WO2020135179A1 - 功率控制方法及装置 - Google Patents

功率控制方法及装置 Download PDF

Info

Publication number
WO2020135179A1
WO2020135179A1 PCT/CN2019/126243 CN2019126243W WO2020135179A1 WO 2020135179 A1 WO2020135179 A1 WO 2020135179A1 CN 2019126243 W CN2019126243 W CN 2019126243W WO 2020135179 A1 WO2020135179 A1 WO 2020135179A1
Authority
WO
WIPO (PCT)
Prior art keywords
data channel
transmission power
channel part
terminal device
bandwidth
Prior art date
Application number
PCT/CN2019/126243
Other languages
English (en)
French (fr)
Inventor
郭文婷
向铮铮
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP23213900.6A priority Critical patent/EP4354982A3/en
Priority to KR1020217023576A priority patent/KR102535608B1/ko
Priority to EP19902111.4A priority patent/EP3902338B1/en
Publication of WO2020135179A1 publication Critical patent/WO2020135179A1/zh
Priority to US17/356,150 priority patent/US11825425B2/en
Priority to US18/491,566 priority patent/US20240064655A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links

Definitions

  • This application relates to the field of communication technology, and in particular, to a power control method and device.
  • V2X communication refers to the communication between the vehicle and the outside world, including vehicle-to-vehicle (V2V), vehicle-to-pedestrian (V2P), vehicle-to-infrastructure communication (V2P) vehicle to infrastructure (V2I), vehicle to network communication (vehicle to network, V2N).
  • V2V vehicle-to-vehicle
  • V2P vehicle-to-pedestrian
  • V2P vehicle-to-infrastructure communication
  • V2I vehicle to infrastructure
  • V2N vehicle to network communication
  • V2X communication is aimed at high-speed devices represented by vehicles, and it is the basic technology and key technology applied in scenarios with high requirements for communication delay in the future, such as smart cars, autonomous driving, and intelligent transportation systems.
  • vehicle users can send some of their own information, such as position, speed, intention (turning, paralleling, reversing) and other periodic information and some non-periodic event-triggered information to the surrounding vehicle users.
  • Vehicle users can also receive information from surrounding users in real time.
  • the service type that LTE-V2X mainly faces is broadcast message, so V2X receiving users are not sure, all interested V2X users can be in listening state, so the sending end sends data information with the maximum possible sending power.
  • the LTE-V2X signal is sent in the uplink time slot, so it is necessary to consider the interference of the V2X transmission power on the uplink base station side reception.
  • the embodiments of the present application provide a power control method and device, which can reasonably perform power control.
  • an embodiment of the present application provides a power control method, including:
  • the first terminal device determines the transmission power of the first data channel part and the transmission power of the second data channel part; wherein, the first data channel part is a data channel part that overlaps with the control channel in time domain and has no frequency domain overlap.
  • the second data channel part is a data channel part with frequency domain overlap and no time domain overlap with the control channel; the first terminal device transmits the data to the second terminal device with the transmission power of the first data channel part Data in the first data channel part; and transmitting data in the second data channel part to the second terminal device with the transmission power of the second data channel part.
  • the first data channel part and the second data channel part By distinguishing the first data channel part and the second data channel part, different power control can be performed on different data channel parts, for example, the data in the first data channel part and the second data channel part can be separately transmitted by different transmission powers
  • the data in the data avoids sending data with the same transmission power in all cases, and avoids the waste of resources.
  • the first data channel part or the second data is avoided when the transmission power of the data channel is determined based on the same method.
  • the transmission power of the channel part is too high, but the transmission of data can be completed without too high transmission power; thus, by dividing the data channel into two parts, the transmission power of the two parts is determined separately, which can not only meet different data
  • the power requirement of the channel part can also avoid sending data with the same transmission power in all cases, which causes the transmission power of the first data channel part or the second data channel part to be too high, which causes interference to other terminal devices, Furthermore, the interference to other terminal equipment is reduced, and the system performance is improved.
  • the bandwidth of the control channel is N and the bandwidth of the data channel is M
  • the bandwidth of the first data channel portion is MN, wherein, the M is greater than N
  • the transmission power of the first data channel portion is determined according to the maximum transmission power, the bandwidth MN of the first data channel portion, and the bandwidth N of the control channel.
  • the transmission power of the first data channel portion satisfies the following formula:
  • P 1 min ⁇ P CMAX -f(N,MN),f(MN)+P O + ⁇ PL ⁇
  • P 1 is the transmission power of the first data channel part
  • P CMAX is the maximum transmission power
  • f(N, MN) is the bandwidth MN of the first data channel part and all said channel bandwidth is a function of N
  • the F (MN) MN is the target received power of the second terminal device, the reference PL Link loss.
  • the transmission power of the first data channel part is determined by the actual bandwidth MN of the first data channel part, to avoid the first data channel part and the second data channel part having different bandwidths in the data channel, and This results in an inaccurate determination of the transmission power of the data channel, which improves the accuracy of determining the transmission power of the first data channel portion.
  • a ratio of the transmission power of the second data channel portion to the transmission power of the first data channel portion, and the second data channel portion is positively correlated.
  • the transmission power of the second data channel portion satisfies the following formula:
  • P 2 is the transmission power of the second data channel part
  • f(M/(MN)) is the bandwidth M of the second data channel part and the bandwidth MN of the first data channel part The function.
  • the resource unit (RE) in the first data channel part and the RE in the second data channel part transmit data with the same transmission power, and pass the bandwidth of the first data channel part and the second The ratio of the bandwidth of the data channel part to determine the ratio of the transmission power of the first data channel part to the transmission power of the second data channel part.
  • the second terminal device can effectively solve the difference in the effective bandwidth available on different symbols in the data channel
  • it also improves the efficiency of the second terminal device in determining the received IF scaling factor, that is, the second terminal device can use the IF scaling factor of the first data channel part, as well as the bandwidth and the first data channel part
  • the bandwidth ratio of the two data channel parts is used to scale the second data channel part, so that the received data of the entire time slot is in a suitable receiving power range.
  • the transmission power of the second data channel portion is determined according to the maximum transmission power and the link budget of the second data channel portion, the The link budget of the second data channel part is determined according to the bandwidth M of the second data channel part.
  • the transmission power of the second data channel portion satisfies the following formula:
  • P 2 is the transmission power of the second data channel part
  • the P CMAX is the maximum transmission power
  • the f(M) is a function of the bandwidth M of the second data channel part
  • the P o is the target received power of the second terminal device
  • the PL is the reference link loss.
  • the RE in the first data channel part and the RE in the second data channel part send data with different transmission powers, which can maximize the transmission power of the data channel, specifically, as much as possible
  • the transmission power of each RE in the second data channel part is obtained, thereby obtaining higher SNR and improving decoding performance.
  • the reference link loss PL is determined according to uplink and downlink transmission loss or link transmission loss in the serving cell, and the link transmission loss includes a side line Link transmission loss; the link transmission loss is the link loss from the first terminal device to the second terminal device; or, the link transmission loss is the first terminal device to the first terminal device The maximum value in the link loss of the terminal devices in the set; or, the link transmission loss is the maximum value in the link loss of the terminal devices in the set from the first terminal device to the second terminal device, where The second terminal device set belongs to the first terminal device set, and the first parameter of the terminal device in the second terminal device set satisfies the threshold range of the first parameter.
  • the first parameter is any of reference signal received power RSRP, signal-to-interference plus noise ratio SINR, signal-to-noise ratio SNR, or channel quality indicator CQI One item.
  • the transmission power of the first terminal device can be reduced, thereby further reducing interference with other terminal devices and improving the system performance.
  • the method before the first terminal device determines the transmission power of the first data channel portion and the transmission power of the second data channel portion, the method further includes:
  • the first terminal device by receiving the indication information from the network device, the first terminal device can clearly know the condition that the transmission power of the second data channel part meets, thereby improving the first terminal device's determination of the second data channel part Transmit power efficiency.
  • the transmission power of the first data channel portion satisfies the following formula:
  • P 1 min ⁇ P CMAX -f(N,MN),f(MN)+P O + ⁇ PL,P T -f(N,MN) ⁇
  • P 1 is the transmission power of the first data channel part
  • P CMAX is the maximum transmission power
  • f(N, MN) is the bandwidth MN of the first data channel part and all said channel bandwidth is a function of N
  • the F (MN) MN is the target received power of the second terminal device
  • the reference PL Link loss is the transmission power that is positively correlated with the priority of the service carried by the data transmitted in the data channel.
  • the transmission power of the second data channel portion satisfies the following formula:
  • P 2 is the transmission power of the second data channel part
  • the P CMAX is the maximum transmission power
  • the f(M) is a function of the bandwidth M of the second data channel part
  • the P o is the target received power of the second terminal device
  • the PL is the reference link loss
  • the P T is the transmission power that is positively correlated with the priority of the data-bearing service sent in the data channel.
  • the P T is a semi-static value configured by a network device, or the P T is a pre-configured fixed value.
  • the transmission power of the first data channel portion satisfies the following formula:
  • P 1 min ⁇ P CMAX -f(N,MN),f(MN)+P O + ⁇ PL,P MAX_CBR -f(N,MN) ⁇
  • P 1 is the transmission power of the first data channel part
  • P CMAX is the maximum transmission power
  • f(N, MN) is the bandwidth MN of the first data channel part and all said channel bandwidth is a function of N
  • the F (MN) MN is the target received power of the second terminal device
  • the P MAX_CBR is the power determined according to the channel busyness .
  • the transmission power of the second data channel portion satisfies the following formula:
  • P 2 is the transmission power of the second data channel part
  • the P CMAX is the maximum transmission power
  • the f(M) is a function of the bandwidth M of the second data channel part
  • the P o is the target received power of the second terminal device
  • the PL is the reference link loss
  • the P MAX_CBR is the power determined according to the channel busyness .
  • an embodiment of the present application provides a power control device, including:
  • a processing unit configured to determine the transmission power of the first data channel part and the transmission power of the second data channel part; wherein the first data channel part is a data channel part that overlaps with the control channel in time domain and has no frequency domain overlap, The second data channel part is a data channel part with frequency domain overlap and no time domain overlap with the control channel; a sending unit is configured to send the second data to the second terminal device with the transmission power of the first data channel part Data in the first data channel part; and transmitting data in the second data channel part to the second terminal device with the transmission power of the second data channel part.
  • the bandwidth of the control channel is N and the bandwidth of the data channel is M
  • the bandwidth of the first data channel portion is MN, wherein, the M is greater than N
  • the transmission power of the first data channel portion is determined according to the maximum transmission power, the bandwidth MN of the first data channel portion, and the bandwidth N of the control channel.
  • the transmission power of the first data channel portion satisfies the following formula:
  • P 1 min ⁇ P CMAX -f(N,MN),f(MN)+P O + ⁇ PL ⁇
  • P 1 is the transmission power of the first data channel part
  • P CMAX is the maximum transmission power
  • f(N, MN) is the bandwidth MN of the first data channel part and all said channel bandwidth is a function of N
  • the F (MN) MN is the target received power of the second terminal device, the reference PL Link loss.
  • a ratio of the transmission power of the second data channel portion to the transmission power of the first data channel portion, and the second data channel portion is positively correlated.
  • the transmission power of the second data channel portion satisfies the following formula:
  • P 2 is the transmission power of the second data channel part
  • f(M/(MN)) is the bandwidth M of the second data channel part and the bandwidth MN of the first data channel part The function.
  • the transmission power of the second data channel portion is determined according to the maximum transmission power and the link budget of the second data channel portion, the The link budget of the second data channel part is determined according to the bandwidth M of the second data channel part.
  • the transmission power of the second data channel portion satisfies the following formula:
  • P 2 is the transmission power of the second data channel part
  • the P CMAX is the maximum transmission power
  • the f(M) is a function of the bandwidth M of the second data channel part
  • the P o is the target received power of the second terminal device
  • the PL is the reference link loss.
  • the reference link loss PL is determined according to uplink and downlink transmission loss or link transmission loss in the serving cell, and the link transmission loss includes a side line Link transmission loss; the link transmission loss is the link loss from the first terminal device to the second terminal device; or, the link transmission loss is the first terminal device to the first terminal device The maximum value in the link loss of the terminal devices in the set; or, the link transmission loss is the maximum value in the link loss of the terminal devices in the set from the first terminal device to the second terminal device, where The second terminal device set belongs to the first terminal device set, and the first parameter of the terminal device in the second terminal device set satisfies the threshold range of the first parameter.
  • the first parameter is any of a reference signal received power RSRP, a signal to interference plus noise ratio SINR, a signal to noise ratio SNR, or a channel quality indicator CQI One item.
  • a receiving unit configured to receive indication information from a network device, where the indication information is used to indicate the second data channel The transmission power of
  • the transmission power of the first data channel portion satisfies the following formula:
  • P 1 min ⁇ P CMAX -f(N,MN),f(MN)+P O + ⁇ PL,P T -f(N,MN) ⁇
  • P 1 is the transmission power of the first data channel part
  • P CMAX is the maximum transmission power
  • f(N, MN) is the bandwidth MN of the first data channel part and all said channel bandwidth is a function of N
  • the F (MN) MN is the target received power of the second terminal device
  • the reference PL Link loss is the transmission power that is positively correlated with the priority of the service carried by the data transmitted in the data channel.
  • the transmission power of the second data channel portion satisfies the following formula:
  • P 2 is the transmission power of the second data channel part
  • the P CMAX is the maximum transmission power
  • the f(M) is a function of the bandwidth M of the second data channel part
  • the P o is the target received power of the second terminal device
  • the PL is the reference link loss
  • the P T is the transmission power that is positively correlated with the priority of the data-bearing service sent in the data channel.
  • the P T is a semi-static value configured by a network device, or the P T is a pre-configured fixed value.
  • the transmission power of the first data channel portion satisfies the following formula:
  • P 1 min ⁇ P CMAX -f(N,MN),f(MN)+P O + ⁇ PL,P MAX_CBR -f(N,MN) ⁇
  • P 1 is the transmission power of the first data channel part
  • P CMAX is the maximum transmission power
  • f(N, MN) is the bandwidth MN of the first data channel part and all said channel bandwidth is a function of N
  • the F (MN) MN is the target received power of the second terminal device
  • the P MAX_CBR is the power determined according to the channel busyness .
  • the transmission power of the second data channel portion satisfies the following formula:
  • P 2 is the transmission power of the second data channel part
  • the P CMAX is the maximum transmission power
  • the f(M) is a function of the bandwidth M of the second data channel part
  • the P o is the target received power of the second terminal device
  • the PL is the reference link loss
  • the P MAX_CBR is the power determined according to the channel busyness .
  • an embodiment of the present application further provides a power control device, including a processor, a memory, and a transceiver, the processor and the memory are coupled, and the processor is used to run instructions or programs in the memory
  • the processor is used to determine the transmission power of the first data channel part and the transmission power of the second data channel part; wherein, the first data channel part is data that overlaps with the control channel in time domain and has no frequency domain overlap; Channel part, the second data channel part is a data channel part with frequency domain overlap and no time domain overlap with the control channel; the transceiver and the processor are coupled, and the transceiver is used to Transmitting power of the first data channel part to the second terminal device to transmit data in the first data channel part; and transmitting the second data channel part to the second terminal device with the transmission power of the second data channel part Data in the data channel section.
  • the bandwidth of the control channel is N and the bandwidth of the data channel is M
  • the bandwidth of the first data channel portion is MN, wherein, the M is greater than N
  • the transmission power of the first data channel portion is determined according to the maximum transmission power, the bandwidth MN of the first data channel portion, and the bandwidth N of the control channel.
  • the transmission power of the first data channel portion satisfies the following formula:
  • P 1 min ⁇ P CMAX -f(N,MN),f(MN)+P O + ⁇ PL ⁇
  • P 1 is the transmission power of the first data channel part
  • P CMAX is the maximum transmission power
  • f(N, MN) is the bandwidth MN of the first data channel part and all said channel bandwidth is a function of N
  • the F (MN) MN is the target received power of the second terminal device, the reference PL Link loss.
  • a ratio of the transmission power of the second data channel portion to the transmission power of the first data channel portion, and the second data channel portion is positively correlated.
  • the transmission power of the second data channel portion satisfies the following formula:
  • P 2 is the transmission power of the second data channel part
  • f(M/(MN)) is the bandwidth M of the second data channel part and the bandwidth MN of the first data channel part The function.
  • the transmission power of the second data channel portion is determined according to the maximum transmission power and the link budget of the second data channel portion, the The link budget of the second data channel part is determined according to the bandwidth M of the second data channel part.
  • the transmission power of the second data channel portion satisfies the following formula:
  • P 2 is the transmission power of the second data channel part
  • the P CMAX is the maximum transmission power
  • the f(M) is a function of the bandwidth M of the second data channel part
  • the P o is the target received power of the second terminal device
  • the PL is the reference link loss.
  • the reference link loss PL is determined according to uplink and downlink transmission loss or link transmission loss in the serving cell, and the link transmission loss includes a side line Link transmission loss; the link transmission loss is the link loss from the first terminal device to the second terminal device; or, the link transmission loss is the first terminal device to the first terminal device The maximum value in the link loss of the terminal devices in the set; or, the link transmission loss is the maximum value in the link loss of the terminal devices in the set from the first terminal device to the second terminal device, where The second terminal device set belongs to the first terminal device set, and the first parameter of the terminal device in the second terminal device set satisfies the threshold range of the first parameter.
  • the first parameter is any of the reference signal received power RSRP, signal-to-interference plus noise ratio SINR, signal-to-noise ratio SNR, or channel quality indicator CQI One item.
  • the bandwidth M of the channel part is a function of the bandwidth MN of the first data channel part
  • the P CMAX is the maximum transmission power
  • the f(M) is a function of the bandwidth M of the second data channel part
  • Po is the target received power of the second terminal device
  • PL is the reference link loss.
  • the transmission power of the first data channel portion satisfies the following formula:
  • P 1 min ⁇ P CMAX -f(N,MN),f(MN)+P O + ⁇ PL,P T -f(N,MN) ⁇
  • P 1 is the transmission power of the first data channel part
  • P CMAX is the maximum transmission power
  • f(N, MN) is the bandwidth MN of the first data channel part and all said channel bandwidth is a function of N
  • the F (MN) MN is the target received power of the second terminal device
  • the reference PL Link loss is the transmission power that is positively correlated with the priority of the service carried by the data transmitted in the data channel.
  • the transmission power of the second data channel portion satisfies the following formula:
  • P 2 min ⁇ P CMAX ,f(M)+P O + ⁇ PL,P T ⁇ .
  • P 2 is the transmission power of the second data channel part
  • the P CMAX is the maximum transmission power
  • the f(M) is a function of the bandwidth M of the second data channel part
  • the P o is the target received power of the second terminal device
  • the PL is the reference link loss
  • the P T is the transmission power that is positively correlated with the priority of the data-bearing service sent in the data channel.
  • the P T is a semi-static value configured by a network device, or the P T is a pre-configured fixed value.
  • the transmission power of the first data channel portion satisfies the following formula:
  • P 1 min ⁇ P CMAX -f(N,MN),f(MN)+P O + ⁇ PL,P MAX_CBR -f(N,MN) ⁇
  • P 1 is the transmission power of the first data channel part
  • P CMAX is the maximum transmission power
  • f(N, MN) is the bandwidth MN of the first data channel part and all said channel bandwidth is a function of N
  • the F (MN) MN is the target received power of the second terminal device
  • the P MAX_CBR is the power determined according to the channel busyness .
  • the transmission power of the second data channel portion satisfies the following formula:
  • P 2 is the transmission power of the second data channel part
  • the P CMAX is the maximum transmission power
  • the f(M) is a function of the bandwidth M of the second data channel part
  • the P o is the target received power of the second terminal device
  • the PL is the reference link loss
  • the P MAX_CBR is the power determined according to the channel busyness .
  • an embodiment of the present application provides a computer-readable storage medium, in which instructions are stored in a computer-readable storage medium, which when executed on a computer, causes the computer to execute the method described in the above aspects.
  • an embodiment of the present application provides a computer program product including instructions, which when executed on a computer, causes the computer to execute the method described in the above aspects.
  • FIG. 1a is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • Figure 1b is a schematic diagram of the structure of a data channel and a control channel
  • Figure 2 is a schematic diagram of four frame structures
  • 3a is a schematic diagram of a side link communication scenario provided by an embodiment of the present application.
  • 3b is a schematic diagram of another scenario of side link communication provided by an embodiment of the present application.
  • FIG. 3c is a schematic diagram of another side link communication scenario provided by an embodiment of the present application.
  • FIG. 3d is a schematic diagram of yet another side link communication scenario provided by an embodiment of the present application.
  • FIG. 3e is a schematic diagram of another side link communication scenario provided by an embodiment of the present application.
  • FIG. 3f is a schematic diagram of another scenario of side link communication provided by an embodiment of the present application.
  • FIG. 3g is a schematic diagram of yet another side link communication scenario provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a power control method provided by an embodiment of the present application.
  • 5a is a schematic diagram of a data channel and a control channel provided by an embodiment of the present application.
  • 5b is a schematic diagram of another data channel and control channel provided by an embodiment of the present application.
  • 5c is a schematic diagram of yet another data channel and control channel provided by an embodiment of the present application.
  • 5d is a schematic diagram of yet another data channel and control channel provided by an embodiment of the present application.
  • 5e is a schematic diagram of yet another data channel and control channel provided by an embodiment of the present application.
  • 5f is a schematic diagram of yet another data channel and control channel provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a time-frequency resource provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another power control method provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a power control device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another power control device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of yet another terminal device provided by an embodiment of the present application.
  • At least one (item) refers to one or more
  • “multiple” refers to two or more
  • “at least two (items)” refers to two or three And more than three
  • "and/or” used to describe the association relationship of the associated object, indicating that there can be three kinds of relationships, for example, "A and/or B” can mean: only A, only B and A And B three cases, where A, B can be singular or plural.
