WO2021134695A1 - 多跳路径csi上报方法及相关装置 - Google Patents

多跳路径csi上报方法及相关装置 Download PDF

Info

Publication number
WO2021134695A1
WO2021134695A1 PCT/CN2019/130935 CN2019130935W WO2021134695A1 WO 2021134695 A1 WO2021134695 A1 WO 2021134695A1 CN 2019130935 W CN2019130935 W CN 2019130935W WO 2021134695 A1 WO2021134695 A1 WO 2021134695A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
transmission path
csi report
hop
path
Prior art date
Application number
PCT/CN2019/130935
Other languages
English (en)
French (fr)
Inventor
张莉莉
张鹏
许华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19958330.3A priority Critical patent/EP4075874A4/en
Priority to PCT/CN2019/130935 priority patent/WO2021134695A1/zh
Priority to CN201980103179.4A priority patent/CN114830732A/zh
Publication of WO2021134695A1 publication Critical patent/WO2021134695A1/zh
Priority to US17/853,305 priority patent/US20220330130A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0033Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation each allocating device acting autonomously, i.e. without negotiation with other allocating devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • This application relates to the field of communication technology, and in particular, to a method and related devices for multi-hop path CSI reporting.
  • the purpose is to enable direct communication between user equipment UEs to meet the needs of public safety and other emerging services.
  • D2D at this time can only support the discovery of UEs within the network coverage, and the communication between UEs and UEs. This communication can be unicast or broadcast, and supports all UEs in the network coverage, part of the The scenario where the UE is within the network coverage, some UEs are outside the network coverage, and all the UEs are outside the network coverage).
  • V2X Vehicle-to-Everything
  • V2X specifically includes Vehicle-to-Vehicle (V2V), Vehicle-to-Person (V2P), Vehicle-to-Infrastructure (V2I), and vehicle-to-roadside equipment ( Vehicle-to-RSU, V2R) various application requirements.
  • V2V refers to LTE-based inter-vehicle communication
  • V2P refers to LTE-based communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers);
  • V2R refers to LTE-based vehicles and roadside devices (RSU) communication
  • RSU roadside devices
  • V2N refers to the communication between LTE-based vehicles and base stations/networks.
  • Roadside equipment (RSU) includes two types: terminal type RSU, because it is placed on the roadside, the terminal type RSU is in a non-mobile state, and there is no need to consider mobility; base station type RSU can be given to vehicles communicating with it Provide timing synchronization and resource scheduling. Whether it is the existing D2D, V2V, V2X, or the fifth-generation mobile communication technology 5G V2X and future side link application scenarios, user cooperation UE cooperation can be carried out.
  • the new air interface NR 17th version Rel-17 is a good time for the commercialization of user collaboration technology.
  • technologies such as UE-to-UE communication and UE-to-Network relaying included in user collaboration have previously been studied in 3GPP.
  • UE-to-Network relaying is a technology that a UE helps another UE to communicate with a base station, also called relay technology. It can be considered that the previously studied D2D technology and Relay technology are an integral part of user collaboration technology.
  • the data relay in the user cooperation technology discussed in the relevant standards is limited to the base station to the UE at the edge of the coverage, and then to the UE outside the coverage. That is, when the target UE is outside the signal coverage of the base station when data is sent from the base station The target UE cannot directly receive the transmission from the base station, and can transfer data through in-coverage edge UE. How to obtain the channel status of such a multi-hop path including the transfer device is a problem that needs to be solved.
  • the embodiment of the present application provides a multi-hop path CSI reporting method and related devices, which can report through the first CSI so that the comprehensive channel state under the multi-hop path can be obtained at the data sending device, that is, the source device.
  • an embodiment of the present application provides a method for reporting a multi-hop path CSI.
  • the multi-hop path includes a first device, a second device, and a third device.
  • the first device is a source device, and the first device is a source device.
  • the second device is the target device; the method includes:
  • the first device obtains a first CSI report of a target transmission path, where the first CSI report is used to indicate a channel state of a multi-hop transmission link of the target transmission path.
  • the first device obtains the first CSI report of the target transmission path. Since the first CSI report is used to indicate the target transmission path, the first CSI report enables the comprehensive channel status under the multi-hop path to be in the data Obtained from the sending device that is the source device.
  • the first CSI report is a joint CSI report
  • the joint CSI report is used to indicate a joint channel state of a multi-hop transmission link of the target transmission path. It can be seen that by indicating the joint channel status of the target transmission path through the joint CSI report, accurate indication of the multi-hop transmission path can be achieved.
  • the first CSI report is a multi-level CSI
  • any level of CSI is used to indicate the CSI indication of a corresponding transmission link
  • the transmission link is the target transmission path according to the node connection Directly connected paths divided by relations. It can be seen that the joint CSI report adopts multi-level CSI, so that the channel status of each transmission link in the multi-hop path is clearly indicated, which is concise and efficient.
  • the first CSI report is CSI obtained according to a first function. It can be seen that the comprehensive channel state of the multi-hop path of the target transmission path is calculated by the first function, the amount of information is small, and the transmission is efficient.
  • the first function is a function defined according to the multi-level CSI of the target transmission path, and the multi-level CSI corresponds to multiple transmission chains divided by the target transmission path according to the node connection relationship. road. It can be seen that the comprehensive channel state of the multi-hop path of the target transmission path is calculated by the first function, the amount of information is small, and the transmission is efficient.
  • the target transmission path is a transmission path that meets a preset reporting condition. It can be seen that by restricting the CSI report trigger condition of the CSI device to be reported by the preset report condition, the repeated invalid report of the low-quality transmission path can be effectively restricted, and the signaling transmission efficiency can be improved.
  • the preset reporting condition includes at least one of the following: the first CSI of the transmission path is greater than or equal to a first preset threshold; it can be seen that the reported CSI is a transmission path with good enough CSI It helps the source device to identify the corresponding path that can ensure reliable transmission of the data to be transmitted, thereby ensuring reliable data transmission and improving spectrum utilization.
  • the first CSI of the transmission path is less than or equal to a second preset threshold. It can be seen that reporting a transmission path that is not good enough for the CSI helps the source device avoid using corresponding paths that cannot guarantee reliable transmission for the data to be transmitted, thereby improving the spectrum utilization rate.
  • the report of the first CSI report is triggered in the following manner: the report of the first CSI report is triggered by the side link control information SCI indicator field. It can be seen that the first device can trigger the device to report the first CSI report through the SCI indication field, so that the device reporting the first CSI report does not need to configure other dedicated signaling, which improves the efficiency of information indication.
  • the report of the first CSI report is triggered in the following manner: the report of the first CSI report is triggered by a higher layer signaling configuration. It can be seen that the first device can trigger the device to report the first CSI report through the high-level signaling configuration, so that the device reporting the first CSI report can respond in real time based on the base station scheduling, reducing time delay and improving efficiency.
  • the acquiring, by the first device, the first CSI report of the target transmission path includes: receiving, by the first device, the first CSI report of the target transmission path reported by the third device, and
  • the third device is a next-hop device of the first device in the target transmission path. It can be seen that the first CSI is reported by the next hop device of the first device in the target transmission path. Since the next hop device can obtain channel state information on multiple links connected to itself, the first CSI can include the target transmission There are multiple hops in the path, so that more comprehensive path status information can be obtained from the source device, which improves the transmission success rate and efficiency, and improves the spectrum utilization rate.
  • the method further includes: the first device performs a report on the target transmission path according to the first CSI report. Prioritization. It can be seen that by classifying the transmission path, the transmission data can be classified and controlled in a more refined manner, and the utilization rate of the transmission path and the transmission stability can be improved.
  • an embodiment of the present application provides a method for reporting a multi-hop path CSI.
  • the multi-hop path includes a first device, a second device, and a third device.
  • the first device is a source device, and the first device is a source device.
  • the second device is the target device; the method includes:
  • the third device sends the first CSI report of the target transmission path to the first device, the third device is the next hop device of the first device in the target transmission path, and the first CSI report is used for Indicates the target transmission path.
  • the first device obtains the first CSI report of the target transmission path reported by the third device. Since the first CSI report is used to indicate the target transmission path, the first CSI report enables the synthesis under the multi-hop path
  • the channel status can be obtained at the data sending device, that is, the source device.
  • the first CSI report is a joint CSI report
  • the joint CSI report is used to indicate a joint channel state of a multi-hop transmission link of the target transmission path.
  • the first CSI report is a multi-level CSI
  • any level of CSI is used to indicate the CSI indication of a corresponding transmission link
  • the transmission link is the target transmission path according to the node connection Directly connected paths divided by relations.
  • the first CSI report is CSI obtained according to a first function.
  • the first function is a function defined according to the multi-level CSI of the target transmission path, and the multi-level CSI corresponds to multiple transmission chains divided by the target transmission path according to the node connection relationship. road.
  • the target transmission path is a transmission path that meets a preset reporting condition.
  • the preset reporting conditions include at least one of the following:
  • the first CSI of the transmission path is greater than or equal to a first preset threshold
  • the first CSI of the transmission path is less than or equal to a second preset threshold.
  • the first CSI report triggers the report in the following manner:
  • the reporting of the first CSI report is triggered by the side link control information SCI indicator field.
  • the first CSI report triggers the report in the following manner:
  • the reporting of the first CSI report is triggered through high-layer signaling configuration.
  • an embodiment of the present application provides a multi-hop path CSI reporting apparatus applied to a first device, the multi-hop path includes a first device, a second device, and a third device, and the first device is the source device , The second device is a target device; the device includes:
  • the transceiver unit is configured to obtain the first CSI report of the target transmission path through the communication unit, and the first CSI report is used to indicate the channel status of the multi-hop transmission link of the target transmission path.
  • an embodiment of the present invention provides a communication device.
  • the terminal is a third device and includes a memory, a transceiver, and at least one processor.
  • the memory stores instructions, the memory, the transceiver, and
  • the at least one processor is interconnected by wires, and the processor is used to invoke the instructions to execute the steps in any method of the first aspect or the second aspect.
  • an embodiment of the present invention provides a communication device, including a processor and an interface circuit;
  • the interface circuit is configured to receive code instructions and transmit them to the processor; the processor executes the code instructions to execute steps in any method of the first aspect or the second aspect.
  • an embodiment of the present invention provides a computer-readable storage medium.
  • the readable storage medium is used to store instructions. When the instructions are executed, the step.
  • an embodiment of the present invention provides a computer program product, when the computer program product runs on a communication device, it executes the steps in any method of the first aspect or the second aspect.
  • FIG. 1 is a system architecture diagram of a communication system provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 4a is a schematic flowchart of a multi-hop path CSI reporting method provided by an embodiment of the present application.
  • FIG. 4b is an example diagram of a node combination of a multi-hop path provided by an embodiment of the present application.
  • FIG. 4c is a schematic diagram of multiple transmission paths between a first device and a target device according to an embodiment of the present application.
  • FIG. 5 is a block diagram of functional units of a multi-hop path CSI reporting apparatus provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 1 is a schematic diagram of a communication system provided by an embodiment of the application.
  • the communication system 100 may be a fifth-generation 5G mobile communication system, a sixth-generation 6G mobile communication system, and any future communication system.
  • the system may include at least one network device 101 (only one is shown) and a device connected to the network device 101.
  • the network device 101 may perform wireless communication with the terminal device 102 through one or more antennas.
  • Each network device 101 can provide communication coverage for its corresponding coverage area 104.
  • the coverage area 104 corresponding to the network device 101 may be divided into multiple sectors (sector), where one sector corresponds to a part of the coverage area (not shown).
  • the network device 101 may include: a base transceiver station (Base Transceiver Station), a wireless transceiver, a basic service set (Basic Service Set, BSS), and an extended service set (Extended Service Set, ESS), Node B (Node B), evolved Node B (evolved NodeB, eNB or eNodeB), or next-generation Node B (gNB), etc.
  • the communication system 100 may include several different types of network devices 101, such as a macro base station (macro base station), a micro base station (micro base station), and so on.
  • the network device 101 may also be a small station, a transmission reference point (Transmission Reference Point, TRP), and so on.
  • TRP Transmission Reference Point
  • the network device 101 may apply different wireless technologies, such as cell wireless access technology or WLAN wireless access technology.
  • the terminal device 102 is a device with wireless transceiver function. It can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water (such as a ship); Deployed in the air (for example, on airplanes, balloons, satellites, etc.).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, an industrial control ( Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety Wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of this application do not limit the application scenarios.
  • Terminal equipment can sometimes be called User Equipment (UE), terminal (terminal), access terminal, UE unit, UE station, mobile equipment, mobile station, mobile station (mobile station), mobile terminal, mobile client , Mobile unit, remote station, remote terminal equipment, remote unit, wireless unit, wireless communication equipment, user agent or user device, etc.
  • UE User Equipment
  • terminal terminal
  • access terminal UE unit, UE station, mobile equipment, mobile station, mobile station (mobile station), mobile terminal, mobile client , Mobile unit, remote station, remote terminal equipment, remote unit, wireless unit, wireless communication equipment, user agent or user device, etc.
  • system and “network” in the embodiments of the present application can be used interchangeably.
  • Multiple refers to two or more than two. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application.
  • And/or describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the character “/” unless otherwise specified, generally indicates that the associated objects before and after are in an "or” relationship.
  • FIG. 2 shows a terminal device provided by an embodiment of the present application.
  • the terminal device 200 may include: an input and output module (including an audio input and output module 218, a key input module 216, a display 220, etc.), a user interface 202, one or more processors 204, a transmitter 206, and a receiver 208, coupler 210, antenna 214, and memory 212.
  • an input and output module including an audio input and output module 218, a key input module 216, a display 220, etc.
  • the antenna 214 can be used to convert electromagnetic energy into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in transmission lines.
  • the coupler 210 is used to divide the mobile communication signal received by the antenna 214 into multiple channels and distribute them to multiple receivers 208.
  • the transmitter 206 can be used to transmit and process the signal output by the processor 204.
  • the receiver 208 can be used to receive and process the mobile communication signal received by the antenna 214.
  • the transmitter 206 and the receiver 208 can be regarded as a wireless modem.
  • the number of the transmitter 206 and the receiver 208 may each be one or more.
  • the terminal device 200 may also include other communication components, such as a GPS module, a Bluetooth (Bluetooth) module, and a wireless high-fidelity (Wireless Fidelity, Wi-Fi) module. Not limited to the above-mentioned wireless communication signals, the terminal device 200 may also support other wireless communication signals, such as satellite signals, shortwave signals, and so on. Not limited to wireless communication, the terminal device 200 may also be configured with a wired network interface (such as a LAN interface) 201 to support wired communication.
  • a wired network interface such as a LAN interface
  • the input and output module can be used to realize the interaction between the terminal device 200 and the user/external environment, and can mainly include an audio input and output module 218, a key input module 216, a display 220, and so on. Specifically, the input and output module may also include a camera, a touch screen, a sensor, and so on. Wherein, the input and output modules all communicate with the processor 204 through the user interface 202.
