition to the current transmission.
  • the time interval between the current time and the last time the uplink timing information was received by the user equipment is less than or equal to the first time interval, and the time between when the uplink timing information is issued is short (the uplink timing information is still valid or has just expired), the The time deviation is small, and the reliability of the uplink data transmission is high.
  • the user equipment may use the first repeated transmission times to perform uplink data transmission.
  • the first transmission parameter set is used for data transmission without repeated transmission, or the number of repeated transmissions is small, so the data efficiency is high.
  • the user equipment uses a second repeated transmission number to perform uplink data transmission; wherein the first repeated transmission The number of times is less than the second number of repeated transmissions.
  • the network device receives the uplink data from the user equipment according to a second number of repeated transmissions.
  • the time interval between the time when the user equipment sends uplink data and the time when the last time the uplink timing information is received is greater than the first time interval, and the user equipment may use the second retransmission number for uplink data transmission.
  • the time deviation is large, and the user equipment may use the second repeated transmission times for uplink data transmission.
  • the second number of repeated transmissions is greater than the first number of repeated transmissions. Adopting the second repeated transmission times for uplink data transmission has high reliability.
  • the number of second repeated transmissions is K, and K is a value greater than 1, and the number of second repeated transmissions is greater than the number of first repeated transmissions, that is, when the user equipment transmits, it will perform K repeated transmissions to increase Transmission reliability.
  • the above-mentioned repeated transmission times can be preset by the system, or can be configured by the network device through broadcast, or the network device can be configured through RRC signaling or downlink control information (DCI) (if the user equipment is in a non-connected state, (Before the user equipment enters the non-connected state, it can be configured by the network equipment through RRC or DCI signaling).
  • RRC signaling or downlink control information DCI
  • the uplink timing information when the time interval between the current time and the last time that the uplink timing information was received is less than or equal to the first time interval, the uplink timing information may still be valid. Transmission or non-repeated transmission can improve transmission efficiency; when the time interval between the current time and the last time the uplink timing information is received is greater than the first time interval, the uplink timing information has expired and a relatively large number of repeated transmissions is used Transmission can improve the reliability of transmission.
  • FIG. 5 is a schematic flowchart of another communication method according to an embodiment of the present application. among them:
  • the user equipment When the time interval between the current time and the last time the uplink timing information is received is less than or equal to the first time interval, the user equipment performs uplink data transmission according to a first frame format, where the first frame format does not include a preamble.
  • the network device receives the uplink data from the user equipment according to a first frame format.
  • the user equipment After receiving the uplink timing information, the user equipment starts a timer. Before the timer expires, the time interval between the time when the user equipment sends uplink data and the last time the uplink timing information is received is less than or equal to the first time interval, and the user equipment may use the first frame format for uplink data transmission.
  • the first frame format does not include a preamble.
  • the uplink The data transmission does not include the preamble.
  • the time interval between the current time and the last time the uplink timing information was received by the user equipment is less than or equal to the first time interval, and the time between when the uplink timing information is issued is short (the uplink timing information is still valid or has just expired), the The time deviation is small, and the reliability of the uplink data transmission is high.
  • the user equipment may not send a preamble when performing uplink data transmission.
  • the first frame format is used for data transmission, and no preamble needs to be sent. Therefore, the data transmission efficiency is high.
  • the user equipment When the time interval between the current time and the last time that the uplink timing information is received is greater than the first time interval, the user equipment performs uplink data transmission according to a second frame format.
  • the second frame format includes Leading.
  • the network device when a time interval between the current time and the last time the uplink timing information is received is greater than the first time interval, the network device receives the uplink data from the user equipment according to a second frame format.
  • the time interval between the time when the user equipment sends uplink data and the time when the last time it received uplink timing information is greater than the first time interval.
  • the user equipment sends an additional or Multiple preambles. As shown in Figure 6, after the timer expires, a preamble is sent at the same time as the data is sent. The preamble can help network equipment adjust the timing error of the received signal to improve the reliability of uplink transmission.
  • the time-frequency resource used to transmit the preamble may be adjacent to the time-frequency resource used to transmit the uplink data, or may not be adjacent.
  • the time-frequency resources occupied by the preamble may be the same as or different from the time-frequency resources of the preamble already used in the system for user equipment access; the set of sequences occupied by the preamble may be the same as the set of preamble sequences used in the system for user equipment access It can also be different.
  • the time interval between the current time and the last time the uplink timing information was received by the user equipment is greater than the first time interval, and the time between when the uplink timing information is issued is relatively long (the uplink timing information is invalid),
  • the time deviation is relatively large, and the user equipment can use a second frame format for uplink data transmission, and the second frame format includes a preamble, so transmission reliability is high.
  • the above frame format can be preset by the system, or can be configured by the network device through broadcast, or the network device can be configured through RRC signaling or DCI (if the user equipment is in a disconnected state, before the user equipment enters a disconnected state, (Configured by network equipment through RRC or DCI signaling).
  • the resources (time domain resources, and / or frequency domain resources, and / or space domain resources) used by the user equipment to send preamble or data may be pre-agreed between the user equipment and the network equipment, or the network equipment may use high-level Signaling (such as RRC signaling) or low-level signaling (such as MAC CE or DCI) is configured to the user equipment; if the network equipment is configured to the user equipment, the leading resources and data resources can be in the same configuration information, Can also be in different configuration information.
  • high-level Signaling such as RRC signaling
  • low-level signaling such as MAC CE or DCI
  • the resource information may include at least one of the following information: a resource location, or a resource number (index), a resource size, a resource quantity, and the like.
  • the resources used by the user equipment to send the preamble and the resources used to send data may be adjacent in the time domain or may not be adjacent in the time domain; they may be adjacent in the frequency domain or non-adjacent in the frequency domain. ; Can be located in the same time domain resource, or can be located in different time domain resources; can be located in the same frequency domain resource, or can be located in different frequency domain resources. They can be located in the same airspace or in different airspaces, such as beams.
  • the resources used by the user equipment to send data may include resources used to send pilots (such as DMRS), where the pilots may be used for user equipment detection or channel estimation. It can be understood that, in other embodiments of the present application, the resources for sending data may also include resources for sending pilots.
  • pilots such as DMRS
  • the uplink timing information when the time interval between the current time and the last time when the uplink timing information is received is less than or equal to the first time interval, the uplink timing information may still be valid, and only data is transmitted, but no preamble is transmitted.
  • the network device can still correctly demodulate the data, which can improve the transmission efficiency; when the time interval between the current time and the last time the uplink timing information is received is greater than the first time interval, the uplink timing information has expired and the data is sent at the same time
  • Sending a preamble can improve the reliability of data demodulation, which can improve the reliability of transmission.
  • FIG. 7 is a schematic flowchart of still another communication method according to an embodiment of the present application. among them:
  • the first transmission block size is used for uplink data transmission.
  • the network device receives the uplink data from the user equipment according to a first transmission block size.
  • the user equipment After receiving the uplink timing information, the user equipment starts a timer. Before the timer expires, the time interval between the time when the user equipment sends uplink data and the last time it receives uplink timing information is less than or equal to the first time interval.
  • the user equipment may use the first transmission block size for uplink data transmission.
  • the transport block size can be set to a larger transport block size. On the same time-frequency resources, a larger transmission block size is used to transmit data, so that more data can be transmitted.
  • FIG. 8 illustrates another schematic diagram of uplink transmission.
  • the first transmission block size is N1.
  • the user equipment can use the first transmission block size for uplink data transmission.
  • the first transmission block size can be set to a larger transmission block size, which can transmit more data. Data, therefore, the efficiency of data transmission is higher.
  • the network device when a time interval between the current time and the last time the uplink timing information is received is greater than the first time interval, the network device receives the uplink data from the user equipment according to a second transmission block size.
  • the time interval between the time when the user equipment sends uplink data and the last time it receives uplink timing information is greater than the first time interval, and the user equipment may use the second transmission block size for uplink data transmission.
  • the second transport block size is smaller than the first transport block size. That is, after the timer expires, the user equipment can transmit less data. As shown in FIG. 8, after the timer expires, the size of the second transmission block is N2, where N2 ⁇ N1.
  • the user equipment may use the second transmission block size for uplink data transmission.
  • the size of the second transmission block is smaller than the size of the first transmission block, so that a lower channel coding code rate can be used to perform channel coding on the transmission data, thereby ensuring the reliability of data transmission.
  • the above-mentioned transmission block size can be preset by the system, or can be configured by the network device through broadcasting, or the network device can be configured through RRC signaling or DCI (if the user equipment is in a disconnected state, it can be configured before the user equipment enters a disconnected state. , Configured by network equipment through RRC or DCI signaling).
  • the uplink timing information when the time interval between the current time and the last time the uplink timing information is received is less than or equal to the first time interval, the uplink timing information may still be valid, and a larger transmission block size is used for transmission Data, transmission efficiency can be improved; when the time interval between the current time and the last time the uplink timing information is received is greater than the first time interval, the uplink timing information has expired, and using a smaller transmission block size to transmit data can improve Reliability of transmission.
  • FIG. 9 is a schematic flowchart of another communication method according to an embodiment of the present application. among them:
  • the user equipment uses the third transmission parameter set for uplink data transmission.
  • the network device when the time interval between the current time and the last time that the uplink timing information is sent to the user equipment is less than or equal to the second time interval, the network device receives a third transmission parameter set to receive the uplink from the user equipment. data.
  • the user equipment After receiving the uplink timing information, the user equipment can start two timers: timer 1 and timer 2, where the timeout period of timer 1 is shorter than timer 2.
  • the user equipment uses the third transmission parameter set for Uplink data transmission.
  • the third transmission parameter set may include one or more of the uplink transmission parameters in Table 1.
  • the first transmission parameter set is used to receive data from the network device. Uplink data of the user equipment.
  • timer 1 In the time period when timer 1 has expired and timer 2 has not yet expired, that is, the time interval between the current time of the user equipment and the last time the uplink timing information is received is greater than the second time interval and less than or equal to the first At the time interval, the first transmission parameter set is used for uplink data transmission.
  • the transmission parameters included in the third transmission parameter set are different from the transmission parameters included in the first transmission parameter set, that is, the types of uplink transmission parameters in the third transmission parameter set and the first transmission parameter set may be different, or The values of some or all of the uplink transmission parameters in the third transmission parameter set and the first transmission parameter set are different, or the parameters of the third transmission parameter set and some of the uplink transmission parameters in the first transmission parameter set are different and include uplink values.
  • the types of transmission parameters are also different.
  • the user equipment uses the second repeated transmission times to perform uplink data transmission; where the first repeated transmissions The number of times is less than the second number of repeated transmissions.
  • the network device when a time interval between the current time and the last time the uplink timing information is received is greater than the first time interval, the network device receives the uplink data from the user equipment by using a second retransmission number.
  • the second repeated transmission number is used for uplink data transmission.
