WO2021056366A1 - 信息传输方法及装置 - Google Patents

信息传输方法及装置 Download PDF

Info

Publication number
WO2021056366A1
WO2021056366A1 PCT/CN2019/108320 CN2019108320W WO2021056366A1 WO 2021056366 A1 WO2021056366 A1 WO 2021056366A1 CN 2019108320 W CN2019108320 W CN 2019108320W WO 2021056366 A1 WO2021056366 A1 WO 2021056366A1
Authority
WO
WIPO (PCT)
Prior art keywords
sci
terminal device
information
field
communication device
Prior art date
Application number
PCT/CN2019/108320
Other languages
English (en)
French (fr)
Inventor
张莉莉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/108320 priority Critical patent/WO2021056366A1/zh
Priority to EP19947198.8A priority patent/EP4024977A4/en
Priority to CN201980100417.6A priority patent/CN114402671A/zh
Publication of WO2021056366A1 publication Critical patent/WO2021056366A1/zh
Priority to US17/704,549 priority patent/US20220217702A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • This application relates to the field of communication technology, and in particular to an information transmission method and device.
  • V2X vehicle-to-everything
  • vehicle-to-everything vehicle-to-everything
  • V2X vehicle networking technology
  • V2X communication refers to the communication between the vehicle and the outside world, including vehicle-to-vehicle communication (V2V), vehicle-to-pedestrian communication (V2P), and vehicle-to-infrastructure communication (vehicle to infrastructure, V2I), vehicle to network communication (vehicle to network, V2N).
  • V2V vehicle-to-vehicle communication
  • V2P vehicle-to-pedestrian communication
  • V2I vehicle-to-infrastructure communication
  • V2N vehicle to network communication
  • V2X communication technology more and more terminal devices use this V2X for communication.
  • the terminal The device can first perform resource detection in the detection window, and then select idle resources in the selection window for resource transmission.
  • the embodiments of the application provide an information transmission method and device, which can be applied to communication systems, such as vehicle-to-everything (V2X) and workshop information interaction (long term evolution-vehicle, LTE-V) , Internet of Vehicles, machine type communication (MTC), Internet of things (LOT), machine-to-machine information interaction (long term evolution-machine, LTE-M), machine to machine communication (machine to machine, M2M), etc., in the contention-based scheduling mode, the problem of information transmission between terminal devices.
  • V2X vehicle-to-everything
  • workshop information interaction long term evolution-vehicle, LTE-V
  • MTC machine type communication
  • LOT Internet of things
  • machine-to-machine information interaction long term evolution-machine, LTE-M
  • machine to machine communication machine to machine, M2M
  • contention-based scheduling mode the problem of information transmission between terminal devices.
  • an embodiment of the present application provides an information transmission method, including: a first terminal device sends first side link control information SCI to a second terminal device; wherein, the first SCI includes a first set of subchannels The first set of sub-channels is the set of available sub-channels detected by the first terminal device on the side link SL, and the first SCI does not include a modulation and coding strategy (modulation and coding). scheme, MCS) information.
  • MCS modulation and coding strategy
  • the first SCI does not include MCS information.
  • the signaling overhead of the first terminal device can be reduced; on the other hand, the efficiency of demodulating the first SCI by the second terminal device can be improved.
  • the first SCI includes a first field and a second field; wherein, the first field is used to indicate the sender information of the data transmitted on the SL, or the first The field is the format identifier of the first SCI; the second field is used to indicate priority information of the data.
  • the method further includes: the first terminal device receives a second SCI sent by the second terminal device, the second SCI includes information of a second subchannel set, and The second set of subchannels is a set of available subchannels detected by the second terminal device on the SL, and the second SCI does not include MCS information.
  • the load size of the second SCI is the same as that of the first SCI.
  • the second SCI includes a third field and a fourth field; wherein, the third field is used to indicate the receiving end information of the data transmitted on the SL, or, as shown in the third field
  • the field is the format identifier of the second SCI; the fourth field is used to indicate at least one of channel state information CSI, feedback information, or reserved bits.
  • the format of the first SCI and the format of the second SCI are configured by the same high-level signaling.
  • the playsize of the first SCI and the second SCI are the same, and they are configured by the same high-level signaling; this avoids configuring two SCIs through two signalings, and reduces signaling overhead.
  • the method further includes: the first terminal device determines a target subchannel set according to the first subchannel set and the second subchannel set; the first terminal device is The target subchannel set sends data to the second terminal device.
  • the first terminal device sends the information including the first subchannel set to the second terminal device
  • the second terminal device sends the information including the second subchannel set to the first terminal device
  • the first terminal device A terminal device and a second terminal device clearly know the set of available subchannels detected by the other party, thereby increasing both parties’ understanding of the set of available subchannels of the other party, thereby more accurately determining the set of target subchannels, and improving the set of target subchannels
  • the deterministic efficiency of the collection is deterministic efficiency of the collection.
  • the target subchannel set is an intersection of the first subchannel set and the second subchannel set.
  • the target subchannel set is the intersection of the first subchannel set and the second subchannel set, that is, both the first terminal device and the second terminal device can transmit data through the target subchannel set
  • the information and/or control information avoids the situation that the first terminal device or the second terminal device cannot receive the data information and/or control information, and improves the reliability of information transmission.
  • the method further includes: the first terminal device sends a third SCI to the second terminal device, and the third SCI includes scheduling information of SL data.
  • the third SCI further includes information for indicating a feedback subchannel set, and the feedback subchannel set is at least included in the first subchannel set.
  • an embodiment of the present application provides an information transmission method, including: before detecting whether a set of subchannels is available, determining a scheduling mode, where the scheduling mode includes the first mode or the second mode; detecting the set of available subchannels; wherein , When the scheduling mode is the first mode, detect the set of available subchannels through a first threshold; when the scheduling mode is the second mode, detect the set of available subchannels through a second threshold , The first threshold is less than the second threshold.
  • the energy threshold requirement of the available subchannel set reported in the first mode can be changed. Strict, so as to ensure that the reported set of available sub-channels is free from collision.
  • the second mode can be detected by the terminal device 1 or by the terminal device 2. Therefore, the energy threshold of the available sub-channel set is defined larger, which not only ensures that the terminal device can use the available sub-channel set, but also Improve the utilization rate of resources while avoiding collisions.
  • the first threshold and the second threshold are predefined, or the first threshold and the second threshold are configured by a network device through signaling.
  • an embodiment of the present application provides an information transmission method, the method includes: a second terminal device receives a first SCI sent by a first terminal device; wherein, the first SCI includes information of a first subchannel set The first set of subchannels is the set of available subchannels detected by the first terminal device on the sidelink SL, and the first SCI does not include modulation and coding strategy MCS information; The second terminal device sends a second SCI to the first terminal device; wherein, the second SCI includes information about a second set of subchannels, and the second set of subchannels is detected by the second terminal device on the SL And the second SCI does not include MCS information.
  • the first SCI includes a first field and a second field; wherein, the first field is used to indicate the sender information of the data transmitted on the SL, or the first The field is the format identifier of the first SCI, or the first field is the indication information of the reference signal used for measurement on the SL; the second field is used to indicate the priority information of the data.
  • the second SCI includes a third field and a fourth field; wherein, the third field is used to indicate the receiving end information of the data transmitted on the SL, or, as shown in the third field
  • the field is the format identifier of the second SCI; the fourth field is used to indicate at least one of channel state information CSI, feedback information, or reserved bits.
  • the load size of the second SCI is the same as that of the first SCI.
  • the format of the first SCI and the format of the second SCI are configured by the same high-level signaling.
  • the method further includes: the second terminal device receives the data sent by the first terminal device in a target subchannel set, where the target subchannel set is the first The intersection of the set of subchannels and the second set of subchannels.
  • the method further includes: the second terminal device receives a third SCI sent by the first terminal device, and the third SCI includes scheduling information of SL data.
  • the third SCI further includes information for indicating a feedback subchannel set, and the feedback subchannel set is at least included in the first subchannel set.
  • an embodiment of the present application provides a communication device.
  • the communication device is a first terminal device.
  • the communication device includes a processing unit, a receiving unit, and a sending unit.
  • the receiving unit is configured to execute the corresponding method shown in the first aspect or the second aspect
  • the sending unit is configured to execute the corresponding method shown in the first aspect or the second aspect. The corresponding method.
  • an embodiment of the present application provides a communication device, the communication device is a second terminal device, the communication device includes a receiving unit and a sending unit, and the receiving unit is configured to perform the corresponding The sending unit is used to execute the corresponding method shown in the third aspect.
  • the communication device further includes a processing unit, for example, the processing unit may be used to detect the second set of subchannels.
  • the second terminal device can also be used to execute the method shown in the second aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and a memory.
  • the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions stored in the memory. So that the communication device executes the corresponding method as shown in the first aspect or the second aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and an interface circuit.
  • the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the Code instructions to perform the corresponding method as shown in the first aspect or the second aspect.
  • an embodiment of the present application is a communication device.
  • the communication device includes a processor and a memory.
  • the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions stored in the memory to The communication device is caused to execute the corresponding method as shown in the third aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and an interface circuit.
  • the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the Code instructions to perform the corresponding method as shown in the third aspect.
  • an embodiment of the present application provides a communication system.
  • the communication system includes a first terminal device and a second terminal device.
  • the first terminal device can be used to execute the method described in the first aspect.
  • the second terminal device is used to execute the method as described in the third aspect.
  • the first terminal device may also be used to execute the method shown in the second aspect
  • the second terminal device may also be used to execute the method shown in the second aspect
  • an embodiment of the present application provides a readable storage medium, the readable storage medium is used to store instructions, and when the instructions are executed, the method described in the first aspect or the second aspect is implemented .
  • the readable storage medium may include a computer readable storage medium.
  • an embodiment of the present application provides a readable storage medium, where the readable storage medium is used to store instructions, and when the instructions are executed, the method described in the third aspect is implemented.
  • the readable storage medium may include a computer readable storage medium.
  • embodiments of the present application provide a computer program product including instructions, which when executed, enable the method described in the first aspect or the second aspect to be implemented.
  • embodiments of the present application provide a computer program product including instructions, which when executed, enable the method described in the third aspect to be implemented.
  • FIG. 1 is a schematic flowchart of a resource scheduling process provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • Fig. 3a is a schematic diagram of a side link communication scenario provided by an embodiment of the present application.
  • FIG. 3b is a schematic diagram of a side link communication scenario provided by an embodiment of the present application.
  • Fig. 3c is a schematic diagram of a side link communication scenario provided by an embodiment of the present application.
  • FIG. 3d is a schematic diagram of a side link communication scenario provided by an embodiment of the present application.
  • FIG. 3e is a schematic diagram of a side link communication scenario provided by an embodiment of the present application.
  • FIG. 3f is a schematic diagram of a side link communication scenario provided by an embodiment of the present application.
  • FIG. 3g is a schematic diagram of a side link communication scenario provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a frame structure provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a first SCI and a second SCI provided by an embodiment of the present application
  • FIG. 6 is a schematic flowchart of an information transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a method for sending a first SCI according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a method for sending a first SCI according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a third SCI provided by an embodiment of the present application.
  • FIG. 10a is a schematic flowchart of an information transmission method provided by an embodiment of the present application.
  • FIG. 10b is a schematic flowchart of a resource scheduling process provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • At least one (item) refers to one or more
  • “multiple” refers to two or more than two
  • “at least two (item)” refers to two or three And three or more
  • "and/or” is used to describe the association relationship of the associated objects, indicating that there can be three kinds of relationships, for example, "A and/or B” can mean: there is only A, only B and A at the same time And B three cases, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • the communication system used in this application can be understood as a wireless cellular communication system, or as a wireless communication system based on a cellular network architecture.
  • Fig. 2 is a schematic diagram of a communication system provided by an embodiment of the present application, and the solution in the present application can be applied to the communication system.
  • the communication system may include at least one network device, and only one is shown, such as the next generation Node B (gNB) in the figure; and one or more terminal devices connected to the network device, as shown in the figure Terminal device 1 and terminal device 2.
  • gNB next generation Node B
  • the network device may be a device that can communicate with a terminal device.
  • the network device can be any device with wireless transceiver functions, including but not limited to a base station.
  • the base station may be a gNB, or the base station may be a base station in a future communication system.
  • the network device may also be an access node, a wireless relay node, a wireless backhaul node, etc. in a wireless fidelity (WiFi) system.
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device may also be a wearable device or a vehicle-mounted device.
  • the network device may also be a small station, a transmission reference point (TRP), etc.
  • TRP transmission reference point
  • Terminal equipment may also be referred to as user equipment (UE), terminal, and so on.
  • a terminal device is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water, such as a ship, etc.; it can also be deployed in the air, for example, in the air. Airplanes, balloons, or satellites.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial control) Wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and wireless terminals in transportation safety , Wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • Wireless terminals in wireless terminals in self-driving
  • wireless terminals in remote medical wireless terminals in smart grid
  • wireless terminals in transportation safety Wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal device 1 and the terminal device 2 can also be implemented through device-to-device (D2D) technology or vehicle-to-everything (V2X) technology. Communication.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • the communication system involved in FIG. 1 can be applied to communication scenarios of other embodiments of the present application, and details are not described herein again.
  • the terminal device 1 and the terminal device 2 may be used to execute the embodiment of the information transmission method shown in FIG. 6 or FIG. 10a.
  • the following will take the terminal device 1 and the terminal device 2 in NR-V2X as an example to specifically describe the communication scenario of the corresponding information transmission method provided in the embodiment of the present application.
  • FIG. 3a to FIG. 3g a schematic diagram of a sidelink (also referred to as a direct link) communication scenario provided by an embodiment of the present application.
  • both the terminal device 1 and the terminal device 2 are outside the cell coverage.
  • the terminal device 1 is within the coverage area of the cell, and the terminal device 2 is outside the coverage area of the cell.
  • the terminal device 1 and the terminal device 2 are both in the coverage of the same cell, and are in a public land mobile network (PLMN), such as PLMN1.
  • PLMN public land mobile network
  • the terminal device 1 and the terminal device 2 are in a PLMN such as PLMN1, but are in different cell coverage areas.
  • the terminal device 1 and the terminal device 2 are in different PLMNs and different cells, and the terminal device 1 and the terminal device 2 are respectively in the common coverage area of the two cells.
  • terminal device 1 is in PLMN1
  • terminal device 2 is in PLMN2.
  • the terminal device 1 and the terminal device 2 are in different PLMNs and different cells, respectively, and the terminal device 1 is in the common coverage area of the two cells, and the terminal device 2 is in the coverage area of the serving cell.
  • the terminal device 1 and the terminal device 2 are in different PLMNs and different cells, and the terminal device 1 and the terminal device 2 are respectively in the coverage of their respective serving cells.
  • V2X vehicle-to-everything
  • D2D technology it can be applied to social applications based on proximity characteristics, such as content sharing, interactive games and other nearby terminal devices using D2D for data transmission. It can also solve the problem of damage to the communication infrastructure caused by natural disasters, resulting in communication interruption and obstacles to rescue.
  • D2D wireless communication can still be established between two neighboring terminal devices.
  • the embodiment of the present application does not uniquely limit the scenes to which D2D is applied.
  • FIG. 4 is a schematic diagram of a frame structure provided by an embodiment of the present application.
  • the frame structure can be divided into four types, as shown in 4a to 4d in FIG.
  • Data channels such as the physical sidelink shared channel (PSSCH) and sidelink control channels such as the physical sidelink control channel (PSCCH) overlap in time domain, no frequency domain overlap, and frequency domain overlap
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • the terminal device can perform resource detection in a sensing window, and then select idle resources in the selection window for resource transmission. Or the terminal device can also detect resources by listening before talk (LBT). When the LBT succeeds, it can use the detected resources for resource transmission. When the LBT fails, it needs to re-detect the available resources. Resources.
  • the embodiment of the present application provides an information transmission method, which can further improve the contention-based resource scheduling process.
  • Listen before talk also known as listen before talk
  • CSMA carrier sense multiple access
  • LAA licensed spectrum assisted access
  • eLAA enhanced licensed spectrum in version 13 (release13) and version 14 (release14) respectively.
  • the enhanced LAA (eLAA) technology that is, the non-independent deployment of the LTE/LTE-A system on the unlicensed spectrum, and the maximum possible use of unlicensed spectrum resources with the assistance of the licensed spectrum.
  • communication devices including the aforementioned network equipment and terminal equipment in a communication system deployed on an unlicensed spectrum use wireless resources in a competitive manner, that is, the communication device first monitors the unlicensed spectrum before sending a signal Whether it is idle, for example, judge the busy or idle state of the channel by the received power on the unlicensed spectrum. If the received power is less than or equal to a certain threshold, the channel in the unlicensed spectrum is considered to be in an idle state and can be sent on the unlicensed spectrum Signal, otherwise no signal is sent. This mechanism of listening first and sending it later is called the LBT mechanism.
  • the LBT mechanism is currently used to monitor idle channels.
  • the unlicensed band channels are monitored, the unlicensed band channels are occupied.