  • the memory 212 may be coupled with the processor 204 through a bus or an input/output port, and the memory 212 may also be integrated with the processor 204.
  • the memory 212 is used to store various software programs and/or multiple sets of instructions.
  • the memory 212 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 212 may store an operating system (hereinafter referred to as system), such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 212 may also store a network communication program, which may be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the memory 212 can also store a user interface program, which can vividly display the content of the application program through a graphical operation interface, and receive user control operations on the application program through input controls such as menus, dialog boxes, and keys. .
  • the memory 212 may be used to store the implementation program of the channel state information (CSI) reporting method provided by one or more embodiments of the present application on the first device side.
  • CSI channel state information
  • the processor 204 can be used to read and execute computer readable instructions. Specifically, the processor 204 may be used to call a program stored in the memory 212, such as the implementation program on the first device side of the multi-hop path CSI reporting method provided by one or more embodiments of the present application, and execute the program included in the program. Instructions to implement the methods involved in the subsequent embodiments.
  • the processor 204 can support: Global System for Mobile Communication (GSM) (2G) communication, Wideband Code Division Multiple Access (WCDMA) (3G) communication, and Long Term Evolution (Long Term Evolution) , LTE) (4G) communication, and one or more of 5G communication and so on.
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • 4G Long Term Evolution
  • the processor 204 when the processor 204 receives any message or data, it specifically drives or controls the receiver 208 to do the reception. Therefore, the processor 204 can be regarded as a control center that performs transmission or reception, and the transmitter 206 and the receiver 208 are specific performers of the transmission and reception operations.
  • the terminal device 200 may be the terminal device 102 in the communication system 100 shown in FIG. 1, and may be implemented as a User Equipment (UE), a terminal (terminal), an access terminal, a UE unit, a UE station, Mobile devices, mobile stations, mobile stations, mobile terminals, etc.
  • UE User Equipment
  • terminal terminal
  • access terminal a UE unit
  • UE station Mobile devices, mobile stations, mobile stations, mobile terminals, etc.
  • terminal device 200 shown in FIG. 2 is only an implementation manner of the embodiment of the present application. In actual applications, the terminal device 200 may also include more or fewer components, which is not limited here.
  • FIG. 3 shows a network device provided by an embodiment of the present application.
  • the network device 300 may include: one or more processors 301, a memory 302, a network interface 303, a transmitter 305, a receiver 306, a coupler 307, and an antenna 308. These components can be connected through a bus 304 or other methods.
  • FIG. 3 uses a bus connection as an example. among them:
  • the network interface 303 can be used for the network device 300 to communicate with other communication devices, such as other network devices.
  • the network interface 303 may be a wired interface.
  • the transmitter 305 may be used to transmit the signal output by the processor 301, such as signal modulation.
  • the receiver 306 can be used to receive and process the mobile communication signal received by the antenna 308. For example, signal demodulation.
  • the transmitter 305 and the receiver 306 can be regarded as a wireless modem.
  • the number of the transmitter 305 and the receiver 306 may each be one or more.
  • the antenna 308 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in a free space, or convert electromagnetic waves in a free space into electromagnetic energy in a transmission line.
  • the coupler 307 can be used to divide the mobile communication signal into multiple channels and distribute them to multiple receivers 306.
  • the memory 302 may be coupled with the processor 301 through a bus 304 or an input/output port, and the memory 302 may also be integrated with the processor 301.
  • the memory 302 is used to store various software programs and/or multiple sets of instructions.
  • the memory 302 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 302 may store an operating system (hereinafter referred to as the system), such as embedded operating systems such as uCOS, VxWorks, RTLinux, and so on.
  • the memory 302 may also store a network communication program, which may be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the processor 301 may be used to perform wireless channel management, implement call and communication link establishment and teardown, and provide cell handover control for users in the control area.
  • the processor 301 may include: an Administration Module/Communication Module (AM/CM) (a center used for voice channel exchange and information exchange), a basic module (Basic Module, BM) (used to complete a call Processing, signaling processing, wireless resource management, wireless link management and circuit maintenance functions), code conversion and submultiplexer (Transcoder and SubMultiplexer, TCSM) (used to complete multiplexing, demultiplexing and code conversion functions), etc. Wait.
  • AM/CM Administration Module/Communication Module
  • BM basic module
  • TCSM code conversion and submultiplexer
  • the processor 301 may be used to read and execute computer-readable instructions.
  • the processor 301 may be configured to call a program stored in the memory 302, for example, the implementation program of the multi-hop path CSI reporting method provided by one or more embodiments of the present application on the first device side, and execute the program included in the program. instruction.
  • the network device 300 may be the network device 101 in the communication system 100 shown in FIG. 1, and may be implemented as a base station, a wireless transceiver, a basic service set (BSS), an extended service set (ESS), NodeB, eNodeB, gNB, etc.
  • BSS basic service set
  • ESS extended service set
  • NodeB NodeB
  • eNodeB gNodeB
  • the network device 300 shown in FIG. 3 is only an implementation manner of the embodiment of the present application. In actual applications, the network device 300 may also include more or fewer components, which is not limited here.
  • the terminal device 102 can be specifically classified into a coverage UE (in coverage UE) and a coverage edge UE (in coverage edge UE).
  • Coverage edge UE out of coverage edge UE
  • out of coverage UE out of coverage UE
  • the first device described in the following embodiments may be the aforementioned network device 101 or terminal device 102
  • the transit device may be
  • the target device may be the foregoing network device 101 or terminal device 102.
  • FIG. 4a is a schematic flowchart of a method for reporting CSI on a multi-hop path according to an embodiment of the present application.
  • the method can be implemented based on the communication system shown in FIG. 1, and the multi-hop path includes a first device. , The second device and the third device, the first device is the source device, and the second device is the target device; in other words, the first device forms at least one transmission path with the target device through one or more transit devices,
  • the at least one transmission path (existence can be described as including, containing, having, etc.) is a path with N hops, and N is an integer greater than or equal to 2.
  • the third device is a transit device; the first device can be the source device or the previous hop device of the transit device; the second device can be the target device or the next hop device of the transit device .
  • the method includes but is not limited to the following steps:
  • Step S401 The first device obtains a first CSI report of a target transmission path, where the first CSI report is used to indicate a channel state of a multi-hop transmission link of the target transmission path.
  • the multiple hops may be N hops, and N is greater than or equal to 2. That is, the at least one transmission path may include a two-hop path, or may include a path with more than two hops.
  • the target transmission path is the multi-hop path, which specifically belongs to the path between the source device and the target device.
  • the path between the source device and the target device is a one-hop or multi-hop transmission path from the source device to the target device, or a one-hop or multi-hop transmission path from any target transit device to the target device Path, or a one-hop or multi-hop transmission path from the next hop device of the source device to the target device, or a one-hop or multi-hop transmission path from the next hop device of any target transit device to the target device.
  • first device and the second device can also form a direct connection path, that is, the data transmitted by the first device can be directly received by the second device, and can pass through other supplementary links when the channel status of the direct connection path is not good.
  • the transmission or data forwarding on the Internet enhances the reliability of data.
  • any device can be designated as the source node.
  • the embodiment of the present application takes the first device as an example for detailed description.
  • the first CSI report is a joint CSI report, and the joint CSI report is used to indicate the joint channel status of the multi-hop transmission link of the target transmission path.
  • the naming manner of the first CSI report may be various, such as replacing with a target CSI report, etc., which is not uniquely limited here.
  • the nodes included in any one of the at least one transmission path may be any one of the following combinations: ⁇ base station, transit UE, target UE ⁇ , ⁇ UE, transit UE, base station ⁇ , ⁇ UE, transit UE, target UE ⁇ , ⁇ UE, one-hop transit UE,...N-hop transit UE, target UE ⁇ , ⁇ base station, one-hop transit UE,...N-hop transit UE, Target UE ⁇ , ⁇ UE, one-hop transit UE,...N-hop transit UE, target base station ⁇ , ⁇ base station, transit base station, target base station ⁇ , ⁇ base station, one-hop transit UE,...N-hop transit UE, target base station ⁇ , ⁇ Base station, one-hop transit base station,...N-hop transit base station, target base station ⁇ .
  • the first device corresponds to the base station in the current combination
  • the transit device corresponds to the transit UE in the current combination
  • the target device corresponds to the base station in the current combination.
  • the target UE, the transit UE may specifically be any of an in-coverage UE, an in-coverage edge UE
  • the target UE may be any of an in-coverage UE, an inner edge UE, an outer edge UE, and an out-of-coverage UE
  • One kind According to the actual location distribution, it can be divided into multiple types. The following is a detailed example.
  • the transit UE is the UE within the coverage
  • the target device is the UE at the edge of the coverage L1 from the base station.
  • the transit UE is the UE within the coverage
  • the target device is the UE at the outer edge of the coverage L2 from the base station.
  • the transit UE is the UE within the coverage
  • the target device is the UE outside the coverage L3 from the base station.
  • L1 is less than L2
  • L2 is less than L3.
  • the transit UE is the UE at the inner edge of the coverage
  • the target device is the UE at the outer edge of the coverage L2 from the base station.
  • the transit UE is a UE at the inner edge of the coverage
  • the target device is a UE outside the coverage L3 from the base station.
  • the first device corresponds to the UE in the current combination
  • the transit device corresponds to the transit UE in the current combination
  • the target device corresponds to the base station in the current combination
  • Both the UE and the transit UE are terminal devices, and multiple types of combinations can be formed according to the actual location distribution of the devices, and detailed examples are described below.
  • the first device is an out-of-coverage UE
  • the transit UE is an in-cover edge UE.
  • the first device is an out-of-coverage UE
  • the transit UE is an in-coverage UE
  • the first device is the coverage outer edge UE
  • the transit UE is the coverage inner edge UE.
  • the first device is a UE at the outer edge of the coverage
  • the transit UE is a UE within the coverage.
  • the first device is a UE at the inner edge of the coverage
  • the transit UE is a UE at the inner edge of the coverage.
  • the first device is an in-coverage UE
  • the transit UE is an in-coverage UE
  • the first device is an in-coverage UE
  • the transit UE is an in-coverage UE
  • the first device corresponds to the UE in the current combination
  • the transit device corresponds to the transit UE in the current combination
  • the target device corresponds to the target in the current combination
  • the UE, the UE, the transit UE, and the target UE are all terminal devices, and multiple types of combinations can be formed according to the actual location distribution of the devices, which are not uniquely limited here.
  • the first device corresponds to the UE in the current combination
  • the transit device corresponds to the one-hop transit UE in the current combination
  • the target device corresponds to the target UE in the current combination
  • the UE, one-hop transit UE,...N-hop transit UE, target UE are all terminal devices, and various types can be formed according to the actual location distribution of the device
  • the type combination is not uniquely limited here.
  • the first device corresponds to the base station in the current combination
  • the transit device corresponds to the one-hop transit UE in the current combination
  • the target device corresponds to the target UE in the current combination
  • the UE, one-hop transit UE, ...N-hop transit UE, and the target UE are all terminal devices
  • the target UEs are all terminal devices, and multiple types of combinations can be formed according to the actual location distribution of the devices, and there is no unique limitation here.
  • the link between the terminal equipment can be a side link, but it is not limited to the side link application scenario, it can be an unlicensed spectrum system, it can be an integrated access and backhaul link system, and the side link
  • the link is not limited to D2D, V2V, V2X scenes, etc.
  • the first device obtains the first CSI report of the target transmission path. Since the first CSI report is used to indicate the target transmission path, the first CSI report enables the comprehensive channel status under the multi-hop path to be displayed in the data transmission path.
  • the device is obtained from the source device.
  • the first CSI report is a multi-level CSI
  • any level of CSI is used to indicate the CSI indication of a corresponding transmission link
  • the transmission link is the target transmission path divided according to the node connection relationship The direct path.
  • each level of CSI is used to indicate the CSI indication of the corresponding transmission link
  • the transmission link is a direct connection path divided according to the node connection relationship of the target transmission path.
  • the joint CSI report includes two levels of CSI, that is, the first level CSI is used to indicate the CSI between the first device and the transit device, and the second level CSI is used to indicate the transit device and the target.
  • CSI indication between devices For example, for a 2-hop path, the joint CSI report includes two levels of CSI, that is, the first level CSI is used to indicate the CSI between the first device and the transit device, and the second level CSI is used to indicate the transit device and the target.
  • the two-level CSI can be expressed as: ⁇ First hop CSI: X; Second hop CSI: Y; ⁇ (First hop is the first node, and Second hop is the second node).
  • the two-level CSI can also be expressed as: ⁇ 1:X; 2:Y; ⁇ , that is, for the first hop CSI, index 1 is correspondingly expressed or associated, and for the second hop CSI, index 2 is correspondingly expressed or associated.
  • the two-level CSI can also be expressed as: ⁇ X, Y ⁇ , that is, X and Y are sorted in sequence, respectively representing the first hop CSI and the second hop CSI.
  • the two-level CSI can also be expressed as: how many bit fields in a CSI report are the first hop CSI, and how many bit fields are the second hop CSI in a CSI report; or, how many bit fields in a CSI report are the first bit field as the second hop CSI ,
  • the last bit field is the first hop CSI; wherein, the definition rule of the bit field may be pre-configured to any one of the terminal equipment or the network equipment, or the network equipment informs the terminal equipment through signaling.
  • the two-level CSI may also be expressed as: the first-hop CSI reported on the first resource, and the second-hop CSI reported on the second resource; wherein, the first resource or the second resource Either one may be pre-configured to either the terminal device or the network device, or the network device may notify the terminal device through signaling.
  • the first resource or the second resource is any time domain, frequency domain, or space domain resource.
  • the format of the joint CSI report may be pre-configured or configured by signaling.
  • the joint CSI report adopts multi-level CSI, so that the channel status of each transmission link in the multi-hop path is clearly indicated, which is concise and efficient.
  • the first CSI report is CSI obtained according to the first function.
  • the first function may also be referred to as a joint function, or function, which is not uniquely limited here.
  • the first function is a function defined according to the multi-level CSI of the target transmission path, and the multi-level CSI corresponds to multiple transmission links divided by the target transmission path according to the node connection relationship.
  • the path from the source device to the transit device is a direct path
  • the path from the transit device to the target device is a direct path.
  • the function Func(X, Y) can be any linear or non-linear function with X and Y as parameters, for example, a function generated by correspondingly weighting X and Y.
  • Func(X, Y) K1*X+K2*Y, where K1, K2 are preset or configured parameters through signaling.
  • the comprehensive channel state of the multi-hop path of the target transmission path is calculated by the first function, which has a small amount of information and high transmission efficiency.
  • the target transmission path is a transmission path that meets a preset reporting condition.
  • the CSI report trigger condition of the CSI device that is reported to the CSI device is restricted by the preset report condition, which can effectively limit the repeated invalid report of the low-quality transmission path and improve the signaling transmission efficiency.
  • the preset reporting condition includes: the first CSI of the transmission path is greater than or equal to a first preset threshold.
  • the first CSI when the first CSI is a joint CSI of multi-level CSI, the first CSI is greater than or equal to the first preset threshold value specifically means that the average value of the multi-level CSI is greater than or equal to the first preset threshold value, or , Means that each CSI in the multi-level CSI is greater than or equal to the first preset threshold, or means that the M CSIs in the multi-level CSI that are greater than or equal to the third preset threshold are all greater than or equal to the first
  • the preset threshold value is not uniquely limited here. In this application, greater than can be replaced with greater than or equal to, and less than can be replaced with less than or equal to.