  • the character “/” generally indicates that the related object is a "or” relationship.
  • “At least one of the following” or a similar expression refers to any combination of these items, including any combination of a single item or a plurality of items.
  • At least one (a) of a, b, or c can be expressed as: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be a single or multiple.
  • the communication system used in the present application may be understood as a wireless cellular communication system, or a wireless communication system based on a cellular network architecture.
  • the 5th-generation (5G-generation) system and the next-generation mobile communication system may be applied to the communication system.
  • the communication system may include at least one network device, only one of which is shown, as shown in the next generation base station (the next generation Node B, gNB); and one or more terminal devices connected to the network device, as shown in the figure Terminal device 1 and terminal device 2.
  • the network device may be a device that can communicate with the terminal device.
  • the network device may be any device with wireless transceiver function, including but not limited to a base station.
  • the base station may be gNB, or the base station may be a base station in a future communication system.
  • the network device may also be an access node, a wireless relay node, a wireless backhaul node, etc. in a wireless local area network (wireless fidelity, WiFi) system.
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device may also be a wearable device or a vehicle-mounted device.
  • the network device may also be a small station, a transmission node (transmission reference point, TRP), and so on.
  • TRP transmission reference point
  • Terminal equipment may also be called user equipment (UE), terminal, etc.
  • Terminal equipment is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water surface, such as ships, etc.; it can also be deployed in the air, such as deployed in Airplanes, balloons or satellites are fine.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (virtual reality, VR) terminal devices, augmented reality (augmented reality, AR) terminal devices, industrial control (industrial control) ), wireless terminals in self-driving, self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and wireless terminals in transportation safety , Wireless terminals in smart cities (smart cities), wireless terminals in smart homes (smart homes), etc.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • Wireless terminals in self-driving self-driving
  • wireless terminals in remote medical wireless terminals in smart grid
  • wireless terminals in transportation safety Wireless terminals in smart cities (smart cities), wireless terminals in smart homes (smart homes), etc.
  • terminal device 1 and terminal device 2 can also be carried out through device-to-device (D2D) technology or vehicle-to-everything (V2X) technology Communication.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • LTE V2X Long-term evolution (LTE) V2X solves some basic needs in V2X scenarios, but for future fully intelligent driving, autonomous driving and other application scenarios, the current stage of LTE V2X cannot yet be effectively supported.
  • 5G 5th-generation
  • NR-V2X new radio
  • 3GPP 3rd Generation Partnership Project
  • 5G NR-V2X proposes to support 99.99% or even 99.999% reliable transmission.
  • NR-V2X also needs to support unicast, multicast, broadcast and other business forms.
  • the control channel and the data channel are multiplexed together in a frequency division manner on the time-frequency resource sent at a time. From the time domain perspective, the control channel and the data channel are in a coexistence relationship. Therefore, the transmission power of the control channel and the data channel needs to be considered together.
  • LTE-V2X power control based on network equipment (such as base station) scheduling can satisfy the following formula:
  • P PSSCH is the transmission power of the data channel
  • P PSCCH is the transmission power of the control channel
  • M PSSCH is the bandwidth of the data channel
  • M PSCCH is the bandwidth of the control channel
  • P CMAX is the maximum transmission power, which can also be understood as the terminal equipment allows Maximum transmit power.
  • PL is the downlink power loss of the terminal equipment. In the communication system, especially the time division duplexing (TDD) system, it is generally considered that the uplink and downlink losses are the same, so PL can be used to indicate the terminal equipment to the base station Possible link loss on the side.
  • P O_PSSCH_3 is the power that the terminal device expects to receive (which may also be understood as the target received power of the terminal device), where 3 represents the base station scheduling.
  • ⁇ PSSCH, 3 is the filtering parameter configured in the base station scheduling mode.
  • formula (3) and formula (4) respectively include two sub-terms, where the first term indicates the maximum transmission power allocated to the current channel, for example, the first term in formula (3) may indicate the maximum transmission allocated to the data channel Power, the first term in equation (4) can represent the maximum transmission power allocated to the control channel.
  • the maximum transmission power allocated to the control channel and the data channel is directly proportional to the bandwidth of the channel itself, and compared to the data channel, the transmission power of each sub-channel of the control channel has Multi-fold enhancement, that is, the total transmission power allowed by the terminal hardware is allocated to the control channel and the data channel in proportion to the bandwidth.
  • the second term indicates that the link budget is calculated based on the link loss of the Uu port and the expected signal-noise-ratio (SNR), that is, the expected transmission power of the link.
  • the transmission power of the final data channel and the transmission power of the control channel are the minimum values in the first and second terms, respectively, that is, when the transmission power allowed by the terminal device is sufficiently large, it is transmitted according to the link demand (ie, link budget) , When the power allowed by the terminal device is less than the link demand, it is sent according to the maximum power allowed by the terminal device.
  • the power control of the LTE-V2X contention-based data channel can satisfy the following formula:
  • the system can define the maximum transmission power P MAX_CBR in the sub-channel according to the busyness of the current sub-channel. If there are more terminal devices in the sub-channel, in order to reduce the probability of collision, the transmission power of each terminal device in the sub-channel can be reduced; The transmission power of each terminal device in the sub-channel can be increased.
  • P MAX_CBR When the system is configured with P MAX_CBR , then A can satisfy the following formula:
  • the power control of the LTE-V2X contention-based control channel can satisfy the following formula:
  • B can satisfy the following formula:
  • the following will take the terminal device 1 and the terminal device 2 in NR-V2X as examples to specifically explain the communication scenario of the power control method provided by the embodiments of the present application.
  • FIGS. 3a to 3g it is a schematic diagram of a sidelink communication scenario provided by an embodiment of the present application.
  • both terminal device 1 and terminal device 2 are outside the cell coverage.
  • the terminal device 1 is within the cell coverage, and the terminal device 2 is outside the cell coverage.
  • terminal device 1 and terminal device 2 are both within the coverage area of the same cell, and are in a public land mobile network (PLMN), such as PLMN1.
  • PLMN public land mobile network
  • terminal device 1 and terminal device 2 are in the same PLMN as PLMN1, but are in different cell coverage areas.
  • terminal device 1 and the terminal device 2 are respectively in different PLMNs and different cells, and the terminal device 1 and the terminal device 2 are respectively in the common coverage of the two cells.
  • terminal device 1 is in PLMN1
  • terminal device 2 is in PLMN2.
  • terminal device 1 and terminal device 2 are respectively in different PLMNs and different cells, and terminal device 1 is within the common coverage of the two cells, and terminal device 2 is within the coverage of the serving cell.
  • terminal device 1 and terminal device 2 are in different PLMNs and different cells, respectively, and terminal device 1 and terminal device 2 are within the coverage of their respective serving cells.
  • V2X vehicle-to-everything
  • FIG. 4 is a schematic flowchart of a power control method provided by an embodiment of the present application.
  • the power control method can be applied to the terminal devices shown in FIGS. 3a to 3g, and the power control method can effectively solve the foregoing Power control issues.
  • the power control method may include:
  • the first terminal device determines the transmission power of the first data channel part and the transmission power of the second data channel part.
  • the first data channel part is a data channel part overlapping with the control channel in a time domain and no frequency domain overlap
  • the second data channel part is a data channel part having a frequency domain overlap with the control channel and no time domain overlap.
  • FIG. 5a provides a schematic diagram of a data channel and a control channel.
  • the data channel may be divided into a first data channel portion and a second data channel portion, that is, the first data channel portion and the second data channel portion may constitute a complete data channel.
  • the first data channel part and the second data channel part may constitute a complete data channel.
  • the first data channel part and the control channel overlap in time domain, but no frequency domain overlap
  • the second data channel part and control channel overlap in frequency domain, but no time domain overlap. That is to say, the first data channel part and the control channel have a time domain multiplexing relationship, but no frequency domain multiplexing relationship
  • the second data channel part and the control channel have a frequency domain multiplexing relationship, but no time domain multiplexing relationship.
  • the bandwidth of the data channel is M
  • the bandwidth of the control channel is N
  • M is greater than N
  • the bandwidth of the first data channel portion is M-N
  • the bandwidth of the second data channel portion is M.
  • M can represent M resource blocks (RB)
  • N can represent N RBs.
  • the bandwidth of the data channel and the bandwidth of the control channel may also be in units of subcarriers, etc., which is not limited in this application. Understandably, in the case of subcarriers, the transmission power of the first data channel part, the transmission power of the second data channel part, and the transmission power of the control channel also need to be determined according to the subcarrier interval.
  • a control channel may be understood as a channel used to carry sidelink control information (sidelink control information, SCI), where the SCI includes decoding information of data transmitted in a data channel, and so on.
  • SCI sidelink control information
  • a data channel can be understood as a channel used to carry data.
  • the data can be data sent by a first terminal device to a second terminal device. Further, the data can be used to carry services sent by the first terminal device to the second terminal device.
  • the data channel of the side link may be a physical side link shared channel (PSSCH), and the control channel of the side link may be a physical side link control channel (PSCCH).
  • PSSCH physical side link shared channel
  • PSCCH physical side link control channel
  • the terminal device when determining the transmission power, may divide the data channel into two parts, and separately determine the transmission power of the two parts, that is, the transmission power of the first data channel part and the second data The transmission power of the channel part.
  • the detailed process in which the first terminal device determines the transmission power of the first data channel part and the transmission power of the second data channel part will be described below.
  • the first terminal device sends the data in the first data channel part to the second terminal device with the transmission power of the first data channel part; and sends the data to the second terminal device with the transmission power of the second data channel part
  • the data in the above-mentioned second data channel part is transmitted.
  • the data in the first data channel part can be separately transmitted by different transmission powers And the data in the second data channel section, to avoid sending data with the same transmission power in all cases, and to avoid waste of resources, such as the first data when determining the transmission power of the data channel based on the same method
  • the transmission power of the channel part or the second data channel part is too high, and the transmission of data can be completed without actually requiring excessive transmission power; thus, by dividing the data channel into two parts, the transmission power of the two parts is determined separately , Not only to meet the power requirements of different data channel parts, but also to avoid sending data with the same transmission power in all cases, which causes the transmission power of the first data channel part or the second data channel part to be too high, resulting in Interference from other terminal equipment, thereby reducing interference to other terminal equipment and improving system performance.
  • the first terminal device determines the transmission power of the control channel, the transmission power of the first data channel part, and the transmission power of the second data channel part. It can be understood that the following will be described with a schematic diagram of the control channel and the data channel shown in FIG. 5a.
  • the first terminal device may be determined according to the maximum transmission power P CMAX , the bandwidth MN of the first data channel part, and the bandwidth N of the control channel. More specifically, the transmission power of the control channel can satisfy the following formula:
  • P control is the transmission power of the control channel
  • P CMAX is the maximum transmission power
  • f(MN, N) is a function of the bandwidth MN of the first data channel part and the bandwidth N of the control channel
  • f(N) is the control channel
  • P o is the target received power of the second terminal device (can also be understood as the expected received power of the second terminal device)
  • is (base station) the filter parameter considered to adjust the stability setting, which can be configured by the higher layer
  • PL is the reference link loss.
  • PCMAX can be understood as the maximum transmission power limited by the physical hardware, or can be understood as the maximum transmission power allowed by the hardware of the terminal device.
  • PCMAX can be configured by high-level signaling of the base station.
  • f(MN,N) in formula (9) can also be understood as an expression of the bandwidth MN of the first data channel part and the bandwidth N of the control channel, or can also be understood as the bandwidth MN of the first data channel part The relationship with the bandwidth N of the control channel, etc.
  • P CMAX -f(MN,N) can be understood as the transmission power allocated to the control channel according to the maximum transmission power P CMAX and the bandwidth ratio between the control channel and the first data channel, f(N)+P O + ⁇ PL can be understood as the link budget of the control channel.
  • f(M-N,N) can satisfy the following formula:
  • f(M-N,N) can be understood as the power allocation relationship between the control channel and the first data channel portion.
  • f(N) can satisfy the following formula:
  • the transmission power of the control channel can satisfy the following formula:
  • this embodiment also provides another form to express the formula that the transmission power of the control channel meets, as follows:
  • formula (12) and formula (13) are two different forms of control channel transmission power in the base station scheduling mode.
  • the first terminal device needs to determine the transmission power of the control channel, whether it is through formula (12) ) Or formula (13), the result of the control channel transmission power determined by the first terminal device is consistent. Therefore, the first terminal device can also determine the transmission power of the control channel by formula (9), and further by formula (12) or formula (13), so that the first terminal device transmits to the second terminal device with the transmission power of the control channel Control information in the control channel.
  • the transmission power of the control channel may satisfy the following formula:
  • P control is the transmission power of the control channel
  • P CMAX is the maximum transmission power
  • f(MN,N) is a function of the bandwidth MN of the first data channel part and the bandwidth N of the control channel
  • f(N) is the control channel
  • Po is the target received power of the second terminal device
  • is the filter parameter set by considering the smoothness adjustment, and can be configured by higher layers
  • PL is the reference link loss
  • P MAX_CBR is the power determined according to the channel busyness , Or, it can also be understood as the max channel busy ratio.
  • the transmission power of the control channel can satisfy the following formula:
  • the transmission power of the control channel satisfies the following formula:
  • formula (15) and formula (16) are two different forms of the transmission power of the control channel, and the transmission power of the control channel determined by the first terminal device through formula (15) and formula (16) is consistent.
  • a method of transmitting power of the control channel may also be determined according to the priority of the control information. For example, the transmission power of the control channel satisfies the following formula:
  • P T is the transmission power that is positively correlated according to the priority of the control information sent in the control channel.
  • the P T is a semi-static value configured by the network device, or the P T is a fixed value configured in advance. Understandably, for the description of other parameters, reference may be made to other examples, which will not be elaborated here.
  • P T when P T is a pre-configured fixed value, the P T may be configured by high-level signaling, such as high-level signaling of a network device.
  • formula (17) and formula (18) can be understood that in the base station scheduling mode, different control information may include different priorities, so that according to the transmission power allocated to the control channel, the link budget of the control channel, and the control channel threshold power (P T) to identify a transmission power control method of the power control channel.
  • P T control channel threshold power
  • control channel The transmit power of can satisfy the following formula:
  • the transmission power for the first data channel portion may be determined according to the maximum transmission power P CMAX , the bandwidth MN of the first data channel portion, and the bandwidth N of the control channel. More specifically, the transmission power of the first data channel part may satisfy the following formula:
  • P 1 is the transmission power of the first data channel part
  • P CMAX is the maximum transmission power
  • f(N, MN) is a function of the bandwidth MN of the first data channel part and the bandwidth N of the control channel
  • f(MN) is bandwidth of the first channel portion of the data of MN function
  • P o the second terminal device the target received power, [alpha] is set in consideration of smooth adjustment of the filtering parameters, by higher layer configuration, PL reference link loss.
  • f(N, MN) can also be understood as an expression or relationship between the bandwidth MN of the first data channel portion and the bandwidth N of the control channel, etc.
  • f(MN) can also be understood as the first data channel portion The expression or relationship of the bandwidth MN.
  • P CMAX -f(N,MN) can be understood as the transmission power allocated to the first data channel part according to the maximum transmission power P CMAX and the bandwidth ratio between the first data channel part and the control channel, f(MN)+P O + ⁇ PL can be understood as the link budget of the first data channel part.
  • f(N, M-N) satisfies the following formula:
  • f(M-N) satisfies the following formula:
  • the transmission power of the first data channel part can satisfy the following formula:
  • this embodiment also provides another form to express the formula that the transmission power of the first data channel portion meets, as follows:
  • Formula (24) and formula (25) are two different forms of the transmission power of the first data channel part.
  • the transmission power of the first data channel part determined by the first terminal device through formula (24) and formula (25) is Consistent.
  • the formula (21), formula (24) and formula (25) satisfied by the first data channel part shown above are shown in the base station scheduling mode, while in the contention mode, since each sub-channel has busy power control Set, therefore, in some embodiments of the present application, the transmission power of the first data channel portion may satisfy the following formula:
  • P MAX_CBR is the power determined according to the channel busyness . Understandably , P MAX_CBR in formula (14) and formula (26) can be understood as the same busy power.
  • the transmission power of the first data channel part satisfies the following formula:
  • the transmission power of the first data channel part satisfies the following formula:
  • the data-bearing services sent in the data channel have different qualities of service (QoS)
  • QoS qualities of service
  • the data-bearing services sent in the data channel can be limited with different power.
  • the relatively high-security services will have relatively high requirements for QoS. That is to say, in these scenarios with relatively high security requirements, the services carried by the data sent in the data channel require higher QoS. Therefore, in some embodiments of the present application, the first terminal device may determine the transmission power of the first data channel part according to the QoS requirements of the service.
  • the transmission power of the first data channel part can satisfy the following formula:
  • P T is the transmission power positively related to the priority of the service carried by the data transmitted in the data channel.
  • the P T is a semi-static value configured by the network device, or the P T is a fixed value configured in advance.
  • the P T can also be understood as the threshold power, that is, the higher the priority of the service, the higher the P T. That is, high priority services correspond to high threshold power, and low priority services correspond to low threshold power.
  • the transmission power of the first data channel portion may satisfy the following formula:
  • different threshold powers are set according to the QoS requirements of different services, so as to ensure the reliability of the transmission of high-priority services carried by the first terminal device; in addition, by setting different Threshold power limitation can make high-priority services more reliable under the same interference conditions.
  • formula (29) and formula (30) can be understood as setting different threshold powers according to the QoS requirements of different services in the base station scheduling mode, so that according to the transmission power and A method for the link budget of a data channel part and the threshold power of the first data channel part to determine the transmission power of the first data channel part.
  • the first terminal device determines that the transmission power of the first data channel portion can also satisfy the following formula:
  • This embodiment provides two implementations to explain the transmission power of the second data channel part, as follows:
  • the ratio of the transmission power of the second data channel portion to the transmission power of the first data channel portion and the ratio of the bandwidth of the second data channel portion to the bandwidth of the first data channel portion are positively correlated. Specifically, the ratio of the transmission power of the second data channel portion to the transmission power of the first data channel portion and the ratio of the bandwidth of the second data channel portion to the bandwidth of the first data channel portion are the same.
  • FIG. 6 is a schematic structural diagram of a time-frequency resource provided by an embodiment of the present application, where an RE is an orthogonal frequency division multiplexing (OFDM) in the time domain Symbol, a subcarrier in the frequency domain.
  • OFDM orthogonal frequency division multiplexing
  • Symbol a subcarrier in the frequency domain.
  • time-frequency resources are divided into OFDM or single-carrier frequency division multiplexing (SC-FDMA) symbols and
  • the subcarrier in the frequency domain dimension, and the smallest resource granularity is called RE, which means the time-frequency grid point composed of a time domain symbol in the time domain and a subcarrier in the frequency domain.
  • RE which means the time-frequency grid point composed of a time domain symbol in the time domain and a subcarrier in the frequency domain.
  • the structure of the RE may change. Therefore, the RE shown in FIG. 6 should not be construed as limiting the embodiment of the present application.
  • the transmission power of the control channel, the transmission power of the first data channel part or the transmission power of the second data channel part described in this embodiment all refer to the transmission at a certain moment or a certain time unit power.
  • the transmission power of the second data channel part satisfies the following formula:
  • P 2 is the transmission power of the second data channel part
  • f(M/(MN)) is a function of the bandwidth M of the second data channel part and the bandwidth MN of the first data channel part. Understandably, f(M/(MN)) can also be understood as an expression or a relationship between the bandwidth M of the second data channel portion and the bandwidth MN of the first data channel portion, and so on.
  • the transmission power of the second data channel part is determined based on the transmission power of the first data channel part, correspondingly, in the base station scheduling mode and without a threshold power P T .
  • the The formula satisfied by the transmission power may refer to the example in the transmission power of the first data channel part, that is, one or more of Formula (21), Formula (24), and Formula (25).
  • the formula satisfied by the transmission power of the control channel can refer to the examples in the transmission power of the control channel, that is, one or more of Formula (9), Formula (12) and Formula (13).
  • the formula for the transmission power of the first data channel part can refer to the examples in the transmission power of the first data channel part, that is, refer to formula (26), formula (27) and One or more items in formula (28).
  • the formula satisfied by the transmission power of the control channel can refer to the examples in the transmission power of the control channel, that is, one or more of Formula (14), Formula (15) and Formula (16).
  • the formula satisfied by the transmission power of the first data channel part can refer to the example in the transmission power of the first data channel part, That is, refer to formula (29) and/or formula (30).
  • the formula that the transmission power of the control channel satisfies can refer to the example in the transmission power of the control channel, that is, formula (17) and/or formula (18).
  • the formula for the transmission power of the first data channel part can refer to the formula for the transmission power of the first data channel part (31) and/or formula (32).
  • the formula satisfied by the transmission power of the control channel can refer to formula (19) and/or formula (20).
  • the transmission power of the second data channel part can satisfy the following formula:
