WO2021008495A1 - 波束配置方法和装置 - Google Patents

波束配置方法和装置 Download PDF

Info

Publication number
WO2021008495A1
WO2021008495A1 PCT/CN2020/101663 CN2020101663W WO2021008495A1 WO 2021008495 A1 WO2021008495 A1 WO 2021008495A1 CN 2020101663 W CN2020101663 W CN 2020101663W WO 2021008495 A1 WO2021008495 A1 WO 2021008495A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam direction
power
base station
rsrp
beams
Prior art date
Application number
PCT/CN2020/101663
Other languages
English (en)
French (fr)
Inventor
凌岑
程勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/626,772 priority Critical patent/US11962388B2/en
Priority to JP2021573355A priority patent/JP7388609B2/ja
Publication of WO2021008495A1 publication Critical patent/WO2021008495A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a beam configuration method and device.
  • both the base station side and the user equipment side adopt beamforming for signal transmission and reception.
  • multiple antenna arrays are generally set on the user equipment side. Each antenna array can transmit 1 or more beams at the same time. The number of beams used by the user equipment, the selection of the direction of each beam, and the configuration of the polarization mode of the beam will all have a great impact on the transmission rate, power consumption, and service stability of the user equipment.
  • two antenna arrays are generally installed on the user equipment, and each array emits a beam; and the directions of the two beams are set in the same direction and the polarization modes are different.
  • the above-mentioned setting method is single and does not consider the requirements for the beam configuration such as base station scheduling information and channel quality, so that the beam configuration does not adapt to specific service scenarios, and affects the stability of the entire communication link.
  • the embodiments of the present application provide a beam configuration method and device, which can make the beam configuration mode on the terminal side more flexible, can meet the requirements of different service scenarios, and improve the stability of the communication link.
  • an embodiment of the present application provides a beam configuration method, including:
  • preset screening conditions select at least one candidate beam direction from beam directions that meet the power condition
  • the target beam direction of the terminal is determined from the beam directions to be selected.
  • the business scenario is comprehensively considered, and the base station scheduling information rank is determined, and the arrival angle power spectrum is determined; the peak information is determined according to the arrival angle power spectrum; the beam direction that meets the power condition is determined according to the peak information; Set the screening conditions, select at least one candidate beam direction from the beam directions that meet the power conditions; according to the base station scheduling information rank, the value of the channel quality indicator CQI, and the angle of arrival power spectrum, determine the terminal’s direction from the candidate beam directions Target beam direction.
  • the beam configuration mode on the terminal side is more flexible, which can meet the requirements of different business scenarios and improve the stability of the communication link.
  • determining the base station scheduling information rank includes:
  • the terminal side can also obtain the base station scheduling information rank by querying the configuration parameters of the base station. Therefore, a corresponding beam configuration scheme can be designed according to different ranks of the base station scheduling information.
  • determining the angle of arrival power spectrum includes:
  • the reference signal received powers of different beam directions are obtained respectively; wherein, the reference signal received powers of the different beam directions constitute the arrival angle power spectrum.
  • determining the angle of arrival power spectrum includes:
  • the peak information includes: each peak power, the maximum peak power, and the angular distance between adjacent peak powers.
  • the power condition refers to: the peak power is greater than the rsrp-ThresholdSSB in the RRC high-level parameter RACH-ConfigCommon issued by the base station to the terminal, and the absolute value of the difference between the peak power and the maximum peak power is less than or equal to the first preset Threshold, and the angular distance between adjacent peak powers is greater than the beam direction corresponding to the peak power of the terminal’s beam width.
  • the beam direction that satisfies the condition can be searched for according to the power condition, and the peak power, the angular distance between adjacent peak powers, the maximum peak power and other factors are comprehensively considered to select the beam direction with better signal transmission quality.
  • selecting at least one beam direction to be selected from beam directions that meet the power condition according to a preset screening condition including:
  • the candidate beam direction is selected from the beam directions that meet the power condition in the order of power from high to bottom.
  • the number of beams to be selected is determined by the upper limit of the number of beams simultaneously supported by the terminal and the number of beams meeting the power condition, so that the most suitable number of beams can be selected on the premise of meeting the requirements of the terminal device itself.
  • the method further includes: determining the polarization mode in the target beam direction according to the power relationship between the horizontal polarization and the vertical polarization.
  • the determining the polarization mode in the target beam direction according to the power relationship between horizontal polarization and vertical polarization includes:
  • the reference signal sent by the base station is received by vertical polarization and horizontal polarization respectively;
  • the polarization mode of the target beam direction is determined.
  • the reference signal is received in two different polarization modes in the target beam direction, and the polarization mode in the target beam direction is determined by comparing the received power of the reference signal; thus, the receiving effect can be selected Better polarization mode improves signal transmission quality.
  • determining the target beam direction of the terminal from the candidate beam directions according to the base station scheduling information rank, the value of the channel quality indicator CQI, and the angle of arrival power spectrum includes:
  • the candidate beam direction with the strongest power is selected as the target beam direction.
  • determining the target beam direction of the terminal from the candidate beam directions according to the base station scheduling information rank, the value of the channel quality indicator CQI, and the angle of arrival power spectrum includes:
  • the target beam direction is determined according to the number of beams to be selected.
  • the target beam direction is determined by the base station scheduling information and/or the value of the channel quality indicator CQI, so that the number of channels can be flexibly selected and the signal transmission power consumption can be reduced.
  • determining the target beam direction according to the number of beams to be selected includes:
  • the beam direction to be selected is used as the target beam direction.
  • it also includes:
  • the reference signal sent by the base station is received by vertical polarization and horizontal polarization respectively;
  • it also includes:
  • the first beam and the second beam are set in the target beam direction; wherein, the first beam direction and the second beam The directions are the same, and the polarization modes of the first beam direction and the second beam direction are different;
  • the polarization mode of the target beam direction is determined.
  • either the first beam direction or the second beam direction can be selected as the target beam direction, so as to reduce the signal as much as possible while ensuring the signal transmission effect. Transmission power consumption.
  • it also includes:
  • the first beam direction and the second beam direction are the same; when the polarization mode of the first beam direction is vertically polarized, the polarization mode of the second beam direction is set to horizontal polarization; When the polarization mode of the beam direction is horizontal polarization, the polarization mode of the second beam direction is set to vertical polarization.
  • beams in different directions can be used according to the channel quality, thereby reducing the probability of beam failure recovery failure, which is especially suitable for the situation where the user equipment UE is moving.
  • determining the target beam direction according to the number of beams to be selected includes:
  • the number of the candidate beams is greater than 1, then all the candidate beam directions are used as target beam directions.
  • it also includes:
  • the polarization mode of each target beam direction is determined.
  • a flexible polarization configuration method can be used according to the channel quality, thereby increasing the transmission rate of the user equipment UE and increasing the number of streams.
  • an embodiment of the present application provides a beam configuration device, including:
  • a processing module and a storage module wherein the storage module is used for coupling with the processing module to store necessary program instructions and data;
  • the processing module is used to:
  • preset screening conditions select at least one candidate beam direction from beam directions that meet the power condition
  • the target beam direction of the terminal is determined from the beam directions to be selected.
  • it also includes:
  • the receiving module is used to receive the base station scheduling information rank sent by the base station.
  • processing module is further used for:
  • the reference signal received powers of different beam directions are obtained respectively; wherein, the reference signal received powers of the different beam directions constitute the arrival angle power spectrum.
  • processing module is further used for:
  • the peak information includes: each peak power, the maximum peak power, and the angular distance between adjacent peak powers.
  • the power condition refers to: the peak power is greater than the rsrp-ThresholdSSB in the RRC high-level parameter RACH-ConfigCommon issued by the base station to the terminal, and the absolute value of the difference between the peak power and the maximum peak power is less than or equal to the first preset Threshold, and the angular distance between adjacent peak powers is greater than the beam direction corresponding to the peak power of the terminal’s beam width.
  • processing module is further used for:
  • the candidate beam direction is selected from the beam directions that meet the power condition in the order of power from high to bottom.
  • processing module is further used for:
  • the processing module is specifically configured to: use vertical polarization and horizontal polarization in the target beam direction to receive the reference signal sent by the base station;
  • the polarization mode of the target beam direction is determined.
  • processing module is further used for:
  • the candidate beam direction with the strongest power is selected as the target beam direction.
  • processing module is further used for:
  • the target beam direction is determined according to the number of beams to be selected.
  • determining the target beam direction according to the number of beams to be selected includes:
  • the beam direction to be selected is used as the target beam direction.
  • processing module is further used for:
  • the reference signal sent by the base station is received by vertical polarization and horizontal polarization respectively;
  • processing module is further used for:
  • the first beam and the second beam are set in the target beam direction; wherein, the first beam direction and the second beam The directions are the same, and the polarization modes of the first beam direction and the second beam direction are different;
  • the polarization mode of the target beam direction is determined.
  • processing module is further used for:
  • the first beam direction and the second beam direction are the same; when the polarization mode of the first beam direction is vertically polarized, the polarization mode of the second beam direction is set to horizontal polarization; When the polarization mode of the beam direction is horizontal polarization, the polarization mode of the second beam direction is set to vertical polarization.
  • determining the target beam direction according to the number of beams to be selected includes:
  • the number of the candidate beams is greater than 1, then all the candidate beam directions are used as target beam directions.
  • processing module is further used for:
  • the polarization mode of each target beam direction is determined.
  • an embodiment of the present application provides a beam configuration device, including:
  • It includes modules, components or circuits for implementing the beam configuration method of the first aspect.
  • an embodiment of the present application provides a terminal, including: a processor and a transceiver; the processor and the transceiver are configured to execute the beam configuration method described in any of the embodiments of the present application in the first aspect.
  • an embodiment of the present application provides a chip including a memory and a processor, the memory is used to store program instructions, and the processor is used to call the program instructions in the memory to execute the beam configuration method described in the embodiments of the present application in the first aspect .
  • an embodiment of the present application provides a readable storage medium having a computer program stored on the readable storage medium; when the computer program is executed, the beam configuration described in the embodiment of the present application in the first aspect is implemented method.
  • an embodiment of the present application provides a program product.
  • the program product includes a computer program.
  • the computer program is stored in a readable storage medium, and at least one processor of a communication device can read from the readable storage medium. Taking the computer program, the at least one processor executes the computer program to enable the communication device to implement the beam configuration method according to any one of the embodiments of the present application in the first aspect.
  • the base station scheduling information rank by determining the base station scheduling information rank, and determining the angle of arrival power spectrum; determining the peak information according to the angle of arrival power spectrum; determining the beam direction that meets the power condition according to the peak information; according to preset screening conditions, Select at least one candidate beam direction from the beam directions that meet the power condition; determine the target beam direction of the terminal from the candidate beam directions according to the base station scheduling information rank, the value of the channel quality indicator CQI, and the angle of arrival power spectrum.
  • Figure 1 is a schematic structural diagram of an application scenario provided by an embodiment of the application
  • FIG. 2 is a schematic flowchart of a beam configuration method provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of the acquisition principle of the angle of arrival power spectrum provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of the angle of arrival power spectrum in a scenario provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of the angle of arrival power spectrum in another scenario according to an embodiment of the application.
  • FIG. 6 is a schematic diagram of the integrated flow of the beam configuration method provided by this application.
  • FIG. 7 is a schematic flowchart of a beam configuration method provided by another embodiment of this application.
  • FIG. 8 is a schematic flowchart of a beam configuration method provided by another embodiment of this application.
  • FIG. 9 is a schematic flowchart of a beam configuration method provided by still another embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a beam configuration device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • Fig. 1 is a schematic structural diagram of an application scenario provided by an embodiment of the application. As shown in Fig. 1, it may include: a network device and a terminal.
  • the use of antenna arrays to shape the signal beam can achieve precise narrow beams to provide services to user data, thereby obtaining a longer coverage distance and reducing signal interference. Therefore, in 5G high-frequency communication, both the network equipment and the terminal side use beamforming for signal transmission and reception.
  • beam management is involved.
  • the beam direction on the network device side is fixed, the beam on the terminal side is optimized to meet the requirements of different business scenarios and improve the stability of the communication link.
  • Radio Access Network (RAN) equipment also known as Radio Access Network (RAN) equipment. It is a type of equipment that connects the terminal to the wireless network.