  • no signal is sent. Only when the unlicensed frequency band channel is monitored to be idle, it indicates that the LBT is successful, and the communication device then sends the signal.
  • the sending device can send a channel occupation signal to other surrounding devices.
  • the channel occupation signal can be called channel reservation in different embodiments. Signal or channel utilization (utilization) signal.
  • the channel occupancy signal is used to indicate to other devices the transmission time that the sending device needs to occupy on the competing channel, that is, the channel occupancy time, so as to avoid collisions caused by other devices transmitting data on the channel to improve communication reliability And communication efficiency.
  • the sending device which is the aforementioned communication device capable of LBT, may be a terminal device. Specifically, if the device that initiates the LBT process is a terminal device, the sending device is a terminal device.
  • the channel occupancy time can be in microseconds ( ⁇ s) as a unit, or orthogonal frequency division multiplexing (OFDM) symbols can be used as a unit, a slot can also be used as a unit, or it can be Take mini-slot as the unit, and so on.
  • the aforementioned sub-carrier interval corresponding to the OFDM symbol or slot may be the sub-carrier interval pre-defined by the standard, or may be the same as the sub-carrier interval of the channel-occupied signal.
  • SCI sidelink control information
  • SCI may include modulation and coding scheme (MCS), data scheduling information, etc.
  • MCS modulation and coding scheme
  • SCIB third SCI
  • SCI SCI
  • SCIA SCI1
  • SCI2 second SCI
  • FIG. 5 shows the content carried in the first SCI and the second SCI, respectively. It can be understood that the playsize of the first SCI and the second SCI are the same. And the format of the first SCI and/or the format of the second SCI are configured by the same high-level signaling. That is, the position of the field in the first SCI, or the position and meaning of the field in the first SCI, is configured to the terminal device through a high-level signaling. The position of the field in the second SCI, or the position and meaning of the field in the second SCI, is configured to the terminal device through a high-level signaling.
  • the positions of the fields in the first SCI and the second SCI, or the positions and meanings of the fields in the first SCI and the second SCI, are configured to the terminal device through a common high-level signaling.
  • the position of each field configured by the high-level signaling, or the position and meaning of each field configured by the high-level signaling not only applies to the first SCI, but also applies to the second SCI.
  • the first field is used to indicate the sender information of the data transmitted on the SL
  • the third field is used to indicate the receiver information of the data transmitted on the SL.
  • the data can be expressed as data sent by the terminal device 1 to the terminal device 2, where the terminal device 1 is the sending end of the data, and the terminal device 2 is the receiving end of the data. That is, the first field and the third field are used to indicate the transmission direction of the data, or the first field may indicate the originating end information of the data, and the third field may indicate the receiving end information of the data.
  • the originator information of the data can be understood as the sender of the sidelink data PSSCH sent from the terminal device 1 to the terminal device 2 is the terminal device 1, and the receiving information of the data can be understood as the transmission from the terminal device 1 to the terminal device 2.
  • the receiver of the side link data PSSCH sent by the terminal device 2 is the terminal device 2.
  • the first field and the third field may each be one bit, for example, a transmitting terminal device (transmission, Tx) such as terminal device 1 and a receiving terminal device (reception, Rx) such as terminal device may be identified by 1 or 0, respectively 2.
  • Tx transmitting terminal device
  • Rx receiving terminal device
  • the first field and the third field can be expressed in other ways.
  • the first field and the third field can also be two bits, and 11 or 00 are used to indicate the sending terminal device and the receiving terminal, respectively.
  • Equipment, etc. the embodiments of the present application do not limit the above examples.
  • the embodiment of the present application uses the first field of the first SCI and the third field of the second SCI as examples, where the third field of the second SCI can also be replaced with the first field of the second SCI.
  • the first field and the third field may also be the format identifier of the first SCI and the format identifier of the second SCI, respectively.
  • the format identifier of the first field may be A1, which may indicate that the first SCI is from the sending end of the data; the format identifier of the third field is A2, which may also indicate that the second SCI is from the receiving end of the data (the receiving end). The end is relative to the sending end of the data).
  • the format identifiers A1 and A2 in the embodiment of the present application are taken as examples, where the format identifier A1 can also be replaced with a format identifier X (or Tx), and the format identifier A2 can also be replaced with a format identifier Y (or Rx) and so on.
  • the X may be an integer
  • the Y may also be an integer.
  • the X can be a letter
  • the Y can also be a letter.
  • the X may be a combination of an integer and a letter
  • the Y may also be a combination of an integer and a letter.
  • the first SCI and the second SCI may respectively include a field for indicating information about a set of available subchannels
  • the set of available subchannels may be a set of idle subchannels detected by the transmitting terminal device or the receiving terminal device.
  • the set of available subchannels may be a set of available subchannels detected by the transmitting terminal device or the receiving terminal device. That is, the available sub-channel field shown in FIG. 5 can be used to carry the set of available sub-channels detected by the transmitting terminal device or the receiving terminal device.
  • the set of available sub-channels determined by the transmitting terminal device is sub-channel 1 to sub-channel 5, and sub-channel 7 to sub-channel 9, then sub-channel 1 to sub-channel 5, and sub-channel 7 to sub-channel 9 can be filled in Available sub-channel corresponding field. It can be understood that sub-channel 1 to sub-channel 5, and sub-channel 7 to sub-channel 9 are the indexes of multiple sub-channels included in the set of available sub-channels.
  • the set of available subchannels may be a set index indication, or a subchannel index indication, or a bitmap.
  • N physical resource blocks may be divided into one subchannel, where the N PRBs may be continuous PRBs or discontinuous PRBs, etc., which are not limited in the embodiment of this application.
  • N is a positive integer.
  • OFDM orthogonal frequency division multiplexing
  • N can be any defined positive integer, and can be a slot, or a mini-slot, or M symbols in the time domain, where M is a positive integer greater than or equal to 1 and less than or equal to 14.
  • N can be any integer less than or equal to 12. It can be understood that the continuous PRB can be understood as from PRB(M) to PRB(N) without interruption, the M is less than N, and M and N are positive integers. Specifically, in the side link transmission, the available sub-channel can be used between the terminal device 1 and the terminal device 2 to transmit data information, and/or the available sub-channel can be used to transmit control information, and so on.
  • the terminal device can detect whether the subchannel is available according to the signal energy received on the subchannel or the signal energy detected/monitored.
  • the signal energy includes any one of received signal strength indication (RSSI), reference signal receiving power (RSRP), or signal to interference plus noise ratio (SINR) .
  • RSSI received signal strength indication
  • RSRP reference signal receiving power
  • SINR signal to interference plus noise ratio
  • a terminal device when a terminal device detects sub-channel 1, it can first interpret the quality of service (QoS) information contained in the control information from the control information sent by the detected surrounding terminal devices, and according to the data to be transmitted by itself Compare the QoS information of the detected sub-channel 1 with the QoS information of the data to be transmitted, and determine the threshold threshold according to the above two QoS information.
  • QoS quality of service
  • the QoS information contained in the control information is the QoS information of the data to be sent from the surrounding terminal equipment.
  • meeting the corresponding threshold threshold can be understood as the detected signal energy is less than or equal to the threshold threshold.
  • the detected signal energy can be judged based on any one or more of the above RSSI, RSRP, or SINR, or based on the signal strength of the detected SCI, or the signal strength of the detected PSSCH. And so on, the embodiment of the present application does not limit it.
  • the signal energy received on the sub-channel is the detected signal strength of the PSSCH, which may specifically be: detecting the PSSCH obtained from the SCI using the sub-channel to obtain the signal strength of the PSSCH using the sub-channel .
  • the QoS information in this application may also be referred to as QoS level information, or may also be referred to as service priority information, etc.
  • the specific name of the QoS information is not limited in the embodiment of this application.
  • the QoS information includes at least one of priority (prose per-packet priority, PPPP), or N quality index (quality index, QI), and other related parameters used to indicate QoS.
  • the threshold value is a threshold value determined according to the QoS information of both the detected terminal device and the detected terminal device. The threshold value may be pre-configured or configured by the network device to the terminal device through RRC signaling. .
  • detecting sub-channels, receiving sub-channels, or monitoring sub-channels can be interchanged.
  • the above method for detecting whether a subchannel is available can also be applied to a subchannel set, for example, averaging the detected signal energy of all subchannels included in the subchannel set. That is, the linear average or weighted average of the detected signal energy of all sub-channels included in the sub-channel set will be regarded as the final detected signal energy of the sub-channel set. For example, when the set of sub-channels includes sub-channels 1, 3, and 5, the average value of the signal energy detected by the three sub-channels is obtained.
  • the first SCI and the second SCI may further include a field for indicating a channel utilization indicator (CUI), where the CUI may be used to indicate that the sending terminal device or the receiving terminal device will occupy the available subchannel
  • the CUI may also indicate the length of time that other terminal devices need to reserve the available sub-channel for the sending terminal device or the receiving terminal device.
  • the duration indicated by the CUI may be any duration divided according to the unit of the time domain resource.
  • the unit of the time domain resource may be any one or a combination of orthogonal frequency division multiplexing (OFDM) symbols, mini-slots, or slots.
  • OFDM orthogonal frequency division multiplexing
  • the CUI may indicate 10 slots or 5 slots, and so on. It can be understood that the CUI may be a continuous time period or a discontinuous time period, etc., which is not limited in the embodiment of the present application.
  • the set of available sub-channels may include one or more sub-channels, that is, the first SCI may include information of one sub-channel or multiple sub-channels, etc., which is not limited in the embodiment of the present application.
  • the first SCI includes information of multiple sub-channels
  • the multiple sub-channels may be consecutive multiple sub-channels, or may also be multiple discontinuous sub-channels, etc., which are not limited in the embodiment of the present application.
  • the second SCI may also indicate information of one sub-channel or multiple sub-channels, which will not be described in detail here.
  • the transmitting terminal device can use the detected common available sub-channel set to transmit control information and/ Or data information.
  • there is a common set of available sub-channels including the same set of available sub-channels detected by the transmitting terminal device and the receiving terminal device, or the set of available sub-channels detected by the transmitting terminal device and the receiving terminal device overlaps (overlap) Part (that is, there is intersection).
  • the set of available subchannels detected by the transmitting terminal device and the receiving terminal device are completely different, that is, the set of available subchannels detected by the transmitting terminal device and the set of available subchannels detected by the receiving terminal device do not have any intersection.
  • the sending terminal device can use the available subchannel set detected by the receiving terminal device to transmit control information and/or data information.
  • the first SCI and the second SCI may further include feature fields, that is, the second field and the fourth field, respectively.
  • the characteristic field of the sending terminal device that is, the second field, can be used to indicate the priority information of the data.
  • the first SCI can enable other terminal equipment to detect the available sub-channels included in the first SCI of the sending terminal device, and the priority information of the other terminal equipment data to determine whether the available sub-channel can be preempted , Or, whether it is necessary to avoid using the available sub-channel.
  • the characteristic field of the receiving terminal device can be used to indicate channel state information (channel state information, CSI).
  • the CSI can be understood as the channel state of the sub-channel set detected by the receiving terminal device.
  • the transmitting terminal device can be informed of the receiving What is the channel state when the terminal device receives the information, so that the sending terminal device can use the corresponding MCS in the scheduled transmission of the data information of the opposite uplink.
  • the characteristic field of the receiving terminal device may be reserved bits.
  • the receiving terminal device may indicate that the CSI is not activated through radio resource control (RRC) signaling, or may also indicate that the CSI is not activated through dynamic signaling.
  • RRC radio resource control
  • the dynamic signaling may be SCIB (third SCI), downlink control information (DCI), or SCIA, etc., in the embodiment of the present application Not limited.
  • the first field may be the indication information of the reference signal used for measurement on the SL; where the indication information of the reference signal used for the measurement on the SL may be the index of the reference signal used for the SLCSI measurement, or used for The activation information of the reference signal for performing the SLCSI measurement, or the activation information for performing the SLCSI measurement.
  • the activation information can also be referred to as enabling information.
  • the third field may be CSI, and the fourth field may be used to indicate reserved bits (or referred to as reserved fields) or feedback information.
  • the feedback information contained in the second SCI is the feedback information to the first SCI, that is, whether the feedback (ACK/NACK) of the first SCI is correctly received.
  • MCS scheduling information
  • MCS is a modulation and coding scheme.
  • MCS is a general term, that is, in different control information, MCS can have different values.
  • the channel set (including one or more sub-channels) can be defined in a specific search space. That is, the set of subchannels used by the transmitting terminal device to transmit the first SCI may be one or more subchannels in the specific search space.
  • the control channel element (CCE)/control resource set (CORSET) used by the transmitting terminal device to transmit the first SCI may be a set of subchannels in a specific search space x ,
  • the sub-channel set x includes one or more sub-channels.
  • each field, or each field, or the sequence of each information contained in the first SCI and the second SCI is only an example, and should not be construed as a limitation to the embodiments of the present application.
  • the sending terminal device as the terminal device 1, the receiving terminal device as the terminal device 2, and the SCIA corresponding to the terminal device 1 as the first SCI, and the SCIA corresponding to the terminal device 2 as the second SCI as an example.
  • the information transmission method provided in the embodiment of this application.
  • the terminal device 1 can not only interact with the terminal device 2, but also with the terminal device 3, the terminal device 4, etc.; and the terminal device 2 can not only interact with the terminal device 1, but also with the terminal device 1.
  • Device 3, terminal device 4, terminal device 5, etc. interact. Therefore, the examples shown below should not be construed as limiting the application.
  • FIG. 6 is a schematic diagram of a scene of an information transmission method provided by an embodiment of the present application, and the information transmission method includes:
  • the terminal device 1 detects and determines a set of available subchannels.
  • the determined set of available subchannels is called a first subchannel set, and the first subchannel set includes one or more subchannels.
  • the terminal device 1 detecting available sub-channels may also be referred to as the terminal device 1 monitoring the available sub-channels.
  • the method for the terminal device 1 to detect the set of available subchannels can refer to the method for the transmitting terminal device or the receiving terminal device to detect the available subchannels or the set of available subchannels in the foregoing embodiment, which will not be described in detail here.
  • the terminal device 1 sends the first SCI to the terminal device 2.
  • the field in the first SCI shown in FIG. 5 indicating the information of the set of available subchannels includes the information of the first set of subchannels, for example, may include the index of the first set of subchannels, and the index may also be referred to as For example, it may include the index of the sub-channels constituting the first sub-channel set, and the index may also be called an identifier, etc.; for example, it may include a bitmap (bitmap) composed of each sub-channel, That is, a bitmap in which the corresponding bits of the subchannels constituting the first subchannel set are marked as 1, etc.
  • bitmap bitmap
  • the terminal device 2 detects and determines an available subchannel set.
  • the determined available subchannel set is called a second subchannel set, and the second subchannel set includes one or more subchannels.
  • the terminal device 2 may detect and determine the set of available subchannels after receiving the first SCI, and may also detect and determine the set of available subchannels before receiving the first SCI. That is, step 603 may be after step 601, or before step 601, etc., which is not limited in the embodiment of the present application.
  • the terminal device 2 sends the second SCI to the terminal device 1.
  • the field in the second SCI shown in FIG. 5 indicating the information of the set of available subchannels can be used to include the information of the second set of subchannels, that is, the field indicating the set of available subchannels in the second SCI can indicate the second subchannel. set.
  • the field in the second SCI indicating the information of the available subchannel set includes the information of the second subchannel set, for example, may include the index of the second subchannel set, and the index may also be called an identifier, etc.; and For example, it may include the index of the sub-channels that make up the second set of sub-channels, and the index may also be called an identifier, etc.; and for example, it may include the bitmap composed of each sub-channel, that is, the second set of sub-channels. The corresponding bits of the sub-channels of the sub-channel set are marked with a bitmap of 1, etc.
  • the first SCI and the second SCI may be sent in the search space in the example shown in FIG. 7 and FIG. 8.
  • one slot is occupied in the time domain and arranged next to each other in the frequency domain, or as shown in Figure 8, a few symbols in the time domain, less than one slot, in the time domain and frequency domain. They are arranged next to each other on the domain.
  • the first SCI and the second SCI have a sequential relationship in the time domain, that is, the first SCI sent by the terminal device 1 is sent earlier than the terminal device 2 The second SCI.
  • the first SCI and the second SCI are not related in the time domain. That is, if the terminal device 1 sends data to the terminal device 2, the terminal device 3 sends data to the terminal device 4.
  • the first SCI sent by the terminal device 1 and the second SCI sent by the terminal device 4 are not related in the time domain, that is, the first SCI sent by the terminal device 1 can be earlier than the second SCI sent by the terminal device 4, or, The second SCI time sent by the terminal device 4 may be earlier than the first SCI sent by the terminal device 1, or the second SCI time sent by the terminal device 4 may appear at the same time as the first SCI sent by the terminal device 1.
  • the terminal device 1 receives the second SCI from the terminal device 2, and determines the target subchannel set.
  • the target subchannel set may be a subchannel set determined from the intersection of the first subchannel set and the second subchannel set, or the target subchannel set may also be from the second subchannel set.
  • the set of sub-channels determined by the set may be made to the foregoing embodiment, which will not be described in detail here.
  • the terminal device 1 sends the third SCI to the terminal device 2 through the target subchannel set, and the terminal device 1 sends the side link data to the terminal device 2.
  • the third SCI may include at least one or more of MCS, scheduling sub-channel set (including one or more sub-channels), PPPP, and CUI
  • the combination of the two can also contain indication information for the feedback resource.
  • the scheduling subchannel set may be understood as a subchannel set used for scheduling data
  • the indication information of the feedback resource may be understood as a resource used for transmitting feedback information.
  • the resource used to transmit feedback information may be: sub-channel set information used to transmit feedback information (may be referred to as feedback sub-channel set), or a physical resource block used to transmit feedback information (physical resource block, PRB)/resource element (resource element, RE) information.
  • the sub-channel set information used to transmit feedback information can be indicated by the sub-channel used to transmit feedback information (referred to as the feedback sub-channel); it can also be indicated by the offset relative to the sub-channel used to transmit data information.