  • the transmission power of the second data channel portion may be proportional to the bandwidth amplification based on the transmission power of the first data channel portion.
  • the problem of different effective bandwidths available on different symbols of the data channel in the frame structure shown in 2d in FIG. 2 is solved, and it is ensured that all REs in the data channel can use the same transmission power to send data.
  • the transmission power of the first data channel part and the transmission power of the second data channel part have a certain ratio, which is helpful for the intermediate frequency scaling factor received by the second terminal device, that is, if the second terminal device determines the first data channel part IF scaling factor of IF, the IF scaling factor of the second data channel part can be determined according to the determined ratio, so that the received data of the entire time slot can be in a suitable receiving power range.
  • the embodiment of the present application proposes a second implementation manner.
  • the RE in the first data channel part and the RE in the second data channel part may send data according to different transmission powers. The details are as follows:
  • the transmission power of the second data channel part is determined according to the maximum transmission power P MAX and the link budget of the second data channel part, and the link budget of the second data channel part is determined according to the bandwidth M of the second data channel part.
  • the second data channel part can enjoy all the power alone, that is, compared with the first data channel part and the control channel for power allocation, the second data channel part can not do power allocation, and Send data directly at maximum transmit power. That is, the transmission power of the second data channel part can be determined in the maximum transmission power and the link budget.
  • the transmission power of the second data channel portion may satisfy the following formula:
  • P 2 is the transmission power of the second data channel part
  • P CMAX is the maximum transmission power
  • f(M) is a function of the bandwidth M of the second data channel part
  • P o is the target received power of the second terminal device
  • In order to consider the filter parameters set by adjusting the stability, it can be configured by higher layers, and PL is the reference link loss.
  • the transmission power of the second data channel part can satisfy the following formula:
  • the link budget of V2X is relatively high, that is, the second part of the min function is relatively large, the transmission power of the data channel is limited, and all REs of the data channel will be transmitted based on the two transmission powers.
  • This solution can make the first terminal equipment make full use of available power, so that the data channel is less affected by power allocation.
  • the second data channel part can be transmitted with a more appropriate transmission power to increase the detectable probability of the control channel.
  • the formulas satisfied by the transmission power of the first data channel part corresponding to the first embodiment can refer to the examples in the transmission power of the first data channel part, that is, refer to formula (21), formula (24) and formula ( One or more of 25).
  • the formula that the corresponding transmission power of the control channel satisfies can refer to the example in the transmission power of the control channel, that is, one or more of Formula (9), Formula (12), and Formula (13).
  • the transmission power of the second data channel part can satisfy the following formula:
  • P 2 is the transmission power of the second data channel part
  • P CMAX is the maximum transmission power
  • f(M) is a function of the bandwidth M of the second data channel part
  • P o is the target received power of the second terminal device
  • P MAX_CBR is the power determined according to the channel busyness .
  • the transmission power of the second data channel part can satisfy the following formula:
  • the transmission power of the first data channel part corresponding to this embodiment, reference may be made to the example of the transmission power of the first data channel part in the contention mode, such as formula (26), formula (27) and formula One or more of (28).
  • the transmission power of the control channel can refer to one or more of formula (14), formula (15) and formula (16).
  • the transmission power of the second data channel portion may satisfy the following formula:
  • P 2 is the transmission power of the second data channel part
  • P CMAX is the maximum transmission power
  • f(M) is a function of the bandwidth M of the second data channel part
  • P o is the target received power of the second terminal device
  • PL For reference to the link loss
  • P T is the transmission power that is positively correlated according to the priority of the service carried by the data transmitted in the data channel.
  • the transmission power of the second data channel part can satisfy the following formula:
  • the transmission power of the first data channel part corresponding to this embodiment can refer to formula (29) and/or formula (30).
  • the transmission power of the control channel corresponding to this embodiment can refer to formula (17) and/or formula (18).
  • the transmission power of the second data channel part may satisfy the following formula:
  • the transmission power of the second data channel part can satisfy the following formula:
  • P 2 min ⁇ P CMAX, 10log 10 M + P O + ⁇ ⁇ PL, P T, P MAX_CBR ⁇ [dBm] (42)
  • the formula satisfied by the transmission power of the first data channel part corresponding to this embodiment can refer to formula (31) and/or formula (32).
  • the formula satisfied by the transmission power of the control channel can refer to formula (19) and/or formula (20).
  • the above is how the first terminal device determines the transmission power of the first data channel part, the transmission power of the second data channel part, and the transmission power of the control channel under different scenarios provided by this application, including how the first terminal device calculates each transmission power Satisfied formula.
  • the reference link loss PL appearing in the above formula will be described in detail below.
  • the reference link loss PL can be determined according to the uplink and downlink transmission loss or link transmission loss in the serving cell, and the link transmission loss includes the side link transmission loss.
  • PL can satisfy the following formula:
  • PL 1 can represent the side link transmission loss in side link communication
  • PL 2 can represent the uplink and downlink transmission loss in the serving cell.
  • NR-V2X can support not only unicast services but also multicast or multicast services. Therefore, for different scenarios, PL 1 can have different definitions, as follows:
  • the link transmission loss PL 1 is the link loss from the first terminal device to the second terminal device.
  • PL can be the minimum value of the transmission loss of the NR-V2X link itself and the transmission loss of the Uu port (that is, the uplink and downlink transmission loss in the serving cell).
  • the link transmission loss PL 1 is the terminal from the first terminal device to the first terminal device set The maximum value of the link loss of the device.
  • the first terminal device set may be understood as a set of terminal devices in a multicast or multicast set, and the first terminal device set includes a second terminal device.
  • PL can satisfy the following formula:
  • PL i represents the link loss from the first terminal device to the i-th terminal device in the second terminal device set
  • P represents the second terminal device set (which may also be understood as a set of receiving users).
  • the maximum transmission loss in the multicast or multicast set is selected as the transmission loss of the side link under the premise that the transmission power of the multicast or multicast service does not affect the Uu port service, so as to In one transmission, it is ensured that all terminal devices in the first terminal device set can receive data correctly.
  • the link transmission loss can also be determined based only on the transmission loss of the remote terminal device, thereby reducing the amount of feedback. Therefore, the link transmission loss may also be the maximum value of the link loss from the first terminal device to the terminal devices in the second terminal device set, the second terminal device set belongs to the first terminal device set, and the second terminal device set The first parameter of the terminal device in satisfies the threshold range of the first parameter.
  • the second terminal device set may be understood as a part of the terminal devices in the multicast or multicast set.
  • the first parameter is reference signal received power (reference signal receiving power, RSRP), signal to interference plus noise ratio (signal to interference plus noise ratio, SINR), signal-noise ratio (SNR) or channel quality indicator (SNR) channel quality (CQI).
  • RSRP reference signal receiving power
  • SINR signal to interference plus noise ratio
  • SINR signal-noise ratio
  • CQI channel quality indicator
  • PL can satisfy the following formula:
  • represents the threshold of RSRP
  • RSRP i represents the received signal power measured by terminal device i in the second terminal device set. Therefore, the terminal devices (including the second terminal device) in the second terminal device set feed back the RSRP to the first terminal device, and after receiving the initial feedback, the first terminal device
  • the RSRP of the RS is sorted, and it is determined that all terminal devices whose RSRP is less than a certain threshold ⁇ continue to perform feedback, while terminal devices greater than or equal to the threshold ⁇ can no longer feedback.
  • the link transmission loss can be a function or expression or relationship of RSRP.
  • the sidelink transmission system can transmit according to the channel quality of the link itself.
  • the side link service most of its communication scenarios are to communicate with nearby users, so it can effectively reduce the transmission power of side link users, reduce inter-user interference, and improve the overall system throughput.
  • FIG. 7 is another power control method provided by an embodiment of the present application. Schematic diagram of the process. This method can be applied to the terminal devices shown in FIGS. 3a to 3g. As shown in FIG. 7, the power control method may include:
  • the network device sends instruction information to the first terminal device, and the first terminal device receives the instruction information from the network device.
  • the indication information may be used to indicate the transmission power of the second data channel part. Specifically, the indication information may be used to indicate a formula satisfied by the transmission power of the second data channel part.
  • the above first terminal device determines the transmission power of the first data channel part, and determines the formula that the transmission power of the second data channel part satisfies according to the above indication information.
  • the formula satisfied by the transmission power of the second data channel portion determined by the first terminal device is formula (33) or formula (35).
  • the first terminal device may use one or more of formula (33) and formula (34) Item to determine the transmission power of the second data channel section.
  • the first terminal device can use one of formula (35) and formula (36) or Multiple items to determine the transmission power of the second data channel part.
  • the first terminal device sends the data in the first data channel portion to the second terminal device with the transmission power of the first data channel portion; and sends the data to the second terminal device with the transmission power of the second data channel portion
  • the data in the above-mentioned second data channel part is transmitted.
  • the first terminal device can promptly and effectively learn the formula satisfied by the transmission power of the second data channel portion, and improve the efficiency of the first terminal device in determining the transmission power of the second data channel portion.
  • the above is how the first terminal device in this application determines the transmission power of the control channel, the transmission power of the first data channel part, and the transmission power of the second data channel part.
  • the power control apparatus provided by the embodiments of the application will be described in detail below
  • the device may be used to execute the method described in the embodiments of the present application.
  • the device may be a terminal device (such as a first terminal device), or a component of the terminal device that implements the above-mentioned functions, or a chip.
  • FIG. 8 is a schematic structural diagram of a power control device provided by an embodiment of the present application.
  • the power control device may be used to execute the method described in the embodiment of the present application.
  • the power control device includes:
  • the processing unit 801 is configured to determine the transmission power of the first data channel part and the transmission power of the second data channel part; wherein the first data channel part is a data channel part that overlaps with the control channel in time domain and has no frequency domain overlap, The second data channel part is a data channel part that overlaps with the control channel in the frequency domain and does not overlap in the time domain;
  • a sending unit 802 configured to send the data in the first data channel part to the second terminal device with the transmission power of the first data channel part; and send to the second terminal device with the transmission power of the second data channel part The data in the second data channel section described above.
  • the bandwidth of the control channel is N and the bandwidth of the data channel is M
  • the bandwidth of the first data channel part is MN, where the M is greater than the N
  • the first The transmission power of the data channel part is determined according to the maximum transmission power, the bandwidth MN of the first data channel part, and the bandwidth N of the control channel.
  • the transmission power of the first data channel part satisfies the following formula:
  • P 1 min ⁇ P CMAX -f(N,MN),f(MN)+P O + ⁇ PL ⁇
  • P 1 is the transmission power of the first data channel part
  • P CMAX is the maximum transmission power
  • f (N, MN) is the bandwidth MN of the first data channel part and the bandwidth N of the control channel function of the F (MN) MN as a function of the bandwidth of the first portion of the data channel, the above-described target received power P o to the second terminal apparatus, said link loss PL by reference.
  • the ratio of the transmission power of the second data channel part to the transmission power of the first data channel part, and the bandwidth of the second data channel part and the bandwidth of the first data channel part is positively correlated.
  • the transmission power of the second data channel part satisfies the following formula:
  • P 2 is the transmission power of the second data channel part
  • f(M/(MN)) is a function of the bandwidth M of the second data channel part and the bandwidth MN of the first data channel part.
  • the transmission power of the second data channel part is determined according to the maximum transmission power and the link budget of the second data channel part, and the link budget of the second data channel part is based on the second The bandwidth M of the data channel part is determined.
  • the transmission power of the second data channel part satisfies the following formula:
  • P 2 is the transmission power of the second data channel part
  • the P CMAX is the maximum transmission power
  • the f(M) is a function of the bandwidth M of the second data channel part
  • the P o is the second The target received power of the terminal device
  • the PL is the reference link loss.
  • the reference link loss PL is determined according to the uplink and downlink transmission loss or link transmission loss in the serving cell.
  • the link transmission loss includes the side link transmission loss; the link transmission loss is The link loss from the first terminal device to the second terminal device; or, the link transmission loss is the maximum value of the link loss from the first terminal device to the terminal device in the first terminal device set; or, The link transmission loss is the maximum value of the link loss from the terminal device in the first terminal device to the second terminal device set, the second terminal device set belongs to the first terminal device set, and the second terminal device The first parameter of the terminal device in the set satisfies the threshold range of the above first parameter.
  • the first parameter is any one of a reference signal received power RSRP, a signal to interference plus noise ratio SINR, a signal to noise ratio SNR, or a channel quality indicator CQI.
  • the above device further includes:
  • the receiving unit 803 is configured to receive indication information from a network device, and the indication information is used to indicate the transmission power of the second data channel portion;
  • the above PL is the reference link loss.
  • the sending unit 802 and the receiving unit 803 may be integrated into one device, for example, the sending unit 802 and the receiving unit 803 may be transceivers.
  • the sending unit 802 and the receiving unit 803 may also be separated into different devices, and the specific methods of the sending unit 802 and the receiving unit 803 are not limited in this application.
  • the transmission power of the first data channel part satisfies the following formula:
  • P 1 min ⁇ P CMAX -f(N,MN),f(MN)+P O + ⁇ PL,P T -f(N,MN) ⁇
  • P 1 is the transmission power of the first data channel part
  • P CMAX is the maximum transmission power
  • f(N, MN) is the bandwidth MN of the first data channel part and the bandwidth N of the control channel function of the F (MN) MN as a function of the bandwidth of the first portion of the data channel, the above-described target received power P o to the second terminal apparatus, said link loss PL as a reference, as the above-described P T to the data channel
  • the priority of the service carried in the data transmitted in the becomes positively related to the transmission power.
  • the transmission power of the second data channel part satisfies the following formula:
  • P 2 is the transmission power of the second data channel part
  • the P CMAX is the maximum transmission power
  • the f(M) is a function of the bandwidth M of the second data channel part
  • the P o is the second target received power terminal apparatus
  • said link loss PL as a reference
  • the priority data into the aforementioned P T is transmitted to the data bearer traffic channel transmission power of the positive correlation.
  • the above-mentioned P T is a semi-static value configured by the network device, or the above-mentioned P T is a pre-configured fixed value.
  • the transmission power of the first data channel part satisfies the following formula:
  • P 1 min ⁇ P CMAX -f(N,MN),f(MN)+P O + ⁇ PL,P MAX_CBR -f(N,MN) ⁇
  • P 1 is the transmission power of the first data channel part
  • P CMAX is the maximum transmission power
  • f(N, MN) is the bandwidth MN of the first data channel part and the bandwidth N of the control channel function of the F (MN) MN bandwidth of said first data channel portion of the function of the above-described target received power P o to the second terminal apparatus, said link loss PL as a reference, according to the above-described P MAX_CBR channel busy Definite power.
  • the transmission power of the second data channel part satisfies the following formula:
  • P 2 is the transmission power of the second data channel part
  • the P CMAX is the maximum transmission power
  • the f(M) is a function of the bandwidth M of the second data channel part
  • the P o is the second The target received power of the terminal device
  • the above PL is the reference link loss
  • the above P MAX_CBR is the power determined according to the channel busyness .
  • different power control can be performed on different data channel parts, for example, the data in the first data channel part can be separately transmitted by different transmission powers And the data in the second data channel part, to avoid sending data with the same transmission power in all cases, which leads to waste of resources. For example, when the transmission power of the data channel is determined based on the same method, the first data channel is avoided.
  • the transmission power of the part or the second data channel is too high, and the transmission of data can be completed without actually requiring too much transmission power; thus, by dividing the data channel into two parts, the transmission power of the two parts is determined separately, Not only can it meet the power requirements of different data channel parts, but it can also avoid sending data with the same transmission power in all cases, which causes the transmission power of the first data channel part or the second data channel part to be too high, resulting in other
  • the interference of the terminal equipment further reduces the interference to other terminal equipment and improves the system performance.
  • the processing unit 801 may be one or more processors, the sending unit 802 may be a transmitter, and the receiving unit 803 may be a receiver The transmitter, or the sending unit 802 and the receiving unit 803 are integrated into one device, such as a transceiver.
  • the processing unit 801 may be one or more processors, the sending unit 802 may be an output interface, the receiving unit 803 may be an input interface, or the sending unit 802 and the receiving unit 803 are integrated into one unit, For example, input and output interfaces.
  • FIG. 10 is a schematic structural diagram of a terminal device 1000 according to an embodiment of the present application.
  • the terminal device may perform the operation of the first terminal device in the methods shown in FIGS. 4 and 7, or the terminal device may also perform the operation of the first terminal device shown in FIGS. 8 and 9.
  • FIG. 10 shows only the main components of the terminal device.
  • the terminal device 1000 includes a processor, a memory, a radio frequency link, an antenna, and input and output devices.
  • the processor is mainly used to process the communication protocol and communication data, and control the entire terminal device, execute a software program, and process data of the software program, for example, to support the terminal device to execute the processes described in FIGS. 4 and 7.
  • the memory is mainly used to store software programs and data.
  • the radio frequency link is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the terminal device 1000 may further include input and output devices, such as a touch screen, a display screen, a keyboard, etc., which are mainly used to receive data input by the user and output data to the user. It should be noted that some types of terminal devices may not have input/output devices.
  • the processor can read the software program in the storage unit, interpret and execute the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs a baseband signal to the radio frequency link.
  • the radio frequency link processes the baseband signal after radio frequency processing, and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency link receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data .
  • FIG. 10 only shows one memory and processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc. This embodiment of the present application does not limit this.
  • the processor may include a baseband processor and a central processing unit (CPU).
  • the baseband processor is mainly used to process communication protocols and communication data, and the CPU is mainly used to process the entire terminal.
  • the device controls, executes the software program, and processes the data of the software program.
  • the processor may also be a network processor (NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the above PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field programmable logic gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL), or any combination thereof.
  • the memory may include volatile memory (volatile memory), such as random access memory (random-access memory, RAM); the memory may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory) , Hard disk drive (HDD) or solid-state drive (SSD); storage can also include a combination of the above types of storage.
  • the antenna and the radio frequency link with the transceiver function may be regarded as the transceiver unit 1001 of the terminal device 1000, and the processor with the processing function may be regarded as the processing unit 1002 of the terminal device 1000.
  • the terminal device 1000 may include a transceiving unit 1001 and a processing unit 1002.
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver device, or the like.
  • the device used to implement the receiving function in the transceiver unit 1001 may be regarded as a receiving unit
  • the device used to implement the sending function in the transceiver unit 1001 may be regarded as a sending unit, that is, the transceiver unit 1001 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, receiver, receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, transmitter, or transmitting circuit, etc.
  • the transceiver unit 1001 and the processing unit 1002 may be integrated into one device, or may be separated into different devices.
  • the processor and the memory may also be integrated into one device, or be separated into different devices.
  • the transceiver unit 1001 may be used to perform the method shown in step 402 shown in FIG. 4.
  • the transceiver unit 1001 may also be used to execute the methods shown in step 701 and step 703 shown in FIG. 7.
  • the processing unit 1002 may be used to control the transceiver unit 1001 to execute the method shown in step 402 shown in FIG. 4, and the processing unit 1002 may also be used to control the transceiver unit 1001 to execute the method shown in FIG. 7 The method shown in step 701 and step 703.
  • the processing unit 1002 may also be used to execute the method shown in step 401 shown in FIG. 4 and the method shown in step 702 shown in FIG. 7.
  • the transceiver unit 1001 may also be used to execute the method shown in the sending unit 802 and the receiving unit 803.
  • the processing unit 1002 may also be used to execute the method shown in the processing unit 801.
  • the embodiments of the present application also provide a computer-readable storage medium. All or part of the processes in the foregoing method embodiments may be completed by a computer program instructing relevant hardware.
  • the program may be stored in the foregoing computer storage medium. When the program is executed, the processes may include the processes of the foregoing method embodiments.
  • the computer-readable storage medium may be an internal storage unit of the power control device (including the data sending end and/or data receiving end) of any of the foregoing embodiments, such as a hard disk or a memory of the power control device.
  • the computer-readable storage medium may also be an external storage device of the power control device, such as a plug-in hard disk equipped on the power control device, a smart memory card (smart media (SMC), and secure digital (SD) Cards, flash cards, etc. Further, the above-mentioned computer-readable storage medium may also include both the internal storage unit of the above-mentioned power control device and an external storage device.
  • the computer-readable storage medium is used to store the computer program and other programs and data required by the power control device.
  • the above-mentioned computer-readable storage medium may also be used to temporarily store data that has been output or will be output.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (eg, floppy disk, hard disk, magnetic tape), optical medium (eg, DVD), or semiconductor medium (eg, solid state disk (SSD)), or the like.
  • the modules in the device of the embodiment of the present application may be combined, divided, and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种功率控制方法及装置,包括:第一终端设备确定第一数据信道部分的发送功率和第二数据信道部分的发送功率;该第一数据信道部分为与控制信道有时域重叠且无频域重叠的数据信道部分,该第二数据信道部分为与该控制信道有频域重叠且无时域重叠的数据信道部分;该第一终端设备以该第一数据信道部分的发送功率向第二终端设备发送该第一数据信道部分中的数据;以及以该第二数据信道部分的发送功率向该第二终端设备发送该第二数据信道部分中的数据。实施本申请,可合理的进行功率控制。本申请可以应用于车联网,例如V2X、LTE-V、V2V等,或可以用于D2D,智能驾驶,智能网联车等领域。

