WO2019214725A1 - 一种波束训练的方法、装置及系统 - Google Patents

一种波束训练的方法、装置及系统 Download PDF

Info

Publication number
WO2019214725A1
WO2019214725A1 PCT/CN2019/086447 CN2019086447W WO2019214725A1 WO 2019214725 A1 WO2019214725 A1 WO 2019214725A1 CN 2019086447 W CN2019086447 W CN 2019086447W WO 2019214725 A1 WO2019214725 A1 WO 2019214725A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
downlink signal
indication information
receiving
beams
Prior art date
Application number
PCT/CN2019/086447
Other languages
English (en)
French (fr)
Inventor
管鹏
唐小勇
王晓娜
张希
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112020022873-7A priority Critical patent/BR112020022873A2/pt
Priority to EP19798936.1A priority patent/EP3787359B1/en
Priority to CA3100559A priority patent/CA3100559C/en
Publication of WO2019214725A1 publication Critical patent/WO2019214725A1/zh
Priority to US17/095,017 priority patent/US11496204B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • H04L5/0025Spatial division following the spatial signature of the channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a beam communication based communication technology in a communication system, and in particular to a beam training method, apparatus and system in a communication system.
  • the use of beams for transmission in mobile communication systems ie by transmitting signals spatially in a particular direction, enables higher antenna array gains.
  • the beam can be realized by technical means such as beamforming.
  • beamforming For example, in high frequency (HF) communication, an important direction is analog plus hybrid beamforming, which can well resist the loss of high frequency signals due to transmission distance and complexity. And hardware cost control is within acceptable limits.
  • HF high frequency
  • beam training needs to be performed between the transmitting end and the receiving end.
  • Both analog beamforming and digital-analog hybrid beamforming need to adjust the analog beamforming weights at both ends of the transmitting and receiving, so that the formed
  • the beam can be aligned with the opposite end of the communication, i.e., beam alignment, and the weight of the beamforming is typically obtained by transmitting a training signal.
  • the result of beam training determines whether the signal can be transmitted normally.
  • beam training needs to consider more factors in communication to improve communication quality.
  • the present application provides a beam training method, apparatus, and system for performing beam training by considering other factors in communication, so that on-demand beam training can be effectively performed.
  • a method and apparatus for beam training is provided.
  • the method is applied to the terminal device, and the related indication information of the interference is sent to the terminal side through the network side, and the terminal device considers the corresponding interference factor when performing beam selection, so as to implement effective on-demand beam training.
  • the method includes: receiving related indication information of interference sent by a network device; receiving a downlink signal sent by the network device by using two or more beams, where the two or more beams include a beam corresponding to the interference; and the network And transmitting, by the device, related information of the selected beam, where the selected beam is a beam selected according to the related indication information of the interference and the measurement result of the downlink signal. It can be understood that the interference is determined by the network device.
  • the network device can perform signal transmission to other terminal devices according to whether the downlink signal is sent to the terminal device, and whether a certain beam has served as a service beam.
  • the interference is determined, and the relevant indication information of the interference is given to the terminal device.
  • the downlink signal includes, but is not limited to, a Primary Synchronization Signal (PSS)/Secondary Synchronization Signal (SSS), a downlink control channel demodulation reference signal PDCCH-DMRS, and a downlink data channel.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PDSCH-DMRS Demodulation reference signal
  • CSI-RS channel status information reference signal
  • CRS Cell Reference Signal
  • TRS Tim/frequency tracking Reference Signal
  • This design enables efficient on-demand beam training by performing beam selection by considering interference factors in beam training.
  • a beam training device that can implement a corresponding method in the first aspect.
  • the device is defined in a functional form, and may be an entity on the terminal side.
  • the specific implementation may be a terminal device, for example, a terminal device, or a chip or a function module in the terminal device, which may be implemented by software or hardware. Or implement the above method by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the first aspect method described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include a transceiver unit, wherein the transceiver unit is configured to communicate with the network device.
  • the apparatus may further include a processing unit configured to select a beam according to the indication information of the interference and the measurement result of the downlink signal.
  • a method and apparatus for beam training is provided.
  • the method is applied to a network device, such as an access node, and a transmission receiving point having a function of an access node part on the network side.
  • the related indication information of the interference is sent to the terminal side through the network side, so that the terminal device performs the beam selection and considers the corresponding interference factor, so as to implement effective on-demand beam training.
  • the method includes: transmitting relevant indication information of interference to a terminal device; transmitting a downlink signal to the terminal device by using two or more beams, where the two or more beams include a beam corresponding to the interference; and receiving the terminal Information about the selected beam of the terminal device sent by the device; wherein the selected beam is a beam selected by the terminal device according to the related indication information of the interference and the measurement result of the downlink signal.
  • the interference is determined by the network device.
  • the network device can perform signal transmission to other terminal devices according to whether the downlink signal is sent to the terminal device, and whether a certain beam has served as a service beam. In the case of other terminal devices, etc., the interference is determined, and the relevant indication information of the interference is given to the terminal device.
  • the downlink signal includes, but is not limited to, a Primary Synchronization Signal (PSS)/Secondary Synchronization Signal (SSS), a downlink control channel demodulation reference signal PDCCH-DMRS, and a downlink data channel.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PDSCH-DMRS Demodulation reference signal
  • CSI-RS channel status information reference signal
  • CRS Cell Reference Signal
  • TRS fine synchronization signal
  • This design enables efficient on-demand beam training by performing beam selection by considering interference factors in beam training.
  • a beam training device which can implement a corresponding method in the second aspect.
  • the device is defined in a functional form, and may be an entity on the access side.
  • the specific implementation may be an access node device, for example, an access node device, or a chip or a function module in the access node device.
  • the above method can be implemented by software, hardware, or by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the second aspect method described above.
  • the memory is coupled to the processor, which holds the necessary programs (instructions) and data for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the device may include a transceiver unit, wherein the transceiver unit is configured to send the related indication information of the interference, the downlink signal, and the related information of the beam sent by the terminal device to the terminal device.
  • the apparatus can also include a processing unit for determining relevant indication information for the interference.
  • the related indication information of the interference is used to indicate a transmission resource of a downlink signal sent by a beam corresponding to the interference, and/or a downlink signal received by a beam corresponding to the interference.
  • Beam the receiving beam includes a receiving beam that receives a non-interfering corresponding downlink signal, where the non-interfering corresponding downlink signal is a downlink signal that is sent by a non-interfering corresponding beam of the two or more beams.
  • the related indication information of the interference is used to indicate the receiving beam of the downlink signal that is sent by the beam corresponding to the interference, and the related indication information of the interference is used to indicate that the downlink corresponding to the non-interference is received.
  • the receiving beam of the signal respectively receives the downlink signal sent by the beam corresponding to the interference.
  • the downlink signal sent by the receiving network device by using two or more beams includes: receiving the interference by receiving the receiving beam of the non-interfering downlink signal according to the related indication information of the interference The downlink signal sent by the corresponding beam.
  • the related indication information of the interference may indicate that the terminal device separately receives the downlink signal corresponding to the interference by using the receiving beam of the downlink signal corresponding to the non-interference correspondingly, and optionally, the terminal device may also indicate that the terminal device uses the partial receiving non-interference.
  • the receiving beam of the corresponding downlink signal respectively receives the downlink signal corresponding to the interference
  • the terminal device may further receive the downlink signal corresponding to the interference by using the receiving beam of the downlink signal corresponding to the non-interference.
  • the design is such that the terminal device receives the downlink signal corresponding to the interference by receiving the receiving beam of the downlink signal that does not interfere, and the terminal device can obtain the interference amount of the downlink signal corresponding to the interference and the downlink signal corresponding to the other non-interference.
  • the manner in which the interference is related to the indication information includes a manner of explicit indication or a manner of implicit indication.
  • the network device sends the related indication information of the interference to the terminal device, and the indication may be indicated by an explicit indication or an implicit indication.
  • the manner of the explicit indication includes: transmitting related information of the interference.
  • the related information of the interference includes at least one of: indication information of a transmission resource for transmitting a downlink signal by using a beam corresponding to the interference, and indication information of a reception beam corresponding to the transmission resource. This design simplifies the operation of the terminal device by means of an explicit indication.
  • the manner of the implicit indication includes: configuring the indication information of the interference, including: indication information of a transmission resource for transmitting a downlink signal by using a beam corresponding to the interference, and the two or more The downlink signal transmitted by the beam is not the indication information of the receiving beam of the downlink signal corresponding to the downlink, and the downlink signal corresponding to the non-interference is the downlink signal of the downlink signal that is not transmitted by the beam corresponding to the interference.
  • the related information includes at least one of: a resource index of a downlink signal transmitted by the selected beam, a received power RSRP of a downlink signal transmitted by the selected beam, the interference The amount of interference information.
  • the terminal device can report the corresponding selected beam by reporting the resource index of the downlink signal, and report the received power RSRP and the interference amount to the network device, so that the network device can perform scheduling.
  • the interference quantity may be a ratio of a received power of the downlink signal sent by the non-interference corresponding beam received by the terminal device by using the same receiving beam to a received power of the downlink signal sent by the beam corresponding to the interference.
  • a method and apparatus for beam training is provided.
  • the method is applied to a terminal device, and the terminal device selects a beam reported by the packet by considering a specific selection criterion of the packet reporting beam when performing beam selection, thereby implementing effective on-demand beam training.
  • the method includes: receiving, by the terminal device, a downlink signal sent by the network device by using two or more beams; the terminal device transmitting, to the network device, related information of a beam reported by the selected one of the beams, the packet
  • the reported beam is a beam selected by the terminal device according to a receiving and selecting criterion for the downlink signal, where the selection criterion is the downlink signal sent by a beam in each group reported by the selected group
  • the downlink signal sent by the terminal device by using the same receiving parameter, or the beam sent by each group reported by the packet is received by the terminal device by using different receiving parameters.
  • the selection criteria of the beam reported by the packet are not distinguished. In some scenarios, there may be cases where the reported beam has an inappropriate beam and the network side does not know, because the network side Insufficient information can cause scheduling errors.
  • the downlink signal includes, but is not limited to, a Primary Synchronization Signal (PSS)/Secondary Synchronization Signal (SSS), a downlink control channel demodulation reference signal PDCCH-DMRS, and a downlink data channel.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PDSCH-DMRS Demodulation reference signal
  • CSI-RS channel status information reference signal
  • CRS Cell Reference Signal
  • TRS fine synchronization signal
  • the related information includes at least one of: a resource index of a downlink signal corresponding to a beam reported by the packet, a received power of a downlink signal corresponding to a beam reported by the packet, and an interference amount.
  • This design enables efficient on-demand beam training by performing beam selection by considering the specific selection criteria of the packet reporting beam in beam training.
  • the method further includes: the terminal device receiving indication information of the selection criterion sent by the network device. It can be understood that for beam training on demand, the selection criterion can be configured by the network side.
  • the method further includes: the terminal device transmitting the indication information of the selection criterion to the network device.
  • the selection criterion may be selected by the terminal device autonomously, and the indication information of the selection criterion is sent to the network device, so that the network side has sufficient information and does not cause scheduling errors.
  • the method further includes: receiving configuration information of the number of packets reported by the network device and/or the number of beams of each group sent by the network device.
  • the network side can configure group information.
  • the group configuration can also be uniformly agreed.
  • the terminal device selects a beam reported by the packet in the beam according to a receiving and selecting criterion of the downlink signal, where the terminal device measures the received power of the downlink signal. And determining, according to the measurement result and the selection criterion, a beam reported by the packet. It can be understood that when the terminal device selects a beam, in addition to considering the selection criterion of the packet reporting beam, the signal quality needs to be considered.
  • a beam training device which can implement a corresponding method in the third aspect.
  • the device is defined in a functional form, and may be an entity on the terminal side.
  • the specific implementation may be a terminal device, for example, a terminal device, or a chip or a function module in the terminal device, which may be implemented by software or hardware. Or implement the above method by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the method of the third aspect described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include a transceiver unit, wherein the transceiver unit is configured to communicate with the network device.
  • the apparatus can also include a processing unit for selecting a beam to be reported by the packet based on a reception and selection criterion for the downlink signal.
  • a method and apparatus for beam training is provided.
  • the method is applied to a network device, such as an access node, and a transmission receiving point having a function of an access node part on the network side.
  • the beam-reported beam is selected by considering the specific selection criteria of the packet reporting beam in the beam training to implement effective on-demand beam training.
  • the method includes: the network device sends a downlink signal to the terminal device by using two or more beams; and the network device receives information about a beam that is reported by the packet in the beam that is sent by the terminal device;
  • the beam reported by the packet is selected by the terminal device according to the receiving and selecting criteria for the downlink signal;
  • the selection criterion is that the downlink signal sent by the beam in each group reported by the selected packet is The downlink signal that is received by the terminal device by using the same receiving parameter, or the beam in each group reported by the packet is received by the terminal device by using different receiving parameters. It can be understood that if the beam training is not performed on demand, the selection criteria of the beam reported by the packet are not distinguished. In some scenarios, there may be cases where the reported beam has an inappropriate beam and the network side does not know, because the network side Insufficient information can cause scheduling errors.
  • the downlink signal includes, but is not limited to, a Primary Synchronization Signal (PSS)/Secondary Synchronization Signal (SSS), a downlink control channel demodulation reference signal PDCCH-DMRS, and a downlink data channel.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PDSCH-DMRS Demodulation reference signal
  • CSI-RS channel status information reference signal
  • CRS Cell Reference Signal
  • TRS fine synchronization signal
  • the related information includes at least one of: a resource index of a downlink signal corresponding to a beam reported by the packet, a received power of a downlink signal corresponding to a beam reported by the packet, and an interference amount.
  • This design enables efficient on-demand beam training by performing beam selection by considering the specific selection criteria of the packet reporting beam in beam training.
  • the method further includes: the network device sending the indication information of the selection criterion to the terminal device. It can be understood that for beam training on demand, the selection criterion can be configured by the network side.
  • the method further includes: the network device receiving indication information of the selection criterion sent by the terminal device. It can be understood that, for beam training on demand, the selection criterion may be selected by the terminal device autonomously, and the indication information of the selection criterion is sent to the network device, so that the network side has sufficient information and does not cause scheduling errors.
  • the method further includes: the network device transmitting configuration information of the number of packets reported by the packet and/or the number of beams of each group to the terminal device.
  • the network side can configure group information.
  • the group configuration can also be uniformly agreed.
  • the beam reported by the packet is selected by the terminal device according to the receiving of the downlink signal and the selection criterion, and the beam reported by the packet is used by the terminal device.
  • the received power of the downlink signal is measured, and is determined according to the measurement result and the selection criterion. It can be understood that when the terminal device selects a beam, in addition to considering the selection criterion of the packet reporting beam, the signal quality needs to be considered.