  • Quantity for identification As an example, the PRB/RE may be indicated as the PRB/RE index in a certain subchannel; the PRB/RE may also only be indicated as the PRB/RE index.
  • the PPPP in the embodiment of the present application is only an example, and the PPPP can also be replaced with any QoS information.
  • QoS can also be a QoS index, such as N QoS index (N QI), where N is a positive integer.
  • the feedback subchannel set may be a subchannel set determined from the intersection of the first subchannel set and the second subchannel set, or the feedback subchannel set may also be determined from the first subchannel set
  • the output sub-channel set that is, the feedback sub-channel set is at least included in the first sub-channel set. Because after receiving the data on the SL, the terminal device 2 needs to feed back whether the data is received correctly, so the feedback information can be fed back through the feedback subchannel set. Further, in order to enable the terminal device 1 to receive the feedback information, therefore, the feedback subchannel set is at least included in the first subchannel set.
  • the feedback information in this application is HARQ information on the side link, that is, SL ACK/NACK information.
  • the HARQ information on the side link is usually carried on the side link feedback channel (physical sidelink feedback channel, PSFCH).
  • the terminal device 2 receives the third SCI from the terminal device 1, and sends the physical side uplink feedback information to the terminal device 1.
  • the PSFCH is transmitted to the terminal device 1 according to the resource for transmitting feedback information indicated by the third SCI.
  • the sending of SCI has the requirement of sending time, or the sending of SCI has the requirement of aligning the slot boundary, which can be understood as: the time of sending SCI is required to be located at the starting point of the first symbol of the slot, or the starting point of the Nth symbol (N Greater than or equal to 1, and less than or equal to 14).
  • padding can be performed by a sequence, where the sequence can be a preamble code or a response reference signal (SRS). It should be noted that the SCI shown in this paragraph can be the first SCI or the second SCI.
  • the terminal device 1 and the terminal device 2 can detect the SCI of the same size, that is, the payload of the first SCI sent by the terminal device 1 and the second SCI sent by the terminal device 2 are the same. And the fields at the same position of the first SCI and the second SCI have different interpretations, which not only meets the requirement of the terminal device 1 to send QoS, but also meets the requirement of the terminal device 2 to send CSI.
  • the load is the same, which reduces the detection complexity, and also applies corresponding requirements according to the needs of the sender and the receiver, reducing overhead.
  • FIG. 10a is a schematic flowchart of an information transmission method provided by an embodiment of the present application.
  • the information transmission method can be applied to a first terminal device, and can also be applied to a second terminal device, etc.
  • the embodiment of the present application is useful for executing the information transmission method.
  • the terminal equipment is not limited. The following directly takes terminal equipment as an example for illustration.
  • the information transmission method includes:
  • a terminal device determines a scheduling mode, where the scheduling mode includes a first mode or a second mode.
  • the first mode is a network device-based scheduling mode (ie mode1)
  • the second mode is a contention-based scheduling mode (mode2).
  • mode1 a network device-based scheduling mode
  • mode2 a contention-based scheduling mode
  • Fig. 10b is a flowchart of how the terminal device 1 interacts with the network device and how the terminal device 1 interacts with the terminal device 2 in mode1.
  • the terminal device 1 can send an SR to the network device, and the network device issues downlink control information (DCI), and the DCI can be used to indicate the data to be transmitted on the SL
  • DCI downlink control information
  • the transmission resource of the buffer state report (buffer state report, BSR) also referred to as the buffer state report) of the amount of data
  • BSR buffer state report
  • the terminal device 1 uses the indicated transmission resource of the BSR to transmit the amount of data to be transmitted on the SL
  • the upper sends the BSR to the network device, and the network device issues DCI again.
  • the DCI is used to indicate the transmission resource for the data to be transmitted on the SL; wherein the transmission resource for the data to be transmitted on the SL is usually performed through sub-channels Indicates that the transmission resource usually includes at least one of resources used for the physical sidelink control channel (PSCCH) and resources used for the physical sidelink shared channel (PSSCH) ;
  • the terminal device 1 can communicate with the terminal device 2 through the PSCCH for control information, and/or communicate with the terminal device 2 through the PSSCH for data information. It can be understood that the method shown in FIG. 10b is only an example, and should not be construed as a limitation to the embodiment of the present application.
  • the terminal device detects and determines the set of available subchannels.
  • the terminal device has different judgment thresholds when detecting the set of available subchannels.
  • the first mode corresponds to the first threshold
  • the second mode corresponds to the second threshold
  • the first threshold is smaller than the second threshold.
  • the first mode corresponds to the first threshold, which can be understood as when the terminal device is performing sidelink data transmission through the first mode, the terminal device can detect whether the sub-channel set is available according to whether the detected signal energy is less than or It is equal to the first threshold; the second mode corresponds to the second threshold. It can be understood that when the terminal device performs sidelink data transmission through the second mode, the terminal device detects whether the sub-channel set is available or not according to whether the detected signal energy Less than or equal to the second threshold.
  • the terminal device can detect whether the sub-channel is available according to the signal energy received on the sub-channel or the detected signal energy. For example, when a terminal device detects sub-channel 1, it can first interpret the quality of service (QoS) information contained in the control information from the control information sent by the detected surrounding terminal devices, and according to the data to be transmitted by itself The QoS information of the detected subchannel 1 is compared with the QoS information of the to-be-transmitted data, and the first threshold (or the second threshold) is determined according to the above two QoS information. If the signal energy received on the subchannel 1 meets Corresponding to the threshold threshold, the sub-channel 1 can be used, otherwise the sub-channel 1 cannot be used.
  • QoS quality of service
  • the QoS information contained in the control information is the QoS information of the to-be-sent data of the surrounding terminal equipment.
  • meeting the corresponding threshold threshold can be understood as the detected signal energy is less than or equal to the first threshold (or the second threshold).
  • the detected signal energy can be judged based on any one or more of the above RSSI, RSRP, or SINR, or based on the signal strength of the detected SCI, or the signal strength of the detected PSSCH.
  • the embodiment of the present application does not limit it.
  • the QoS information in this application may also be referred to as QoS level information, or may also be referred to as service priority information, etc.
  • the specific name of the QoS information is not limited in the embodiment of this application.
  • the QoS information includes at least one of priority (prose per-packet priority, PPPP), or N quality index (quality index, QI), and other related parameters used to indicate QoS.
  • priority prose per-packet priority, PPPP
  • N quality index quality index, QI
  • the first threshold and/or the second threshold are thresholds determined according to the QoS information of both the detected terminal device and the detected terminal device.
  • the threshold may be pre-configured, or the network device may pass RRC The signaling is configured to the terminal equipment.
  • the terminal device can perform related operations based on the set of available subchannels. For example, the set of available subchannels can be reported to the network device, or the set of available subchannels can be reported to the network device. The channel set is notified to other terminal devices (for example, the method shown in FIG. 6 may be executed), etc.
  • the embodiment of the present application does not limit related operations performed by the terminal device according to the available sub-channels.
  • the energy threshold of the reported sub-channel set in the first mode is more stringent. Thereby, it is ensured that the reported sub-channel set is free from collision.
  • the second mode can be detected by the terminal device 1 or by the terminal device 2. Therefore, the energy threshold of the available sub-channel set is defined larger, which can not only guarantee the sub-channel set used by the terminal device, but also avoid collision.
  • FIG. 11 is a schematic structural diagram of a communication device improved by an embodiment of the present application.
  • the communication device is used to execute the information transmission method described in the embodiment of the present application.
  • the communication device includes:
  • the sending unit 1101 is configured to send the first side uplink control information SCI to the second terminal device;
  • the first SCI includes information about a first set of subchannels, and the first set of subchannels is a set of available subchannels detected by the first terminal device on the sidelink SL, and the first SCI does not Including modulation and coding strategy MCS information.
  • the first SCI includes a first field and a second field; wherein, the first field is used to indicate the sender information of the data transmitted on the SL, or the first field is the The format identifier of the first SCI; the second field is used to indicate the priority information of the data.
  • the communication device further includes:
  • the receiving unit 1102 is configured to receive a second SCI sent by a second terminal device, where the second SCI includes information about a second set of subchannels, and the second set of subchannels is the available information detected on the SL by the second terminal device. A set of subchannels, and the second SCI does not include MCS information.
  • the load size of the second SCI is the same as that of the first SCI.
  • the second SCI includes a third field and a fourth field; wherein, the third field is used to indicate the receiving end information of the data transmitted on the SL, or the third field shown is The format identifier of the second SCI; the fourth field is used to indicate at least one of channel state information CSI, feedback information, or reserved bits.
  • the format of the first SCI and the format of the second SCI are configured by the same high-level signaling.
  • the communication device further includes:
  • the processing unit 1103 is configured to determine a target subchannel set according to the first subchannel set and the second subchannel set;
  • the sending unit 1101 is further configured to send data to the second terminal device in the target subchannel set.
  • the target subchannel set is an intersection of the first subchannel set and the second subchannel set.
  • the sending unit 1101 is further configured to send a third SCI to the second terminal device, and the third SCI includes scheduling information of SL data.
  • the third SCI further includes information for indicating a feedback subchannel set, and the feedback subchannel set is at least included in the first subchannel set.
  • the communication device shown in FIG. 11 may also be used to perform the following operations:
  • the processing unit 1103 may be used to determine a scheduling mode, where the scheduling mode includes the first mode or the second mode;
  • the processing unit 1103 may also be used to detect a set of available subchannels; wherein, when the scheduling mode is the first mode, the set of available subchannels is detected through a first threshold; when the scheduling mode is the second mode, The set of available subchannels is detected through a second threshold, where the first threshold is smaller than the second threshold.
  • the first threshold and the second threshold are predefined, or the first threshold and the second threshold are configured by a network device through signaling.
  • the processing unit 1103 can be one or more processors
  • the sending unit 1101 can be a transmitter
  • the receiving unit 1102 can be a receiver.
  • the transmitter, or the sending unit 1101 and the receiving unit 1102 are integrated into one device, such as a transceiver.
  • the transceiver may send the first side link control information SCI to the second terminal device, and send data to the second terminal device in the target subchannel set.
  • the transceiver may receive the second SCI sent by the second terminal device.
  • the processing unit 1103 can be one or more processors, the sending unit 1101 can be an output interface, and the receiving unit 1102 can be an input interface, or the sending unit 1101 and the receiving unit 1102 are integrated into one unit, for example Input and output interface.
  • each unit shown in FIG. 11 may also refer to the corresponding description of the method embodiment shown in FIG. 6, or may also refer to the corresponding description of the method embodiment shown in FIG. 10a.
  • FIG. 12 is a schematic structural diagram of a communication device improved by an embodiment of the present application.
  • the communication device is used to execute the information transmission method described in the embodiment of the present application.
  • the communication device includes:
  • the receiving unit 1201 is configured to receive a first SCI sent by a first terminal device; wherein, the first SCI includes information of a first sub-channel set, and the first sub-channel set is the side link SL of the first terminal device.
  • the set of available sub-channels detected on the above, and the first SCI does not include the modulation and coding strategy MCS information;
  • the sending unit 1202 is configured to send a second SCI to the first terminal device, where the second SCI includes information about a second set of subchannels, and the second set of subchannels is the available information detected on the SL by the second terminal device. A set of subchannels, and the second SCI does not include MCS information.
  • the first SCI includes a first field and a second field; wherein, the first field is used to indicate the sender information of the data transmitted on the SL, or the first field is the The format identifier of the first SCI; the second field is used to indicate the priority information of the data.
  • the second SCI includes a third field and a fourth field; wherein, the third field is used to indicate the receiving end information of the data transmitted on the SL, or the third field shown is The format identifier of the second SCI; the fourth field is used to indicate at least one of channel state information CSI, feedback information, or reserved bits.
  • the load size of the second SCI is the same as that of the first SCI.
  • the format of the first SCI and the format of the second SCI are configured by the same high-level signaling.
  • the receiving unit 1201 is further configured to receive the data sent by the first terminal device in a target subchannel set, where the target subchannel set is the first subchannel set and the second subchannel set. The intersection of channel sets.
  • the receiving unit 1201 is further configured to receive a third SCI sent by the first terminal device, and the third SCI includes scheduling information of SL data.
  • the third SCI further includes information for indicating a feedback subchannel set, and the feedback subchannel set is at least included in the first subchannel set.
  • the sending unit 1202 may be a transmitter
  • the receiving unit 1201 may be a receiver
  • the sending unit 1202 and the receiving unit 1201 are integrated in A device, such as a transceiver.
  • the transceiver may receive the first SCI sent by the first terminal device, and may also send the second SCI to the first terminal device.
  • the foregoing communication device may further include a processor.
  • the processor may detect the second set of subchannels, etc., which is not limited in the embodiment of the present application.
  • the sending unit 1202 may be an output interface
  • the receiving unit 1201 may be an input interface
  • the sending unit 1202 and the receiving unit 1201 are integrated into one unit, such as an input/output interface.
  • the communication device may further include a processor.
  • each unit shown in FIG. 12 may also refer to the corresponding description of the method embodiment shown in FIG. 6, or may also refer to the corresponding description of the method embodiment shown in FIG. 10a.
  • FIG. 13 is a schematic structural diagram of a terminal device 1300 provided by an embodiment of this application.
  • the terminal device may perform the operation of the first terminal device (terminal device 1) in the method shown in FIG. 6, or the terminal device may also perform the operation of the communication device shown in FIG. 11.
  • the terminal device can also be used to perform the operation of the second terminal device (terminal device 2) in the method shown in FIG. 6, or the terminal device can also perform the operation of the communication device shown in FIG.
  • the terminal device can also be used to execute the method shown in FIG. 10a.
  • FIG. 13 only shows the main components of the terminal device.
  • the terminal device 1300 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to execute the process described in Figure 6 or Figure 10a.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the terminal device 1300 may also include input and output devices, such as a touch screen, a display screen, a keyboard, etc., which are mainly used to receive data input by the user and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor can read the software program in the storage unit, interpret and execute the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 13 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit (CPU).
  • the baseband processor is mainly used to process communication protocols and communication data, and the CPU is mainly used to process the entire terminal.
  • the equipment controls, executes the software program, and processes the data of the software program.
  • the processor may also be a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the memory may include volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the antenna and radio frequency circuit with the transceiver function may be regarded as the transceiver unit 1301 of the terminal device 1300, and the processor with the processing function may be regarded as the processing unit 1302 of the terminal device 1300.
  • the terminal device 1300 may include a transceiving unit 1301 and a processing unit 1302.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1301 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1301 as the sending unit, that is, the receiving and sending unit 1301 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the transceiver unit 1301 and the processing unit 1302 may be integrated into one device or separated into different devices.
  • the processor and the memory may also be integrated into one device or separate into different devices.
  • transceiving unit 1301 can be used to perform the sending operation and receiving operation of the terminal device 1 in the foregoing method embodiment, and the processing unit 1302 is used to perform other operations of the terminal device 1 in the foregoing method embodiment except for the transceiving operation.
  • the transceiving unit 1301 can be used to perform the sending and receiving operations in 602, 604, and 606 in Figure 6, and the processing unit 1302 can be used to perform the operations shown in 601, 603, and 604 in Figure 6, and can also be used to perform the operations shown in Figure 10a. Operations shown in 1001 and 1002.
  • the terminal device includes a processor 1410, a data sending processor 1420, and a data receiving processor 1430.
  • the processing unit 1103 in the foregoing embodiment may be the processor 1410 in FIG. 14 and complete corresponding functions.
  • the sending unit 1101 in the foregoing embodiment may be the sending data processor 1420 in FIG. 14, and the receiving unit 1102 may be the receiving data processor 1430 in FIG. 14.
  • the channel encoder and the channel decoder are shown in FIG. 14, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • FIG. 15 shows another form of an embodiment of the present application.
  • the processing device 1500 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in the embodiment of the present application may be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 1503 and an interface 1504.
  • the processor 1503 completes the functions of the aforementioned processing unit 1103, and the interface 1504 completes the aforementioned functions of the sending unit 1101 and/or the receiving unit 1102.
  • the modulation subsystem includes a memory 1506, a processor 1503, and a program stored in the memory 1506 and running on the processor.
  • the processor 1503 implements the terminal device 1 in the foregoing method embodiment when the program is executed. Methods.
  • the memory 1506 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1500, as long as the memory 1506 can be connected to the The processor 1503 is fine.
  • the embodiment of the present application also provides a computer-readable storage medium on which an instruction is stored, and when the instruction is executed, the method of the terminal device 1 in the foregoing method embodiment is executed.
  • the embodiment of the present application also provides a computer program product containing instructions that, when executed, execute the method of the terminal device 1 in the foregoing method embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium on which an instruction is stored, and when the instruction is executed, the method of the terminal device 2 in the foregoing method embodiment is executed.
  • the embodiment of the present application also provides a computer program product containing instructions that, when executed, execute the method of the terminal device 2 in the foregoing method embodiment.
  • the process can be completed by a computer program instructing relevant hardware.
  • the program can be stored in a computer readable storage medium. , May include the processes of the foregoing method embodiments.
  • the aforementioned storage media include: ROM or random storage RAM, magnetic disks or optical disks and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息传输方法及通信装置,可以应用于通信系统,例如V2X、LTE-V、MTC、LOT、LTE-M,M2M,在基于竞争的调度模式下,终端设备之间进行信息传输。该方法包括:第一终端设备向第二终端设备发送第一侧行链路控制信息SCI;其中,该第一SCI包括第一子信道集合的信息,该第一子信道集合为该第一终端设备在侧行链路SL上检测到的可用的子信道集合,且该第一SCI中不包括调制与编码策略MCS信息。采用本申请实施例第一SCI中不包括MCS信息,一方面,可减少第一终端设备的信令开销;另一方面,可提高第二终端设备解调该第一SCI的效率。