  • the first CSI is the CSI obtained according to the first function
  • the first CSI is greater than or equal to the first preset threshold value specifically refers to the output value of the first function, that is, the integrated CSI value is greater than or equal to the first preset threshold Limit.
  • the linear weighted average value of the multi-level CSI is greater than the first preset threshold value, or the non-linear weighted average value of the multi-level CSI is greater than the first preset threshold value.
  • the preset reporting condition can also be periodic reporting, where the reporting period can be pre-configured or signaling configuration.
  • reporting a sufficiently good transmission path for the CSI helps the source device identify a corresponding path that can ensure reliable transmission for the data to be transmitted, thereby ensuring reliable data transmission and improving spectrum utilization.
  • the preset reporting condition includes: the first CSI of the transmission path is less than or equal to a second preset threshold.
  • the first CSI when the first CSI is a joint CSI of multi-level CSI, the first CSI is less than or equal to the second preset threshold value specifically means that the average value of the multi-level CSI is less than or equal to the second preset threshold value, or , Means that each CSI in the multi-level CSI is less than or equal to the second preset threshold, or means that the M CSIs in the multi-level CSI that are greater than or equal to the third preset threshold are all less than or equal to the second
  • the preset threshold value is not uniquely limited here. In this application, greater than can be replaced with greater than or equal to, and less than can be replaced with less than or equal to.
  • the first CSI is the CSI obtained according to the first function
  • the first CSI is less than or equal to the second preset threshold value specifically refers to the output value of the first function, that is, the integrated CSI value is less than or equal to the second preset threshold Limit.
  • the linear weighted average value of the multi-level CSI is less than the second preset threshold value, or the non-linear weighted average value of the multi-level CSI is less than the second preset threshold value.
  • first preset threshold value and the second preset threshold value may be the same or different.
  • reporting a transmission path that is not good enough for the CSI helps the source device avoid using corresponding paths that cannot guarantee reliable transmission for the data to be transmitted, thereby improving the spectrum utilization rate.
  • any threshold value can be pre-configured or signaling configuration.
  • the first CSI is reported periodically or non-periodically, and can be pre-configured or configured by signaling. Among them, non-periodical reporting can also be referred to as reporting by judging whether a trigger condition is met;
  • the first CSI is a CSI report generated by a multi-level CSI report or a first function, and may be pre-configured or configured by signaling.
  • the configuration through signaling is configured through at least one of radio resource control RRC signaling, media access control MAC signaling, or physical layer signaling.
  • RRC signaling radio resource control
  • media access control MAC signaling media access control MAC signaling
  • physical layer signaling if the signaling is configured so that the network device sends the above signaling to the terminal device, it may also be the source device sending the above signaling to the transit device.
  • the reporting of the first CSI report is triggered in the following manner: the reporting of the first CSI report is triggered by a sidelink control information (SCI) indication field.
  • SCI sidelink control information
  • the SCI may be a one-level SCI, or a certain level of a multi-level SCI, such as a first-level SCI or a second-level SCI in a two-level SCI.
  • multi-level SCI multiple level SCI
  • multiple stage SCI multi-level SCI
  • the first device can trigger the device to report the first CSI report through the SCI indication field, so that the device reporting the first CSI report does not need to configure other dedicated signaling, which improves the efficiency of information indication.
  • the reporting of the first CSI report is triggered in the following manner: the reporting of the first CSI report is triggered by a higher layer signaling configuration.
  • the first device can trigger the device to report the first CSI report through high-level signaling configuration, so that the device reporting the first CSI report can respond in real time based on the base station scheduling, reducing time delay and improving efficiency.
  • acquiring the first CSI report of the target transmission path by the first device includes: receiving, by the first device, the first CSI report of the target transmission path reported by the third device, and the first device The three devices are the next hop devices of the first device in the target transmission path.
  • the transfer device when the target transmission path is a 2-hop path, the transfer device only includes the third device, and when the target transmission path is a path greater than 2-hop, the transfer device includes the third device, the second transfer device, and so on.
  • the third device may be a UE in the coverage of the base station, or a UE at the edge of the coverage of the base station.
  • the first device may send a high-level signaling configuration to trigger the reporting of the first CSI report to the third device.
  • the third device may be any one of an in-coverage UE, an in-coverage edge UE, an outside-coverage edge UE, and an out-of-coverage UE, specifically according to the node combination of the target transmission path The situation is ok.
  • the first device may trigger the reporting of the first CSI report through the SCI indication field.
  • the third device may be a UE at the inner edge of coverage, UE at the outer edge of coverage, and UE outside of coverage.
  • the first device may trigger the reporting of the first device through the SCI indicator field. A CSI report.
  • the first CSI is reported by the next hop device of the first device in the target transmission path. Since the next hop device can obtain channel state information on multiple links connected to itself, the first CSI It can contain multi-hop information in the target transmission path, so that more comprehensive path status information can be obtained from the source device, which improves the transmission success rate and efficiency, and improves the spectrum utilization rate.
  • the device reporting the first CSI report may also be the network device accessed by the first device in the target transmission path, that is, the network device can Obtain the CSI of each hop transmission link of the target transmission path, and comprehensively determine the first CSI.
  • the above-mentioned SCI is taken as an example of the side link.
  • DCI downlink control information
  • the method further includes: the first device prioritizes the target transmission path according to the first CSI report Sort.
  • the high-priority transmission path is used to transmit high-priority information data packets
  • the low-priority transmission path is used to transmit low-priority information data packets.
  • the first CSI report may specifically include the level of each transmission path, and the level division mechanism is not uniquely limited.
  • the level division mechanism can perform level division according to the constraint interval formed by the first preset threshold value and the fourth preset threshold value.
  • the level of the transmission path can be divided into three levels: high, medium and low.
  • the fourth preset threshold is greater than the first preset threshold.
  • Table 1 The corresponding relationship between the level and the threshold range is shown in Table 1.
  • the first CSI is greater than the fourth preset threshold Medium (S2)
  • the first CSI is less than the fourth preset threshold and greater than the first preset threshold Low (S3)
  • the first CSI is less than the first preset threshold
  • path P1 the transit device is UE1
  • path P2 the target device
  • path P3 the transfer device is UE4
  • path P4 the transfer device is UE2
  • path P5 the transfer device is UE5
  • path P6 the transfer device is UE6
  • paths P1, P2, and P3 have good CSI and belong to high level S1
  • paths P4, P5, and P6 have medium CSI and belong to medium level S2.
  • the S1 level path includes three transit paths corresponding to the transit UEs, and the three transit UEs are: UE1, UE3, and UE4. On this level of path, UE1, UE3, and UE4 have better CSI with SUE and TUE, so joint CSI will be better. This level of path can be used to transmit data packets with higher priority information, marked as S1 level path.
  • the three transit UEs can transmit at the same time or independently.
  • UE1, UE3, and UE4 can use different combinations to transmit different data packets or transmit the same data packets at the same time.
  • the specific combination types include ⁇ UE1, UE3 ⁇ , ⁇ UE1, UE4 ⁇ , ⁇ UE3 , UE4 ⁇ , ⁇ UE1, UE3, UE4 ⁇ , which can be performed according to one or more of the data volume of the data packet to be transmitted, the priority of the data packet, the device status of UE1, UE3, and UE4, and the occupancy of the transmission path
  • Decisions, such as transmitting a high-priority data packet can allow three S1-level paths to be transmitted at the same time, and there is no unique limitation here.
  • any one of UE1, UE3, and UE4 can be used to transmit the data packet currently to be transmitted to improve resource utilization.
  • the specific selection strategy can be based on the data volume of the data packet to be transmitted, the priority of the data packet, One or more of the equipment status of UE1, UE3, and UE4, and the occupancy of the transmission path are used to make decisions. For example, to transmit a high-priority data packet, you can choose any one of the three S1-level paths for transmission. This is not the only one. limited.
  • the S2 path includes three transit paths corresponding to the transit UEs, and the three transit UEs are: UE2, UE5, and UE6.
  • the medium CSI path which is marked as S2 level path; although UE5 is closer to SUE, it is far away from TUE.
  • the path with medium CSI is marked as the S2 level path; UE6 is relatively far away from the SUE and TUE and the channel condition is relatively poor, so it is the path with medium CSI and marked as the S2 level path. Therefore, the above-mentioned S2 level path can be used to transmit data packets with lower priority information, which is marked as path P2.
  • the three transit UEs can be configured for simultaneous transmission or independent transmission.
  • UE2, UE5, and UE6 can use different combinations to transmit the same data packet at the same time to improve the transmission success rate.
  • the specific combination types include ⁇ UE2, UE5 ⁇ , ⁇ UE2, UE6 ⁇ , ⁇ UE5 , UE6 ⁇ , ⁇ UE2, UE5, UE6 ⁇ , which can be specifically based on one or more of the data volume of the data packet to be transmitted, the priority of the data packet, the device status of UE2, UE5, and UE6, and the occupancy of the transmission path
  • Making a decision, such as transmitting a low-priority data packet can allow three S2-level paths to be transmitted at the same time, and there is no unique limitation here.
  • any one of UE2, UE5, and UE6 can be used to transmit the data packet currently to be transmitted to improve resource utilization.
  • the specific selection strategy can be based on the data volume of the data packet to be transmitted, the priority of the data packet, One or more of UE2, UE5, and UE6's equipment status and the occupancy of the transmission path are used to make decisions. For example, to transmit a low-priority data packet, you can choose any one of the three S2-level paths for transmission. This is not the only one. limited.
  • the classification mechanism can also perform comprehensive evaluation based on the distance between the transfer device and the first device, and the distance between the transfer device and the target device, etc.
  • the transmission data can be classified and controlled more finely, and the utilization rate of the transmission path and the transmission stability can be improved.
  • the multi-hop path CSI reporting method disclosed in the embodiments of the present application can also be presented with a third device as the main body of action.
  • the multi-hop path includes the first device, the second device, and the third device.
  • the first device is a source device
  • the second device is a target device; the method includes:
  • the third device sends a first CSI report of a target transmission path to the first device, the third device is a next-hop device of the first device in the target transmission path, and the first CSI report It is used to indicate the channel status of the multi-hop transmission link of the target transmission path.
  • the first device obtains the first CSI report of the target transmission path reported by the third device. Since the first CSI report is used to indicate the target transmission path, the first CSI report enables the synthesis under the multi-hop path
  • the channel status can be obtained at the data sending device, that is, the source device.
  • the first CSI report is a joint CSI report
  • the joint CSI report is used to indicate the joint channel status of the multi-hop transmission link of the target transmission path.
  • the first CSI report is a multi-level CSI
  • any level of CSI is used to indicate the CSI indication of a corresponding transmission link
  • the transmission link is the target transmission path divided according to the node connection relationship The direct path.
  • the first CSI report is CSI obtained according to the first function.
  • the first function is a function defined according to the multi-level CSI of the target transmission path, and the multi-level CSI corresponds to multiple transmission links divided by the target transmission path according to the node connection relationship.
  • the target transmission path is a transmission path that meets a preset reporting condition.
  • the preset reporting conditions include at least one of the following:
  • the first CSI of the transmission path is greater than or equal to a first preset threshold
  • the first CSI of the transmission path is less than or equal to a second preset threshold.
  • the first CSI report triggers the report in the following manner:
  • the reporting of the first CSI report is triggered by the side link control information SCI indicator field.
  • the first CSI report triggers the report in the following manner:
  • the reporting of the first CSI report is triggered through high-layer signaling configuration.
  • an embodiment of the present application further provides a multi-hop path CSI reporting device 500, the device 500 includes: a transceiver unit 501; exemplarily:
  • the transceiver unit 501 is configured to obtain a CSI report of a target transmission path, and the first CSI report is used to indicate the target transmission path.
  • the first CSI report is a joint CSI report
  • the joint CSI report is used to indicate the joint channel status of the multi-hop transmission link of the target transmission path.
  • the first CSI report is a joint CSI report
  • the joint CSI report is used to indicate a joint channel state of a multi-hop transmission link of the target transmission path.
  • the first CSI report is CSI obtained according to the first function.
  • the first function is a function defined according to the multi-level CSI of the target transmission path, and the multi-level CSI corresponds to multiple transmission links divided by the target transmission path according to the node connection relationship.
  • the target transmission path is a transmission path that meets a preset reporting condition.
  • the preset reporting conditions include at least one of the following:
  • the first CSI of the transmission path is greater than or equal to a first preset threshold
  • the first CSI of the transmission path is less than or equal to a second preset threshold.
  • the first CSI report triggers the report in the following manner:
  • the reporting of the first CSI report is triggered by the side link control information SCI indicator field.
  • the first CSI report triggers the report in the following manner:
  • the reporting of the first CSI report is triggered through high-layer signaling configuration.
  • the transceiving unit is specifically configured to receive a first CSI report of the target transmission path reported by a third device, and the third device is the first device in the target transmission path. Next hop device.
  • the transceiving unit is specifically configured to receive a first CSI report of the target transmission path reported by a third device, and the third device is the first device in the target transmission path. Next hop device.
  • transceiving unit 501 For the functions of the above-mentioned transceiving unit 501, reference may be made to the related description of the terminal device in the embodiment shown in FIG.
  • the first device obtains the first CSI report of the target transmission path. Since the first CSI report is used to indicate the target transmission path, the first CSI report enables the comprehensive channel status under the multi-hop path to be reported by the data sending device. Obtained from the source device.
  • the communication device 600 is a first device.
  • the communication device 600 includes a processor 601, a memory 602, and a transceiver 603.
  • the processor 601, the memory 602, and the transceiver 603 are connected to each other through a bus.
  • the memory 602 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM), the memory 602 is used for related instructions and data.
  • the transceiver 603 is used to receive and send data.
  • the processor 601 may be one or more central processing units (CPU). In the case where the processor 701 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 601 in the communication device 600 is configured to read the program code stored in the memory 602, and perform the following operations:
  • each operation can also correspond to the corresponding description of the method embodiment shown in FIG. 2.
  • An embodiment of the present application also provides a communication device, including a processor and an interface circuit; the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the code instructions to execute the code instructions as described above Part or all of the steps of any method described in the method embodiment.
  • the embodiments of the present application also provide a computer storage medium, where the readable storage medium is used to store instructions, and when the instructions are executed, the method described in any one of the above method embodiments is realized.
  • the embodiments of the present application also provide a computer program product.
  • the above-mentioned computer program product includes a non-transitory computer-readable storage medium storing a computer program.
  • the above-mentioned computer program is operable to cause a computer to execute any of the methods described in the above-mentioned method embodiments. Part or all of the steps of the method.
  • the computer program product may be a software installation package, and the above-mentioned computer includes electronic equipment.
  • the process can be completed by a computer program instructing relevant hardware.
  • the program can be stored in a computer readable storage medium. , May include the processes of the above-mentioned method embodiments.
  • the aforementioned storage media include: ROM or random storage RAM, magnetic disks or optical disks and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种多跳路径CSI上报方法及相关装置,该方法包括:所述多跳路径中包括第一设备、第二设备和第三设备,所述第一设备为源设备,所述第二设备为目标设备;所述第一设备获取目标传输路径的第一CSI报告,所述第一CSI报告用于指示所述目标传输路径。采用本申请实施例,能够通过第一CSI上报使得多跳路径下的综合信道状态可以在数据发送设备即源设备处获取。