  • a wireless terminal can refer to a device with a wireless transceiver function. It can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships Etc.); it can also be deployed in the air (for example, airplanes, balloons, satellites, etc.).
  • the terminal can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, and an industrial control (industrial control).
  • Wireless terminals wireless terminals in self-driving (self-driving), wireless terminals in remote medical (remote medical), wireless terminals in smart grid (smart grid), wireless terminals in transportation safety (transportation safety), smart cities
  • the wireless terminal in the (smart city), the wireless terminal in the smart home (smart home), etc. are not limited here. It can be understood that, in the embodiment of the present application, the terminal may also be referred to as user equipment (UE).
  • UE user equipment
  • Beam management It is the basic feature of the millimeter wave protocol. In TR38.802, the key process of beam management is defined: the L1/L2 process of acquiring and maintaining the uplink and downlink data transmission and reception beam sets, including beam determination, beam measurement, and beam Scanning and beam reporting.
  • Beam determination refers to a process in which a signal transmitting and receiving point (Transmitting Receiving pair, TRP) or user equipment (user equipment, UE) selects an appropriate transmitting and receiving beam.
  • TRP Transmission Receiving pair
  • UE user equipment
  • the requirement of the UE side is that the UE performs an alignment process after receiving the millimeter wave beam on the network side, including downlink beam and uplink beam selection, and finally selects the optimal beam.
  • the UE needs to meet beam reciprocity.
  • Beam measurement refers to the shaped signal received by the UE from the network side.
  • the signal includes beam information.
  • the requirements of the UE side are: the beamforming signal of the network can be measured correctly, the beam measurement signal can be reported correctly, and the measurement result can be Perform other actions of beam management.
  • Beam scanning means that within a space area, the beam is transmitted and/or received in a predetermined manner within a certain time interval. The requirement of the UE is that the UE can scan the beam within a certain period of time and process the scan result correctly.
  • Beam reporting means that the UE reports the information of the shaped signal based on beam measurement. The requirement of the UE is that the UE can report measurement information according to the requirements of the network side in different states, and take corresponding actions after the network side responds.
  • two antenna arrays are generally set at the UE side, and each array emits a beam respectively, and the polarization modes of setting the two beams are different, and the beam directions of the two beams are the same.
  • This setting method does not consider specific business scenarios, channel conditions, and base station scheduling conditions, and has a single implementation form. Since the beam directions of the two beams are always the same, when the beam reception of one direction fails, the other beam will also fail at the same time, which is not conducive to the stability and robustness of the link.
  • the prior art does not take into account the polarization characteristics of the channel. For example, in some scenarios, the vertical polarization is much higher than the reference signal receiving power (RSRP) corresponding to the horizontal polarization beam (or vice versa).
  • RSRP reference signal receiving power
  • the base station scheduling information rank and the value of the channel quality indicator CQI are also not considered. If the rank determined by the network and the channel is single-stream, it is not necessary to simultaneously shoot two beams.
  • the existing technology has a single implementation form, and does not consider requirements for beam configuration such as base station scheduling information and channel quality, so that the beam configuration does not adapt to specific service scenarios and affects the stability of the entire communication link.
  • this application comprehensively considers the business scenario, by determining the base station scheduling information rank, and determining the arrival angle power spectrum; determining the peak information according to the arrival angle power spectrum; determining the power condition according to the peak information According to the preset screening conditions, select at least one candidate beam direction from the beam directions that meet the power conditions; according to the base station scheduling information rank, the value of the channel quality indicator CQI, and the power spectrum of the arrival angle, select The beam direction determines the target beam direction of the terminal. This makes the beam configuration mode on the terminal side more flexible, can meet the requirements of different business scenarios, and improve the stability of the communication link.
  • FIG. 2 is a schematic flowchart of a beam configuration method provided by an embodiment of the application. As shown in FIG. 2, this embodiment may include:
  • Step S101 Determine the base station scheduling information rank, and determine the angle of arrival power spectrum.
  • the terminal side can directly obtain the base station scheduling information rank from the base station side. Since the scheduling information of the base station is pre-configured, the terminal side can also obtain the base station scheduling information rank by querying the configuration parameters of the base station.
  • the terminal side may obtain the angle of arrival power spectrum during beam scanning in the P1 stage and/or the P3 stage.
  • the P3 stage in the P3 stage, the beam of the network device is fixed
  • Figure 3 is a schematic diagram of the principle of obtaining the angle of arrival power spectrum provided by an embodiment of the application. As shown in Figure 3, within a preset time period, the beam direction on the network device side is fixed, and during the preset time period, the control terminal side Adjust the beam direction according to the preset angle interval. Then record the power of the received reference signal in each beam direction to obtain the terminal's angle of arrival power spectrum. specifically,
  • the terminal may also obtain the angle of arrival power spectrum through incoherent channel estimation. Specifically, since the angle of arrival power is related to the fading of the channel signal, the angle of arrival power spectrum can be estimated according to the channel signal condition.
  • Step S102 Determine peak information according to the angle of arrival power spectrum.
  • the corresponding peak information can be extracted from the wave arrival angle power spectrum obtained in step S101, and the peak information can include each peak power, the maximum peak power, and the angular distance between adjacent peak powers.
  • FIG. 4 is a schematic diagram of the angle of arrival power spectrum in a scene provided by an embodiment of the application; as shown in FIG. 4, in the direct scene (Line of Sight, LoS) and the strong reflection scene, the peak power The difference between the power values is large, and the angular distance between the peak powers is small.
  • FIG. 5 is a schematic diagram of the angle of arrival power spectrum in another scenario provided by an embodiment of the application; as shown in FIG. 5, in a complex reflection, scattering, and occlusion scenario, the power value difference between each peak power is small. The angular distance between each peak is relatively large. Referring to Figures 4 and 5, each peak power, maximum peak power, and the angular distance between adjacent peak powers can be directly extracted from the arrival angle power spectrum.
  • Step S103 Determine the beam direction that meets the power condition according to the peak information.
  • the peak information is obtained based on the angle of arrival power spectrum, and then based on the peak information, all the angles corresponding to the peak power that meet the power conditions are found, and the beam direction is determined according to the angle.
  • the peak information may include: each peak power, the maximum peak power, and the angular distance between adjacent peak powers.
  • the power conditions include:
  • the angular distance between adjacent peak powers is greater than the beam direction corresponding to the peak power of the terminal's beam width.
  • this embodiment does not limit the specific value of the first preset threshold. Under different application scenarios or business requirements, the size of the first preset threshold can be adjusted. In this embodiment, the first preset threshold can be set to 10dB.
  • FIGS. 4 and 5 there is one peak power that meets all power conditions in Figure 4, and there are two peak powers that meet all power conditions in Figure 5. Record the beam direction of the peak power that meets all power conditions.
  • Step S104 Select at least one beam direction to be selected from beam directions that meet the power condition according to a preset screening condition.
  • At least one candidate beam direction can be selected from beam directions that meet the power condition according to the beam capabilities supported by the terminal.
  • the number of beams to be selected is determined according to the upper limit of the number of beams supported by the terminal at the same time and the number of beams that meet the power condition; where the number of beams to be selected is the upper limit of the number of beams that the terminal supports simultaneously and the number of beams that meet the power condition
  • the minimum value of the number of beams; according to the number of beams to be selected, the beam direction to be selected is selected from the beam directions that meet the power condition in the order of power from high to bottom.
  • Step S105 Determine the target beam direction of the terminal from the beam directions to be selected according to the base station scheduling information rank, the value of the Channel State Indicator (CQI), and the angle of arrival power spectrum.
  • CQI Channel State Indicator
  • the base station scheduling information rank and the value of the channel quality indicator CQI may be considered comprehensively.
  • the number of beams to be selected is determined according to the base station scheduling information rank and the value of the channel quality indicator CQI, and then based on the angle of arrival power spectrum, the corresponding number of beam directions are selected as the terminal's direction from high to low power.
  • Target beam direction when selecting the target beam direction, the base station scheduling information rank and the value of the channel quality indicator CQI may be considered comprehensively.
  • the number of beams to be selected is determined according to the base station scheduling information rank and the value of the channel quality indicator CQI, and then based on the angle of arrival power spectrum, the corresponding number of beam directions are selected as the terminal's direction from high to low power.
  • Target beam direction is based on the angle of arrival power spectrum
  • the number of beams is flexibly selected based on the retrieval situation and channel quality on the network device (base station) side, so that the optimal number of channels can be selected and transmission power consumption can be reduced.
  • the base station scheduling information rank is determined, and the angle of arrival power spectrum is determined; according to the peak information, the beam direction that meets the power condition is determined; at least one beam direction that meets the power condition is selected according to a preset screening condition The direction of the beam to be selected; the target beam direction of the terminal is determined from the beam direction to be selected according to the base station scheduling information rank, the value of the channel quality indicator CQI, and the angle of arrival power spectrum.
  • the polarization mode in the target beam direction may be determined according to the power relationship between the horizontal polarization and the vertical polarization.
  • the reference signal sent by the base station is received in a horizontal polarization mode and a vertical polarization mode, and then the polarization mode used is determined according to the power of the reference signal.
  • vertical polarization and horizontal polarization are used to receive the reference signal sent by the base station in the target beam direction; the received power RSRP_ ⁇ V ⁇ of the reference signal in the vertical polarization direction and the reference signal in the horizontal polarization direction are obtained.
  • FIG. 6 is a schematic diagram of a comprehensive flow of the beam configuration method provided by this application, as shown in FIG. 6, which may include:
  • Step 1 Obtain the angle of arrival power spectrum.
  • Step 2 Determine the beam direction that meets the power condition according to the power spectrum of the arrival angle.
  • the number of beams to be selected is determined according to the upper limit of the number of beams supported by the terminal at the same time and the number of beams that meet the power condition; wherein, the number of beams to be selected is the upper limit of the number of beams supported by the terminal and the corresponding power
  • the minimum value of the number of beams to be selected is selected from the beam directions that meet the power condition in the order of power from high to bottom.
  • Step 3 Determine whether the base station scheduling information rank is 1, and the channel quality indicator CQI value is greater than 15; if the base station scheduling information rank is 1, and the channel quality indicator CQI value is greater than 15, then perform step 4; otherwise, perform step 7.
  • Step 4 Select the candidate beam direction with the strongest power as the target beam direction.
  • Step 5 In the target beam direction, the reference signal sent by the base station is received in vertical polarization and horizontal polarization respectively.
  • Step 6 Select the polarization mode with the strong reference signal as the polarization mode in the target beam direction, and end the process.
  • Step 7 Determine whether the number of beam directions that meet the power condition is greater than 1, if it is equal to 1, then execute step 8; if it is greater than 1, then execute step 10.
  • Step 8 Determine whether the absolute value of the difference between the reference signals sent by the base station in the vertical polarization and horizontal polarization modes is greater than or equal to 10 dB; if not, perform step 11; if yes, perform step 9.
  • Step 9 Set the first beam and the second beam in the target beam direction; where the first beam direction and the second beam direction are the same, and the polarization modes of the first beam direction and the second beam direction are different; report the rank to the base station The value of is 1, and when the base station scheduling information rank value is 1, select either the first beam direction or the second beam direction as the target beam direction; use vertical polarization and horizontal respectively in the target beam direction
  • the polarization mode receives the reference signal sent by the base station, selects the polarization mode with the strong reference signal as the polarization mode in the target beam direction, and ends the process.
  • Step 10 Use all the beam directions to be selected as the target beam directions, and use vertical polarization and horizontal polarization in each target beam direction to receive the reference signal sent by the base station, and select the polarization method with high reference signal strength as the target beam
  • the polarization mode in the direction ends the process.
  • Step 11 Set the first beam and the second beam in the target beam direction; where the first beam direction and the second beam direction are the same; when the polarization mode of the first beam direction is vertically polarized, set the second beam direction The polarization mode is horizontal polarization; when the polarization mode of the first beam direction is horizontal polarization, the polarization mode of the second beam direction is set to vertical polarization.
  • this embodiment sets the criterion for determining the value of the channel quality indicator CQI to 15. In practical applications, different values can be set according to specific application scenarios. In step 8, this embodiment sets an absolute value of 10dB for judging the difference between the reference signals sent by the base station in the vertical polarization and horizontal polarization modes. In practical applications, different values can be set according to specific application scenarios. This embodiment does not limit the numerical setting of specific parameters.
  • the number of channels can be flexibly selected to reduce power consumption.
  • the transmission rate of the UE can be increased and the number of streams can be increased.
  • the base station scheduling information rank is determined, and the arrival angle power spectrum is determined; the peak information is determined according to the arrival angle power spectrum; the beam direction that meets the power condition is determined according to the peak information; At least one candidate beam direction is selected from the beam directions of the power condition; according to the base station scheduling information rank, the value of the channel quality indicator CQI, and the angle of arrival power spectrum, the target beam direction of the terminal is determined from the candidate beam directions.