  • the transmission parameters included in the third transmission parameter set are different from the transmission parameters included in the second transmission parameter set. That is, the types of the third transmission parameter and the second transmission parameter may be different, or the values of the transmission parameters of the third transmission parameter and the second transmission parameter may be different, or one of multiple transmission parameters of the third transmission parameter and the second transmission parameter. Some transmission parameters have different values.
  • the time interval between the current time and the last time the uplink timing information was received by the user equipment is less than or equal to the second time interval, and the time after the uplink timing information is issued is short (the uplink timing information is still valid or has just expired), The time deviation of the uplink transmission of the device is small, and the reliability of the uplink data transmission is high.
  • the user equipment can use the third transmission parameter set that can improve data transmission efficiency for uplink transmission, and the data efficiency is high.
  • the time interval between the current time and the last time the uplink timing information is received by the user equipment is greater than the second time interval and less than or equal to the first time interval, there is a period of time from the time when the uplink timing information is issued, The time deviation is larger than that before the timer 1 times out, and the user equipment may use the first transmission parameter set that takes both transmission efficiency and transmission reliability into consideration for uplink data transmission.
  • the device may use the second transmission parameter set to improve data transmission reliability for uplink data transmission.
  • the first repeated transmission number is used for uplink transmission before or when timer 1 times out; after timer 1 times out and before timer 2 times out
  • the second repeated transmission number K is used for uplink transmission, where the second repeated transmission number is greater than the first repeated transmission number; after the timer 2 times out, uplink transmission is performed by sending a preamble and data. Relatively increasing the number of repeated transmissions, sending a preamble can further improve the reliability of data transmission.
  • the first repeated transmission times are used for uplink transmission, and the first repeated transmission times are 0; in timer 1 After the timeout, and before or when timeout 2 expires, the second repeated transmission number K1 is used for uplink transmission, where the second repeated transmission number is greater than the first repeated transmission number; after the timer 2 times out, the third repeated transmission number is used Perform uplink transmission, where the number of third repeated transmissions is greater than the number of second repeated transmissions.
  • FIG. 10a and FIG. 10b above are merely examples, and the selection of the first transmission parameter set, the second transmission parameter set, and the third transmission parameter set may be any combination, which is not limited in this application.
  • an embodiment of the present application further provides a communication device 1000, which can be applied to the communication methods shown in FIG. 2 to FIG. 9.
  • the communication device 1000 may be the user equipment 200 shown in FIG. 1, or may be a component (such as a chip) applied to the user equipment 200.
  • the communication device 1000 includes a processing unit 11 and a transceiver unit 12. among them:
  • the transceiver unit 12 is configured to use the first transmission parameter set for uplink data transmission when the time interval between the current time and the last time the uplink timing information is received is less than or equal to the first time interval;
  • the transceiver unit 12 is further configured to use a second transmission parameter set for uplink data transmission when the time interval between the current time and the last time the uplink timing information is received is greater than the first time interval;
  • the first transmission parameter set and the second transmission parameter set contain different transmission parameters.
  • the processing unit 11 may also be used to determine whether the timer has expired at the current time. If the timer does not expire at the current time, the processing unit instructs the transceiver unit to use the first transmission parameter set for uplink data transmission. If the timer has expired at the current time, the processing unit instructs the transceiver unit to use the second transmission parameter set for uplink data transmission.
  • the transceiver unit 12 is configured to perform uplink data transmission by using the first repeated transmission times when the time interval between the current time and the last time the uplink timing information is received is less than or equal to the first time interval;
  • the transceiver unit 12 is further configured to use a second retransmission number for uplink data transmission when the time interval between the current time and the last time the uplink timing information is received is greater than the first time interval, wherein the first One repeated transmission number is less than the second repeated transmission number.
  • the transceiving unit 12 is configured to: when the time interval between the current time and the last time the uplink timing information is received is greater than a second time interval and less than or equal to the first time interval, The first set of transmission parameters is used for uplink data transmission, and the second time interval is shorter than the first time interval;
  • the transceiver unit 12 is further configured to use a third transmission parameter set for uplink data transmission when a time interval between the current time and the last time that the uplink timing information is received is less than or equal to the second time interval.
  • the transmission parameters included in the third transmission parameter set are different from the transmission parameters included in the first transmission parameter set, and the transmission parameters included in the third transmission parameter set are different from the transmission parameters included in the second transmission parameter set.
  • the transceiver unit 12 is configured to perform uplink according to a third number of repeated transmissions when a time interval between the current time and the last time the uplink timing information is received is less than or equal to the second time interval. Data transmission, wherein the third repeated transmission times is less than the first repeated transmission times.
  • the transceiver unit 12 is configured to perform uplink data transmission according to a first frame format when a time interval between the current time and the last time when the uplink timing information is received is less than or equal to the first time interval, where: The first frame format does not include a preamble;
  • the transceiver unit 12 is configured to perform uplink data transmission according to a second frame format when a time interval between the current time and the last time that the uplink timing information is received is greater than the first time interval, wherein the second frame
  • the format includes a preamble.
  • the transceiver unit 12 is configured to perform uplink data transmission according to a first transmission block size when a time interval between the current time and the last time the uplink timing information is received is less than or equal to the first time interval;
  • the transceiver unit 12 is configured to perform uplink data transmission according to a second transmission block size when a time interval between the current time and the last time that the uplink timing information is received is greater than the first time interval, wherein the second The transport block size is smaller than the first transport block size.
  • processing unit 11 and the transceiver unit 12 For a more detailed description of the processing unit 11 and the transceiver unit 12, reference may be directly made to the related description of the user equipment in the method embodiments shown in FIG. 2 to FIG. 9 above, and details are not described herein.
  • an embodiment of the present application further provides a communication device 2000, which can be applied to the communication methods shown in FIG. 2 to FIG. 9 described above.
  • the communication device 2000 may be the network device 100 shown in FIG. 1, or may be a component (such as a chip) applied to the network device 100.
  • the communication device 2000 includes a processing unit 21 and a transceiver unit 22. among them:
  • the transceiver unit 22 is configured to use a first transmission parameter set to receive uplink data from the user equipment when the time interval between the current time and the last time that the uplink timing information was sent to the user equipment is less than or equal to the first time interval;
  • the transceiver unit 22 is further configured to use a second transmission parameter set to receive uplink data from the user equipment when the time interval between the current time and the last time for sending uplink timing information to the user equipment is greater than the first time interval;
  • the first transmission parameter set and the second transmission parameter set contain different transmission parameters.
  • the processing unit 11 may also be used to determine whether the timer has expired at the current time. If the timer does not expire at the current time, the processing unit instructs the transceiver unit to receive the uplink data transmitted by the user equipment by using the first transmission parameter set. If the timer has expired at the current time, the processing unit instructs the transceiver unit to use the second transmission parameter set to receive uplink data transmitted by the user equipment.
  • the transceiver unit 22 is configured to receive, when the time interval between the current time and the last time that the uplink timing information is sent to the user equipment is less than or equal to the first time interval, the data from the user equipment according to the first number of repeated transmissions.
  • the uplink data ;
  • the transceiver unit 22 is further configured to receive the uplink from the user equipment according to a second retransmission number when the time interval between the current time and the last time for sending uplink timing information to the user equipment is greater than the first time interval. Data, wherein the number of first repeated transmissions is less than the number of second repeated transmissions.
  • the time interval between the current sending time and the latest time for sending uplink timing information to the user equipment is greater than a second time interval and less than or equal to the first time interval.
  • the second time interval is less than the first time interval;
  • the transceiver unit 22 is further configured to: when the time interval between the current time and the last time that the uplink timing information is sent to the user equipment is less than or equal to the second time interval, use a third transmission parameter set to receive data from the third transmission parameter set. Uplink data of the user equipment, wherein the transmission parameters included in the third transmission parameter set are different from the transmission parameters included in the first transmission parameter set, and the transmission parameters included in the third transmission parameter set and the second transmission The parameter set contains different transmission parameters.
  • the transceiver unit 22 is further configured to: when the time interval between the current time and the last time the uplink timing information is sent to the user equipment is less than or equal to the second time interval, according to a third Receiving the uplink data from the user equipment for the number of repeated transmissions, wherein the third number of repeated transmissions is less than the first number of repeated transmissions.
  • the transceiver unit 22 is configured to receive the time from the user equipment according to the first frame format when the time interval between the current time and the last time that the uplink timing information was sent to the user equipment is less than or equal to the first time interval.
  • the uplink data, wherein the first frame format does not include a preamble;
  • the transceiver unit 22 is further configured to receive the uplink data from the user equipment according to a second frame format at the time interval between the current time and the last time that the uplink timing information was sent to the user equipment, where the second The frame format includes a preamble.
  • the transceiver unit 22 is configured to: The uplink data of the user equipment;
  • the transceiver unit 22 is further configured to receive the uplink from the user equipment according to a second transmission block size when a time interval between the current time and the last time that uplink timing information is sent to the user equipment is greater than the first time interval. Data, wherein the second transport block size is smaller than the first transport block size.
  • processing unit 21 and the transceiver unit 22 For a more detailed description of the processing unit 21 and the transceiver unit 22, reference may be directly made to the related description of the network device in the method embodiments shown in FIG. 2 to FIG. 9 above, and details are not described herein.
  • An embodiment of the present application further provides a communication device, where the communication device is configured to execute the foregoing communication method.
  • Some or all of the above communication methods may be implemented by hardware or software.
  • the communication device may be a chip or an integrated circuit in a specific implementation.
  • the communication device when some or all of the communication methods in the above embodiments are implemented by software, the communication device includes: a memory for storing a program; a processor for executing the program stored in the memory; and when the program is executed, The communication device can implement the communication method provided by the foregoing embodiment.
  • the foregoing memory may be a physically independent unit, or may be integrated with a processor.
  • the communication device may also include only a processor.
  • the memory for storing the program is located outside the communication device, and the processor is connected to the memory through a circuit / wire for reading and executing the program stored in the memory.
  • the processor may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory may include volatile memory (for example, random-access memory (RAM); the memory may also include non-volatile memory (for example, flash memory) , Hard disk (HDD) or solid-state drive (SSD); the storage may also include a combination of the above types of storage.
  • volatile memory for example, random-access memory (RAM)
  • non-volatile memory for example, flash memory
  • HDD Hard disk
  • SSD solid-state drive
  • the storage may also include a combination of the above types of storage.
  • FIG. 13 is a schematic structural diagram of a simplified user equipment. It is easy to understand and easy to illustrate.
  • the user equipment uses a mobile phone as an example.
  • the user equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input / output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling user equipment, executing software programs, and processing data of the software programs.
  • the memory is mainly used for storing software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • Input / output devices such as a touch screen, a display screen, and a keyboard, are mainly used to receive data input by the user and output data to the user. It should be noted that some types of user equipment may not have an input / output device.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit. After the radio frequency circuit processes the baseband signal, the radio frequency signal is sent out through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 13 In an actual user equipment product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device.