Description

功率控制方法及装置
本申请要求于2018年12月24日提交中国专利局,申请号为201811588371.0、申请名称为“功率控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种功率控制方法及装置。
背景技术
在第三代合作伙伴计划(the 3rd generation partnership project,3GPP)提出的长期演进(long term evolution,LTE)技术的网络下,车与任何事物通信(vehicle-to-everything,V2X)的车联网技术被提出,V2X通信是指车辆与外界的任何事物的通信,包括车与车的通信(vehicle to vehicle,V2V)、车与行人的通信(vehicle to pedestrian,V2P)、车与基础设施的通信(vehicle to infrastructure,V2I)、车与网络的通信(vehicle to network,V2N)。
V2X通信针对以车辆为代表的高速设备,是未来对通信时延要求非常高的场景下应用的基础技术和关键技术,如智能汽车、自动驾驶、智能交通运输系统等场景。基于V2X通信,车辆用户能将自身的一些信息,例如位置、速度、意图(转弯、并线、倒车)等信息周期性以及一些非周期性的事件触发的信息向周围的车辆用户发送,同样地车辆用户也可以实时接收周围用户的信息。
其中,LTE-V2X主要面对的业务类型是广播消息,因此V2X接收用户不确定,所有感兴趣的V2X用户均可处于监听状态,所以发送端以最大可能的发送功率来发送数据信息。同时在有网络覆盖的场景下,LTE-V2X信号在上行时隙发送,所以需要考虑V2X发送功率对上行基站侧接收的干扰。
因此,在NR-V2X中如何进行功率控制分配和功率控制亟待解决。
发明内容
本申请实施例提供了一种功率控制方法及装置,可合理地进行功率控制。
第一方面,本申请实施例提供了一种功率控制方法,包括:
第一终端设备确定第一数据信道部分的发送功率和第二数据信道部分的发送功率;其中,所述第一数据信道部分为与控制信道有时域重叠且无频域重叠的数据信道部分,所述第二数据信道部分为与所述控制信道有频域重叠且无时域重叠的数据信道部分;所述第一终端设备以所述第一数据信道部分的发送功率向第二终端设备发送所述第一数据信道部分中的数据;以及以所述第二数据信道部分的发送功率向所述第二终端设备发送所述第二数据信道部分中的数据。
通过区分第一数据信道部分和第二数据信道部分,可对不同的数据信道部分进行不同的功率控制,如可通过不同的发送功率分别发送第一数据信道部分中的数据以及第二数据 信道部分中的数据,避免了在所有情况下都通过相同的发送功率来发送数据,而避免了资源浪费的情况如避免了基于同一种方式确定数据信道的发送功率时第一数据信道部分或第二数据信道部分的发送功率过高,而实际不需要过高的发送功率就可完成对数据的发送的情况;从而通过将数据信道分为两部分,分别确定两部分的发送功率,不仅能够满足不同数据信道部分的功率要求,还可避免在所有情况下都通过相同的发送功率发送数据,而导致第一数据信道部分或第二数据信道部分的发送功率过高,而造成对其他终端设备的干扰,进而降低了对其他终端设备的干扰,提高了系统性能。
结合第一方面,在一种可能的实现方式中,在所述控制信道的带宽为N,数据信道的带宽为M的情况下,所述第一数据信道部分的带宽为M-N,其中,所述M大于所述N;所述第一数据信道部分的发送功率根据最大发送功率、所述第一数据信道部分的带宽M-N以及所述控制信道的带宽N确定。
结合第一方面或第一方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:
P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL}
其中,所述P 1为所述第一数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(N,M-N)为所述第一数据信道部分的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一数据信道部分的带宽M-N的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗。
本申请实施例中,通过第一数据信道部分的实际带宽M-N来确定第一数据信道部分的发送功率,避免由于数据信道中存在带宽不相同的第一数据信道部分和第二数据信道部分,而导致确定数据信道的发送功率不准确的情况,提高了确定第一数据信道部分的发送功率的准确性。
结合第一方面或第一方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率与所述第一数据信道部分的发送功率的比值,和所述第二数据信道部分的带宽与所述第一数据信道部分的带宽的比值,成正相关。
结合第一方面或第一方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:
P 2=P 1+f(M/(M-N))
其中,所述P 2为所述第二数据信道部分的发送功率,所述f(M/(M-N))为所述第二数据信道部分的带宽M与所述第一数据信道部分的带宽M-N的函数。
本申请实施例中,第一数据信道部分中的资源单元(resource element,RE)和第二数据信道部分中的RE以相同的发送功率来发送数据,通过第一数据信道部分的带宽和第二数据信道部分的带宽比值,来确定第一数据信道部分的发送功率和第二数据信道部分的发送功率的比值,一方面,可有效解决数据信道中不同符号(symbol)上可用的有效带宽不相同的问题;另一方面,还提高了第二终端设备确定接收的中频缩放因子的效率,即第二终端设备可根据第一数据信道部分的中频缩放因子,以及第一数据信道部分的带宽和第二数据信道部分的带宽比值来对第二数据信道部分进行缩放,即可使得整体时隙的接收数据处于合适的接收功率范围。
结合第一方面或第一方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率根据所述最大发送功率以及所述第二数据信道部分的链路预算确定,所述第二数据信道部分的链路预算根据所述第二数据信道部分的带宽M确定。
结合第一方面或第一方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL}
其中,所述P 2为所述第二数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗。
本申请实施例中,第一数据信道部分中的RE和第二数据信道部分中的RE以不同的发送功率来发送数据,可最大程度的提高数据信道的发送功率,具体的,尽可能的提高了第二数据信道部分的每个RE的发送功率,从而获得更高的SNR,提高了译码性能。
结合第一方面或第一方面的任一种可能的实现方式中,所述参考链路损耗PL根据服务小区内的上下行传输损耗或链路传输损耗确定,所述链路传输损耗包括侧行链路传输损耗;所述链路传输损耗为所述第一终端设备到所述第二终端设备的链路损耗;或者,所述链路传输损耗为所述第一终端设备到第一终端设备集合中的终端设备的链路损耗中的最大值;或者,所述链路传输损耗为所述第一终端设备到第二终端设备集合中的终端设备的链路损耗中的最大值,其中所述第二终端设备集合属于所述第一终端设备集合,且所述第二终端设备集合中的终端设备的第一参数满足所述第一参数的阈值范围。
结合第一方面或第一方面的任一种可能的实现方式中,所述第一参数为参考信号接收功率RSRP、信号与干扰加噪声比SINR、信噪比SNR或信道质量指示CQI中的任意一项。
本申请实施例中,通过从服务小区内的上下行传输损耗或链路传输损耗中确定参考链路损耗,可降低第一终端设备的发送功率,从而进一步降低对其他终端设备的干扰,提高系统性能。
结合第一方面或第一方面的任一种可能的实现方式中,所述第一终端设备确定第一数据信道部分的发送功率和第二数据信道部分的发送功率之前,所述方法还包括:
所述第一终端设备接收来自网络设备的指示信息,所述指示信息用于指示所述第二数据信道部分的发送功率;第一终端设备确定第一数据信道部分的发送功率和第二数据信道部分的发送功率,包括:所述第一终端设备根据所述指示信息确定所述第二数据信道部分的发送功率满足的公式为P 2=P 1+f(M/(M-N))或P 2=min{P CMAX,f(M)+P O+α·PL};其中,所述P 2为所述第二数据信道部分的发送功率,所述f(M/(M-N))为所述第二数据信道部分的带宽M与所述第一数据信道部分的带宽M-N的函数,所述P CMAX为最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗。
本申请实施例中,通过接收来自网络设备的指示信息,可使得第一终端设备明确得知第二数据信道部分的发送功率所满足的条件,从而提高第一终端设备确定第二数据信道部分的发送功率的效率。
结合第一方面或第一方面的任一种可能的实现方式中,所述第一数据信道部分的发送 功率满足如下公式:
P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL,P T-f(N,M-N)}
其中,所述P 1为所述第一数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(N,M-N)为所述第一数据信道部分的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一数据信道部分的带宽M-N的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P T为与所述数据信道中发送的数据承载的业务的优先级成正相关的发送功率。
结合第一方面或第一方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL,P T}
其中,所述P 2为所述第二数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P T为与所述数据信道中发送的数据承载的业务的优先级成正相关的发送功率。
结合第一方面或第一方面的任一种可能的实现方式中,所述P T为由网络设备配置的半静态值,或者,所述P T为预先配置的固定值。
本申请实施例中,通过根据P T来确定第一数据信道部分的发送功率和第二数据信道部分的发送功率,可保证高优先级业务优先传输,提高了高优先级业务的传输可靠性。
结合第一方面或第一方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:
P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL,P MAX_CBR-f(N,M-N)}
其中,所述P 1为所述第一数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(N,M-N)为所述第一数据信道部分的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一数据信道部分的带宽M-N的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P MAX_CBR为根据信道繁忙程度确定的功率。
结合第一方面或第一方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL,P MAX_CBR}
其中,所述P 2为所述第二数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P MAX_CBR为根据信道繁忙程度确定的功率。
第二方面,本申请实施例提供了一种功率控制装置,包括:
处理单元,用于确定第一数据信道部分的发送功率和第二数据信道部分的发送功率;其中,所述第一数据信道部分为与控制信道有时域重叠且无频域重叠的数据信道部分,所述第二数据信道部分为与所述控制信道有频域重叠且无时域重叠的数据信道部分;发送单元,用于以所述第一数据信道部分的发送功率向第二终端设备发送所述第一数据信道部分 中的数据;以及以所述第二数据信道部分的发送功率向所述第二终端设备发送所述第二数据信道部分中的数据。
结合第二方面,在一种可能的实现方式中,在所述控制信道的带宽为N,数据信道的带宽为M的情况下,所述第一数据信道部分的带宽为M-N,其中,所述M大于所述N;所述第一数据信道部分的发送功率根据最大发送功率、所述第一数据信道部分的带宽M-N以及所述控制信道的带宽N确定。
结合第二方面或第二方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:
P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL}
其中,所述P 1为所述第一数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(N,M-N)为所述第一数据信道部分的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一数据信道部分的带宽M-N的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗。
结合第二方面或第二方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率与所述第一数据信道部分的发送功率的比值,和所述第二数据信道部分的带宽与所述第一数据信道部分的带宽的比值,成正相关。
结合第二方面或第二方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:
P 2=P 1+f(M/(M-N))
其中,所述P 2为所述第二数据信道部分的发送功率,所述f(M/(M-N))为所述第二数据信道部分的带宽M与所述第一数据信道部分的带宽M-N的函数。
结合第二方面或第二方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率根据所述最大发送功率以及所述第二数据信道部分的链路预算确定,所述第二数据信道部分的链路预算根据所述第二数据信道部分的带宽M确定。
结合第二方面或第二方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL}
其中,所述P 2为所述第二数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗。
结合第二方面或第二方面的任一种可能的实现方式中,所述参考链路损耗PL根据服务小区内的上下行传输损耗或链路传输损耗确定,所述链路传输损耗包括侧行链路传输损耗;所述链路传输损耗为所述第一终端设备到所述第二终端设备的链路损耗;或者,所述链路传输损耗为所述第一终端设备到第一终端设备集合中的终端设备的链路损耗中的最大值;或者,所述链路传输损耗为所述第一终端设备到第二终端设备集合中的终端设备的链路损耗中的最大值,其中所述第二终端设备集合属于所述第一终端设备集合,且所述第二终端设备集合中的终端设备的第一参数满足所述第一参数的阈值范围。
结合第二方面或第二方面的任一种可能的实现方式中,所述第一参数为参考信号接收 功率RSRP、信号与干扰加噪声比SINR、信噪比SNR或信道质量指示CQI中的任意一项。
结合第二方面或第二方面的任一种可能的实现方式中,所述装置还包括:接收单元,用于接收来自网络设备的指示信息,所述指示信息用于指示所述第二数据信道部分的发送功率;所述处理单元,具体用于根据所述指示信息确定所述第二数据信道部分的发送功率满足的公式为P 2=P 1+f(M/(M-N))或P 2=min{P CMAX,f(M)+P O+α·PL};其中,所述P 2为所述第二数据信道部分的发送功率,所述f(M/(M-N))为所述第二数据信道部分的带宽M与所述第一数据信道部分的带宽M-N的函数,所述P CMAX为最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗。
结合第二方面或第二方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:
P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL,P T-f(N,M-N)}
其中,所述P 1为所述第一数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(N,M-N)为所述第一数据信道部分的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一数据信道部分的带宽M-N的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P T为与所述数据信道中发送的数据承载的业务的优先级成正相关的发送功率。
结合第二方面或第二方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL,P T}
其中,所述P 2为所述第二数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P T为与所述数据信道中发送的数据承载的业务的优先级成正相关的发送功率。
结合第二方面或第二方面的任一种可能的实现方式中,所述P T为由网络设备配置的半静态值,或者,所述P T为预先配置的固定值。
结合第二方面或第二方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:
P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL,P MAX_CBR-f(N,M-N)}
其中,所述P 1为所述第一数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(N,M-N)为所述第一数据信道部分的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一数据信道部分的带宽M-N的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P MAX_CBR为根据信道繁忙程度确定的功率。
结合第二方面或第二方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL,P MAX_CBR}
其中,所述P 2为所述第二数据信道部分的发送功率,所述P CMAX为所述最大发送功率, 所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P MAX_CBR为根据信道繁忙程度确定的功率。
第三方面,本申请实施例还提供了一种功率控制装置,包括处理器、存储器和收发器,所述处理器和所述存储器耦合,所述处理器用于运行所述存储器内的指令或程序;所述处理器,用于确定第一数据信道部分的发送功率和第二数据信道部分的发送功率;其中,所述第一数据信道部分为与控制信道有时域重叠且无频域重叠的数据信道部分,所述第二数据信道部分为与所述控制信道有频域重叠且无时域重叠的数据信道部分;所述收发器和所述处理器耦合,所述收发器,用于以所述第一数据信道部分的发送功率向第二终端设备发送所述第一数据信道部分中的数据;以及以所述第二数据信道部分的发送功率向所述第二终端设备发送所述第二数据信道部分中的数据。
结合第三方面,在一种可能的实现方式中,在所述控制信道的带宽为N,数据信道的带宽为M的情况下,所述第一数据信道部分的带宽为M-N,其中,所述M大于所述N;所述第一数据信道部分的发送功率根据最大发送功率、所述第一数据信道部分的带宽M-N以及所述控制信道的带宽N确定。
结合第三方面或第三方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:
P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL}
其中,所述P 1为所述第一数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(N,M-N)为所述第一数据信道部分的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一数据信道部分的带宽M-N的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗。
结合第三方面或第三方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率与所述第一数据信道部分的发送功率的比值,和所述第二数据信道部分的带宽与所述第一数据信道部分的带宽的比值,成正相关。
结合第三方面或第三方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:
P 2=P 1+f(M/(M-N))
其中,所述P 2为所述第二数据信道部分的发送功率,所述f(M/(M-N))为所述第二数据信道部分的带宽M与所述第一数据信道部分的带宽M-N的函数。
结合第三方面或第三方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率根据所述最大发送功率以及所述第二数据信道部分的链路预算确定,所述第二数据信道部分的链路预算根据所述第二数据信道部分的带宽M确定。
结合第三方面或第三方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL}
其中,所述P 2为所述第二数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标 接收功率,所述PL为参考链路损耗。
结合第三方面或第三方面的任一种可能的实现方式中,所述参考链路损耗PL根据服务小区内的上下行传输损耗或链路传输损耗确定,所述链路传输损耗包括侧行链路传输损耗;所述链路传输损耗为所述第一终端设备到所述第二终端设备的链路损耗;或者,所述链路传输损耗为所述第一终端设备到第一终端设备集合中的终端设备的链路损耗中的最大值;或者,所述链路传输损耗为所述第一终端设备到第二终端设备集合中的终端设备的链路损耗中的最大值,其中所述第二终端设备集合属于所述第一终端设备集合,且所述第二终端设备集合中的终端设备的第一参数满足所述第一参数的阈值范围。
结合第三方面或第三方面的任一种可能的实现方式中,所述第一参数为参考信号接收功率RSRP、信号与干扰加噪声比SINR、信噪比SNR或信道质量指示CQI中的任意一项。
结合第三方面或第三方面的任一种可能的实现方式中,所述收发器,还用于接收来自网络设备的指示信息,所述指示信息用于指示所述第二数据信道部分的发送功率;所述处理器,具体用于根据所述指示信息确定所述第二数据信道部分的发送功率满足的公式为P 2=P 1+f(M/(M-N))或P 2=min{P CMAX,f(M)+P O+α·PL};其中,所述P 2为所述第二数据信道部分的发送功率,所述f(M/(M-N))为所述第二数据信道部分的带宽M与所述第一数据信道部分的带宽M-N的函数,所述P CMAX为最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗。
结合第三方面或第三方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:
P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL,P T-f(N,M-N)}
其中,所述P 1为所述第一数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(N,M-N)为所述第一数据信道部分的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一数据信道部分的带宽M-N的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P T为与所述数据信道中发送的数据承载的业务的优先级成正相关的发送功率。
结合第三方面或第三方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL,P T}。
其中,所述P 2为所述第二数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P T为与所述数据信道中发送的数据承载的业务的优先级成正相关的发送功率。
结合第三方面或第三方面的任一种可能的实现方式中,所述P T为由网络设备配置的半静态值,或者,所述P T为预先配置的固定值。
结合第三方面或第三方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:
P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL,P MAX_CBR-f(N,M-N)}
其中,所述P 1为所述第一数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(N,M-N)为所述第一数据信道部分的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一数据信道部分的带宽M-N的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P MAX_CBR为根据信道繁忙程度确定的功率。
结合第三方面或第三方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL,P MAX_CBR}
其中,所述P 2为所述第二数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P MAX_CBR为根据信道繁忙程度确定的功率。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第五方面,本申请实施例提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1a是本申请实施例提供的一种通信系统的结构示意图;
图1b是一种数据信道和控制信道的结构示意图;
图2是四种帧结构的示意图;
图3a是本申请实施例提供的一种侧行链路通信的场景示意图;
