WO2020192344A1 - 一种边链路发射功率计算方法及通信装置 - Google Patents

一种边链路发射功率计算方法及通信装置 Download PDF

Info

Publication number
WO2020192344A1
WO2020192344A1 PCT/CN2020/076805 CN2020076805W WO2020192344A1 WO 2020192344 A1 WO2020192344 A1 WO 2020192344A1 CN 2020076805 W CN2020076805 W CN 2020076805W WO 2020192344 A1 WO2020192344 A1 WO 2020192344A1
Authority
WO
WIPO (PCT)
Prior art keywords
path loss
transmission power
side link
terminal device
information
Prior art date
Application number
PCT/CN2020/076805
Other languages
English (en)
French (fr)
Inventor
张向东
常俊仁
刘哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020192344A1 publication Critical patent/WO2020192344A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss

Definitions

  • This application relates to the field of communication technology, and in particular to a method for calculating the transmission power of a side link and a communication device.
  • the vehicle network (V2X) terminal of the new radio (NR) can work in the coverage (in-coverage, IC) or out-coverage (out-coverage).
  • the terminal equipment working in the coverage area has different sidelink resource allocation methods. It can be mode 1 (mode1): resources dynamically allocated by the network side device, or mode 2 (mode2): Perceives the available resources based on the resource pool configured or pre-configured by the network side device.
  • mode1 resources dynamically allocated by the network side device
  • mode 2 (mode2) Perceives the available resources based on the resource pool configured or pre-configured by the network side device.
  • sidelink refers to a direct to direct (D2D) or direct link between two devices in a V2X scenario.
  • In-coverage or out-of-coverage refers to within or outside the coverage of the mobile communication network. Of course, it can also be within or outside the coverage of other networks, such as a wireless local area network, and the present invention does not limit it.
  • the sidelink communication diagram between UE1 and UE2 is shown in Figure 1.
  • This communication supports open-loop power control (power control not based on feedback), and open-loop power control can be based on the terminal device to the network
  • the path loss of the side device may also be based on the path loss from the terminal device to the communication peer device.
  • the transmitting terminal is user equipment (UE) 1
  • the receiving terminal is UE2
  • the path loss used can be used by UE1 to the network
  • the path loss pathloss1 of the side device may also use the path loss pathloss2 from UE1 to the communication peer device (ie, UE2).
  • the so-called path loss used can mean that compensation for the path loss needs to be considered when calculating the transmit power.
  • the terminal device calculates the transmission power, whether it uses the path loss from the terminal device to the network side device or the path loss from the terminal device to the communication peer device? How to determine the terminal device is a problem that needs to be solved.
  • LTE Long term evolution
  • V2X only has broadcast, and there is no specific communication object. Therefore, there is no concept of the so-called path loss from terminal equipment to communication peer equipment.
  • the transmission power calculation is based on the terminal equipment to the network side. The path loss of the equipment is determined.
  • the present application provides a method for calculating the transmission power of a side link and a communication device to accurately and flexibly determine the parameters used for calculating the transmission power of the side link.
  • a method for calculating side link transmission power including: acquiring first indication information, where the first indication information is used to indicate a parameter used to calculate the side link transmission power; and according to the first indication The information obtains the parameters used to calculate the transmission power of the side link; and calculates the transmission power of the side link according to the obtained parameters used to calculate the transmission power of the side link.
  • the parameters used to calculate the transmission power of the side link can be accurately and flexibly determined, which improves the communication quality.
  • the parameters used to calculate the side link transmit power include one or more of the following information: a first path loss, where the first path loss is the path loss between the terminal device and the network side device ;
  • the second path loss, the second path loss is the path loss between the terminal device and the communication peer device;
  • the maximum transmission power, the maximum transmission power is the maximum transmission power that the terminal device can support.
  • the first indication information may directly indicate the parameters used to calculate the side link transmit power, for example, directly indicate the use of the first path loss, or directly indicate the second path loss, or directly indicate the use of the maximum transmit power.
  • the terminal device may choose to calculate the transmission power of the side link based on the first path loss or the second path loss according to the instruction information, or may directly use the maximum transmission power to transmit.
  • the terminal device transitions from the first state to the second state, the first state uses a first parameter, and the second state uses a second parameter, and the first indication information is time T;
  • Obtaining the parameters used for calculating the transmission power of the side link by an indication information includes: continuing to use the first parameter within the range of time T after the terminal device transitions from the first state to the second state; wherein, The first state includes one or more of the following: coverage state, transmission type, and link type.
  • the terminal device transitioning from the first state to the second state means that the coverage state has changed.
  • the first state is in the coverage area
  • the second state is out of the coverage area
  • the first state is changed to the second state.
  • the state means that the terminal device has moved out of the coverage area from the coverage area, or the first state is out of the coverage area, the second state is in the coverage area, and the first state is changed to the second state.
  • the terminal device changes from the first state to the second state, which means that the transmission type has changed.
  • the first state means that the terminal device is performing unicast communication
  • the second state For the terminal device to perform broadcast communication, the transition from the first state to the second state means that the terminal device changes from unicast communication to broadcast communication, or the first state means that the terminal device is performing broadcast communication, and the second state is The terminal device is performing unicast communication, and the transition from the first state to the second state means that the terminal device changes from performing broadcast communication to performing unicast communication.
  • the change of the transmission type here may also include the change from unicast to multicast, or from multicast to unicast, or from multicast to broadcast, or from broadcast to multicast; for another example,
  • the transition of the terminal device from the first state to the second state means that the link type has changed.
  • the first state is that the terminal device is performing UL communication (mobile communication network uplink communication)
  • the second state is that the terminal device is in For SL communication (sidelink communication)
  • the transition from the first state to the second state means that the terminal device changes from UL communication to SL communication
  • the first state is that the terminal device is performing SL broadcast communication
  • the second state is The terminal device is performing UL communication
  • the transition from the first state to the second state means that the terminal device changes from performing SL communication to performing UL communication.
  • the link type change here may also include the change from LTE V2X SL to NR V2X SL, or the change from NR V2X SL to LTE V2X SL.
  • first parameter used in the first state and the second parameter used in the second state may be the same or different, and the present invention is not limited and does not affect the implementation of the solution of the present invention.
  • the radio frequency adjustment requires a certain amount of time.
  • the parameters used in the data transmission of the terminal equipment such as MCS, are also difficult to determine. For example, the terminal equipment will choose a conservative MCS to ensure the communication quality, which will also have a certain impact on the communication rate. .
  • a time T is defined to delay the change of the transmission power calculation method, so as to avoid frequent changes in the transmission power when the state of the terminal device changes, thereby reducing the frequency of frequent changes in the power of the terminal device. And the influence of baseband.
  • the first indication information is network-configured or pre-configured.
  • the first indication information includes characteristic information, and the characteristic information has a corresponding relationship with the parameters used to calculate the transmit power of the side link, and the characteristic information includes one or more of the following information : Path loss threshold, path loss selection priority, service type, bearer type, session type, logical channel information; said obtaining the parameters used to calculate the transmission power of the side link according to the first indication information includes : Acquire the parameter used for calculating the side link transmission power according to the correspondence between the characteristic information and the parameter used for calculating the side link transmission power.
  • the first indication information may also include the correspondence between the characteristic information and the parameters used for calculating the side link transmission power.
  • the corresponding relationship between the above information and the parameter can be preset, or the above information and/or the corresponding relationship between the above information and the parameter can be received from the network side device, and the parameter can be determined according to the above information and the corresponding relationship between the above information and the parameter. Therefore, the transmit power of the side link can be calculated accurately and flexibly based on this parameter.
  • the first indication information may directly indicate characteristic information and parameters used for calculating the transmission power of the side link. For example, directly instruct service type 1 to use the first path loss, or directly instruct service type 2 to use the second path loss, or directly instruct service type 3 to use the maximum transmission power; for example, directly instruct logical channel 1 to use the first path loss, Either logical channel 2 uses the second path loss, or logical channel 3 uses the maximum transmit power.
  • directly instruct service type 1 to use the first path loss or directly instruct service type 2 to use the second path loss, or directly instruct service type 3 to use the maximum transmission power.
  • a method for calculating the transmission power of a side link which includes: generating first indication information, where the first indication information is used to indicate a parameter used for calculating the transmission power of the side link; The first instruction information.
  • the parameters used for calculating the side link transmit power include one or more of the following information:
  • a first path loss where the first path loss is a path loss between a terminal device and a network side device;
  • a second path loss where the second path loss is a path loss between the terminal device and the communication peer device;
  • Maximum transmission power where the maximum transmission power is the maximum transmission power that the terminal device can support.
  • the first indication information may directly indicate the parameters used to calculate the side link transmit power, for example, directly indicate the use of the first path loss, or directly indicate the second path loss, or directly indicate the use of the maximum transmit power.
  • the first indication information includes: feature information, and the feature information has a corresponding relationship with the parameters used to calculate the side link transmit power, wherein the feature information includes one or more of the following information Types: path loss threshold, path loss selection priority, service type, bearer type, session type, logical channel information.
  • a communication device including: an acquiring unit configured to acquire first indication information, where the first indication information is used to indicate a parameter used to calculate a side link transmit power; and the acquiring unit further For obtaining the parameters used for calculating the transmission power of the side link according to the first indication information; and a calculation unit for calculating the parameters used for calculating the transmission power of the side link according to the obtained parameters Transmit power.
  • the parameters used to calculate the side link transmit power include one or more of the following information: a first path loss, where the first path loss is the path loss between the terminal device and the network side device ;
  • the second path loss, the second path loss is the path loss between the terminal device and the communication peer device;
  • the maximum transmission power, the maximum transmission power is the maximum transmission power that the terminal device can support.
  • the terminal device transitions from the first state to the second state, the first state uses a first parameter, and the second state uses a second parameter, and the first indication information is time T; the acquiring unit , Used to continue to use the first parameter within the range of time T after the terminal device transitions from the first state to the second state; wherein, the first state includes one or more of the following: changes in coverage state, sending Type change, link type change.
  • the first indication information is network-configured or pre-configured.