Description

多跳路径CSI上报方法及相关装置 技术领域
本申请涉及通信技术领域,尤其涉及一种多跳路径CSI上报方法及相关装置。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)长期演进(Long Term Evolution,LTE)的第12版本Rel-12中引入设备间通信(Device-to-Device,D2D)技术并且进行了标准化,目的是让用户设备UE之间能够直接通信,以满足公共安全Public Safety等新兴业务的需求。(注,此时的D2D,只能支持网络覆盖范围内的UE发现,以及UE和UE之间的通信,这种通信可以是单播也可以是广播,并且支持全部UE在网络覆盖内、部分UE在网络覆盖内、部分UE在网络覆盖外、全部UE在网络覆盖外的场景)。LTE的Rel-13中引入设备到网络中继UE-to-Network relaying技术并且进行了标准化。这种技术使得网络可以利用Rel-12引入的D2D技术,通过层3中继Layer 3 Relay扩展网络的覆盖,让网络覆盖外的UE能借助网络覆盖内的UE获得服务。此外,在Rel-14/15/16版本,车辆对外界信息(Vehicle-to-Everything,V2X)作为D2D技术的一个主要应用顺利立项。V2X具体又包括车辆对车辆(Vehicle-to-Vehicle,V2V)、汽车对行人(Vehicle-to-Person,V2P)、汽车对基础设施(Vehicle-to-Infrastructure,V2I)、汽车对路侧设备(Vehicle-to-RSU,V2R)各种应用需求。V2V指的是基于LTE的车辆间通信;V2P指的是基于LTE的车辆与人(包括行人、骑自行车的人、司机、或乘客)的通信;V2R指的是基于LTE的车辆与路边装置(RSU)的通信,另外还有一种V2N可以包括在V2I中,V2N指的是基于LTE的车辆与基站/网络的通信。路边装置(RSU)包括两种类型:终端类型的RSU,由于布在路边,该终端类型的RSU处于非移动状态,不需要考虑移动性;基站类型的RSU,可以给与之通信的车辆提供定时同步及资源调度。无论是现有的D2D、V2V、V2X,还是第五代移动通信技术5G V2X以及未来的侧行链路应用场景,都可以进行用户协作UE cooperation。
从通信理论发展和应用场景需求角度来看,新空口NR第17版本Rel-17是用户协作技术商业化的良好时机。从3GPP标准发展的历史来看,用户协作所包含的UE之间的通信、UE-to-Network relaying等技术,以前在3GPP中都有一定的研究。其中,UE-to-Network relaying是一个UE帮助另一个UE和基站进行通信的技术,也叫中继Relay技术。可以认为,以前研究过的D2D技术和Relay技术均是用户协作技术的一个组成部分。
目前,相关标准讨论的用户协作技术中的数据中继仅限于基站到覆盖内边缘UE,再到覆盖外UE,即当从基站发送数据时,如果目标UE处于基站的信号覆盖范围之外,则目标UE无法直接接收到来自基站的传输,可以通过in coverage edge UE进行数据中转,如何获取此类包含中转设备的多跳路径的信道状态是需要解决的问题。
发明内容
本申请实施例提供一种多跳路径CSI上报方法及相关装置,能够通过第一CSI上报使得多跳路径下的综合信道状态可以在数据发送设备即源设备处获取。
第一方面,本申请实施例提供了一种多跳路径CSI上报方法,所述多跳路径中包括第 一设备、第二设备和第三设备,所述第一设备为源设备,所述第二设备为目标设备;所述方法包括:
所述第一设备获取目标传输路径的第一CSI报告,所述第一CSI报告用于指示所述目标传输路径的多跳传输链路的信道状态。
通过实施本申请实施例,第一设备获取目标传输路径的第一CSI报告,由于第一CSI报告用于指示目标传输路径,从而通过第一CSI上报使得多跳路径下的综合信道状态可以在数据发送设备即源设备处获取。
在一种可能的实现方式中,所述第一CSI报告为联合CSI报告,所述联合CSI报告用于指示所述目标传输路径的多跳传输链路的联合信道状态。可见,通过联合CSI报告指示所述目标传输路径的联合信道状态,能够实现多跳传输路径的准确指示。
在一种可能的实现方式中,所述第一CSI报告为多级CSI,任一级CSI用于表示对应的传输链路的CSI指示,所述传输链路为所述目标传输路径按照节点连接关系划分的直连的路径。可见,联合CSI报告采用多级CSI,使得多跳路径中的每条传输链路的信道状态均被清楚指示,简洁高效。
在一种可能的实现方式中,所述第一CSI报告为根据第一函数获取的CSI。可见,通过第一函数计算目标传输路径的多跳路径的综合信道状态,信息量少,传输高效。
在一种可能的实现方式中,所述第一函数为根据所述目标传输路径的多级CSI定义的函数,所述多级CSI对应所述目标传输路径按照节点连接关系划分的多个传输链路。可见,通过第一函数计算目标传输路径的多跳路径的综合信道状态,信息量少,传输高效。
在一种可能的实现方式中,所述目标传输路径为满足预设上报条件的传输路径。可见,通过预设上报条件约束上报CSI设备的CSI上报触发条件,能够有效限制低质量传输路径的反复无效上报,提高信令传输效率。
在一种可能的实现方式中,所述预设上报条件包括下述至少一项:所述传输路径的第一CSI大于或等于第一预设门限值;可见,上报CSI足够好的传输路径有助于源设备对待传输数据标识出相应的能够保证可靠传输的路径,从而保证数据可靠传输,改善频谱使用率。
所述传输路径的第一CSI小于或等于第二预设门限值。可见,上报CSI不够好的传输路径有助于源设备对待传输数据避免使用相应的不能够保证可靠传输的路径,从而改善频谱使用率。
在一种可能的实现方式中,所述第一CSI报告是通过如下方式触发上报:通过侧行链路控制信息SCI指示域触发上报第一CSI报告。可见,第一设备可以通过SCI指示域触发设备上报第一CSI报告,使得上报该第一CSI报告的设备无需配置其他专用信令,提高信息指示效率。
在一种可能的实现方式中,所述第一CSI报告是通过如下方式触发上报:通过高层信令配置触发上报第一CSI报告。可见,第一设备可以通过高层信令配置触发设备上报第一CSI报告,使得上报该第一CSI报告的设备能够基于基站调度实时响应,降低时延,提高效率。
在一种可能的实现方式中,所述第一设备获取目标传输路径的第一CSI报告,包括: 所述第一设备接收来自第三设备上报的所述目标传输路径的第一CSI报告,所述第三设备为所述目标传输路径中所述第一设备的下一跳设备。可见,通过目标传输路径中第一设备的下一跳设备来上报第一CSI,由于下一跳设备可以获取到与自身相连的多条链接上的信道状态信息,因此第一CSI可以包含目标传输路径中多跳信息,从而可以在源设备获取更全面的路径状态信息,提高传输成功率和效率,改善频谱使用率。
在一种可能的实现方式中,所述第一设备获取目标传输路径的第一CSI报告之后,所述方法还包括:所述第一设备根据所述第一CSI报告对所述目标传输路径进行优先级排序。可见,通过对传输路径进行等级划分,可以更加精细化的对传输数据进行分类传输控制,提高传输路径利用率和传输稳定性。
第二方面,本申请实施例提供了一种多跳路径CSI上报方法,所述多跳路径中包括第一设备、第二设备和第三设备,所述第一设备为源设备,所述第二设备为目标设备;所述方法包括:
第三设备向所述第一设备发送目标传输路径的第一CSI报告,所述第三设备为所述目标传输路径中所述第一设备的下一跳设备,所述第一CSI报告用于指示所述目标传输路径。
通过实施本申请实施例,第一设备获取第三设备上报的目标传输路径的第一CSI报告,由于第一CSI报告用于指示目标传输路径,从而通过第一CSI上报使得多跳路径下的综合信道状态可以在数据发送设备即源设备处获取。
在一种可能的实现方式中,所述第一CSI报告为联合CSI报告,所述联合CSI报告用于指示所述目标传输路径的多跳传输链路的联合信道状态。
在一种可能的实现方式中,所述第一CSI报告为多级CSI,任一级CSI用于表示对应的传输链路的CSI指示,所述传输链路为所述目标传输路径按照节点连接关系划分的直连的路径。
在一种可能的实现方式中,所述第一CSI报告为根据第一函数获取的CSI。
在一种可能的实现方式中,所述第一函数为根据所述目标传输路径的多级CSI定义的函数,所述多级CSI对应所述目标传输路径按照节点连接关系划分的多个传输链路。
在一种可能的实现方式中,所述目标传输路径为满足预设上报条件的传输路径。
在一种可能的实现方式中,所述预设上报条件包括下述至少一项:
所述传输路径的第一CSI大于或等于第一预设门限值;
所述传输路径的第一CSI小于或等于第二预设门限值。
在一种可能的实现方式中,所述第一CSI报告是通过如下方式触发上报:
通过侧行链路控制信息SCI指示域触发上报第一CSI报告。
在一种可能的实现方式中,所述第一CSI报告是通过如下方式触发上报:
通过高层信令配置触发上报第一CSI报告。
第三方面,本申请实施例提供一种多跳路径CSI上报装置应用于第一设备,所述多跳路径中包括第一设备、第二设备和第三设备,所述第一设备为源设备,所述第二设备为目标设备;所述装置包括:
收发单元,用于通过所述通信单元获取目标传输路径的第一CSI报告,所述第一CSI报告用于指示所述目标传输路径的多跳传输链路的信道状态。
第四方面,本发明实施例提供一种通信装置,所述终端为第三设备,包括存储器、收发器和至少一个处理器,所述存储器中存储有指令,所述存储器、所述收发器和所述至少一个处理器通过线路互联,所述处理器用于调用所述指令来执行第一方面或第二方面任一方法中的步骤。
第五方面,本发明实施例提供一种通信装置,包括处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第一方面或第二方面任一方法中的步骤。
第六方面,本发明实施例提供一种计算机可读存储介质,所述可读存储介质用于存储指令,当所述指令被执行时,使如第一方面或第二方面任一方法中的步骤。
第七方面,本发明实施例提供一种计算机程序产品,当该计算机程序产品在通信装置上运行时,执行如第一方面或第二方面任一方法中的步骤。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的系统架构图;
图2是是本申请实施例提供的一种终端设备的结构示意图;
图3是本申请实施例提供的一种网络设备的结构示意图;
图4a是本申请实施例提供的一种多跳路径CSI上报方法的流程示意图;
图4b是本申请实施例提供的一种多跳路径的节点组合的示例图;
图4c是本申请实施例提供的一种第一设备与目标设备之间的多条传输路径的示意图;
图5是本申请实施例提供的一种多跳路径CSI上报装置的功能单元组成框图;
图6是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
图1为本申请实施例提供的一种通信系统示意图。该通信系统100可以是第五代5G移动通信系统、第六代6G移动通信系统以及未来任意通信系统,该系统可以包括至少一个网络设备101(仅示出1个)以及与网络设备101连接的一个或多个终端设备102。网络设备101可以通过一个或多个天线来和终端设备102进行无线通信。各个网络设备101均可以为各自对应的覆盖范围104提供通信覆盖。网络设备101对应的覆盖范围104可以被划分为多个扇区(sector),其中,一个扇区对应一部分覆盖范围(未示出)。
在本申请实施例中,网络设备101可以包括:基站收发台(Base Transceiver Station),无线收发器,一个基本服务集(Basic Service Set,BSS),一个扩展服务集(Extended Service Set,ESS),节点B(Node B),演进的节点B(evolved NodeB,eNB或者eNodeB),或下一代节点(next-generation Node B,gNB)等等。通信系统100可以包括几种不同类型的网络设备101,例如宏基站(macro base station)、微基站(micro base station)等。网络设备101还可以是小站,传输节点(Transmission Reference Point,TRP)等。网络设备101可以应用不同的无线 技术,例如小区无线接入技术,或者WLAN无线接入技术。
在本申请实施例中,终端设备102是一种具有无线收发功能的设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(User Equipment,UE)、终端(terminal)、接入终端、UE单元、UE站、移动设备、移动站、移动台(mobile station)、移动终端、移动客户端、移动单元(mobile unit)、远方站、远程终端设备、远程单元、无线单元、无线通信设备、用户代理或用户装置等。
需要说明的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
参考图2,图2示出了本申请实施例提供的终端设备。如图2所示,终端设备200可包括:输入输出模块(包括音频输入输出模块218、按键输入模块216以及显示器220等)、用户接口202、一个或多个处理器204、发射器206、接收器208、耦合器210、天线214以及存储器212。这些部件可通过总线或者其它方式连接,图2以通过总线连接为例。其中:
天线214可用于将电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器210用于将天线214接收到的移动通信信号分成多路,分配给多个的接收器208。
发射器206可用于对处理器204输出的信号进行发射处理。
接收器208可用于对天线214接收的移动通信信号进行接收处理。
在本申请实施例中,发射器206和接收器208可看作一个无线调制解调器。在终端设备200中,发射器206和接收器208的数量均可以是一个或者多个。
除了图2所示的发射器206和接收器208,终端设备200还可包括其他通信部件,例如GPS模块、蓝牙(Bluetooth)模块、无线高保真(Wireless Fidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,终端设备200还可以支持其他无线通信信号,例如卫星信号、短波信号等等。不限于无线通信,终端设备200还可以配置有有线网络接口(如LAN接口)201来支持有线通信。
所述输入输出模块可用于实现终端设备200和用户/外部环境之间的交互,可主要包括音频输入输出模块218、按键输入模块216以及显示器220等。具体的,所述输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,所述输入输出模块均通过用户接口202与处理器204进行通信。