  • a beam training device can implement a corresponding method in the fourth aspect.
  • the device is defined in a functional form, and may be an entity on the access side.
  • the specific implementation may be an access node device, for example, an access node device, or a chip or a function module in the access node device.
  • the above method can be implemented by software, hardware, or by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the method of the fourth aspect described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include a transceiver unit, wherein the transceiver unit is configured to communicate with the terminal device.
  • the apparatus may also include a processing unit for corresponding processing (eg, determining beam configuration information, determining selection criteria, etc.).
  • a method and apparatus for beam training is provided.
  • the method is applied to a terminal device, and the terminal device considers a factor of the transport stream when performing beam selection, thereby implementing effective on-demand beam training.
  • the method includes: receiving, by the terminal device, a downlink signal sent by the network device by using one or more beams; the terminal device transmitting, to the network device, related information of a selected one of the beams, where the reported beam is The corresponding channel determined by the terminal device according to the downlink signal satisfies a transmission beam of a downlink signal of a Rank condition. It can be understood that the system capacity can be flexibly utilized by considering the factors of the transport stream.
  • the downlink signal includes, but is not limited to, a Primary Synchronization Signal (PSS)/Secondary Synchronization Signal (SSS), a downlink control channel demodulation reference signal PDCCH-DMRS, and a downlink data channel.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PDSCH-DMRS Demodulation reference signal
  • CSI-RS channel status information reference signal
  • CRS Cell Reference Signal
  • TRS fine synchronization signal
  • This design enables efficient on-demand beam training by performing beam selection by considering the factors of the transport stream in beam training.
  • the method further includes: the terminal device receiving indication information of the Rank condition sent by the network device. It can be understood that for beam training on demand, the transport stream can be configured by the network side.
  • the method further includes: the terminal device sending the indication information of the Rank condition to the network device.
  • the selection criterion may be selected by the terminal device autonomously, and the indication information of the selection criterion is sent to the network device, so that the network side has sufficient information and does not cause scheduling errors.
  • the method further includes: if the corresponding channel determined according to the downlink signal does not meet the Rank condition, the terminal device sends the abnormal indication information to the network device.
  • the terminal device sends related information of the selected beam in the beam to the network device, including: the terminal device selects the beam in a packet reporting manner. Information about the reported beam is sent to the network device.
  • the method of packet reporting can reduce the time-frequency resources reserved by the terminal equipment, thereby greatly improving resource utilization.
  • a beam training device which can implement the corresponding method in the fifth aspect.
  • the device is defined in a functional form, and may be an entity on the terminal side.
  • the specific implementation may be a terminal device, for example, a terminal device, or a chip or a function module in the terminal device, which may be implemented by software or hardware. Or implement the above method by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the method of the fifth aspect described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include a transceiver unit, wherein the transceiver unit is configured to communicate with the network device.
  • the apparatus may further include a processing unit, configured to determine, according to the downlink signal, whether the rank Rank of the corresponding channel satisfies a Rank condition to select the reported beam.
  • a method and apparatus for beam training is provided.
  • the method is applied to a network device, such as an access node, and a transmission receiving point having a function of an access node part on the network side.
  • Effective on-demand beam training is achieved by considering the factors of the transport stream when training the beam.
  • the method includes: a downlink signal sent by the network device to the terminal device by using one or more beams; the network device receiving, by the network device, related information of a selected one of the beams sent by the terminal device, where the reported beam is The corresponding channel determined by the terminal device according to the downlink signal satisfies a transmission beam of a downlink signal of a Rank condition. It can be understood that the system capacity can be flexibly utilized by considering the factors of the transport stream.
  • the downlink signal includes, but is not limited to, a Primary Synchronization Signal (PSS)/Secondary Synchronization Signal (SSS), a downlink control channel demodulation reference signal PDCCH-DMRS, and a downlink data channel.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PDSCH-DMRS Demodulation reference signal
  • CSI-RS channel status information reference signal
  • CRS Cell Reference Signal
  • TRS fine synchronization signal
  • This design enables efficient on-demand beam training by performing beam selection by considering the factors of the transport stream in beam training.
  • the method further includes: the network device sending the indication information of the Rank condition to the terminal device. It can be understood that for beam training on demand, the transport stream can be configured by the network side.
  • the method further includes: the network device receiving the indication information that the terminal device sends the rank condition. It can be understood that, for beam training on demand, the selection criterion may be selected by the terminal device autonomously, and the indication information of the selection criterion is sent to the network device, so that the network side has sufficient information and does not cause scheduling errors.
  • the method further includes: the network device receiving the abnormality indication information sent by the terminal device, where the abnormality indication information is that the terminal device does not determine the corresponding channel according to the downlink signal. There is a condition that is sent under the condition of Rank.
  • the network device receives, by the network device, information about a selected one of the beams that are sent by the terminal device, where the network device receives the Information about the selected beam in the beam.
  • the method of packet reporting can reduce the time-frequency resources reserved by the network device for the terminal device, thereby greatly improving resource utilization.
  • a beam training device which can implement the corresponding method in the sixth aspect.
  • the device is defined in a functional form, and may be an entity on the access side.
  • the specific implementation may be an access node device, for example, an access node device, or a chip or a function module in the access node device.
  • the above method can be implemented by software, hardware, or by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the sixth aspect method described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include a transceiver unit, wherein the transceiver unit is configured to communicate with the terminal device.
  • the apparatus may also include a processing unit for corresponding processing (eg, determining indication information for the Rank condition).
  • a method and apparatus for beam training is provided.
  • the method is applied to a terminal device, and the gain adjustment indication of the network device, the terminal device considers a gain factor when performing uplink beam selection, and implements effective on-demand beam training.
  • the method includes: the terminal device sends a first uplink signal to the network device; the terminal device receives a gain adjustment indication sent by the network device, where the gain adjustment indication is determined by the network device according to the measurement of the first uplink signal.
  • the terminal device sends a second uplink signal to the network device, where the second signal is an uplink signal that is sent by the terminal device after performing gain adjustment on the antenna according to the gain adjustment indication.
  • the uplink signal includes, but is not limited to, a Sounding Reference Signal (SRS), a PUCCH De-modulation Reference Signal (PUCCH-DMRS), and an uplink data channel demodulation.
  • SRS Sounding Reference Signal
  • PUCCH-DMRS PUCCH De-modulation Reference Signal
  • PTRS phase noise tracking reference signal
  • This design enables effective on-demand beam training by considering gain adjustment factors in the uplink beam training.
  • the spatial scanning of the terminal device may be an omnidirectional scanning, or a narrow beam scanning may be performed in a wide beam range according to the indication of the network device.
  • the terminal device spatially scans a plurality of high-gain narrow beams, that is, uses different high-gain narrow beams to transmit uplink signals.
  • the method before the sending the second uplink signal to the network device, the method further includes: receiving, by the network device, a related information indication, where the terminal device sends a beam of the second uplink signal, where
  • the transmission beam indication includes at least one of: a resource index for transmitting the first uplink signal, beam correlation information for random access in the access procedure, and a resource/SSB ID of the corresponding CSI-RS based on the dissimilarity.
  • the resource index of the first uplink signal and the beam-related information of the random access in the access process may be used to indicate a wide beam used by the terminal device to provide a certain reference for the terminal device, so that the terminal device can scan in space. Focus on a certain wide beam range.
  • a beam training device which can implement the corresponding method in the seventh aspect.
  • the device is defined in a functional form, and may be an entity on the terminal side.
  • the specific implementation may be a terminal device, for example, a terminal device, or a chip or a function module in the terminal device, which may be implemented by software or hardware. Or implement the above method by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the method of the seventh aspect described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include a transceiver unit, wherein the transceiver unit is configured to communicate with the network device.
  • the apparatus can also include a processing unit for determining a gain adjustment.
  • a method and apparatus for beam training is provided.
  • the method is applied to a network device, such as an access node, and a transmission receiving point having a function of an access node part on the network side.
  • the terminal device uses the gain adjustment indication of the network device to consider the gain factor when performing uplink beam selection, and implements effective on-demand beam training.
  • the method includes: the network device receiving the first uplink signal sent by the terminal device; the network device sending a gain adjustment indication to the terminal device, where the gain adjustment indication is determined by the network device according to the measurement of the first uplink signal And indicating that the network device receives the second uplink signal sent by the terminal device, where the second signal is an uplink signal that is sent after performing gain adjustment on the antenna according to the gain adjustment indication.
  • the uplink signal includes, but is not limited to, a Sounding Reference Signal (SRS), a PUCCH De-modulation Reference Signal (PUCCH-DMRS), and an uplink data channel demodulation.
  • SRS Sounding Reference Signal
  • PUCCH-DMRS PUCCH De-modulation Reference Signal
  • PTRS phase noise tracking reference signal
  • This design enables effective on-demand beam training by considering gain adjustment factors in the uplink beam training.
  • the spatial scanning of the terminal device may be an omnidirectional scanning, or a narrow beam scanning may be performed in a wide beam range according to the indication of the network device.
  • the terminal device spatially scans a plurality of high-gain narrow beams, that is, uses different high-gain narrow beams to transmit uplink signals.
  • the method further includes: the network device sending, to the terminal device, a beam for the terminal device to send the second uplink signal
  • the related information indicates that the transmit beam indication includes at least one of: a resource index for transmitting the first uplink signal, beam related information for random access in the access process, and a resource/SSB of the corresponding CSI-RS based on the dissimilarity. ID.
  • the resource index of the first uplink signal and the beam-related information of the random access in the access process may be used to indicate a wide beam used by the terminal device to provide a certain reference for the terminal device, so that the terminal device can scan in space. Focus on a certain wide beam range.
  • a beam training device which can implement the corresponding method in the eighth aspect.
  • the device is defined in a functional form, and may be an entity on the access side.
  • the specific implementation may be an access node device, for example, an access node device, or a chip or a function module in the access node device.
  • the above method can be implemented by software, hardware, or by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the method of the above eighth aspect.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include a transceiver unit, wherein the transceiver unit is configured to communicate with the terminal device.
  • the apparatus can also include a processing unit for determining a gain adjustment based on measuring the first uplink signal.
  • the manner of the gain adjustment indication includes an explicit indication manner or an implicit indication manner.
  • the network device sends a gain adjustment indication to the terminal device, which may be indicated by an explicit indication or an implicit indication.
  • the manner of explicitly indicating includes: transmitting indication information of a target antenna gain or indication information of an adjustment factor of a transmission antenna gain.
  • the operation of the terminal device can be simplified by means of an explicit indication.
  • the implicit indication method includes: a calculation parameter used by the transmitting terminal device to determine a transmission power, where the calculation parameter is used to cause the terminal device to determine that the transmission power exceeds a preset transmission power threshold. . That is, in such an implicit indication manner, the terminal device determines the transmission power exceeding the threshold, and the terminal device adopts a method of increasing the transmission antenna gain in order not to exceed the threshold value, thereby achieving gain adjustment.
  • the calculation parameter includes at least one of the following: a network device designation value P0, a scaling factor ⁇ indicated by the network device, and a path loss estimation reference.
  • the implicit indication method includes: a first calculation parameter and a second calculation parameter used by the sending terminal device to determine the transmission power, where the difference between the first calculation parameter and the second calculation parameter is The gain adjustment amount of the antenna.
  • the first calculation parameter includes a network device designation value P0_1
  • the second calculation parameter includes a network device designation value P0_2.
  • the implicit indication method includes: receiving, by the network device, the received power of the first uplink signal and the target received power, so that the terminal device achieves the target by using the gain according to the target received power. The purpose of receiving power. Signaling overhead can be saved by implicit indication.
  • the application also provides a computer storage medium having stored thereon a computer program (instructions) that, when executed on a computer, cause the computer to perform the method of any of the above aspects.
  • the application also provides a computer program product, when run on a computer, causing the computer to perform the method of any of the above aspects.
  • the present application also provides a chip in which instructions are stored that, when run on a communication device, cause the communication device to perform the corresponding methods described in the various aspects above.
  • the present application also provides an apparatus comprising a memory, a processor, and a computer program stored on the memory and executable on the processor, the processor executing the computer program to implement the corresponding method described in the above aspects.
  • the present application also provides an apparatus comprising a processor for coupling with a memory and reading instructions in the memory and implementing the corresponding methods described in the above aspects in accordance with the instructions.
  • the memory can be integrated in the processor or independently of the processor.
  • the present application also provides an apparatus comprising a processor that, when executed by a computer, implements the corresponding methods described in the various aspects above.
  • the processor can be a dedicated processor.
  • the present application also provides a system comprising the terminal side device provided above, and the network side device provided above, which system components respectively implement the corresponding methods described in the above aspects.
  • 1 is a network system architecture involved in the present application
  • FIG. 2 is a flowchart of an embodiment of a beam training method provided by the present application.
  • FIG. 3 is a schematic diagram of a beam-based communication scenario provided by the present application.
  • FIG. 4 is a flow chart of another embodiment of a beam training method provided by the present application.
  • FIG. 5 is a flowchart of still another embodiment of a beam training method provided by the present application.
  • FIG. 6 is a flowchart of an embodiment of another beam training method provided by the present application.
  • FIG. 7 is a schematic structural diagram of a simplified terminal device provided by the present application.
  • FIG. 8 is a schematic structural diagram of a simplified network device provided by the present application.
  • Multiple in this application means two or more.
  • the term “and/or” in the present application is merely an association relationship describing an associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A and B exist at the same time. There are three cases of B alone.
  • the character “/” in this article generally indicates that the contextual object is an "or” relationship.
  • the terms “first”, “second”, “third”, “fourth” and the like in the present application are intended to distinguish different objects, and do not limit the order of the different objects.
  • terminals may in some cases refer to mobile devices, such as mobile phones, personal digital assistants, handheld or laptop computers, and similar devices with telecommunications capabilities, in some cases.
  • the following may also be a wearable device or an in-vehicle device, etc., and include a terminal in a future 5G network or a terminal in a future evolved PLMN network.
  • Such a terminal may include a device and its associated removable storage module (such as, but not limited to, a Subscriber Identification Module (SIM) application, a Universal Subscriber Identification Module (USIM).
  • SIM Subscriber Identification Module
  • USIM Universal Subscriber Identification Module
  • terminal may include the device itself without such a module.
  • terminal may refer to a device that has similar capabilities but is not portable, such as a desktop computer, set top box, or network device.
  • terminal may also refer to any hardware or software component that can terminate a user's communication session.
  • terminal In addition, "user terminal”, “User Equipment”, “UE”, “site”, “station”, “STA”, “user equipment”, “user agent”, “User Agent”, “UA”, “user equipment” “,” “mobile device” and “device” are all alternative terms synonymous with “terminal” / "terminal device” herein.