  • FIG. 7 is a schematic flowchart of a beam configuration method provided by another embodiment of this application. As shown in FIG. 7, this embodiment may include:
  • Step S201 Determine the base station scheduling information rank, and determine the angle of arrival power spectrum.
  • Step S202 Determine peak information according to the angle of arrival power spectrum.
  • Step S203 Determine the beam direction that meets the power condition according to the peak information.
  • Step S204 Select at least one beam direction to be selected from beam directions that meet the power condition according to a preset screening condition.
  • step S201 to step S204 are similar to those of step S101 to step S104 in Embodiment 1, and will not be repeated here.
  • Step S205 If the base station scheduling information rank value is 1, and the channel quality indicator CQI value is greater than the second preset threshold, the candidate beam direction with the strongest power is selected as the target beam direction.
  • the base station when the base station is scheduling a single stream and the value of the signal quality indicator CQI is greater than the second preset threshold, it is based on selecting the candidate beam direction with the strongest power as the target beam direction. This is because when the base station is single-stream scheduling and the signal quality is better, the stability of the communication link itself is very good. At this time, the signal sent by the base station can be stably received by selecting the direction of the candidate beam with the strongest power.
  • this embodiment does not limit the specific value of the second preset threshold. Under different application scenarios or business requirements, the size of the second preset threshold can be adjusted. In this embodiment, the second preset threshold can be set to 15.
  • Step S206 Determine the polarization mode of the target beam direction.
  • vertical polarization and horizontal polarization are used to receive the reference signal sent by the base station in the target beam direction.
  • the base station scheduling information rank is determined, and the angle of arrival power spectrum is determined; according to the peak information, the beam direction that meets the power condition is determined; at least one beam direction that meets the power condition is selected according to a preset screening condition The beam direction to be selected; if the base station scheduling information rank value is 1, and the channel quality indicator CQI value is greater than the second preset threshold, the candidate beam direction with the strongest power is selected as the target beam direction, and the target beam direction is finally determined Of polarization.
  • the polarization mode can be selected according to the power of the reference signal received in the vertical polarization and horizontal polarization in the target beam direction, so as to improve the data transmission effect.
  • FIG. 8 is a schematic flowchart of a beam configuration method provided by another embodiment of this application. As shown in FIG. 8, this embodiment may include:
  • Step S301 Determine the base station scheduling information rank, and determine the angle of arrival power spectrum.
  • Step S302 Determine peak information according to the angle of arrival power spectrum.
  • Step S303 Determine the beam direction that meets the power condition according to the peak information.
  • Step S304 Select at least one candidate beam direction from beam directions that meet the power condition according to the preset screening condition.
  • step S301 to step S304 are similar to those of step S101 to step S104 in Embodiment 1, and will not be repeated here.
  • Step S305 If the base station scheduling information rank value is not 1, and/or the channel quality indicator CQI value is not greater than the second preset threshold, determine the target beam direction according to the number of beams to be selected.
  • the target beam direction is determined according to the number of beams to be selected. At this time, if the number of beams to be selected is 1, the direction of the beam to be selected is used as the target beam direction.
  • Step S306 Determine the polarization mode of the target beam direction when the number of beams to be selected is one.
  • vertical polarization and horizontal polarization are used to receive the reference signal sent by the base station in the target beam direction; the received power RSRP_ ⁇ V ⁇ of the reference signal in the vertical polarization direction and the reference signal in the horizontal polarization direction are obtained. The received power RSRP ⁇ H ⁇ . Then the polarization mode of the target beam is determined according to the received power RSRP_ ⁇ V ⁇ and the received power RSRP ⁇ H ⁇ of the reference signal in the horizontal polarization direction.
  • the first beam and the second beam are set in the target beam direction; where the first beam The first beam direction is the same as the second beam direction, and the polarization modes of the first beam direction and the second beam direction are different; the rank value is reported to the base station, and when the base station scheduling information rank value is 1, select the first Either the beam direction or the second beam direction is used as the target beam direction; according to max(RSRP_ ⁇ H ⁇ , RSRP_ ⁇ V ⁇ ), the polarization mode of the target beam direction is determined. If the received power is greater in the vertical polarization mode, set the polarization mode of the target beam direction to vertical polarization. If the received power is greater in the horizontal polarization mode, set the polarization mode of the target beam direction to horizontal polarization.
  • the first beam and the second beam are set in the target beam direction; where , The first beam direction and the second beam direction are the same; when the polarization mode of the first beam direction is vertically polarized, set the polarization mode of the second beam direction to horizontal polarization; when the polarization mode of the first beam direction is In the case of horizontal polarization, the polarization mode of the second beam direction is set to vertical polarization.
  • the probability of beam failure recovery failure can be effectively reduced, especially when the terminal side is moving, it can ensure the stability and robustness of the communication link transmission .
  • the base station scheduling information rank is determined, and the angle of arrival power spectrum is determined; according to the peak information, the beam direction that meets the power condition is determined; at least one beam direction that meets the power condition is selected according to a preset screening condition The direction of the beam to be selected; if the value of the base station scheduling information rank is not 1, and/or the value of the channel quality indicator CQI is not greater than the second preset threshold, the target beam direction is determined according to the number of beams to be selected, and the target beam is finally determined Direction of polarization.
  • the polarization mode can be selected according to the power of the reference signal received in the vertical polarization and horizontal polarization in the target beam direction, so as to improve the data transmission effect.
  • FIG. 9 is a schematic flowchart of a beam configuration method provided by still another embodiment of this application. As shown in FIG. 9, this embodiment may include:
  • Step S401 Determine the base station scheduling information rank, and determine the angle of arrival power spectrum.
  • Step S402 Determine peak information according to the angle of arrival power spectrum.
  • Step S403 Determine the beam direction that meets the power condition according to the peak information.
  • Step S404 Select at least one beam direction to be selected from beam directions that meet the power condition according to a preset screening condition.
  • step S401 to step S404 are similar to those of step S101 to step S104 in Embodiment 1, and will not be repeated here.
  • Step S405 If the base station scheduling information rank value is not 1, and/or the channel quality indicator CQI value is not greater than the second preset threshold, the target beam direction is determined according to the number of beams to be selected.
  • the target beam direction is determined according to the number of beams to be selected. At this time, if the number of beams to be selected is greater than 1, then all beam directions to be selected are used as target beam directions.
  • Step S406 Determine the polarization mode of the target beam direction when the number of beams to be selected is greater than one.
  • the vertical polarization and horizontal polarization are used to receive the reference signal sent by the base station in each target beam direction; the received power of the reference signal in the vertical polarization direction is obtained RSRP_ ⁇ V ⁇ and the received power RSRP ⁇ H ⁇ of the reference signal in the horizontal polarization direction.
  • max(RSRP_ ⁇ H ⁇ ,RSRP_ ⁇ V ⁇ ) determine the polarization mode of each target beam direction. If the received power is greater in the vertical polarization mode, set the polarization mode of the target beam direction to vertical polarization. If the received power is greater in the horizontal polarization mode, set the polarization mode of the target beam direction to horizontal polarization.
  • flexible polarization configuration can be performed according to the channel quality to increase the number of data streams, thereby increasing the data transmission rate between the terminal and the base station.
  • the base station scheduling information rank is determined, and the angle of arrival power spectrum is determined; according to the peak information, the beam direction that meets the power condition is determined; at least one beam direction that meets the power condition is selected according to a preset screening condition The direction of the beam to be selected; if the value of the base station scheduling information rank is not 1, and/or the value of the channel quality indicator CQI is not greater than the second preset threshold, the target beam direction is determined according to the number of beams to be selected, and the target beam is finally determined Direction of polarization.
  • the polarization mode can be selected according to the power of the reference signal received in the vertical polarization and horizontal polarization in the target beam direction, so as to improve the data transmission effect.
  • FIG. 10 is a schematic structural diagram of a beam configuration device provided by an embodiment of the application.
  • the beam configuration device 900 in this embodiment may include: a processing module 901, a storage module 902, and the storage module 902 is used for The processing module 901 is coupled to store the necessary program instructions and data;
  • the processing module 901 is used for:
  • the peak information determine the beam direction that meets the power condition
  • preset screening conditions select at least one candidate beam direction from beam directions that meet the power condition
  • the target beam direction of the terminal is determined from the beam directions to be selected.
  • it also includes:
  • the receiving module 903 is configured to receive base station scheduling information rank sent by the base station.
  • processing module 901 is also used for:
  • the received power of the reference signal in different beam directions is obtained respectively; wherein, the received power of the reference signal in different beam directions constitutes the arrival angle power spectrum.
  • processing module 901 is also used for:
  • the peak information includes: each peak power, the maximum peak power, and the angular distance between adjacent peak powers.
  • the power condition refers to: the peak power is greater than the rsrp-ThresholdSSB in the high-level parameter RACH-ConfigCommon, the absolute value of the difference between the peak power and the maximum peak power is less than or equal to the first preset threshold, and between adjacent peak powers The angular distance of is greater than the beam direction corresponding to the peak power of the terminal's beam width.
  • processing module 901 is also used for:
  • the beam direction to be selected is selected from beam directions that meet the power condition in the order of power from high to bottom.
  • processing module 901 is also used for:
  • the candidate beam direction with the strongest power is selected as the target beam direction.
  • processing module 901 is also used for:
  • vertical polarization and horizontal polarization are used to receive the reference signal sent by the base station;
  • processing module 901 is also used for:
  • the target beam direction is determined according to the number of beams to be selected.
  • determining the target beam direction according to the number of beams to be selected includes:
  • the direction of the beam to be selected is used as the target beam direction.
  • processing module 901 is also used for:
  • vertical polarization and horizontal polarization are used to receive the reference signal sent by the base station;
  • processing module 901 is also used for:
  • processing module 901 is also used for:
  • the first beam direction and the second beam direction are the same; when the polarization mode of the first beam direction is vertically polarized, the polarization mode of the second beam direction is set to horizontal polarization; when the polarization mode of the first beam direction is When it is horizontal polarization, set the polarization mode of the second beam direction to vertical polarization.
  • determining the target beam direction according to the number of beams to be selected includes:
  • processing module 901 is also used for:
  • each target beam direction vertical polarization and horizontal polarization are used to receive the reference signal sent by the base station;
  • the beam configuration device of this embodiment can be used to implement the technical solutions of the terminal in the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional modules in the embodiments of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • FIG. 11 is a schematic structural diagram of a terminal provided by an embodiment of the application.
  • the terminal 1000 in this embodiment may include: a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 11 only shows a memory and a processor. In an actual terminal, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may also store instructions or data (such as intermediate data).
  • the instruction may be executed by the processor, so that the terminal 1000 executes the method corresponding to the terminal described in the foregoing method embodiment.
  • the terminal 1000 may include a circuit, and the circuit may implement the sending or receiving or communication function in the foregoing method embodiment.
  • the terminal 1000 may include one or more memories, on which instructions may be stored, and the instructions may be executed on the processor, so that the terminal 1000 executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • the processor and memory can be set separately or integrated together.
  • the terminal 1000 may further include a transceiver and/or an antenna to implement the transceiver function of the communication device.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal and execute software. Programs, which process the data of software programs.
  • the processor in FIG. 11 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors and are interconnected by technologies such as buses.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with the transceiver function can be regarded as the transceiver module 1001 of the terminal 1000, and the processor with the processing function can be regarded as the processing module 1002 of the terminal 1000.
  • the terminal 1000 includes a transceiver module 1001 and a processing module 1002.
  • the transceiver module may also be called a transceiver, transceiver, transceiver, and so on.
  • the device for implementing the receiving function in the transceiver module 1001 can be regarded as the receiving module
  • the device for implementing the sending function in the transceiver module 1001 can be regarded as the sending module, that is, the transceiver module 1001 includes a receiving module and a sending module.
  • the receiving module may also be called a receiver, receiver, receiving circuit, etc.
  • the sending module may be called a transmitter, transmitter, or transmitting circuit, etc.
  • the processor and transceiver described in this embodiment can be implemented in integrated circuit (IC), analog IC, radio frequency integrated circuit (RFIC), mixed signal IC, application specific integrated circuit (application specific integrated circuit) , ASIC), printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various 1C process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsen
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • Computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions can be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • a computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供的波束配置方法和装置,此方法包括:确定基站调度信息rank,以及确定波达角度功率谱;根据所述波达角度功率谱确定峰值信息;根据所述峰值信息,确定符合功率条件的波束方向;根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向;根据基站调度信息rank、信道质量指示CQI的值、波达角功率谱,从所述待选波束方向中确定终端的目标波束方向。从而使得终端侧的波束配置方式更加灵活,能够满足不同的业务场景需求,提高通信链路的稳定性。