存储器212可以和处理器204通过总线或者输入输出端口耦合,存储器212也可以与处理器204集成在一起。存储器212用于存储各种软件程序和/或多组指令。具体的,存储器212可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器212可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器212还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。存储器212还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
在本申请实施例中,存储器212可用于存储本申请的一个或多个实施例提供的信道状态信息(channel state information,CSI)上报方法在第一设备侧的实现程序。关于本申请的一个或多个实施例提供的多跳路径CSI上报方法的实现,请参考后续实施例。
处理器204可用于读取和执行计算机可读指令。具体的,处理器204可用于调用存储于存储器212中的程序,例如本申请的一个或多个实施例提供的多跳路径CSI上报方法在第一设备侧的实现程序,并执行该程序包含的指令以实现后续实施例涉及的方法。处理器204可支持:全球移动通信系统(Global System for Mobile Communication,GSM)(2G)通信、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)(3G)通信,以及长期演进(Long Term Evolution,LTE)(4G)通信、以及5G通信等等中的一个或多个。可选地,当处理器204发送任何消息或数据时,其具体通过驱动或控制发射器206做所述发送。
可选地,当处理器204接收任何消息或数据时,其具体通过驱动或控制接收器208做所述接收。因此,处理器204可以被视为是执行发送或接收的控制中心,发射器206和接收器208是发送和接收操作的具体执行者。
可以理解的,终端设备200可以是图1示出的通信系统100中的终端设备102,可实施为用户设备(User Equipment,UE)、终端(terminal)、接入终端、UE单元、UE站、移动设备、移动站、移动台(mobile station)、移动终端等等。
需要说明的,图2所示的终端设备200仅仅是本申请实施例的一种实现方式,实际应用中,终端设备200还可以包括更多或更少的部件,这里不作限制。
参考图3,图3示出了本申请实施例提供的网络设备。如图3所示,网络设备300可包括:一个或多个处理器301、存储器302、网络接口303、发射器305、接收器306、耦合器307和天线308。这些部件可通过总线304或者其他方式连接,图3以通过总线连接为例。其中:
网络接口303可用于网络设备300与其他通信设备,例如其他网络设备,进行通信。具体的,网络接口303可以是有线接口。
发射器305可用于对处理器301输出的信号进行发射处理,例如信号调制。接收器306可用于对天线308接收的移动通信信号进行接收处理。例如信号解调。在本申请的一些实施例中,发射器305和接收器306可看作一个无线调制解调器。在网络设备300中,发射器305和接收器306的数量均可以是一个或者多个。天线308可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合 器307可用于将移动通信号分成多路,分配给多个的接收器306。
存储器302可以和处理器301通过总线304或者输入输出端口耦合,存储器302也可以与处理器301集成在一起。存储器302用于存储各种软件程序和/或多组指令。具体的,存储器302可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器302可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器302还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
处理器301可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内的用户提供小区切换控制等。具体的,处理器301可包括:管理/通信模块(Administration Module/Communication Module,AM/CM)(用于话路交换和信息交换的中心)、基本模块(Basic Module,BM)(用于完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(Transcoder and SubMultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。
本申请实施例中,处理器301可用于读取和执行计算机可读指令。具体的,处理器301可用于调用存储于存储器302中的程序,例如本申请的一个或多个实施例提供的多跳路径CSI上报方法在第一设备侧的实现程序,并执行该程序包含的指令。
可以理解的,网络设备300可以是图1示出的通信系统100中的网络设备101,可实施为基站、无线收发器、一个基本服务集(BSS)、一个扩展服务集(ESS)、NodeB、eNodeB、gNB等等。
需要说明的是,图3所示的网络设备300仅仅是本申请实施例的一种实现方式,实际应用中,网络设备300还可以包括更多或更少的部件,这里不作限制。
需要说明的是,本申请实施例中,按照基站的信号覆盖范围与终端设备的位置关系,终端设备102具体可以分为覆盖内UE(in coverage UE)、覆盖内边缘UE(in coverage edge UE)、覆盖外边缘UE(out of coverage edge UE)、覆盖外UE(out of coverage UE),下述各实施例中所描述的第一设备可以为上述网络设备101或者终端设备102,中转设备可以为上述网络设备101或者终端设备102,目标设备可以为上述网络设备101或者终端设备102。
请参见图4a,图4a是本申请实施例提供的一种多跳路径CSI上报方法的流程示意图,该方法可以基于图1所示的通信系统来实现,所述多跳路径中包括第一设备、第二设备和第三设备,所述第一设备为源设备,所述第二设备为目标设备;换句话说,第一设备通过一个或多个中转设备与目标设备形成至少一条传输路径,所述至少一条传输路径中存在(存在可以替换描述为包括、包含、有等内容,此处不做唯一限定)传输路径为N跳的路径,N为大于或等于2的整数。
在可能的示例中,第三设备是中转设备;第一设备可以是源设备,也可以是中转设备的上一跳设备;第二设备可以是目标设备,也可以是中转设备的下一跳设备。
该方法包括但不限于如下步骤:
步骤S401:所述第一设备获取目标传输路径的第一CSI报告,所述第一CSI报告用于指示所述目标传输路径的多跳传输链路的信道状态。
作为一种实施例,多跳可以为N跳,N大于或等于2。即,所述至少一条传输路径中可以包括两跳路径,也可以包括两跳以上的路径。
其中,所述目标传输路径为所述多跳路径,具体属于源设备与目标设备之间的路径。作为一种示例,该源设备与目标设备之间的路径为从源设备开始到目标设备的一跳或者多跳传输路径,或者从任何一个目标中转设备开始到目标设备的一跳或者多跳传输路径,或者,从源设备的下一跳设备开始到目标设备的一跳或者多跳传输路径,或者从任何一个目标中转设备的下一跳设备开始到目标设备的一跳或者多跳传输路径。
此外,第一设备与第二设备也可以形成直连路径,即第一设备传输的数据可以直接被第二设备接收到,可以在直连路径信道状态不好时,通过别的增补的链路上的传输或数据转发,加强数据的可靠性。
实际应用中,任意设备可以被指定作为源节点,本申请实施例以第一设备为例详细描述。
其中,所述第一CSI报告为联合CSI报告,所述联合CSI报告用于指示所述目标传输路径的多跳传输链路的联合信道状态。
其中,所述第一CSI报告的命名方式可以是多种多样的,例如用目标CSI报告等替换,此处不做唯一限定。
其中,如图4b所示的多跳路径示意图,所述至少一条传输路径中的任意一条传输路径所包括的节点可以是如下组合中的任意一种:{基站,中转UE,目标UE}、{UE,中转UE,基站}、{UE,中转UE,目标UE}、{UE,一跳中转UE,…N跳中转UE,目标UE}、{基站,一跳中转UE,…N跳中转UE,目标UE}、{UE,一跳中转UE,…N跳中转UE,目标基站}、{基站,中转基站,目标基站}、{基站,一跳中转UE,…N跳中转UE,目标基站}、{基站,一跳中转基站,…N跳中转基站,目标基站}。
具体的,针对组合{基站,中转UE,目标UE},所述第一设备对应当前组合中的所述基站,所述中转设备对应当前组合中的中转UE,所述目标设备对应当前组合中的所述目标UE,该中转UE具体可以是覆盖内UE、覆盖内边缘UE中的任意一种,该目标UE可以是覆盖内UE、覆盖内边缘UE、覆盖外边缘UE、覆盖外UE中的任意一种。按照实际位置分布情况可以分成多种,下面进行详细示例说明。
第一种,中转UE为覆盖内UE,目标设备为距离基站L1的覆盖内边缘UE。
第二种,中转UE为覆盖内UE,目标设备为距离基站L2的覆盖外边缘UE。
第三种,中转UE为覆盖内UE,目标设备为距离基站L3的覆盖外UE,L1小于L2,L2小于L3。
第四种,中转UE为覆盖内边缘UE,目标设备为距离基站L2的覆盖外边缘UE。
第五种,中转UE为覆盖内边缘UE,目标设备为距离基站L3的覆盖外UE。
针对组合{UE,中转UE,基站},所述第一设备对应当前组合中的所述UE,所述中转设备对应当前组合中的中转UE,所述目标设备对应当前组合中的所述基站,该UE、中转UE均为终端设备,按照设备的实际位置分布情况可以形成多种类型组合,下面进行详细示例说明。
第一种,第一设备为覆盖外UE,中转UE为覆盖内边缘UE。
第二种,第一设备为覆盖外UE,中转UE为覆盖内UE。
第三种,第一设备为覆盖外边缘UE,中转UE为覆盖内边缘UE。
第四种,第一设备为覆盖外边缘UE,中转UE为覆盖内UE。
第五种,第一设备为覆盖内边缘UE,中转UE为覆盖内边缘UE。
第六种,第一设备为覆盖内边缘UE,中转UE为覆盖内UE。
第七种,第一设备为覆盖内UE,中转UE为覆盖内UE。
针对组合{UE,中转UE,目标UE},所述第一设备对应当前组合中的所述UE,所述中转设备对应当前组合中的中转UE,所述目标设备对应当前组合中的所述目标UE,该UE、中转UE、目标UE均为终端设备,按照设备的实际位置分布情况可以形成多种类型组合,此处不做唯一限定。
针对组合{UE,一跳中转UE,…N跳中转UE,目标UE},所述第一设备对应当前组合中的所述UE,所述中转设备对应当前组合中的一跳中转UE,…N跳中转UE,所述目标设备对应当前组合中的所述目标UE,该UE、一跳中转UE、…N跳中转UE、目标UE均为终端设备,按照设备的实际位置分布情况可以形成多种类型组合,此处不做唯一限定。
针对组合{基站,一跳中转UE,…N跳中转UE,目标UE},所述第一设备对应当前组合中的所述基站,所述中转设备对应当前组合中的一跳中转UE,…N跳中转UE,所述目标设备对应当前组合中的所述目标UE,该UE、一跳中转UE、…N跳中转UE、目标UE均为终端设备,一跳中转UE、…N跳中转UE、目标UE均为终端设备,按照设备的实际位置分布情况可以形成多种类型组合,此处不做唯一限定。
上述各种组合中,终端设备之间的链路可以是侧行链路,但不仅限于侧行链路应用场景,可以是非授权频谱系统,可以是综合接入和回传链路系统,侧行链路不受限于D2D,V2V,V2X场景等。
可见,本示例中,第一设备获取目标传输路径的第一CSI报告,由于第一CSI报告用于指示目标传输路径,从而通过第一CSI上报使得多跳路径下的综合信道状态可以在数据发送设备即源设备处获取。
在一个可能的示例中,所述第一CSI报告为多级CSI,任一级CSI用于表示对应的传输链路的CSI指示,所述传输链路为所述目标传输路径按照节点连接关系划分的直连的路径。也可以称之为,每一级CSI用于表示对应的传输链路的CSI指示,所述传输链路为所述目标传输路径按照节点连接关系划分的直连的路径。
举例来说,针对2跳路径,所述联合CSI报告包括两级CSI,即第一级CSI用来表示第一设备与中转设备之间的CSI指示,第二级CSI用来表示中转设备与目标设备之间的CSI指示。
示例的,两级CSI可以表示为:{First hop CSI:X;Second hop CSI:Y;}(First hop第一节点,Second hop为第二节点)。
示例的,两级CSI还可以表示为:{1:X;2:Y;},即对于first hop CSI用索引index 1对应表示或关联表示,对于second hop CSI用index 2对应表示或关联表示。
示例的,两级CSI还可以表示为:{X,Y},即,X,Y依次排序,分别表示第一跳CSI,第二跳CSI。
示例的,两级CSI还可以表示为:一个CSI上报中前多少比特域为第一跳CSI,后多少比特域为第二跳CSI;或者,一个CSI上报中前多少比特域为第二跳CSI,后多少比特域为第一跳CSI;其中,所述比特域的定义规则可以是预先配置给终端设备或网络设备中任何一方的,或者是网络设备通过信令通知给终端设备的。
示例的,两级CSI还可以表示为:在第一资源上报的为第一跳CSI,在第二资源上报的为第二跳CSI;其中,所述第一资源,或所述第二资源中任何一者可以是预先配置给终端设备或网络设备中任何一方的,或者是网络设备通过信令通知给终端设备的。所述第一资源,或所述第二资源为任何时域,频域,或空间域资源。
具体实现中,所述联合CSI报告的格式可以被预配置,或者被信令配置。
可见,本示例中,联合CSI报告采用多级CSI,使得多跳路径中的每条传输链路的信道状态均被清楚指示,简洁高效。
在一个可能的示例中,所述第一CSI报告为根据第一函数获取的CSI。
其中,所述第一函数也可以称之为联合函数,或函数,此处不做唯一限定。
在本可能的示例中,所述第一函数为根据所述目标传输路径的多级CSI定义的函数,所述多级CSI对应所述目标传输路径按照节点连接关系划分的多个传输链路。
举例来说,针对2跳路径,所述联合函数可以表示为Path_CSI=Func(SUE-CUE CSI,CUE-TUE CSI),其中,SUE-CUE CSI表示源设备到中转设备的路径的信道状态,CUE-TUE CSI表示中转设备到目标设备的路径的信道状态。该示例中,源设备到中转设备的路径为直连路径,中转设备到目标设备的路径为直连路径。
其中,函数Func(X,Y)可以是任何以X、Y作为参数的线性或者非线性函数,例如,对X和Y进行对应的加权生成的函数。示例的,Func(X,Y)=K1*X+K2*Y,其中,K1,K2为预设或通过信令配置的参数。
可见,本示例中,通过第一函数计算目标传输路径的多跳路径的综合信道状态,信息量少,传输高效。
在一个可能的示例中,所述目标传输路径为满足预设上报条件的传输路径。
可见,本示例中,通过预设上报条件约束上报CSI设备的CSI上报触发条件,能够有效限制低质量传输路径的反复无效上报,提高信令传输效率。
在可能的示例中,所述预设上报条件包括:所述传输路径的第一CSI大于或等于第一预设门限值。