Description

信息传输方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种信息传输方法及装置。
背景技术
第三代合作伙伴计划(the 3rd generation partnership project,3GPP)提出的长期演进(long term evolution,LTE)技术的网络下,车与任何事物通信(vehicle-to-everything,V2X)的车联网技术被提出,V2X通信是指车辆与外界的任何事物的通信,包括车与车的通信(vehicle to vehicle,V2V)、车与行人的通信(vehicle to pedestrian,V2P)、车与基础设施的通信(vehicle to infrastructure,V2I)、车与网络的通信(vehicle to network,V2N)。
随着V2X通信技术的发展,越来越多的终端设备使用该V2X进行通信,如在通过侧行链路(sidelink,SL)进行资源传输时,如图1所示在资源调度过程中,终端设备可先在检测窗中进行资源检测,然后在选择窗内选择空闲资源用于资源传输。
因此,在终端设备与终端设备之间进行交互时,如何进行信息传输是本领域技术人员正在研究的问题。
发明内容
本申请实施例提供了一种信息传输方法及装置,可以应用于通信系统,例如车与任何事物通信(vehicle-to-everything,V2X)、车间信息交互(long term evolution-vehicle,LTE-V)、车联网、机器类通信(machine type communication,MTC)、物联网(internet of things,LOT)、机器间信息交互(long term evolution-machine,LTE-M),机器到机器通信(machine to machine,M2M)等,在基于竞争的调度模式下,终端设备之间进行信息传输的问题。
第一方面,本申请实施例提供一种信息传输方法,包括:第一终端设备向第二终端设备发送第一侧行链路控制信息SCI;其中,所述第一SCI包括第一子信道集合的信息,所述第一子信道集合为所述第一终端设备在侧行链路SL上检测到的可用的子信道集合,且所述第一SCI中不包括调制与编码策略(modulation and coding scheme,MCS)信息。
本申请实施例中,第一SCI中不包括MCS信息,一方面,可减少第一终端设备的信令开销;另一方面,可提高第二终端设备解调该第一SCI的效率。
在一种可能的实现方式中,所述第一SCI包括第一字段和第二字段;其中,所述第一字段用于表示在SL上传输的数据的发送端信息,或者,所述第一字段为所述第一SCI的格式标识;所述第二字段用于指示所述数据的优先级信息。
在一种可能的实现方式中,所述方法还包括:所述第一终端设备接收所述第二终端设备发送的第二SCI,所述第二SCI包括第二子信道集合的信息,所述第二子信道集合为所 述第二终端设备在SL上检测到的可用的子信道集合,且所述第二SCI不包括MCS信息。
在一种可能的实现方式中,所述第二SCI与所述第一SCI的载荷大小相同。
在一种可能的实现方式中,所述第二SCI包括第三字段和第四字段;其中,所述第三字段用于表示在SL上传输的数据的接收端信息,或者,所示第三字段为所述第二SCI的格式标识;所述第四字段用于指示信道状态信息CSI、反馈信息或预留比特中的至少一种。
在一种可能的实现方式中,所述第一SCI的格式和所述第二SCI的格式为同一个高层信令配置的。
本申请实施例中,第一SCI与第二SCI的载荷(playsize)大小相同,且由同一个高层信令配置;避免了通过两个信令分别配置两个SCI,减少了信令开销。
在一种可能的实现方式中,所述方法还包括:所述第一终端设备根据所述第一子信道集合和所述第二子信道集合确定目标子信道集合;所述第一终端设备在所述目标子信道集合向所述第二终端设备发送数据。
本申请实施例中,第一终端设备通过向第二终端设备发送包括第一子信道集合的信息,以及第二终端设备通过向第一终端设备发送包括第二子信道集合的信息,可使得第一终端设备和第二终端设备明确得知对方所检测到的可用子信道集合,从而增加了双方对对方的可用子信道集合的了解,进而更准确的确定目标子信道集合,提高该目标子信道集合的确定效率。
在一种可能的实现方式中,所述目标子信道集合为所述第一子信道集合和所述第二子信道集合的交集。
本申请实施例中,该目标子信道集合为第一子信道集合和第二子信道集合的交集,也就是说,第一终端设备和第二终端设备均可通过该目标子信道集合来传输数据信息和/或控制信息,避免了第一终端设备或第二终端设备无法接收到数据信息和/或控制信息的情况,提高了信息传输的可靠性。
在一种可能的实现方式中,所述方法还包括:所述第一终端设备向所述第二终端设备发送第三SCI,所述第三SCI中包括SL的数据的调度信息。
在一种可能的实现方式中,所述第三SCI中还包括用于指示反馈子信道集合的信息,所述反馈子信道集合至少包含于所述第一子信道集合中。
第二方面,本申请实施例提供一种信息传输方法,包括:在检测子信道集合是否可用之前,确定调度模式,所述调度模式包括第一模式或第二模式;检测可用子信道集合;其中,在所述调度模式为第一模式的情况下,通过第一门限检测所述可用子信道集合;在所述调度模式为第二模式的情况下,通过第二门限检测所述可用子信道集合,所述第一门限小于所述第二门限。
本申请实施例中,由于第一模式可以依靠终端设备进行检测,该终端设备上报给网络设备该可用子信道集合,因此在该第一模式下所上报的可用子信道集合的能量门限要求可更严格,从而保证上报的可用子信道集合免于碰撞。而第二模式可以依靠终端设备1来检测,也可以依靠终端设备2来检测,因此该可用子信道集合的能量门限定义得更大,不仅能够保证终端设备可以使用该可用子信道集合,还能在免于碰撞的同时提高对资源的使用率。
在一种可能的实现方式中,所述第一门限和所述第二门限为预定义的,或者所述第一门限和所述第二门限由网络设备通过信令配置。
第三方面,本申请实施例提供一种信息传输方法,所述方法包括:第二终端设备接收第一终端设备发送的第一SCI;其中,所述第一SCI包括第一子信道集合的信息,所述第一子信道集合为所述第一终端设备在侧行链路SL上检测到的可用的子信道集合,且所述第一SCI中不包括调制与编码策略MCS信息;所述第二终端设备向所述第一终端设备发送第二SCI;其中,所述第二SCI包括第二子信道集合的信息,所述第二子信道集合为所述第二终端设备在SL上检测到的可用的子信道集合,且所述第二SCI不包括MCS信息。
在一种可能的实现方式中,所述第一SCI包括第一字段和第二字段;其中,所述第一字段用于表示在SL上传输的数据的发送端信息,或者,所述第一字段为所述第一SCI的格式标识,或者,所述第一字段为SL上用于测量的参考信号的指示信息;所述第二字段用于指示所述数据的优先级信息。
在一种可能的实现方式中,所述第二SCI包括第三字段和第四字段;其中,所述第三字段用于表示在SL上传输的数据的接收端信息,或者,所示第三字段为所述第二SCI的格式标识;所述第四字段用于指示信道状态信息CSI、反馈信息或预留比特中的至少一种。
在一种可能的实现方式中,所述第二SCI与所述第一SCI的载荷大小相同。
在一种可能的实现方式中,第一SCI的格式和第二SCI的格式为同一个高层信令配置的。
在一种可能的实现方式中,所述方法还包括:所述第二终端设备接收所述第一终端设备在目标子信道集合发送的所述数据,所述目标子信道集合为所述第一子信道集合和所述第二子信道集合的交集。
在一种可能的实现方式中,所述方法还包括:所述第二终端设备接收所述第一终端设备发送的第三SCI,所述第三SCI中包括SL的数据的调度信息。
在一种可能的实现方式中,所述第三SCI中还包括用于指示反馈子信道集合的信息,所述反馈子信道集合至少包含于所述第一子信道集合中。
第四方面,本申请实施例提供一种通信装置,所述通信装置为第一终端设备,所述通信装置包括处理单元、接收单元和发送单元,所述处理单元用于执行如第一方面或第二方面所示的相应的方法,所述接收单元用于执行如第一方面或第二方面所示的相应的方法,所述发送单元用于执行如第一方面或第二方面所示的相应的方法。
第五方面,本申请实施例提供一种通信装置,所述通信装置为第二终端设备,所述通信装置包括接收单元和发送单元,所述接收单元用于执行如第三方面所示的相应的方法,所述发送单元用于执行如第三方面所示的相应的方法。
在一种可能的实现方式中,所述通信装置还包括处理单元,如该处理单元可用于检测第二子信道集合等。
需要说明的是,该第二终端设备也可用于执行如第二方面所示的方法。如处理单元,可用于执行如第二方面所示的相应的方法。
第六方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行 指令,以使所述通信装置执行如第一方面或第二方面中所示的相应的方法。
第七方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第一方面或第二方面中所示的相应的方法。
第八方面,本申请实施例一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第三方面中所示的相应的方法。
第九方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第三方面中所示的相应的方法。
第十方面,本申请实施例提供一种通信系统,所述通信系统包括第一终端设备和第二终端设备,所述第一终端设备可用于执行如第一方面所述的方法,所述第二终端设备用于执行如第三方面所述的方法。
在一种可能的实现方式中,所述第一终端设备还可用于执行如第二方面所示的方法,以及所述第二终端设备也可用于执行如第二方面所示的方法。
第十一方面,本申请实施例提供一种可读存储介质,所述可读存储介质用于存储指令,当所述指令被执行时,使得第一方面或第二方面所述的方法被实现。
在一种可能的实现方式中,所述可读存储介质可以包括计算机可读存储介质。
第十二方面,本申请实施例提供一种可读存储介质,所述可读存储介质用于存储指令,当所述指令被执行时,使得第三方面所述的方法被实现。
在一种可能的实现方式中,所述可读存储介质可以包括计算机可读存储介质。
第十三方面,本申请实施例提供一种包括指令的计算机程序产品,当所述指令被执行时,使得第一方面或第二方面所述的方法被实现。
第十四方面,本申请实施例提供一种包括指令的计算机程序产品,当所述指令被执行时,使得第三方面所述的方法被实现。
附图说明
图1是本申请实施例提供的一种资源调度过程的流程示意图;
图2是本申请实施例提供的一种通信系统的示意图;
图3a是本申请实施例提供的一种侧行链路通信的场景示意图;
图3b是本申请实施例提供的一种侧行链路通信的场景示意图;
图3c是本申请实施例提供的一种侧行链路通信的场景示意图;
图3d是本申请实施例提供的一种侧行链路通信的场景示意图;
图3e是本申请实施例提供的一种侧行链路通信的场景示意图;
图3f是本申请实施例提供的一种侧行链路通信的场景示意图;
图3g是本申请实施例提供的一种侧行链路通信的场景示意图;
图4是本申请实施例提供的一种帧结构的示意图;
图5是本申请实施例提供的一种第一SCI和第二SCI的结构示意图;
图6是本申请实施例提供的一种信息传输方法的流程示意图;
图7是本申请实施例提供的一种第一SCI的发送方法示意图;
图8是本申请实施例提供的一种第一SCI的发送方法示意图;
图9是本申请实施例提供的一种第三SCI的结构示意图;
图10a是本申请实施例提供的一种信息传输方法的流程示意图;
图10b是本申请实施例提供的一种资源调度过程的流程示意图;
图11是本申请实施例提供的一种通信装置的结构示意图;
图12是本申请实施例提供的一种通信装置的结构示意图;
图13是本申请实施例提供的一种终端设备的结构示意图;
图14是本申请实施例提供的一种终端设备的结构示意图;
图15是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图对本申请实施例进行描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
本申请使用的通信系统可理解为无线蜂窝通信系统,又或者理解为基于蜂窝网络架构的无线通信系统。例如第五代移动通信(5th-generation,5G)系统以及下一代移动通信等等。图2是本申请实施例提供的一种通信系统的示意图,本申请中的方案可适用于该通信系统。该通信系统可以包括至少一个网络设备,仅示出一个,如图中的下一代基站(the next generation Node B,gNB);以及与该网络设备连接的一个或多个终端设备,如图中的终端设备1和终端设备2。
其中,网络设备可以是能和终端设备通信的设备。网络设备可以是任意一种具有无线收发功能的设备,包括但不限于基站。例如,该基站可以为gNB,又或者该基站为未来通信系统中的基站。可选的,该网络设备还可以为无线局域网(wireless fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。可选的,该网络设备还可以是云无 线接入网络(cloud radio access network,CRAN)场景下的无线控制器。可选的,该网络设备还可以是可穿戴设备或车载设备等。可选的,该网络设备还可以是小站,传输节点(transmission reference point,TRP)等。当然本申请不限于此。
终端设备,也可称为用户设备(user equipment,UE)、终端等。终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,例如部署在飞机、气球或卫星上等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
可理解,图2所示的通信系统中,终端设备1和终端设备2也可以通过设备到设备(device to device,D2D)技术或车与任何事物通信(vehicle-to-everything,V2X)技术进行通信。
需要说明的是,图1涉及的通信系统可以应用于本申请其他实施例的通信场景,在此不再赘述。例如,终端设备1和终端设备2可用于执行图6或图10a所示的信息传输方法实施例。
以下将以NR-V2X中的终端设备1和终端设备2为例,来具体说明本申请实施例所提供的相应的信息传输方法的通信场景。
如图3a至图3g所示,分别为本申请实施例提供的一种侧行链路(sidelink)(也可以称为直连链路)通信的场景示意图。
图3a所示的场景中终端设备1和终端设备2均处于小区覆盖范围外。
图3b所示的场景中终端设备1处于小区覆盖范围内,终端设备2处于小区覆盖范围外。
图3c所示的场景中终端设备1和终端设备2均处于同一个小区的覆盖范围内,且在一个公共陆地移动网络(public land mobile network,PLMN)中,如PLMN1。
图3d所示的场景中终端设备1和终端设备2在一个PLMN中如PLMN1,但处于不同的小区覆盖范围。
图3e所示的场景中终端设备1和终端设备2分别在不同的PLMN,不同的小区,且终端设备1和终端设备2分别处于两个小区的共同覆盖范围内。如终端设备1在PLMN1中,而终端设备2在PLMN2中。
图3f所示的场景中终端设备1和终端设备2分别在不同的PLMN,不同的小区,且终端设备1处于两个小区的共同覆盖范围内,终端设备2处于服务小区的覆盖范围内。
图3g所示的场景中终端设备1和终端设备2分别在不同的PLMN,不同的小区,且终端设备1和终端设备2分别处于各自的服务小区的覆盖范围内。
可理解,以上所示的场景可适用于车联万物(vehicle-to-everything,V2X),也可称为V2X中。对于具体的应用场景如对于D2D技术来说,可应用于基于邻近特性的社交应用,如通过D2D进行内容分享、互动游戏等邻近终端设备之间数据的传输。还可解决自然灾害 引起通信基础设施损坏导致通信中断而给救援带来障碍的问题,如在该场景下,通过D2D,两个邻近的终端设备之间仍然能够建立无线通信。又如还可基于D2D向用户推送商品打折促销、影院预告等信息等等,本申请实施例对于D2D所应用的场景不作唯一性限定。
如图4所示,图4是本申请实施例提供的一种帧结构的示意图,在N2R中帧结构可分为四种,分别如图4中的4a至4d所示,侧行链路的数据信道如物理侧行共享信道(physical sidelink shared channel,PSSCH)和侧行链路的控制信道如物理侧行控制信道(physical sidelink control channel,PSCCH)有时域重叠无频域重叠、有频域重叠无时域重叠以及既有时域重叠又有频域重叠。
如在V2X通信中(也可在M2M、LTE-V等等通信中),通过侧行链路(sidelink,SL)进行资源传输时,通常包括两种模式,一种是基于网络设备的调度模式,通常称为mode1,另一种是基于竞争的调度模式,通常称为mode2。作为示例如图1,在mode2的调度过程中,终端设备可在检测(sensing)窗中进行资源检测,然后在选择窗内选择空闲资源用于资源传输。或者终端设备还可以通过先听后说(listen before talk,LBT)对资源进行检测,当LBT成功后,可以使用检测成功的资源用于资源传输,当LBT失败后,需要重新检测可供使用的资源。在该情况下,本申请实施例提供了一种信息传输方法,可更一步完善基于竞争的资源调度过程。
在介绍本申请实施例所提供的信息传输方法之前,以下将详细介绍本申请实施例中的术语。
先听后说(listen before talk,LBT),又称说前先听,是一种载波监听多路访问(carrier sense multiple access,CSMA)技术,LBT机制可以避免在使用非授权频谱资源时的冲突。
随着无线数据业务量的急剧增大,授权频谱可能无法满足通信所需的频谱要求,而抢占非授权频谱传输信息可以提高无线通信网络中的数据吞吐量,进而能够更好地满足用户的需求。基于此,第三代合作伙伴计划(3rd generation partnership project,3GPP)分别在版本13(release13)和版本14(release14)中引入了授权频谱辅助接入(license assisted access,LAA)和增强的授权频谱辅助接入(enhanced LAA,eLAA)技术,即在非授权频谱上非独立的部署LTE/LTE-A系统,通过授权频谱的辅助来最大可能的利用非授权频谱资源。
一般,在非授权频谱上部署的通信系统中的通信装置(包括前述的网络设备和终端设备)采用竞争的方式来使用无线资源,也就是说,通信装置在发送信号之前首先会监听非授权频谱是否空闲,比如通过非授权频谱上的接收功率的大小来判断信道的忙闲状态,如果接收功率小于或等于一定门限,则认为非授权频谱中的信道处于空闲状态,可以在非授权频谱上发送信号,否则不发送信号,这种先监听后发送的机制即被称作LBT机制。换言之,为使多个非授权频段设备公平使用非授权频段信道,并避免非授权频段设备之间的相互干扰,目前采用LBT机制来实现对空闲信道的监听,在监听到非授权频段信道被占用时,表明LBT失败,则不发送信号,只有当监听到非授权频段信道空闲时,表明LBT成功,通信装置进而才会发送信号。