  • the first indication information includes characteristic information, and the characteristic information has a corresponding relationship with a parameter used to calculate the transmission power of the side link, wherein the characteristic information includes one of the following information Or multiple: path loss threshold, path loss selection priority, service type, bearer type, session type, logical channel information; the acquisition unit is used for calculating the transmission power of the side link according to the characteristic information and Correspondence of the parameters to obtain the parameters used to calculate the transmit power of the side link.
  • the first indication information may directly indicate characteristic information and parameters used for calculating the transmission power of the side link. For example, directly instruct service type 1 to use the first path loss, or directly instruct service type 2 to use the second path loss, or directly instruct service type 3 to use the maximum transmission power; for example, directly instruct logical channel 1 to use the first path loss, Either logical channel 2 uses the second path loss, or logical channel 3 uses the maximum transmit power.
  • directly instruct service type 1 to use the first path loss or directly instruct service type 2 to use the second path loss, or directly instruct service type 3 to use the maximum transmission power.
  • a communication device including: a processing unit, configured to generate first indication information, where the first indication information is used to indicate a parameter used to calculate a side link transmission power; and a sending unit, configured to The terminal device sends the first indication information.
  • the parameters used to calculate the side link transmit power include one or more of the following information:
  • a first path loss where the first path loss is a path loss between a terminal device and a network side device;
  • a second path loss where the second path loss is a path loss between the terminal device and the communication peer device;
  • Maximum transmission power where the maximum transmission power is the maximum transmission power that the terminal device can support.
  • the first indication information may directly indicate the parameters used to calculate the side link transmit power, for example, directly indicate the use of the first path loss, or directly indicate the second path loss, or directly indicate the use of the maximum transmit power.
  • the first indication information includes: feature information, and the feature information has a corresponding relationship with the parameters used to calculate the side link transmit power, wherein the feature information includes one or more of the following information Types: path loss threshold, path loss selection priority, service type, bearer type, session type, logical channel information.
  • the first indication information may directly indicate characteristic information and parameters used for calculating the transmission power of the side link. For example, directly instruct service type 1 to use the first path loss, or directly instruct service type 2 to use the second path loss, or directly instruct service type 3 to use the maximum transmission power; for example, directly instruct logical channel 1 to use the first path loss, Either logical channel 2 uses the second path loss, or logical channel 3 uses the maximum transmit power.
  • directly instruct service type 1 to use the first path loss or directly instruct service type 2 to use the second path loss, or directly instruct service type 3 to use the maximum transmission power.
  • a communication device including: a processor and a transceiver device, the processor is coupled to the transceiver device, and the processor is configured to execute a computer program or instruction to control the transceiver device to perform information
  • the processor executes the computer program or instruction, the processor is further configured to perform the following steps: obtain first indication information, the first indication information is used to instruct to calculate the side link transmission Parameters used for power; obtaining the parameters used for calculating the transmission power of the side link according to the first indication information; and calculating the transmission of the side link according to the parameters obtained for calculating the transmission power of the side link power.
  • the parameters used to calculate the side link transmit power include one or more of the following information: a first path loss, where the first path loss is the path loss between the terminal device and the network side device ;
  • the second path loss, the second path loss is the path loss between the terminal device and the communication peer device;
  • the maximum transmission power, the maximum transmission power is the maximum transmission power that the terminal device can support.
  • the first indication information may directly indicate the parameters used to calculate the side link transmit power, for example, directly indicate the use of the first path loss, or directly indicate the second path loss, or directly indicate the use of the maximum transmit power.
  • the terminal device transitions from a first state to a second state, the first state uses a first parameter, and the second state uses a second parameter, and the first indication information is time T;
  • the processor Performing the step of obtaining the parameters used for calculating the transmission power of the side link according to the first indication information includes: continuing to use the first state within the range of time T after the terminal device transitions from the first state to the second state A parameter; wherein, the first state includes one or more of the following: coverage state, transmission type, link type.
  • first parameter used in the first state and the second parameter used in the second state may be the same or different, and the present invention is not limited and does not affect the implementation of the solution of the present invention.
  • the first indication information is network-configured or pre-configured.
  • the first indication information includes characteristic information, and the characteristic information has a corresponding relationship with the parameters used to calculate the transmission power of the side link, wherein the characteristic information includes one or more of the following information: Types: path loss threshold, path loss selection priority, service type, bearer type, session type, logical channel information; the processor executes the calculation of the side link transmit power used for obtaining according to the first instruction information
  • the step of parameter includes: acquiring the parameter used for calculating the side link transmission power according to the correspondence between the characteristic information and the parameter used for calculating the side link transmission power.
  • the first indication information may also include the correspondence between the characteristic information and the parameters used for calculating the side link transmission power.
  • a communication device including: a processor and a transceiving device, the processor is coupled to the transceiving device, and the processor is configured to execute a computer program or instruction to control the transceiving device to perform information
  • the processor executes the computer program or instruction, the processor is also configured to perform the following steps: generate first indication information, the first indication information is used to instruct the calculation of the side link transmission The parameter used by the power sends the first indication information to the terminal device.
  • the parameters used to calculate the side link transmit power include one or more of the following information:
  • a first path loss where the first path loss is a path loss between a terminal device and a network side device;
  • a second path loss where the second path loss is a path loss between the terminal device and the communication peer device;
  • Maximum transmission power where the maximum transmission power is the maximum transmission power that the terminal device can support.
  • the first indication information includes: feature information, and the feature information has a corresponding relationship with the parameters used to calculate the side link transmit power, wherein the feature information includes one or more of the following information Types: path loss threshold, path loss selection priority, service type, bearer type, session type, logical channel information.
  • the first indication information may also include the correspondence between the characteristic information and the parameters used for calculating the side link transmission power.
  • the first indication information may directly indicate characteristic information and parameters used for calculating the transmission power of the side link. For example, directly instruct service type 1 to use the first path loss, or directly instruct service type 2 to use the second path loss, or directly instruct service type 3 to use the maximum transmission power; for example, directly instruct logical channel 1 to use the first path loss, Either logical channel 2 uses the second path loss, or logical channel 3 uses the maximum transmit power.
  • directly instruct service type 1 to use the first path loss or directly instruct service type 2 to use the second path loss, or directly instruct service type 3 to use the maximum transmission power.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium, which when run on a computer, cause the computer to execute the foregoing aspects or any one of the methods described above.
  • a computer program product containing instructions which when run on a computer, causes the computer to execute the above-mentioned aspects or any of the methods described above.
  • FIG. 1 is a schematic diagram of the architecture of a communication system involved in this application
  • FIG. 2 is a schematic flowchart of a method for calculating side link transmit power provided by an embodiment of this application;
  • FIG. 3 is a schematic flowchart of another method for calculating side link transmit power provided by an embodiment of the application
  • FIG. 4 is a schematic flowchart of another method for calculating side link transmit power according to an embodiment of the application
  • FIG. 5 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a network side device provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of another terminal device provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of another network-side device provided by an embodiment of this application.
  • the architecture of the communication system involved in this application may be as shown in Figure 1.
  • the communication system may include at least one network side device (only one is shown) and one or more terminal devices connected to the network side device (two V2X terminal devices are illustrated in the figure: UE1 and UE2).
  • UE1 and UE2 can perform mobile network communication with network side devices respectively, and sidelink communication can also be performed between UE1 and UE2.
  • the above-mentioned network side device may be a device that can communicate with a terminal device.
  • the network-side device can be any device with wireless transceiver functions. Including but not limited to: base station (nodeB), evolved base station (eNodeB), base station (gNB) in the fifth generation (5G) communication system, base station or network side equipment in future communication system, and WiFi system
  • the network side device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network side device may also be a small station, a transmission reference point (TRP), etc.
  • TRP transmission reference point
  • the above-mentioned terminal device is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water, such as a ship, etc.; it can also be deployed in the air, such as an airplane , Balloons and satellites.
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial control ( Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety
  • Terminal equipment can sometimes be referred to as user equipment (UE), access terminal equipment, UE unit, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, terminal, wireless communication equipment, UE Agent or UE device, etc.
  • the solution of this application can be applied to the evolved UMTS terrestrial radio access network (E-UTRAN) and the new generation-radio access network (NG-RAN) system, and the following The first generation of mobile communication system, this application does not limit this.
  • E-UTRAN evolved UMTS terrestrial radio access network
  • NG-RAN new generation-radio access network
  • system and “network” in the embodiments of this application can be used interchangeably.
  • Multiple refers to two or more. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application.
  • And/or describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • FIG. 2 is a schematic flowchart of a method for calculating the transmit power of a side link according to an embodiment of this application, in which:
  • S201 The network side device generates first indication information.
  • the first indication information is used to indicate the parameters used for calculating the transmission power of the side link.
  • the parameters used to calculate the side link transmit power include one or more of the following information:
  • a first path loss where the first path loss is a path loss between a terminal device and a network side device;
  • a second path loss where the second path loss is a path loss between the terminal device and the communication peer device;
  • Maximum transmission power where the maximum transmission power is the maximum transmission power that the terminal device can support.
  • the terminal device can calculate the transmission power based on the first path loss or the second path loss (the so-called based on the path loss or using the path loss, you may need to consider the path loss compensation when calculating the transmission power), or directly
  • the maximum transmission power is used as the transmission power to send data, and the calculation method is flexible.
  • the parameters used are not appropriate, the calculated transmission power will be too large or too small. If the transmission power is too large, it will cause interference to the network side device or the communication peer device; if the transmission power is too small , The communication quality cannot be guaranteed. Therefore, appropriate parameters need to be selected.
  • S202 The network side device sends first indication information to the terminal device.
  • the terminal device obtains the first indication information.
  • the terminal device needs to explicitly obtain the parameters used to calculate the transmission power of the side link.
  • the terminal device obtains the first indication information.
  • the terminal device can receive the first indication information from the network side device, that is, the network side device can instruct the terminal device to use which parameter to calculate the transmit power.