  • the memory may be set independently of the processor or integrated with the processor, which is not limited in the embodiment of the present application.
  • an antenna and a radio frequency circuit having a transmitting and receiving function may be regarded as a receiving unit and a transmitting unit (also collectively referred to as a transmitting and receiving unit) of a user equipment, and a processor having a processing function may be regarded as a processing unit of the user equipment .
  • the user equipment includes a transceiver unit 71 and a processing unit 72.
  • the transceiver unit 71 may also be referred to as a receiver / transmitter (transmitter), a receiver / transmitter, a receive / transmit circuit, and the like.
  • the processing unit 72 may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the transceiver unit 71 is configured to execute the functions of the user equipment in steps S101 and S102 in the embodiment shown in FIG. 2.
  • the transceiver unit 71 is configured to execute the functions of the user equipment in steps S201 and S202 in the embodiment shown in FIG. 3.
  • the transceiver unit 71 is configured to execute the functions of the user equipment in steps S301 and S302 in the embodiment shown in FIG. 5.
  • the transceiver unit 71 is configured to perform functions of the user equipment in steps S401 and S402 in the embodiment shown in FIG. 7.
  • the transceiver unit 71 is configured to execute the functions of the user equipment in steps S501, S502, and S503 in the embodiment shown in FIG. 9.
  • FIG. 14 shows a simplified structural diagram of a network device.
  • the network equipment includes a radio frequency signal transceiving and converting part and a 82 part, and the radio frequency signal transceiving and conversion part includes a transceiving unit 81 part.
  • the radio frequency signal transmission and reception and conversion part is mainly used for radio frequency signal transmission and reception and the conversion of radio frequency signal and baseband signal; 82 part is mainly used for baseband processing and control of network equipment.
  • the transceiver unit 81 may also be referred to as a receiver / transmitter (transmitter), a receiver / transmitter, a receive / transmit circuit, and the like.
  • Part 82 is usually a control center of a network device, which may be generally referred to as a processing unit, and is used to control the network device to perform the steps performed on the network device in FIG. 2 to FIG. 9 described above.
  • a control center of a network device which may be generally referred to as a processing unit, and is used to control the network device to perform the steps performed on the network device in FIG. 2 to FIG. 9 described above.
  • Part 82 may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processors are used to read and execute programs in the memory to implement baseband processing functions and to network devices. control. If there are multiple boards, the boards can be interconnected to increase processing capacity.
  • multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processes at the same time. Device.
  • the transceiver unit 81 is configured to execute the functions of the network devices in steps S101 and S102 in the embodiment shown in FIG. 2.
  • the transceiver unit 81 is configured to perform the functions of the network device in steps S201 and S202 in the embodiment shown in FIG. 3.
  • the transceiver unit 81 is configured to execute the functions of the network devices in steps S301 and S302 in the embodiment shown in FIG. 5.
  • the transceiver unit 81 is configured to execute the functions of the network devices in steps S401 and S402 in the embodiment shown in FIG. 7.
  • the transceiver unit 81 is configured to execute the functions of the network devices in steps S501, S502, and S503 in the embodiment shown in FIG.
  • An embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores computer programs or instructions, and when the computer programs or instructions are executed, the methods described in the foregoing aspects are implemented.
  • An embodiment of the present application further provides a computer program product containing instructions, and when the instructions are run on a computer, the computer is caused to execute the methods described in the foregoing aspects.
  • An embodiment of the present application further provides a communication system including the foregoing communication device.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the division of the unit is only a logical function division.
  • multiple units or components can be combined or integrated into another system, or some features can be ignored or not. carried out.
  • the displayed or discussed mutual coupling, or direct coupling, or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, which may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted through a computer-readable storage medium.
  • the computer instructions can be transmitted from one website site, computer, server, or data center to another via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.)
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integrations.
  • the available medium may be a read-only memory (ROM), or a random access memory (RAM), or a magnetic medium, such as a floppy disk, a hard disk, a magnetic tape, a magnetic disk, or an optical medium, such as, A digital versatile disc (DVD), or a semiconductor medium, such as a solid state disk (SSD).
  • ROM read-only memory
  • RAM random access memory
  • magnetic medium such as a floppy disk, a hard disk, a magnetic tape, a magnetic disk, or an optical medium, such as, A digital versatile disc (DVD), or a semiconductor medium, such as a solid state disk (SSD).
  • SSD solid state disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法及装置。用户设备在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,采用第一传输参数集合进行上行数据传输;在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,采用第二传输参数集合进行上行数据传输;其中,所述第一传输参数集合和所述第二传输参数集合包含的传输参数不同。还公开了相应的装置。通过根据当前时刻与最近一次收到上行定时信息的时间间隔,在不同的时间间隔,采用不同的传输参数集合进行上行数据传输,可以兼顾传输效率和传输可靠性。

Description

通信方法及装置
本申请要求于2018年8月9日提交中国国家知识产权局、申请号为201810904923.8、发明名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在长期演进(long term evolution,LTE)通信系统中,用户设备与网络设备进行上行通信时,用户设备是处于同步状态的,即用户设备在与网络设备保持上行同步的状态时,可以给网络设备发送上行业务。用户设备保持上行同步的方式是通过接收网络设备的定时提前(timing advance,TA)命令(command),调整上行信号的发送时机。网络设备可以通过两种方式给用户设备发送TA command:1)用户设备先发送随机接入前导(random access preamble)给网络设备,网络设备再根据preamble进行定时测量,并将测量结果通过TA command反馈给用户设备;2)用户设备在进入无线资源控制(radio resource control,RRC)连接态后,网络设备会根据用户设备发送的上行信号(例如信道探测参考信号(sounding reference signal,SRS)、解调参考信号(demodulation reference signal,DMRS)等)进行定时测量,并通过介质访问控制(media access control,MAC)控制单元(control element,CE)给用户设备反馈TA command。