  • the devices mentioned above are collectively referred to as user equipments or UEs.
  • the "access node” mentioned in the present application is a network device deployed in the radio access network to provide a wireless communication function for the terminal device, and is capable of scheduling and configuring downlink signals to the UE and the like.
  • the access node may include various forms of macro base stations, micro base stations, relay stations, access points, etc., and may be Global System of Mobile communication (GSM) or Code Division Multiple Access (Code Division Multiple Access).
  • GSM Global System of Mobile communication
  • Code Division Multiple Access Code Division Multiple Access
  • BTS Base Transceiver Station
  • NodeB NodeB
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • eNB evolved base station
  • NR New Radio
  • Point referred to as TRP or TP
  • next generation Node B gNB
  • Wi-Fi Wireless-Fidelity
  • 5G 5th Generation Mobile Communication
  • the device name with access node functionality may vary.
  • the above devices for providing wireless communication functions to the UE are collectively referred to as an access node.
  • Beam-based communication in the present application refers to the use of a beam for transmission in a mobile communication system, that is, by transmitting a signal spatially in a specific direction, a higher antenna array gain can be achieved.
  • the beam can be realized by technical means such as beamforming.
  • beamforming For example, in the high frequency (HF) communication, an important research direction is analog plus hybrid beamforming, which can well resist the loss of high frequency signals due to the transmission distance. Complexity and hardware cost are controlled to an acceptable level.
  • HF high frequency
  • Quasi-co-location A quasi-homologous relationship is used to indicate that one or more identical or similar communication characteristics exist between multiple resources. For multiple resources with quasi-homologous relationships, the same can be used. Or a similar communication configuration. For example, if two antenna ports have a quasi-homologous relationship, the large-scale characteristics of the channel on which one port transmits one symbol can be inferred from the large-scale characteristics of the channel through which one symbol transmits one symbol.
  • Large-scale features may include: delay spread, average delay, Doppler spread, Doppler shift, average gain, receive parameters, receive beam number of the terminal device, transmit/receive channel correlation, receive angle of arrival, receiver antenna Spatial correlation, Angel-of-Arrival (AoA), average angle of arrival, expansion of AoA, etc.
  • the quasi-co-located indication is used to indicate whether the at least two sets of antenna ports have a quasi-homologous relationship: the quasi-co-located indication is used to indicate whether the channel state information reference signals sent by the at least two groups of antenna ports are from the same transmission point, Or the quasi-co-located indication is used to indicate whether the channel state information reference signals sent by the at least two groups of antenna ports are from the same beam group.
  • the configuration and indication of the quasi-homolocation hypothesis can be used to assist the receiver in receiving and demodulating the signal.
  • the receiving end can confirm that the A port and the B port have a QCL relationship, that is, the large-scale parameter of the signal measured on the A port can be used for signal measurement and demodulation on the B port.
  • a beam is a communication resource.
  • the beam can be a wide beam, or a narrow beam, or other type of beam.
  • the beamforming technique can be beamforming techniques or other technical means.
  • the beamforming technology can be specifically digital beamforming technology, analog beamforming technology, and hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
  • the same information or different information can be transmitted through different beams.
  • multiple beams having the same or similar communication characteristics may be considered as one beam.
  • One beam may include one or more antenna ports for transmitting a data channel, a control channel, a sounding signal, etc., for example, the transmitting beam may be a signal intensity distribution formed in different directions of the space after the signal is transmitted through the antenna.
  • the receive beam may refer to a signal strength distribution of wireless signals received from the antenna in different directions in space. It can be understood that one or more antenna ports forming one beam can also be regarded as one antenna port set.
  • the beam can be embodied in the protocol as a spatial filter.
  • the information of the beam can be identified by the index information.
  • the index information may be configured to correspond to a resource identifier of the UE.
  • the index information may correspond to an ID or resource of a channel status information reference signal (CSI-RS).
  • the index information may also be index information of a signal or channel display or implicit bearer carried by the beam, for example, the index information may be a synchronization signal sent by a beam or a broadcast channel indicating the beam. Index information.
  • the identifier of the information of the beam includes an absolute index of the beam, a relative index of the beam, a logical index of the beam, an index of the antenna port corresponding to the beam, an index of the antenna port group corresponding to the beam, and a downlink synchronization signal block.
  • Spatial QCL can be considered a type of QCL. There are two angles to understand for spatial: from the sender or from the receiver. From the perspective of the transmitting end, if the two antenna ports are spatially quasi-co-located, it means that the corresponding beam directions of the two antenna ports are spatially identical. From the perspective of the receiving end, if the two antenna ports are spatially quasi-co-located, it means that the receiving end can receive the signals transmitted by the two antenna ports in the same beam direction.
  • FIG. 1 shows a network system architecture involved in the present application.
  • the present application is applicable to a beam 300-based multi-carrier communication system as shown in FIG. 1, for example, 5G New Radio (NR).
  • the system includes uplink (UE 200 to access node 100) and downlink (access node 100 to UE 200) communications in the communication system. Both uplink and downlink communications are based on beam 300 directed in the spatial direction.
  • uplink communication includes transmission of uplink physical channels and uplink signals.
  • the uplink physical channel includes a random access channel (Random Access Channel, PRICH for short), an uplink uplink control channel (PUCCH), and an uplink uplink channel (PUSCH).
  • PRICH Random Access Channel
  • PUCCH uplink uplink control channel
  • PUSCH uplink uplink channel
  • Downlink communication includes transmission of downlink physical channels and downlink signals.
  • the downlink physical channel includes a physical broadcast channel (PBCH), a physical downlink control channel (PDCCH), a physical downlink shared channel (PDSCH), and the downlink signal includes a primary synchronization signal ( Primary Synchronization Signal (PSS)/Secondary Synchronization Signal (SSS), downlink control channel demodulation reference signal PDCCH-DMRS, downlink data channel demodulation reference signal PDSCH-DMRS, phase noise tracking signal PTRS, channel status Channel status information reference signal (CSI-RS), Cell Reference Signal (CRS) (NR not), Tim/frequency tracking Reference Signal (TRS) (LTE not available), and the like.
  • PBCH physical broadcast channel
  • PDCCH Physical Downlink control channel
  • SSS secondary Synchronization Signal
  • PDCCH-DMRS downlink control channel demodulation reference signal
  • PDSCH-DMRS downlink data channel demodulation reference signal
  • phase noise tracking signal PTRS phase noise tracking signal
  • CSI-RS channel status Channel status information reference signal
  • CRS Cell Reference
  • beam training needs to be performed between the access node 100 and the UE 200.
  • the access node 100 and the UE 200 achieve preliminary alignment of the preliminary beam, and the UE 200 can access the network.
  • the internet The process of beam alignment is simply configured by the access node 100 to configure a set of reference signals and/or synchronization signal blocks to be transmitted to the UE 200 through different transmit beams for measurement, and the UE 200 uses the receive beam for reception and selects the transmit beam.
  • One or more feedbacks to the access node 100 is simply configured by the access node 100 to configure a set of reference signals and/or synchronization signal blocks to be transmitted to the UE 200 through different transmit beams for measurement, and the UE 200 uses the receive beam for reception and selects the transmit beam.
  • One or more feedbacks to the access node 100 One or more feedbacks to the access node 100.
  • Beam management includes uplink beam management and downlink beam management.
  • the uplink beam management mainly classifies two types: uplink beam management based on uplink signals and uplink beam management based on downlink signals. Uplink beam management based on uplink signals generally does not require beam consistency assumptions, while uplink beam management based on downlink signals generally requires beam consistency assumptions.
  • SRS uplink beam management based on the uplink signal
  • the beam training between the access node 100 and the UE 200 is mainly performed by the measurement and feedback of the downlink signal.
  • the terminal-side receiving beam selected after the downlink training can be used as the transmission beam of the uplink transmission. Reference.
  • the beam training between the access node 100 and the UE 200 takes into account more factors in the communication, and the following beam management considers the interference factor.
  • the access node 100 obtains a priori information and knows that there is a signal on the beam 300 or some of the signals.
  • the access node 100 sends a downlink signal to the UE 200 by using the beam 300.
  • the class beam 300 is used as an interference, and the related indication information UE 200 of the interference may be in an explicit or implicit indication manner, so that the UE 200 considers the interference factor when performing beam selection.
  • the UE 200 selects the beam reported by the packet according to the refined selection criterion when the beam is selected, that is, Is the UE 200 receiving with the same receiving parameters or receiving with different receiving parameters.
  • the selection criterion may be that the access node 100 is pre-configured to the UE 200, or may be independently selected by the UE 200, and may send the indication information of the selection criterion to the access node 100, so that the network side has sufficient information and does not cause scheduling. error.
  • the UE 200 selects the beam according to the channel estimation considering the factors of the transmission stream when the beam is selected.
  • the condition of the transport stream may be that the access node 100 is pre-configured to the UE 200 by using the rank Rank indication, or may be independently selected by the UE 200, and may send the indication information of the Rank condition to the access node 100, so that the network side has sufficient information. , will not cause scheduling errors.
  • the access node 100 determines whether the uplink beam of the UE 200 needs to be adjusted according to the quality of the uplink signal sent by the previously received UE 200, so as to achieve no adjustment uplink.
  • the transmit power is used to enhance the uplink coverage.
  • the gain adjustment indication is sent to the UE 200.
  • the UE 200 performs the gain adjustment on the antenna according to the gain adjustment indication, and then sends the uplink signal.
  • FIG. 1 is only an example of a network system architecture involved in the present application, and the application is not limited thereto.
  • the UE establishes a connection with the access node, and performs beam training by using the method in this embodiment, so that the UE considers a specific factor, such as a factor of interference, for the selection of the beam.
  • the access node is enabled to provide higher quality communication services for the UE when scheduling. It should be noted that the present embodiment and the subsequent embodiments are described by the interaction between the UE and the access node, which is merely an exemplary description. The present application is not limited to this, and the transmission and reception point TRP under the access node management in the network. When the related functions of the part of the access node are available, the present application can also be applied to the scenario where the UE interacts with the TRP for beam training. FIG.
  • FIG. 2 is a flowchart of an embodiment of a method for beam training provided by the present application.
  • the present embodiment and subsequent embodiments use the UE and the access node.
  • the behavior of the two sides is expanded, and the overall description is from the perspective of interaction.
  • the improvement in the system is not limited. The steps on each side of the interaction must be performed together.
  • the technical solution proposed in this application is improved on each side of the system. .
  • the method includes:
  • the access node sends related indication information of the interference to the UE.
  • FIG. 3 shows a schematic diagram of a beam-based communication scenario.
  • the access node 100 uses the transmit beam 2 to transmit data for the UE2, and the access node 100 provides the beam training resource for the UE1.
  • the access node 100 instructs the UE1 to consider the interference caused by the transmit beam 2 when performing beam training by transmitting the relevant indication information of the interference to the UE1.
  • the communication links consisting of transmit beam 1 and receive beam 1 have minimal attenuation because they are direct view (LOS) aligned, while transmit beam 3 and The attenuation of the communication links consisting of receive beam 2 (receive parameter 2) is greater because they are aligned by the reflection path.
  • the interference effect caused by the signal transmission on the transmission beam 2 is not considered, it is obvious that the transmission beam 1 and the reception beam 1 are superior combinations, and the UE 1 should feed back the identity of the transmission beam 1 to the access node 100.
  • UE1 since UE1 uses receive beam 1, it will be interfered by the signal on transmit beam 2. If the interference caused by transmit beam 2 is large, UE1 should not select transmit beam 1 as the service beam and feed back.
  • the related indication information of the interference may be carried by the configuration information sent by the access node to the UE.
  • the related indication information of the interference may be a Radio Resource Control (RRC) message and/or a downlink.
  • RRC Radio Resource Control
  • the control information Downlink Control Information, DCI for short
  • DCI Downlink Control Information
  • the related indication information of the interference may be indicated by means of an explicit indication or an implicit indication.
  • the following is an example of the configuration information of the configuration information carrying the interference as an example. It should be understood that the application is not limited to this example. It should be noted that, in order to clarify the association relationship of the configuration information, the following description will be described from the access phase, including Other steps necessary to solve the technical problem before this step are not necessary:
  • the access node and the UE reach a first preliminary alignment of the beam, from which the UE can access the network.
  • the information about the beam of the access node and the UE depends on the SSB of the initial access, that is, the UE can maintain the following relationship at this time.
  • the beam indication of the beam or the reference signal used by the downlink channel to transmit the corresponding beam is implemented by using a reference resource index in the Transmission Configuration Indicator (TCI) status table.
  • TCI Transmission Configuration Indicator
  • the base station configures a TCI state table (corresponding to TCI-states in 38.331) through RRC high-level signaling.
  • the TCI is a method for beam indication.
  • the structure of the TCI is as follows:
  • the terminal can determine the receiving method according to the TCI indication. For example, the beam of the control channel is indicated as a certain TCI state, and the terminal may use the QCL type in the TCI state used when receiving the reference signal ID or the reference signal signal or the synchronization signal block corresponding to the synchronization signal block ID in the TCI state.
  • the corresponding QCL is assumed to receive the control channel.
  • the access node can use SSB index #0 as a reference for a beam direction and configure this information as a TCI notification to the UE:
  • the corresponding relationship maintained by the UE side is:
  • the access node may configure the CSI-RS resources for the UE for further beam management.
  • the access node and the UE side can scan their transmit and receive beams, respectively.
  • the access node configures a CSI-RS resource it can indicate its beam direction to facilitate UE reception.
  • the access node configures CSI-RS resource#x and CSI-RS resource#y and instructs the UE to perform receive beam scanning.
  • the corresponding CSI-RS is indicated/referenced by the configuration of the resource index, and the corresponding CSI-RS is denoted by CSI-RS resource# in the following, and the CSI-RS is not separately described.
  • the UE may adjust parameters of the receiving antenna, for example, according to the receiving beam #0 corresponding to the TCI #0, further determining to use the receiving beam #1 and the receiving beam #2 to the CSI-RS resource #1 and CSI- RS resource#2 is used for measurement. Further, the following relationship is obtained.
  • the receiving or transmitting beam scanning is controlled by the repetition ON/OFF in the NR.
  • the text is used here.
  • the access node side can then reconfigure the TCI state.
  • SSB index #0, CSI-RS resource#x, CSI-RS resource#y are all signals that have been transmitted/measured.
  • the UE side After receiving the configuration, the UE side obtains the following association relationship.
  • the configuration of the related indication information for transmitting interference in the embodiment is performed, and the measurement of the interference is known, and the access node may reconfigure the resources of the beam management, for example, by means of an implicit indication.
  • the optional configuration is: beam management resource ⁇ CSI-RS resource#1, CSI-RS resource#2, CSI-RS resource#3 ⁇ , and the QCL indication of the reference signal resource is as follows:
  • the resource that is not indicated by the QCL in the beam management resource set may be specified as interference. It can be seen that the CSI-RS resource #2 in this example is the indicated interference.