图3b是本申请实施例提供的另一种侧行链路通信的场景示意图;
图3c是本申请实施例提供的又一种侧行链路通信的场景示意图;
图3d是本申请实施例提供的又一种侧行链路通信的场景示意图;
图3e是本申请实施例提供的又一种侧行链路通信的场景示意图;
图3f是本申请实施例提供的又一种侧行链路通信的场景示意图;
图3g是本申请实施例提供的又一种侧行链路通信的场景示意图;
图4是本申请实施例提供的一种功率控制方法的流程示意图;
图5a是本申请实施例提供的一种数据信道和控制信道的示意图;
图5b是本申请实施例提供的另一种数据信道和控制信道的示意图;
图5c是本申请实施例提供的又一种数据信道和控制信道的示意图;
图5d是本申请实施例提供的又一种数据信道和控制信道的示意图;
图5e是本申请实施例提供的又一种数据信道和控制信道的示意图;
图5f是本申请实施例提供的又一种数据信道和控制信道的示意图;
图6是本申请实施例提供的一种时频资源的结构示意图;
图7是本申请实施例提供的另一种功率控制方法的流程示意图;
图8是本申请实施例提供的一种功率控制装置的结构示意图;
图9是本申请实施例提供的另一种功率控制装置的结构示意图;
图10是本申请实施例提供的又一种终端设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图对本申请实施例进行描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
本申请使用的通信系统可理解为无线蜂窝通信系统,又或者理解为基于蜂窝网络架构的无线通信系统。例如第五代移动通信(5th-generation,5G)系统以及下一代移动通信等等。图1a是本申请实施例提供的一种通信系统的示意图,本申请中的方案可适用于该通信系统。该通信系统可以包括至少一个网络设备,仅示出一个,如图中的下一代基站(the next generation Node B,gNB);以及与该网络设备连接的一个或多个终端设备,如图中的终端设备1和终端设备2。
其中,网络设备可以是能和终端设备通信的设备。网络设备可以是任意一种具有无线收发功能的设备,包括但不限于基站。例如,该基站可以为gNB,又或者该基站为未来通信系统中的基站。可选的,该网络设备还可以为无线局域网(wireless fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。可选的,该网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。可选的,该网络设备还可以是可穿戴设备或车载设备等。可选的,该网络设备还可以是小站,传输节点(transmission reference point,TRP)等。当然本申请不限于此。
终端设备,也可称为用户设备(user equipment,UE)、终端等。终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,例如部署在飞机、气球或卫星上等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety) 中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
可理解,图1a所示的通信系统中,终端设备1和终端设备2也可以通过设备到设备(device to device,D2D)技术或车与任何事物通信(vehicle-to-everything,V2X)技术进行通信。
长期演进(long term evolution,LTE)V2X解决了V2X场景中的一些部分基础性的需求,但对于未来的完全智能驾驶、自动驾驶等应用场景而言,现阶段的LTE V2X还不能有效的支持。随着第五代移动通信(5th-generation,5G)新无线(new radio,NR)技术在3GPP标准组织中的开发,5G NR-V2X也将进一步发展,比如可以支持更低的传输时延,更可靠的通信传输,更高的吞吐量,更好的用户体验,以满足更加广泛的应用场景需求。因此NR-V2X提出要支撑99.99%甚至99.999%的可靠性传输。同时为了支撑不同的业务需求,NR-V2X也需要支撑单播、多播、广播等业务形态。
以图1b所示的资源图为例,在一次发送的时频资源上控制信道和数据信道以频分的方式复用在一起,从时域来看,控制信道和数据信道是共存关系。所以控制信道和数据信道的发送功率需要一起考虑。其中,LTE-V2X基于网络设备(如基站)调度的功率控制可满足如下公式:
Figure PCTCN2019126243-appb-000001
Figure PCTCN2019126243-appb-000002
其中,P PSSCH为数据信道的发送功率,P PSCCH为控制信道的发送功率;M PSSCH为数据信道的带宽,M PSCCH为控制信道的带宽;P CMAX为最大发射功率,也可理解为终端设备允许的最大发射功率。PL为终端设备的下行链路功率损耗,在通信系统中特别是时分双工(time division duplexing,TDD)系统中,一般认为上下行链路损耗是一致的,所以PL可用于表示终端设备到基站侧可能的链路损耗。P O_PSSCH_3为终端设备期望接收到的功率(也可理解为终端设备的目标接收功率),其中,3表示基站调度。α PSSCH,3为基站调度模式下配置的滤波参数。
上述公式(1)还可以变化为:
Figure PCTCN2019126243-appb-000003
上述公式(2)还可以变化为:
Figure PCTCN2019126243-appb-000004
其中,公式(3)和公式(4)中分别包括两个子项,其中第一项表示当前信道分配到的最大发送功率,如公式(3)中第一项可以表示数据信道分配到的最大发送功率,公式(4)中第一项可以表示控制信道分配到的最大发送功率。根据第一项可知控制信道和数据信道分配到的最大发送功率跟信道本身的带宽成正比例关系,且与数据信道相比,控制信道每个子信道的发送功率有
Figure PCTCN2019126243-appb-000005
倍的增强,即终端设备硬件允许的全部发送功率按照带宽大小成比例分配给控制信道和数据信道。
其中,第二项表示根据Uu口的链路损耗和期望达到的信噪比(signal-noise-ratio,SNR)计算得到链路预算,即链路预期发送功率。最终数据信道的发送功率和控制信道的发送功率分别为第一项和第二项中的最小值,即在终端设备允许的发送功率足够大的时候,按照链路需求(即链路预算)发送,在终端设备允许的功率小于链路需求时,按照终端设备允许的最大功率发送。
进一步地,LTE-V2X基于竞争模式的数据信道的功率控制可满足如下公式:
Figure PCTCN2019126243-appb-000006
其中,系统可以根据当前子信道的繁忙程度,定义子信道内的最大发送功率P MAX_CBR,若子信道终端设备数量比较多,为减少碰撞概率,可以降低子信道内每个终端设备的发送功率;反之可以提高子信道内每个终端设备的发送功率。当系统配置了P MAX_CBR,那么A可满足如下公式:
Figure PCTCN2019126243-appb-000007
LTE-V2X基于竞争模式的控制信道的功率控制可满足如下公式:
Figure PCTCN2019126243-appb-000008
其中,B可满足如下公式:
Figure PCTCN2019126243-appb-000009
以上介绍了LTE-V2X场景下的功率控制方法,然而,NR-V2X场景下可能的帧结构如图2所示。对于LTE-V2X和设备到设备(device to device,D2D)的功率分配和功率控制方法,仅适用于图2中的2a、2b和2c,如果NR-V2X的帧结构出现如图2中的2d所示的结构,即控制信道和数据信道既有时域重叠,又有频域重叠的混合复用场景,那么LTE-V2X或D2D的功率分配方式就不再适用。因此,对于图2中的2d所示的结构的功率控制方法,可参考本申请实施例图4所示的方法。
以下将以NR-V2X中的终端设备1和终端设备2为例,来具体说明本申请实施例所提供的功率控制方法的通信场景。
如图3a至图3g所示,分别为本申请实施例提供的一种侧行链路(sidelink)通信的场景示意图。
图3a所示的场景中终端设备1和终端设备2均处于小区覆盖范围外。
图3b所示的场景中终端设备1处于小区覆盖范围内,终端设备2处于小区覆盖范围外。
图3c所示的场景中终端设备1和终端设备2均处于同一个小区的覆盖范围内,且在一个公共陆地移动网络(public land mobile network,PLMN)中,如PLMN1。
图3d所示的场景中终端设备1和终端设备2在一个PLMN中如PLMN1,但处于不同的小区覆盖范围。
图3e所示的场景中终端设备1和终端设备2分别在不同的PLMN,不同的小区,且终端设备1和终端设备2分别处于两个小区的共同覆盖范围内。如终端设备1在PLMN1中,而终端设备2在PLMN2中。
图3f所示的场景中终端设备1和终端设备2分别在不同的PLMN,不同的小区,且终端设备1处于两个小区的共同覆盖范围内,终端设备2处于服务小区的覆盖范围内。
图3g所示的场景中终端设备1和终端设备2分别在不同的PLMN,不同的小区,且终端设备1和终端设备2分别处于各自的服务小区的覆盖范围内。
可理解,以上所示的场景可适用于车联万物(vehicle-to-everything,V2X),也可称为V2X中。
参见图4,图4是本申请实施例提供的一种功率控制方法的流程示意图,该功率控制方法可应用于图3a至图3g所示的终端设备,且该功率控制方法可有效解决上述的功率控制问题。如图4所示,该功率控制方法可包括:
401、第一终端设备确定第一数据信道部分的发送功率和第二数据信道部分的发送功率。
其中,上述第一数据信道部分为与控制信道有时域重叠且无频域重叠的数据信道部分,上述第二数据信道部分为与上述控制信道有频域重叠且无时域重叠的数据信道部分。
为更形象的理解本申请实施例所描述的第一数据信道部分和第二数据信道部分,图5a提供了一种数据信道和控制信道的示意图。如图5a所示,数据信道可分为第一数据信道部分和第二数据信道部分,也就是说,第一数据信道部分和第二数据信道部分可以构成完整的数据信道。又或者,第一数据信道部分和第二数据信道部分可以组成完整的数据信道。其中,第一数据信道部分与控制信道有时域重叠,但无频域重叠,第二数据信道部分与控制信道有频域重叠,但无时域重叠。也就是说,第一数据信道部分与控制信道有时域复用关系,但无频域复用关系,第二数据信道部分与控制信道有频域复用关系,但无时域复用关系。
作为示例,数据信道的带宽为M,控制信道的带宽为N,且M大于N,则第一数据信道部分的带宽为M-N,第二数据信道部分的带宽为M。可理解,其中M可表示M个资源块(resource block,RB),N可表示N个RB。可能的,在数据信道的带宽和控制信道的带宽还可以子载波为单位等等,本申请不作限定。可理解,在以子载波为单位的情况下,还需要根据子载波间隔来确定第一数据信道部分的发送功率、第二数据信道部分的发送功率以及控制信道的发送功率。
作为示例,控制信道可理解为用来承载侧行链路控制信息(sidelink control information,SCI)的信道,该SCI中包括数据信道中传输的数据的解码信息等等。数据信道可理解为用来承载数据的信道,如该数据可为第一终端设备向第二终端设备发送的数据,进一步地,该数据可用来承载第一终端设备向第二终端设备发送的业务数据,例如侧行链路的数据信道可以是物理侧行共享信道(physical sidelink shared channel,PSSCH),侧行链路的控制信道可以是物理侧行控制信道(physical sidelink control channel,PSCCH)。
进一步地,对于数据信道和控制信道的示意图,还可参考图5b至图5f所示的示意图,这里不再一一详述。
本申请实施例中,终端设备(如第一终端设备)在确定发送功率时可将数据信道分为两部分,分别确定两部分的发送功率,即第一数据信道部分的发送功率以及第二数据信道部分的发送功率。下文将会描述第一终端设备确定第一数据信道部分的发送功率和第二数据信道部分的发送功率的详细过程。
402、上述第一终端设备以上述第一数据信道部分的发送功率向第二终端设备发送上述第一数据信道部分中的数据;以及以上述第二数据信道部分的发送功率向上述第二终端设备发送上述第二数据信道部分中的数据。
本申请实施例中,通过区分第一数据信道部分和第二数据信道部分,可对不同的数据信道部分进行不同的功率控制,如可通过不同的发送功率分别发送第一数据信道部分中的数据以及第二数据信道部分中的数据,避免了在所有情况下都通过相同的发送功率来发送数据,而避免了资源浪费的情况如避免了基于同一种方式确定数据信道的发送功率时第一数据信道部分或第二数据信道部分的发送功率过高,而实际不需要过高的发送功率就可完成对数据的发送的情况;从而通过将数据信道分为两部分,分别确定两部分的发送功率, 不仅能够满足不同数据信道部分的功率要求,还可避免在所有情况下都通过相同的发送功率发送数据,而导致第一数据信道部分或第二数据信道部分的发送功率过高,而造成对其他终端设备的干扰,进而降低了对其他终端设备的干扰,提高了系统性能。
接下来,详细描述第一终端设备如何确定控制信道的发送功率、第一数据信道部分的发送功率和第二数据信道部分的发送功率。可理解,以下将以图5a所示的控制信道和数据信道的示意图来说明。
一、控制信道的发送功率:
本申请的一些实施例中,对于控制信道的发送功率,第一终端设备可根据最大发送功率P CMAX、第一数据信道部分的带宽M-N以及控制信道的带宽N确定。更具体的,控制信道的发送功率可满足如下公式:
P control=min{P CMAX-f(M-N,N),f(N)+P O+α·PL}[dBm]  (9)
其中,P control为控制信道的发送功率,P CMAX为最大发送功率,f(M-N,N)为第一数据信道部分的带宽M-N与控制信道的带宽N的函数,f(N)为控制信道的带宽N的函数,P o为第二终端设备的目标接收功率(也可理解为第二终端设备期望的接收功率),α为(基站)考虑调整平稳性设定的滤波参数,可由高层配置,PL为参考链路损耗。其中,对于PL的具体描述可参考下文,这里先不详述。具体的,P CMAX可理解为物理硬件受限的最大发送功率,或者,可理解为终端设备的硬件所能允许的最大发送功率。可选的,P CMAX可由基站的高层信令配置。
可理解,公式(9)中f(M-N,N)也可理解为第一数据信道部分的带宽M-N与控制信道的带宽N的表达式,或者,也可理解为第一数据信道部分的带宽M-N与控制信道的带宽N的关系式等。
对于公式(9),P CMAX-f(M-N,N)可理解为控制信道根据最大发送功率P CMAX以及控制信道与第一数据信道部分的带宽比例分配到的发送功率,f(N)+P O+α·PL可理解为控制信道的链路预算。
具体的,f(M-N,N)可满足如下公式:
Figure PCTCN2019126243-appb-000010
也就是说,由于控制信道与第一数据信道部分有时域重叠无频域重叠,因此控制信道和第一数据信道部分分别是在同一时刻发送控制信息和数据,因此控制信道与第一数据信道部分需要做功率分配。由此f(M-N,N)可理解为控制信道与第一数据信道部分之间的功率分配关系。
具体的,f(N)可满足如下公式:
Figure PCTCN2019126243-appb-000011
进一步地,结合公式(10)和公式(11)控制信道的发送功率可满足如下公式:
Figure PCTCN2019126243-appb-000012
或者,本实施例还提供了另一种形式来表示控制信道的发送功率所满足的公式,如下所示:
Figure PCTCN2019126243-appb-000013
可理解,公式(12)和公式(13)为在基站调度模式下,控制信道的发送功率的两种不同形式,在第一终端设备需要确定控制信道的发送功率时,不管是通过公式(12)还是公式(13),该第一终端设备所确定出的控制信道的发送功率的结果是一致的。因此,第一终端设备还可以通过公式(9),进一步地通过公式(12)或公式(13)确定控制信道的发送功率,从而第一终端设备以控制信道的发送功率向第二终端设备发送控制信道中的控制信息。
以上所示的控制信道所满足的公式(9)、公式(12)和公式(13)是在基站调度模式下示出的,而在竞争模式下,由于每个子信道有繁忙功率控制设定,因此,在本申请的一些实施例中,控制信道的发送功率可满足如下公式:
P control=min{P CMAX-f(M-N,N),f(N)+P O+α·PL,P MAX_CBR-f(M-N,N)}[dBm]  (14)
其中,P control为控制信道的发送功率,P CMAX为最大发送功率,f(M-N,N)为第一数据信道部分的带宽M-N与控制信道的带宽N的函数,f(N)为控制信道的带宽N的函数,Po为第二终端设备的目标接收功率,α为考虑调整平稳性设定的滤波参数,可由高层配置,PL为参考链路损耗,P MAX_CBR为根据信道繁忙程度确定的功率,或者,也可理解为繁忙功率(max channel busy ratio)。
进一步地,结合公式(10)和公式(11)在竞争模式下,控制信道的发送功率可满足如下公式:
Figure PCTCN2019126243-appb-000014
或者,在竞争模式下,控制信道的发送功率满足如下公式:
Figure PCTCN2019126243-appb-000015
可理解,公式(15)和公式(16)为控制信道的发送功率的两种不同形式,第一终端设备通过公式(15)和公式(16)确定出的控制信道的发送功率是一致的。
在通过控制信道发送控制信息时,不同的控制信息可能包括不同的优先级,因此,在本申请的一些实施例中,还可根据控制信息的优先级来确定控制信道的发送功率的方法。如控制信道的发送功率满足如下公式:
P control=min{P CMAX-f(M-N,N),f(N)+P O+α·PL,P T-f(M-N,N)}[dBm]  (17)
其中,P T为根据控制信道中发送的控制信息的优先级成正相关的发送功率。该P T为由网络设备配置的半静态值,或者,P T为预先配置的固定值。可理解,对于其他参数的描述,可参考其他示例,这里不再一一详述。其中,在P T为预先配置的固定值时,该P T可由高层信令配置,如由网络设备的高层信令配置。
结合公式(10)和公式(11),控制信道的发送功率可满足如下公式:
Figure PCTCN2019126243-appb-000016
可理解,对于以上各个参数的具体描述可参考前述各个实施例,这里不再一一详述。
可理解,公式(17)和公式(18)可理解为在基站调度模式下,不同的控制信息可能包括不同的优先级,从而根据控制信道分配到的发送功率、控制信道的链路预算以及控制信道的门限功率(P T)确定控制信道的发送功率的一种功率控制方法。
而在竞争模式下,不同的控制信息也可能会包括不同的优先级,因此,在本申请的一些实施例中,还提供了一种确定控制信道的发送功率的方法,如下所示,控制信道的发送功率可满足如下公式:
Figure PCTCN2019126243-appb-000017
结合公式(10)和公式(11),控制信道的发送功率可满足如下公式:
Figure PCTCN2019126243-appb-000018
可理解,对于以上各个参数的具体描述可参考前述各个实施方式,这里不再一一详述。
可理解,对于以上各个实施例,控制信道的发送功率可能还存在其他变形,因此,不应将以上所示的各个实施例理解为对本申请的限定。
二、第一数据信道部分的发送功率:
本申请一些实施例中,对于第一数据信道部分的发送功率可根据最大发送功率P CMAX、第一数据信道部分的带宽M-N以及控制信道的带宽N确定。更具体的,第一数据信道部分的发送功率可满足如下公式:
P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL}[dBm]  (21)
其中,P 1为第一数据信道部分的发送功率,P CMAX为最大发送功率,f(N,M-N)为第一数据信道部分的带宽M-N与控制信道的带宽N的函数,f(M-N)为第一数据信道部分的带宽M-N的函数,P o为第二终端设备的目标接收功率,α为考虑调整平稳性设定的滤波参数,可由高层配置,PL为参考链路损耗。
可理解,f(N,M-N)还可以理解为第一数据信道部分的带宽M-N与控制信道的带宽N的表达式或关系式等等,以及f(M-N)还可以理解为第一数据信道部分的带宽M-N的表达式或关系式等。
其中,P CMAX-f(N,M-N)可理解为第一数据信道部分根据最大发送功率P CMAX以及第一数据信道部分与控制信道的带宽比例分配到的发送功率,f(M-N)+P O+α·PL可理解为第一数据信道部分的链路预算。
具体的,f(N,M-N)满足如下公式:
Figure PCTCN2019126243-appb-000019
具体的,f(M-N)满足如下公式:
f(M-N)=10log 10(M-N)[dBm]  (23)
进一步地,结合公式(22)和公式(23)第一数据信道部分的发送功率可满足如下公式:
Figure PCTCN2019126243-appb-000020
或者,本实施例还提供了另一种形式来表示第一数据信道部分的发送功率所满足的公式,如下所示:
Figure PCTCN2019126243-appb-000021
公式(24)和公式(25)为第一数据信道部分的发送功率的两种不同形式,第一终端设备通过公式(24)和公式(25)确定出的第一数据信道部分的发送功率是一致的。
以上所示的第一数据信道部分所满足的公式(21)、公式(24)和公式(25)是在基站调度模式下示出的,而在竞争模式下,由于每个子信道有繁忙功率控制设定,因此,在本 申请的一些实施例中,第一数据信道部分的发送功率可满足如下公式:
P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL,P MAX_CBR-f(N,M-N)}[dBm]  (26)
其中,P MAX_CBR为根据信道繁忙程度确定的功率。可理解,公式(14)和公式(26)中的P MAX_CBR可理解为同一个繁忙功率。
进一步地,结合公式(22)和公式(23)在竞争模式下,第一数据信道部分的发送功率满足如下公式:
Figure PCTCN2019126243-appb-000022
或者,在竞争模式下,第一数据信道部分的发送功率满足如下公式:
Figure PCTCN2019126243-appb-000023
可理解,对于该实施例中各个参数的具体描述,可对应参考前述实施方式,这里不再一一详述。
更进一步地,由于数据信道中发送的数据承载的业务有不同的服务质量(quality of service,QoS),所以数据信道中发送的数据承载的业务可以用不同的功率限制。比如涉及紧急避险和自动驾驶等安全性要求比较高的业务时,该安全性比较高的业务会对QoS有比较高的需求。也就是说,在这些对安全性要求比较高的场景下,数据信道中发送的数据承载的业务要求有更高的QoS。因此,在本申请的一些实施例中,第一终端设备可以根据业务的QoS需求来确定第一数据信道部分的发送功率。
因此,第一数据信道部分的发送功率可满足如下公式:
P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL,P T-f(N,M-N)}[dBm]  (29)
其中,P T为与数据信道中发送的数据承载的业务的优先级成正相关的发送功率。该P T为由网络设备配置的半静态值,或者,P T为预先配置的固定值。
该P T也可理解为门限功率,也就是说,业务的优先级越高,P T越高。即高优先级业务对应高门限功率,低优先级业务对应低门限功率。
具体的,结合公式(22)和公式(23),在该实施例中第一数据信道部分的发送功率可满足如下公式:
Figure PCTCN2019126243-appb-000024
本实施例中,通过不同业务的QoS需求,设定不同的门限功率,从而可确保第一终端设备承载的高优先级业务传输的可靠性;另外,对不同优先级的业务,通过设置不同的门限功率限制,可使得高优先级业务在相同的干扰情况下具有更高的可靠性。
可理解,公式(29)和公式(30)可理解为在基站调度模式下,通过不同的业务的QoS需求,设定不同的门限功率,从而根据第一数据信道部分分配到的发送功率、第一数据信道部分的链路预算以及第一数据信道部分的门限功率确定第一数据信道部分的发送功率的一种方法。
而在竞争模式下,不同业务的QoS需求也可能会不同,因此,在本申请的一些实施例中,第一终端设备确定第一数据信道部分的发送功率还可满足如下公式:
Figure PCTCN2019126243-appb-000025
结合公式(22)和公式(23),第一数据信道部分的发送功率可满足如下公式:
Figure PCTCN2019126243-appb-000026
可理解,对于以上各个参数的具体描述可参考前述各个实施方式,这里不再一一详述。
三、第二数据信道部分的发送功率:
本实施例提供了两种实现方式来说明第二数据信道部分的发送功率,分别如下所示:
实现方式一、
该实现方式下,第二数据信道部分的发送功率与第一数据信道部分的发送功率的比值,和第二数据信道部分的带宽与第一数据信道部分的带宽的比值,成正相关。具体的,第二数据信道部分的发送功率与第一数据信道部分的发送功率的比值,和第二数据信道部分的带宽与第一数据信道部分的带宽的比值,相同。
对于该实现方式,可理解为数据信道中所有资源单元(resource element,RE)以相同的发送功率发送数据。
作为示例,参见图6,图6是本申请实施例提供的一种时频资源的结构示意图,其中,一个RE在时域上为一个正交频分复用((orthogonal frequency division multiplexing,OFDM)符号,频域上为一个子载波。在LTE系统中,时频资源被划分成时间域维度上的OFDM或单载波频分复用多址(single carrier frequency division multiplexing access,SC-FDMA)符号和频率域维度上的子载波,而最小的资源粒度叫做RE,即表示时间域上的一个时域符号和频率域上的一个子载波组成的时频格点。可理解,以上仅为本申请实施例提供的一种示例,在未来通信技术中,RE的结构可能会发生变化,因此,不应将图6所示的RE理解为对本申请实施例的限定。
由于RE是时频资源,因此,本实施例所描述的数据信道中所有RE以相同的发送功率发送数据,可理解为在RE所表示的频域资源上以相同的发送功率发送数据。也就是说,本实施例所描述的控制信道的发送功率、第一数据信道部分的发送功率或第二数据信道部 分的发送功率,均指的是在某一时刻或某一时间单元上的发送功率。