若LBT成功,即表明发送设备竞争到了可用信道,所以在LBT成功之后,发送设备可以向周边其它设备发送信道占用信号,该信道占用信号在不同的实施例中可以被称为信道保留(reservation)信号或信道使用(utilization)信号。该信道占用信号用于向其它设备指示发送设备在竞争到的信道上需要占用的传输时长,即信道占用时长,从而可以避免其它设备再在该信道上传输数据而导致碰撞,以提高通信可靠性和通信效率。其中,发送设备即前述的能够进行LBT的通信装置,可以是终端设备,具体而言,若发起LBT流程的设备是终端设备,则发送设备是终端设备。
其中,信道占用时长可以以微秒(μs)为单位,还可以以正交频分复用(orthogonal frequency division multiplexing,OFDM)符号为单位,还可以以时隙(slot)为单位,或者还可以以微时隙(mini-slot)为单位,等等。前述的OFDM符号或者slot对应的子载波间隔可以是标准预先规定的子载波间隔,也可以与信道占用信号的子载波间隔相同。
以下是本申请实施例所涉及的侧行链路控制信息(sidelink control information,SCI)。
在D2D/V2X技术中,SCI中可包括调制编码方式(modulation and coding scheme,MCS)、数据的调度信息等等,本申请实施例中,该种格式的SCI可称为SCIB(第三SCI)。
然而,本申请实施例提供了另一种格式的SCI,如称为SCIA,该SCIA还可分为SCIA1(第一SCI)和SCIA2(第二SCI)。以下将以第一SCI和第二SCI为例来说明该SCI A。
参见图5,图5示出的分别是第一SCI和第二SCI中所承载的内容。可理解,该第一SCI和第二SCI的载荷(playsize)大小相同。且该第一SCI的格式和/或该第二SCI的格式为同一个高层信令配置的。也就是说,该第一SCI中的字段的位置,或者,该第一SCI中的字段的位置和含义,通过一个高层信令配置给终端设备。该第二SCI中的字段的位置,或者,该第二SCI中的字段的位置和含义,通过一个高层信令配置给终端设备。该第一SCI和第二SCI中的字段的位置,或者,该第一SCI和第二SCI中的字段的位置和含义,通过一个共同的高层信令配置给终端设备。换句话说,该高层信令配置的各个字段的位置,或者,该高层信令配置的各个字段的位置和含义,不仅适用于第一SCI,也适用于第二SCI。
如图5所示,第一字段用于表示在SL上传输的数据的发送端信息,第三字段用于表示在SL上传输的数据的接收端信息。其中,该数据可表示为如终端设备1向终端设备2所发送的数据,其中,该终端设备1即为数据的发送端,该终端设备2即为数据的接收端。也就是说,该第一字段和该第三字段是为了表示该数据的传输方向,或者该第一字段可以表示该数据的发起端信息,该第三字段可以表示该数据的接收端信息。其中,该数据的发起端信息可以理解为从终端设备1向终端设备2所发送的该侧行链路数据PSSCH的发送方为终端设备1,该数据的接收信息可以理解为从终端设备1向终端设备2所发送的该侧行链路数据PSSCH的接收方为终端设备2。作为示例,该第一字段和该第三字段可分别为一比特,如可通过1或0分别标识发送终端设备(transmission,Tx)如终端设备1和接收终端设备(reception,Rx)如终端设备2。如当第一字段为1时,可表示发送终端设备为终端设备1;则第三字段为0,表示接收终端设备为终端设备2。可理解,该第一字段和该第三字段的表示方式还可为其他方式,如该第一字段和该第三字段还可为二比特,用11或00来分别表示发送终端设备和接收终端设备等等,本申请实施例对于以上示例不作限定。 本申请实施例用第一SCI的第一字段和第二SCI的第三字段作为示例,其中,第二SCI的第三字段也可以替换为第二SCI的第一字段。
可选的,该第一字段和该第三字段还可分别为第一SCI的格式标识和该第二SCI的格式标识。作为示例,第一字段的格式标识可为A1,可表示该第一SCI来自数据的发送端;第三字段的格式标识为A2,则也可表示该第二SCI来自数据的接收端(该接收端是相对于数据的发送端而言)。本申请实施例中的格式标识A1和A2作为示例,其中,该格式标识A1也可以替换为格式标识X(或Tx),该格式标识A2也可以替换为格式标识Y(或Rx)等等。作为示例,该X可为整数,该Y也可为整数。作为示例,该X可为字母,该Y也可为字母。作为示例,该X可为整数和字母的结合,该Y也可为整数和字母的结合。
可选的,第一SCI和第二SCI中还可分别包括用于表示可用子信道集合的信息的字段,该可用子信道集合可为发送终端设备或接收终端设备检测到的空闲子信道集合,或者,该可用子信道集合可为发送终端设备或接收终端设备检测到的可用子信道集合。即图5所示的可用子信道的字段可用于承载发送终端设备或接收终端设备检测到的可用子信道集合。作为示例,发送终端设备确定的可用子信道集合为子信道1至子信道5,以及子信道7至子信道9,则可将子信道1至子信道5、子信道7至子信道9填充于可用子信道对应的字段中。可理解,子信道1至子信道5,子信道7至子信道9即为该可用子信道集合所包括的多个子信道的索引。作为示例,该可用子信道集合可以为集合index指示,也可以为子信道index指示,还可以为bitmap。
本申请实施例中,可以将N个物理资源块(physical resource block,PRB)分为一个子信道,其中N个PRB可以是连续的PRB或者不连续的PRB等,本申请实施例不作限定。其中,N为正整数。例如,N=12,一个物理子信道由12个子载波×1个slot的时频二维结构组成,其中,一个slot可以为14个正交频分复用(orthogonalfrequencydivisionmultiplexing,OFDM)符号或者13个OFDM符号。此外,N可以为任何定义的正整数,时域上可以为一个slot,或者一个mini-slot,或者M个符号,其中,M为大于等于1且小于等于14的正整数。作为另一个示例,N可以为小于等于12的任何整数。可理解,该连续的PRB可理解为从PRB(M)到PRB(N),中间不间断,该M小于N,且M与N为正整数。具体的,在侧行链路传输中,终端设备1与终端设备2之间可使用该可用子信道进行数据信息的传输,和/或,使用该可用子信道进行控制信息的传输等等。
具体的,检测子信道是否可用的方法:如终端设备可以根据在所述子信道上接收的信号能量或检测/监听到的信号能量来检测子信道是否可用。所述信号能量包括信号指示强度(received signal strength indication,RSSI)、参考信号接收功率(reference signal receiving power,RSRP)或信号加干扰噪声比(signal to interference plus noise ratio,SINR)中的任意一项。举例来说,终端设备检测子信道1时,可以先从检测到的周围终端设备发送的控制信息中解读该控制信息所包含的服务质量(quality of service,QoS)信息,并且根据自身待传输数据的QoS信息与被检测到的子信道1上的待传输数据的QoS信息进行比较,根据上述两个Qos信息确定门限阈值,如果在所述子信道上接收的信号能量满足对应的门限阈值,则可以使用该子信道1,否则不能使用该子信道1。其中,该控制信 息所包含的QoS信息是周围终端设备的待发送数据的QoS信息。其中,满足对应的门限阈值可以理解为检测到的信号能量小于或等于门限阈值。其中,检测到的信号能量可以是根据上述RSSI、RSRP或者SINR中任意一种或多种来进行判断,还可以是根据检测到的SCI的信号强度,或者检测到的PSSCH的信号强度来进行判断等等,本申请实施例不作限定。其中,所述子信道上接收的信号能量为检测到的PSSCH的信号强度具体可以为:对从SCI中获取的使用所述子信道的PSSCH进行检测,得到使用所述子信道的PSSCH的信号强度。可理解,本申请中QoS信息也可以称之为QoS级别信息,也可以称为业务优先级信息等等,本申请实施例对于该QoS信息的具体名称不作限定。该QoS信息包括优先级(prose per-packet priority,PPPP),或N质量指标(quality index,QI)等中至少一种用于表示QoS的相关参数。可理解,该门限阈值为根据检测终端设备与被检测终端设备两者的QoS信息确定的门限值,所述门限值可以是预先配置的,或者网络设备通过RRC信令配置给终端设备的。
本申请实施例中,检测子信道,接收子信道,或监听子信道可以互换。进一步的,上述检测子信道是否可用的方法还可应用于子信道集合,例如对于该子信道集合中包含的所有子信道的检测到的信号能量作平均。即,该子信道集合中包含的所有子信道的检测到的信号能量的线性平均值或加权平均值将被视为最终的该子信道集合的检测到的信号能量。例如,当该子信道集合包含子信道1,3,5时,对这三个子信道分别检测到的信号能量获取平均值。
可选的,该第一SCI和第二SCI中还可包括用于表示信道占用指示(channel utilization indicator,CUI)的字段,该CUI可用于表示发送终端设备或接收终端设备将要占用该可用子信道的时长,或者,该CUI也可表示其他终端设备需要为发送终端设备或接收终端设备预留该可用子信道的时长。作为示例,该CUI所指示的时长可以是任何根据时域资源的单位划分所得的时长。如本申请实施例中,该时域资源的单位可以为正交频分复用(orthogonal frequency division multiple,OFDM)符号,mini-slot,或时隙(slot)中任意一个或多个的组合。例如,该CUI可以指示10个时隙(slot)或5个slot等等。可理解,该CUI可以是连续的时间段,也可以是非连续的时间段等等,本申请实施例不作限定。
需要说明的是,该可用子信道集合可包括一个或多个子信道,也就是说,第一SCI可以包括一个子信道或多个子信道的信息等等,本申请实施例不作限定。在该第一SCI包括多个子信道的信息时,该多个子信道可以为连续的多个子信道,还可为不连续的多个子信道等等,本申请实施例不作限定。可理解,第二SCI也可以指示一个子信道或多个子信道的信息,这里不再一一详述。
可理解,在发送终端设备与接收终端设备所分别检测到的可用子信道集合有共同的可用子信道集合时,该发送终端设备可使用所检测到的共同的可用子信道集合传输控制信息和/或数据信息。其中,有共同的可用子信道集合包括发送终端设备与接收终端设备所检测到的可用子信道集合相同,或者发送终端设备与接收终端设备所检测到的可用子信道集合有交叠(overlap)的部分(即有交集)。但是在发送终端设备和接收终端设备分别检测到的可用子信道集合完全不同,也就是说,发送终端设备所检测到的可用子信道集合与接收终 端设备所检测到的可用子信道集合没有任何交集时,发送终端设备可使用接收终端设备所检测到的可用子信道集合传输控制信息和/或数据信息。
可选的,该第一SCI和该第二SCI中还可包括特征(feature)字段即分别为第二字段和第四字段。发送终端设备的特征字段即第二字段可用于指示数据的优先级信息。第一SCI通过指示数据的优先级信息,可使得其他终端设备检测发送终端设备的第一SCI所包含的可用子信道时,该其他终端设备数据的优先级信息来确定是否可抢占该可用子信道,或者,是否需要避免使用该可用子信道。接收终端设备的特征域可用于指示信道状态信息(channel state information,CSI),该CSI可理解为接收终端设备所检测到的子信道集合的信道状态,通过该CSI可使得发送终端设备得知接收终端设备接收信息时信道状态怎么样,从而该发送终端设备能在对侧行链路的数据信息的调度传输中使用相应的MCS等。可选的,该接收终端设备的特征域可为预留比特。作为一个示例,如果接收终端设备的特征域未被激活,也就是说,该接收终端设备不能反馈信道状态,由此该接收终端设备的特征域可为预留比特。该情况下,接收终端设备可通过无线资源控制(radio resource control,RRC)信令指示该CSI未被激活,或者,也可通过动态信令来指示该CSI未被激活。可选的,在通过动态信令来指示该CSI未被激活时,该动态信令可为SCIB(第三SCI)、下行控制信息(downlink control information,DCI)或SCIA等等,本申请实施例不作限定。
可选的,第一字段可为SL上用于测量的参考信号的指示信息;其中,SL上用于测量的参考信号的指示信息可以是用于进行SLCSI测量的参考信号的索引,或者用于进行SLCSI测量的参考信号的激活信息,或者用于进行SLCSI测量的激活信息。该激活信息也可以称之为使能信息。可选的,第三字段可为CSI,以及第四字段可用于指示预留比特(或称为预留字段),或反馈信息。本申请中,第二SCI中所包含的反馈信息为对第一SCI的反馈信息,即是否正确接收到第一SCI的反馈(ACK/NACK)。
可理解,以上所示出的SCIA中不包括MCS等调度信息。本申请实施例中MCS为调制解调方案(modulation and coding scheme)。本申请中MCS为泛指,即在不同的控制信息中,MCS可以为不同取值。
可选的,鉴于该第一SCI和该第二SCI中可不包括MCS,即该第一SCI和该第二SCI与第三SCI不同,因此传输该第一SCI和该第二SCI所使用的子信道集合(包括一个或多个子信道)可以被定义位于特定的搜索空间。也就是说,发送终端设备发送该第一SCI所使用的子信道集合可以是该特定的搜索空间中的一个或多个子信道。如发送终端设备发送该第一SCI所使用的控制信道元素(control channel element,CCE)/控制资源集(control resource set,CORSET)所在的子信道集合可以为特定的搜索空间中的子信道集合x,该子信道集合x中包括一个或多个子信道。
需要说明的是,该第一SCI以及该第二SCI中各个字段,或各个域,或所包含的各个信息的顺序,仅为示例,不应理解为对本申请实施例的限定。
接着,以下将以发送终端设备为终端设备1,接收终端设备为终端设备2,以及与终端设备1对应的SCIA为第一SCI,与终端设备2对应的SCIA为第二SCI为例,来说明本申请实施例所提供的信息传输方法。然而在实际应用中,终端设备1不仅可以与终端设备2 进行交互,还可以与终端设备3、终端设备4等等进行交互;以及终端设备2不仅可以与终端设备1进行交互,还可以与终端设备3、终端设备4和终端设备5等等进行交互。因此,不应将以下所示出的例子理解为对本申请的限定。
图6是本申请实施例提供的一种信息传输方法的场景示意图,该信息传输方法包括:
601、终端设备1检测并确定可用子信道集合,如将确定的可用子信道集合称为第一子信道集合,该第一子信道集合包含一个或多个子信道。
本申请实施例中,该终端设备1检测可用子信道也可称为该终端设备1监听可用子信道。该终端设备1检测可用子信道集合的方法可参考前述实施例中发送终端设备或接收终端设备检测可用子信道或可用子信道集合的方法,这里不再一一详述。
602、终端设备1向终端设备2发送第一SCI。
图5所示的第一SCI中表示可用子信道集合的信息的字段即包括该第一子信道集合的信息,例如可包括该第一子信道集合的索引(index),该索引也可称为标识等等;又例如可包括组成该第一子信道集合的子信道的索引(index),该索引也可称为标识等等;又例如可包括各个子信道组成的比特位图(bitmap),即组成该第一子信道集合的子信道的对应位被标记为1的比特位图等。
603、终端设备2检测并确定可用子信道集合,如将确定的可用子信道集合称为第二子信道集合,该第二子信道集合包含一个或多个子信道。
该终端设备2可以在接收到第一SCI后检测并确定可用子信道集合,还可以在未接收到第一SCI就检测并确定可用子信道集合。也就是说,该步骤603可以在步骤601之后,也可以在步骤601之前等等,本申请实施例不作限定。
604、终端设备2向终端设备1发送第二SCI。
图5所示的第二SCI中表示可用子信道集合的信息的字段可用于包括该第二子信道集合的信息,即该第二SCI中指示可用子信道集合的字段可以指示该第二子信道集合。
可理解,该第一SCI和该第二SCI的具体内容可参考前述实施例。第二SCI中表示可用子信道集合的信息的字段即包括该第二子信道集合的信息,例如可包括该第二子信道集合的索引(index),该索引也可称为标识等等;又例如可包括组成该第二子信道集合的子信道的索引(index),该索引也可称为标识等等;又例如可包括各个子信道组成的比特位图(bitmap),即组成该第二子信道集合的子信道的对应位被标记为1的比特位图等。
可选的,该第一SCI和该第二SCI在搜索空间中可以以如图7和图8所示出的例子来发送。如图7中在时域上占满一个时隙(slot)频域上依次相邻排列,也可以是如图8中在时域上占几个符号,不到一个slot,时域上和频域上依次相邻排列。
本申请实施例中,对于从终端设备1向终端设备2发送的数据,第一SCI和第二SCI在时间域上有先后关系,即终端设备1发送的第一SCI时间提前于终端设备2发送的第二SCI。对于不同的数据业务对或数据业务组来说,第一SCI和第二SCI在时间域上没有先后关系,即如果终端设备1向终端设备2发送数据,终端设备3向终端设备4发送数据,则终端设备1发送的第一SCI和终端设备4发送的第二SCI在时间域上没有先后关系,即终端设备1发送的第一SCI时间可以提前于终端设备4发送的第二SCI,或者,终端设备4发送的第二SCI时间可以提前于终端设备1发送的第一SCI,或者,终端设备4发送的第 二SCI时间可以与终端设备1发送的第一SCI同时出现。
605、终端设备1接收来自终端设备2的第二SCI,确定目标子信道集合。
本申请实施例中,该目标子信道集合可以是从第一子信道集合与第二子信道集合的交集中确定出来的子信道集合,或者,该目标子信道集合还可以是从第二子信道集合确定出来的子信道集合。对于该目标子信道集合的具体描述可参考前述实施例,这里不再一一详述。
606、终端设备1通过该目标子信道集合向终端设备2发送第三SCI,以及终端设备1向终端设备2发送侧行链路的数据。
图9是本申请实施例提供的一种第三SCI格式的示意图,其中,该第三SCI中可包括MCS、调度子信道集合(包括一个或多个子信道)、PPPP、CUI中至少一个或多个的组合,还可以包含对反馈资源的指示信息。该调度子信道集合可理解为用于调度数据的子信道集合,该对反馈资源的指示信息可理解为用于传输反馈信息的资源。具体来说,用于传输反馈信息的资源可以为:用于传输反馈信息的子信道集合信息(可以称为反馈子信道集合),或者,用于传输反馈信息的物理资源块(physical resource block,PRB)/资源元素(resource element,RE)信息。作为示例,用于传输反馈信息的子信道集合信息可以通过用于传输反馈信息的子通道(称之为反馈子信道)进行指示;还可以通过相对于用于传输数据信息的子信道的偏移量进行标识。作为示例,该PRB/RE可以指示为某子信道中的PRB/RE index;该PRB/RE还可以只指示为PRB/RE index。本申请实施例中该PPPP仅为示例,该PPPP也可以替换为任何QoS信息。作为示例,QoS也可以为QoS索引,如N QoS index(N QI),其中N为正整数。