  • the indication is explicitly indicated, and when the interference-aware measurement is performed, the configuration may be: beam management resource ⁇ CSI-RS resource#1, CSI-RS resource#2, CSI-RS resource#3 ⁇ , the explicit interference source indicates ⁇ CSI-RS resource#2 ⁇ , and the QCL indication of the reference signal resource is as follows:
  • the CSI-RS resource #2 is explicitly indicated as the interference source, and the UE is instructed to receive the CSI by using the receive beam 1 receiving the CSI-RS resource #1 and the receive beam 2 receiving the CSI-RS resource #3, respectively.
  • RS resource#2 for interference measurement is explicitly indicated as the interference source, and the UE is instructed to receive the CSI by using the receive beam 1 receiving the CSI-RS resource #1 and the receive beam 2 receiving the CSI-RS resource #3, respectively.
  • one RS resource can only correspond to one TCI state, it can be indicated by explicit indication.
  • the configuration is optional: beam management resource ⁇ CSI-RS resource#1, CSI- RS resource#2, CSI-RS resource#3, CSI-RS resource#4 ⁇ , explicit interference source indication ⁇ CSI-RS resource#2, CSI-RS resource#4 ⁇ , where CSI-RS resource#2 and CSI-RS resource#4 is the beam corresponding to the interference (for example, beam 2 in Figure 3), and the QCL indication of the reference signal resource is as follows:
  • Beam quality measurement Interference beam measurement QCL indication CSI-RS resource#1 CSI-RS resource#2 TCI#1 CSI-RS resource#3 CSI-RS resource#2 TCI#2
  • the foregoing configurations are intended to notify the UE that CSI-RS resource #2 (including CSI-RS resource #4 in some cases) is an interference, and the UE needs to consider this interference when making further beam selection. influences.
  • the foregoing configuration is only an example.
  • the indication for the interference is not limited to the above example, and the related indication information of the interference is intended to be used to indicate the transmission resource of the downlink signal sent by the beam corresponding to the interference. And/or receiving a receive beam of the downlink signal transmitted by the beam corresponding to the interference.
  • the indication information may not only indicate that the terminal device separately receives the downlink signal corresponding to the interference by using the receiving beam of the downlink signal corresponding to the non-interference, and optionally, the terminal device may also use the partial receiving non-interference corresponding to the terminal device.
  • the receiving beam of the downlink signal respectively receives the downlink signal corresponding to the interference
  • the terminal device may further receive the downlink signal corresponding to the interference by using the receiving beam of the downlink signal corresponding to the non-interference.
  • the terminal device receives the downlink signal corresponding to the interference by receiving the non-interference corresponding downlink signal, so that the terminal device can obtain the interference amount of the downlink signal corresponding to the interference and the downlink signal corresponding to the other non-interference.
  • the terminal device may also receive the receiving beam by receiving the non-interfering downlink signal by default without receiving the indication by the access node.
  • the access node sends the downlink signal by using two or more beams, where the two or more beams include the beam corresponding to the interference.
  • the access node performs beam training based on interference measurement by transmitting a downlink signal.
  • the downlink signal includes, but is not limited to, a Primary Synchronization Signal (PSS)/Secondary Synchronization Signal (SSS), a downlink control channel demodulation reference signal PDCCH-DMRS, and a downlink data channel solution.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PDCCH-DMRS downlink control channel demodulation reference signal
  • PDSCH-DMRS Adjust reference signal PDSCH-DMRS, phase noise tracking signal PTRS, channel status information reference signal (CSI-RS), Cell Reference Signal (CRS) (NR not), fine synchronization signal (Tim
  • the /frequency tracking reference signal (TRS) is not included in the LTE.
  • the downlink physical channel includes a physical broadcast channel (PBCH) and a downlink downlink control channel (Physical downlink control channel). , referred to as PDCCH), physical downlink
  • the UE performs measurement on the received downlink signal to perform beam selection.
  • the UE receives the downlink signal according to the configuration of the access node, and the example in the foregoing is used as an example.
  • the UE receives the CSI-RS resource #1 by using the receive beam 1 and receives the CSI-RS resource #3 by using the receive beam 2;
  • the UE further receives the downlink signal sent by the beam corresponding to the interference according to the related indication information of the interference, and considers the influence of the interference on different receiving beams (or receiving parameters) for the interference measurement, and the UE passes the receiving beam.
  • 1 and the receiving beam 2 respectively receive the CSI-RS resource #2 corresponding to the interference (including CSI-RS resource #4 in some cases).
  • the UE may receive the Reference Signal Received Power (RSRP) of the CSI-RS resource #1, the reference signal received power of the CSI-RS resource #1, and the reference signal received power of the CSI-RS resource #2.
  • RSRP Reference Signal Received Power
  • the ratio RSRP#2-3/RSRP#2-2 of the power RSRP#2-2 is compared to perform pairing and selection of the transmit beam and the receive beam.
  • CSI-RS resource #2 For example, if RSRP#1-1/RSRP#1-2 ⁇ RSRP#2-3/RSRP#2-2, then receive beam 2 (or receive parameter 2) is a better receive beam, CSI-RS resource
  • the corresponding transmit beam of #3 can be used as the service beam selected by the UE.
  • the reference signal received quality (RSRQ) or the signal to interference and noise ratio (SINR) calculated by using the CSI-RS resource #2 as the interference may also be used. Indicator of beam quality comparison.
  • the UE feeds back information about the selected beam to the access node.
  • the UE transmits the selected transmit beam as the service beam, and may report the resource index (CSI-RS resource index, CRI for short) of the downlink reference signal sent by the corresponding beam, for example, ⁇ CRI#1 ⁇ , can also report the received power of the downlink signal (such as RSRP#1-1), and can also report the interference amount.
  • the interference quantity can be the received power of the downlink signal (such as RSRP#1-1
  • the ratio of the received power of the downlink signal corresponding to the interference such as RSRP#1-2
  • RSRP#1-1/RSRP#1-2 may also be the received power of the downlink signal corresponding to the interference (such as RSRP#) 1-2).
  • the access node learns the beam selected by the UE.
  • information such as received power and interference can be obtained, which provides a better reference for further configuration of the access node.
  • a beam training method in the embodiment of the present application can implement effective on-demand beam training by performing beam selection by considering interference factors in beam training.
  • the on-demand beam training of the embodiment is for the multi-beam combination reporting, for example, the packet reporting, considering the factors that may affect the packet reporting result (eg, interference, etc.), through the specific beam.
  • the selection criteria are used to select the beam to be reported by the packet to implement beam training.
  • the embodiment in the description, the embodiment is developed on the two sides of the UE and the access node, and the overall description is performed from the perspective of the interaction, but the improvement in the non-limiting system is that the steps on each side of the interaction must be combined. Execution, the technical solution proposed by the present application is improved on each side of the system.
  • the method includes:
  • the UE determines a selection criterion of a packet reporting beam.
  • the network side When performing beam training, the network side sends a downlink signal to the UE through the transmit beam, and the UE uses the receive beam (corresponding to the receive parameter) to receive the downlink signal, and the UE performs the service beam selection by measuring the downlink signal.
  • the beam selection is for the case of packet reporting, that is, the selected network side transmission beam satisfies certain definitions that can be "simultaneously received" by the UE.
  • the network side transmits CSI-RS#1 through the transmit beam Beam1, CSI-RS#2 through the transmit beam Beam2, and CSI-RS#3 through the transmit beam Beam3, if the UE can receive the beam through its corresponding If CSI-RS#1 and CSI-RS#3 are received on CSI-RS resource#1 and CSI-RS resource#3, it can be assumed that if the UE uses both CSI-RS resource#1 and CSI-RS resource#3, Then, CSI-RS#1 and CSI-RS#3 can be received simultaneously. Therefore, when the UE selects a beam, the UE will report the Beam1 and the Beam3 as a group. In the implementation, the CSI-RS resource#1 and the CSI-RS resource#3 can be reported as a group to implement the Beam1 and the Beam3. The choice is reported).
  • the case of "simultaneous reception” may be divided into specific cases, and one type is that the UE receives the same CSI-RS resource #1 and CSI-RS resource #3 through the same receiving beam (using the same receiving parameter).
  • CSI-RS#1 and CSI-RS#3 the other is that the UE receives the CSI on the corresponding CSI-RS resource#1 and CSI-RS resource#3 through different receiving beams (using different receiving parameters).
  • the selection criterion is that the downlink signal sent by the beam in each group reported by the selected group is received by the UE by using the same receiving parameter, or the downlink signal sent by the beam in each group reported by the group is that the UE adopts different receiving. The parameters were received.
  • the selection criterion of the beam reported by the packet may be configured by the network side (for example, an access node or a TRP) to the UE, and optionally, may be carried by the configuration information sent to the UE.
  • the selection criterion may be sent by using a Radio Resource Control (RRC) message and/or Downlink Control Information (DCI), and may also be carried in the MAC CE by using the selection criterion.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the network side may configure the information of the packet, or the configuration of the packet may be uniformly agreed.
  • the network side sends the number of packets reported by the packet to the UE and/or
  • the configuration information of the number of beams of each group can be configured by RRC, DCI, MAC CE through similar means configured with the above selection criteria).
  • the selection criterion of the beam reported by the packet may also be determined by the UE according to an actual situation or based on the capability of the UE.
  • the selection criterion is determined by the network side, then the beam reported by the packet is the beam selected under the criterion, and the network side knows that the network side can have more reference information when the beam is scheduled; if the selection criterion is The UE determines that the UE needs to send the information of the selection criterion to the network side.
  • the UE may notify the network side of the selected selection criterion before the packet is reported, or may notify the network side of the selection criterion of the beam reported by the packet after the packet reporting or the packet reporting, so that the network side can perform the beam scheduling. There is more reference information.
  • “simultaneous reception” (assuming that for Beam4 and Beam5) is implemented by the same receiving parameter for UE1 in a certain scenario
  • “simultaneous reception” (assuming that for Beam1 and Beam3) is implemented by UE1 with different receiving parameters for a certain scenario.
  • Beam5 is also used by the access node to send a signal to UE2
  • the access node may not use Beam4 to send a signal to UE1 when scheduling, because the signal sent by the access node to UE2 using Beam5 may cause strong interference to UE1 reception.
  • the access node may use Beam1 to send a signal to UE1 and use Beam3 to send a signal to UE2. Therefore, if the UE packet reports a selection criterion that does not distinguish the "simultaneous reception" packet reporting, the access node may have a problem in scheduling.
  • the access node sends a downlink signal to the UE by using two or more beams.
  • the access node When performing beam training, the access node sends downlink signals to the UE through two or more beams, so that the UE can perform downlink signal measurement and implement beam training.
  • the downlink signal includes, but is not limited to, a Primary Synchronization Signal (PSS)/Secondary Synchronization Signal (SSS), a downlink control channel demodulation reference signal PDCCH-DMRS, and a downlink data channel.
  • PSD Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PDCCH-DMRS downlink control channel demodulation reference signal
  • PDSCH-DMRS Demodulation reference signal PDSCH-DMRS, phase noise tracking signal PTRS, channel status information reference signal (CSI-RS), Cell Reference Signal (CRS) (NR not), fine synchronization signal (Tim/frequency tracking Reference Signal, abbreviated as TRS) (not available in LTE).
  • TRS fine synchronization signal
  • steps S201 and S202 have no necessary sequence, and can be flexibly configured according to different schemes.
  • the UE selects a beam reported by the packet according to the receiving and selecting criteria of the downlink signal.
  • the UE selects a beam for packet reporting in the beam by receiving the downlink signal.
  • the terminal device measures the received power RSRP of the downlink signal, and determines a beam reported by the packet according to the measurement result and the selection criterion.
  • the terminal device may further measure an indicator such as an RSRQ or an SINR of the downlink signal. It can be understood that when the terminal device selects a beam, in addition to considering the selection criterion of the packet reporting beam, the signal quality needs to be considered.
  • the UE should be able to use the same received parameters to receive the beams simultaneously. And comparing the beam quality of each group; when the network side notifies the UE that the beams to be received simultaneously using different receiving parameters are grouped into one group, the UE needs to use different receiving parameters to simultaneously receive the beams into one group, and compare the beams of each group. quality.
  • the beam quality of a group of beams may be an average of multiple beam qualities in the group, or a multi-antenna channel capacity formed by multiple beams in the group, or a stability of a link formed by multiple beams.
  • the UE may determine a packet method that is most suitable for the UE according to indicators such as its capability, beam quality, channel capacity, or robustness, and divide the beam that can be simultaneously received using the same receiving parameter into one. Groups or groups of beams that will require different reception parameters.
  • the UE sends related information of the beam reported by the selected group to the access node.
  • the UE sends the related information of the beam reported by the selected packet to the access node, that is, the packet is reported.
  • the related information includes at least one of the following: a resource index of the downlink signal corresponding to the beam reported by the packet (CSI-RS resource index (CRI), the received power of the downlink signal corresponding to the beam reported by the packet, the interference amount (which may be the ratio of the received power), and the group identifier.
  • CSI-RS resource index CRI
  • RSRP#1 resource index
  • RSRP#3 RSRP#1/RSRP#3 ⁇ .
  • the UE may send the selection criterion of the beam reported by the packet to the network side when the packet is reported, or may be indicated by the value of the bitmap or the corresponding field.
  • the UE may carry information in each packet report to describe the method of the packet. For example, the bit “0” indicates that the beam in the packet can be simultaneously received by the same receiving parameter, and the bit “1” indicates the The beam can be received simultaneously by different receive parameters.
  • a beam training method in the embodiment of the present invention performs beam selection by considering a specific selection criterion of a packet reporting beam in beam training, and avoids different implementation manners that may be adopted for the “simultaneous reception” UE, so that the access node is scheduling. There is a problem, and the method of the embodiment of the present application can achieve effective on-demand beam training.
  • FIG. 5 is a flowchart of still another embodiment of a beam training method provided by the present application; the difference from Embodiment 1 and Embodiment 2 is that the on-demand beam training of the embodiment is a factor considering a transport stream.
  • the embodiment in the description, the embodiment is developed on the two sides of the UE and the access node, and the overall description is performed from the perspective of the interaction, but the improvement in the non-limiting system is that the steps on each side of the interaction must be combined. Execution, the technical solution proposed by the present application is improved on each side of the system.
  • the method includes:
  • the UE determines a rank Rank condition.
  • the rank of the MIMO channel matrix is an embodiment of the maximum number of transport streams that the current channel can support.
  • the RANK of a MIMO channel formed by a combination of different beams or beams is different.
  • the network side performs data transmission to the UE, multi-stream transmission can effectively improve the spectrum efficiency.