因此,在本申请的一些实施例中,第二数据信道部分的发送功率满足如下公式:
P 2=P 1+f(M/(M-N))[dBm]  (33)
其中,P 2为第二数据信道部分的发送功率,f(M/(M-N))为第二数据信道部分的带宽M与第一数据信道部分的带宽M-N的函数。可理解,f(M/(M-N))还可理解为第二数据信道部分的带宽M与第一数据信道部分的带宽M-N的表达式或关系式等等。
可理解,由于第二数据信道部分的发送功率是基于第一数据信道部分的发送功率来确定,因此,对应的,在基站调度模式下,且无门限功率P T时,第一数据信道部分的发送功率所满足的公式可参考第一数据信道部分的发送功率中的示例,即参考公式(21)、公式(24)和公式(25)中的一项或多项。对应的,控制信道的发送功率所满足的公式可参考控制信道的发送功率中的示例,即参考公式(9)、公式(12)和公式(13)中的一项或多项。
而在竞争模式下,且无门限功率时,第一数据信道部分的发送功率所满足的公式可参考第一数据信道部分的发送功率中的示例,即参考公式(26)、公式(27)和公式(28)中的一项或多项。以及控制信道的发送功率所满足的公式可参考控制信道的发送功率中的示例,即公式(14)、公式(15)和公式(16)中的一项或多项。
而在基站调度模式下,对不同的业务有不同的QoS需求(即有门限功率)时,第一数据信道部分的发送功率所满足的公式可参考第一数据信道部分的发送功率中的示例,即参考公式(29)和/或公式(30)。以及控制信道的发送功率所满足的公式可参考控制信道的发送功率中的示例,即公式(17)和/或公式(18)。
在竞争模式下,且对不同的业务有不同的QoS需求,即设定有门限功率时,第一数据信道部分的发送功率所满足的公式可参考第一数据信道部分的发送功率所满足的公式(31)和/或公式(32)。以及控制信道的发送功率所满足的公式可参考公式(19)和/或公式(20)。
进一步地,第二数据信道部分的发送功率可满足如下公式:
P 2=P 1+10log 10(M/(M-N))[dBm]  (34)
结合图5a可知,第二数据信道部分的实际有效带宽M大于第一数据信道部分的实际有效带宽M-N,以及基于第一数据信道部分和第二数据信道部分中的RE均以相同的发送功率发送数据,因此,第二数据信道部分的发送功率可基于第一数据信道部分的发送功率,进行正比例带宽的放大。
基于实现方式一,解决了图2中2d所示的帧结构中数据信道不同符号上可用的有效带宽不同的问题,并保证了数据信道中所有RE可以采用相同的发送功率发送数据。进一步地,第一数据信道部分的发送功率与第二数据信道部分的发送功率有确定比例,有助于第二终端设备接收的中频缩放因子,即第二终端设备如果确定了第一数据信道部分的中频缩放因子,就可以根据确定的比例确定第二数据信道部分的中频缩放因子,由此可使得整体时隙的接收数据处于合适的接收功率范围。
对于实现方式一,数据信道中所有RE以相同的发送功率发送数据,但是,如果在一次传输中,数据信道的链路预算比较高,使得第一数据信道部分中的每个RE的发送功率由分配的最大发送功率决定。在这种情况下,会造成第二数据信道部分的发送功率没有达 到最大发送功率,从而导致有剩余的发送功率。因此,本申请实施例提出了实现方式二,该实现方式中,第一数据信道部分中的RE和第二数据信道部分中的RE可以按照不同的发送功率发送数据。具体如下所示:
实现方式二、
第二数据信道部分的发送功率根据最大发送功率P MAX以及第二数据信道部分的链路预算确定,第二数据信道部分的链路预算根据第二数据信道部分的带宽M确定。
也就是说,在实现方式二中,第二数据信道部分可以独自享用所有功率,即相对于第一数据信道部分与控制信道做功率分配而言,第二数据信道部分可以不做功率分配,而直接以最大发送功率发送数据。即第二数据信道部分的发送功率可以在最大发送功率和链路预算中确定。
因此,在本申请的一些实施例中,第二数据信道部分的发送功率可满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL}[dBm]  (35)
其中,P 2为第二数据信道部分的发送功率,P CMAX为最大发送功率,f(M)为第二数据信道部分的带宽M的函数,P o为第二终端设备的目标接收功率,α为考虑调整平稳性设定的滤波参数,可由高层配置,PL为参考链路损耗。
具体的,第二数据信道部分的发送功率可满足如下公式:
P 2=min{P CMAX,10log 10M+P O+α·PL}[dBm]  (36)
对于实现方式二,若V2X的链路预算比较高,即min函数中第二部分比较大时,数据信道的发送功率受限,数据信道所有RE会基于两种发送功率发送。该方案可以使得第一终端设备充分利用可用功率,使得数据信道受功率分配影响较小。特别是数据信道带宽M比较小,但是需要较远的通信距离的场景,第二数据信道部分可以用比较合适的发送功率进行发送,提升控制信道的可检测概率。
可理解,与该实施例一对应的第一数据信道部分的发送功率所满足的公式可参考第一数据信道部分的发送功率中的示例,即参考公式(21)、公式(24)和公式(25)中的一项或多项。以及对应的控制信道的发送功率所满足的公式可参考控制信道的发送功率中的示例,即参考公式(9)、公式(12)和公式(13)中的一项或多项。
以上是在基站调度模式下示出的第二数据信道部分的发送功率所满足的公式。在竞争模式下,第二数据信道部分的发送功率可满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL,P MAX_CBR}[dBm]  (37)
其中,P 2为第二数据信道部分的发送功率,P CMAX为最大发送功率,f(M)为第二数据信道部分的带宽M的函数,P o为第二终端设备的目标接收功率,PL为参考链路损耗,P MAX_CBR为根据信道繁忙程度确定的功率。
具体的,第二数据信道部分的发送功率可满足如下公式:
P 2=min{P CMAX,10log 10M+P O+α·PL,P MAX_CBR}[dBm]  (38)
对应的,与该实施例对应的第一数据信道部分的发送功率,可参考在竞争模式下,第一数据信道部分的发送功率的示例,如可参考公式(26)、公式(27)和公式(28)中的一项或多项。以及控制信道的发送功率可参考公式(14)、公式(15)和公式(16)中的一项或多项。
在本申请的一些实施例中,在数据信道中的数据承载的业务有不同的QoS需求的场景下,第二数据信道部分的发送功率可满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL,P T}[dBm]  (39)
其中,P 2为第二数据信道部分的发送功率,P CMAX为最大发送功率,f(M)为第二数据信道部分的带宽M的函数,P o为第二终端设备的目标接收功率,PL为参考链路损耗,P T为根据数据信道中发送的数据承载的业务的优先级成正相关的发送功率。
具体的,第二数据信道部分的发送功率可满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL,P T}[dBm]  (40)
对应的,与该实施例对应的第一数据信道部分的发送功率可参考公式(29)和/或公式(30)。与该实施例对应的控制信道的发送功率可参考公式(17)和/或公式(18)。
在本申请的一些实施例中,在竞争模式下,不同业务的QoS需求可能会不同,因此,第二数据信道部分的发送功率可满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL,P T,P MAX_CBR}[dBm]  (41)
具体的,第二数据信道部分的发送功率可满足如下公式:
P 2=min{P CMAX,10log 10M+P O+α·PL,P T,P MAX_CBR}[dBm]  (42)
其中,与该实施例对应的第一数据信道部分的发送功率所满足的公式可参考公式(31)和/或公式(32)。以及控制信道的发送功率所满足的公式可参考公式(19)和/或公式(20)。
可理解,以上各个实施例各有侧重,其中在一个实施例中未详尽描述的实现方式或参数,可参考其他实施例,这里不再一一详述。
以上是本申请提供的在不同场景下第一终端设备如何确定第一数据信道部分的发送功率、第二数据信道部分的发送功率以及控制信道的发送功率,包括第一终端设备计算各发送功率所满足的公式。以下将详细介绍以上公式中所出现的参考链路损耗PL。
其中,参考链路损耗PL可根据服务小区内的上下行传输损耗或链路传输损耗确定,链路传输损耗包括侧行链路传输损耗。
具体的,PL可满足如下公式:
PL=min{PL 1,PL 2}[dBm]  (43)
其中,PL 1可表示侧行链路通信中的侧行链路传输损耗,PL 2可表示服务小区内的上下行传输损耗。
在具体实现中,NR-V2X不仅可支持单播业务还可支持多播或组播业务,因此,对于不同的场景,PL 1可分别有不同的定义,如下所示:
在NR-V2X单播业务中,如一个第一终端设备向第二终端设备发送数据的场景下,链路传输损耗PL 1为第一终端设备到第二终端设备的链路损耗。
也就是说,PL可为NR-V2X链路本身的传输损耗和Uu口传输损耗(即服务小区内的上下行传输损耗)的最小值。
在NR-V2X多播或组播业务中,如一个第一终端设备向第一终端设备集合发送数据的场景下,链路传输损耗PL 1为第一终端设备到第一终端设备集合中的终端设备的链路损耗中的最大值。
其中,第一终端设备集合可理解为多播或组播集合中的终端设备的集合,且第一终端设备集合中包括第二终端设备。
由此,PL可满足如下公式:
Figure PCTCN2019126243-appb-000027
其中,PL i表示第一终端设备向第二终端设备集合中第i个终端设备的链路损耗,P表示第二终端设备集合(也可理解为接收用户集合)。
该实施例中,可表示在多播或组播业务的发送功率不影响Uu口业务的前提下,选择多播或组播集合中最大的传输损耗作为侧行链路传输损耗,从而尽可能在一次传输中保证所有第一终端设备集合中的终端设备都能正确接收数据。
当多播或组播集合中终端设备的位置信息比较固定时,还可以只根据远端终端设备的传输损耗来确定链路传输损耗,由此减少反馈数量。因此,链路传输损耗还可为第一终端设备到第二终端设备集合中的终端设备的链路损耗中的最大值,第二终端设备集合属于第一终端设备集合,且第二终端设备集合中的终端设备的第一参数满足第一参数的阈值范围。
其中,第二终端设备集合可理解为多播或组播集合中的部分终端设备。第一参数为参考信号接收功率(reference signal receiving power,RSRP)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、信噪比(signal-noise ratio,SNR)或信道质量指示(channel quality indicator,CQI)中的任意一项。
可选的,以RSRP为例来说明,PL可满足如下公式:
Figure PCTCN2019126243-appb-000028
其中,β表示RSRP的阈值,RSRP i表示第二终端设备集合中终端设备i测量到的接收信号功率。由此在第二终端设备集合中的终端设备(包括第二终端设备)反馈RSRP给第一终端设备,第一终端设备接收到初次反馈后,对该多播或组播集合内的所有终端设备的RSRP进行排序,确定所有RSRP小于某阈值β的终端设备继续进行反馈,而大于或等于阈值β的终端设备可以不再反馈。也就是说,链路传输损耗可以为RSRP的函数或表达式或关系式。
这种场景下,侧行链路传输系统可以按照链路本身的信道质量进行传输。考虑侧行链路业务,其大部分的通信场景都是与附近用户进行通信,因此可以有效降低侧行链路用户的发送功率,降低用户间干扰,提升系统总吞吐量。
可理解,在基站调度模式下,本申请实施例提供了两种实现方式来确定第二数据信道部分的发送功率,如公式(33)和公式(35)。然而,在具体实现中,第一终端设备可能无法自主确定通过哪个公式来确定第二数据信道部分的发送功率,因此,参见图7,图7是本申请实施例提供的另一种功率控制方法的流程示意图。该方法可应用于图3a至图3g所示的终端设备。如图7所示,该功率控制方法可包括:
701、网络设备向第一终端设备发送指示信息,上述第一终端设备接收来自上述网络设备的上述指示信息。
其中,该指示信息可用于指示第二数据信道部分的发送功率。具体的,该指示信息可用于指示第二数据信道部分的发送功率所满足的公式。
702、上述第一终端设备确定第一数据信道部分的发送功率,以及根据上述指示信息确定第二数据信道部分的发送功率所满足的公式。
其中,第一终端设备所确定的第二数据信道部分的发送功率所满足的公式为公式(33)或公式(35)。在第一终端设备确定第二数据信道部分的发送功率所满足的公式为公式(33)的情况下,该第一终端设备便可根据公式(33)和公式(34)中的一项或多项,来确定第二数据信道部分的发送功率。而在第一终端设备确定第二数据信道部分的发送功率所满足的公式为公式(35)的情况下,该第一终端设备便可根据公式(35)和公式(36)中的一项或多项,来确定第二数据信道部分的发送功率。
703、上述第一终端设备以上述第一数据信道部分的发送功率向第二终端设备发送上述第一数据信道部分中的数据;以及以上述第二数据信道部分的发送功率向上述第二终端设备发送上述第二数据信道部分中的数据。
实施本申请实施例,可使得第一终端设备及时有效的得知第二数据信道部分的发送功率所满足的公式,提高第一终端设备确定第二数据信道部分的发送功率的效率。
可理解,图7中未详尽描述的实施方式,可对应参考以上各个实施方式,这里不再一一详述。
以上是本申请中第一终端设备如何确定控制信道的发送功率、第一数据信道部分的发送功率以及第二数据信道部分的发送功率的方法,以下将详细介绍本申请实施例提供的功率控制装置,该装置可用于执行本申请实施例所描述的方法,该装置可以是终端设备(如第一终端设备),或者是终端设备中实现上述功能的部件,或者是芯片。
参见图8,图8是本申请实施例提供的一种功率控制装置的结构示意图,该功率控制装置可用于执行本申请实施例所描述的方法,如图8所示,该功率控制装置包括:
处理单元801,用于确定第一数据信道部分的发送功率和第二数据信道部分的发送功率;其中,上述第一数据信道部分为与控制信道有时域重叠且无频域重叠的数据信道部分,上述第二数据信道部分为与上述控制信道有频域重叠且无时域重叠的数据信道部分;
发送单元802,用于以上述第一数据信道部分的发送功率向第二终端设备发送上述第一数据信道部分中的数据;以及以上述第二数据信道部分的发送功率向上述第二终端设备发送上述第二数据信道部分中的数据。
在一种可能的实现方式中,在上述控制信道的带宽为N,数据信道的带宽为M的情况下,上述第一数据信道部分的带宽为M-N,其中,上述M大于上述N;上述第一数据信道部分的发送功率根据最大发送功率、上述第一数据信道部分的带宽M-N以及上述控制信道的带宽N确定。
在一种可能的实现方式中,上述第一数据信道部分的发送功率满足如下公式:
P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL}
其中,上述P 1为上述第一数据信道部分的发送功率,上述P CMAX为上述最大发送功率,上述f(N,M-N)为上述第一数据信道部分的带宽M-N与上述控制信道的带宽N的函数, 上述f(M-N)为上述第一数据信道部分的带宽M-N的函数,上述P o为上述第二终端设备的目标接收功率,上述PL为参考链路损耗。
在一种可能的实现方式中,上述第二数据信道部分的发送功率与上述第一数据信道部分的发送功率的比值,和上述第二数据信道部分的带宽与上述第一数据信道部分的带宽的比值,成正相关。
在一种可能的实现方式中,上述第二数据信道部分的发送功率满足如下公式:
P 2=P 1+f(M/(M-N))
其中,上述P 2为上述第二数据信道部分的发送功率,上述f(M/(M-N))为上述第二数据信道部分的带宽M与上述第一数据信道部分的带宽M-N的函数。
在一种可能的实现方式中,上述第二数据信道部分的发送功率根据上述最大发送功率以及上述第二数据信道部分的链路预算确定,上述第二数据信道部分的链路预算根据上述第二数据信道部分的带宽M确定。
在一种可能的实现方式中,上述第二数据信道部分的发送功率满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL}
其中,上述P 2为上述第二数据信道部分的发送功率,上述P CMAX为上述最大发送功率,上述f(M)为上述第二数据信道部分的带宽M的函数,上述P o为上述第二终端设备的目标接收功率,上述PL为参考链路损耗。
在一种可能的实现方式中,上述参考链路损耗PL根据服务小区内的上下行传输损耗或链路传输损耗确定,上述链路传输损耗包括侧行链路传输损耗;上述链路传输损耗为上述第一终端设备到上述第二终端设备的链路损耗;或者,上述链路传输损耗为上述第一终端设备到第一终端设备集合中的终端设备的链路损耗中的最大值;或者,上述链路传输损耗为上述第一终端设备到第二终端设备集合中的终端设备的链路损耗中的最大值,上述第二终端设备集合属于上述第一终端设备集合,且上述第二终端设备集合中的终端设备的第一参数满足上述第一参数的阈值范围。
在一种可能的实现方式中,上述第一参数为参考信号接收功率RSRP、信号与干扰加噪声比SINR、信噪比SNR或信道质量指示CQI中的任意一项。
在一种可能的实现方式中,如图9所示,上述装置还包括:
接收单元803,用于接收来自网络设备的指示信息,上述指示信息用于指示上述第二数据信道部分的发送功率;
上述处理单元801,具体用于根据上述指示信息确定上述第二数据信道部分的发送功率满足的公式为P 2=P 1+f(M/(M-N))或P 2=min{P CMAX,f(M)+P O+α·PL};其中,上述P 2为上述第二数据信道部分的发送功率,上述f(M/(M-N))为上述第二数据信道部分的带宽M与上述第一数据信道部分的带宽M-N的函数,上述P CMAX为最大发送功率,上述f(M)为上述第二数据信道部分的带宽M的函数,上述P o为上述第二终端设备的目标接收功率,上述PL为参考链路损耗。
在一种可能的实现方式中,发送单元802和接收单元803可能集成于一个器件中,如该发送单元802和接收单元803可能为收发器。或者,发送单元802和接收单元803也可能分离为不同的器件,本申请对于发送单元802和接收单元803的具体方式不作限定。
在一种可能的实现方式中,上述第一数据信道部分的发送功率满足如下公式:
P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL,P T-f(N,M-N)}
其中,上述P 1为上述第一数据信道部分的发送功率,上述P CMAX为上述最大发送功率,上述f(N,M-N)为上述第一数据信道部分的带宽M-N与上述控制信道的带宽N的函数,上述f(M-N)为上述第一数据信道部分的带宽M-N的函数,上述P o为上述第二终端设备的目标接收功率,上述PL为参考链路损耗,上述P T为与上述数据信道中发送的数据承载的业务的优先级成正相关的发送功率。
在一种可能的实现方式中,上述第二数据信道部分的发送功率满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL,P T}
其中,上述P 2为上述第二数据信道部分的发送功率,上述P CMAX为上述最大发送功率,上述f(M)为上述第二数据信道部分的带宽M的函数,上述P o为上述第二终端设备的目标接收功率,上述PL为参考链路损耗,上述P T为与上述数据信道中发送的数据承载的业务的优先级成正相关的发送功率。
在一种可能的实现方式中,上述P T为由网络设备配置的半静态值,或者,上述P T为预先配置的固定值。
在一种可能的实现方式中,上述第一数据信道部分的发送功率满足如下公式:
P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL,P MAX_CBR-f(N,M-N)}
其中,上述P 1为上述第一数据信道部分的发送功率,上述P CMAX为上述最大发送功率,上述f(N,M-N)为上述第一数据信道部分的带宽M-N与上述控制信道的带宽N的函数,上述f(M-N)为上述第一数据信道部分的带宽M-N的函数,上述P o为上述第二终端设备的目标接收功率,上述PL为参考链路损耗,上述P MAX_CBR为根据信道繁忙程度确定的功率。
在一种可能的实现方式中,上述第二数据信道部分的发送功率满足如下公式:
P 2=min{P CMAX,f(M)+P O+α·PL,P MAX_CBR}
其中,上述P 2为上述第二数据信道部分的发送功率,上述P CMAX为上述最大发送功率,上述f(M)为上述第二数据信道部分的带宽M的函数,上述P o为上述第二终端设备的目标接收功率,上述PL为参考链路损耗,上述P MAX_CBR为根据信道繁忙程度确定的功率。
本申请实施例中,通过区分第一数据信道部分和第二数据信道部分,可对不同的数据信道部分进行不同的功率控制,如可通过不同的发送功率分别发送第一数据信道部分中的数据以及第二数据信道部分中的数据,避免了在所有情况下都通过相同的发送功率来发送数据,而导致资源浪费的情况如避免了基于同一种方式确定数据信道的发送功率时第一数据信道部分或第二数据信道部分的发送功率过高,而实际不需要过高的发送功率就可完成对数据的发送的情况;从而通过将数据信道分为两部分,分别确定两部分的发送功率,不仅能够满足不同数据信道部分的功率要求,还可避免在所有情况下都通过相同的发送功率发送数据,而导致第一数据信道部分或第二数据信道部分的发送功率过高,而造成对其他 终端设备的干扰,进而降低了对其他终端设备的干扰,提高了系统性能。
需要理解的是,当上述功率控制装置是终端设备或终端设备中实现上述功能的部件时,处理单元801可以是一个或多个处理器,发送单元802可以是发送器,接收单元803可以是接收器,或者发送单元802和接收单元803集成于一个器件,例如收发器。当上述功率控制装置是芯片时,处理单元801可以是一个或多个处理器,发送单元802可以是输出接口,接收单元803可以是输入接口,或者发送单元802和接收单元803集成于一个单元,例如输入输出接口。
图10为本申请实施例提供的一种终端设备1000的结构示意图。该终端设备可执行如图4和7所示出的方法中的第一终端设备的操作,或者,该终端设备也可执行如图8和图9所示的第一终端设备的操作。
为了便于说明,图10仅示出了终端设备的主要部件。如图10所示,终端设备1000包括处理器、存储器、射频链路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行图4和图7所描述的流程。存储器主要用于存储软件程序和数据。射频链路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。终端设备1000还可以包括输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频链路,射频链路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频链路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图10仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器(central processing unit,CPU),基带处理器主要用于对通信协议以及通信数据进行处理,CPU主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。可选的,该处理器还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory), 例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
示例性的,在申请实施例中,可以将具有收发功能的天线和射频链路视为终端设备1000的收发单元1001,将具有处理功能的处理器视为终端设备1000的处理单元1002。
如图10所示,终端设备1000可以包括收发单元1001和处理单元1002。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1001中用于实现接收功能的器件视为接收单元,将收发单元1001中用于实现发送功能的器件视为发送单元,即收发单元1001包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
在一些实施例中,收发单元1001、处理单元1002可能集成为一个器件,也可以分离为不同的器件,此外,处理器与存储器也可以集成为一个器件,或分立为不同器件。例如,在一个实施例中,收发单元1001可用于执行图4所示的步骤402所示的方法。又如,在一个实施例中,收发单元1001还可用于执行图7所示的步骤701和步骤703所示的方法。
又如,在一个实施例中,处理单元1002可用于执行控制收发单元1001执行图4所示的步骤402所示的方法,以及该处理单元1002还可用于控制收发单元1001执行图7所示的步骤701和步骤703所示的方法。
又如,在一个实施例中,处理单元1002还可用于执行图4所示的步骤401所示的方法,以及图7所示的步骤702所示的方法。
又如,在一个实施例中,收发单元1001还可用于执行发送单元802和接收单元803所示的方法。又如,在一个实施例中,处理单元1002还可用于执行处理单元801所示的方法。
可理解的是,本申请实施例中的终端设备的实现方式,具体可参考前述各个实施例,这里不再详述。
本申请实施例还提供了一种计算机可读存储介质。上述方法实施例中的全部或者部分流程可以由计算机程序来指令相关的硬件完成,该程序可存储于上述计算机存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。计算机可读存储介质可以是前述任一实施例的功率控制装置(包括数据发送端和/或数据接收端)的内部存储单元,例如功率控制装置的硬盘或内存。上述计算机可读存储介质也可以是上述功率控制装置的外部存储设备,例如上述功率控制装置上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。进一步地,上述计算机可读存储介质还可以既包括上述功率控制装置的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述功率控制装置所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质 中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (33)