  • the terminal device can also send auxiliary information to the network side device. , For the network side equipment to refer to to make the above instructions.
  • the terminal device may also determine the first indication information according to its own information.
  • the terminal device obtains the parameter used for calculating the transmission power of the side link according to the first indication information.
  • the above-mentioned first indication information indicates the parameter used to calculate the transmission power of the side link
  • the terminal device can accurately determine the parameter according to the first indication information, that is, it is determined whether the transmission power is calculated based on the first path loss or the second path loss, Or directly use the maximum transmission power as the transmission power to send data.
  • the terminal device calculates the transmission power of the side link according to the obtained parameter used for calculating the transmission power of the side link.
  • the terminal device determines to calculate the transmit power based on the first path loss or the second path loss, it needs to consider compensation for the first path loss or the second path loss when calculating the transmit power; if the determined parameter is the maximum transmit power, The terminal device uses the maximum transmission power as the transmission power to send data.
  • the foregoing terminal device may be a side link transmitting terminal or a receiving terminal, and any terminal that may perform side link data transmission can calculate the transmission power according to the above scheme.
  • the parameters used for calculating the transmission power of the side link can be accurately and flexibly determined according to the instruction information, thereby improving the communication quality.
  • the terminal device needs to determine what path loss to use for transmit power calculation.
  • a relatively simple and intuitive solution is: the terminal device continuously uses a path loss. For example: continuous use of the path loss of the network side device, or continuous use of the path loss of the communication peer device.
  • the problem with this solution is that the power calculation cannot reflect actual needs, which may cause waste or insufficient power, and may cause interference to the uplink reception of the network side device or the reception of the communication peer device.
  • Another simpler solution is: the terminal device judges that it is outside the coverage area, and immediately uses the path loss of the communication peer device for power calculation, and the terminal device judges that it enters the coverage area, and immediately uses the path loss of the network side device as power Calculation.
  • the disadvantage of this solution is that for terminal equipment whose coverage changes temporarily or in a short time, such as terminal equipment at the edge of coverage, or terminal equipment that enters the coverage blind area for a short time, the short-term power will be adjusted in a large range (if you go to the network side) If the path loss of the device is quite different from the path loss to the communication peer device).
  • the power adjustment of the terminal equipment will have a certain impact on the radio frequency and the baseband, because each time the power adjustment, the baseband needs to configure corresponding parameters to the radio frequency; after the parameters provided by the baseband are obtained, the radio frequency adjustment requires a certain amount of time.
  • the parameters used for data transmission by the terminal equipment such as modulation and coding scheme (MCS) are also difficult to determine. For example, the terminal equipment will choose a conservative MCS to ensure communication quality. It will also have a certain impact on the communication rate.
  • MCS modulation and coding scheme
  • FIG. 3 is a schematic flowchart of another side link transmit power calculation method provided by an embodiment of this application, in which:
  • S301 The terminal device reports related capabilities to the network side device.
  • the related capability may be that the terminal device has the ability to switch the transmission power calculation method according to the transition of the state.
  • this capability can define the length of time required for the UE to perform state changes. For example, a UE with a low capability requires a longer time to perform a state change; a UE with a high capability requires a shorter time to perform a state change.
  • This capability may be related to the length of the timer in the subsequent steps. For example, a UE with a low capability has a longer timer T; a UE with a high capability has a shorter timer T.
  • the terminal device reports the capability to the network side device, so that the network side device can send the handover instruction information to the terminal device according to the capability.
  • This step is optional and is represented by a dotted line in the figure.
  • S302 The network side device generates first indication information.
  • the first indication information is used to indicate the parameters used for calculating the transmission power of the side link.
  • the first indication information includes time T.
  • the time T is a period of time after the state of the terminal device changes.
  • the terminal device can be set to use the first parameter in the first state and use the second parameter in the second state.
  • the first parameter and the second parameter may be the same or different.
  • the first indication information is used to indicate that the terminal device continues to use the first parameter within a range of time T after the terminal device transitions from the first state to the second state.
  • the network side device sends first indication information to the terminal device.
  • the first indication information includes time T.
  • the terminal device receives the first indication information.
  • the time T may be configured by the network side device.
  • the network-side device may send the foregoing first indication information through downlink control information (DCI) or radio resource control (radio resource control, RRC) signaling.
  • DCI downlink control information
  • RRC radio resource control
  • the time T can also be pre-configured, that is, it can be pre-programmed to the terminal device when the terminal device leaves the factory; or the network side device is configured to the terminal device when the terminal device establishes initial communication with the network side device .
  • S304 The terminal device judges that its state changes from the first state to the second state.
  • the terminal device judges whether its state has changed.
  • the status includes one or more of the following: coverage status, transmission type, and link type.
  • the coverage status includes within and out of coverage.
  • Transmission types include unicast, multicast and broadcast.
  • Link types include unicast links, multicast links, and broadcast links.
  • the change between broadcast and unicast communication methods Because the broadcast receiver is uncertain, it is inconvenient to determine the transmit power according to the specific receiver. However, the unicast communication target is determined, and the transmit power can be determined according to the actual path loss to the unicast communication target. Therefore, the change from unicast to broadcast, or from broadcast to unicast, may also bring about changes in the calculation of transmit power.
  • the embodiment of the present application defines a timer T for delaying change in the calculation method of the transmission power.
  • the change in the transmission power calculation method means that the formula for calculating the transmission power or the parameters used have changed.
  • the terminal device uses the first parameter to calculate the transmission power, that is, the terminal device continues to make the original path loss when determining the transmission power; outside the scope of the timer, or the timer After the timeout, or the timer expires, the terminal device uses the second parameter to calculate the transmission power, that is, the terminal device changes the used path loss when determining the transmission power.
  • the terminal device uses the path loss to the network side device when calculating the transmission power; when the terminal device changes to outside the coverage area, the timer is started. Before the timer expires, the terminal device The device continues to use the path loss of the network-side device to calculate the transmit power; after the timer expires, the terminal device uses the path loss of the communication peer device to calculate the transmit power.
  • the terminal device uses the path loss to the communication peer device when calculating the transmission power; when the terminal device changes to the coverage area, the timer is started, and before the timer expires , The terminal device continues to use the path loss of the communication peer device to calculate the transmission power; after the timer expires, the terminal device uses the path loss to the network side device to calculate the transmission power.
  • the above coverage area may not be caused by the distance between the terminal device and the network side device being too far, and the network side device may not be able to cover it, or it may be caused by building blockage, such as high building blockage, or in the basement. , Resulting in poor signal quality between the terminal equipment and the network side equipment.
  • the timer can be configured by dedicated signaling, broadcast message configuration, or predefined. Or define a default value, and use the default value without additional configuration.
  • the timing may be related to the capabilities of the terminal device, or related to the service performed by the terminal device (for example, defining a specific timer for a certain bearer).
  • the terminal device calculates the transmit power of the side link according to the determined first parameter.
  • the terminal device can accurately determine the way of calculating the transmit power through the timing of the timer when its state changes, so as to accurately calculate the transmit power of the side link, which is beneficial to save the power consumption of the terminal device;
  • frequent changes in the transmission power caused by the above-mentioned terminal status changes can be avoided, thereby reducing the impact of frequent changes in the transmission power on the radio frequency and baseband of the terminal equipment.
  • the parameters used to calculate the transmission power of the side link can be accurately and flexibly determined according to the instruction information, which improves the communication quality;
  • the transmitted power changes frequently, thereby reducing the impact of frequent power changes on the radio frequency and baseband of the terminal equipment.
  • FIG. 4 is a schematic flowchart of another side link transmit power calculation method provided by an embodiment of this application, in which:
  • S401 The terminal device obtains first indication information.
  • the parameter includes one or more of the following information: a first path loss, where the first path loss is a path loss between a terminal device and a network side device; and a second path loss, the second path loss Is the path loss between the terminal device and the communication peer device; the maximum transmission power, where the maximum transmission power is the maximum transmission power that the terminal device can support.
  • the terminal device obtains the first indication information.
  • the first indication information includes characteristic information
  • the characteristic information has a corresponding relationship with the parameters used to calculate the transmission power of the side link.
  • the characteristic information includes one or more of the following information: path loss threshold, path loss selection priority Level, service type, bearer type, session type, logical channel information.
  • the correspondence between the characteristic information and the parameters used for calculating the transmission power of the side link may also be included in the first indication information.
  • a path loss threshold is defined, and the threshold may be configured by the network side device or pre-configured.
  • the threshold may be a path loss threshold from the terminal device to the communication peer device.
  • the threshold includes a maximum threshold and a minimum threshold, or includes a maximum threshold, or includes a minimum threshold.
  • the corresponding relationship between the threshold and the parameter is: if the path loss from the terminal device to the communication peer device is greater than the maximum threshold, if the path loss of the communication peer device is used to calculate the transmit power, it may cause interference to the network side device. Therefore, the terminal equipment uses the path loss to the network to calculate the transmit power.
  • the threshold may be the path loss from the terminal device to the network side device.
  • the threshold includes a maximum threshold and a minimum threshold, or includes a maximum threshold, or includes a minimum threshold.
  • the corresponding relationship between the threshold and the parameter is: if the path loss from the terminal device to the network side device is greater than the maximum threshold, if the path loss of the network side device is used to calculate the transmission power, it may cause interference to the communication peer device. Therefore, the terminal device uses the path loss of the communication peer device to calculate the transmit power. If the path loss from the terminal device to the network side device is less than the minimum threshold, which may make the calculated transmission power insufficient, the terminal device uses the path loss calculation or the maximum transmission power of the communication peer device.
  • a path loss selection priority is defined, for example, the path loss to the communication peer device is preferentially selected for power calculation, or the path loss to the network side device is preferentially selected for power calculation.
  • the priority can be configured by the network side device or pre-configured. Which priority is indicated by the first indication information, the path loss corresponding to the priority is selected to calculate the transmission power.
  • the priority may be related to services. For example, some services preferentially use the path loss of the peer device, and some services preferentially use the path loss of the network.