其中,当所述第一CSI为多级CSI的联合CSI时,第一CSI大于或等于第一预设门限值具体是指多级CSI的均值大于或等于第一预设门限值,或者,是指多级CSI中每个CSI均大于或等于第一预设门限值,或者,是指多级CSI中大于或等于第三预设门限值的M个CSI均大于或等于第一预设门限值,此处不做唯一限定。本申请中,大于可以替换为大于或等于,小于可以替换为小于或等于。
当所述第一CSI为根据第一函数获取的CSI时,第一CSI大于或等于第一预设门限值具体是指第一函数的输出值即综合CSI值大于或等于第一预设门限值。示例的,多级CSI的线性加权平均值大于第一预设门限值,或者,多级CSI的非线性加权平均值大于第一预设门限值。
具体实现中,预设上报条件也可以是周期性上报,其中上报周期可以被预配置或信令配置。
可见,上报CSI足够好的传输路径有助于源设备对待传输数据标识出相应的能够保证可靠传输的路径,从而保证数据可靠传输,改善频谱使用率。
在可能的示例中,所述预设上报条件包括:所述传输路径的第一CSI小于或等于第二预设门限值。
其中,当所述第一CSI为多级CSI的联合CSI时,第一CSI小于或等于第二预设门限值具体是指多级CSI的均值小于或等于第二预设门限值,或者,是指多级CSI中每个CSI均小于或等于第二预设门限值,或者,是指多级CSI中大于或等于第三预设门限值的M个CSI均小于或等于第二预设门限值,此处不做唯一限定。本申请中,大于可以替换为大于或等于,小于可以替换为小于或等于。
当所述第一CSI为根据第一函数获取的CSI时,第一CSI小于或等于第二预设门限值具体是指第一函数的输出值即综合CSI值小于或等于第二预设门限值。示例的,多级CSI的线性加权平均值小于第二预设门限值,或者,多级CSI的非线性加权平均值小于第二预设门限值。
其中,上述第一预设门限值与第二预设门限值可以相同,或者不同。
可见,上报CSI不够好的传输路径有助于源设备对待传输数据避免使用相应的不能够保证可靠传输的路径,从而改善频谱使用率。
本申请中,任何门限值可以被预配置或信令配置。
第一CSI通过周期上报,或者非周期上报,可以被预配置或信令配置,其中,非周期上报也可以称之为通过判断是否满足触发条件进行上报;
第一CSI是通过多级CSI上报或者由第一函数生成的CSI上报,可以被预配置或信令配置。
本申请中,通过信令配置为通过无线资源控制RRC信令,媒体接入控制MAC信令或物理层信令中至少一个进行配置。示例的,通过信令配置为网络设备通过上述信令发送给终端设备,也可以为源设备通过上述信令发送给中转设备。
在一个可能的示例中,所述第一CSI报告是通过如下方式触发上报:通过侧行链路控制信息(sidelink control information,SCI)指示域触发上报第一CSI报告。
其中,所述SCI可以是一级SCI,也可以是多级SCI中的某一级SCI,如两级SCI中的第一级SCI或者第二级SCI。其中,多级SCI(multiple level SCI)即多阶SCI(multiple stage SCI)。
可见,本示例中,第一设备可以通过SCI指示域触发设备上报第一CSI报告,使得上报该第一CSI报告的设备无需配置其他专用信令,提高信息指示效率。
在一个可能的示例中,所述第一CSI报告是通过如下方式触发上报:通过高层信令配置触发上报第一CSI报告。
可见,本示例中,第一设备可以通过高层信令配置触发设备上报第一CSI报告,使得上报该第一CSI报告的设备能够基于基站调度实时响应,降低时延,提高效率。
在一个可能的示例中,所述第一设备获取目标传输路径的第一CSI报告,包括:所述 第一设备接收来自第三设备上报的所述目标传输路径的第一CSI报告,所述第三设备为所述目标传输路径中所述第一设备的下一跳设备。
其中,目标传输路径为2跳路径时,中转设备仅包括第三设备,目标传输路径为大于2跳路径时,中转设备包括第三设备、第二中转设备等。
具体实现中,在所述第一设备为基站时,第三设备可以是该基站的覆盖内UE,或者是该基站的覆盖内边缘UE。第一设备可以向第三设备发送高层信令配置触发上报第一CSI报告。
在所述第一设备为覆盖内UE时,所述第三设备可以是覆盖内UE、覆盖内边缘UE、覆盖外边缘UE、覆盖外UE中的任意一种,具体根据目标传输路径的节点组合情况确定。第一设备可以通过SCI指示域触发上报第一CSI报告。
在所述第一设备为覆盖内边缘UE时,所述第三设备可以是覆盖内边缘UE、覆盖外边缘UE、覆盖外UE中的任意一种,第一设备可以通过SCI指示域触发上报第一CSI报告。
可见,本示例中,通过目标传输路径中第一设备的下一跳设备来上报第一CSI,由于下一跳设备可以获取到与自身相连的多条链接上的信道状态信息,因此第一CSI可以包含目标传输路径中多跳信息,从而可以在源设备获取更全面的路径状态信息,提高传输成功率和效率,改善频谱使用率。
此外,上报第一CSI报告的设备除了目标传输路径中所述第一设备的下一跳设备之外,还可能是该目标传输路径中的第一设备所接入的网络设备,即网络设备能够获取目标传输路径的每一跳传输链路的CSI,并综合确定第一CSI。
上述SCI是作为侧行链路的示例,在接入和回传链路场景,或别的场景中,不受限于SCI,可以是任何下行控制信息DCI(downlink control information)。
在一个可能的示例中,所述第一设备获取目标传输路径的第一CSI报告之后,所述方法还包括:所述第一设备根据所述第一CSI报告对所述目标传输路径进行优先级排序。
其中,高优先级的传输路径用于传输高优先级信息的数据包,低优先级的传输路径用于传输低优先级信息的数据包。
其中,所述第一CSI报告具体可以包括每个传输路径的等级,等级划分机制不做唯一限定。
第一种,等级划分机制可以根据第一预设门限值和第四预设门限值所形成的约束区间进行等级的划分。传输路径的等级可以分为高中低三个等级,第四预设门限值大于第一预设门限值,其中,等级与门限值范围的对应关系如表1所示。
表1,等级与CSI门限值的对应关系
传输路径的等级 第一CSI报告
高(S1) 第一CSI大于第四预设门限值
中(S2) 第一CSI小于第四预设门限值且大于第一预设门限值
低(S3) 第一CSI小于第一预设门限值
举例来说,如图4c所示,假设第一设备(图示为SUE)与目标设备(图示为TUE)之间有6条传输路径,分别为路径P1(中转设备为UE1)、路径P2(中转设备为UE3)、路径P3(中转设备为UE4)、路径P4(中转设备为UE2)、路径P5(中转设备为UE5)、路 径P6(中转设备为UE6)。例如路径P1、P2、P3具有较好的CSI,属于高等级S1;路径P4、P5、P6具有中等的CSI,属于中等级S2。
其中,S1级别路径包含三个中转UE对应的中转路径,三个中转UE分别为:UE1、UE3和UE4。在该级别路径上,UE1、UE3和UE4因为和SUE、TUE之间都有较好的CSI,因此联合CSI会比较好,该级别路径可以用来传输较高优先级信息的数据包,标记为S1级别路径。三个中转UE可以同时传输,或者独立传输。
具体来说,在采用同时传输机制时,UE1、UE3和UE4可以采用不同组合来同时传输不同数据包或者传输相同数据包,具体组合类型包括{UE1、UE3}、{UE1、UE4}、{UE3、UE4}、{UE1、UE3、UE4},具体可以根据待传输数据包的数据量、数据包的优先级、UE1、UE3、UE4的设备状态、传输路径的占用情况的一种或多种进行决策,如传输一个高优先级的数据包,可以让三条S1级别路径同时传输,此处不做唯一限定。
在采用独立传输机制时,UE1、UE3和UE4中任意一个可以用于传输当前待传输的数据包以提高资源利用率,具体选择策略可以根据待传输数据包的数据量、数据包的优先级、UE1、UE3和UE4的设备状态、传输路径的占用情况的一种或多种进行决策,如传输一个高优先级的数据包,可以选择三条S1级别路径中任何一条进行传输,此处不做唯一限定。
其中,S2路径包含三个中转UE对应的中转路径,三个中转UE分别为:UE2、UE5和UE6。在该级别路径上,UE2因为距离SUE以及TUE比较远,信道状况比较差,所以属于中等CSI的路径,标记为S2级别路径;UE5虽然距离SUE较近,但是距离TUE较远,综合起来,属于中等CSI的路径,标记为S2级别路径;UE6因为距离SUE以及TUE比较远,信道状况比较差,所以属于中等CSI的路径,标记为S2级别路径。所以,上述S2级别路径可以用来传输较低优先级信息的数据包,标记为路径P2。三个中转UE可以被配置为同时传输或者独立传输。
具体来说,在采用同时传输机制时,UE2、UE5和UE6可以采用不同组合来同时传输相同数据包以提高传输成功率,具体组合类型包括{UE2、UE5}、{UE2、UE6}、{UE5、UE6}、{UE2、UE5、UE6},具体可以根据待传输数据包的数据量、数据包的优先级、UE2、UE5、UE6的设备状态、传输路径的占用情况中的一种或多种进行决策,如传输一个低优先级的数据包,可以让三条S2级别路径同时传输,此处不做唯一限定。
在采用独立传输机制时,UE2、UE5和UE6中任意一个可以用于传输当前待传输的数据包以提高资源利用率,具体选择策略可以根据待传输数据包的数据量、数据包的优先级、UE2、UE5和UE6的设备状态、传输路径的占用情况的一种或多种进行决策,如传输一个低优先级的数据包,可以选择三条S2级别路径中任何一条进行传输,此处不做唯一限定。
第二种,等级划分机制还可以根据中转设备与第一设备的距离、中转设备与目标设备的距离进行综合评定等,
可见,本示例中,通过对传输路径进行等级划分,可以更加精细化的对传输数据进行分类传输控制,提高传输路径利用率和传输稳定性。
需要说明的是,本申请实施例所公开的多跳路径CSI上报方法还可以以第三设备为动作主体进行呈现,所述多跳路径中包括第一设备、第二设备和第三设备,所述第一设备为源设备,所述第二设备为目标设备;所述方法包括:
所述第三设备向所述第一设备发送目标传输路径的第一CSI报告,所述第三设备为所述目标传输路径中所述第一设备的下一跳设备,所述第一CSI报告用于指示所述目标传输路径的多跳传输链路的信道状态。
通过实施本申请实施例,第一设备获取第三设备上报的目标传输路径的第一CSI报告,由于第一CSI报告用于指示目标传输路径,从而通过第一CSI上报使得多跳路径下的综合信道状态可以在数据发送设备即源设备处获取。
在一个可能的示例中,所述第一CSI报告为联合CSI报告,所述联合CSI报告用于指示所述目标传输路径的多跳传输链路的联合信道状态。
在一个可能的示例中,所述第一CSI报告为多级CSI,任一级CSI用于表示对应的传输链路的CSI指示,所述传输链路为所述目标传输路径按照节点连接关系划分的直连的路径。
在一个可能的示例中,所述第一CSI报告为根据第一函数获取的CSI。
在一个可能的示例中,所述第一函数为根据所述目标传输路径的多级CSI定义的函数,所述多级CSI对应所述目标传输路径按照节点连接关系划分的多个传输链路。
在一个可能的示例中,所述目标传输路径为满足预设上报条件的传输路径。
在一个可能的示例中,所述预设上报条件包括下述至少一项:
所述传输路径的第一CSI大于或等于第一预设门限值;
所述传输路径的第一CSI小于或等于第二预设门限值。
在一个可能的示例中,所述第一CSI报告是通过如下方式触发上报:
通过侧行链路控制信息SCI指示域触发上报第一CSI报告。
在一个可能的示例中,所述第一CSI报告是通过如下方式触发上报:
通过高层信令配置触发上报第一CSI报告。
基于前述多跳路径CSI上报方法的同一构思,如图5所示,本申请实施例还提供一种多跳路径CSI上报装置500,该装置500包括:收发单元501;示例性地:
收发单元501,用于获取目标传输路径的CSI报告,所述第一CSI报告用于指示所述目标传输路径。
在一个实现中,所述第一CSI报告为联合CSI报告,所述联合CSI报告用于指示所述目标传输路径的多跳传输链路的联合信道状态。
在又一个实现中,所述第一CSI报告为联合CSI报告,所述联合CSI报告用于指示所述目标传输路径的多跳传输链路的联合信道状态。
在又一个实现中,所述第一CSI报告为根据第一函数获取的CSI。
在又一个实现中,所述第一函数为根据所述目标传输路径的多级CSI定义的函数,所述多级CSI对应所述目标传输路径按照节点连接关系划分的多个传输链路。
在又一个实现中,所述目标传输路径为满足预设上报条件的传输路径。
在又一个实现中,所述预设上报条件包括下述至少一项:
所述传输路径的第一CSI大于或等于第一预设门限值;
所述传输路径的第一CSI小于或等于第二预设门限值。
在又一个实现中,所述第一CSI报告是通过如下方式触发上报:
通过侧行链路控制信息SCI指示域触发上报第一CSI报告。
在又一个实现中,所述第一CSI报告是通过如下方式触发上报:
通过高层信令配置触发上报第一CSI报告。
在又一个实现中,所述收发单元,具体用于接收来自第三设备上报的所述目标传输路径的第一CSI报告,所述第三设备为所述目标传输路径中所述第一设备的下一跳设备。
在又一个实现中,所述收发单元,具体用于接收来自第三设备上报的所述目标传输路径的第一CSI报告,所述第三设备为所述目标传输路径中所述第一设备的下一跳设备。
有关上述收发单元501的功能可以参考图2所示实施例中终端设备的相关描述,在此不再赘述。
本申请实施例,第一设备获取目标传输路径的第一CSI报告,由于第一CSI报告用于指示目标传输路径,从而通过第一CSI上报使得多跳路径下的综合信道状态可以在数据发送设备即源设备处获取。
请参见图6,图6是本申请实施例提供的一种通信装置600,所述通信装置600为第一设备,该通信装置600包括处理器601、存储器602和收发器603,所述处理器601、存储器602和收发器603通过总线相互连接。存储器602包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器602用于相关指令及数据。收发器603用于接收和发送数据。处理器601可以是一个或多个中央处理器(central processing unit,CPU),在处理器701是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。该通信装置600中的处理器601用于读取所述存储器602中存储的程序代码,执行以下操作:
获取目标传输路径的第一CSI报告,所述第一CSI报告用于指示所述目标传输路径。
需要说明的是,各个操作的实现还可以对应参照图2所示的方法实施例的相应描述。
本申请实施例还提供了一种通信装置,包括处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如上述方法实施例中记载的任一方法的部分或全部步骤。
本申请实施例还提供一种计算机存储介质,所述可读存储介质用于存储指令,当所述指令被执行时,使上述方法实施例中记载的任一项所述的方法被实现。
本申请实施例还提供一种计算机程序产品,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如上述方法实施例中记载的任一方法的部分或全部步骤。该计算机程序产品可以为一个软件安装包,上述计算机包括电子设备。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (25)