  • the network side needs to serve multiple UEs, and the number of transmission streams allocated for each UE is determined by the scheduling algorithm. Therefore, the UE needs to select a beam or a combination of beams that can support the number of streams to form a MIMO channel for performing multiple Stream data transfer.
  • the UE may perform channel estimation based on the downlink signal.
  • the UE may perform beam pairing and selection based on the requirement of the number of channel transmission streams.
  • the Rank condition may be configured by the network side and sent to the UE, and the information of the Rank condition may be sent by using at least one of RRC, DCI, and MAC CE.
  • the Rank condition includes at least one of the following: a rank value indication, such as rank2, rank4, etc.; an MCS (modulation and coding scheme) requirement or an SINR requirement, for example, each of the MIMO channels formed by the UE selected beam.
  • the rank corresponding channel quality must be able to support a specific signal modulation mode and/or coding mode, or must be greater than a certain SINR.
  • the SINR requirement can also be expressed as a CQI (channel quality indicator) indication; the minimum MCS requirement for each stream Or SINR demand.
  • the Rank condition may further include an indication of the codebook.
  • the Rank condition may further include an indication of the beam.
  • the network side may indicate that the UE must select a beam paired with a certain transmit beam to form a multi-beam MIMO channel.
  • the Rank condition may be selected by the UE. When the beam training is performed, the UE may notify the network side of the selected Rank condition, so that the network side has sufficient information and no scheduling error.
  • the access node sends a downlink signal to the UE by using one or more beams.
  • the downlink signal includes, but is not limited to, a Primary Synchronization Signal (PSS)/Secondary Synchronization Signal (SSS), a downlink control channel demodulation reference signal PDCCH-DMRS, and a downlink data channel.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PDSCH-DMRS Demodulation reference signal
  • CSI-RS channel status information reference signal
  • CRS Cell Reference Signal
  • TRS fine synchronization signal
  • steps S301 and S302 have no necessary sequence, and can be flexibly configured according to different schemes.
  • the UE performs channel estimation based on the downlink signal, and selects a transmit beam of a downlink signal whose corresponding channel satisfies the Rank condition.
  • the UE performs beam pairing based on the receiving of the downlink signal, and determines one or more beams that meet the Rank condition according to the channel matrix.
  • one or more beams that satisfy the Rank condition may be understood as being capable of forming greater than or equal to Rank.
  • the UE sends, to the access node, related information of the selected one of the beams.
  • the UE may send related information of the selected reported beam to the access node in a packet reporting manner.
  • the method of packet reporting can reduce the time-frequency resources reserved by the terminal equipment, thereby greatly improving resource utilization.
  • the related information may include: a resource index of the downlink signal sent by the corresponding beam, a receiving power of the downlink signal, and a possible interference quantity.
  • the access node learns the beam selected by the UE.
  • information such as received power and interference can be obtained, which provides a better reference for further configuration of the access node.
  • the UE can also report the time on the beam and inform the access node of the Rank condition.
  • the UE will send abnormal indication information to the access node.
  • effective beam-on-demand beam training can be realized by performing beam selection by considering factors of the transport stream in beam training.
  • Embodiment 2 and Embodiment 3 respectively give beam selection considering selection criteria (involving interference) and beam selection considering the number of transmission streams.
  • BLER Block error rate
  • capacity refers to the rate at which channels can support the transmission of information. Maximizing capacity means that the beam or beam combination selected by the UE can support the maximum transmission rate. The UE can calculate the channel capacity based on the channels that measure different beam or beam combinations.
  • FIG. 6 is a flowchart of an embodiment of a beam training method according to another embodiment of the present application; this embodiment is based on the behavior of both sides of the UE and the access node, and is generally described from the perspective of multiple parties, but is not limited in the system.
  • the improvement is that the steps on each side of the interaction must be performed together, and the technical solution proposed by the present application is improved on each side of the system.
  • the method includes:
  • the UE sends a first uplink signal to the access node.
  • the uplink signal includes, but is not limited to, a Sounding Reference Signal (SRS), a PUCCH De-modulation Reference Signal (PUCCH-DMRS), and an uplink data channel demodulation reference signal.
  • SRS Sounding Reference Signal
  • PUCCH-DMRS PUCCH De-modulation Reference Signal
  • PUSCH-DMRS phase noise tracking reference signal
  • PTRS phase noise tracking reference signal
  • the access node determines a gain adjustment indication according to the measurement result of the first uplink signal.
  • the requirements for the uplink beams of the UE are different.
  • the UE needs to be explicitly instructed to use a narrower beam for communication.
  • the signal power received by the UE can be briefly expressed as follows:
  • Is the signal power received by the UE Is the power of the signal sent by the access node, Is the access node transmitting antenna gain, Is the signal strength attenuation caused by the downlink transmission path. It is the UE receiving antenna gain.
  • the signal power received by the access node can be briefly expressed as follows:
  • Is the signal power received by the access node Is the power of the signal sent by the UE, Is the UE transmitting antenna gain, Is due to the attenuation of the signal strength caused by the transmission path, It is the access node receiving antenna gain.
  • Simple can be assumed That is, the signal strength attenuation caused by the uplink and downlink transmission paths is the same.
  • the UE transmits an uplink signal, such as an SRS
  • an uplink signal such as an SRS
  • the basic principle of the control of the uplink transmit power is to estimate the path loss and reverse the strength of the signal to the receiving end. The following is a method of controlling the SRS power.
  • P 0 is a value specified by an access node
  • is a scaling factor indicated by an access node
  • others are some adjustments including the bandwidth.
  • others may or may not consider, and further examples are given below. It is not considered as an example for description.
  • the optional method is to increase And / or increase (ie, using a higher gain UE transmit beam or an access node receive beam).
  • the description is made with the gain adjustment on the UE side. Therefore, the access node determines an indication of the UE gain adjustment based on the measurement result of the first uplink signal.
  • the access node sends the gain adjustment indication to the UE.
  • the manner of the gain adjustment indication includes an explicit indication manner or an implicit indication manner.
  • the network device sends a gain adjustment indication to the UE, which may be indicated by an explicit indication or an implicit indication.
  • the manner of explicitly indicating includes: transmitting indication information of a target antenna gain, for example, indicating transmission of an uplink signal using a transmit antenna gain of 17 dBi; or indicating information of an adjustment factor of a transmit antenna gain That indicates how much dB is added based on the current antenna gain, for example, the antenna gain is +5 dB.
  • the operation of the UE can be simplified by means of an explicit indication.
  • the implicit indication method includes: transmitting, by the UE, a calculation parameter for determining a transmission power, where the calculation parameter is used to cause the UE to determine that the transmission power exceeds a preset transmission power threshold. That is, in such an implicit indication manner, the UE determines the transmission power exceeding the threshold, and the UE adopts a method of increasing the transmission antenna gain in order not to exceed the threshold, thereby achieving gain adjustment.
  • the calculation parameter includes at least one of the following: a network side specified value P 0 , a network side indicated scaling factor ⁇ , and a path loss estimation reference.
  • the implicit indication method includes: sending, by the UE, a first calculation parameter and a second calculation parameter for determining a transmission power, where the first calculation parameter includes a network device designation value P 0_1 , The second calculation parameter includes a network device specified value P 0_2 , wherein, for example, P 0_1 is the same as the existing P 0 , and the transmit antenna gain adjustment amount is implicitly notified by the difference between P 0_2 and P 0_1 , that is, the first calculation parameter is The difference between the second calculated parameters is the gain adjustment amount of the antenna, that is,
  • the implicit indication method includes: the sending access node receives the received power of the first uplink signal and the target received power, so that the UE achieves the target by using the gain according to the target received power.
  • the quality of the uplink signal received by the feedback access node is -100 dBm, and the target target quality is required to reach -90 dBm.
  • the UE has multiple beam configurations, for example, the UE has multiple beam forms of multiple low gain wide beams and multiple high gain narrow beams.
  • the wide beam and the narrow beam have a corresponding relationship, one-to-one correspondence or one-to-many or many-to-one.
  • the UE can support the various beam morphologies described by capability reporting.
  • the base station can improve the antenna gain by instructing the UE to switch the beam shape to improve the quality of the uplink transmission. For example, the base station may instruct the UE to use the wide beam #1 for uplink transmission or uplink beam training, and indicate that the UE should switch the beam shape to the narrow beam, then the UE should use the wide beam #1 corresponding to the narrow beam for uplink transmission or uplink beam training. .
  • the gain adjustment indication may be carried by the access node by using the configuration information sent to the UE, may be sent by using an RRC message and/or a DCI, or may be carried to the UE by using the MAC CE.
  • the UE performs gain adjustment on the antenna according to the gain adjustment indication.
  • the UE will adjust the gain of the antenna to send a subsequent uplink signal by adjusting the gain antenna.
  • the UE sends a second uplink signal to the access node.
  • the UE adjusts the gain of the antenna, and after the gain adjustment, sends a second uplink signal to the access node. That is, when performing uplink beam training, consider the factors of gain adjustment.
  • the UE performs beam training, and the spatial scanning may be an omnidirectional scanning, or may perform scanning of a narrow beam in a wide beam range according to an indication of the network device.
  • the UE spatially scans a plurality of high-gain narrow beams, that is, uses different high-gain narrow beams to transmit uplink signals.
  • the method before the sending the second uplink signal to the network device, the method further includes: receiving, by the network device, a related information indication, where the UE sends a beam of the second uplink signal, where
  • the transmit beam indication includes at least one of: a resource index for transmitting the first uplink signal, beam correlation information for random access in the access procedure, and a resource/SSB ID of the corresponding CSI-RS based on the dissimilarity.
  • the resource index of the first uplink signal and the beam-related information of the random access in the access process may indicate a wide beam used by the UE, and provide a certain reference for the UE, so that the spatial scanning of the UE can be focused on a certain Within the wide beam range.
  • a beam training method in the embodiment of the present application can implement effective on-demand beam training by considering factors of gain adjustment in uplink beam training.
  • the embodiments of the present application may divide the function modules of the UE and the access node according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner. The following is an example of dividing each functional module by using corresponding functions.
  • the embodiment of the present application further provides a terminal device.
  • the terminal device can be used to perform the steps performed by the UE in any of the figures of FIG. 2 and FIG. Figure 7 shows a simplified schematic diagram of the structure of a terminal device.
  • the terminal device uses a mobile phone as an example.
  • the terminal device 70 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the terminal device 70, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user. It should be noted that some types of terminal devices 70 may not have input and output devices.
  • the memory and the processor may be integrated or independently provided; in addition, the RF circuit and the processor may be integrated or independently.
  • the processor When the data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit having the transceiving function can be regarded as the transceiving unit of the terminal device 70
  • the processor having the processing function can be regarded as the processing unit of the terminal device 70.
  • the terminal device 70 includes a transceiver unit 701 and a processing unit 702.
  • the transceiver unit may also be referred to as a transceiver (including a transmitter and/or receiver), a transceiver, a transceiver, a transceiver circuit, and the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 701 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 701 is regarded as a sending unit, that is, the transceiver unit 701 includes a receiving unit and a sending unit.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit or the like.
  • the transmitting unit may also be referred to as a transmitter, a transmitter, or a transmitting circuit, and the like.
  • the transceiving unit 701 and the processing unit 702 may be integrated or independently.
  • all the functions in the processing unit 702 can be implemented in one chip, or can be partially integrated in one chip, and the other functions are integrated in one or more other chips, which is not limited in this application.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), electronic circuit, (shared, dedicated or group) processor and memory, combinational logic circuit, and/or provided to execute one or more software or firmware programs. Other suitable components of the function.
  • ASIC application specific integrated circuit
  • the transceiving unit 701 can be used to perform operations for receiving and/or transmitting by the UE in S101, S102, and/or S104 of FIG. 2, and/or other steps in the present application.
  • Processing unit 702 can be used to perform S103 of Figure 2, and/or other steps in the application.
  • the transceiving unit 701 can be configured to perform the operations of receiving and/or transmitting by the UE in S202 and/or S204 of FIG. 4, and/or other steps in the present application.
  • Processing unit 702 can be used to perform S201 and/or S203 of FIG. 4, and/or other steps in the application.
  • the transceiving unit 701 can be configured to perform the operations of receiving and/or transmitting by the UE in S302 and/or S304 of FIG. 5, and/or other steps in the present application.
  • Processing unit 702 can be used to perform S301 and/or S303 of Figure 5, and/or other steps in the application.
  • the transceiving unit 701 can be configured to perform the operations of the UE receiving and/or transmitting in S401, S403, and/or S405 of FIG. 6, and/or other steps in the present application.
  • Processing unit 702 can be used to perform S404 of Figure 6, and/or other steps in the application.
  • the embodiment of the present application further provides a network device.
  • the network device can serve as an access node or a transmission receiving point for performing the steps performed by the access node in any of the Figures 2, 3 - 6.
  • Figure 8 shows a simplified schematic diagram of the structure of a network device.
  • Network device 80 includes a 801 portion and an 802 portion.
  • the 801 part is mainly used for transmitting and receiving RF signals and converting RF signals and baseband signals; the 802 part is mainly used for baseband processing, and controls the network device 80.
  • Section 801 can be generally referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • the 802 portion is generally a control center of the network device 80, and may be generally referred to as a processing unit, a control unit, a processor, or a controller, etc., for controlling the network device 80 to perform the measurement function entity on the access side in the above related embodiments, Or the step performed by the access node/transmission receiving point of the measurement function entity of the access side.
  • a processing unit for controlling the network device 80 to perform the measurement function entity on the access side in the above related embodiments, Or the step performed by the access node/transmission receiving point of the measurement function entity of the access side.
  • the transceiver unit of the 801 part which may also be called a transceiver, or a transceiver, etc., includes an antenna and a radio frequency unit, wherein the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in the 801 part may be regarded as a receiving unit
  • the device for implementing the transmitting function may be regarded as a transmitting unit, that is, the 801 portion includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the 802 portion may include one or more boards, each of which may include one or more processors and one or more memories for reading and executing programs in the memory to implement baseband processing functions and to network devices 80 control. If multiple boards exist, the boards can be interconnected to increase processing power. As an optional implementation manner, multiple boards share one or more processors, or multiple boards share one or more memories, or multiple boards share one or more processes at the same time.
  • the memory and the processor may be integrated or independently.
  • the 801 portion and the 802 portion may be integrated or may be independently arranged.
  • all the functions in the 802 part can be integrated in one chip, or some functions can be integrated in one chip, and another part of the functions are integrated in one or more other chips, which is not limited in this application.
  • the transceiving unit can be used to perform the operations of the access node receiving and/or transmitting in S101, S102, and/or S104 of FIG. 2, and/or other steps in the present application.
  • the processing unit may be configured to perform related indication information for determining interference in the related embodiment of FIG. 2, determining beam training results, and the like, and/or other steps in the application.