Description

波束配置方法和装置
本申请要求于2019年07月12日提交中国专利局、申请号为201910628956.9、申请名称为“波束配置方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种波束配置方法和装置。
背景技术
5G高频通信中,在基站侧和用户设备侧都采用波束成形的形式进行信号发送和接收。为了提高5G毫米波通信中的链路稳定性,用户设备侧一般会设置多个天线阵列。每个天线阵列可以同时发射1个或多个波束。而用户设备采用的波束数量,每个波束的方向选择,以及波束的极化方式的配置等,都会对用户设备的传输速率、功耗,以及服务的稳定性带来很大的影响。
目前,一般会在用户设备上安装两个天线阵列,每个阵列各发射一个波束;且设置两个波束的方向相同,极化方式不同。
但是,上述设置方式单一,没有考虑基站调度信息、信道质量等对波束配置的要求,从而使得波束配置与具体业务场景不适配,影响整个通信链路的稳定性。
发明内容
本申请实施例提供一种波束配置方法和装置,可以使得终端侧的波束配置方式更加灵活,能够满足不同的业务场景需求,提高通信链路的稳定性。
第一方面,本申请实施例提供一种波束配置方法,包括:
确定基站调度信息rank,以及确定波达角度功率谱;
根据所述波达角度功率谱确定峰值信息;
根据所述峰值信息,确定符合功率条件的波束方向;
根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向;
根据基站调度信息rank、信道质量指示CQI的值、波达角功率谱,从所述待选波束方向中确定终端的目标波束方向。
本实施例中,综合考虑了业务场景,通过确定基站调度信息rank,以及确定波达角度功率谱;根据波达角度功率谱确定峰值信息;根据峰值信息,确定符合功率条件的波束方向;根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向;根据基站调度信息rank、信道质量指示CQI的值、波达角功率谱,从待选波束方向中确定终端的目标波束方向。从而使得终端侧的波束配置方式更加灵活, 能够满足不同的业务场景需求,提高通信链路的稳定性。
可选地,确定基站调度信息rank,包括:
接收基站发送的基站调度信息rank。
本实施例中,由于基站的调度信息是预先配置好的,因此,终端侧也可以通过查询基站的配置参数来获取基站调度信息rank。从而可以根据基站调度信息rank的不同,设计相应的波束配置方案。
可选地,确定波达角度功率谱,包括:
当基站发送的波束方向固定时,分别获取不同波束方向的参考信号接收功率;其中,所述不同波束方向的参考信号接收功率构成波达角度功率谱。
可选地,确定波达角度功率谱,包括:
通过波束扫描获取波达角度功率谱,或通过非相干的信道估计获取波达角度功率谱。
可选地,所述峰值信息包括:各个峰值功率、最大峰值功率,以及相邻峰值功率之间的角度距离。
可选地,所述功率条件是指:峰值功率大于基站下发给终端的RRC高层参数RACH-ConfigCommon中的rsrp-ThresholdSSB,峰值功率与最大峰值功率的差值的绝对值小于等于第一预设阈值,且相邻峰值功率之间的角度距离大于终端的波束宽度的峰值功率所对应的波束方向。
本实施例中,可以按照功率条件查找满足条件的波束方向,从而综合考虑了峰值功率、相邻峰值功率之间的角度距离、最大峰值功率等因素,选择出信号传递质量较佳的波束方向。
可选地,根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向,包括:
根据终端同时支持的波束数目上限值、符合功率条件的波束数目,确定待选波束的数目;其中,待选波束的数目为终端同时支持的波束数目上限值和符合功率条件的波束数目中的最小值;
根据所述待选波束的数目,按照功率从高到底的顺序,从符合功率条件的波束方向中选择出所述待选波束方向。
本实施例中,通过终端同时支持的波束数目上限值、符合功率条件的波束数目来确定待选波束的数目,从而可以在满足终端设备自身要求的前提下,选择出最适宜的波束数目。
可选地,还包括:根据水平极化和垂直极化的功率关系,确定所述目标波束方向上的极化方式。
可选地,所述根据水平极化和垂直极化的功率关系,确定所述目标波束方向上的极化方式,包括:
在所述目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参考信号;
获取垂直极化方向上所述参考信号的接收功率RSRP_{V}和水平极化方向上所述参考信号的接收功率RSRP{H};
根据max(RSRP_{H},RSRP_{V}),确定所述目标波束方向的极化方式。
本实施例中,通过在目标波束方向上用两种不同的极化方式来接收参考信号,通过比较参考信号的接收功率的大小来确定目标波束方向上的极化方式;从而可以选择出接收效果更好的极化方式,提高信号的传输质量。
可选地,根据基站调度信息rank、信道质量指示CQI的值、波达角功率谱,从所述待选波束方向中确定终端的目标波束方向,包括:
若基站调度信息rank的值为1,且信道质量指示CQI的值大于第二预设阈值时,则选择功率最强的待选波束方向作为目标波束方向。
可选地,根据基站调度信息rank、信道质量指示CQI的值、波达角功率谱,从所述待选波束方向中确定终端的目标波束方向,包括:
若基站调度信息rank的值不为1,和/或信道质量指示CQI的值不大于第二预设阈值,则根据待选波束的数目确定所述目标波束方向。
本实施例中,通过基站调度信息和/或信道质量指示CQI的值来确定目标波束方向,从而可以灵活地选择信道数目,降低信号的传输功耗。
可选地,根据所述待选波束的数目确定所述目标波束方向,包括:
若所述待选波束的数目为1,则将所述待选波束方向作为目标波束方向。
可选地,还包括:
在所述目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参考信号;
获取垂直极化方向上所述参考信号的接收功率RSRP_{V}和水平极化方向上所述参考信号的接收功率RSRP{H}。
可选地,还包括:
若RSRP_{V}和RSRP{H}的差值的绝对值大于第三预设阈值,则在所述目标波束方向上设置第一波束和第二波束;其中,第一波束方向和第二波束方向相同,且所述第一波束方向和第二波束方向的极化方式不同;
向基站上报rank的值为1,并在基站调度信息rank的值为1时,选择第一波束方向或者第二波束方向中的任一个波束方向作为目标波束方向;
根据max(RSRP_{H},RSRP_{V}),确定所述目标波束方向的极化方式。
本实施例中,当基站调度信息为1时,可以选择第一波束方向或者第二波束方向中的任一个波束方向作为目标波束方向,从而在保证信号传输效果的前提下,尽可能地降低信号的传输功耗。
可选地,还包括:
若RSRP_{V}和RSRP{H}的差值的绝对值不大于第三预设阈值,则在所述目标波束方向上设置第一波束和第二波束;
其中,第一波束方向和第二波束方向相同;当所述第一波束方向的极化方式垂直极化时,设置所述第二波束方向的极化方式为水平极化;当所述第一波束方向的极化方式为水平极化时,设置所述第二波束方向的极化方式为垂直极化。
本实施例中,在采用两个波束的时候,可以根据信道质量,采用不同方向的波束,从而降低波束故障恢复失败的概率,尤其适用于用户设备UE运动的情况。
可选地,根据所述待选波束的数目确定所述目标波束方向,包括:
若所述待选波束的数目大于1,则将所有所述待选波束方向作为目标波束方向。
可选地,还包括:
在每个所述目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参考信号;
获取垂直极化方向上所述参考信号的接收功率RSRP_{V}和水平极化方向上所述参考信号的接收功率RSRP{H};
根据max(RSRP_{H},RSRP_{V}),确定每个所述目标波束方向的极化方式。
本实施例中,可以根据信道质量,采用灵活的极化配置方式,从而提高用户设备UE的传输速率,增大流数。
第二方面,本申请实施例提供一种波束配置装置,包括:
处理模块,存储模块,其中所述存储模块用于与所述处理模块藕合,保存必要的程序指令和数据;
所述处理模块,用于:
确定基站调度信息rank,以及确定波达角度功率谱;
根据所述波达角度功率谱确定峰值信息;
根据所述峰值信息,确定符合功率条件的波束方向;
根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向;
根据基站调度信息rank、信道质量指示CQI的值、波达角功率谱,从所述待选波束方向中确定终端的目标波束方向。
可选地,还包括:
接收模块,用于接收基站发送的基站调度信息rank。
可选地,所述处理模块,还用于:
当基站发送的波束方向固定时,分别获取不同波束方向的参考信号接收功率;其中,所述不同波束方向的参考信号接收功率构成波达角度功率谱。
可选地,所述处理模块,还用于:
通过波束扫描获取波达角度功率谱,或通过非相干的信道估计获取波达角度功率谱。
可选地,所述峰值信息包括:各个峰值功率、最大峰值功率,以及相邻峰值功率之间的角度距离。
可选地,所述功率条件是指:峰值功率大于基站下发给终端的RRC高层参数RACH-ConfigCommon中的rsrp-ThresholdSSB,峰值功率与最大峰值功率的差值的绝对值小于等于第一预设阈值,且相邻峰值功率之间的角度距离大于终端的波束宽度的峰值功率所对应的波束方向。
可选地,所述处理模块,还用于:
根据终端同时支持的波束数目上限值、符合功率条件的波束数目,确定待选波束的数目;其中,待选波束的数目为终端同时支持的波束数目上限值和符合功率条件的波束数目中的最小值;
根据所述待选波束的数目,按照功率从高到底的顺序,从符合功率条件的波束方向中选择出所述待选波束方向。
可选地,所述处理模块,还用于:
根据水平极化和垂直极化的功率关系,确定所述目标波束方向上的极化方式。
可选地,所述处理模块,具体用于:在所述目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参考信号;
获取垂直极化方向上所述参考信号的接收功率RSRP_{V}和水平极化方向上所述参考信号的接收功率RSRP{H};
根据max(RSRP_{H},RSRP_{V}),确定所述目标波束方向的极化方式。
可选地,所述处理模块,还用于:
若基站调度信息rank的值为1,且信道质量指示CQI的值大于第二预设阈值时,则选择功率最强的待选波束方向作为目标波束方向。
可选地,所述处理模块,还用于:
若基站调度信息rank的值不为1,和/或信道质量指示CQI的值不大于第二预设阈值,则根据待选波束的数目确定所述目标波束方向。
可选地,根据所述待选波束的数目确定所述目标波束方向,包括:
若所述待选波束的数目为1,则将所述待选波束方向作为目标波束方向。
可选地,所述处理模块,还用于:
在所述目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参考信号;
获取垂直极化方向上所述参考信号的接收功率RSRP_{V}和水平极化方向上所述参考信号的接收功率RSRP{H}。
可选地,所述处理模块,还用于:
若RSRP_{V}和RSRP{H}的差值的绝对值大于第三预设阈值,则在所述目标波束方向上设置第一波束和第二波束;其中,第一波束方向和第二波束方向相同,且所述第一波束方向和第二波束方向的极化方式不同;
向基站上报rank的值为1,并在基站调度信息rank的值为1时,选择第一波束方向或者第二波束方向中的任一个波束方向作为目标波束方向;
根据max(RSRP_{H},RSRP_{V}),确定所述目标波束方向的极化方式。
可选地,所述处理模块,还用于:
若RSRP_{V}和RSRP{H}的差值的绝对值不大于第三预设阈值,则在所述目标波束方向上设置第一波束和第二波束;
其中,第一波束方向和第二波束方向相同;当所述第一波束方向的极化方式垂直极化时,设置所述第二波束方向的极化方式为水平极化;当所述第一波束方向的极化方式为水平极化时,设置所述第二波束方向的极化方式为垂直极化。
可选地,根据所述待选波束的数目确定所述目标波束方向,包括:
若所述待选波束的数目大于1,则将所有所述待选波束方向作为目标波束方向。
可选地,所述处理模块,还用于:
在每个所述目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参 考信号;
获取垂直极化方向上所述参考信号的接收功率RSRP_{V}和水平极化方向上所述参考信号的接收功率RSRP{H};
根据max(RSRP_{H},RSRP_{V}),确定每个所述目标波束方向的极化方式。
第三方面,本申请实施例提供一种波束配置装置,包括:
包括用于实现第一方面的波束配置方法的模块,部件或者电路。
第四方面,本申请实施例提供一种终端,包括:处理器和收发器;处理器和收发器用于执行第一方面本申请实施例任一所述的波束配置方法。
第五方面,本申请实施例提供一种芯片,包括:存储器和处理器,存储器用于存储程序指令,处理器用于调用存储器中的程序指令执行第一方面本申请实施例所述的波束配置方法。
第六方面,本申请实施例提供一种可读存储介质,所述可读存储介质上存储有计算机程序;所述计算机程序在被执行时,实现第一方面本申请实施例所述的波束配置方法。
第七方面,本申请实施例提供一种程序产品,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,通信装置的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得通信装置实施第一方面本申请实施例任一所述的波束配置方法。
本申请中,通过确定基站调度信息rank,以及确定波达角度功率谱;根据所述波达角度功率谱确定峰值信息;根据峰值信息,确定符合功率条件的波束方向;根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向;根据基站调度信息rank、信道质量指示CQI的值、波达角功率谱,从待选波束方向中确定终端的目标波束方向。从而使得终端侧的波束配置方式更加灵活,能够满足不同的业务场景需求,提高通信链路的稳定性。
附图说明
图1为本申请实施例提供的应用场景的结构示意图;
图2为本申请一实施例提供的波束配置方法的流程示意图;
图3为本申请实施例提供的波达角度功率谱的获取原理示意图;
图4为本申请实施例提供的一场景下的波达角度功率谱的示意图;
图5为本申请实施例提供的另一场景下的波达角度功率谱的示意图;
图6为本申请提供的波束配置方法的综合流程示意图;