同步传输的优点是通信的可靠性高,但有两个缺点:1、传输开销大。为了保持上行同步,用户设备需要先发送preamble进行初始同步,并通过信令交互来保持同步状态,因此采用这种方式传输小包业务时,传输开销所占据的比率大,降低了传输效率;2、传输时延较大。用户设备由于需要先发送preamble,再等待网络设备反馈TA以进行同步,因此,传输的时延较大,不适合短时延场景。
新无线(new radio,NR)通信系统是新一代通信系统,覆盖了增强移动带宽(enhance mobile broadband,eMBB)、超可靠低时延(ultra reliable low latency,uRLLC)和海量机器类通信(massive machine type of communication,mMTC)三大通信场景。eMBB场景要求高吞吐量,uRLLC场景要求高可靠性和低时延,mMTC场景强调海量连接数。显然都采用同步传输不能满足通信的需求。在NR系统中,为了解决同步传输模式中的上述问题,可能会允许部分用户设备进行非同步的上行传输(或称异步传输),即用户设备可能没有有效的上行TA的信息,也可以直接给网络设备发送上行业务。
对于异步传输,在NR系统中,仍然采用正交频分复用(orthogonal frequency division multiplexing,OFDM)的技术框架,每个符号前会添加循环前缀,若异步传输的定时偏差(加信道扩展)小于循环前缀长度,则异步传输的不会引入符号间干扰。若异步传输的定时偏差大于循环前缀长度,则会引入符号间干扰,从而减低传输的可靠性。在小区范围较大的场景中,上行定时偏差较大,OFDM的循环前缀并不能解决异步传输的问题。另外, 还需要考虑到异步传输的两点有害影响,1)对于NR系统中,会存在多个用户在同一时频资源上同时传输的配置,例如多用户多输入多输出(multiple-input multiple-output,MIMO),多用户非正交多址接入(non-orthogonal multiple access,NOMA)。对于网络设备来说,多个用户的信道在时间上不对齐,会增加多用户间的干扰;2)上行定时偏差还会造成用户的信号在频域发生相位的线性旋转(时域延时等效于频域相位旋转),导致信道估计的准确性下降。因此,在OFDM框架下,现有的发送方式会造成传输的可靠性下降。
基于此,在上行传输过程中,如何兼顾传输效率和传输可靠性,是目前亟待解决的问题。
发明内容
本申请提供一种通信方法及装置,以在上行传输过程中,兼顾传输效率和传输可靠性。
第一方面,提供了一种通信方法,包括:在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,采用第一传输参数集合进行上行数据传输;以及在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,采用第二传输参数集合进行上行数据传输;其中,所述第一传输参数集合和所述第二传输参数集合包含的传输参数不同。
在该方面中,通过根据当前时刻与最近一次收到上行定时信息的时间间隔,在不同的时间间隔,采用不同的传输参数集合进行上行数据传输,可以兼顾传输效率和传输可靠性。
结合第一方面,在第一种可能的实现方式中,所述采用第一传输参数集合进行上行数据传输包括:采用第一重复传输次数进行上行数据传输;所述采用第二传输参数集合进行上行数据传输包括:采用第二重复传输次数进行上行数据传输,其中,所述第一重复传输次数小于所述第二重复传输次数。
在该实现方式中,在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,上行定时信息可能还有效,采用比较小的重复传输次数进行传输,或者不重复传输,可以提高传输效率;在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,上行定时信息已经失效,采用比较大的重复传输次数进行传输,可以提高传输的可靠性。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实现方式中,在当前时刻与所述最近一次收到上行定时信息的时间间隔大于第二时间间隔且小于或等于所述第一时间间隔时,采用所述第一传输参数集合进行上行数据传输,所述第二时间间隔小于所述第一时间间隔;所述方法进一步包括:在当前时刻与所述最近一次收到上行定时信息的时间间隔小于或等于所述第二时间间隔时,采用第三传输参数集合进行上行数据传输,其中,所述第三传输参数集合包含的传输参数和所述第一传输参数集合包含的传输参数不同,所述第三传输参数集合包含的传输参数和所述第二传输参数集合包含的传输参数不同。
在该实现方式中,通过在不同的时间间隔采用不同的传输参数,可以兼顾传输效率和传输可靠性。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述采用第三传输参数集合进行上行数据传输包括:根据第三重复传输次数进行上行数据传输,其中, 所述第三重复传输次数小于所述第一重复传输次数。
结合第一方面或第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式或第一方面的第三种可能的实现方式,在第四种可能的实现方式中,所述采用第一传输参数集合进行上行数据传输包括:根据第一帧格式进行上行数据传输,其中,所述第一帧格式不包括前导;所述采用第二传输参数集合进行上行数据传输包括:根据第二帧格式进行上行数据传输,其中,所述第二帧格式包括前导。
在该实现方式中,在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,上行定时信息可能还有效,只发送数据,而不发送前导,网络设备仍可以正确解调数据,可以提高传输效率;在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,上行定时信息已经失效,发送数据的同时发送前导,可以提高数据解调的可靠性,从而可以提高传输的可靠性。
结合第一方面或第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式或第一方面的第三种可能的实现方式或第一方面的第四种可能的实现方式,在第五种可能的实现方式中,所述采用第一传输参数集合进行上行数据传输包括:根据第一传输块大小进行上行数据传输;所述采用第二传输参数集合进行上行数据传输包括:根据第二传输块大小进行上行数据传输,其中,所述第二传输块大小小于所述第一传输块大小。
在该实现方式中,在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,上行定时信息可能还有效,采用比较大的传输块大小传输数据,可以提高传输效率;在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,上行定时信息已经失效,采用比较小的传输块大小传输数据,传输的数据量小,对应的信道编码的码率较低,从而可以提高传输的可靠性。
第二方面,提供了一种通信方法,包括:在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔小于或者等于第一时间间隔时,采用第一传输参数集合接收来自所述用户设备的上行数据;以及在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔大于所述第一时间间隔时,采用第二传输参数集合接收来自所述用户设备的上行数据;其中,所述第一传输参数集合和所述第二传输参数集合包含的传输参数不同。
结合第二方面,在第一种可能的实现方式中,所述采用第一传输参数集合接收来自所述用户设备的上行数据包括:根据第一重复传输次数接收来自所述用户设备的所述上行数据;以及所述采用第二传输参数集合接收来自所述用户设备的上行数据包括:根据第二重复传输次数接收来自所述用户设备的所述上行数据,其中,所述第一重复传输次数小于所述第二重复传输次数。
结合第二方面或第二方面的第一种可能的实现方式,在第二种可能的实现方式中,在当前时刻与所述最近一次向所述用户设备发送上行定时信息的时间间隔大于第二时间间隔且小于或等于所述第一时间间隔时,采用所述第一传输参数集合接收来自所述用户设备的上行数据,所述第二时间间隔小于所述第一时间间隔;所述方法进一步包括:在当前时刻与所述最近一次向所述用户设备发送上行定时信息的时间间隔小于或者等于所述第二时间间隔时,采用第三传输参数集合接收来自所述用户设备的上行数据,其中,所述第三传输参数集合包含的传输参数和所述第一传输参数集合包含的传输参数不同,所述第三传输参 数集合包含的传输参数和所述第二传输参数集合包含的传输参数不同。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述采用第三传输参数集合接收来自所述用户设备的上行数据包括:根据第三重复传输次数接收来自所述用户设备的上行数据,其中,所述第三重复传输次数小于所述第一重复传输次数。
结合第二方面或第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式或第二方面的第三种可能的实现方式,在第四种可能的实现方式中,所述采用第一传输参数集合接收来自所述用户设备的上行数据包括:根据第一帧格式接收来自所述用户设备的所述上行数据,其中,所述第一帧格式不包括前导;所述采用第二传输参数集合接收来自所述用户设备的上行数据包括:根据第二帧格式接收来自所述用户设备的所述上行数据,其中,所述第二帧格式包括前导。
结合第二方面或第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式或第二方面的第三种可能的实现方式或第二方面的第四种可能的实现方式,在第五种可能的实现方式中,所述采用第一传输参数集合接收来自所述用户设备的上行数据包括:根据第一传输块大小接收来自所述用户设备的所述上行数据;所述采用第二传输参数集合接收来自所述用户设备的上行数据包括:根据第二传输块大小接收来自所述用户设备的所述上行数据,其中,所述第二传输块大小小于所述第一传输块大小。
结合以上第一方面或第二方面或第一方面、第二方面中的任一种实现方式,所述第一传输参数集合或所述第二传输参数集合包括以下一个或多个参数:时频资源数量、重复传输次数、发送前导与否、传输块大小、调制阶数、非正交传输的层数、多输入多输出传输的层数、导频占用的时频资源、发送功率。
第三方面,提供了一种通信装置,可以实现上述第一方面中的通信方法。例如所述通信装置可以是芯片(如通信芯片等)或者用户设备。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和/或数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置,可以包括执行上述方法中相应动作的单元模块。
在又一种可能的实现方式中,包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现上述方法。其中,所述收发装置可以为收发器、收发电路或输入输出接口。当所述通信装置为芯片时,所述收发装置为收发电路或输入输出接口。
在又一种可能的实现方式中,所述通信装置的结构中包括处理器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。
在又一种可能的实现方式中,所述通信装置的结构中包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现上述方法。
在又一种可能的实现方式中,所述通信装置的结构中包括收发器,用于实现上述通信方法。
当所述通信装置为芯片时,收发单元可以是输入输出单元,比如输入输出电路或者通信接口。当所述通信装置为用户设备时,收发单元可以是发射/接收器或发射/接收机。
第四方面,提供了一种通信装置,可以实现上述第二方面中的通信方法。例如所述通信装置可以是芯片(如基带芯片,或通信芯片等)或者网络设备,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置,可以包括执行上述方法中的相应动作的单元模块。
在又一种可能的实现方式中,包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现上述方法。其中,所述收发装置可以为收发器、收发电路或输入输出接口。当所述通信装置为芯片时,所述收发装置为收发电路或输入输出接口。
在又一种可能的实现方式中,所述通信装置的结构中包括处理器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。
在又一种可能的实现方式中,所述通信装置的结构中包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现上述方法。
在又一种可能的实现方式中,所述通信装置的结构中包括收发器,用于实现上述通信方法。
当所述通信装置为芯片时,收发单元可以是输入输出单元,比如输入输出电路或者通信接口。当所述通信装置为网络设备时,收发单元可以是发送/接收器(也可以称为发送/接收机)。
第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现上述各方面所述的方法。
第六方面,提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行上述各方面所述的方法。
第七方面,提供了一种通信系统,包括上述的通信装置。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例涉及的一种通信系统的示意图;
图2为本申请实施例提供的一种通信方法的流程示意图;
图3为本申请实施例提供的另一种通信方法的流程示意图;
图4为示例的一种上行传输的示意图;
图5为本申请实施例提供的又一种通信方法的流程示意图;
图6为示例的另一种上行传输的示意图;
图7为本申请实施例提供的又一种通信方法的流程示意图;
图8为示例的又一种上行传输的示意图;
图9为本申请实施例提供的又一种通信方法的流程示意图;
图10a为示例的又一种上行传输的示意图;
图10b为示例的又一种上行传输的示意图;
图11为本申请实施例提供的一种通信装置的结构示意图;
图12为本申请实施例提供的另一种通信装置的结构示意图;
图13为本申请实施例提供的又一种通信装置的结构示意图;
图14为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
图1给出了本申请实施例涉及的一种通信系统的示意图。该通信系统可以包括至少一个网络设备100(仅示出1个)以及与网络设备100连接的一个或多个用户设备200。
网络设备100可以是能和用户设备(user equipment,UE)200通信的设备。网络设备100可以是任意一种具有无线收发功能的设备。包括但不限于:基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备、无线保真(wireless-fidelity,Wi-Fi)系统中的接入节点、无线中继节点、无线回传节点等。网络设备100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备100还可以是小站,传输节点(transmission reference point,TRP)等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