  • the transceiving unit can be used to perform the operations of the access node receiving and/or transmitting in S202 and/or S204 of FIG. 4, and/or other steps in the application.
  • the processing unit may be operative to perform operations for determining selection criteria, determining beam training results, and the like in the related embodiments of FIG. 4, and/or other steps in the application.
  • the transceiving unit can be used to perform the operations of the access node receiving and/or transmitting in S302 and/or S304 of FIG. 5, and/or other steps in the present application.
  • the processing unit may be operative to perform the operations of determining rank Rank conditions, determining beam training results, and the like in the related embodiments of FIG. 5, and/or other steps in the present application.
  • the transceiving unit can be used to perform the operations of the access node receiving and/or transmitting in S401, S403, and/or S405 of FIG. 6, and/or other steps in the present application.
  • the processing unit can be used to perform S402 of Figure 6, and/or other steps in the application.
  • the device on the terminal side provided above may be a terminal device or a chip or a function module in the terminal device, and the foregoing method may be implemented by using software, hardware, or hardware to execute corresponding software.
  • the network-side device may be an access node device, for example, may be an access node device, or may be a chip or a function module in the access node device, and may pass software, hardware, or The hardware executes the corresponding software to implement the above method.
  • the present application further provides a system for beam failure detection, including the UE in the foregoing embodiment (which may also be a UE-side device that implements the foregoing UE function), and an access node (which may also be implemented to implement the foregoing access node function). Access side device or transmission receiving point).
  • the application also provides a computer program product that, when run on a computer, causes the computer to perform any of the methods provided above.
  • the present application also provides a chip in which instructions are stored, which, when run on each of the above-described devices, cause each device to perform the method provided above.
  • the application also provides a computer storage medium having stored thereon a computer program (instructions) that, when executed on a computer, cause the computer to perform the method of any of the above aspects.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种波束训练的方法、装置及系统。其中,在下行波束训练过程中,终端设备通过确定干扰的相关指示信息、分组上报波束的选择准则、秩Rank条件进行波束训练,选择满足相关因素条件的波束进行上报,实现按需的下行波束训练;在上行波束训练过程中,通过网络侧对增益调整的指示,考虑增益因素进行上行波束训练,实现了按需的上行波束训练。该技术方案通过在波束训练过程中考虑干扰、信道条件等不同的因素,能够实现有效的按需波束训练。

Description

一种波束训练的方法、装置及系统
本申请要求于2018年5月11日提交中国国家知识产权局、申请号为201810451328.3、发明名称为“一种波束训练的方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及通信系统中的基于波束通信的技术,具体地涉及通信系统中波束训练的方法、装置及系统。
背景技术
在移动通信系统中使用波束进行传输,即通过在空间上朝向特定的方向发送信号,可以实现更高的天线阵列增益。波束可以通过波束成型(Beamforming)等技术手段实现。例如在高频(high frequency,HF)通信中的一个重要的方向就是模拟加数字混合波束成型(hybrid Beamforming),这样既可以很好的对抗高频信号由于传输距离导致的损耗又可以把复杂度和硬件成本控制在可接受的范围内。
在基于波束的通信中,需要在发射端和接收端之间进行波束训练,模拟波束赋形和数模混合波束赋形都需要调整收发两端的模拟波束赋形权值,以使得其所形成的波束能对准通信的对端,即,波束对齐,波束赋形的权值通常通过发送训练信号获得。波束训练的结果决定了能否正常传输信号。随着对通信质量要求的进一步提高,除了波束对齐,波束训练需要考虑通信中更多的因素,以提升通信质量。
发明内容
本申请提供一种波束训练的方法、装置及系统,用以通过考虑通信中的其他因素进行波束训练,使得能有效进行按需波束训练。
第一方面,提供一种波束训练的方法和装置。
在一种可能的设计中,该方法应用于终端设备上,通过网络侧向终端侧发送干扰的相关指示信息,终端设备进行波束选择时考虑相应的干扰因素,实现有效的按需波束训练。该方法包括:接收网络设备发送的干扰的相关指示信息;接收网络设备通过两个或多个波束发送的下行信号,所述两个或多个波束包括所述干扰对应的波束;向所述网络设备发送选择的波束的相关信息;其中,所述选择的波束为根据所述干扰的相关指示信息和对所述下行信号的测量结果选择的波束。可以理解的,所述干扰是由网络设备确定的,可选的,网络设备可以根据向终端设备发送下行信号的波束上是否还有向其他终端设备的信号传输、某波束是否已作为服务波束服务其他终端设备等情况,来确定干扰,将干扰的相关指示信息给终端设备。
可选的,所述下行信号包括但不限于主同步信号(Primary Synchronization Signal,简称PSS)/辅同步信号(Secondary Synchronization Signal,简称SSS),下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS,相位噪声跟踪信号PTRS,信道状态信息参考信号(Channel status information reference signal,简称CSI-RS),小区信号(Cell Reference Signal,简称CRS)(新空口(New Radio,简称NR)没有),精同步信号(Tim/frequency tracking Reference Signal,简称TRS)(LTE 没有)等。
该设计通过在波束训练中考虑干扰的因素进行波束选择,能够实现有效的按需波束训练。
相应的,提供一种波束训练的装置,该装置可以实现第一方面中的对应的方法。例如,该装置以功能形式限定,可以是终端侧的实体,其具体实现形式可以是终端设备,例如:可以为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第一方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于与网络设备通信。该装置还可以包括处理单元,该处理单元用于根据所述干扰的相关指示信息和对所述下行信号的测量结果选择波束。
第二方面,提供一种波束训练的方法和装置。
在一种可能的设计中,该方法应用于网络设备上,如接入节点、网络侧具备接入节点部分功能的传输接收点。通过网络侧向终端侧发送干扰的相关指示信息,以使得终端设备进行波束选择时考虑相应的干扰因素,实现有效的按需波束训练。该方法包括:向终端设备发送干扰的相关指示信息;通过两个或多个波束向所述终端设备发送下行信号,所述两个或多个波束包括所述干扰对应的波束;接收所述终端设备发送的所述终端设备选择的波束的相关信息;其中,所述选择的波束为所述终端设备根据所述干扰的相关指示信息和对所述下行信号的测量结果选择的波束。可以理解的,所述干扰是由网络设备确定的,可选的,网络设备可以根据向终端设备发送下行信号的波束上是否还有向其他终端设备的信号传输、某波束是否已作为服务波束服务其他终端设备等情况,来确定干扰,将干扰的相关指示信息给终端设备。
可选的,所述下行信号包括但不限于主同步信号(Primary Synchronization Signal,简称PSS)/辅同步信号(Secondary Synchronization Signal,简称SSS),下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS,相位噪声跟踪信号PTRS,信道状态信息参考信号(Channel status information reference signal,简称CSI-RS),小区信号(Cell Reference Signal,简称CRS)(NR没有),精同步信号(Tim/frequency tracking Reference Signal,简称TRS)(LTE没有)等。
该设计通过在波束训练中考虑干扰的因素进行波束选择,能够实现有效的按需波束训练。
相应的,提供一种波束训练的装置,该装置可以实现第二方面中的对应的方法。例如,该装置以功能形式限定,可以是接入侧的实体,其具体实现形式可以是接入节点设备,例如:可以为接入节点设备,也可以为接入节点设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第二方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必 要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于向终端设备发送干扰的相关指示信息、下行信号、接收终端设备发送的波束的相关信息。该装置还可以包括处理单元,该处理单元用于确定干扰的相关指示信息。
基于第一方面、第二方面提供的任一种技术方案:
在一种可能的设计中,所述干扰的相关指示信息用于指示所述干扰对应的波束发送的下行信号的传输资源,和/或接收所述所述干扰对应的波束发送的下行信号的接收波束。可选的,所述接收波束包括接收非干扰对应的下行信号的接收波束,其中,所述非干扰对应的下行信号为通过所述两个或多个波束中非干扰对应的波束发送的下行信号。可选的,所述干扰的相关指示信息用于指示接收所述干扰对应的波束发送的下行信号的接收波束,包括:所述干扰的相关指示信息用于指示通过接收所述非干扰对应的下行信号的接收波束,分别接收所述所述干扰对应的波束发送的下行信号。对应的,所述接收网络设备通过两个或多个波束发送的下行信号,包括:根据所述干扰的相关指示信息,通过接收所述非干扰对应的下行信号的接收波束,分别接收所述干扰对应的波束发送的下行信号。可以理解的,所述干扰的相关指示信息可以指示终端设备分别用所有接收非干扰对应的下行信号的接收波束去接收干扰对应的下行信号,可选的,也可以指示终端设备用部分接收非干扰对应的下行信号的接收波束分别去接收干扰对应的下行信号,进一步可选的,还可以指示终端设备用某一接收非干扰对应的下行信号的接收波束去接收干扰对应的下行信号。该设计,使得终端设备通过接收非干扰对应的下行信号的接收波束,来接收干扰对应的下行信号,可以使得终端设备获得干扰对应的下行信号对其他非干扰对应的下行信号的干扰量。
在一种可能的设计中,所述干扰的相关指示信息的方式包括显式指示的方式或隐式指示的方式。为了考虑干扰因素进行波束的按需训练,网络设备向终端设备发送干扰的相关指示信息,可以通过显式指示或隐式指示的方式进行指示。
在一种可能的设计中,所述显式指示的方式包括:发送干扰的相关信息。可选的,所述干扰的相关信息包括以下至少一项:通过所述干扰对应的波束发送下行信号的传输资源的指示信息、所述传输资源对应的接收波束的指示信息。该设计通过显式指示的方式能简化终端设备的运算。
在一种可能的设计中,所述隐式指示的方式包括配置所述干扰的相关指示信息包括:通过所述干扰对应的波束发送下行信号的传输资源的指示信息、以及所述两个或多个波束发送的下行信号中非干扰对应的下行信号的接收波束的指示信息,所述非干扰对应的下行信号为下行信号中不通过所述干扰对应的波束发送的下行信号。该设计通过隐式指示的方式能节省信令开销。
在一种可能的设计中,所述相关信息包括以下至少一项:通过所述选择的波束发送的下行信号的资源索引、通过所述选择的波束发送的下行信号的接收功率RSRP、所述干扰的干扰量信息。可以理解,终端设备可以通过上报下行信号的资源索引来指示对应的选择波束,还可以将接收功率RSRP、干扰量等信息上报给网络设备,以便于网络设备进行调度。可选的,所述干扰量可以终端设备采用同一接收波束接收的非干扰对应的波束 发送的下行信号的接收功率与干扰对应的波束发送的下行信号的接收功率的比值。
第三方面,提供一种波束训练的方法和装置。
在一种可能的设计中,该方法应用于终端设备上,通过终端设备在进行波束选择时考虑分组上报波束的具体选择准则来选定分组上报的波束,实现有效的按需波束训练。该方法包括:终端设备接收网络设备通过两个或多个波束发送的下行信号;所述终端设备将所述波束中选定的分组上报的波束的相关信息发送给所述网络设备,所述分组上报的波束为所述终端设备根据对所述下行信号的接收及选择准则选定的波束;其中,所述选择准则为选定的所述分组上报的每组中的波束发送的所述下行信号是所述终端设备采用同一接收参数接收到的,或所述分组上报的每组中的波束发送的所述下行信号是所述终端设备采用不同接收参数接收到的。可以理解,如果没有按需进行波束训练,不区分分组上报的波束的选择准则,某些场景下,可能会存在上报的波束中有不适合的波束的情况而网络侧不知道,由于对于网络侧来说信息不足,就会造成调度的错误。
可选的,所述下行信号包括但不限于主同步信号(Primary Synchronization Signal,简称PSS)/辅同步信号(Secondary Synchronization Signal,简称SSS),下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS,相位噪声跟踪信号PTRS,信道状态信息参考信号(Channel status information reference signal,简称CSI-RS),小区信号(Cell Reference Signal,简称CRS)(NR没有),精同步信号(Tim/frequency tracking Reference Signal,简称TRS)(LTE没有)等。
可选的,所述相关信息包括以下至少一项:所述分组上报的波束对应的下行信号的资源索引、所述分组上报的波束对应的下行信号的接收功率、干扰量。
该设计通过在波束训练中考虑分组上报波束的具体选择准则进行波束选择,能够实现有效的按需波束训练。
在一种可能的设计中,所述方法还包括:所述终端设备接收所述网络设备发送的所述选择准则的指示信息。可以理解,对于按需进行波束训练,选择准则可以是由网络侧配置。
在一种可能的设计中,所述方法还包括:所述终端设备向所述网络设备发送所述选择准则的指示信息。可以理解,对于按需进行波束训练,选择准则可以是由终端设备自主选择,并将选择准则的指示信息发送给网络设备,使得网络侧有足够的信息,不会造成调度的错误。