  1. 一种多跳路径信道状态信息CSI上报方法,其特征在于,所述多跳路径中包括第一设备、第二设备和第三设备,所述第一设备为源设备,所述第二设备为目标设备;所述方法包括:
    所述第一设备获取目标传输路径的第一CSI报告,所述第一CSI报告用于指示所述目标传输路径的多跳传输链路的信道状态。
  2. 根据权利要求1所述的方法,其特征在于,所述第一CSI报告为联合CSI报告,所述联合CSI报告用于指示所述目标传输路径的多跳传输链路的联合信道状态。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一CSI报告为多级CSI,任一级CSI用于表示对应的传输链路的CSI指示,所述传输链路为所述目标传输路径按照节点连接关系划分的直连的路径。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一CSI报告为根据第一函数获取的CSI。
  5. 根据权利要求4所述的方法,其特征在于,所述第一函数为根据所述目标传输路径的多级CSI定义的函数,所述多级CSI对应所述目标传输路径按照节点连接关系划分的多个传输链路。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述目标传输路径为满足预设上报条件的传输路径。
  7. 根据权利要求6所述的方法,其特征在于,所述预设上报条件包括下述至少一项:
    所述传输路径的第一CSI大于或等于第一预设门限值;
    所述传输路径的第一CSI小于或等于第二预设门限值。
  8. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一CSI报告是通过如下方式触发上报:
    通过侧行链路控制信息SCI指示域触发上报第一CSI报告。
  9. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一CSI报告是通过如下方式触发上报:
    通过高层信令配置触发上报第一CSI报告。
  10. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一设备获取目标传输路径的第一CSI报告,包括:
    所述第一设备接收来自第三设备上报的所述目标传输路径的第一CSI报告,所述第三设备为所述目标传输路径中所述第一设备的下一跳设备。
  11. 根据权利要求10所述的方法,其特征在于,所述第一设备获取目标传输路径的第一CSI报告之后,所述方法还包括:
    所述第一设备根据所述第一CSI报告对所述目标传输路径进行优先级排序。
  12. 一种多跳路径CSI上报装置,其特征在于,应用于第一设备,所述多跳路径中包括所述第一设备、第二设备和第三设备,所述第一设备为源设备,所述第二设备为目标设备;所述装置包括:
    收发单元,用于获取目标传输路径的第一CSI报告,所述第一CSI报告用于指示所述目标传输路径的多跳传输链路的信道状态。
  13. 根据权利要求12所述的装置,其特征在于,所述第一CSI报告为联合CSI报告,所述联合CSI报告用于指示所述目标传输路径的多跳传输链路的联合信道状态。
  14. 根据权利要求12或13所述的装置,其特征在于,所述第一CSI报告为多级CSI,任一级CSI用于表示对应的传输链路的CSI指示,所述传输链路为所述目标传输路径按照节点连接关系划分的直连的路径。
  15. 根据权利要求12或13所述的装置,其特征在于,所述第一CSI报告为根据第一函数获取的CSI。
  16. 根据权利要求15所述的装置,其特征在于,所述第一函数为根据所述目标传输路径的多级CSI定义的函数,所述多级CSI对应所述目标传输路径按照节点连接关系划分的多个传输链路。
  17. 根据权利要求12-16任一项所述的装置,其特征在于,所述目标传输路径为满足预设上报条件的传输路径。
  18. 根据权利要求17所述的装置,其特征在于,所述预设上报条件包括下述至少一项:
    所述传输路径的第一CSI大于或等于第一预设门限值;
    所述传输路径的第一CSI小于或等于第二预设门限值。
  19. 根据权利要求12-16任一项所述的装置,其特征在于,所述第一CSI报告是通过如下方式触发上报:
    通过侧行链路控制信息SCI指示域触发上报第一CSI报告。
  20. 根据权利要求12-16任一项所述的装置,其特征在于,所述第一CSI报告是通过如下方式触发上报:
    通过高层信令配置触发上报第一CSI报告。
  21. 根据权利要求12-16任一项所述的装置,其特征在于,
    所述收发单元,具体用于接收来自第三设备上报的所述目标传输路径的第一CSI报告,所述第三设备为所述目标传输路径中所述第一设备的下一跳设备。
  22. 根据权利要求21所述的装置,其特征在于,所述装置还包括:
    处理单元,用于根据所述第一CSI报告对所述目标传输路径进行优先级排序。
  23. 一种通信装置,其特征在于,所述通信装置为第一设备,包括存储器、收发器和至少一个处理器,所述存储器中存储有指令,所述存储器、所述收发器和所述至少一个处理器通过线路互联,所述处理器用于调用所述指令来执行权利要求1-11任一项所述的方法中发送上行数据的操作。
  24. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如权利要求1-11中任一项所述的方法。
  25. 一种可读存储介质,其特征在于,所述可读存储介质用于存储指令,当所述指令被执行时,使如权利要求1-11中任一项所述的方法被实现。
PCT/CN2019/130935 2019-12-31 2019-12-31 多跳路径csi上报方法及相关装置 WO2021134695A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19958330.3A EP4075874A4 (en) 2019-12-31 2019-12-31 METHOD FOR CREATING A CSI REPORT RELATING TO A MULTI-HOP PATH AND ASSOCIATED APPARATUS
PCT/CN2019/130935 WO2021134695A1 (zh) 2019-12-31 2019-12-31 多跳路径csi上报方法及相关装置
CN201980103179.4A CN114830732A (zh) 2019-12-31 2019-12-31 多跳路径csi上报方法及相关装置
US17/853,305 US20220330130A1 (en) 2019-12-31 2022-06-29 Method for reporting csi of multi-hop path and related apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130935 WO2021134695A1 (zh) 2019-12-31 2019-12-31 多跳路径csi上报方法及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/853,305 Continuation US20220330130A1 (en) 2019-12-31 2022-06-29 Method for reporting csi of multi-hop path and related apparatus