  • the priority may be related to the logical channel. For example, some logical channels preferentially use the path loss of the peer device, and some logical channels preferentially use the path loss of the network.
  • the terminal device may determine which path loss is based on which path loss to calculate the transmit power according to the type of sidelink service being performed by the terminal device. For example, if the sidelink service is more important, the terminal device can use the path loss of the communication peer device to ensure the communication quality of the sidelink; otherwise, use the path loss of the network side device to reduce the interference to the network side device receiving uplink data. Or, if the sidelink business is more important, the terminal device uses the larger of the path loss of the communication peer device and the path loss of the network side device to calculate the transmit power.
  • the network side device can be configured or pre-configured with the relationship between the service type and path loss selection. For example, when the path loss to the communication peer device is greater than the path loss to the network side device, which services can use the path loss of the communication peer device for power calculation, and which services need to use the path loss of the network side device for power calculation Calculation.
  • the terminal device when the bearer is established, the terminal device may be instructed to select the path loss calculated by the transmission power of the corresponding data bearer, or indicate when the path loss to the communication peer device is greater than the path loss to the network side device , Whether the bearer is allowed to use the path loss of the network side device for power calculation; or instruct the bearer to use the maximum transmission power, or whether to allow the maximum transmission power.
  • the terminal device obtains the parameters used for calculating the side link transmission power according to the correspondence between the characteristic information and the parameters used for calculating the side link transmission power.
  • the terminal device can determine the parameters used to calculate the transmission power based on the corresponding relationship between one or more of the above path loss threshold, path loss selection priority, service type, bearer type, session type, and logical channel information and parameters.
  • the terminal device calculates the transmission power of the side link according to the obtained parameter used for calculating the transmission power of the side link.
  • the parameters used for calculating the transmission power of the side link can be accurately and flexibly determined according to the instruction information, thereby improving the communication quality.
  • the network side device may instruct the terminal device to perform transmit power calculation information.
  • the information is used to instruct the terminal device to perform transmit power calculation based on path loss or transmit power calculation method.
  • the terminal device may provide auxiliary information to the network side device, such as the terminal device reporting its path loss to the network side device and the path loss to the communication peer device for the network side device reference.
  • the network side device may instruct the terminal device to perform transmission power calculation information through DCI, an extension field of Transmission Power Control (TPC) signaling, or other signaling.
  • TPC Transmission Power Control
  • the information for the transmission power calculation includes one or more of the following: use the maximum transmission power, or use the transmission power calculation based on the path loss to the network side device, or use the transmission power calculation based on the path loss to the communication peer device.
  • information such as bearer, service, logical channel, session, and time can also be indicated in the above-mentioned signaling to indicate which bearer, service, logical channel, session, which time or from which time, the above-mentioned signaling station can be used.
  • the indicated transmit power calculation system can also be indicated in the above-mentioned signaling to indicate which bearer, service, logical channel, session, which time or from which time, the above-mentioned signaling station can be used.
  • an embodiment of the present application further provides a communication device 500, which can be used to implement the foregoing FIG. 2 to FIG. 4 Methods.
  • the communication apparatus 500 may be UE1 or UE2 as shown in FIG. 1, or may be a component (for example, a chip) applied to UE1 or UE2.
  • the communication device 500 includes an acquisition unit 51 and a calculation unit 52; among them:
  • the obtaining unit 51 is configured to obtain first indication information, where the first indication information is used to indicate a parameter used for calculating the transmission power of the side link;
  • the obtaining unit 51 is further configured to obtain the parameters used for calculating the transmission power of the side link according to the first indication information
  • the calculation unit 52 is configured to calculate the transmission power of the side link according to the obtained parameter used for calculating the transmission power of the side link.
  • the parameters used for calculating the side link transmit power include one or more of the following information:
  • a first path loss where the first path loss is a path loss between a terminal device and a network side device;
  • a second path loss where the second path loss is a path loss between the terminal device and the communication peer device;
  • Maximum transmission power where the maximum transmission power is the maximum transmission power that the terminal device can support.
  • the terminal device transitions from the first state to the second state, the first state uses a first parameter, and the second state uses a second parameter, and the first indication information is time T;
  • the acquiring unit 51 is configured to continue to use the first parameter within the time range T after the terminal device transitions from the first state to the second state;
  • the first state includes one or more of the following: coverage state, transmission type, link type.
  • the first indication information is network-configured or pre-configured.
  • the first indication information includes: feature information, the feature information has a corresponding relationship with the parameter used to calculate the side link transmit power, wherein the feature information includes one of the following information or Various: path loss threshold, path loss selection priority, service type, bearer type, session type, logical channel information;
  • the obtaining unit 51 is configured to obtain the parameters used for calculating the side link transmission power according to the correspondence between the characteristic information and the parameters used for calculating the side link transmission power.
  • the parameters used for calculating the transmission power of the side link can be accurately and flexibly determined, thereby improving the communication quality.
  • an embodiment of the present application also provides a communication device 600, which can be used to implement the foregoing FIG. 2 to FIG. 4 Methods.
  • the communication apparatus 600 may be a base station or other network side equipment as shown in FIG. 1.
  • the communication device 600 includes a processing unit 61 and a sending unit 62; among them:
  • the processing unit 61 is configured to generate first indication information, where the first indication information is used to indicate a parameter used for calculating the transmission power of the side link;
  • the sending unit 62 is configured to send the first indication information to the terminal device.
  • processing unit 61 and the sending unit 62 can be obtained directly with reference to the relevant descriptions of the network side devices in the method embodiments shown in FIGS. 2 to 4, and will not be repeated here.
  • the terminal device by sending instruction information, the terminal device can accurately and flexibly determine the parameters used to calculate the transmission power of the side link, thereby improving the communication quality.
  • An embodiment of the present application also provides a communication device, which is configured to execute the above-mentioned side link transmission power calculation method. Part or all of the foregoing method for calculating the side link transmit power may be implemented by hardware or software.
  • the communication device may be a chip or an integrated circuit during specific implementation.
  • the communication device when part or all of the side link transmit power calculation method of the foregoing embodiment is implemented by software, the communication device includes: a memory for storing programs; a processor for executing programs stored in the memory, when When the program is executed, the communication device can implement the side link transmit power calculation method provided in the foregoing embodiment.
  • the foregoing memory may be a physically independent unit, or may be integrated with the processor.
  • the communication device may also only include a processor.
  • the memory for storing the program is located outside the communication device, and the processor is connected to the memory through a circuit/wire for reading and executing the program stored in the memory.
  • the processor may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processor may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL generic array logic
  • the memory may include volatile memory (volatile memory), such as random-access memory (RAM); the memory may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory) , Hard disk drive (HDD) or solid-state drive (SSD); the memory may also include a combination of the foregoing types of memory.
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • flash memory flash memory
  • HDD Hard disk drive
  • SSD solid-state drive
  • the memory may also include a combination of the foregoing types of memory.
  • Figure 7 shows a simplified schematic diagram of a terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 7 only one memory and processor are shown in FIG. 7. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function can be regarded as the receiving unit and the transmitting unit (also collectively referred to as the transceiver unit) of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device .
  • the terminal device includes a receiving unit 71, a processing unit 72, and a sending unit 73.
  • the receiving unit 71 may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit 73 may also be called a transmitter, a transmitter, a transmitter, a transmitting circuit, etc.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the receiving unit 71 is used to perform the function of the terminal device in step S201 in the embodiment shown in FIG. 2, and the processing unit 72 is used to perform steps S202 to S203 in the embodiment shown in FIG. 2.
  • the sending unit 73 is used to perform the function of the terminal device in step S301 in the embodiment shown in FIG. 3; the receiving unit 71 is used to perform the terminal device function in step S302 in the embodiment shown in FIG. And the processing unit 72 is used to execute steps S303 to S305 in the embodiment shown in FIG. 3.
  • the processing unit 72 is configured to execute steps S401 to S403 in the embodiment shown in FIG. 4.
  • FIG 8 shows a simplified schematic diagram of the network side device.
  • the network-side equipment includes a radio frequency signal transceiver and conversion part and a part 82.
  • the radio frequency signal transceiver and conversion part includes a receiving unit 81 part and a sending unit 83 part (also collectively referred to as a transceiver unit).
  • the radio frequency signal transceiver and conversion part is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals; the 82 part is mainly used for baseband processing and control of network side equipment.
  • the receiving unit 81 may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit 83 may also be called a transmitter, a transmitter, a transmitter, a transmitting circuit, etc.
  • the 82 part is usually the control center of the network-side equipment, and can usually be referred to as a processing unit, which is used to control the network-side equipment to execute the steps performed by the network-side equipment in Figure 3, Figure 4, or Figure 5.
  • a processing unit which is used to control the network-side equipment to execute the steps performed by the network-side equipment in Figure 3, Figure 4, or Figure 5.
  • the 82 part can include one or more single boards, and each single board can include one or more processors and one or more memories.
  • the processor is used to read and execute the programs in the memory to realize the baseband processing function and to the network side. Control of equipment. If there are multiple boards, the boards can be interconnected to increase processing capacity. As an optional implementation, multiple boards may share one or more processors, or multiple boards may share one or more memories, or multiple boards may share one or more processing at the same time. Device.
  • the sending unit 83 is configured to perform the function of the network side device in step S201 in the embodiment shown in FIG. 2.
  • the receiving unit 81 is used to perform the function of the network side device in step S301 in the embodiment shown in FIG. 3; and the sending unit 83 is used to perform the network side device in step S302 in the embodiment shown in FIG. The function of the device.
  • the disclosed system, device, and method may be implemented in other ways.
  • the division of the unit is only a logical function division. In actual implementation, there can be other divisions.
  • multiple units or components can be combined or integrated into another system, or some features can be ignored or not. carried out.
  • the displayed or discussed mutual coupling, or direct coupling, or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer instructions can be sent from one website, computer, server, or data center to another via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) A website, computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium can be read-only memory (ROM), random access memory (RAM), or magnetic medium, such as floppy disk, hard disk, magnetic tape, magnetic disk, or optical medium, for example, Digital versatile disc (DVD) or semiconductor media, for example, solid state disk (SSD), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种边链路发射功率计算方法及通信装置。该方法包括:获取第一指示信息,所述第一指示信息用于指示计算边链路发射功率所使用的参数;根据所述第一指示信息获取所述计算边链路发射功率所使用的参数;以及根据获取的所述计算边链路发射功率所使用的参数计算边链路的发射功率。还公开了相应的装置。采用本申请的方案,根据指示信息,可以准确、灵活地确定计算边链路发射功率所使用的参数,提高了通信质量。