用户设备200是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,如飞机、气球和卫星上等。所述用户设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)用户设备、增强现实(augmented reality,AR)用户设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。用户设备有时也可以称为终端设备、接入用户设备、UE单元、移动站、移动台、远方站、远程用户设备、移动设备、终端(terminal)、无线通信设备、UE代理或UE装置等。
需要说明的是,本发明实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在 A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
图2为本申请实施例提供的一种通信方法的流程示意图。其中:
S101、用户设备在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,采用第一传输参数集合进行上行数据传输。
相应地,网络设备在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔小于或者等于第一时间间隔时,采用第一传输参数集合接收来自所述用户设备的上行数据。
本实施例假设用户设备会在某些时刻收到网络设备反馈的上行定时信息(例如,TA command)。例如,对于LTE系统,网络设备会通过两种途径给用户设备反馈上行定时信息:1)网络设备在收到前导后,会通过随机接入响应(random access response,RAR)给用户设备反馈上行定时信息;2)网络设备也可以通过MAC CE给用户设备反馈上行定时信息。
网络设备发送的上行定时信息是有时效性的,随着时间的推移,上行定时信息逐渐失效(例如,用户设备移动、信道环境发生变化、用户设备晶振偏移都会造成上行定时信息逐渐失效)。因此,可以近似认为距离上行定时信息下发的时间点越久,则用户设备上行传输的时间偏差越严重,即用户设备上行传输的可靠性越低。
本实施例中,用户设备根据进行一次上行传输的当前时刻与最近一次上行定时信息设置或更新的时间间隔,来选择不同的传输参数集合。其中,当前时刻是指用户设备采用传输参数集合开始传输上行数据的时刻,也可以称之为上行数据传输的开始时刻。
在现有的LTE和NR通信系统中,用户设备的上行传输参数大都是由网络设备配置的。而在本申请中,用户设备根据当前上行定时信息的时效性,调整上行传输参数集合。在上行定时信息相对比较准确的时候提高传输效率,在上行定时信息不准确的时候提高传输可靠性。
用户设备预先与网络设备约定多套上行传输参数。每套上行传输参数对应不同的传输可靠性和传输效率。用户设备在进行上行业务传输前,先判断当前时刻与最近一次收到上行定时信息的时间间隔。根据不同的时间间隔,用户设备选择不同的传输参数集合。参数选择的规则可以由用户设备与网络设备提前约定。为了保证传输的可靠性并兼顾传输的效率,选择的规则的为:时间间隔越久,用户设备选择传输可靠性越高的传输参数集合;时间间隔越近,用户设备选择传输效率越高的传输参数集合。
其中,传输参数集合包括一个或多个上行传输参数。不同的传输参数集合可以是指集合中上行传输参数的类型不同,或指集合中部分或者全部上行传输参数的参数取值不同,或者指部分上行传输参数的参数取值不同且包含的上行传输参数的类型也不同。
其中,上行传输参数集合可以包括以下一个或多个上行传输参数:时频资源参数、重复传输次数(或者重复传输的最小次数)、传输时间间隔绑定大小(TTI Bundling size)(或者TTI bundling的最小次数)、是否发送前导、传输块大小(transport block size,TBS)、调制相关参数(例如,调制与编码策略(modulation and coding scheme,MCS)等级、调制阶数)、非正交传输参数、MIMO相关参数(例如MIMO层数)、导频(例如,DMRS)配置参数、功率控制参数等。上述上行传输参数可以根据不同的时间间隔,配置不同的值。上述上行传输参数与可靠性和传输效率之间关系的一种示例见下面的表格1的描述。
表1
Figure PCTCN2019099804-appb-000001
上述的多套上行传输参数由网络设备和用户设备预先约定。多套参数的选择规则也可以由网络设备和用户设备预先约定。预设的上行传输参数以及上行参数的选择规则都可以通过以下几种方式来实现:1)系统预设,无需任何信令交互;2)网络设备通过广播消息(例如系统信息块(system information block,SIB)进行配置;3)对于处于连接态的用户设备,网络设备通过用户专用的RRC信令进行配置;4)对于处于非连接态的用户,网络设备可以在配置用户设备进入非连接态的信令中进行配置(例如通过RRC连接释放(RRC connection release)信令进行配置)。
需要说明的是,LTE和NR系统中有两种循环前缀长度配置(常规循环前缀(normal CP)和扩展的循环前缀(extended CP))。本实施例可以应用在这两种CP的配置方式下。
上述时间间隔的判断可以通过设定一个或者多个定时器(timer)来实现。用户设备在收到上行定时信息时,设置一个或者多个定时器。用户设备根据一个或者多个定时器是否超时来选择不同的传输参数集合。本实施例中,可在用户设备收到上行定时信息时,设置一个定时器。在该定时器超时前,可认为用户设备在当前时刻进行上行数据传输与最近一次收到上行定时信息的时间间隔小于或等于第一时间间隔;在定时器超时后,可认为用户设备在当前时刻进行上行数据传输与最近一次收到上行定时信息的时间间隔大于该第一时间间隔。定时器的计时时长,既可以是由协议规定,也可以是网络设备为用户设备配置的(例如,通过RRC信令配置)。
相应地,网络设备也可以在发送上行定时信息后,设置一个或者多个定时器。网络设备根据一个或者多个定时器是否超时来选择不同的传输参数集合。从而在接收到用户上行传输的数据时,也可以根据不同的时间间隔,采用不同的接收译码方式,来减小非同步误差带来的影响。
由于用户设备在当前时刻与最近一次收到上行定时信息的时间间隔小于或等于第一时间间隔,距离上行定时信息下发的时间不久(上行定时信息仍然有效或者刚失效),用户设备上行传输的时间偏差较小,该上行数据传输的可靠性较高,因此,用户设备可以采用第一传输参数集合进行上行数据传输,从而提高数据传输效率较高。例如,采用表1右边表格中的上行传输参数。
S102、所述用户设备在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,采用第二传输参数集合进行上行数据传输;其中,所述第一传输参数集合和所述第二传输参数集合包含的传输参数不同。
相应地,网络设备在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔大于所述第一时间间隔时,采用第二传输参数集合接收来自所述用户设备的上行数据。
在本步骤中,由于用户设备在当前时刻与最近一次收到上行定时信息的时间间隔大于第一时间间隔,距离上行定时信息下发的时间较久(上行定时信息失效),用户设备上行传输的时间偏差较大,用户设备可以采用第二传输参数集合进行上行数据传输,从而提高上行数据传输的可靠性。例如,采用表1左边表格中的上行传输参数。
根据本申请实施例提供的一种通信方法,通过根据当前时刻与最近一次收到上行定时信息的时间间隔,在不同的时间间隔,采用不同的传输参数集合进行上行数据传输,可以兼顾传输效率和传输可靠性。
图3为本申请实施例提供的另一种通信方法的流程示意图。其中:
S201、用户设备在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,采用第一重复传输次数进行上行数据传输。
相应地,网络设备在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,根据第一重复传输次数接收来自所述用户设备的所述上行数据。
用户设备在收到上行定时信息后,会启动一个定时器。在定时器超时前,用户设备进行上行数据发送的时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔,用户设备可以采用第一重复传输次数进行上行数据传输。
该重复传输次数也可以替换为TTI bundle size。在本实施例中,不区分TTI Bundling和重复传输这两个术语。它们的共同特点为,对于同一传输块(transport block,TB),先进行编码调制,再进行资源映射,资源映射时会映射到多个传输时间间隔(transmission time interval,TTI)对应的时频资源上。其中,TTI为时域资源分配单位,例如,TTI可以为1个子帧,或者1个时隙,或者多个OFDM符号。多个TTI的时频资源可以相邻,也可以不相邻。
如图4示例的一个上行传输的示意图。在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,即定时器超时前或定时器超时时,第一重复传输次数为1,即只传输上行数据一次,例如,仅在一个TTI的时频资源上传输,不进行重复传输。当然,也可以设置第一重复传输次数为较小的值。若没有配置重复传输次数,则默认针对待传输上行数据(数据包)只传输一次。需要说明的是,重复传输次数可以理解为包括当前传输,例如,重复传输次数为1,则包括当前传输,针对待传输上行数据(数据包)只传输一次,本实施例依照这种理解;重复传输次数也可以理解仅为重复传输的次数,即不包括当前传输,例如,重复传输次数为1,则除了当前传输,还重复传输1次。
由于用户设备在当前时刻与最近一次收到上行定时信息的时间间隔小于或等于第一时间间隔,距离上行定时信息下发的时间不久(上行定时信息仍然有效或者刚失效),用户设备上行传输的时间偏差较小,该上行数据传输的可靠性较高,用户设备可以采用第一重复传输次数进行上行数据传输。且采用第一传输参数集合进行数据传输,无需重复传输,或 重复传输的次数少,因而,数据效率较高。
S202、所述用户设备在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,采用第二重复传输次数进行上行数据传输;其中,所述第一重复传输次数小于所述第二重复传输次数。
相应地,网络设备在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,根据第二重复传输次数接收来自所述用户设备的所述上行数据。
在定时器超时后,用户设备进行上行数据发送的时刻与最近一次收到上行定时信息的时间间隔大于第一时间间隔,用户设备可以采用第二重复传输次数进行上行数据传输。
在本步骤中,由于用户设备在当前时刻与最近一次收到上行定时信息的时间间隔大于第一时间间隔,距离上行定时信息下发的时间较久(上行定时信息失效),用户设备上行传输的时间偏差较大,用户设备可以采用第二重复传输次数进行上行数据传输。其中,第二重复传输次数大于第一重复传输次数。采用第二重复传输次数进行上行数据传输,可靠性较高。
如图4所示,第二重复传输次数为K,K为大于1的值,且第二重复传输次数大于第一重复传输次数,即用户设备进行传输时,会进行K次重复发送,以增加传输可靠性。
上述的重复传输次数可以由系统预设,也可以由网络设备通过广播进行配置,或者网络设备通过RRC信令或下行控制信息(downlink control information,DCI)进行配置(若用户设备处于非连接态,可以在用户设备进入非连接态之前,由网络设备通过RRC或者DCI信令进行配置)。
根据本申请实施例提供的一种通信方法,在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,上行定时信息可能还有效,采用比较小的重复传输次数进行传输,或者不重复传输,可以提高传输效率;在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,上行定时信息已经失效,采用比较大的重复传输次数进行传输,可以提高传输的可靠性。
图5为本申请实施例提供的又一种通信方法的流程示意图。其中:
S301、用户设备在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,根据第一帧格式进行上行数据传输,其中,所述第一帧格式不包括前导。
相应地,网络设备在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,根据第一帧格式接收来自所述用户设备的所述上行数据。
用户设备在收到上行定时信息后,会启动一个定时器。在定时器超时前,用户设备进行上行数据发送的时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔,用户设备可以采用第一帧格式进行上行数据传输。其中,第一帧格式不包括前导。
如图6所示的另一个上行数据传输的示例,在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,即定时器超时前或定时器超时时,该上行数据传输不包括前导。
由于用户设备在当前时刻与最近一次收到上行定时信息的时间间隔小于或等于第一时间间隔,距离上行定时信息下发的时间不久(上行定时信息仍然有效或者刚失效),用户设备上行传输的时间偏差较小,该上行数据传输的可靠性较高,用户设备可以在进行上行数 据传输时不发送前导。采用第一帧格式进行数据传输,无需发送前导,因而,数据的传输效率较高。
S302、所述用户设备在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,根据第二帧格式进行上行数据传输;其中,所述第二帧格式包括前导。
相应地,网络设备在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,根据第二帧格式接收来自所述用户设备的所述上行数据。
在定时器超时后,用户设备进行上行数据发送的时刻与最近一次收到上行定时信息的时间间隔大于第一时间间隔,用户设备除了按照预设的方式发送上行信号外,还会额外发送一个或多个前导。如图6所示,在定时器超时后,在发送数据的同时,发送一个前导。前导可以帮助网络设备调整接收信号的定时误差,以提高上行传输的可靠性。
其中,用于传输前导的时频资源可与用于传输上行数据的时频资源相邻,也可以不相邻。前导占用的时频资源可以与系统中已用于用户设备接入的前导的时频资源相同,也可以不同;前导占用的序列集合可以与系统中已用于用户设备接入的前导序列集合相同,也可以不同。
在本步骤中,由于用户设备在当前时刻与最近一次收到上行定时信息的时间间隔大于第一时间间隔,距离上行定时信息下发的时间较久(上行定时信息失效),用户设备上行传输的时间偏差较大,用户设备可以采用第二帧格式进行上行数据传输,该第二帧格式中包括前导,从而传输可靠性较高。
上述的帧格式可以由系统预设,也可以由网络设备通过广播进行配置,或者网络设备通过RRC信令或DCI进行配置(若用户设备处于非连接态,可以在用户设备进入非连接态之前,由网络设备通过RRC或者DCI信令进行配置)。