可选的,该反馈子信道集合可以是从第一子信道集合与第二子信道集合的交集中确定出来的子信道集合,或者,该反馈子信道集合还可以是从第一子信道集合确定出来的子信道集合,即该反馈子信道集合至少包含于第一子信道集合中。因为终端设备2在接收到SL上的数据之后,需要反馈该数据是否正确接收,由此该反馈信息可通过该反馈子信道集合来反馈。进一步的,为了使得终端设备1能够接收到该反馈信息,因此,该反馈子信道集合至少包含于第一子信道集合中。
本申请中反馈信息为侧行链路上的HARQ信息,即SL ACK/NACK信息。所述侧行链路上的HARQ信息通常承载于侧行链路反馈信道(physical sidelink feedbackchannel,PSFCH)。
607、终端设备2接收来自终端设备1的第三SCI,向终端设备1发送物理侧行链路反馈信息。
本申请实施例中,根据第三SCI所指示的用于传输反馈信息的资源将PSFCH传输给终端设备1。
需要说明的是,如果发送SCI有发送时刻的要求,或者发送SCI有对齐slot边界的要求,那么在任何选定的用于发送SCI子信道集合,发送SCI之前,需要在选定的子信道集合上进行填充(padding)。其中,发送SCI有发送时刻的要求,或者发送SCI有对齐slot边界的要求,可以理解为:发送SCI的时刻要求位于slot的第一个符号的起始点,或者第N个符号的起始点(N大于或等于1,并且小于或等于14)。具体来说,可以通过序列(sequence)进行填充(padding),其中sequence可以为前导码(preamble code)或者响应参考信号 (sounding reference signal,SRS)。需要说明的是,该段中所示的SCI可为第一SCI或第二SCI。
本申请实施例中,终端设备1与终端设备2可以对同样大小的SCI进行检测,也就是说,终端设备1发送的第一SCI与终端设备2发送的第二SCI的载荷(playload)大小相同,且该第一SCI与该第二SCI同一位置的字段有不同的解释,不仅满足终端设备1发送QoS的需求,还满足了终端设备2发送CSI的需求。载荷相同,减少了检测复杂度,也根据发送方和接收方的需要适用了相应的需求,减少overhead。
图10a是本申请实施例提供的一种信息传输方法的流程示意图,该信息传输方法可应用于第一终端设备,还可应用于第二终端设备等,本申请实施例对于执行该信息传输方法的终端设备不作限定。以下直接以终端设备为例来说明,如图10a所示,该信息传输方法包括:
1001、终端设备确定调度模式,该调度模式包括第一模式或第二模式。
本申请实施例中,该第一模式为基于网络设备的调度模式(即mode1),该第二模式为基于竞争的调度模式(mode2)。对于该mode2的具体描述可参考前述实施例,这里不作一一详述。
如图10b所示,图10b是在mode1下终端设备1如何与网络设备进行交互,以及终端设备1如何与终端设备2进行交互的流程图。其中,在终端设备1需要发送数据时,该终端设备1可以向网络设备发送SR,该网络设备下发下行控制信息(downlink control information,DCI),该DCI可用于指示用于传输SL上待传输数据量的缓冲状态报告(buffer state report,BSR)(也可以称为缓存区状态报告)的传输资源;然后该终端设备1在所指示的用于传输SL上待传输数据量的BSR的传输资源上向该网络设备发送BSR,该网络设备再次下发DCI,该DCI用于指示用于SL上待传输数据的传输资源;其中,用于SL上待传输数据的传输资源通常通过子信道来进行指示,该传输资源通常包括用于物理侧行链路控制信道(physical sidelink control channel,PSCCH)的资源和用于物理侧行链路共享信道(physical sidelink shared channel,PSSCH)的资源中至少一项;进而该终端设备1可通过PSCCH与终端设备2进控制信息的通信,和/或,通过PSSCH与终端设备2进行数据信息的通信。可理解,图10b所示的方法仅为示例,不应将其理解为对本申请实施例的限定。
1002、终端设备检测并确定可用子信道集合。
本申请实施例中,对于不同的调度模式,终端设备在检测可用子信道集合时的判断门限不同。如第一模式对应第一门限,第二模式对应第二门限,且该第一门限小于该第二门限。其中,第一模式对应第一门限,可理解为,当终端设备为通过第一模式进行侧行链路的数据传输,终端设备检测子信道集合是否可用时可以依据检测到的信号能量是否小于或等于第一门限;第二模式对应第二门限,可理解为,当终端设备为通过第二模式进行侧行链路的数据传输,终端设备检测子信道集合是否可用时依据检测到的信号能量是否小于或等于第二门限。
具体的,如终端设备可以根据在子信道上接收的信号能量或检测到的信号能量来检测 子信道是否可用。举例来说,终端设备检测子信道1时,可以先从检测到的周围终端设备发送的控制信息中解读该控制信息所包含的服务质量(quality of service,QoS)信息,并且根据自身待传输数据的QoS信息与被检测到的子信道1上的待传输数据的QoS信息进行比较,根据上述两个Qos信息确定第一门限(或第二门限),如果在子信道1上接收的信号能量满足对应的门限阈值,则可以使用该子信道1,否则不能使用该子信道1。其中,该控制信息所包含的QoS信息是周围终端设备的待发送数据的QoS信息。其中,满足对应的门限阈值可以理解为检测到的信号能量小于或等于第一门限(或第二门限)。其中,检测到的信号能量可以是根据上述RSSI、RSRP或者SINR中任意一种或多种来进行判断,还可以是根据检测到的SCI的信号强度,或者检测到的PSSCH的信号强度来进行判断等等,本申请实施例不作限定。可理解,本申请中QoS信息也可以称之为QoS级别信息,也可以称为业务优先级信息等等,本申请实施例对于该QoS信息的具体名称不作限定。该QoS信息包括优先级(prose per-packet priority,PPPP),或N质量指标(quality index,QI)等中至少一种用于表示QoS的相关参数。可理解,该第一门限和/或第二门限为根据检测终端设备与被检测终端设备两者的QoS信息确定的门限值,如该门限值可以是预先配置的,或者网络设备通过RRC信令配置给终端设备的。
可理解,在终端设备检测并确定可用子信道集合之后,该终端设备可以根据该可用子信道集合执行相关操作,如可将该可用子信道集合上报给网络设备,又或者,可将该可用子信道集合通知给其他终端设备(如可执行图6所示的方法)等等,本申请实施例对于该终端设备根据该可用子信道所执行的相关操作不作限定。
本申请实施例中,由于第一模式可以只依靠终端设备进行检测,该终端设备上报给网络设备该可用子信道集合,因此第一模式下所上报的可子信道集合的能量门限要求更严格,从而保证上报的子信道集合免于碰撞。而第二模式可以依靠终端设备1来检测,也可以依靠终端设备2来检测,因此该可用子信道集合的能量门限定义得更大,不仅能够保证终端设备使用的子信道集合,还能免于碰撞。
最后,将详细描述本申请实施例所提供的通信装置。
图11是本申请实施例提高的一种通信装置的结构示意图,该通信装置用于执行本申请实施例所描述的信息传输方法,如图11所示,该通信装置包括:
发送单元1101,用于向第二终端设备发送第一侧行链路控制信息SCI;
其中,该第一SCI包括第一子信道集合的信息,该第一子信道集合为该第一终端设备在侧行链路SL上检测到的可用的子信道集合,且该第一SCI中不包括调制与编码策略MCS信息。
在一种可能的实现方式中,该第一SCI包括第一字段和第二字段;其中,该第一字段用于表示在SL上传输的数据的发送端信息,或者,该第一字段为该第一SCI的格式标识;该第二字段用于指示该数据的优先级信息。
在一种可能的实现方式中,该通信装置还包括:
接收单元1102,用于接收第二终端设备发送的第二SCI,该第二SCI包括第二子信道集合的信息,该第二子信道集合为该第二终端设备在SL上检测到的可用的子信道集合,且 该第二SCI不包括MCS信息。
在一种可能的实现方式中,该第二SCI与该第一SCI的载荷大小相同。
在一种可能的实现方式中,该第二SCI包括第三字段和第四字段;其中,该第三字段用于表示在SL上传输的数据的接收端信息,或者,所示第三字段为该第二SCI的格式标识;该第四字段用于指示信道状态信息CSI、反馈信息或预留比特中的至少一种。
在一种可能的实现方式中,该第一SCI的格式和该第二SCI的格式为同一个高层信令配置的。
在一种可能的实现方式中,该通信装置还包括:
处理单元1103,用于根据该第一子信道集合和该第二子信道集合确定目标子信道集合;
发送单元1101,还用于在该目标子信道集合向该第二终端设备发送数据。
在一种可能的实现方式中,该目标子信道集合为该第一子信道集合和该第二子信道集合的交集。
在一种可能的实现方式中,该发送单元1101,还用于向该第二终端设备发送第三SCI,该第三SCI中包括SL的数据的调度信息。
在一种可能的实现方式中,该第三SCI中还包括用于指示反馈子信道集合的信息,该反馈子信道集合至少包含于该第一子信道集合中。
可选的,图11所示的通信装置还可用于执行以下操作:
处理单元1103,可用于确定调度模式,该调度模式包括第一模式或第二模式;
处理单元1103,还可用于检测可用子信道集合;其中,在该调度模式为第一模式的情况下,通过第一门限检测该可用子信道集合;在该调度模式为第二模式的情况下,通过第二门限检测该可用子信道集合,该第一门限小于该第二门限。
在一种可能的实现方式中,该第一门限和该第二门限为预定义的,或者该第一门限和该第二门限由网络设备通过信令配置。
本申请实施例中,当上述通信装置是终端设备或终端设备中实现上述功能的部件时,处理单元1103可以是一个或多个处理器,发送单元1101可以是发送器,接收单元1102可以是接收器,或者发送单元1101和接收单元1102集成于一个器件,例如收发器。作为示例,收发器可以向第二终端设备发送第一侧行链路控制信息SCI,以及在该目标子信道集合向该第二终端设备发送数据。又例如,该收发器可以接收该第二终端设备发送的第二SCI。
当上述通信装置是芯片时,处理单元1103可以是一个或多个处理器,发送单元1101可以是输出接口,接收单元1102可以是输入接口,或者发送单元1101和接收单元1102集成于一个单元,例如输入输出接口。
可理解,对于图11所示的各个单元的实现还可以对应参照图6所示的方法实施例的相应描述,或者还可以对应参照图10a所示的方法实施例的相应描述。
图12是本申请实施例提高的一种通信装置的结构示意图,该通信装置用于执行本申请实施例所描述的信息传输方法,如图12所示,该通信装置包括:
接收单元1201,用于接收第一终端设备发送的第一SCI;其中,该第一SCI包括第一子信道集合的信息,该第一子信道集合为该第一终端设备在侧行链路SL上检测到的可用的 子信道集合,且该第一SCI中不包括调制与编码策略MCS信息;
发送单元1202,用于向该第一终端设备发送第二SCI,该第二SCI包括第二子信道集合的信息,该第二子信道集合为该第二终端设备在SL上检测到的可用的子信道集合,且该第二SCI不包括MCS信息。
在一种可能的实现方式中,该第一SCI包括第一字段和第二字段;其中,该第一字段用于表示在SL上传输的数据的发送端信息,或者,该第一字段为该第一SCI的格式标识;该第二字段用于指示该数据的优先级信息。
在一种可能的实现方式中,该第二SCI包括第三字段和第四字段;其中,该第三字段用于表示在SL上传输的数据的接收端信息,或者,所示第三字段为该第二SCI的格式标识;该第四字段用于指示信道状态信息CSI、反馈信息或预留比特中的至少一种。
在一种可能的实现方式中,该第二SCI与该第一SCI的载荷大小相同。
在一种可能的实现方式中,第一SCI的格式和第二SCI的格式为同一个高层信令配置的。
在一种可能的实现方式中,该接收单元1201,还用于接收该第一终端设备在目标子信道集合发送的该数据,该目标子信道集合为该第一子信道集合和该第二子信道集合的交集。
在一种可能的实现方式中,该接收单元1201,还用于接收该第一终端设备发送的第三SCI,该第三SCI中包括SL的数据的调度信息。
在一种可能的实现方式中,该第三SCI中还包括用于指示反馈子信道集合的信息,该反馈子信道集合至少包含于该第一子信道集合中。
本申请实施例中,当上述通信装置是终端设备或终端设备中实现上述功能的部件时,发送单元1202可以是发送器,接收单元1201可以是接收器,或者发送单元1202和接收单元1201集成于一个器件,例如收发器。作为示例,收发器可以接收第一终端设备发送的第一SCI,以及还可向该第一终端设备发送第二SCI。可理解,上述通信装置还可包括处理器,如该处理器可以检测第二子信道集合等,本申请实施例不作限定。
当上述通信装置是芯片时,发送单元1202可以是输出接口,接收单元1201可以是输入接口,或者发送单元1202和接收单元1201集成于一个单元,例如输入输出接口。可理解,该通信装置还可包括处理器。
可理解,对于图12所示的各个单元的实现还可以对应参照图6所示的方法实施例的相应描述,或者还可以对应参照图10a所示的方法实施例的相应描述。
图13为本申请实施例提供的一种终端设备1300的结构示意图。该终端设备可执行如图6所示出的方法中的第一终端设备(终端设备1)的操作,或者,该终端设备也可执行如图11所示的通信装置的操作。以及该终端设备还可用于执行如图6所示的方法中的第二终端设备(终端设备2)的操作,或者,该终端设备也可执行如图12所示的通信装置的操作。以及该终端设备还可用于执行图10a所示的方法。
为了便于说明,图13仅示出了终端设备的主要部件。如图13所示,终端设备1300包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数 据,例如用于支持终端设备执行图6或图10a所描述的流程。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。终端设备1300还可以包括输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图13仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器(central processing unit,CPU),基带处理器主要用于对通信协议以及通信数据进行处理,CPU主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。可选的,该处理器还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器可以包括易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
示例性的,在申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备1300的收发单元1301,将具有处理功能的处理器视为终端设备1300的处理单元1302。
如图13所示,终端设备1300可以包括收发单元1301和处理单元1302。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1301中用于实现接收功能的器件视为接收单元,将收发单元1301中用于实现发送功能的器件视为发送单元,即收 发单元1301包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
在一些实施例中,收发单元1301、处理单元1302可能集成为一个器件,也可以分离为不同的器件,此外,处理器与存储器也可以集成为一个器件,或分立为不同器件。
可理解,收发单元1301可用于执行上述方法实施例中终端设备1的发送操作和接收操作,处理单元1302用于执行上述方法实施例中终端设备1除了收发操作之外的其他操作。
例如,收发单元1301可用于执行图6中的602、604和606中的发送和接收操作,处理单元1302可用于执行图6中601、603和604所示的操作,以及还可用于执行图10a中1001和1002所示的操作。
可理解的是,本申请实施例中的终端设备的实现方式,具体可参考前述各个实施例,这里不再详述。
本申请实施例中的终端设备还可以参照图14所示的设备。在图14中,该终端设备包括处理器1410,发送数据处理器1420,接收数据处理器1430。如上述实施例中的处理单元1103可以是图14中的该处理器1410,并完成相应的功能。又如上述实施例中的发送单元1101可以是图14中的发送数据处理器1420,接收单元1102可以是图14中的接收数据处理器1430。虽然图14中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图15示出本申请实施例的另一种形式。处理装置1500中包括调制子系统、中央处理子系统、周边子系统等模块。本申请实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1503,接口1504。其中处理器1503完成上述处理单元1103的功能,接口1504完成上述发送单元1101和/或接收单元1102的功能。作为另一种变形,该调制子系统包括存储器1506、处理器1503及存储在存储器1506上并可在处理器上运行的程序,该处理器1503执行该程序时实现上述方法实施例中终端设备1的方法。需要注意的是,所述存储器1506可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1500中,只要该存储器1506可以连接到所述处理器1503即可。
本申请实施例还提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中终端设备1的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中终端设备1的方法。
本申请实施例还提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中终端设备2的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中终端设备2的方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (42)