Description

一种边链路发射功率计算方法及通信装置
本申请要求于2019年3月25日提交中国国家知识产权局,申请号为201910227495.4、发明名称为“一种边链路发射功率计算方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种边链路发射功率计算方法及通信装置。
背景技术
当前,新空口(new radio,NR)的车联网(vehicle,V2X)终端可以工作在覆盖范围内(in-coverage,IC),也可以工作在覆盖范围外(out-coverage)。工作在覆盖范围内的终端设备,其在边链路(sidelink)的资源分配方式也有所不同,可以是模式1(mode1):网络侧设备动态分配的资源,也可以是模式2(mode2):基于网络侧设备配置的或者预配置的资源池(resource pool)感知可用资源。这里,sidelink是指直连通信(direct to direct,D2D)或V2X场景下两个设备之间的直连链路。覆盖范围内或者覆盖范围外是指移动通信网络的覆盖范围内或者覆盖范围外。当然,也可以是其它网络的覆盖范围内或者覆盖范围外,比如无线局域网网络,本发明不做限制。
V2X终端进行sidelink通信时,如图1所示的UE1与UE2之间的sidelink通信示意图,该通信支持开环功率控制(不基于反馈的功率控制),并且开环功率控制可以基于终端设备到网络侧设备的路损(pathloss),也可以基于终端设备到通信对端设备的路损。如图1中,假设发送终端是用户设备(user equipment,UE)1,接收终端为UE2,那么,UE1在计算向UE2发射的数据的发射功率的时候,所使用的路损可以使用UE1到网络侧设备的路损pathloss1,也可以使用UE1到通信对端设备(即UE2)的路损pathloss2。所谓使用的路损,可以是在计算发射功率的时候需要考虑对该路损进行补偿。
那么,终端设备在计算发射功率的时候,究竟是使用终端设备到网络侧设备的路损还是使用终端设备到通信对端设备的路损,终端设备如何确定,是一个需要解决的问题。
长期演进(long term evolution,LTE)V2X中只有广播,没有特定的通信对象,所以,没有所谓的终端设备到通信对端设备的路损的概念,其发射功率计算都是基于终端设备到网络侧设备的路损来确定的。
发明内容
本申请提供一种边链路发射功率计算方法及通信装置,以准确、灵活地确定计算边链路发射功率所使用的参数。
第一方面,提供了一种边链路发射功率计算方法,包括:获取第一指示信息,所述第一指示信息用于指示计算边链路发射功率所使用的参数;根据所述第一指示信息获取所述计算边链路发射功率所使用的参数;以及根据获取的所述计算边链路发射功率所使用的参数,计算边链路的发射功率。
在该方面中,根据指示信息,可以准确、灵活地确定计算边链路发射功率所使用的参数,提高了通信质量。
在一个实现中,所述计算边链路发射功率所使用的参数包括如下信息中的一个或者多个:第一路损,所述第一路损为终端设备与网络侧设备之间的路损;第二路损,所述第二路损为终端设备与通信对端设备之间的路损;最大发射功率,所述最大发射功率为终端设备能够支持的最大发射功率。
在该实现中,所述第一指示信息可以直接指示计算边链路发射功率所使用的参数,比如直接指示使用第一路损,或者直接指示第二路损,或者直接指示使用最大发射功率。
在该实现中,终端设备可以根据指示信息选择基于第一路损或第二路损计算边链路的发射功率,也可以直接采用最大发射功率发射。
在另一个实现中,所述终端设备从第一状态转变为第二状态,第一状态使用第一参数,第二状态使用第二参数,所述第一指示信息为时间T;所述根据第一指示信息获取所述计算边链路发射功率所使用的参数,包括:在所述终端设备从第一状态转变为第二状态后的时间T范围内,继续使用第一参数;其中,所述第一状态包括以下一个或多个:覆盖状态,发送类型,链路类型。示例的,所述终端设备从第一状态转变为第二状态,是指覆盖状态发生了变化,比如,第一状态为覆盖范围内,第二状态为覆盖范围外,第一状态转变为第二状态是指,终端设备从覆盖范围内移动了覆盖范围外,或者,第一状态为覆盖范围外,第二状态为覆盖范围内,第一状态转变为第二状态是指,终端设备从覆盖范围外移动了覆盖范围内;又示例的,所述终端设备从第一状态转变为第二状态,是指发送类型发生了变化,比如,第一状态为终端设备在进行单播通信,第二状态为终端设备在进行广播通信,第一状态转变为第二状态是指,终端设备从进行单播通信转变成了进行广播通信,或者,第一状态为终端设备在进行广播通信,第二状态为终端设备在进行单播通信,第一状态转变为第二状态是指,终端设备从进行广播通信转变为了进行单播通信。这里发送类型的变化还可以包括,从单播到组播的变化,或者从组播到单播的变化,或者从组播到广播的变化,或者从广播到组播的变化;又示例的,所述终端设备从第一状态转变为第二状态,是指链路类型发生了变化,比如,第一状态为终端设备在进行UL通信(移动通信网络上行通信),第二状态为终端设备在进行SL通信(sidelink通信),第一状态转变为第二状态是指,终端设备从进行UL通信转变成了进行SL通信,或者,第一状态为终端设备在进行SL广播通信,第二状态为终端设备在进行UL通信,第一状态转变为第二状态是指,终端设备从进行SL通信转变为了进行UL通信。这里链路类型变化,还可以包括从LTE V2X SL到NR V2X SL的变化,或者从NR V2X SL到LTE V2X SL的变化等。
在所述终端设备从第一状态转变为第二状态后的时间T范围内,继续使用第一参数,具体是指,比如,第一状态转换为第二状态时,或者第一状态转换为第二状态后,启动定时器T,在定时器T超时之前,继续使用第一状态时计算发送功率使用的第一参数来计算发射功率;在定时器T超时时,或者超时之后,使用第二状态计算发射功率的第二参数来计算发射功率。
需要说明的是,所述第一状态使用的第一参数与所述第二状态使用的第二参数,可以相同也可以不同,本发明不做限定,也不影响本发明方案的实施。
在该实现中,对于临时或者短时终端设备的状态发生变化的情况,如果在状态发生变化时,立即采用新的路损计算边链路的发射功率,而发射功率的调整,会对射频和基带都有一定的影响,因为每次功率调整,基带需要向射频配置相应的参数。在得到系带提供的参数之后,射频的调整需要一定的时间。在射频的调整的时间内,终端设备的数据传输所使用的参数,比如MCS,也是不好确定,比如终端设备会选择比较保守的MCS以保证通信质量,这对于通信速率也会有一定的影响。本实现中,定义一个时间T,用于延时改变发射功率计算方式,从而可以避免当终端设备的状态发生改变时,带来的发射功率频繁变化,从而减轻了功率频繁变动对于终端设备的射频和基带的影响。
在又一个实现中,所述第一指示信息是网络配置的,或者预配置的。
在又一个实现中,所述第一指示信息包括特征信息,所述特征信息与所述计算边链路发射功率所使用的参数具有对应关系,其中特征信息包括如下信息中的一种或者多种:路损阈值,路损选择优先级,业务类型,承载类型,会话类型,逻辑信道信息;所述根据所述第一指示信息获取所述计算边链路发射功率所使用的所述参数,包括:根据所述特征信息和所述计算边链路发射功率所使用的参数的对应关系,获取所述计算边链路发射功率所使用的参数。
在该实现中,所述第一指示信息除包括所述特征信息外,还可以包括所述特征信息与所述计算边链路发射功率所使用的参数的对应关系。
在该实现中,可以预先设置以上信息与参数的对应关系,或者,从网络侧设备接收以上信息和/或以上信息与参数的对应关系,根据以上信息以及以上信息与参数的对应关系确定参数,从而基于该参数准确、灵活地计算边链路的发射功率。
在该实现中,所述第一指示信息可以直接指示特征信息和计算边链路发射功率所使用的参数。比如,直接指示业务类型1使用第一路损,或者直接指示业务类型2使用第二路损,或者直接指示业务类型3使用最大发射功率;又比如,直接指示逻辑信道1使用第一路损,或者逻辑信道2使用第二路损,或者逻辑信道3使用最大发射功率。其它的特征信息表述类似,本发明不在赘述。
第二方面,提供了一种边链路发射功率计算方法,包括:生成第一指示信息,所述第一指示信息用于指示计算边链路发射功率所使用的参数;向终端设备发送所述第一指示信息。
在一个实现中,所述计算边链路发射功率所使用的参数包括如下信息中的一个或者多个:
第一路损,所述第一路损为终端设备与网络侧设备之间的路损;
第二路损,所述第二路损为终端设备与通信对端设备之间的路损;
最大发射功率,所述最大发射功率为终端设备能够支持的最大发射功率。
在该实现中,所述第一指示信息可以直接指示计算边链路发射功率所使用的参数,比如直接指示使用第一路损,或者直接指示第二路损,或者直接指示使用最大发射功率。
在另一个实现中,所述第一指示信息包括:特征信息,所述特征信息与所述计算边链路发射功率所使用的参数具有对应关系,其中特征信息包括如下信息中的一种或者多种:路损阈值,路损选择优先级,业务类型,承载类型,会话类型,逻辑信道信息。
第三方面,提供了一种通信装置,包括:获取单元,用于获取第一指示信息,所述第一指示信息用于指示计算边链路发射功率所使用的参数;所述获取单元,还用于根据所述第一指示信息获取所述计算边链路发射功率所使用的参数;以及计算单元,用于根据获取的所述计算边链路发射功率所使用的参数,计算边链路的发射功率。
在一个实现中,所述计算边链路发射功率所使用的参数包括如下信息中的一个或者多个:第一路损,所述第一路损为终端设备与网络侧设备之间的路损;第二路损,所述第二路损为终端设备与通信对端设备之间的路损;最大发射功率,所述最大发射功率为终端设备能够支持的最大发射功率。
在另一个实现中,所述终端设备从第一状态转变为第二状态,第一状态使用第一参数,第二状态使用第二参数,所述第一指示信息为时间T;所述获取单元,用于在所述终端设备从第一状态转变为第二状态后的时间T范围内,继续使用第一参数;其中,所述第一状态包括以下一个或多个:覆盖状态的变化,发送类型的变化,链路类型的变化。
在又一个实现中,所述第一指示信息是网络配置的,或者预配置的。
在又一个实现中,所述第一指示信息包括特征信息,所述特征信息与所述计算边链路发射功率所使用的参数具有对应关系,其中,所述特征信息包括如下信息中的一种或者多种:路损阈值,路损选择优先级,业务类型,承载类型,会话类型,逻辑信道信息;所述获取单元,用于根据所述特征信息和所述计算边链路发射功率所使用的参数的对应关系,获取计算边链路发射功率所使用的参数。
在该实现中,所述第一指示信息可以直接指示特征信息和计算边链路发射功率所使用的参数。比如,直接指示业务类型1使用第一路损,或者直接指示业务类型2使用第二路损,或者直接指示业务类型3使用最大发射功率;又比如,直接指示逻辑信道1使用第一路损,或者逻辑信道2使用第二路损,或者逻辑信道3使用最大发射功率。其它的特征信息表述类似,本发明不在赘述。
第四方面,提供了一种通信装置,包括:处理单元,用于生成第一指示信息,所述第一指示信息用于指示计算边链路发射功率所使用的参数;发送单元,用于向终端设备发送所述第一指示信息。
在一个实现中,所述计算边链路发射功率所使用的参数包括如下信息中的一个或者多个:
第一路损,所述第一路损为终端设备与网络侧设备之间的路损;
第二路损,所述第二路损为终端设备与通信对端设备之间的路损;
最大发射功率,所述最大发射功率为终端设备能够支持的最大发射功率。
在该实现中,所述第一指示信息可以直接指示计算边链路发射功率所使用的参数,比如直接指示使用第一路损,或者直接指示第二路损,或者直接指示使用最大发射功率。
在另一个实现中,所述第一指示信息包括:特征信息,所述特征信息与所述计算边链路发射功率所使用的参数具有对应关系,其中特征信息包括如下信息中的一种或者多种:路损阈值,路损选择优先级,业务类型,承载类型,会话类型,逻辑信道信息。
在该实现中,所述第一指示信息可以直接指示特征信息和计算边链路发射功率所使用的参数。比如,直接指示业务类型1使用第一路损,或者直接指示业务类型2使用第二路 损,或者直接指示业务类型3使用最大发射功率;又比如,直接指示逻辑信道1使用第一路损,或者逻辑信道2使用第二路损,或者逻辑信道3使用最大发射功率。其它的特征信息表述类似,本发明不在赘述。
第五方面,提供了一种通信装置,包括:包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于执行如下步骤:获取第一指示信息,所述第一指示信息用于指示计算边链路发射功率所使用的参数;根据所述第一指示信息获取所述计算边链路发射功率所使用的参数;以及根据获取的所述计算边链路发射功率所使用的参数,计算边链路的发射功率。
在一个实现中,所述计算边链路发射功率所使用的参数包括如下信息中的一个或者多个:第一路损,所述第一路损为终端设备与网络侧设备之间的路损;第二路损,所述第二路损为终端设备与通信对端设备之间的路损;最大发射功率,所述最大发射功率为终端设备能够支持的最大发射功率。
在该实现中,所述第一指示信息可以直接指示计算边链路发射功率所使用的参数,比如直接指示使用第一路损,或者直接指示第二路损,或者直接指示使用最大发射功率。
在另一个实现中,所述终端设备从第一状态转变为第二状态,第一状态使用第一参数,第二状态使用第二参数,所述第一指示信息为时间T;所述处理器执行所述根据第一指示信息获取所述计算边链路发射功率所使用的参数的步骤,包括:在所述终端设备从第一状态转变为第二状态后的时间T范围内,继续使用第一参数;其中,所述第一状态包括以下一个或多个:覆盖状态,发送类型,链路类型。