在一种可能的设计中,所述方法还包括:接收所述网络设备发送的所述分组上报的分组数目和/或每组的波束数目的配置信息。对于分组上报,可选的,网络侧可以配置分组的信息,可选的,分组的配置也可以是统一约定的。
在一种可能的设计中,所述终端设备根据对所述下行信号的接收及选择准则选定所述波束中分组上报的波束,包括:所述终端设备对所述下行信号的接收功率进行测量,根据测量结果和所述选择准则确定分组上报的波束。可以理解,终端设备对波束选择时,除了要考虑分组上报波束的选择准则,还需要考虑信号质量。
相应的,提供一种波束训练的装置,该装置可以实现第三方面中的对应的方法。例如,该装置以功能形式限定,可以是终端侧的实体,其具体实现形式可以是终端设备,例如:可以为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、 或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第三方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于与网络设备通信。该装置还可以包括处理单元,该处理单元用于根据对所述下行信号的接收及选择准则选定分组上报的波束。
第四方面,提供一种波束训练的方法和装置。
在一种可能的设计中,该方法应用于网络设备上,如接入节点、网络侧具备接入节点部分功能的传输接收点。通过波束训练时考虑分组上报波束的具体选择准则来选定分组上报的波束,实现有效的按需波束训练。该方法包括:所述网络设备通过两个或多个波束向所述终端设备发送下行信号;所述网络设备接收所述终端设备发送的所述波束中分组上报的波束的相关信息;其中,所述分组上报的波束由所述终端设备根据对所述下行信号的接收及选择准则选定;所述选择准则为选定的所述分组上报的每组中的波束发送的所述下行信号是所述终端设备采用同一接收参数接收到的,或所述分组上报的每组中的波束发送的所述下行信号是所述终端设备采用不同接收参数接收到的。可以理解,如果没有按需进行波束训练,不区分分组上报的波束的选择准则,某些场景下,可能会存在上报的波束中有不适合的波束的情况而网络侧不知道,由于对于网络侧来说信息不足,就会造成调度的错误。
可选的,所述下行信号包括但不限于主同步信号(Primary Synchronization Signal,简称PSS)/辅同步信号(Secondary Synchronization Signal,简称SSS),下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS,相位噪声跟踪信号PTRS,信道状态信息参考信号(Channel status information reference signal,简称CSI-RS),小区信号(Cell Reference Signal,简称CRS)(NR没有),精同步信号(Tim/frequency tracking Reference Signal,简称TRS)(LTE没有)等。
可选的,所述相关信息包括以下至少一项:所述分组上报的波束对应的下行信号的资源索引、所述分组上报的波束对应的下行信号的接收功率、干扰量。
该设计通过在波束训练中考虑分组上报波束的具体选择准则进行波束选择,能够实现有效的按需波束训练。
在一种可能的设计中,所述方法还包括:所述网络设备向所述终端设备发送所述选择准则的指示信息。可以理解,对于按需进行波束训练,选择准则可以是由网络侧配置。
在一种设计中,所述方法还包括:所述网络设备接收所述终端设备发送的所述选择准则的指示信息。可以理解,对于按需进行波束训练,选择准则可以是由终端设备自主选择,并将选择准则的指示信息发送给网络设备,使得网络侧有足够的信息,不会造成调度的错误。
在一种可能的设计中,所述方法还包括:所述网络设备向所述终端设备发送所述分组上报的分组数目和/或每组的波束数目的配置信息。对于分组上报,可选的,网络侧可以配置分组的信息,可选的,分组的配置也可以是统一约定的。
在一种可能的设计中,所述分组上报的波束由所述终端设备根据对所述下行信号的接收及所述选择准则选定,包括:所述分组上报的波束由所述终端设备对所述下行信号的接收功率进行测量,根据测量结果和所述选择准则确定的。可以理解,终端设备对波束选择时,除了要考虑分组上报波束的选择准则,还需要考虑信号质量。
相应的,提供一种波束训练的装置,该装置可以实现第四方面中的对应的方法。例如,该装置以功能形式限定,可以是接入侧的实体,其具体实现形式可以是接入节点设备,例如:可以为接入节点设备,也可以为接入节点设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第四方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于与终端设备通信。该装置还可以包括处理单元,该处理单元用于相应处理(如,确定波束的配置信息、确定选择准则等)。
第五方面,提供一种波束训练的方法和装置。
在一种可能的设计中,该方法应用于终端设备上,通过终端设备在进行波束选择时考虑传输流的因素,实现有效的按需波束训练。该方法包括:终端设备接收网络设备通过一个或多个波束发送的下行信号;所述终端设备将所述波束中选定上报的波束的相关信息发送给所述网络设备,所述上报的波束为所述终端设备根据所述下行信号确定的对应信道满足Rank条件的下行信号的发送波束。可以理解的,通过考虑传输流的因素,能够灵活利用系统容量。
可选的,所述下行信号包括但不限于主同步信号(Primary Synchronization Signal,简称PSS)/辅同步信号(Secondary Synchronization Signal,简称SSS),下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS,相位噪声跟踪信号PTRS,信道状态信息参考信号(Channel status information reference signal,简称CSI-RS),小区信号(Cell Reference Signal,简称CRS)(NR没有),精同步信号(Tim/frequency tracking Reference Signal,简称TRS)(LTE没有)等。
该设计通过在波束训练中考虑传输流的因素进行波束选择,能够实现有效的按需波束训练。
在一种可能的设计中,所述方法还包括:所述终端设备接收所述网络设备发送的所述Rank条件的指示信息。可以理解,对于按需进行波束训练,传输流可以是由网络侧配置。
在一种可能的设计中,所述方法还包括:所述终端设备向所述网络设备发送所述Rank条件的指示信息。可以理解,对于按需进行波束训练,选择准则可以是由终端设备自主选择,并将选择准则的指示信息发送给网络设备,使得网络侧有足够的信息,不会造成调度的错误。
在一种可能的设计中,所述方法还包括:若根据所述下行信号确定的对应信道未存在满足Rank条件的,则所述终端设备向所述网络设备发送异常指示信息。
在一种可能的设计中,所述终端设备将所述波束中选定上报的波束的相关信息发送给所述网络设备,包括:所述终端设备以分组上报的方式将所述波束中选定上报的波束的相关信息发送给所述网络设备。采用分组上报的方式能够减少终端设备所需预留的时频资源,从而大大提高资源利用率。
相应的,提供一种波束训练的装置,该装置可以实现第五方面中的对应的方法。例如,该装置以功能形式限定,可以是终端侧的实体,其具体实现形式可以是终端设备,例如:可以为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第五方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于与网络设备通信。该装置还可以包括处理单元,该处理单元用于根据所述下行信号确定对应信道的秩Rank是否满足Rank条件,来选择上报的波束。
第六方面,提供一种波束训练的方法和装置。
在一种可能的设计中,该方法应用于网络设备上,如接入节点、网络侧具备接入节点部分功能的传输接收点。通过波束训练时考虑传输流的因素,实现有效的按需波束训练。该方法包括:网络设备通过一个或多个波束向终端设备发送的下行信号;所述网络设备接收所述终端设备发送的所述波束中选定上报的波束的相关信息,所述上报的波束为所述终端设备根据所述下行信号确定的对应信道满足Rank条件的下行信号的发送波束。可以理解的,通过考虑传输流的因素,能够灵活利用系统容量。
可选的,所述下行信号包括但不限于主同步信号(Primary Synchronization Signal,简称PSS)/辅同步信号(Secondary Synchronization Signal,简称SSS),下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS,相位噪声跟踪信号PTRS,信道状态信息参考信号(Channel status information reference signal,简称CSI-RS),小区信号(Cell Reference Signal,简称CRS)(NR没有),精同步信号(Tim/frequency tracking Reference Signal,简称TRS)(LTE没有)等。
该设计通过在波束训练中考虑传输流的因素进行波束选择,能够实现有效的按需波束训练。
在一种可能的设计中,所述方法还包括:所述网络设备向所述终端设备发送所述Rank条件的指示信息。可以理解,对于按需进行波束训练,传输流可以是由网络侧配置。
在一种可能的设计中,所述方法还包括:所述网络设备接收所述终端设备发送所述rank条件的指示信息。可以理解,对于按需进行波束训练,选择准则可以是由终端设备自主选择,并将选择准则的指示信息发送给网络设备,使得网络侧有足够的信息,不会造成调度的错误。
在一种可能的设计中,所述方法还包括:所述网络设备接收所述终端设备发送的异常指示信息,所述异常指示信息为所述终端设备在根据所述下行信号确定的对应信道未存在满足Rank条件下发送的。
在一种设计中,所述网络设备接收所述终端设备发送的所述波束中选定上报的波束的相关信息,包括:所述网络设备接收所述终端设备以分组上报的方式发送的所述波束中选定上报的波束的相关信息。采用分组上报的方式能够减少网络设备为终端设备预留的时频资源,从而大大提高资源利用率。
相应的,提供一种波束训练的装置,该装置可以实现第六方面中的对应的方法。例如,该装置以功能形式限定,可以是接入侧的实体,其具体实现形式可以是接入节点设备,例如:可以为接入节点设备,也可以为接入节点设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第六方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于与终端设备通信。该装置还可以包括处理单元,该处理单元用于相应处理(如,确定Rank条件的指示信息)。
以上六方面给出了下行方向波束训练的技术方案,以下将给出上行方向波束训练的技术方案。
第七方面,提供一种波束训练的方法和装置。
在一种可能的设计中,该方法应用于终端设备上,通过网络设备的增益调整指示,终端设备在进行上行波束选择时考虑增益的因素,实现有效的按需波束训练。该方法包括:终端设备向网络设备发送第一上行信号;所述终端设备接收所述网络设备发送的增益调整指示,所述增益调整指示为所述网络设备根据测量所述第一上行信号确定的;所述终端设备向所述网络设备发送第二上行信号,所述第二信号为所述终端设备根据所述增益调整指示对天线进行增益调整后发送的上行信号。
可选的,所述上行信号包括但不限于信道探测信号(Sounding Reference Signal,简称SRS),上行控制信道解调参考信号(PUCCH De-modulation Reference Signal,简称PUCCH-DMRS),上行数据信道解调参考信号PUSCH-DMRS,上行相位噪声跟踪信号(phase noise tracking reference signal,简称PTRS)等。
该设计通过在上行波束训练中考虑增益调整的因素进行,能够实现有效的按需波束训练。
在一种可能的设计中,终端设备在空间上的扫描可以是全向扫描,也可以是根据网络设备的指示,在宽波束范围内进行窄波束的扫描。本申请中,终端设备在空间上扫描多个高增益的窄波束,即,使用不同的高增益窄波束来发送上行信号。其中,可选的,在所述向所述网络设备发送第二上行信号之前,还包括:接收所述网络设备发送的用于终端设备发送所述第二上行信号的波束的相关信息指示,所述发送波束指示包括以下至少一项:发送第一上行信号的资源索引、接入过程中随机接入的波束相关信息、基于互异性的对应的CSI-RS的资源/SSB的ID。通过所述第一上行信号的资源索引、接入过程中随机接入的波束相关信息可以指示终端设备之前使用过的宽波束,为终端设备提供一定的参考,使终端设备在空间上的扫描可以聚焦在一定的宽波束范围内。
相应的,提供一种波束训练的装置,该装置可以实现第七方面中的对应的方法。例如,该装置以功能形式限定,可以是终端侧的实体,其具体实现形式可以是终端设备,例如:可以为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第七方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于与网络设备通信。该装置还可以包括处理单元,该处理单元用于确定增益调整。
第八方面,提供一种波束训练的方法和装置。
在一种可能的设计中,该方法应用于网络设备上,如接入节点、网络侧具备接入节点部分功能的传输接收点。通过网络设备的增益调整指示,终端设备在进行上行波束选择时考虑增益的因素,实现有效的按需波束训练。该方法包括:网络设备接收终端设备发送的第一上行信号;所述网络设备向所述终端设备发送增益调整指示,所述增益调整指示为所述网络设备根据测量所述第一上行信号确定的指示;所述网络设备接收所述终端设备发送的第二上行信号,所述第二信号为根据所述增益调整指示对天线进行增益调整后发送的上行信号。
可选的,所述上行信号包括但不限于信道探测信号(Sounding Reference Signal,简称SRS),上行控制信道解调参考信号(PUCCH De-modulation Reference Signal,简称PUCCH-DMRS),上行数据信道解调参考信号PUSCH-DMRS,上行相位噪声跟踪信号(phase noise tracking reference signal,简称PTRS)等。
该设计通过在上行波束训练中考虑增益调整的因素进行,能够实现有效的按需波束训练。
在一种可能的设计中,终端设备在空间上的扫描可以是全向扫描,也可以是根据网络设备的指示,在宽波束范围内进行窄波束的扫描。本申请中,终端设备在空间上扫描多个高增益的窄波束,即使用不同的高增益窄波束来发送上行信号。其中,可选的,在所述网络设备接收所述终端设备发送的第二上行信号之前,还包括:所述网络设备向所述终端设备发送用于终端设备发送所述第二上行信号的波束的相关信息指示,所述发送波束指示包括以下至少一项:发送第一上行信号的资源索引、接入过程中随机接入的波束相关信息、基于互异性的对应的CSI-RS的资源/SSB的ID。通过所述第一上行信号的资源索引、接入过程中随机接入的波束相关信息可以指示终端设备之前使用过的宽波束,为终端设备提供一定的参考,使终端设备在空间上的扫描可以聚焦在一定的宽波束范围内。
相应的,提供一种波束训练的装置,该装置可以实现第八方面中的对应的方法。例如,该装置以功能形式限定,可以是接入侧的实体,其具体实现形式可以是接入节点设备,例如:可以为接入节点设备,也可以为接入节点设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该 装置执行上述第八方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于与终端设备通信。该装置还可以包括处理单元,该处理单元用于根据测量所述第一上行信号确定增益调整。
基于第七方面、第八方面提供的任一种技术方案:
在一种可能的设计中,所述增益调整指示的方式包括显式指示的方式或隐式指示的方式。为了考虑增益调整因素进行波束的按需训练,网络设备向终端设备发送增益调整指示,可以通过显式指示或隐式指示的方式进行指示。
在一种可能的设计中,所述显式指示的方式包括:发送目标天线增益的指示信息或发送天线增益的调节因子的指示信息。通过显式指示的方式能简化终端设备的运算。
在一种可能的设计中,所述隐式指示的方法包括:发送终端设备用于确定发送功率的计算参数,所述计算参数用于使得终端设备确定出的发送功率超过预设的发送功率阈值。即,通过这样隐式的指示方式,终端设备确定出超过阈值的发送功率,则终端设备为了不超过所述阈值会采取调高发送天线增益的方式,从而实现了增益调整。所述计算参数包括以下至少一项:网络设备指定值P0、网络设备指示的缩放系数α、路损估计参考。或者,可选的,所述隐式指示的方法包括:发送终端设备分别用于确定发送功率的第一计算参数和第二计算参数,所述第一计算参数与第二计算参数的差值为所述天线的增益调整量。所述第一计算参数包括网络设备指定值P0_1,所述第二计算参数包括网络设备指定值P0_2。或者,可选的,所述隐式指示的方法包括:发送网络设备收到所述第一上行信号的接收功率和目标接收功率,使得终端设备根据所述目标接收功率,通过增益调整达到实现目标接收功率的目的。通过隐式指示的方式能节省信令开销。
本申请还提供了一种计算机存储介质,其上储存有计算机程序(指令),当该程序(指令)在计算机上运行时,使得计算机执行上述任一方面所述的方法。
本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方面所述的方法。
本申请还提供了一种芯片,其中存储有指令,当其在通信设备上运行时,使得通信设备执行上述各方面所述的对应方法。
本申请还提供了一种装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述各方面所述的对应方法。
本申请还提供了一种装置,包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现上述各方面所述的对应方法。可以理解的,该存储器可以集成在处理器中,也可以独立于处理器之外。