Publications (1)

Publication Number Publication Date
WO2021134695A1 true WO2021134695A1 (zh) 2021-07-08

Family

ID=76686244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130935 WO2021134695A1 (zh) 2019-12-31 2019-12-31 多跳路径csi上报方法及相关装置

Country Status (4)

Country Link
US (1) US20220330130A1 (zh)
EP (1) EP4075874A4 (zh)
CN (1) CN114830732A (zh)
WO (1) WO2021134695A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923941B2 (en) * 2020-04-16 2024-03-05 Qualcomm Incorporated Sidelink aperiodic channel state information reporting triggered by a base station
WO2024132224A1 (en) * 2022-12-23 2024-06-27 Telefonaktiebolaget Lm Ericsson (Publ) Wireless sensing system with coverage extension using one or more relay nodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108076516A (zh) * 2016-11-15 2018-05-25 华为技术有限公司 通信方法、基站和接入点
CN108093454A (zh) * 2017-12-07 2018-05-29 中国科学院上海微系统与信息技术研究所 一种跨层路由准则的实现方法
CN108574543A (zh) * 2017-03-13 2018-09-25 大众汽车有限公司 估计多跳无线电信道的装置、方法和计算机程序
CN106465223B (zh) * 2014-05-30 2019-12-17 华为技术有限公司 数据传输方法及基站

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8670440B2 (en) * 2008-05-13 2014-03-11 Electronics And Telecommunications Research Institute Data transceiving apparatus and method in centralized MAC-based wireless communication system
US9345016B2 (en) * 2012-03-22 2016-05-17 Lg Electronics Inc. Channel information transmitting method and device
CN106028395B (zh) * 2016-05-07 2019-04-02 广西师范大学 充分考虑延时影响的中继选择方法
CN109151887B (zh) * 2017-06-16 2023-10-24 华为技术有限公司 通信方法和通信装置
WO2021071337A1 (ko) * 2019-10-10 2021-04-15 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이에 대한 장치
EP3809606A1 (en) * 2019-10-15 2021-04-21 Mitsubishi Electric R & D Centre Europe B.V. Method for performing transmission between a base station and a terminal via a multi-hop network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106465223B (zh) * 2014-05-30 2019-12-17 华为技术有限公司 数据传输方法及基站
CN108076516A (zh) * 2016-11-15 2018-05-25 华为技术有限公司 通信方法、基站和接入点
CN108574543A (zh) * 2017-03-13 2018-09-25 大众汽车有限公司 估计多跳无线电信道的装置、方法和计算机程序
CN108093454A (zh) * 2017-12-07 2018-05-29 中国科学院上海微系统与信息技术研究所 一种跨层路由准则的实现方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4075874A4 *

Also Published As

Publication number Publication date
EP4075874A4 (en) 2022-12-21
US20220330130A1 (en) 2022-10-13
CN114830732A (zh) 2022-07-29
EP4075874A1 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
EP3689061B1 (en) Methods for performing dual connectivity in sidelink communications, communication node and computer-readable medium
CN111201834B (zh) 使用侧链路发现消息的装置发现
EP3806505B1 (en) Communication method and apparatus, and storage medium
CN111418243A (zh) 用于在直通链路通信中执行载波聚合的系统和方法
JP6789302B2 (ja) 通信方法、ネットワーク側装置、及び端末
CN108141701B (zh) 用于选择传输格式的方法和设备
US11825474B2 (en) Service transmission method and apparatus
CN109309928B (zh) D2d链路检测方法、相关装置及系统
WO2021134696A1 (zh) 多跳路径数据传输方法及相关装置
JPWO2017169835A1 (ja) ユーザ装置及び送信方法
US20220330130A1 (en) Method for reporting csi of multi-hop path and related apparatus
TW202041057A (zh) 無線通訊方法、設備及其電腦可讀介質
WO2020259611A1 (zh) 一种通信方法、装置及存储介质
WO2021036910A1 (zh) 数据传输方法及装置
WO2020135179A1 (zh) 功率控制方法及装置
WO2021244299A1 (zh) 通信方法及通信设备
WO2022141608A1 (zh) 一种通信方法和通信装置
WO2019064466A1 (ja) ユーザ装置
WO2018133133A1 (zh) 一种资源使用方法、相关装置及系统
KR20220105579A (ko) 무선 통신 시스템에서 중계 단말을 통한 원격 단말의 연결 모드 이동성 관리 방법 및 장치
WO2020156214A1 (zh) 功率控制方法及终端设备
KR20220133733A (ko) 무선 통신 시스템에서 사이드링크 릴레이 탐색 메시지의 전송 자원 할당을 지원하는 방법 및 장치
WO2021056366A1 (zh) 信息传输方法及装置
WO2024055321A1 (en) Systems and methods for device-to-device communications
WO2020221212A1 (zh) 一种资源调度方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019958330

Country of ref document: EP

Effective date: 20220711

NENP Non-entry into the national phase

Ref country code: DE