需要说明的是,所述第一状态使用的第一参数与所述第二状态使用的第二参数,可以相同也可以不同,本发明不做限定,也不影响本发明方案的实施。
在又一个实现中,所述第一指示信息是网络配置的,或者预配置的。
在又一个实现中,第一指示信息包括特征信息,所述特征信息与所述计算边链路发射功率所使用的参数具有对应关系,其中,所述特征信息包括如下信息中的一种或者多种:路损阈值,路损选择优先级,业务类型,承载类型,会话类型,逻辑信道信息;所述处理器执行所述根据所述第一指示信息获取所述计算边链路发射功率所使用的参数的步骤,包括:根据所述特征信息和所述计算边链路发射功率所使用的参数的对应关系,获取所述计算边链路发射功率所使用的参数。
在该实现中,所述第一指示信息除包括所述特征信息外,还可以包括所述特征信息与所述计算边链路发射功率所使用的参数的对应关系。
第六方面,提供了一种通信装置,包括:包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于执行如下步骤:生成第一指示信息,所述第一指示信息用于指示计算边链路发射功率所使用的参数,向终端设备发送所述第一指示信息。
在一个实现中,所述计算边链路发射功率所使用的参数包括如下信息中的一个或者多个:
第一路损,所述第一路损为终端设备与网络侧设备之间的路损;
第二路损,所述第二路损为终端设备与通信对端设备之间的路损;
最大发射功率,所述最大发射功率为终端设备能够支持的最大发射功率。
在另一个实现中,所述第一指示信息包括:特征信息,所述特征信息与所述计算边链路发射功率所使用的参数具有对应关系,其中特征信息包括如下信息中的一种或者多种:路损阈值,路损选择优先级,业务类型,承载类型,会话类型,逻辑信道信息。
在该实现中,所述第一指示信息除包括所述特征信息外,还可以包括所述特征信息与所述计算边链路发射功率所使用的参数的对应关系。
在该实现中,所述第一指示信息可以直接指示特征信息和计算边链路发射功率所使用的参数。比如,直接指示业务类型1使用第一路损,或者直接指示业务类型2使用第二路损,或者直接指示业务类型3使用最大发射功率;又比如,直接指示逻辑信道1使用第一路损,或者逻辑信道2使用第二路损,或者逻辑信道3使用最大发射功率。其它的特征信息表述类似,本发明不在赘述。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面或任一实现所述的方法。
第八方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面或任一实现所述的方法。
附图说明
下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请涉及的一种通信系统的架构示意图;
图2为本申请实施例提供的一种边链路发射功率计算方法的流程示意图;
图3为本申请实施例提供的另一种边链路发射功率计算方法的流程示意图;
图4为本申请实施例提供的又一种边链路发射功率计算方法的流程示意图;
图5为本申请实施例提供的一种终端设备的结构示意图;
图6为本申请实施例提供的一种网络侧设备的结构示意图;
图7为本申请实施例提供的另一种终端设备的结构示意图;
图8为本申请实施例提供的另一种网络侧设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请涉及的通信系统的架构可以如图1所示。该通信系统可以包括至少一个网络侧设备(仅示出1个)以及与网络侧设备连接的一个或多个终端设备(图中示例了两个V2X终端设备:UE1和UE2)。UE1、UE2可以分别与网络侧设备进行移动网络通信,UE1与UE2之间也可以进行sidelink通信。
其中,上述网络侧设备可以是能和终端设备通信的设备。网络侧设备可以是任意一种具有无线收发功能的设备。包括但不限于:基站(nodeB)、演进型基站(eNodeB)、第五代(the fifth generation,5G)通信系统中的基站(gNB)、未来通信系统中的基站或网络侧设 备、WiFi系统中的接入节点、无线中继节点、无线回传节点等。网络侧设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络侧设备还可以是小站,传输节点(transmission reference point,TRP)等。本申请的实施例对网络侧设备所采用的具体技术和具体设备形态不做限定。
上述终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,如飞机、气球和卫星上等。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、接入终端设备、UE单元、移动站、移动台、远方站、远程终端设备、移动设备、终端(terminal)、无线通信设备、UE代理或UE装置等。
本申请的方案可以应用于演进的UMTS陆地无线接入网(evolved UMTS terrestrial radio access network,E-UTRAN)和下一代无线接入网络(new generation-radio access network,NG-RAN)系统,以及下一代移动通信系统,本申请对此不作限制。
需要说明的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
请参阅图2,为本申请实施例提供的一种边链路发射功率计算方法的流程示意图,其中:
S201、网络侧设备生成第一指示信息。
其中,所述第一指示信息用于指示计算边链路发射功率所使用的参数。
计算边链路发射功率所使用的参数包括如下信息中的一个或者多个:
第一路损,所述第一路损为终端设备与网络侧设备之间的路损;
第二路损,所述第二路损为终端设备与通信对端设备之间的路损;
最大发射功率,所述最大发射功率为终端设备能够支持的最大发射功率。
即终端设备可以基于第一路损或第二路损计算发射功率(所谓基于该路损或使用该路损,可以是在计算发射功率的时候需要考虑对该路损进行补偿),也可以直接以最大发射功率作为发射功率发送数据,计算方式灵活。但是,如果所使用的参数不合适,则会使得计算出的发射功率过大或过小,如果发射功率过大,则会造成对网络侧设备或通信对端设备的干扰;如果发射功率过小,则不能保证通信质量。因此,需要选择合适的参数。
S202、网络侧设备向终端设备发送第一指示信息。
相应的,终端设备获取第一指示信息。
本实施例中,终端设备需要明确地获取用于计算边链路发射功率所使用的参数。首先, 终端设备获取第一指示信息。在本实施例中,终端设备可以从网络侧设备接收第一指示信息,即网络侧设备可以指示终端设备使用哪个参数来计算发射功率,可选的,终端设备还可以向网络侧设备发送辅助信息,供网络侧设备参考,以做出以上指示。在另外的实施例中,终端设备也可以根据自身的信息确定第一指示信息。
S203、终端设备根据所述第一指示信息获取所述计算边链路发射功率所使用的参数。
上述第一指示信息指示了计算边链路发射功率所使用的参数,则终端设备可以根据该第一指示信息准确地确定参数,即确定是基于第一路损或第二路损计算发射功率,或者直接以最大发射功率作为发射功率发送数据。
S204、终端设备根据获取的所述计算边链路发射功率所使用的参数,计算边链路的发射功率。
如果终端设备确定基于第一路损或第二路损计算发射功率,则在计算发射功率的时候需要考虑对该第一路损或第二路损进行补偿;如果确定的参数为最大发射功率,则终端设备以最大发射功率作为发射功率发送数据。
可以理解的是,上述终端设备可以是边链路的发送终端,或接收终端,任何可能会进行边链路数据传输的终端都可根据上述方案计算发射功率。
根据本申请实施例提供的一种边链路发射功率计算方法,根据指示信息,可以准确、灵活地确定计算边链路发射功率所使用的参数,提高了通信质量。
如果进行sidelink通信的终端设备的覆盖状态发生了改变,比如由覆盖范围外进入覆盖范围内,或者由覆盖范围内进入覆盖范围外,终端设备需要确定使用什么路损进行发射功率计算。一种比较简单直观的方案是:终端设备持续使用一种路损。比如:持续使用到网络侧设备的路损,或者持续使用到通信对端设备的路损。该方案的问题在于,功率计算不能反映实际需要,可能造成功率浪费或者不够,以及可能对网络侧设备上行接收或者通信对端设备的接收造成干扰。另一种比较简单的方案是:终端设备判断进入覆盖范围外,立即使用到通信对端设备的路损做功率计算,终端设备判断进入覆盖范围内,立即使用到网络侧设备的路损做功率计算。该方案的缺点在于,对于临时或者短时覆盖情况发生变化的终端设备,比如覆盖边缘的终端设备,或者短时进入覆盖盲区的终端设备,就会短时的功率大范围调整(如果到网络侧设备的路损与到通信对端设备的路损差别较大的话)。而终端设备的功率调整,会对射频和基带都有一定的影响,因为每次功率调整,基带需要向射频配置相应的参数;得到基带提供的参数之后,射频的调整需要一定的时间。在射频的调整的时间内,终端设备数据传输所使用的参数,比如调制与编码策略(modulation and coding scheme,MCS)也是不好确定,比如终端设备会选择比较保守的MCS以保证通信质量,这对于通信速率也会有一定的影响。
请参阅图3,为本申请实施例提供的另一种边链路发射功率计算方法的流程示意图,其中:
S301、终端设备向网络侧设备上报相关能力。
该相关能力可以为终端设备具有可以根据状态的转变,切换发射功率计算方式的能力。可选的,该能力可以定义UE进行状态变化所需要的时间长短。比如,能力低的UE,进行 状态变换时需要较长的时间;能力高的UE,进行状态变换需要较短的时间。该能力可能与后续步骤中定时器的长短有关。比如,能力低的UE,定时器T较长;能力高的UE,定时器T较短。终端设备向网络侧设备上报该能力,从而网络侧设备可以根据该能力,向终端设备发送进行切换的指示信息。
该步骤为可选的步骤,图中以虚线表示。
S302、网络侧设备生成第一指示信息。
该第一指示信息用于指示计算边链路发射功率所使用的参数。在本实施例中,该第一指示信息包括时间T。该时间T为终端设备状态发生变化后的一段时间。本实施例中,可以设定终端设备在第一状态时使用第一参数,第二状态时使用第二参数。需要说明的是,第一参数和第二参数可以相同,也可以不同。可选地,该第一指示信息用于指示在终端设备从第一状态转变为第二状态后的时间T范围内,继续使用第一参数。
S303、网络侧设备向终端设备发送第一指示信息。其中,第一指示信息包括时间T。
相应的,终端设备接收该第一指示信息。
该时间T可以是网络侧设备配置的。具体地,网络侧设备可以通过下行控制信息(downlink control information,DCI)或无线资源控制(radio resource control,RRC)信令等发送上述第一指示信息。
另外,该时间T也可以是预配置的,即可以是在终端设备出厂时,预先烧录到终端设备的;或者在终端设备与网络侧设备建立初始通信时,网络侧设备配置给终端设备的。
S304、终端设备判断其状态从第一状态转变为第二状态。
终端设备判断自身状态是否发生变化。该状态状态包括以下一个或多个:覆盖状态,发送类型,链路类型。覆盖状态包括覆盖范围内和覆盖范围外。发送类型包括单播、组播和广播。链路类型包括单播链路、组播链路和广播链路。
比如,广播和单播通信方式之间的变化。因为广播的接收对象不确定,所以,不方便根据具体的接收对象确定发射功率,但是,单播的通信对象是确定的,可以根据到单播通信对象的实际路损来确定发射功率。所以,单播到广播的变换,或者广播到单播的变换,也可能带来发射功率的计算方式的变化。
S305、在所述终端设备从第一状态转变为第二状态后的时间T范围内,继续使用第一参数。
具体实现中,本申请实施例定义一个定时器T,用于延时改变发射功率计算方式。这里,发射功率计算方式的变化是指,计算发射功率的公式或者使用的参数发生了改变等。当终端设备的覆盖状态发生变化时,或者当终端设备的覆盖状态发生变化后,启动该定时器。
在该定时器范围内,或者该定时器超时之前,终端设备使用第一参数计算发射功率,即终端设备在确定发射功率时继续使原来的路损;在该定时器范围外,或者该定时器超时,或者该定时器超时后,终端设备使用第二参数计算发射功率,即终端设备在确定发射功率时才变换所使用的路损。
例如,终端设备在覆盖范围内时,终端设备计算发射功率时使用的是到网络侧设备的路损;当终端设备变换到覆盖范围外时,启动该定时器,在该定时器超时之前,终端设备 继续使用到网络侧设备的路损来计算发射功率;定时器超时后,终端设备使用到通信对端设备的路损计算发射功率。或者相反,终端设备在覆盖范围外时,终端设备计算发射功率时使用的是到通信对端设备的路损;当终端设备变换到覆盖范围内时,启动该定时器,在该定时器超时之前,终端设备继续使用到通信对端设备的路损来计算发射功率;定时器超时后,终端设备使用到对网络侧设备的路损计算发射功率。
需要说明的是,上述覆盖范围外,可能并不是因为终端设备和网络侧设备之间的距离太远网络侧设备覆盖不到引起的,也可能是因为建筑物遮挡,比如高楼遮挡,或者在地下室,使得终端设备与网络侧设备之间的信号质量较差引起的。
可选的,该定时器可以由专有信令配置,广播消息配置,或者预定义。或者定义一个默认值,在没有额外配置的情况下,使用该默认值。