  1. 一种信息传输方法,其特征在于,所述方法包括:
    第一终端设备向第二终端设备发送第一侧行链路控制信息SCI;
    其中,所述第一SCI包括第一子信道集合的信息,所述第一子信道集合为所述第一终端设备在侧行链路SL上检测到的可用的子信道集合,且所述第一SCI中不包括调制与编码策略MCS信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一SCI包括第一字段和第二字段;其中,所述第一字段用于表示在SL上传输的数据的发送端信息,或者,所述第一字段为所述第一SCI的格式标识;所述第二字段用于指示所述数据的优先级信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收所述第二终端设备发送的第二SCI,所述第二SCI包括第二子信道集合的信息,所述第二子信道集合为所述第二终端设备在SL上检测到的可用的子信道集合,且所述第二SCI不包括MCS信息。
  4. 根据权利要求3所述的方法,其特征在于,所述第二SCI与所述第一SCI的载荷大小相同。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第二SCI包括第三字段和第四字段;其中,所述第三字段用于表示在SL上传输的数据的接收端信息,或者,所示第三字段为所述第二SCI的格式标识;所述第四字段用于指示信道状态信息CSI、反馈信息或预留比特中的至少一种。
  6. 根据权利要求3-5任一项所述的方法,其特征在于,第一SCI的格式和第二SCI的格式为同一个高层信令配置的。
  7. 根据权利要求3-6任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据所述第一子信道集合和所述第二子信道集合确定目标子信道集合;
    所述第一终端设备在所述目标子信道集合向所述第二终端设备发送所述数据。
  8. 根据权利要求7所述的方法,其特征在于,所述目标子信道集合为所述第一子信道集合和所述第二子信道集合的交集。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述第二终端设备发送第三SCI,所述第三SCI中包括SL的数据的调度信息。
  10. 根据权利要求9所述的方法,其特征在于,所述第三SCI中还包括用于指示反馈子信道集合的信息,所述反馈子信道集合至少包含于所述第一子信道集合中。
  11. 一种信息传输方法,其特征在于,所述方法包括:
    第二终端设备接收第一终端设备发送的第一SCI;其中,所述第一SCI包括第一子信道集合的信息,所述第一子信道集合为所述第一终端设备在侧行链路SL上检测到的可用的子信道集合,且所述第一SCI中不包括调制与编码策略MCS信息;
    所述第二终端设备向所述第一终端设备发送第二SCI;其中,所述第二SCI包括第二 子信道集合的信息,所述第二子信道集合为所述第二终端设备在SL上检测到的可用的子信道集合,且所述第二SCI不包括MCS信息。
  12. 根据权利要求11所述的方法,其特征在于,所述第一SCI包括第一字段和第二字段;其中,所述第一字段用于表示在SL上传输的数据的发送端信息,或者,所述第一字段为所述第一SCI的格式标识;所述第二字段用于指示所述数据的优先级信息。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第二SCI包括第三字段和第四字段;其中,所述第三字段用于表示在SL上传输的数据的接收端信息,或者,所示第三字段为所述第二SCI的格式标识;所述第四字段用于指示信道状态信息CSI、反馈信息或预留比特中的至少一种。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,所述第二SCI与所述第一SCI的载荷大小相同。
  15. 根据权利要求11-14任一项所述的方法,其特征在于,第一SCI的格式和第二SCI的格式为同一个高层信令配置的。
  16. 根据权利要求11-15任一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备接收所述第一终端设备在目标子信道集合发送的所述数据,所述目标子信道集合为所述第一子信道集合和所述第二子信道集合的交集。
  17. 根据权利要求11-16任一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备接收所述第一终端设备发送的第三SCI,所述第三SCI中包括SL的数据的调度信息。
  18. 根据权利要求17所述的方法,其特征在于,所述第三SCI中还包括用于指示反馈子信道集合的信息,所述反馈子信道集合至少包含于所述第一子信道集合中。
  19. 一种通信装置,其特征在于,所述通信装置为第一终端设备,所述通信装置包括:
    发送单元,用于向第二终端设备发送第一SCI;其中,所述第一SCI包括第一子信道集合的信息,所述第一子信道集合为所述第一终端设备在侧行链路SL上检测到的可用的子信道集合,且所述第一SCI中不包括调制与编码策略MCS信息。
  20. 根据权利要求19所述的通信装置,其特征在于,所述第一SCI包括第一字段和第二字段;其中,所述第一字段用于表示在SL上传输的数据的发送端信息,或者,所述第一字段为所述第一SCI的格式标识;所述第二字段用于指示所述数据的优先级信息。
  21. 根据权利要求19或20所述的通信装置,其特征在于,所述第一终端设备还包括:
    接收单元,用于接收第二终端设备发送的第二SCI,所述第二SCI包括第二子信道集合的信息,所述第二子信道集合为所述第二终端设备在SL上检测到的可用的子信道集合,且所述第二SCI不包括MCS信息。
  22. 根据权利要求21所述的通信装置,其特征在于,所述第二SCI与所述第一SCI的载荷大小相同。
  23. 根据权利要求21或22所述的通信装置,其特征在于,所述第二SCI包括第三字段和第四字段;其中,所述第三字段用于表示在SL上传输的数据的接收端信息,或者,所示第三字段为所述第二SCI的格式标识;所述第四字段用于指示信道状态信息CSI、反馈信息或预留比特中的至少一种。
  24. 根据权利要求21-23任一项所述的通信装置,其特征在于,所述第一SCI的格式和所述第二SCI的格式为同一个高层信令配置的。
  25. 根据权利要求21-24任一项所述的通信装置,其特征在于,所述第一终端设备还包括:
    处理单元,用于根据所述第一子信道集合和所述第二子信道集合确定目标子信道集合;
    所述发送单元,用于在所述目标子信道集合向所述第二终端设备发送数据。
  26. 根据权利要求25所述的通信装置,其特征在于,所述目标子信道集合为所述第一子信道集合和所述第二子信道集合的交集。
  27. 根据权利要求19-26任一项所述的通信装置,其特征在于,
    所发送单元,还用于向所述第二终端设备发送第三SCI,所述第三SCI中包括SL的数据的调度信息。
  28. 根据权利要求27所述的通信装置,其特征在于,所述第三SCI中还包括用于指示反馈子信道集合的信息,所述反馈子信道集合至少包含于所述第一子信道集合中。
  29. 一种通信装置,其特征在于,所述通信装置为第二终端设备,所述通信装置包括:
    接收单元,用于接收第一终端设备发送的第一SCI;其中,所述第一SCI包括第一子信道集合的信息,所述第一子信道集合为所述第一终端设备在侧行链路SL上检测到的可用的子信道集合,且所述第一SCI中不包括调制与编码策略MCS信息;
    发送单元,用于向所述第一终端设备发送第二SCI;其中,所述第二SCI包括第二子信道集合的信息,所述第二子信道集合为所述第二终端设备在SL上检测到的可用的子信道集合,且所述第二SCI不包括MCS信息。
  30. 根据权利要求29所述的通信装置,其特征在于,所述第一SCI包括第一字段和第二字段;其中,所述第一字段用于表示在SL上传输的数据的发送端信息,或者,所述第一字段为所述第一SCI的格式标识;所述第二字段用于指示所述数据的优先级信息。
  31. 根据权利要求29或30所述的通信装置,其特征在于,所述第二SCI包括第三字段和第四字段;其中,所述第三字段用于表示在SL上传输的数据的接收端信息,或者,所示第三字段为所述第二SCI的格式标识;所述第四字段用于指示信道状态信息CSI、反馈信息或预留比特中的至少一种。
  32. 根据权利要求29-31任一项所述的通信装置,其特征在于,所述第二SCI与所述第一SCI的载荷大小相同。
  33. 根据权利要求29-32任一项所述的通信装置,其特征在于,第一SCI的格式和第二SCI的格式为同一个高层信令配置的。
  34. 根据权利要求29-33任一项所述的通信装置,其特征在于,
    所述接收单元,还用于接收所述第一终端设备在目标子信道集合发送的所述数据,所述目标子信道集合为所述第一子信道集合和所述第二子信道集合的交集。
  35. 根据权利要求29-34任一项所述的通信装置,其特征在于,
    所述接收单元,还用于接收所述第一终端设备发送的第三SCI,所述第三SCI中包括SL的数据的调度信息。
  36. 根据权利要求35所述的通信装置,其特征在于,所述第三SCI中还包括用于指示 反馈子信道集合的信息,所述反馈子信道集合至少包含于所述第一子信道集合中。
  37. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求1至10任一项所述的方法。
  38. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如权利要求1至10任一项所述的方法。
  39. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求11至18任一项所述的方法。
  40. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如权利要求11至18任一项所述的方法。
  41. 一种可读存储介质,其特征在于,所述可读存储介质用于存储指令,当所述指令被执行时,使如权利要求1-10中任一项所述的方法被实现。
  42. 一种可读存储介质,其特征在于,所述可读存储介质用于存储指令,当所述指令被执行时,使如权利要求11-18中任一项所述的方法被实现。
PCT/CN2019/108320 2019-09-26 2019-09-26 信息传输方法及装置 WO2021056366A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/108320 WO2021056366A1 (zh) 2019-09-26 2019-09-26 信息传输方法及装置
EP19947198.8A EP4024977A4 (en) 2019-09-26 2019-09-26 INFORMATION TRANSMISSION METHOD AND DEVICE
CN201980100417.6A CN114402671A (zh) 2019-09-26 2019-09-26 信息传输方法及装置
US17/704,549 US20220217702A1 (en) 2019-09-26 2022-03-25 Information transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/108320 WO2021056366A1 (zh) 2019-09-26 2019-09-26 信息传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/704,549 Continuation US20220217702A1 (en) 2019-09-26 2022-03-25 Information transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2021056366A1 true WO2021056366A1 (zh) 2021-04-01