另外,用户设备用于发送前导或数据的资源(时域资源、和/或频域资源、和/或空域资源)可以是用户设备和网络设备之间预先约定的,也可以是网络设备通过高层信令(如RRC信令)或底层信令(如MAC CE或DCI)配置给用户设备的;如果是网络设备配置给用户设备的,前导的资源和数据的资源可以在同一条配置信息中,也可以在不同的配置信息中。
为降低网络设备盲检测复杂度,用户设备发送前导所使用的资源和发送数据所使用的资源之间具有对应关系,即,网络设备能够根据检测到前导的资源的信息获知用户设备发送数据所使用的资源信息,这里的资源信息可以包括如下信息中的至少一种:资源位置、或资源编号(索引)、资源大小、资源数量等。
用户设备用于发送前导的资源和用于发送数据的资源可以在时域上相邻,也可以在时域上不相邻;可以在频域上相邻,也可以在频域上不相邻;可以位于相同的时域资源,也可以位于不同的时域资源;可以位于相同的频域资源,也可以位于不同的频域资源。可以位于相同的空域,也可以位于不同的空域,例如波束。
用户设备用于发送数据的资源中可以包含用于发送导频(如DMRS)的资源,其中导频可用于用户设备的检测、或信道估计等。可以理解的是,在本申请的其它实施例中,用于发送数据的资源中同样可以包括用于发送导频的资源。
根据本申请实施例提供的一种通信方法,在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,上行定时信息可能还有效,只发送数据,而不发 送前导,网络设备仍可以正确解调数据,可以提高传输效率;在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,上行定时信息已经失效,发送数据的同时发送前导,可以提高数据解调的可靠性,从而可以提高传输的可靠性。
图7为本申请实施例提供的又一种通信方法的流程示意图。其中:
S401、用户设备在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,采用第一传输块大小进行上行数据传输。
相应地,网络设备在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,根据第一传输块大小接收来自所述用户设备的所述上行数据。
用户设备在收到上行定时信息后,会启动一个定时器。在定时器超时前,用户设备进行上行数据发送的时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔,用户设备可以采用第一传输块大小进行上行数据传输,该第一传输块大小可以设置为较大的传输块大小。在相同大小的时频资源上,采用较大的传输块大小来传输数据,从而可以传输较多的数据。
如图8示例的又一个上行传输的示意图。在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,即定时器超时前或定时器超时时,第一传输块大小为N1。
由于用户设备在当前时刻与最近一次收到上行定时信息的时间间隔小于或等于第一时间间隔,距离上行定时信息下发的时间不久(上行定时信息仍然有效或者刚失效),用户设备上行传输的时间偏差较小,该上行数据传输的可靠性较高,用户设备可以采用第一传输块大小进行上行数据传输,该第一传输块大小可以设置为较大的传输块大小,可以传输较多的数据,因而,数据传输的效率较高。
S402、所述用户设备在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,采用第二传输块大小进行上行数据传输;其中,所述第二传输块大小小于所述第一传输块大小。
相应地,网络设备在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,根据第二传输块大小接收来自所述用户设备的所述上行数据。
在定时器超时后,用户设备进行上行数据发送的时刻与最近一次收到上行定时信息的时间间隔大于第一时间间隔,用户设备可以采用第二传输块大小进行上行数据传输。该第二传输块大小小于第一传输块大小。即在定时器超时后,用户设备可以传输较少的数据。如图8所示,在定时器超时后,第二传输块大小为N2,其中,N2<N1。
在本步骤中,由于用户设备在当前时刻与最近一次收到上行定时信息的时间间隔大于第一时间间隔,距离上行定时信息下发的时间较久(上行定时信息失效),用户设备上行传输的时间偏差较大,用户设备可以采用第二传输块大小进行上行数据传输。其中,第二传输块大小小于第一传输块大小,使得可以采用较低的信道编码的码率对待传输数据进行信道编码,从而可以保证数据传输的可靠性。
上述的传输块大小可以由系统预设,也可以由网络设备通过广播进行配置,或者网络设备通过RRC信令或DCI进行配置(若用户设备处于非连接态,可以在用户设备进入非连接态之前,由网络设备通过RRC或者DCI信令进行配置)。
根据本申请实施例提供的一种通信方法,在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,上行定时信息可能还有效,采用比较大的传输块大小传输数据,可以提高传输效率;在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,上行定时信息已经失效,采用比较小的传输块大小传输数据,可以提高传输的可靠性。
图9为本申请实施例提供的另一种通信方法的流程示意图。其中:
S501、在当前时刻与最近一次收到上行定时信息的时间间隔小于或等于第二时间间隔时,用户设备采用第三传输参数集合进行上行数据传输。
相应地,网络设备在当前时刻与所述最近一次向所述用户设备发送上行定时信息的时间间隔小于或者等于所述第二时间间隔时,采用第三传输参数集合接收来自所述用户设备的上行数据。
用户设备在收到上行定时信息后,可以启动两个定时器:定时器1和定时器2,其中,定时器1的超时时间长度小于定时器2。
在定时器1超时前或超时时,即在用户设备进行上行数据传输的当前时刻与最近一次收到上行定时信息的时间间隔小于或等于第二时间间隔时,用户设备采用第三传输参数集合进行上行数据传输。其中,第三传输参数集合可以包括表1中的上行传输参数中的一种或多种。
S502、用户设备在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第二时间间隔且小于或等于第一时间间隔时,采用所述第一传输参数集合进行上行数据传输,所述第二时间间隔小于所述第一时间间隔。
相应地,网络设备在当前时刻与所述最近一次向所述用户设备发送上行定时信息的时间间隔大于第二时间间隔且小于所述第一时间间隔时,采用所述第一传输参数集合接收来自所述用户设备的上行数据。
在定时器1已超时,定时器2还未超时的时间段内,即用户设备在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第二时间间隔且小于或等于第一时间间隔时,采用第一传输参数集合进行上行数据传输。
其中,所述第三传输参数集合包含的传输参数和所述第一传输参数集合包含的传输参数不同,即第三传输参数集合和第一传输参数集合中的上行传输参数的类型可以不同,或者第三传输参数集合和第一传输参数集合中部分或者全部上行传输参数的参数取值不同,或者第三传输参数集合和第一传输参数集合中部分上行传输参数的参数取值不同且包含的上行传输参数的类型也不同。
S503、所述用户设备在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,采用第二重复传输次数进行上行数据传输;其中,所述第一重复传输次数小于所述第二重复传输次数。
相应地,网络设备在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,采用第二重复传输次数接收来自所述用户设备的上行数据。
在定时器2超时后,即在用户设备进行上行传输的当前时刻与最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,采用第二重复传输次数进行上行数据传输。
其中,所述第三传输参数集合包含的传输参数和所述第二传输参数集合包含的传输参数不同。即第三传输参数和第二传输参数的类型可以不同,或者第三传输参数和第二传输参数的传输参数的取值不同,或者第三传输参数和第二传输参数的多个传输参数中的部分传输参数的取值不同。
具体实现中,由于用户设备在当前时刻与最近一次收到上行定时信息的时间间隔小于或等于第二时间间隔,距离上行定时信息下发的时间不久(上行定时信息仍然有效或者刚失效),用户设备上行传输的时间偏差较小,该上行数据传输的可靠性较高,用户设备可以采用可提高数据传输效率的第三传输参数集合进行上行传输,数据效率较高。
由于用户设备在当前时刻与最近一次收到上行定时信息的时间间隔大于所述第二时间间隔且小于或等于第一时间间隔,距离上行定时信息下发的时间有一段时间,用户设备上行传输的时间偏差相对定时器1超时前较大,用户设备可以采用兼顾传输效率和传输可靠性的第一传输参数集合进行上行数据传输。
由于用户设备在当前时刻与最近一次收到上行定时信息的时间间隔大于第一时间间隔,距离上行定时信息下发的时间较久,用户设备上行传输的时间偏差相对定时器2超时前大,用户设备可以采用提高数据传输可靠性的第二传输参数集合进行上行数据传输。
如图10a所示的又一个上行传输的示意图,在该图中,在定时器1超时前或超时时,采用第一重复传输次数进行上行传输;在定时器1超时后,以及定时2超时前或超时时,采用第二重复传输次数K进行上行传输,其中,第二重复传输次数大于第一重复传输次数;在定时器2超时后,采用发送前导和数据的方式进行上行传输。相对增加重复传输次数,发送前导可更加提高数据传输的可靠性。
如图10b所示的又一个上行传输的示意图,在该图中,在定时器1超时前或超时时,采用第一重复传输次数进行上行传输,第一重复传输次数为0;在定时器1超时后,以及定时2超时前或超时时,采用第二重复传输次数K1进行上行传输,其中,第二重复传输次数大于第一重复传输次数;在定时器2超时后,采用第三重复传输次数进行上行传输,其中,第三重复传输次数大于第二重复传输次数。
当然,以上图10a和图10b仅为示例,关于第一传输参数集合、第二传输参数集合和第三传输参数集合的选择可以是任一种组合,本申请不作限定。
根据本申请实施例提供的一种通信方法,在该实现方式中,通过在不同的时间间隔采用不同的传输参数,可以兼顾传输效率和传输可靠性。
上述详细阐述了本发明实施例的方法,下面提供了本发明实施例的装置。
基于上述实施例中的通信方法的同一构思,如图11所示,本申请实施例还提供一种通信装置1000,该通信装置可应用于上述图2~图9所示的通信方法中。该通信装置1000可以是如图1所示的用户设备200,也可以是应用于该用户设备200的一个部件(例如芯片)。该通信装置1000包括处理单元11和收发单元12。其中:
处理单元11,用于启动定时器;
收发单元12,用于在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,采用第一传输参数集合进行上行数据传输;
所述收发单元12,还用于在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,采用第二传输参数集合进行上行数据传输;
其中,所述第一传输参数集合和所述第二传输参数集合包含的传输参数不同。
处理单元11还可以用于判断在当前时刻,定时器是否超时。如果在当前时刻,定时器未超时,处理单元指示收发单元采用第一传输参数集合进行上行数据传输。如果在当前时刻,定时器已超时,处理单元指示收发单元采用第二传输参数集合进行上行数据传输。
在一个实现方式中,所述收发单元12,用于在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,采用第一重复传输次数进行上行数据传输;
所述收发单元12,还用于在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,采用第二重复传输次数进行上行数据传输,其中,所述第一重复传输次数小于所述第二重复传输次数。
在另一个实现方式中,所述收发单元12,用于在当前时刻与所述最近一次收到上行定时信息的时间间隔大于第二时间间隔且小于或等于所述第一时间间隔时,采用所述第一传输参数集合进行上行数据传输,所述第二时间间隔小于所述第一时间间隔;
所述收发单元12,还用于在当前时刻与所述最近一次收到上行定时信息的时间间隔小于或等于所述第二时间间隔时,采用第三传输参数集合进行上行数据传输,其中,所述第三传输参数集合包含的传输参数和所述第一传输参数集合包含的传输参数不同,所述第三传输参数集合包含的传输参数和所述第二传输参数集合包含的传输参数不同。
在又一个实现方式中,所述收发单元12,用于在当前时刻与所述最近一次收到上行定时信息的时间间隔小于或等于所述第二时间间隔时,根据第三重复传输次数进行上行数据传输,其中,所述第三重复传输次数小于所述第一重复传输次数。
在又一个实现方式中,所述收发单元12,用于在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,根据第一帧格式进行上行数据传输,其中,所述第一帧格式不包括前导;
所述收发单元12,用于在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,根据第二帧格式进行上行数据传输,其中,所述第二帧格式包括前导。
在又一个实现方式中,所述收发单元12,用于在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,根据第一传输块大小进行上行数据传输;
所述收发单元12,用于在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,根据第二传输块大小进行上行数据传输,其中,所述第二传输块大小小于所述第一传输块大小。
有关上述处理单元11和收发单元12更详细的描述可以直接参考上述图2~图9所示的方法实施例中用户设备的相关描述直接得到,这里不加赘述。
基于上述实施例中的通信方法的同一构思,如图12所示,本申请实施例还提供一种通信装置2000,该通信装置可应用于上述图2~图9所示的通信方法中。该通信装置2000可以是如图1所示的网络设备100,也可以是应用于该网络设备100的一个部件(例如芯片)。该通信装置2000包括:处理单元21和收发单元22。其中:
处理单元21,用于启动定时器;
收发单元22,用于在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔小于或者等于第一时间间隔时,采用第一传输参数集合接收来自所述用户设备的上行数据;
所述收发单元22,还用于在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔大于所述第一时间间隔时,采用第二传输参数集合接收来自所述用户设备的上行数据;
其中,所述第一传输参数集合和所述第二传输参数集合包含的传输参数不同。
处理单元11还可以用于判断在当前时刻,定时器是否超时。如果在当前时刻,定时器未超时,处理单元指示收发单元采用第一传输参数集合接收用户设备传输的上行数据。如果在当前时刻,定时器已超时,处理单元指示收发单元采用第二传输参数集合接收用户设备传输的上行数据。
在一个实现方式中,收发单元22,用于在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔小于或者等于第一时间间隔时,根据第一重复传输次数接收来自所述用户设备的所述上行数据;