图7为本申请另一实施例提供的波束配置方法的流程示意图;
图8为本申请又一实施例提供的波束配置方法的流程示意图;
图9为本申请再一实施例提供的波束配置方法的流程示意图;
图10为本申请一实施例提供的波束配置装置的结构示意图;
图11为本申请一实施例提供的终端的结构示意图。
具体实施方式
图1为本申请实施例提供的应用场景的结构示意图,如图1所示,可以包括:网络设备和终端。采用天线阵列对信号波束赋型,能够实现精准窄波束对用户数据提供服务,从而可以获得更远的覆盖距离,并减少信号干扰。因此,在5G高频通信中,在网络设备和终端侧都采用波束成形的方式进行信号发送和接收。当通过波束成形的方式进行信号发送和接收时,就涉及到了波束管理。本申请实施例中,在网络设备侧波束方向固定时,对终端侧的波束进行优化配置,以满足不同的业务场景需求,提高通信链路的稳定性。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解:
网络设备:又称为无线接入网(Radio Access Network,RAN)设备,是一种将终端接入到无线网络的设备,可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者5G网络中的基站,如发送和接收点(Transmission and Reception Point,TRP)、控制器,在此并不限定。
终端:可以是无线终端也可以是有线终端,无线终端可以是指一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等,在此不作限定。可以理解的是,本申请实施例中,终端也可以称为用户设备(user equipment,UE)。
波束管理:是毫米波的协议基本特性,在TR38.802中,波束管理的关键过程被定义:获取和维护上下行数据发送和接收波束集合的L1/L2过程,包括波束确定,波束测量,波束扫描和波束上报。1)波束确定是指信号发送接收点(Transmitting Receiving pair,TRP)或用户设备(user equipment,UE)选择合适的发送接收波束的过程。UE端的需求为:UE在接收到网侧的毫米波波束后进行对齐过程,包括下行波束和上行波束选择,最终选择最优波束,UE需要满足波束互易性。2)波束测量是指UE从网侧接收到的赋形信号,信号内包括波束的信息,UE端的需求为:可正确测量网络的波束成形的信号,可正确上报波束测量信号,可根据测量结果执行波束管理的其他动作。3)波束扫描指在一个空间区域内,波束在一定时间间隔内以预定的方式发送和/或接收。UE端的需求为:UE可以在一定时间内对波束进行扫描,并将扫描结果正确处理。4)波束上报指UE基于波束测量上报赋形信号的信息。UE端的需求为:UE可在不同状态下根据网侧要求上报测量信息,并在网侧回应后作出相应的动作。
现有技术中,一般会在UE端设置两个天线阵列,每个阵列分别打出一个波束,且设置两个波束的极化方式不同,两个波束的波束方向相同。这种设置方式没有考虑具 体的业务场景、信道条件和基站调度情况,实现形式单一。由于两个波束的波束方向总是一样的,因此,当其中一个方向的波束接收失败时,另外一个波束也会同时失败,从而不利于链路的稳定性和鲁棒性。另外,现有技术中没有考虑到信道的极化特征,比如:在某些场景下,垂直极化比水平极化的波束对应参考信号接收功率(Reference Signal Receiving Power,RSRP)高很多(或反之),这时候信号差的极化方式很难正常工作。现有技术中也没有考虑基站调度信息rank和信道质量指示CQI的值、如果网络和信道确定的rank是单流的,那同时打出2个波束也没有必要。综上可知,现有技术的实现形式单一,没有考虑基站调度信息、信道质量等对波束配置的要求,从而使得波束配置与具体业务场景不适配,影响整个通信链路的稳定性。
针对现有技术中存在的问题,本申请综合考虑了业务场景,通过确定基站调度信息rank,以及确定波达角度功率谱;根据波达角度功率谱确定峰值信息;根据峰值信息,确定符合功率条件的波束方向;根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向;根据基站调度信息rank、信道质量指示CQI的值、波达角功率谱,从待选波束方向中确定终端的目标波束方向。从而使得终端侧的波束配置方式更加灵活,能够满足不同的业务场景需求,提高通信链路的稳定性。
图2为本申请一实施例提供的波束配置方法的流程示意图,如图2所示,本实施例可以包括:
步骤S101、确定基站调度信息rank,以及确定波达角度功率谱。
本实施例中,终端侧可以直接从基站侧获取到基站调度信息rank。由于基站的调度信息是预先配置好的,因此,终端侧也可以通过查询基站的配置参数来获取基站调度信息rank。
本实施例中,终端侧可以在P1阶段和/或P3阶段的波束扫描时获取波达角度功率谱。具体地,以P3阶段(P3阶段时,网络设备的波束固定不变)为例进行详细说明。图3为本申请实施例提供的波达角度功率谱的获取原理示意图,如图3所示,在一预设时段内,网络设备侧的波束方向固定,在该预设时段内,控制终端侧按照预设角度间隔调整波束的方向。然后在每个波束方向上记录接收到的参考信号的功率,得到终端的波达角功率谱。具体地,
本实施例中,终端还可以通过非相干的信道估计获取波达角度功率谱。具体地,由于波达角度功率与信道信号衰落成相关关系,因此可以根据信道信号情况估算出波达角功率谱。
步骤S102、根据波达角度功率谱确定峰值信息。
本实施例中,可以通过步骤S101获取的波达角度功率谱提取出对应的峰值信息,峰值信息可以包括:各个峰值功率、最大峰值功率,以及相邻峰值功率之间的角度距离。
具体地,图4为本申请实施例提供的一场景下的波达角度功率谱的示意图;如图4所示,在直射场景(Line of Sight,LoS)和强反射场景下,各个峰值功率之间的功率值相差较大,峰值功率之间的角度距离较小。图5为本申请实施例提供的另一场景下的波达角度功率谱的示意图;如图5所示,在复杂反射,散射和遮挡场景下,各个峰值功率之间的功率值相差较小,各个峰值之间的角度距离较大。参见图4、图5, 可以从波达角度功率谱中直接提取出各个峰值功率、最大峰值功率,以及相邻峰值功率之间的角度距离。
步骤S103、根据峰值信息,确定符合功率条件的波束方向。
本实施例中,基于波达角功率谱获取峰值信息,然后根据峰值信息,找出所有符合功率条件的峰值功率对应的角度,根据该角度确定波束方向。
本实施例中,峰值信息可以包括:各个峰值功率、最大峰值功率,以及相邻峰值功率之间的角度距离。可选地,功率条件包括:
1)满足峰值功率大于基站下发给终端的RRC高层参数RACH-ConfigCommon中的rsrp-ThresholdSSB;
2)峰值功率与最大峰值功率的差值的绝对值小于等于第一预设阈值;
3)相邻峰值功率之间的角度距离大于终端的波束宽度的峰值功率所对应的波束方向。
需要说明的是,本实施例对第一预设阈值的具体取值不予限定。在不同的应用场景或者业务需求下,可以调整第一预设阈值的大小。本实施例中,可以设置第一预设阈值为10dB。
具体地,参见图4、图5,在图4中有一个符合所有功率条件的峰值功率,在图5中存在两个符合所有功率条件的峰值功率。记录下符合所有功率条件的峰值功率的波束方向。
步骤S104、根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向。
本实施例中,可以根据终端支持的波束能力,从符合功率条件的波束方向中选择出至少一个待选波束方向。
可选地,根据终端同时支持的波束数目上限值、符合功率条件的波束数目,确定待选波束的数目;其中,待选波束的数目为终端同时支持的波束数目上限值和符合功率条件的波束数目中的最小值;根据待选波束的数目,按照功率从高到底的顺序,从符合功率条件的波束方向中选择出待选波束方向。
具体地,假设符合功率条件的峰值功率数目为B,终端能够同时支持的最大波束数目是X,则令A=min(X,B),其中,A为待选波束的数目。
步骤S105、根据基站调度信息rank、信道质量指示(Channel State Indicator,CQI)的值、波达角功率谱,从待选波束方向中确定终端的目标波束方向。
本实施例中,可以在选择目标波束方向时,综合考虑基站调度信息rank、信道质量指示CQI的值。例如,根据基站调度信息rank、信道质量指示CQI的值确定选择的待选波束数量,然后基于波达角功率谱,从按照功率从高到低的顺序选择相应数目的待选波束方向作为终端的目标波束方向。
本实施例中,基于网络设备(基站)侧的调取情况和信道质量,来灵活第选择波束数量,从而可以选择最佳的通道数,降低传输功耗。
本实施例,通过确定基站调度信息rank,以及确定波达角度功率谱;根据峰值信息,确定符合功率条件的波束方向;根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向;根据基站调度信息rank、信道质量指示CQI的值、 波达角功率谱,从待选波束方向中确定终端的目标波束方向。从而使得终端侧的波束配置方式更加灵活,能够满足不同的业务场景需求,提高通信链路的稳定性。
在一可能的实施例中,在步骤S105之后,还可以根据水平极化和垂直极化的功率关系,确定目标波束方向上的极化方式。
本实施例中,在目标波束方向上,分别按照水平极化方式和垂直极化方式来接收基站发送的参考信号,然后依据参考信号的功率大小决定使用的极化方式。
可选地,在目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参考信号;获取垂直极化方向上参考信号的接收功率RSRP_{V}和水平极化方向上参考信号的接收功率RSRP{H};根据max(RSRP_{H},RSRP_{V}),确定目标波束方向的极化方式。若垂直极化方式下接收功率更大,则将目标波束方向的极化方式设置为垂直极化。若水平极化方式下接收功率更大,则将目标波束方向的极化方式设置为水平极化。
示例性的,图6为本申请提供的波束配置方法的综合流程示意图,如图6所示,可以包括:
步骤1:获取波达角度功率谱。
步骤2:根据波达角度功率谱,确定符合功率条件的波束方向。
本实施例中,根据终端同时支持的波束数目上限值、符合功率条件的波束数目,确定待选波束的数目;其中,待选波束的数目为终端同时支持的波束数目上限值和符合功率条件的波束数目中的最小值;根据待选波束的数目,按照功率从高到底的顺序,从符合功率条件的波束方向中选择出待选波束方向。
步骤3:判断基站调度信息rank是否为1,且信道质量指示CQI的值是否大于15;若基站调度信息rank为1,且信道质量指示CQI的值是否大于15,则执行步骤4;否则执行步骤7。
步骤4:选择功率最强的待选波束方向作为目标波束方向。
步骤5:在目标波束方向上分别用垂直极化和水平极化方式接收基站发送的参考信号。
步骤6:选择参考信号强度大的极化方式作为目标波束方向上的极化方式,结束流程。
步骤7:判断符合功率条件的波束方向的数量是否大于1,若等于1,则执行步骤8;若大于1,则执行步骤10。
步骤8:判断垂直极化和水平极化方式接收基站发送的参考信号之差的绝对值是否大于或等于10dB;若否,则执行步骤11;若是,则执行步骤9。
步骤9:在目标波束方向上设置第一波束和第二波束;其中,第一波束方向和第二波束方向相同,且第一波束方向和第二波束方向的极化方式不同;向基站上报rank的值为1,并在基站调度信息rank的值为1时,选择第一波束方向或者第二波束方向中的任一个波束方向作为目标波束方向;在目标波束方向上分别用垂直极化和水平极化方式接收基站发送的参考信号,选择参考信号强度大的极化方式作为目标波束方向上的极化方式,结束流程。
步骤10、将所有待选波束方向作为目标波束方向,在每个目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参考信号,选择参考信号强度大的极化方 式作为目标波束方向上的极化方式,结束流程。
步骤11、在目标波束方向上设置第一波束和第二波束;其中,第一波束方向和第二波束方向相同;当第一波束方向的极化方式垂直极化时,设置第二波束方向的极化方式为水平极化;当第一波束方向的极化方式为水平极化时,设置第二波束方向的极化方式为垂直极化。
需要说明的是,在步骤3中,本实施例设置信道质量指示CQI的值的判别标准为15,在实际应用中,可以根据具体的应用场景设置不同的值。在步骤8中,本实施例设置了判断垂直极化和水平极化方式接收基站发送的参考信号之差的绝对值为10dB,在实际应用中,可以根据具体的应用场景设置不同的值。本实施例不限定具体参数的数值设置。
本实施例中,通过对波束方向和波束的极化方式的灵活配置,可以降低功耗,提高UE传输速率;以及降低链路和波束失败的概率。通过考虑网络调度情况和信道质量,来区分波束数量,可以灵活选择通道数目,降低功耗。当采用两个波束的时候,可以根据信道质量,采用不同方向的波束,从而有效降低波束故障恢复失败的概率,特别是在UE运动的情况下。当采用两个波束的时候,由于根据信道质量,采用了灵活的极化配置,因此可以提高UE的传输速率,增大流数。
本实施例,通过确定基站调度信息rank,以及确定波达角度功率谱;根据波达角度功率谱确定峰值信息;根据峰值信息,确定符合功率条件的波束方向;根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向;根据基站调度信息rank、信道质量指示CQI的值、波达角功率谱,从待选波束方向中确定终端的目标波束方向。从而使得终端侧的波束配置方式更加灵活,能够满足不同的业务场景需求,提高通信链路的稳定性。
图7为本申请另一实施例提供的波束配置方法的流程示意图,如图7所示,本实施例可以包括:
步骤S201、确定基站调度信息rank,以及确定波达角度功率谱。
步骤S202、根据波达角度功率谱确定峰值信息。
步骤S203、根据峰值信息,确定符合功率条件的波束方向。
步骤S204、根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向。
本实施例中,步骤S201~步骤S204的具体实现过程和实现原理与实施例一中步骤S101~步骤S104的类似,此处不再赘述。
步骤S205、若基站调度信息rank的值为1,且信道质量指示CQI的值大于第二预设阈值时,则选择功率最强的待选波束方向作为目标波束方向。
本实施例中,当基站为调度单流,且信号质量指示CQI的值大于第二预设阈值,则基于选择功率最强的待选波束方向作为目标波束方向。这是由于当基站为调度单流,且信号质量较佳时,本身通信链路的稳定性就很好,此时选择功率最强的待选波束方向即可稳定地接收到基站发送的信号。