该定时可能与终端设备的能力有关,或者与终端设备所进行的业务有关(比如,为某个承载定义特定的的定时器)。
S306、终端设备根据确定的第一参数计算边链路的发射功率。
在该实施例中,终端设备可以在其状态发生变化时,通过定时器的定时准确地确定计算发射功率的方式,从而准确地计算边链路的发射功率,有利于节省终端设备的功耗;且可以避免因为上述终端状态发生变化而带来的发射功率频繁变化,从而减轻了发射功率频繁变动对终端设备的射频和基带的影响。
根据本申请实施例提供的一种边链路发射功率计算方法,根据指示信息,可以准确、灵活地确定计算边链路发射功率所使用的参数,提高了通信质量;并且可以避免当终端设备的状态发生改变时,带来的发射功率频繁变化,从而减轻了功率频繁变动对于终端设备的射频和基带的影响。
请参阅图4,为本申请实施例提供的又一种边链路发射功率计算方法的流程示意图,其中:
S401、终端设备获取第一指示信息。
本实施例中,终端设备使用哪个参数计算发射功率,由终端设备自主确定。其中,所述参数包括如下信息中的一个或者多个:第一路损,所述第一路损为终端设备与网络侧设备之间的路损;第二路损,所述第二路损为终端设备与通信对端设备之间的路损;最大发射功率,所述最大发射功率为终端设备能够支持的最大发射功率。
首先,终端设备获取第一指示信息。其中,第一指示信息包括特征信息,该特征信息与计算边链路发射功率所使用的参数具有对应关系,其中特征信息包括如下信息中的一种或者多种:路损阈值,路损选择优先级,业务类型,承载类型,会话类型,逻辑信道信息。可选的,该特征信息与计算边链路发射功率所使用的参数的对应关系也可以包括在上述第一指示信息中。
具体地,在一个实现中,定义一个路损阈值,该阈值可以是网络侧设备配置的,或者预配置的。例如,该阈值可以是终端设备到通信对端设备的路损阈值。该阈值包括一个最大阈值和一个最小阈值,或者包括一个最大阈值,或者包括一个最小阈值。该阈值与参数的对应关系为:如果终端设备到通信对端设备的路损大于该最大阈值,若使用到通信对端 设备的路损计算发射功率,则可能会造成对网络侧设备的干扰。因此,终端设备使用到网络的路损计算发射功率。
又例如,该阈值可以是终端设备到网络侧设备的路损。该阈值包括一个最大阈值和一个最小阈值,或者包括一个最大阈值,或者包括一个最小阈值。该阈值与参数的对应关系为:如果终端设备到网络侧设备的路损大于该最大阈值,若使用到网络侧设备的路损计算发射功率,则可能造成对通信对端设备的干扰。因此,终端设备使用到通信对端设备的路损计算发射功率。如果终端设备到网络侧设备的路损小于该最小阈值,可能会使得计算出的发射功率不够,则终端设备使用到通信对端设备的路损计算或者最大发射功率。
在另一个实现中,定义一个路损选择优先级,比如优先选择到通信对端设备的路损做功率计算,或者优先选择到网络侧设备的路损做功率计算。该优先级可以是网络侧设备配置的,或者预配置的。该第一指示信息指示的是哪个优先级,则选择该优先级对应的路损来计算发射功率。可选的,该优先级可以与业务相关,比如,某些业务优先使用到对端设备的路损,某些些业务优先使用到网络的路损。可选的,该优先级可以与逻辑信道相关,比如,某些逻辑信道优先使用到对端设备的路损,某些逻辑信道优先使用到网络的路损。
在又一个实现中,终端设备可以根据终端设备正在进行的sidelink业务类型来确定基于哪种路损计算发射功率。例如,如果sidelink的业务比较重要,终端设备可以使用到通信对端设备的路损,保证sidelink的通信质量;否则,使用到网络侧设备的路损,减少对网络侧设备接收上行数据的干扰。或者,如果sidelink的业务比较重要,终端设备使用到通信对端设备的路损和用到网络侧设备的路损中较大的路损,进行发射功率计算。
可选的,网络侧设备可以配置,或者预配置上述业务类型和路损选择之间的关系。例如,在到通信对端设备的路损大于到网络侧设备的路损时,哪些业务可以使用到通信对端设备的路损进行功率计算,哪些业务需要使用到网络侧设备的路损进行功率计算。
在又一个实现中,可以在承载建立的时候,指示终端设备上述承载对应的数据的发射功率计算的路损选择,或者指示在到通信对端设备的路损大于到网络侧设备的路损时,该承载是否允许使用到网络侧设备的路损进行功率计算;或者指示该承载使用最大发射功率,或者是否允许使用最大发射功率。
可以理解的是,上述根据业务类型或承载确定发射功率计算方式的方案,还可以适用于根据逻辑信道信息、会话类型等来确定发射功率计算方式,其确定过程类似。
S402、终端设备根据所述特征信息和计算边链路发射功率所使用的参数的对应关系,获取所述计算边链路发射功率所使用的参数。
终端设备可以根据上述路损阈值,路损选择优先级,业务类型,承载类型,会话类型,逻辑信道信息中的一种或多种与参数的对应关系,确定计算发射功率所采用的参数。
S403、终端设备根据获取的所述计算边链路发射功率所使用的参数,计算边链路的发射功率。
根据本申请实施例提供的一种边链路发射功率计算方法,根据指示信息,可以准确、灵活地确定计算边链路发射功率所使用的参数,提高了通信质量。
在另一些实施例中,可以由网络侧设备指示终端设备进行发射功率计算的信息,该信 息用于指示终端设备进行发射功率计算所基于的路损,或者发射功率的计算方式。
可选的,在网络侧设备指示上述信息之前,终端设备可以向网络侧设备提供辅助信息,比如终端设备上报其到网络侧设备的路损和到通信对端设备的路损,供网络侧设备参考。
可选的,网络侧设备可以通过DCI、传输功率计算(Transmission Power Control,TPC)信令的扩展字段、或者其它的信令来指示终端设备进行发射功率计算的信息。
进行发射功率计算的信息包括以下一种或多种:使用最大发射功率,或者使用基于到网络侧设备的路损计算发射功率,或者使用基于到通信对端设备的路损计算发射功率。
进一步的,还可以在上述信令中指示承载、业务、逻辑信道、会话、时间等信息,以指示哪些承载、业务、逻辑信道、会话、哪些时间或者从什么时间开始,可以使用上述信令所指示的发射功率计算机制。
基于上述实施例中的边链路发射功率计算方法的同一构思,如图5所示,本申请实施例还提供一种通信装置500,该通信装置500可用于实现上述图2~图4所示的方法。该通信装置500可以是如图1所示的UE1或UE2,也可以是应用于UE1或UE2的一个部件(例如芯片)。该通信装置500包括获取单元51和计算单元52;其中:
获取单元51,用于获取第一指示信息,所述第一指示信息用于指示计算边链路发射功率所使用的参数;
所述获取单元51,还用于根据所述第一指示信息,获取所述计算边链路发射功率所使用的参数;
计算单元52,用于根据获取的所述计算边链路发射功率所使用的参数,计算边链路的发射功率。
在一个实现中,所述计算边链路发射功率所使用的参数包括如下信息中的一个或者多个:
第一路损,所述第一路损为终端设备与网络侧设备之间的路损;
第二路损,所述第二路损为终端设备与通信对端设备之间的路损;
最大发射功率,所述最大发射功率为终端设备能够支持的最大发射功率。
在另一个实现中,所述终端设备从第一状态转变为第二状态,第一状态使用第一参数,第二状态使用第二参数,所述第一指示信息为时间T;
所述获取单元51,用于在所述终端设备从第一状态转变为第二状态后的时间T范围内,继续使用第一参数;
其中,所述第一状态包括以下一个或多个:覆盖状态,发送类型,链路类型。
在又一个实现中,所述第一指示信息是网络配置的,或者预配置的。
在又一个实现中,第一指示信息包括:特征信息,所述特征信息与所述计算边链路发射功率所使用的参数具有对应关系,其中,所述特征信息包括如下信息中的一种或者多种:路损阈值,路损选择优先级,业务类型,承载类型,会话类型,逻辑信道信息;
所述获取单元51,用于根据所述特征信息和所述计算边链路发射功率所使用的参数的对应关系,获取所述计算边链路发射功率所使用的参数。
有关上述获取单元51和计算单元52更详细的描述可以直接参考上述图2~图4所示的 方法实施例中终端设备的相关描述直接得到,这里不加赘述。
根据本申请实施例提供的一种通信装置,根据指示信息,可以准确、灵活地确定计算边链路发射功率所使用的参数,提高了通信质量。
基于上述实施例中的边链路发射功率计算方法的同一构思,如图6所示,本申请实施例还提供一种通信装置600,该通信装置600可用于实现上述图2~图4所示的方法。该通信装置600可以是如图1所示的基站或者其它网络侧设备。该通信装置600包括处理单元61和发送单元62;其中:
处理单元61,用于生成第一指示信息,所述第一指示信息用于指示计算边链路发射功率所使用的参数;
发送单元62,用于向终端设备发送所述第一指示信息。
有关上述处理单元61和发送单元62更详细的描述可以直接参考上述图2~图4所示的方法实施例中网络侧设备的相关描述直接得到,这里不加赘述。
根据本申请实施例提供的一种通信装置,通过发送指示信息,使得终端设备可以准确、灵活地确定计算边链路发射功率所使用的参数,提高了通信质量。
本申请实施例还提供一种通信装置,该通信装置用于执行上述边链路发射功率计算方法。上述边链路发射功率计算方法中的部分或全部可以通过硬件来实现也可以通过软件来实现。
可选的,通信装置在具体实现时可以是芯片或者集成电路。
可选的,当上述实施例的边链路发射功率计算方法中的部分或全部通过软件来实现时,通信装置包括:存储器,用于存储程序;处理器,用于执行存储器存储的程序,当程序被执行时,使得通信装置可以实现上述实施例提供的边链路发射功率计算方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
可选的,当上述实施例的边链路发射功率计算方法中的部分或全部通过软件实现时,通信装置也可以只包括处理器。用于存储程序的存储器位于通信装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
图7示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图7中,终端设备以手机作为例子。如图7所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图7中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端设备的处理单元。如图7所示,终端设备包括接收单元71、处理单元72和发送单元73。接收单元71也可以称为接收器、接收机、接收电路等,发送单元73也可以称为发送器、发射器、发射机、发射电路等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。
例如,在一个实施例中,接收单元71用于执行图2所示实施例中的步骤S201中终端设备的功能,以及处理单元72用于执行图2所示实施例中的步骤S202~S203。
例如,在另一个实施例中,发送单元73用于执行图3所示实施例中的步骤S301中终端设备的功能;接收单元71用于执行图3所示实施例中的步骤S302中终端设备的功能;以及处理单元72用于执行图3所示实施例中的步骤S303~S305。
例如,在又一个实施例中,处理单元72用于执行图4所示实施例中的步骤S401~S403。
图8示出了一种简化的网络侧设备的结构示意图。网络侧设备包括射频信号收发及转换部分以及82部分,该射频信号收发及转换部分又包括接收单元81部分和发送单元83部分(也可以统称为收发单元)。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;82部分主要用于基带处理,对网络侧设备进行控制等。接收单元81也可以称为接收器、接收机、接收电路等,发送单元83也可以称为发送器、发射器、发射机、发射电路等。82部分通常是网络侧设备的控制中心,通常可以称为处理单元,用于控制网络侧设备执行上述图3、图4或图5中关于网络侧设备所执行的步骤。具体可参见上述相关部分的描述。
82部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络侧设备的 控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一个实施例中,发送单元83用于执行图2所示实施例中步骤S201中网络侧设备的功能。
例如,在另一个实施例中,接收单元81用于执行图3所示实施例中步骤S301中网络侧设备的功能;以及发送单元83用于执行图3所示实施例中步骤S302中网络侧设备的功能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。所显示或讨论的相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者通过该计算机可读存储介质进行传输。该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是只读存储器(read-only memory,ROM),或随机存储存储器(random access memory,RAM),或磁性介质,例如,软盘、硬盘、磁带、磁碟、或光介质,例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质,例如,固态硬盘(solid state disk,SSD)等。