所述收发单元22,还用于在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔大于所述第一时间间隔时,根据第二重复传输次数接收来自所述用户设备的所述上行数据,其中,所述第一重复传输次数小于所述第二重复传输次数。
在另一个实现方式中,所述收发单元22,用于在当前时刻与所述最近一次向所述用户设备发送上行定时信息的时间间隔大于第二时间间隔且小于或等于所述第一时间间隔时,采用所述第一传输参数集合接收来自所述用户设备的上行数据,所述第二时间间隔小于所述第一时间间隔;
所述收发单元22,还用于在当前时刻与所述最近一次向所述用户设备发送上行定时信息的时间间隔小于或者等于所述第二时间间隔时,采用第三传输参数集合接收来自所述用户设备的上行数据,其中,所述第三传输参数集合包含的传输参数和所述第一传输参数集合包含的传输参数不同,所述第三传输参数集合包含的传输参数和所述第二传输参数集合包含的传输参数不同。
在又一个实现方式中,所述收发单元22,还用于在当前时刻与所述最近一次向所述用户设备发送上行定时信息的时间间隔小于或者等于所述第二时间间隔时,根据第三重复传输次数接收来自所述用户设备的上行数据,其中,所述第三重复传输次数小于所述第一重复传输次数。
在又一个实现方式中,收发单元22,用于在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔小于或者等于第一时间间隔时,根据第一帧格式接收来自所述用户设备的所述上行数据,其中,所述第一帧格式不包括前导;
所述收发单元22,还用于在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔时,根据第二帧格式接收来自所述用户设备的所述上行数据,其中,所述第二帧格式包括前导。
在又一个实现方式中,所述收发单元22,用于在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔小于或者等于第一时间间隔时,根据第一传输块大小接收来自所述用户设备的所述上行数据;
所述收发单元22,还用于在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔大于所述第一时间间隔时,根据第二传输块大小接收来自所述用户设备的所述上行数据,其中,所述第二传输块大小小于所述第一传输块大小。
有关上述处理单元21和收发单元22更详细的描述可以直接参考上述图2~图9中所示的方法实施例中网络设备的相关描述直接得到,这里不加赘述。
本申请实施例中还提供一种通信装置,该通信装置用于执行上述通信方法。上述通信方法中的部分或全部可以通过硬件来实现也可以通过软件来实现。
可选的,通信装置在具体实现时可以是芯片或者集成电路。
可选的,当上述实施例的通信方法中的部分或全部通过软件来实现时,通信装置包括:存储器,用于存储程序;处理器,用于执行存储器存储的程序,当程序被执行时,使得通信装置可以实现上述实施例提供的通信方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
可选的,当上述实施例的通信方法中的部分或全部通过软件实现时,通信装置也可以只包括处理器。用于存储程序的存储器位于通信装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
图13示出了一种简化的用户设备的结构示意图。便于理解和图示方便,图13中,用户设备以手机作为例子。如图13所示,用户设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对用户设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的用户设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到用户设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。 为便于说明,图13中仅示出了一个存储器和处理器。在实际的用户设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为用户设备的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为用户设备的处理单元。如图13所示,用户设备包括收发单元71和处理单元72。收发单元71也可以称为接收/发送(发射)器、接收/发送机、接收/发送电路等。处理单元72也可以称为处理器,处理单板,处理模块、处理装置等。
例如,在一个实施例中,收发单元71用于执行图2所示实施例中的步骤S101、S102中的用户设备的功能。
又如,在另一个实施例中,收发单元71用于执行图3所示实施例中的步骤S201、S202中的用户设备的功能。
又如,在又一个实施例中,收发单元71用于执行图5所示实施例中的步骤S301、S302中的用户设备的功能。
又如,在又一个实施例中,收发单元71用于执行图7所示实施例中的步骤S401、S402中的用户设备的功能。
又如,在又一个实施例中,收发单元71用于执行图9所示实施例中的步骤S501、S502、S503中的用户设备的功能。
图14示出了一种简化的网络设备的结构示意图。网络设备包括射频信号收发及转换部分以及82部分,该射频信号收发及转换部分又包括收发单元81部分。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;82部分主要用于基带处理,对网络设备进行控制等。收发单元81也可以称为接收/发送(发射)器、接收/发送机、接收/发送电路等。82部分通常是网络设备的控制中心,通常可以称为处理单元,用于控制网络设备执行上述图2~图9中关于网络设备所执行的步骤。具体可参见上述相关部分的描述。
82部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络设备的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一个实施例中,收发单元81用于执行图2所示实施例中的步骤S101、S102中的网络设备的功能。
又如,在另一个实施例中,收发单元81用于执行图3所示实施例中的步骤S201、S202中的网络设备的功能。
又如,在又一个实施例中,收发单元81用于执行图5所示实施例中的步骤S301、S302中的网络设备的功能。
又如,在又一个实施例中,收发单元81用于执行图7所示实施例中的步骤S401、S402 中的网络设备的功能。
又如,在又一个实施例中,收发单元81用于执行图9所示实施例中的步骤S501、S502、S503中的网络设备的功能。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现上述各方面所述的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请实施例还提供了一种通信系统,包括上述的通信装置。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。所显示或讨论的相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者通过该计算机可读存储介质进行传输。该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是只读存储器(read-only memory,ROM),或随机存储存储器(random access memory,RAM),或磁性介质,例如,软盘、硬盘、磁带、磁碟、或光介质,例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质,例如,固态硬盘(solid state disk,SSD)等。

Claims (28)

  1. 一种通信方法,其特征在于,包括:
    在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,采用第一传输参数集合进行上行数据传输;
    在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,采用第二传输参数集合进行上行数据传输;
    其中,所述第一传输参数集合和所述第二传输参数集合包含的传输参数不同。
  2. 如权利要求1所述的方法,其特征在于,所述采用第一传输参数集合进行上行数据传输包括:采用第一重复传输次数进行上行数据传输;
    所述采用第二传输参数集合进行上行数据传输包括:采用第二重复传输次数进行上行数据传输,其中,所述第一重复传输次数小于所述第二重复传输次数。
  3. 如权利要求1或2所述的方法,其特征在于,在当前时刻与所述最近一次收到上行定时信息的时间间隔大于第二时间间隔且小于或等于所述第一时间间隔时,采用所述第一传输参数集合进行上行数据传输,所述第二时间间隔小于所述第一时间间隔;
    所述方法进一步包括:
    在当前时刻与所述最近一次收到上行定时信息的时间间隔小于或等于所述第二时间间隔时,采用第三传输参数集合进行上行数据传输,其中,所述第三传输参数集合包含的传输参数和所述第一传输参数集合包含的传输参数不同,所述第三传输参数集合包含的传输参数和所述第二传输参数集合包含的传输参数不同。
  4. 如权利要求3所述的方法,其特征在于,所述采用第三传输参数集合进行上行数据传输包括:
    根据第三重复传输次数进行上行数据传输,其中,所述第三重复传输次数小于所述第一重复传输次数。
  5. 如权利要求1至4任一项所述的方法,其特征在于,所述采用第一传输参数集合进行上行数据传输包括:根据第一帧格式进行上行数据传输,其中,所述第一帧格式不包括前导;
    所述采用第二传输参数集合进行上行数据传输包括:根据第二帧格式进行上行数据传输,其中,所述第二帧格式包括前导。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述采用第一传输参数集合进行上行数据传输包括:根据第一传输块大小进行上行数据传输;
    所述采用第二传输参数集合进行上行数据传输包括:根据第二传输块大小进行上行数据传输,其中,所述第二传输块大小小于所述第一传输块大小。
  7. 一种通信方法,其特征在于,包括:
    在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔小于或者等于第一时间间隔时,采用第一传输参数集合接收来自所述用户设备的上行数据;
    在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔大于所述第一时间间 隔时,采用第二传输参数集合接收来自所述用户设备的上行数据;
    其中,所述第一传输参数集合和所述第二传输参数集合包含的传输参数不同。
  8. 如权利要求7所述的方法,其特征在于,所述采用第一传输参数集合接收来自所述用户设备的上行数据包括:根据第一重复传输次数接收来自所述用户设备的所述上行数据;
    所述采用第二传输参数集合接收来自所述用户设备的上行数据包括:根据第二重复传输次数接收来自所述用户设备的所述上行数据,其中,所述第一重复传输次数小于所述第二重复传输次数。
  9. 如权利要求7或8所述的方法,其特征在于,在当前时刻与所述最近一次向所述用户设备发送上行定时信息的时间间隔大于第二时间间隔且小于或等于所述第一时间间隔时,采用所述第一传输参数集合接收来自所述用户设备的上行数据,所述第二时间间隔小于所述第一时间间隔;
    所述方法进一步包括:
    在当前时刻与所述最近一次向所述用户设备发送上行定时信息的时间间隔小于或者等于所述第二时间间隔时,采用第三传输参数集合接收来自所述用户设备的上行数据,其中,所述第三传输参数集合包含的传输参数和所述第一传输参数集合包含的传输参数不同,所述第三传输参数集合包含的传输参数和所述第二传输参数集合包含的传输参数不同。
  10. 如权利要求9所述的方法,其特征在于,所述采用第三传输参数集合接收来自所述用户设备的上行数据包括:根据第三重复传输次数接收来自所述用户设备的上行数据,其中,所述第三重复传输次数小于所述第一重复传输次数。
  11. 如权利要求7至10任一项所述的方法,其特征在于,所述采用第一传输参数集合接收来自所述用户设备的上行数据包括:根据第一帧格式接收来自所述用户设备的所述上行数据,其中,所述第一帧格式不包括前导;
    所述采用第二传输参数集合接收来自所述用户设备的上行数据包括:根据第二帧格式接收来自所述用户设备的所述上行数据,其中,所述第二帧格式包括前导。
  12. 如权利要求7至11任一项所述的方法,其特征在于,所述采用第一传输参数集合接收来自所述用户设备的上行数据包括:根据第一传输块大小接收来自所述用户设备的所述上行数据;
    所述采用第二传输参数集合接收来自所述用户设备的上行数据包括:根据第二传输块大小接收来自所述用户设备的所述上行数据,其中,所述第二传输块大小小于所述第一传输块大小。
  13. 一种通信装置,其特征在于,包括:
    收发单元,用于在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,采用第一传输参数集合进行上行数据传输;
    所述收发单元,还用于在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,采用第二传输参数集合进行上行数据传输;
    其中,所述第一传输参数集合和所述第二传输参数集合包含的传输参数不同。
  14. 如权利要求13所述的通信装置,其特征在于,所述收发单元,用于在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,采用第一重复传输 次数进行上行数据传输;
    所述收发单元,还用于在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,采用第二重复传输次数进行上行数据传输,其中,所述第一重复传输次数小于所述第二重复传输次数。
  15. 如权利要求13或14所述的通信装置,其特征在于,所述收发单元,用于在当前时刻与所述最近一次收到上行定时信息的时间间隔大于第二时间间隔且小于或等于所述第一时间间隔时,采用所述第一传输参数集合进行上行数据传输,所述第二时间间隔小于所述第一时间间隔;
    所述收发单元,还用于在当前时刻与所述最近一次收到上行定时信息的时间间隔小于或等于所述第二时间间隔时,采用第三传输参数集合进行上行数据传输,其中,所述第三传输参数集合包含的传输参数和所述第一传输参数集合包含的传输参数不同,所述第三传输参数集合包含的传输参数和所述第二传输参数集合包含的传输参数不同。
  16. 如权利要求15所述的通信装置,其特征在于,所述收发单元,用于在当前时刻与所述最近一次收到上行定时信息的时间间隔小于或等于所述第二时间间隔时,根据第三重复传输次数进行上行数据传输,其中,所述第三重复传输次数小于所述第一重复传输次数。
  17. 如权利要求13至16任一项所述的通信装置,其特征在于,所述收发单元,用于在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,根据第一帧格式进行上行数据传输,其中,所述第一帧格式不包括前导;
    所述收发单元,用于在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,根据第二帧格式进行上行数据传输,其中,所述第二帧格式包括前导。