需要说明的是,本实施例对第二预设阈值的具体取值不予限定。在不同的应用场 景或者业务需求下,可以调整第二预设阈值的大小。本实施例中,可以设置第二预设阈值为15。
步骤S206、确定目标波束方向的极化方式。
本实施例中,在目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参考信号。获取垂直极化方向上参考信号的接收功率RSRP_{V}和水平极化方向上参考信号的接收功率RSRP{H};根据max(RSRP_{H},RSRP_{V}),确定目标波束方向的极化方式。若垂直极化方式下接收功率更大,则将目标波束方向的极化方式设置为垂直极化。若水平极化方式下接收功率更大,则将目标波束方向的极化方式设置为水平极化。
本实施例,通过确定基站调度信息rank,以及确定波达角度功率谱;根据峰值信息,确定符合功率条件的波束方向;根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向;若基站调度信息rank的值为1,且信道质量指示CQI的值大于第二预设阈值时,则选择功率最强的待选波束方向作为目标波束方向,最后确定目标波束方向的极化方式。从而使得终端侧的波束方向的配置方式更加灵活,能够满足不同的业务场景需求,提高通信链路的稳定性。在确定目标波束方向之后,还可以根据该目标波束方向上垂直极化和水平极化接收到的参考信号功率大小来选择极化方式,从而能够提高数据的传输效果。
图8为本申请又一实施例提供的波束配置方法的流程示意图,如图8所示,本实施例可以包括:
步骤S301、确定基站调度信息rank,以及确定波达角度功率谱。
步骤S302、根据波达角度功率谱确定峰值信息。
步骤S303、根据峰值信息,确定符合功率条件的波束方向。
步骤S304、根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向。
本实施例中,步骤S301~步骤S304的具体实现过程和实现原理与实施例一中步骤S101~步骤S104的类似,此处不再赘述。
步骤S305、若基站调度信息rank的值不为1,和/或信道质量指示CQI的值不大于第二预设阈值时,则根据待选波束的数目确定目标波束方向。
本实施例中,当基站为调度不是单流,和/或信道质量指示CQI的值不大于第二预设阈值时,根据待选波束的数目确定目标波束方向。此时,若待选波束的数目为1,则将待选波束方向作为目标波束方向。
步骤S306、确定待选波束的数目为1时,目标波束方向的极化方式。
本实施例中,在目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参考信号;获取垂直极化方向上参考信号的接收功率RSRP_{V}和水平极化方向上参考信号的接收功率RSRP{H}。然后根据接收功率RSRP_{V}和水平极化方向上参考信号的接收功率RSRP{H}确定目标波束的极化方式。
在一种可能的实施方式中,若RSRP_{V}和RSRP{H}的差值的绝对值大于第三预设阈值,则在目标波束方向上设置第一波束和第二波束;其中,第一波束方向和第二波 束方向相同,且第一波束方向和第二波束方向的极化方式不同;向基站上报rank的值为1,并在基站调度信息rank的值为1时,选择第一波束方向或者第二波束方向中的任一个波束方向作为目标波束方向;根据max(RSRP_{H},RSRP_{V}),确定目标波束方向的极化方式。若垂直极化方式下接收功率更大,则将目标波束方向的极化方式设置为垂直极化。若水平极化方式下接收功率更大,则将目标波束方向的极化方式设置为水平极化。
在另一种可能的实施方式中,若RSRP_{V}和RSRP{H}的差值的绝对值不大于第三预设阈值,则在目标波束方向上设置第一波束和第二波束;其中,第一波束方向和第二波束方向相同;当第一波束方向的极化方式垂直极化时,设置第二波束方向的极化方式为水平极化;当第一波束方向的极化方式为水平极化时,设置第二波束方向的极化方式为垂直极化。
本实施例中,在采用两个不同的目标波束方向时,可以有效地降低波束故障恢复失败的概率,特别是在终端侧运动的情况下,能够保证通信链路传输的稳定性和鲁棒性。
本实施例,通过确定基站调度信息rank,以及确定波达角度功率谱;根据峰值信息,确定符合功率条件的波束方向;根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向;若基站调度信息rank的值不为1,和/或信道质量指示CQI的值不大于第二预设阈值时,则根据待选波束的数目确定目标波束方向,最后确定目标波束方向的极化方式。从而使得终端侧的波束方向的配置方式更加灵活,能够满足不同的业务场景需求,提高通信链路的稳定性。在确定目标波束方向之后,还可以根据该目标波束方向上垂直极化和水平极化接收到的参考信号功率大小来选择极化方式,从而能够提高数据的传输效果。
图9为本申请再一实施例提供的波束配置方法的流程示意图,如图9所示,本实施例可以包括:
步骤S401、确定基站调度信息rank,以及确定波达角度功率谱。
步骤S402、根据波达角度功率谱确定峰值信息。
步骤S403、根据峰值信息,确定符合功率条件的波束方向。
步骤S404、根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向。
本实施例中,步骤S401~步骤S404的具体实现过程和实现原理与实施例一中步骤S101~步骤S104的类似,此处不再赘述。
步骤S405、若基站调度信息rank的值不为1,和/或信道质量指示CQI的值不大于第二预设阈值时,则根据待选波束的数目确定目标波束方向。
本实施例中,当基站为调度不是单流,和/或信道质量指示CQI的值不大于第二预设阈值时,根据待选波束的数目确定目标波束方向。此时,若待选波束的数目大于1,则将所有待选波束方向作为目标波束方向。
步骤S406、确定待选波束的数目大于1时,目标波束方向的极化方式。
本实施例中,若待选波束的数目大于1,则在每个目标波束方向上分别采用垂直 极化和水平极化方式接收基站发送的参考信号;获取垂直极化方向上参考信号的接收功率RSRP_{V}和水平极化方向上参考信号的接收功率RSRP{H}。根据max(RSRP_{H},RSRP_{V}),确定每个目标波束方向的极化方式。若垂直极化方式下接收功率更大,则将目标波束方向的极化方式设置为垂直极化。若水平极化方式下接收功率更大,则将目标波束方向的极化方式设置为水平极化。
本实施例中,当采用两个或两个以上的目标波束方向时,可以根据信道质量进行灵活的极化配置,增大数据流数,从而提高终端和基站之间数据的传输速率。
本实施例,通过确定基站调度信息rank,以及确定波达角度功率谱;根据峰值信息,确定符合功率条件的波束方向;根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向;若基站调度信息rank的值不为1,和/或信道质量指示CQI的值不大于第二预设阈值时,则根据待选波束的数目确定目标波束方向,最后确定目标波束方向的极化方式。从而使得终端侧的波束方向的配置方式更加灵活,能够满足不同的业务场景需求,提高通信链路的稳定性。在确定目标波束方向之后,还可以根据该目标波束方向上垂直极化和水平极化接收到的参考信号功率大小来选择极化方式,从而能够提高数据的传输效果。
图10为本申请一实施例提供的波束配置装置的结构示意图,如图10所示,本实施例中波束配置装置900的可以包括:处理模块901,存储模块902,其中存储模块902用于与处理模块901藕合,保存必要的程序指令和数据;
处理模块901,用于:
确定基站调度信息rank,以及确定波达角度功率谱;
根据波达角度功率谱确定峰值信息;
根据峰值信息,确定符合功率条件的波束方向;
根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向;
根据基站调度信息rank、信道质量指示CQI的值、波达角功率谱,从待选波束方向中确定终端的目标波束方向。
可选地,还包括:
接收模块903,用于接收基站发送的基站调度信息rank。
可选地,处理模块901,还用于:
当基站发送的波束方向固定时,分别获取不同波束方向的参考信号接收功率;其中,不同波束方向的参考信号接收功率构成波达角度功率谱。
可选地,处理模块901,还用于:
通过波束扫描获取波达角度功率谱,或通过非相干的信道估计获取波达角度功率谱。
可选地,峰值信息包括:各个峰值功率、最大峰值功率,以及相邻峰值功率之间的角度距离。
可选地,功率条件是指:峰值功率大于高层参数RACH-ConfigCommon中的rsrp-ThresholdSSB,峰值功率与最大峰值功率的差值的绝对值小于等于第一预设阈值, 且相邻峰值功率之间的角度距离大于终端的波束宽度的峰值功率所对应的波束方向。
可选地,处理模块901,还用于:
根据终端同时支持的波束数目上限值、符合功率条件的波束数目,确定待选波束的数目;其中,待选波束的数目为终端同时支持的波束数目上限值和符合功率条件的波束数目中的最小值;
根据待选波束的数目,按照功率从高到底的顺序,从符合功率条件的波束方向中选择出待选波束方向。
可选地,处理模块901,还用于:
若基站调度信息rank的值为1,且信道质量指示CQI的值大于第二预设阈值时,则选择功率最强的待选波束方向作为目标波束方向。
可选地,处理模块901,还用于:
在目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参考信号;
获取垂直极化方向上参考信号的接收功率RSRP_{V}和水平极化方向上参考信号的接收功率RSRP{H};
根据max(RSRP_{H},RSRP_{V}),确定目标波束方向的极化方式。
可选地,处理模块901,还用于:
若基站调度信息rank的值不为1,和/或信道质量指示CQI的值不大于第二预设阈值,则根据待选波束的数目确定目标波束方向。
可选地,根据待选波束的数目确定目标波束方向,包括:
若待选波束的数目为1,则将待选波束方向作为目标波束方向。
可选地,处理模块901,还用于:
在目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参考信号;
获取垂直极化方向上参考信号的接收功率RSRP_{V}和水平极化方向上参考信号的接收功率RSRP{H}。
可选地,处理模块901,还用于:
若RSRP_{V}和RSRP{H}的差值的绝对值大于第三预设阈值,则在目标波束方向上设置第一波束和第二波束;其中,第一波束方向和第二波束方向相同,且第一波束方向和第二波束方向的极化方式不同;
向基站上报rank的值为1,并在基站调度信息rank的值为1时,选择第一波束方向或者第二波束方向中的任一个波束方向作为目标波束方向;
根据max(RSRP_{H},RSRP_{V}),确定目标波束方向的极化方式。
可选地,处理模块901,还用于:
若RSRP_{V}和RSRP{H}的差值的绝对值不大于第三预设阈值,则在目标波束方向上设置第一波束和第二波束;
其中,第一波束方向和第二波束方向相同;当第一波束方向的极化方式垂直极化时,设置第二波束方向的极化方式为水平极化;当第一波束方向的极化方式为水平极化时,设置第二波束方向的极化方式为垂直极化。
可选地,根据待选波束的数目确定目标波束方向,包括:
若待选波束的数目大于1,则将所有待选波束方向作为目标波束方向。
可选地,处理模块901,还用于:
在每个目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参考信号;
获取垂直极化方向上参考信号的接收功率RSRP_{V}和水平极化方向上参考信号的接收功率RSRP{H}。
根据max(RSRP_{H},RSRP_{V}),确定每个目标波束方向的极化方式。
本实施例的波束配置装置,可以用于执行上述各方法实施例中终端的技术方案,其实现原理和技术效果类似,此处不再赘述。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
图11为本申请一实施例提供的终端的结构示意图,如图11所示,本实施例中终端1000的可以包括:处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图11仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
在一种可能的设计中,处理器也可以存有指令或者数据(例如中间数据)。其中, 指令可以被处理器运行,使得终端1000执行上述方法实施例中描述的对应于终端的方法。
在又一种可能的设计中,终端1000可以包括电路,电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,终端1000中可以包括一个或多个存储器,其上可以存有指令,指令可在处理器上被运行,使得终端1000执行上述方法实施例中描述的方法。
可选的,存储器中也可以是存储有数据。处理器和存储器可以单独设置,也可以集成在一起。
可选的,终端1000还可以包括收发器和/或天线,用于实现通信装置的收发功能。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图11中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。基带处理器也可以表述为基带处理电路或者基带处理芯片。中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端1000的收发模块1001,将具有处理功能的处理器视为终端1000的处理模块1002。如图11所示,终端1000包括收发模块1001和处理模块1002。收发模块也可以称为收发器、收发机、收发装置等。可选的,可以将收发模块1001中用于实现接收功能的器件视为接收模块,将收发模块1001中用于实现发送功能的器件视为发送模块,即收发模块1001包括接收模块和发送模块示例性的,接收模块也可以称为接收机、接收器、接收电路等,发送模块可以称为发射机、发射器或者发射电路等。
本实施例中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency integrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种1C工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算 机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (23)