  1. 一种功率控制方法,其特征在于,包括:
    第一终端设备确定第一数据信道部分的发送功率和第二数据信道部分的发送功率;其中,所述第一数据信道部分为与控制信道有时域重叠且无频域重叠的数据信道部分,所述第二数据信道部分为与所述控制信道有频域重叠且无时域重叠的数据信道部分;
    所述第一终端设备以所述第一数据信道部分的发送功率向第二终端设备发送所述第一数据信道部分中的数据;以及以所述第二数据信道部分的发送功率向所述第二终端设备发送所述第二数据信道部分中的数据。
  2. 根据权利要求1所述的方法,其特征在于,在所述控制信道的带宽为N,数据信道的带宽为M的情况下,所述第一数据信道部分的带宽为M-N,其中,所述M大于所述N;
    所述第一数据信道部分的发送功率根据最大发送功率、所述第一数据信道部分的带宽M-N以及所述控制信道的带宽N确定。
  3. 根据权利要求2所述的方法,其特征在于,所述第一数据信道部分的发送功率满足如下公式:
    P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL}
    其中,所述P 1为所述第一数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(N,M-N)为所述第一数据信道部分的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一数据信道部分的带宽M-N的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第二数据信道部分的发送功率与所述第一数据信道部分的发送功率的比值,和所述第二数据信道部分的带宽与所述第一数据信道部分的带宽的比值,成正相关。
  5. 根据权利要求4所述的方法,其特征在于,所述第二数据信道部分的发送功率满足如下公式:
    P 2=P 1+f(M/(M-N))
    其中,所述P 2为所述第二数据信道部分的发送功率,所述f(M/(M-N))为所述第二数据信道部分的带宽M与所述第一数据信道部分的带宽M-N的函数。
  6. 根据权利要求2或3所述的方法,其特征在于,所述第二数据信道部分的发送功率根据所述最大发送功率以及所述第二数据信道部分的链路预算确定,所述第二数据信道部分的链路预算根据所述第二数据信道部分的带宽M确定。
  7. 根据权利要求6所述的方法,其特征在于,所述第二数据信道部分的发送功率满足 如下公式:
    P 2=min{P CMAX,f(M)+P O+α·PL}
    其中,所述P 2为所述第二数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗。
  8. 根据权利要求3或7所述的方法,其特征在于,所述参考链路损耗PL根据服务小区内的上下行传输损耗或链路传输损耗确定,所述链路传输损耗包括侧行链路传输损耗;
    所述链路传输损耗为所述第一终端设备到所述第二终端设备的链路损耗;
    或者,所述链路传输损耗为所述第一终端设备到第一终端设备集合中的终端设备的链路损耗中的最大值;
    或者,所述链路传输损耗为所述第一终端设备到第二终端设备集合中的终端设备的链路损耗中的最大值,其中所述第二终端设备集合属于所述第一终端设备集合,且所述第二终端设备集合中的终端设备的第一参数满足所述第一参数的阈值范围。
  9. 根据权利要求8所述的方法,其特征在于,所述第一参数为参考信号接收功率RSRP、信号与干扰加噪声比SINR、信噪比SNR或信道质量指示CQI中的任意一项。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述第一终端设备确定第一数据信道部分的发送功率和第二数据信道部分的发送功率之前,所述方法还包括:
    所述第一终端设备接收来自网络设备的指示信息,所述指示信息用于指示所述第二数据信道部分的发送功率;
    第一终端设备确定第一数据信道部分的发送功率和第二数据信道部分的发送功率,包括:
    所述第一终端设备根据所述指示信息确定所述第二数据信道部分的发送功率满足的公式为P 2=P 1+f(M/(M-N))或P 2=min{P CMAX,f(M)+P O+α·PL};其中,所述P 2为所述第二数据信道部分的发送功率,所述f(M/(M-N))为所述第二数据信道部分的带宽M与所述第一数据信道部分的带宽M-N的函数,所述P CMAX为最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗。
  11. 根据权利要求2所述的方法,其特征在于,所述第一数据信道部分的发送功率满足如下公式:
    P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL,P T-f(N,M-N)}
    其中,所述P 1为所述第一数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(N,M-N)为所述第一数据信道部分的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一数据信道部分的带宽M-N的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P T为与所述数据信道中发送的数据承载 的业务的优先级成正相关的发送功率。
  12. 根据权利要求2所述的方法,其特征在于,所述第二数据信道部分的发送功率满足如下公式:
    P 2=min{P CMAX,f(M)+P O+α·PL,P T}
    其中,所述P 2为所述第二数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P T为与所述数据信道中发送的数据承载的业务的优先级成正相关的发送功率。
  13. 根据权利要求11或12所述的方法,其特征在于,所述P T为由网络设备配置的半静态值,或者,所述P T为预先配置的固定值。
  14. 根据权利要求2所述的方法,其特征在于,所述第一数据信道部分的发送功率满足如下公式:
    P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL,P MAX_CBR-f(N,M-N)}
    其中,所述P 1为所述第一数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(N,M-N)为所述第一数据信道部分的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一数据信道部分的带宽M-N的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P MAX_CBR为根据信道繁忙程度确定的功率。
  15. 根据权利要求2所述的方法,其特征在于,所述第二数据信道部分的发送功率满足如下公式:
    P 2=min{P CMAX,f(M)+P O+α·PL,P MAX_CBR}
    其中,所述P 2为所述第二数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P MAX_CBR为根据信道繁忙程度确定的功率。
  16. 根据权利要求8所述的方法,其特征在于,所述参考链路损耗满足如下公式:
    PL=min{PL 1,PL 2}[dBm]
    其中,所述PL 1表示侧行链路通信中的侧行链路传输损耗,所述PL 2表示所述服务小区内的上下行传输损耗。
  17. 一种功率控制装置,其特征在于,所述装置包括处理器、存储器和收发器,所述处理器和所述存储器耦合;
    所述处理器,用于确定第一数据信道部分的发送功率和第二数据信道部分的发送功率;其中,所述第一数据信道部分为与控制信道有时域重叠且无频域重叠的数据信道部分,所 述第二数据信道部分为与所述控制信道有频域重叠且无时域重叠的数据信道部分;
    所述收发器和所述处理器耦合,所述收发器,用于以所述第一数据信道部分的发送功率向第二终端设备发送所述第一数据信道部分中的数据;以及以所述第二数据信道部分的发送功率向所述第二终端设备发送所述第二数据信道部分中的数据。
  18. 根据权利要求17所述的装置,其特征在于,在所述控制信道的带宽为N,数据信道的带宽为M的情况下,所述第一数据信道部分的带宽为M-N,其中,所述M大于所述N;
    所述第一数据信道部分的发送功率根据最大发送功率、所述第一数据信道部分的带宽M-N以及所述控制信道的带宽N确定。
  19. 根据权利要求18所述的装置,其特征在于,所述第一数据信道部分的发送功率满足如下公式:
    P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL}
    其中,所述P 1为所述第一数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(N,M-N)为所述第一数据信道部分的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一数据信道部分的带宽M-N的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗。
  20. 根据权利要求18或19所述的装置,其特征在于,所述第二数据信道部分的发送功率与所述第一数据信道部分的发送功率的比值,和所述第二数据信道部分的带宽与所述第一数据信道部分的带宽的比值,成正相关。
  21. 根据权利要求20所述的装置,其特征在于,所述第二数据信道部分的发送功率满足如下公式:
    P 2=P 1+f(M/(M-N))
    其中,所述P 2为所述第二数据信道部分的发送功率,所述f(M/(M-N))为所述第二数据信道部分的带宽M与所述第一数据信道部分的带宽M-N的函数。
  22. 根据权利要求18或19所述的装置,其特征在于,所述第二数据信道部分的发送功率根据所述最大发送功率以及所述第二数据信道部分的链路预算确定,所述第二数据信道部分的链路预算根据所述第二数据信道部分的带宽M确定。
  23. 根据权利要求22所述的装置,其特征在于,所述第二数据信道部分的发送功率满足如下公式:
    P 2=min{P CMAX,f(M)+P O+α·PL}
    其中,所述P 2为所述第二数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标 接收功率,所述PL为参考链路损耗。
  24. 根据权利要求19或23所述的装置,其特征在于,所述参考链路损耗PL根据服务小区内的上下行传输损耗或链路传输损耗确定,所述链路传输损耗包括侧行链路传输损耗;
    所述链路传输损耗为所述第一终端设备到所述第二终端设备的链路损耗;
    或者,所述链路传输损耗为所述第一终端设备到第一终端设备集合中的终端设备的链路损耗中的最大值;
    或者,所述链路传输损耗为所述第一终端设备到第二终端设备集合中的终端设备的链路损耗中的最大值,其中所述第二终端设备集合属于所述第一终端设备集合,且所述第二终端设备集合中的终端设备的第一参数满足所述第一参数的阈值范围。
  25. 根据权利要求24所述的装置,其特征在于,所述第一参数为参考信号接收功率RSRP、信号与干扰加噪声比SINR、信噪比SNR或信道质量指示CQI中的任意一项。
  26. 根据权利要求17-25任一项所述的装置,其特征在于,
    所述收发器,还用于接收来自网络设备的指示信息,所述指示信息用于指示所述第二数据信道部分的发送功率;
    所述处理器,具体用于根据所述指示信息确定所述第二数据信道部分的发送功率满足的公式为P 2=P 1+f(M/(M-N))或P 2=min{P CMAX,f(M)+P O+α·PL};其中,所述P 2为所述第二数据信道部分的发送功率,所述f(M/(M-N))为所述第二数据信道部分的带宽M与所述第一数据信道部分的带宽M-N的函数,所述P CMAX为最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗。
  27. 根据权利要求18所述的装置,其特征在于,所述第一数据信道部分的发送功率满足如下公式:
    P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL,P T-f(N,M-N)}
    其中,所述P 1为所述第一数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(N,M-N)为所述第一数据信道部分的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一数据信道部分的带宽M-N的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P T为与所述数据信道中发送的数据承载的业务的优先级成正相关的发送功率。
  28. 根据权利要求18所述的装置,其特征在于,所述第二数据信道部分的发送功率满足如下公式:
    P 2=min{P CMAX,f(M)+P O+α·PL,P T}
    其中,所述P 2为所述第二数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标 接收功率,所述PL为参考链路损耗,所述P T为与所述数据信道中发送的数据承载的业务的优先级成正相关的发送功率。
  29. 根据权利要求27或28所述的装置,其特征在于,所述P T为由网络设备配置的半静态值,或者,所述P T为预先配置的固定值。
  30. 根据权利要求18所述的装置,其特征在于,所述第一数据信道部分的发送功率满足如下公式:
    P 1=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL,P MAX_CBR-f(N,M-N)}
    其中,所述P 1为所述第一数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(N,M-N)为所述第一数据信道部分的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一数据信道部分的带宽M-N的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P MAX_CBR为根据信道繁忙程度确定的功率。
  31. 根据权利要求18所述的装置,其特征在于,所述第二数据信道部分的发送功率满足如下公式:
    P 2=min{P CMAX,f(M)+P O+α·PL,P MAX_CBR}
    其中,所述P 2为所述第二数据信道部分的发送功率,所述P CMAX为所述最大发送功率,所述f(M)为所述第二数据信道部分的带宽M的函数,所述P o为所述第二终端设备的目标接收功率,所述PL为参考链路损耗,所述P MAX_CBR为根据信道繁忙程度确定的功率。
  32. 根据权利要求24所述的装置,其特征在于,所述参考链路损耗满足如下公式:
    PL=min{PL 1,PL 2}[dBm]
    其中,所述PL 1表示侧行链路通信中的侧行链路传输损耗,所述PL 2表示所述服务小区内的上下行传输损耗。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有程序指令,所述程序指令被计算机的处理器执行时,使所述处理器执行如权利要求1-16任一项所述的相应的方法。
PCT/CN2019/126243 2018-12-24 2019-12-18 功率控制方法及装置 WO2020135179A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP23213900.6A EP4354982A3 (en) 2018-12-24 2019-12-18 Power control method and apparatus
KR1020217023576A KR102535608B1 (ko) 2018-12-24 2019-12-18 전력 제어 방법 및 장치
EP19902111.4A EP3902338B1 (en) 2018-12-24 2019-12-18 Power control method and device
US17/356,150 US11825425B2 (en) 2018-12-24 2021-06-23 Power control method and apparatus
US18/491,566 US20240064655A1 (en) 2018-12-24 2023-10-20 Power Control Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811588371.0A CN111356220B (zh) 2018-12-24 2018-12-24 功率控制方法及装置
CN201811588371.0 2018-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/356,150 Continuation US11825425B2 (en) 2018-12-24 2021-06-23 Power control method and apparatus