  18. 如权利要求13至17任一项所述的通信装置,其特征在于,所述收发单元,用于在当前时刻与最近一次收到上行定时信息的时间间隔小于或者等于第一时间间隔时,根据第一传输块大小进行上行数据传输;
    所述收发单元,用于在当前时刻与所述最近一次收到上行定时信息的时间间隔大于所述第一时间间隔时,根据第二传输块大小进行上行数据传输,其中,所述第二传输块大小小于所述第一传输块大小。
  19. 一种通信装置,其特征在于,包括:
    收发单元,用于在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔小于或者等于第一时间间隔时,采用第一传输参数集合接收来自所述用户设备的上行数据;
    所述收发单元,还用于在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔大于所述第一时间间隔时,采用第二传输参数集合接收来自所述用户设备的上行数据;
    其中,所述第一传输参数集合和所述第二传输参数集合包含的传输参数不同。
  20. 如权利要求19所述的通信装置,其特征在于,收发单元,用于在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔小于或者等于第一时间间隔时,根据第一重复传输次数接收来自所述用户设备的所述上行数据;
    所述收发单元,还用于在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔大于所述第一时间间隔时,根据第二重复传输次数接收来自所述用户设备的所述上行数据,其中,所述第一重复传输次数小于所述第二重复传输次数。
  21. 如权利要求19或20所述的通信装置,其特征在于,所述收发单元,用于在当前时刻与所述最近一次向所述用户设备发送上行定时信息的时间间隔大于第二时间间隔且小于所述第一时间间隔时,采用所述第一传输参数集合接收来自所述用户设备的上行数据,所述第二时间间隔小于所述第一时间间隔;
    所述收发单元,还用于在当前时刻与所述最近一次向所述用户设备发送上行定时信息的时间间隔小于或者等于所述第二时间间隔时,采用第三传输参数集合接收来自所述用户设备的上行数据,其中,所述第三传输参数集合包含的传输参数和所述第一传输参数集合包含的传输参数不同,所述第三传输参数集合包含的传输参数和所述第二传输参数集合包含的传输参数不同。
  22. 如权利要求21所述的通信装置,其特征在于,所述收发单元,还用于在当前时刻与所述最近一次向所述用户设备发送上行定时信息的时间间隔小于或者等于所述第二时间间隔时,根据第三重复传输次数接收来自所述用户设备的上行数据,其中,所述第三重复传输次数小于所述第一重复传输次数。
  23. 如权利要求19至22任一项所述的通信装置,其特征在于,收发单元,用于在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔小于或者等于第一时间间隔时,根据第一帧格式接收来自所述用户设备的所述上行数据,其中,所述第一帧格式不包括前导;
    所述收发单元,还用于在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔大于所述第一时间间隔时,根据第二帧格式接收来自所述用户设备的所述上行数据,其中,所述第二帧格式包括前导。
  24. 如权利要求19至23任一项所述的通信装置,其特征在于,所述收发单元,用于在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔小于或者等于第一时间间隔时,根据第一传输块大小接收来自所述用户设备的所述上行数据;
    所述收发单元,还用于在当前时刻与最近一次向用户设备发送上行定时信息的时间间隔大于所述第一时间间隔时,根据第二传输块大小接收来自所述用户设备的所述上行数据,其中,所述第二传输块大小小于所述第一传输块大小。
  25. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1至12中任一项所述的方法。
  26. 一种计算机程序产品,用于当在计算设备上执行时,执行根据权利要求1至12中任一项所述的方法。
  27. 一种芯片系统,该芯片系统包括处理器,用于支持用户设备实现权利要求1-6中任一项所述的方法。
  28. 一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现权利要求7-12任一项所述的方法。
PCT/CN2019/099804 2018-08-09 2019-08-08 通信方法及装置 WO2020030048A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19846366.3A EP3826214B1 (en) 2018-08-09 2019-08-08 Communication method and apparatus
US17/169,669 US20210168791A1 (en) 2018-08-09 2021-02-08 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810904923.8 2018-08-09
CN201810904923.8A CN110830201B (zh) 2018-08-09 2018-08-09 通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/169,669 Continuation US20210168791A1 (en) 2018-08-09 2021-02-08 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020030048A1 true WO2020030048A1 (zh) 2020-02-13

Family

ID=69413983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099804 WO2020030048A1 (zh) 2018-08-09 2019-08-08 通信方法及装置

Country Status (4)

Country Link
US (1) US20210168791A1 (zh)
EP (1) EP3826214B1 (zh)
CN (2) CN110830201B (zh)
WO (1) WO2020030048A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676993B (zh) * 2020-05-14 2022-11-04 大唐移动通信设备有限公司 随机接入信号的接收方法、装置、接收端和存储介质
CN112414557B (zh) * 2021-01-21 2021-04-23 南京微鲤科技有限公司 智能手机的温度检测系统及其方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014028690A1 (en) * 2012-08-17 2014-02-20 Qualcomm Incorporated Methods and apparatus for timing synchronization during a wireless uplink random access procedure
CN107105496A (zh) * 2016-02-19 2017-08-29 电信科学技术研究院 一种获取、返回上行定时提前量的方法及装置、系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141471A (zh) * 2006-09-05 2008-03-12 华为技术有限公司 上行资源的分配方法、上行数据的接收端及发送端装置
CN101197612B (zh) * 2006-12-07 2011-06-15 大唐移动通信设备有限公司 计算激活时间的方法及装置
CN102111257B (zh) * 2011-03-04 2015-04-01 中兴通讯股份有限公司 一种时间提前量的调整方法及系统
US9357536B2 (en) * 2012-05-10 2016-05-31 Lg Electronics Inc. Method and apparatus of controlling cell deactivation in a wireless communication system
CN103931246B (zh) * 2012-10-30 2018-10-02 华为技术有限公司 数据传输方法、装置、终端及基站
EP2763321B1 (en) * 2013-02-05 2020-04-08 Semtech Corporation Low power long range transmitter
JP6443890B2 (ja) * 2014-01-31 2018-12-26 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 端末、基地局、送信方法及び受信方法
US10541802B2 (en) * 2016-03-31 2020-01-21 Telefonaktiebolaget Lm Ericsson (Publ) Application of timing advance command in wireless communication device in enhanced coverage mode
WO2018077383A1 (en) * 2016-10-25 2018-05-03 Telefonaktiebolaget Lm Ericsson (Publ) Indication of hybrid automatic repeat request feedback by synchronization signal
CN108282896B (zh) * 2017-01-06 2019-08-30 电信科学技术研究院 一种上行数据重传方法及终端
CN112205046B (zh) * 2018-04-06 2024-04-26 上海诺基亚贝尔股份有限公司 用于非正交多址资源利用可缩放性的方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014028690A1 (en) * 2012-08-17 2014-02-20 Qualcomm Incorporated Methods and apparatus for timing synchronization during a wireless uplink random access procedure
CN107105496A (zh) * 2016-02-19 2017-08-29 电信科学技术研究院 一种获取、返回上行定时提前量的方法及装置、系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on D-PUR configuration", 3GPP TSG-RAN WG2 MEETING #105BIS R2-1903413, 12 April 2019 (2019-04-12), XP051692681 *
PANASONIC: "Summary ofTA related aspects", 3GPP TSG-RAN WG1 #93 RL-1807700, 25 May 2018 (2018-05-25), XP051442725 *
See also references of EP3826214A4

Also Published As

Publication number Publication date
EP3826214B1 (en) 2024-04-03
US20210168791A1 (en) 2021-06-03
EP3826214A1 (en) 2021-05-26
CN114024656A (zh) 2022-02-08
CN110830201B (zh) 2021-07-09
CN110830201A (zh) 2020-02-21
EP3826214A4 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
JP7313347B2 (ja) 通信方法および装置
EP3664546A1 (en) Communication method, and communication device
EP3681082A1 (en) Signal configuration method and related device
US11343030B2 (en) Method for repeated transmission, and terminal device
RU2726641C1 (ru) Сигнализация о местоположении опорных сигналов в слотах и минислотах
EP3661257A1 (en) Terminal device, base station device, and communication method
CN111164915B (zh) 使用多个基图的tbs确定
JP7128297B2 (ja) 通信方法および通信装置
EP3836695A1 (en) Communication method and apparatus, and computer storage medium
US10681623B2 (en) Methods and apparatus for cell access via anchor carrier
CN113228544A (zh) 用于预配置的上行链路资源的重传方案和优化
EP3553989B1 (en) Data transmission method and apparatus
CN110166179B (zh) 指示方法,网络设备及用户设备
CN115349243B (zh) 用于nr用户设备的动态处理时间和动态盲解码能力
WO2019029623A1 (zh) 通信方法、接入网设备和终端
WO2020063831A1 (zh) 通信方法及装置
JP2023537371A (ja) 複数のtrpに対するスロット内繰り返しを用いたpucchを拡張するシステムおよび方法
US20210168791A1 (en) Communication method and communications apparatus
WO2019049279A1 (ja) ユーザ端末及び無線通信方法
WO2019192589A1 (zh) 通信方法、通信装置以及计算机可读存储介质
WO2020200187A1 (zh) 通信方法及装置
WO2023185433A1 (zh) 通信方法和通信装置
WO2020029802A1 (zh) 一种无线通信方法、装置及计算机可读存储介质
EP4287736A1 (en) Transmission method and communication apparatus
WO2017054173A1 (zh) 数据传输方法、基站及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019846366

Country of ref document: EP

Effective date: 20210218