  1. 一种波束配置方法,其特征在于,包括:
    确定基站调度信息rank,以及确定波达角度功率谱;
    根据所述波达角度功率谱确定峰值信息;
    根据所述峰值信息,确定符合功率条件的波束方向;
    根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向;
    根据基站调度信息rank、信道质量指示CQI的值、波达角功率谱,从所述待选波束方向中确定终端的目标波束方向。
  2. 根据权利要求1所述的方法,其特征在于,确定波达角度功率谱,包括:
    当基站发送的波束方向固定时,分别获取不同波束方向的参考信号接收功率,其中,所述不同波束方向的参考信号接收功率构成波达角度功率谱。
  3. 根据权利要求1所述的方法,其特征在于,确定波达角度功率谱,包括:
    通过波束扫描获取波达角度功率谱,或通过非相干的信道估计获取波达角度功率谱。
  4. 根据权利要求1所述的方法,其特征在于,所述峰值信息包括:各个峰值功率、最大峰值功率,以及相邻峰值功率之间的角度距离。
  5. 根据权利要求1所述的方法,其特征在于,所述功率条件是指:峰值功率大于基站下发给终端的RRC高层参数RACH-ConfigCommon中的rsrp-ThresholdSSB,峰值功率与最大峰值功率的差值的绝对值小于或等于第一预设阈值,且相邻峰值功率之间的角度距离大于终端的波束宽度的峰值功率所对应的波束方向。
  6. 根据权利要求1所述的方法,其特征在于,根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向,包括:
    根据终端同时支持的波束数目上限值、符合功率条件的波束数目,确定待选波束的数目;其中,待选波束的数目为终端同时支持的波束数目上限值和符合功率条件的波束数目中的最小值;
    根据所述待选波束的数目,按照功率从高到底的顺序,从符合功率条件的波束方向中选择出所述待选波束方向。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,还包括:根据水平极化和垂直极化的功率关系,确定所述目标波束方向上的极化方式;
    其中,所述根据水平极化和垂直极化的功率关系,确定所述目标波束方向上的极化方式,包括:
    在所述目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参考信号;
    获取垂直极化方向上所述参考信号的接收功率RSRP_{V}和水平极化方向上所述参考信号的接收功率RSRP{H};
    根据max(RSRP_{H},RSRP_{V}),确定所述目标波束方向的极化方式。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,根据基站调度信息rank、信道质量指示CQI的值、波达角功率谱,从所述待选波束方向中确定终端的目标波束方向,包括:
    若基站调度信息rank的值为1,且信道质量指示CQI的值大于第二预设阈值时, 则选择功率最强的待选波束方向作为目标波束方向。
  9. 根据权利要求1-7任一项所述的方法,其特征在于,根据基站调度信息rank、信道质量指示CQI的值、波达角功率谱,从所述待选波束方向中确定终端的目标波束方向,包括:
    若基站调度信息rank的值不为1,和/或信道质量指示CQI的值不大于第二预设阈值,则根据待选波束的数目确定所述目标波束方向。
  10. 根据权利要求9所述的方法,其特征在于,还包括:
    在所述目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参考信号;
    获取垂直极化方向上所述参考信号的接收功率RSRP_{V}和水平极化方向上所述参考信号的接收功率RSRP{H}。
  11. 根据权利要求10所述的方法,其特征在于,还包括:
    若RSRP_{V}和RSRP{H}的差值的绝对值大于第三预设阈值,则在所述目标波束方向上设置第一波束和第二波束;其中,第一波束方向和第二波束方向相同,且所述第一波束方向和第二波束方向的极化方式不同;
    向基站上报rank的值为1,并在基站调度信息rank的值为1时,选择第一波束方向或者第二波束方向中的任一个波束方向作为目标波束方向;
    根据max(RSRP_{H},RSRP_{V}),确定所述目标波束方向的极化方式。
  12. 根据权利要求9所述的方法,其特征在于,根据所述待选波束的数目确定所述目标波束方向,包括:
    若所述待选波束的数目大于1,则将所有所述待选波束方向作为目标波束方向。
  13. 根据权利要求12所述的方法,其特征在于,还包括:
    在每个所述目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参考信号;
    获取垂直极化方向上所述参考信号的接收功率RSRP_{V}和水平极化方向上所述参考信号的接收功率RSRP{H};
    根据max(RSRP_{H},RSRP_{V}),确定每个所述目标波束方向的极化方式。
  14. 一种波束配置装置,其特征在于,包括:处理模块,存储模块,其中所述存储模块用于与所述处理模块藕合,保存必要的程序指令和数据;
    所述处理模块,用于:
    确定基站调度信息rank,以及确定波达角度功率谱;
    根据所述波达角度功率谱确定峰值信息;
    根据所述峰值信息,确定符合功率条件的波束方向;
    根据预设的筛选条件,从符合功率条件的波束方向中选择出至少一个待选波束方向;
    根据基站调度信息rank、信道质量指示CQI的值、波达角功率谱,从所述待选波束方向中确定终端的目标波束方向。
  15. 根据权利要求14所述的装置,其特征在于,所述处理模块,还用于:
    当基站发送的波束方向固定时,分别获取不同波束方向的参考信号接收功率,其中,所述不同波束方向的参考信号接收功率构成波达角度功率谱。
  16. 根据权利要求14所述的装置,其特征在于,所述处理模块,还用于:
    通过波束扫描获取波达角度功率谱,或通过非相干的信道估计获取波达角度功率谱。
  17. 根据权利要求14所述的装置,其特征在于,所述峰值信息包括:各个峰值功率、最大峰值功率,以及相邻峰值功率之间的角度距离。
  18. 根据权利要求14所述的装置,其特征在于,所述功率条件是指:峰值功率大于基站下发给终端的RRC高层参数RACH-ConfigCommon中的rsrp-ThresholdSSB,峰值功率与最大峰值功率的差值的绝对值小于或等于第一预设阈值,且相邻峰值功率之间的角度距离大于终端的波束宽度的峰值功率所对应的波束方向。
  19. 根据权利要求14所述的装置,其特征在于,所述处理模块,还用于:
    根据终端同时支持的波束数目上限值、符合功率条件的波束数目,确定待选波束的数目;其中,待选波束的数目为终端同时支持的波束数目上限值和符合功率条件的波束数目中的最小值;
    根据所述待选波束的数目,按照功率从高到底的顺序,从符合功率条件的波束方向中选择出所述待选波束方向。
  20. 根据权利要求14-19任一项所述的装置,其特征在于,所述处理模块,还用于:
    根据水平极化和垂直极化的功率关系,确定所述目标波束方向上的极化方式。
  21. 根据权利要求20所述的装置,其特征在于,所述处理模块,具体用于:在所述目标波束方向上分别采用垂直极化和水平极化方式接收基站发送的参考信号;
    获取垂直极化方向上所述参考信号的接收功率RSRP_{V}和水平极化方向上所述参考信号的接收功率RSRP{H};
    根据max(RSRP_{H},RSRP_{V}),确定所述目标波束方向的极化方式。
  22. 一种芯片,其特征在于,包括:存储器和处理器,存储器用于存储程序指令,处理器用于调用存储器中的程序指令执行如权利要求1-13任一项所述的波束配置方法。
  23. 一种可读存储介质,其特征在于,所述可读存储介质上存储有计算机程序;所述计算机程序被执行时,实现如权利要求1-13任一项所述的波束配置方法。
PCT/CN2020/101663 2019-07-12 2020-07-13 波束配置方法和装置 WO2021008495A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/626,772 US11962388B2 (en) 2019-07-12 2020-07-13 Beam configuration method and apparatus
JP2021573355A JP7388609B2 (ja) 2019-07-12 2020-07-13 ビーム構成方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910628956.9 2019-07-12
CN201910628956.9A CN112217541B (zh) 2019-07-12 2019-07-12 波束配置方法和装置