Publications (1)

Publication Number Publication Date
WO2020135179A1 true WO2020135179A1 (zh) 2020-07-02

Family

ID=71129086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126243 WO2020135179A1 (zh) 2018-12-24 2019-12-18 功率控制方法及装置

Country Status (5)

Country Link
US (2) US11825425B2 (zh)
EP (2) EP4354982A3 (zh)
KR (1) KR102535608B1 (zh)
CN (3) CN111356220B (zh)
WO (1) WO2020135179A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114339978A (zh) * 2020-09-30 2022-04-12 展讯通信(上海)有限公司 支持prs的侧链功率分配方法及装置、存储介质、终端
WO2023036040A1 (zh) * 2021-09-09 2023-03-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN116471651A (zh) * 2022-01-11 2023-07-21 华为技术有限公司 通信方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026511A1 (ja) * 2015-08-13 2017-02-16 株式会社Nttドコモ ユーザ装置及び信号送信方法
US20170188391A1 (en) * 2015-12-28 2017-06-29 Samsung Electronics Co., Ltd Methods and apparatus for resource collision avoidance in vehicle to vehicle communication

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5396427B2 (ja) * 2011-05-02 2014-01-22 株式会社Nttドコモ 無線基地局装置、ユーザ端末装置、無線通信システム、及び無線通信方法
US11115938B2 (en) * 2015-06-26 2021-09-07 Lg Electronics Inc. Method and apparatus for transceiving signal of device-to-device communication terminal in wireless communication system
WO2017070957A1 (zh) * 2015-10-30 2017-05-04 华为技术有限公司 一种数据发送方法和设备
US11146981B2 (en) * 2016-08-24 2021-10-12 Lg Electronics Inc. Method by which V2X terminal performs V2X communication in wireless communication system and terminal using method
JP6963026B2 (ja) * 2017-03-24 2021-11-05 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 複数の搬送波が設定された端末の電力割当方法及び上記方法を利用する端末
CN117377046A (zh) * 2017-05-17 2024-01-09 华为技术有限公司 一种发送和接收指示信息的方法、设备和系统
US11303494B2 (en) * 2017-06-16 2022-04-12 Sony Corporation Wireless communications device, infrastructure equipment and methods
US11153873B2 (en) * 2018-09-28 2021-10-19 Qualcomm Incorporated Resolving time-domain resource allocation ambiguity
CN112703699A (zh) * 2019-03-22 2021-04-23 Oppo广东移动通信有限公司 传输数据信道的方法和终端设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026511A1 (ja) * 2015-08-13 2017-02-16 株式会社Nttドコモ ユーザ装置及び信号送信方法
US20170188391A1 (en) * 2015-12-28 2017-06-29 Samsung Electronics Co., Ltd Methods and apparatus for resource collision avoidance in vehicle to vehicle communication

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on coexistence of LTE sidelink and NR sidelink in NR V2X", 3GPP DRAFT; R1-1812624, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051554580 *
HUAWEI ET AL: "Sidelink physical layer procedures for NR V2X", 3GPP DRAFT; R1-1812205, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 3 November 2018 (2018-11-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 12, XP051478361 *
HUAWEI, HISILICON: "Power control and power sharing for V2X sidelink", 3GPP DRAFT; R1-1904691, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 2 April 2019 (2019-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051707284 *
HUAWEI, HISILICON: "Sidelink physical layer structure for NR V2X", 3GPP DRAFT; R1-1812206, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051554078 *
SAMSUNG: "On Sidelink Power Control", 3GPP DRAFT; R1-1904435, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 3 April 2019 (2019-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051707218 *
See also references of EP3902338A4

Also Published As

Publication number Publication date
CN113225797B (zh) 2022-04-26
EP3902338A1 (en) 2021-10-27
EP4354982A3 (en) 2024-07-17
EP4354982A2 (en) 2024-04-17
CN111356220B (zh) 2021-04-09
US20240064655A1 (en) 2024-02-22
CN113225796A (zh) 2021-08-06
CN111356220A (zh) 2020-06-30
EP3902338B1 (en) 2024-02-07
KR20210101324A (ko) 2021-08-18
KR102535608B1 (ko) 2023-05-26
US11825425B2 (en) 2023-11-21
CN113225797A (zh) 2021-08-06
EP3902338A4 (en) 2022-03-02
US20220124635A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
WO2020143835A1 (zh) 功率控制方法及功率控制装置
WO2020164518A1 (zh) 功率控制方法及功率控制装置
US11825425B2 (en) Power control method and apparatus
CN114073141A (zh) 在新无线电侧链路通信中排除和选择资源的用户设备和方法
US20190254043A1 (en) Apparatuses, methods and computer programs for implementing fairness and complexity-constrained a non-orthogonal multiple access (noma) scheme
WO2021003614A1 (zh) 信息传输方法、装置及存储介质
WO2019015445A1 (zh) 一种通信方法及装置
CN115589596A (zh) 侧行通信的方法及装置
WO2021026916A1 (zh) 通信方法、装置及设备
WO2021244299A1 (zh) 通信方法及通信设备
CN115190617A (zh) 用于资源确定的方法及装置
CN116326042A (zh) 用于资源确定的方法及装置
CN116326050A (zh) 侧行链路载波管理方法、装置和系统
WO2021134695A1 (zh) 多跳路径csi上报方法及相关装置
US11825421B2 (en) Power control method and apparatus
WO2020156214A1 (zh) 功率控制方法及终端设备
WO2020192360A1 (zh) 通信方法及装置
WO2019126948A1 (zh) 一种参数调整方法及相关设备
WO2023137768A1 (zh) 侧行反馈信道的传输方法、装置、终端及存储介质
CN113784427B (zh) 功率控制方法及装置
US20230345527A1 (en) Resource allocation for channel occupancy time sharing in sidelink communication
WO2024040449A1 (en) Method, device and computer readable medium for sidelink communications
WO2022133886A1 (zh) 一种资源配置方法、装置、存储介质及卫星通信系统
CN116614795A (zh) 一种功率确定方法及设备
CN117938326A (zh) 一种反馈信息的发送、接收方法,通信节点及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217023576

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019902111

Country of ref document: EP

Effective date: 20210723