Claims (26)

  1. 一种边链路发射功率计算方法,其特征在于,包括:
    获取第一指示信息,所述第一指示信息用于指示计算边链路发射功率所使用的参数;
    根据所述第一指示信息获取所述计算边链路发射功率所使用的参数;
    根据获取的所述计算边链路发射功率所使用的参数,计算边链路的发射功率。
  2. 如权利要求1所述的方法,其特征在于,所述计算边链路发射功率所使用的参数包括如下信息中的一个或者多个:
    第一路损,所述第一路损为终端设备与网络侧设备之间的路损;
    第二路损,所述第二路损为终端设备与通信对端设备之间的路损;
    最大发射功率,所述最大发射功率为终端设备能够支持的最大发射功率。
  3. 如权利要求1或2所述的方法,其特征在于,所述终端设备从第一状态转变为第二状态,第一状态使用第一参数,第二状态使用第二参数,所述第一指示信息为时间T;
    所述根据第一指示信息获取所述计算边链路发射功率所使用的参数,包括:
    在所述终端设备从第一状态转变为第二状态后的时间T范围内,继续使用第一参数;
    其中,所述第一状态包括以下一个或多个:覆盖状态,发送类型,链路类型。
  4. 如权利要求1或2所述的方法,其特征在于,所述第一指示信息包括:特征信息,所述特征信息与所述计算边链路发射功率所使用的参数具有对应关系,其中,所述特征信息包括如下信息中的一种或者多种:路损阈值,路损选择优先级,业务类型,承载类型,会话类型,逻辑信道信息;
    所述根据所述第一指示信息获取所述计算边
    链路发射功率所使用的所述参数,包括:
    根据所述特征信息和所述计算边链路发射功率所使用的参数的对应关系,获取所述计算边链路发射功率所使用的参数。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述第一指示信息是网络配置的,或者预配置的。
  6. 一种边链路发射功率计算方法,其特征在于,包括:
    生成第一指示信息,所述第一指示信息用于指示计算边链路发射功率所使用的参数;
    向终端设备发送所述第一指示信息。
  7. 如权利要求6所述的方法,其特征在于,所述计算边链路发射功率所使用的参数包括如下信息中的一个或者多个:
    第一路损,所述第一路损为终端设备与网络侧设备之间的路损;
    第二路损,所述第二路损为终端设备与通信对端设备之间的路损;
    最大发射功率,所述最大发射功率为终端设备能够支持的最大发射功率。
  8. 如权利要求6或7所述的方法,其特征在于,所述第一指示信息包括:特征信息,所述特征信息与所述计算边链路发射功率所使用的参数具有对应关系,其中特征信息包括如下信息中的一种或者多种:路损阈值,路损选择优先级,业务类型,承载类型,会话类 型,逻辑信道信息。
  9. 一种通信装置,其特征在于,包括:
    获取单元,用于获取第一指示信息,所述第一指示信息用于指示计算边链路发射功率所使用的参数;
    所述获取单元,还用于根据所述第一指示信息获取所述计算边链路发射功率所使用的参数;
    计算单元,用于根据获取的所述计算边链路发射功率所使用的参数,计算边链路的发射功率。
  10. 如权利要求9所述的通信装置,其特征在于,所述计算边链路发射功率所使用的参数包括如下信息中的一个或者多个:
    第一路损,所述第一路损为终端设备与网络侧设备之间的路损;
    第二路损,所述第二路损为终端设备与通信对端设备之间的路损;
    最大发射功率,所述最大发射功率为终端设备能够支持的最大发射功率。
  11. 如权利要求9或10所述的通信装置,其特征在于,所述终端设备从第一状态转变为第二状态,第一状态使用第一参数,第二状态使用第二参数,所述第一指示信息为时间T;
    所述获取单元,用于在所述终端设备从第一状态转变为第二状态后的时间T范围内,继续使用第一参数;
    其中,所述第一状态包括以下一个或多个:覆盖状态,发送类型,链路类型。
  12. 如权利要求9或10所述的通信装置,其特征在于,所述第一指示信息包括:特征信息,所述特征信息与所述计算边链路发射功率所使用的参数具有对应关系,其中所述特征信息包括如下信息中的一种或者多种:路损阈值,路损选择优先级,业务类型,承载类型,会话类型,逻辑信道信息;
    所述获取单元,用于根据所述特征信息和所述计算边链路发射功率所使用的参数的对应关系,获取计算边链路发射功率所使用的参数。
  13. 如权利要求9~12任一项所述的通信装置,其特征在于,所述第一指示信息是网络配置的,或者预配置的。
  14. 一种通信装置,其特征在于,包括:
    处理单元,用于生成第一指示信息,所述第一指示信息用于指示计算边链路发射功率所使用的参数;
    发送单元,用于向终端设备发送所述第一指示信息。
  15. 如权利要求14所述的通信装置,其特征在于,所述计算边链路发射功率所使用的参数包括如下信息中的一个或者多个:
    第一路损,所述第一路损为终端设备与网络侧设备之间的路损;
    第二路损,所述第二路损为终端设备与通信对端设备之间的路损;
    最大发射功率,所述最大发射功率为终端设备能够支持的最大发射功率。
  16. 如权利要求14或15所述的通信装置,其特征在于,所述第一指示信息包括:特征信息,所述特征信息与所述计算边链路发射功率所使用的参数具有对应关系,其中特征 信息包括如下信息中的一种或者多种:路损阈值,路损选择优先级,业务类型,承载类型,会话类型,逻辑信道信息。
  17. 一种通信装置,其特征在于,包括:包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于执行如下步骤:
    获取第一指示信息,所述第一指示信息用于指示计算边链路发射功率所使用的参数;
    根据所述第一指示信息获取所述计算边链路发射功率所使用的参数;
    根据获取的所述计算边链路发射功率所使用的参数,计算边链路的发射功率。
  18. 如权利要求17所述的通信装置,其特征在于,所述计算边链路发射功率所使用的参数包括如下信息中的一个或者多个:
    第一路损,所述第一路损为终端设备与网络侧设备之间的路损;
    第二路损,所述第二路损为终端设备与通信对端设备之间的路损;
    最大发射功率,所述最大发射功率为终端设备能够支持的最大发射功率。
  19. 如权利要求17或18所述的通信装置,其特征在于,所述终端设备从第一状态转变为第二状态,第一状态使用第一参数,第二状态使用第二参数,所述第一指示信息为时间T;
    所述处理器执行所述根据第一指示信息获取所述计算边链路发射功率所使用的参数的步骤,包括:
    在所述终端设备从第一状态转变为第二状态后的时间T范围内,继续使用第一参数;
    其中,所述第一状态包括以下一个或多个:覆盖状态,发送类型,链路类型。
  20. 如权利要求17或18所述的通信装置,其特征在于,所述第一指示信息包括特征信息,所述特征信息与所述计算边链路发射功率所使用的参数具有对应关系,其中,所述特征信息包括如下信息中的一种或者多种:路损阈值,路损选择优先级,业务类型,承载类型,会话类型,逻辑信道信息;
    所述处理器执行所述根据所述第一指示信息获取所述计算边链路发射功率所使用的参数的步骤,包括:
    根据所述特征信息和所述计算边链路发射功率所使用的参数的对应关系,获取所述计算边链路发射功率所使用的参数。
  21. 如权利要求17~20任一项所述的通信装置,其特征在于,所述第一指示信息是网络配置的,或者预配置的。
  22. 一种通信装置,其特征在于,包括:包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于执行如下步骤:
    生成第一指示信息,所述第一指示信息用于指示计算边链路发射功率所使用的参数;
    向终端设备发送所述第一指示信息。
  23. 如权利要求22所述的通信装置,其特征在于,所述计算边链路发射功率所使用 的参数包括如下信息中的一个或者多个:
    第一路损,所述第一路损为终端设备与网络侧设备之间的路损;
    第二路损,所述第二路损为终端设备与通信对端设备之间的路损;
    最大发射功率,所述最大发射功率为终端设备能够支持的最大发射功率。
  24. 如权利要求22或23所述的通信装置,其特征在于,所述第一指示信息包括:特征信息,所述特征信息与所述计算边链路发射功率所使用的参数具有对应关系,其中特征信息包括如下信息中的一种或者多种:路损阈值,路损选择优先级,业务类型,承载类型,会话类型,逻辑信道信息。
  25. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1至5中任一项所述的方法,或实现如权利要求6至8中任一项所述的方法。
  26. 一种计算机程序产品,用于当在计算设备上执行时,执行如权利要求1至5中任一项所述的方法,或实现如权利要求6至8中任一项所述的方法。
PCT/CN2020/076805 2019-03-25 2020-02-26 一种边链路发射功率计算方法及通信装置 WO2020192344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910227495.4A CN111741519B (zh) 2019-03-25 2019-03-25 一种边链路发射功率计算方法及通信装置
CN201910227495.4 2019-03-25

Publications (1)

Publication Number Publication Date
WO2020192344A1 true WO2020192344A1 (zh) 2020-10-01

Family

ID=72608907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076805 WO2020192344A1 (zh) 2019-03-25 2020-02-26 一种边链路发射功率计算方法及通信装置

Country Status (2)

Country Link
CN (1) CN111741519B (zh)
WO (1) WO2020192344A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220240134A1 (en) * 2020-05-21 2022-07-28 Lg Electronics Inc. Sidelink communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103139889A (zh) * 2011-11-28 2013-06-05 华为技术有限公司 D2d的功率控制方法、用户设备、基站和通讯系统
US20160366675A1 (en) * 2015-06-15 2016-12-15 Ofinno Technologies, Llc Uplink Resource Allocation in a Wireless Network
CN106341772A (zh) * 2015-07-07 2017-01-18 索尼公司 无线通信设备和无线通信方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105191430B (zh) * 2013-05-10 2020-04-17 上海诺基亚贝尔股份有限公司 控制用户设备的设备至设备链路的发射功率的方法
CN105379367B (zh) * 2014-03-05 2020-04-28 华为技术有限公司 发射功率控制方法及设备
CN106375930A (zh) * 2015-07-22 2017-02-01 中兴通讯股份有限公司 一种设备到设备通信方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103139889A (zh) * 2011-11-28 2013-06-05 华为技术有限公司 D2d的功率控制方法、用户设备、基站和通讯系统
US20160366675A1 (en) * 2015-06-15 2016-12-15 Ofinno Technologies, Llc Uplink Resource Allocation in a Wireless Network
CN106341772A (zh) * 2015-07-07 2017-01-18 索尼公司 无线通信设备和无线通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Sidelink Power Control for Wearable and IoT Use Cases", 3GPP TSG RAN WG1 MEETING#90, R1-1712520, 12 August 2017 (2017-08-12), XP051315336, DOI: 20200506144811X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220240134A1 (en) * 2020-05-21 2022-07-28 Lg Electronics Inc. Sidelink communication
US11770746B2 (en) * 2020-05-21 2023-09-26 Lg Electronics Inc. Sidelink communication based on multiple sidelink technologies

Also Published As

Publication number Publication date
CN111741519A (zh) 2020-10-02
CN111741519B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
US10813059B2 (en) Power control method and apparatus, terminal, and network device
US11191119B1 (en) Controlling RF communication in a dual-connectivity scenario
WO2020143835A1 (zh) 功率控制方法及功率控制装置
US10291366B2 (en) Method, user equipment and base station for controlling discontinuous reception (DRX) in wireless communication system
WO2019214725A1 (zh) 一种波束训练的方法、装置及系统
US10368325B2 (en) System and method for beam adaptation in a beam-based communications system
WO2019137441A1 (zh) 一种通信方法及装置
US10420103B2 (en) Uplink inter-site carrier aggregation based on UE transmission power and secondary cell load
WO2021008495A1 (zh) 波束配置方法和装置
WO2020164518A1 (zh) 功率控制方法及功率控制装置
CN109462425B (zh) 一种波束扫描指示方法及其装置
WO2020088395A1 (zh) 资源配置方法及装置
US20160330603A1 (en) Apparatuses and methods for proximity-based service (prose) user equipment (ue)-to-network relay
CN113615279A (zh) 无线链路管理方法及相关设备
WO2021027520A1 (zh) 一种通信方法及装置
WO2020135179A1 (zh) 功率控制方法及装置
WO2020192344A1 (zh) 一种边链路发射功率计算方法及通信装置
WO2022110188A1 (zh) 侧行链路载波管理方法、装置和系统
WO2021062836A1 (zh) 功率调整方法及装置
WO2014194799A1 (zh) 通信方法、无线网络控制器和用户设备
CN110650522B (zh) 闭环功率控制方法、网络侧设备和终端
WO2021017016A1 (zh) 随机接入方法及相关设备
WO2023131108A1 (zh) 通信方法、装置及系统
WO2014166388A1 (zh) 协作发射集的确定方法和基站
WO2024022053A1 (zh) 一种速率匹配的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776501

Country of ref document: EP

Kind code of ref document: A1