Family

ID=75165523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108320 WO2021056366A1 (zh) 2019-09-26 2019-09-26 信息传输方法及装置

Country Status (4)

Country Link
US (1) US20220217702A1 (zh)
EP (1) EP4024977A4 (zh)
CN (1) CN114402671A (zh)
WO (1) WO2021056366A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11683727B2 (en) * 2021-03-31 2023-06-20 Qualcomm Incorporated Coexistence of redcap and non-redcap UEs in SL

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105451211A (zh) * 2014-09-25 2016-03-30 中兴通讯股份有限公司 用于设备到设备通信的方法及装置
WO2018039079A1 (en) * 2016-08-25 2018-03-01 Qualcomm Incorporated Autonomous resource selection for multiple transmissions in device-to-device communications
CN110100496A (zh) * 2017-03-31 2019-08-06 Lg电子株式会社 在无线通信系统中由终端发送信号以用于v2x通信的方法以及使用该方法的设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105451211A (zh) * 2014-09-25 2016-03-30 中兴通讯股份有限公司 用于设备到设备通信的方法及装置
WO2018039079A1 (en) * 2016-08-25 2018-03-01 Qualcomm Incorporated Autonomous resource selection for multiple transmissions in device-to-device communications
CN110100496A (zh) * 2017-03-31 2019-08-06 Lg电子株式会社 在无线通信系统中由终端发送信号以用于v2x通信的方法以及使用该方法的设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "PHY layer structure for NR sidelink", 3GPP TSG RAN WG1 MEETING #98 R1-1908911, 16 August 2019 (2019-08-16), XP051765519 *
FUTUREWEI: "Two-stage SCI design and adaptive DMRS support for sidelink", 3GPP TSG RAN WG1 MEETING #98 R1-1908737, 15 August 2019 (2019-08-15), XP051765345 *
See also references of EP4024977A4 *

Also Published As

Publication number Publication date
CN114402671A (zh) 2022-04-26
US20220217702A1 (en) 2022-07-07
EP4024977A1 (en) 2022-07-06
EP4024977A4 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
US11546827B2 (en) Method and device for changing wireless path in wireless communication system
KR102412727B1 (ko) 신호의 송수신 방법 및 장치
CN110891314B (zh) 一种通信方法、资源分配方法及装置
US20220201528A1 (en) Method and device for measuring and reporting channel state in sidelink communication
EP4050810A1 (en) Apparatus and method for sidelink beam operation in wireless communication system
EP4093132A1 (en) Method and apparatus for allocating resources through cooperation between terminals in v2x system
KR20210024197A (ko) Nr v2x 자원 선택 방법 및 장치
CN111771415A (zh) 用于侧行链路资源调度的机制
CN111278108A (zh) 确定传输资源的方法和装置
JP2023529776A (ja) 距離ベースのチャネル占有時間(cot)共有
CN115428569A (zh) 用于对侧链路通信的通信进行优先级排序的技术
CN116762296A (zh) 新无线电侧链路中的侧链路反馈信道信令
US20220217702A1 (en) Information transmission method and apparatus
CN115244885A (zh) 用于两步随机接入信道过程的紧凑下行链路控制信息
KR20220102613A (ko) 초기 사이드링크 제어 정보 통신을 통한 후속 사이드링크 송신들을 위한 자원들의 예비
KR20200116295A (ko) 무선 통신 시스템에서 피드백 송수신 방법 및 장치
WO2021056222A1 (zh) 一种资源调度方法及装置
CN115734202A (zh) 旁链路通信方法及设备
US20240155686A1 (en) Channel access priority class table for unlicensed sidelink
WO2024032565A1 (zh) 资源排除方法和相关产品
WO2022150991A1 (zh) 无线通信的方法和设备
WO2023151391A1 (zh) 波束训练方法及通信装置
WO2024032285A1 (zh) 一种通信方法及装置
KR20220133759A (ko) 무선 통신 시스템에서 사이드링크 릴레이 탐색 메시지의 전송 자원 할당을 지원하는 방법 및 장치
WO2024097466A1 (en) Channel access priority class table for unlicensed sidelink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019947198

Country of ref document: EP

Effective date: 20220331