Publications (1)

Publication Number Publication Date
WO2021008495A1 true WO2021008495A1 (zh) 2021-01-21

Family

ID=74047812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101663 WO2021008495A1 (zh) 2019-07-12 2020-07-13 波束配置方法和装置

Country Status (4)

Country Link
US (1) US11962388B2 (zh)
JP (1) JP7388609B2 (zh)
CN (1) CN112217541B (zh)
WO (1) WO2021008495A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022256759A1 (en) * 2021-06-03 2022-12-08 Qualcomm Incorporated Indicating blockage events as a cause for changes in rank information or channel quality information
US11967770B2 (en) 2022-01-21 2024-04-23 Apple Inc. Electronic devices with polarization management capabilities

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117378263A (zh) * 2021-05-11 2024-01-09 华为技术有限公司 选择的波束与传输波束之间的空间关系
CN115549730A (zh) * 2021-06-29 2022-12-30 中兴通讯股份有限公司 最优波束的确定方法及装置
WO2023206479A1 (en) * 2022-04-29 2023-11-02 Qualcomm Incorporated Beam shape indication for machine learning based beam management
WO2024096353A1 (ko) * 2022-10-30 2024-05-10 삼성전자주식회사 편파를 식별하기 위한 전자 장치 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7570211B1 (en) * 2008-03-25 2009-08-04 Rockwell Collins, Inc. Digital beamforming method and apparatus for pointing and null steering without calibration or calculation of covariance matrix
CN101867398A (zh) * 2009-04-20 2010-10-20 中兴通讯股份有限公司 一种适用于频分复用系统的单用户波束成形方法和装置
CN106850007A (zh) * 2016-12-21 2017-06-13 中国科学院上海微系统与信息技术研究所 毫米波通信链路多波束赋形方法及装置
US20180083679A1 (en) * 2015-03-23 2018-03-22 Samsung Electronics Co., Ltd Apparatus and method for operating full-duplex scheme in communication system supporting beam-forming scheme

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4449836B2 (ja) 2005-06-27 2010-04-14 日本電気株式会社 適応アンテナ送受信装置
WO2011150549A1 (en) 2010-06-01 2011-12-08 Nokia Corporation Apparatus and method for selection of beam groups and subset of beams in communication system
CN102571178A (zh) * 2012-02-28 2012-07-11 电子科技大学 一种eirp受限系统中的波束成形方法
KR20140126555A (ko) * 2013-04-23 2014-10-31 삼성전자주식회사 빔포밍 통신시스템의 피드백 정보 송수신 방법 및 장치
JP2015185953A (ja) 2014-03-20 2015-10-22 株式会社Nttドコモ ビーム選択方法、基地局、およびユーザ装置
US9762297B2 (en) * 2015-01-26 2017-09-12 Korea Advanced Institute Of Science And Technology Beam modulation and demodulation method and apparatus based on beam-space multiple input multiple output (MIMO) antenna system
EP4346116A3 (en) * 2016-06-15 2024-05-08 InterDigital Patent Holdings, Inc. Random access procedures in next generation networks
WO2018082904A1 (en) 2016-11-04 2018-05-11 Sony Corporation Communications device and method
US10340989B2 (en) * 2016-12-09 2019-07-02 Samsung Electronics Co., Ltd. Codebook for CSI reporting in advanced wireless communication system
CN106850016B (zh) * 2017-02-23 2020-05-19 金陵科技学院 基于mift与cp混合算法的仅相位加权阵列天线波束赋形优化方法
CN108696889B (zh) * 2017-03-30 2021-09-10 财团法人工业技术研究院 波束测量和反馈的方法及使用所述方法的基站与用户设备
CN111867058B (zh) 2019-04-26 2023-09-05 华为技术有限公司 一种波束选择方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7570211B1 (en) * 2008-03-25 2009-08-04 Rockwell Collins, Inc. Digital beamforming method and apparatus for pointing and null steering without calibration or calculation of covariance matrix
CN101867398A (zh) * 2009-04-20 2010-10-20 中兴通讯股份有限公司 一种适用于频分复用系统的单用户波束成形方法和装置
US20180083679A1 (en) * 2015-03-23 2018-03-22 Samsung Electronics Co., Ltd Apparatus and method for operating full-duplex scheme in communication system supporting beam-forming scheme
CN106850007A (zh) * 2016-12-21 2017-06-13 中国科学院上海微系统与信息技术研究所 毫米波通信链路多波束赋形方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA: "UE antenna assumption and beam modeling for NTN", 3GPP TSG RAN WG1 MEETING #92 R1-1802551, 2 March 2018 (2018-03-02), XP051398013 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022256759A1 (en) * 2021-06-03 2022-12-08 Qualcomm Incorporated Indicating blockage events as a cause for changes in rank information or channel quality information
US11622288B2 (en) 2021-06-03 2023-04-04 Qualcomm Incorporated Indicating blockage events as a cause for changes in rank information or channel quality information
US11967770B2 (en) 2022-01-21 2024-04-23 Apple Inc. Electronic devices with polarization management capabilities

Also Published As

Publication number Publication date
JP2022539974A (ja) 2022-09-14
US11962388B2 (en) 2024-04-16
CN112217541A (zh) 2021-01-12
JP7388609B2 (ja) 2023-11-29
US20220294519A1 (en) 2022-09-15
CN112217541B (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2021008495A1 (zh) 波束配置方法和装置
US10925062B2 (en) System and method for beam management in high frequency multi-carrier operations with spatial quasi co-locations
CN110035441B (zh) 确定波束的方法及通信装置
WO2021052179A1 (zh) 一种上行数据传输方法及装置
CN108810928A (zh) 一种接收波束恢复请求的方法及网络设备
US11201651B2 (en) Electronic apparatus and server in wireless communication system, and wireless communication method
US20210274513A1 (en) Uplink determining method and apparatus
CN106031235A (zh) 基于盲区中实现高频通信的处理方法、装置和设备
WO2023197226A1 (zh) 波束选择方法和装置
WO2018095305A1 (zh) 一种波束训练方法及装置
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
JP6634982B2 (ja) 端末装置、基地局、方法及び記録媒体
US20220263641A1 (en) Method For Configuring CLI Measurement And Communications Apparatus
WO2019214333A1 (zh) 通信方法及装置
WO2023125223A1 (zh) 下行传输的方法及装置
US20230247618A1 (en) Communication method and apparatus
US20230119265A1 (en) RESTRICTING UPLINK MIMO ASSIGNMENT BASED ON FADING IN AN mmWAVE SYSTEM
WO2021037415A1 (en) Emission restricted transmission of reference signals
CN111869123B (zh) 用于高效波束管理的通信设备
CN109309519B (zh) 一种通信方法及其装置
US20230180093A1 (en) Communication method, apparatus, and system
US11395156B2 (en) Downlink data transmission method, network device, and terminal
WO2021134636A1 (zh) 随机接入方法及通信装置
WO2020192344A1 (zh) 一种边链路发射功率计算方法及通信装置
CN115514399A (zh) 天线选择方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573355

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20841195

Country of ref document: EP

Kind code of ref document: A1