本申请还提供了一种装置,包括处理器,所述处理器执行计算机程序时实现上述各方面所述的对应方法。该处理器可以是专用处理器。
本申请还提供了一种系统,包括上述提供的终端侧的装置,以及上述提供的网络侧的装置,这些系统组成分别实现上述各方面所述的对应方法。
可以理解地,上述提供的任一种装置、计算机存储介质、计算机程序产品、芯片、 系统均用于实现上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
附图说明
图1是本申请涉及的一种网络系统架构;
图2是本申请提供的一种波束训练方法的实施例的流程图;
图3是本申请提供的一种基于波束的通信场景示意图;
图4是本申请提供的另一种波束训练方法的实施例的流程图;
图5是本申请提供的又一种波束训练方法的实施例的流程图;
图6是本申请提供的再一种波束训练方法的实施例的流程图;
图7是本申请提供的一种简化的终端设备结构示意图;
图8是本申请提供的一种简化的网络设备结构示意图。
具体实施方式
为使本申请解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将以实施例的形式结合附图对本申请的技术方案作进一步详细的描述。所述详细的描述通过使用方框图、流程图和/或示例提出了设备和/或过程的各种实施例。由于这些方框图、流程图和/或示例包含一个或多个功能和/或操作,所以本领域技术人员将理解可以通过许多硬件、软件、固件或它们的任意组合单独和/或共同实施这些方框图、流程图或示例内的每个功能和/或操作。
本申请中“多个”是指两个或两个以上。本申请中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。本申请中的术语“第一”、“第二”、“第三”、“第四”等是为了区分不同的对象,并不限定该不同对象的顺序。
本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。本申请所提及的所有“终端”/“终端设备”,在一些情况下可以是指移动设备,例如移动电话、个人数字助理、手持或膝上型计算机以及具有电信能力的类似设备,有些情况下还可以是穿戴设备或车载设备等,并包括未来5G网络中的终端或者未来演进的PLMN网络中的终端等。这种终端可以包括设备及其相关联的可移除存储模块(例如但不限于:包括订户标识模块(Subscriber Identification Module,简称为SIM)应用、通用订户标识模块(Universal Subscriber Identification Module,简称为USIM)应用或可移除用户标识模块(Removable User Identity Module,简称为R-UIM)应用的通用集成电路卡(Universal Integrated Circuit Card,简称为UICC)))。备选地,这种终端可以包括没有这种模块的设备本身。在其它情况下,术语“终端”/“终端设备”可以是指具有类似能力但是不可携带的设备,例如,台式计算机、机顶盒或网络设备。术语“终端”/“终端设备”还可以是指可端接用户的通信会话的任何硬件或软件组件。此外,“用户终端”、“User Equipment”、“UE”、“站点”、“station”、“STA”、“用户设备”、“用户代理”、“User Agent”、“UA”、“用户装备”、“移动设备”和“设备”等皆是与本文中“终端”/“终端设备”同义的替代术语。为方便描述,本申请中,上面提到的设备统称为用户设备或UE。
本申请中提及的“接入节点”,是一种网络设备,部署在无线接入网中用以为终端 设备提供无线通信功能的装置,能够负责调度和配置给UE的下行信号等功能。所述接入节点可以包括各种形式的宏基站、微基站、中继站、接入点等等,可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是长期演进(Long Term Evolution,简称LTE)中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,新空口(New Radio,简称NR)系统中的传输节点或收发点(transmission reception point,简称TRP或者TP)或者下一代节点B(generation nodeB,简称gNB),无线保真(Wireless-Fidelity,简称Wi-Fi)的站点、无线回传节点、小站、微站,或者未来第五代移动通信(the 5th Generation Mobile Communication,简称5G)网络中的基站等,本申请在此并不限定。在采用不同的无线接入技术的系统中,具备接入节点功能的设备名称可能会有所不同。为方便描述,本申请中,上述为UE提供无线通信功能的装置统称为接入节点。
本申请中基于波束的通信,是指在移动通信系统中使用波束进行传输,即通过在空间上朝向特定的方向发送信号,可以实现更高的天线阵列增益。波束可以通过波束成型(Beamforming)等技术手段实现。例如在高频(high frequency,简称HF)通信中的一个重要的研究方向就是模拟加数字混合波束成型(hybrid Beamforming),这样既可以很好的对抗高频信号由于传输距离导致的损耗又可以把复杂度和硬件成本控制在可接受的范围内。
本申请所涉及的技术中,相关术语定义如下:
准同位(quasi-co-location,简称QCL):准同位关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有准同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有准同位关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(Angel-of-Arrival,AoA),平均到达角,AoA的扩展等。具体地,准同位指示用于指示至少两组天线端口是否具有准同位关系为:所述准同位指示用于指示所述至少两组天线端口发送的信道状态信息参考信号是否来自相同的传输点,或所述准同位指示用于指示所述至少两组天线端口发送的信道状态信息参考信号是否来自相同的波束组。
准同位假设(QCL assumption):是指假设两个端口之间是否具有QCL关系。准同位假设的配置和指示可以用来帮助接收端进行信号的接收和解调。例如,接收端能确认A端口和B端口具有QCL关系,即可以将A端口上测得的信号的大尺度参数用于B端口上的信号测量和解调。
波束(beam):波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的, 可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。波束在协议中的体现还是可以空域滤波器(spatial filter)。
波束的信息可以通过索引信息进行标识。可选地,所述索引信息可以对应配置UE的资源标识,比如,所述索引信息可以对应配置的信道状态信息参考信号(Channel status information Reference Signal,简称CSI-RS)的ID或者资源,也可以对应配置的上行探测参考信号(Sounding Reference Signal,简称SRS)的ID或者资源。或者,可选地,所述索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息,比如,所述索引信息可以是通过波束发送的同步信号或者广播信道指示该波束的索引信息。
或者,可选地,波束的信息的标识包括可以通过波束的绝对索引、波束的相对索引,波束的逻辑索引,波束对应的天线端口的索引,波束对应的天线端口组的索引,下行同步信号块的时间索引,波束对连接(beam pair link,BPL)信息,波束对应的发送参数(Tx parameter),波束对应的接收参数(Rx parameter),波束对应的发送权重(weight),权重矩阵(weight vector),权重向量(weight matrix),波束对应的接收权重,或者它们的索引,波束对应的发送码本(codebook),波束对应的接收码本,或者它们的索引。
空域准同位(spatial QCL):spatial QCL可以认为是QCL的一种类型。对于spatial有两个角度可以理解:从发送端或者从接收端。从发送端来看,如果说两个天线端口是空域准同位的,那么是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域准同位的,那么是指接收端能够在相同的波束方向上接收到这两个天线端口发送的信号。
图1给出了本申请涉及的一种网络系统架构,本申请适用于如图1所示的基于波束300的多载波通信系统,例如5G新空口(New Radio,简称NR)。该系统中包括通信系统中的上行(UE200到接入节点100)和下行(接入节点100到UE200)通信。上行通信和下行通信都会基于打向空间方向上的波束300进行。根据长期演进(Long Term Evolution,简称LTE)/NR的协议,在物理层,上行通信包括上行物理信道和上行信号的传输。其中上行物理信道包括随机接入信道(Random access channel,简称为PRACH),上行控制信道(Physical uplink control channel,简称为PUCCH),上行数据信道(Physical uplink shared channel,简称为PUSCH)等,上行信号包括信道探测信号SRS,上行控制信道解调参考信号(PUCCH De-modulation Reference Signal,简称PUCCH-DMRS),上行数据信道解调参考信号PUSCH-DMRS,上行相位噪声跟踪信号(phase noise tracking reference signal,简称PTRS)等。下行通信包括下行物理信道和下行信号的传输。其中下行物理信道包括广播信道(Physical broadcast channel,简称PBCH),下行控制信道(Physical downlink control channel,简称PDCCH),下行数据信道(Physical downlink shared channel,简称PDSCH)等,下行信号包括主同步信号(Primary Synchronization Signal,简称PSS)/辅同步信号(Secondary Synchronization Signal,简称SSS),下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考 信号PDSCH-DMRS,相位噪声跟踪信号PTRS,信道状态信息参考信号(Channel status information reference signal,CSI-RS),小区信号(Cell Reference Signal,简称CRS)(NR没有),精同步信号(Tim/frequency tracking Reference Signal,简称TRS)(LTE没有)等。
在基于波束的通信中,需要在接入节点100和UE200之间进行波束训练,在初始接入过程中,经过波束训练,接入节点100和UE200达成了初步波束初步对齐,UE200从此能接入网络。波束对齐的过程,简单来说,是由接入节点100配置一组参考信号和/或同步信号块通过不同的发送波束发给UE200进行测量,由UE200使用接收波束进行接收,并选择发送波束中一个或多个反馈给接入节点100。在UE200接入网络后,考虑UE200的移动、环境变化等因素,接入节点100和UE200之间仍需进行以波束管理为目的的波束训练,来保证通信的质量。波束管理包括上行波束管理和下行波束管理,其中上行波束管理主要分类两类:基于上行信号的上行波束管理,以及基于下行信号的上行波束管理。基于上行信号的上行波束管理一般不需要波束一致性的假设,而基于下行信号的上行波束管理一般需要波束一致性的假设。基于上行信号(例如SRS)的上行波束管理中,接入节点100可以为UE200配置一个SRS资源集合(SRS resource set),指示该集合功能是波束管理(SetUse=BeamManagement),并且指示UE200应该使用相同还是不同的发送波束在不同的SRS资源上发送SRS。如果接入节点100指示UE200使用相同的发送波束,则可用于接入节点100侧接收波束的训练,如果接入节点100指示UE200使用不同的发送波束,则可用于UE200侧发送波束的训练。基于下行信号的波束管理,接入节点100与UE200之间的波束训练主要由下行信号的测量和反馈完成,根据波束一致性,下行训练之后选择的终端侧接收波束即可作为上行传输的发送波束的参考。
本申请中,在图1所示的系统下,接入节点100与UE200之间的波束训练,考虑了通信中的更多因素,如下行波束管理考虑干扰的因素。接入节点100获得先验信息,知道某一或某些波束300上有信号在传输,当UE200接入网络后,接入节点100如果采用这类波束300向UE200发送下行信号,则会将该类波束300作为干扰,将干扰的相关指示信息UE200,可以采用显式或隐式的指示方式,使得UE200进行波束选择时,考虑干扰的因素。如果下行波束管理考虑了对于接入节点100通过不同的波束300发出的下行信号被UE200接收的细化因素,UE200在波束选择时,会依据细化的选择准则来选择分组上报的波束,即,是UE200采用相同的接收参数接收,还是采用不同的接收参数接收。选择准则可以是接入节点100预先配置给UE200的,也可以是UE200自主选择的,并可以将选择准则的指示信息发送给接入节点100,使得网络侧有足够的信息,不会造成调度的错误。如果下行波束管理考虑了接入节点100传输流的因素,UE200在波束选择时,会根据信道估计考虑传输流的因素来选择波束。传输流的条件可以是接入节点100通过秩Rank指示预先配置给UE200的,也可以是UE200自主选择的,并可以将Rank条件的指示信息发送给接入节点100,使得网络侧有足够的信息,不会造成调度的错误。如果在进行上行波束管理时,考虑了上行覆盖的因素,接入节点100会根据在先接收的UE200发送的上行信号的质量,确定随后UE200上行波束的是否需要进行增益调整,以达到不调整上行发送功率来增强上行覆盖,在接入节点100确定UE200需要调整发射天线的增益,则会将增益调整指示发送给UE200,UE200根据该增益调整指示对天线进行增益调整后再发送上行信号。
本申请中,对于上行、下行波束的训练,都是根据不同的考虑因素,按需进行的,能够满足对通信质量的进一步要求。需要说明的是,图1所示的仅是本申请所涉及的一种网络系统架构的示例,本申请并不局限于此。
实施例一
网络中,UE与接入节点建立连接,采用本实施例的方法进行波束训练,从而使得UE对波束的选择考虑了特定的因素,如干扰的因素等。使得接入节点在调度时,能够为UE提供更高质量的通信服务。需要说明的是,本实施例及后续实施例皆以UE与接入节点之间交互进行描述,仅为示例性描述,本申请不限于此,在网络中接入节点管理下的传输接收点TRP具备部分接入节点的相关功能时,本申请还可以应用在UE与TRP交互进行波束训练的场景下。根据本申请的实施例,图2为本申请提供的一种波束训练的方法的实施例的流程图,为了便于方案理解,在描述时,本实施例及后续实施例皆以UE和接入节点双侧的行为展开,从交互多方的角度进行整体描述,但绝非限定系统中改进在于交互各侧的步骤必须合在一起执行,本申请提出的技术方案,在系统中每一侧均有改进。
该方法包括:
S101、接入节点向UE发送干扰的相关指示信息。
接入节点使用不同波束向不同UE传输信号时,不同波束之间的信号可能会互相干扰,即使一个波束本身传输的信号强度较好,也可能由于强干扰导致通信质量下降。在UE接入网络后,接入节点可以根据给该UE训练的波束里,是否有波束上还有信号传输等情况,来确定该波束作为干扰的相关指示信息的对象,将干扰的相关指示信息发给UE。存在干扰的场景如图3所示,图3给出了一种基于波束的通信场景示意图,接入节点100使用发送波束2为UE2传输数据,同时,接入节点100为UE1提供波束训练的资源,接入节点100通过向UE1发送干扰的相关指示信息,指示UE1在进行波束训练时,需要考虑发送波束2带来的干扰。对于UE1来说,如果不考虑干扰,其发送波束1和接收波束1(接收参数1)组成的通信链路具有最小的衰减,因为它们是直视径(LOS)对齐的,而发送波束3和接收波束2(接收参数2)组成的通信链路的衰减较大,因为它们是通过反射径对齐的。如果不考虑发送波束2上信号传输带来的干扰影响,显然发送波束1和接收波束1是较优的组合,UE1应该反馈发送波束1的标识给接入节点100。然而,由于UE1使用接收波束1时,会受到发送波束2上信号的干扰,如果发送波束2造成的干扰较大,UE1不应该选择发送波束1作为服务波束并反馈。
可选的,干扰的相关指示信息可以通过接入节点向UE发送的配置信息携带;可选的,干扰的相关指示信息可以通过无线资源控制(Radio Resource Control,简称为RRC)消息和/或下行控制信息(Downlink Control Information,简称DCI)进行发送,还可以通过将该干扰的相关指示信息携带在MAC CE中发往终端设备。
可选的,干扰的相关指示信息可以通过显式指示的方式或者隐式指示的方式进行指示。以下以配置信息携带干扰的相关指示信息为例进行示例性说明,应理解本申请不限于此示例,需要说明的是,为了阐明配置信息的关联关系,以下说明将从接入阶段开始描述,包括本步骤之前的其他非本申请解决技术问题必要的步骤:
在初始接入过程中,接入节点和UE达成了第一次波束初步对齐,UE从此能接入网络。此时,以同步信号块(SS/PBCH block,简称SSB)为例,接入节点和UE关于波束的信息 依靠初始接入的SSB,也就是说,UE在此时可以维护以下关系。
SSB index#0 接收波束#0
在NR中,下行信道所使用的波束或参考信号发送对应的波束的波束指示是通过关联传输配置指示(Transmission Configuration Indicator,简称TCI)状态表中的参考资源索引实现的。示例性的,基站通过RRC高层信令配置了一个TCI状态表(对应38.331中的TCI-states),TCI是一种波束指示的方法,示例性的,TCI的结构如下:
Figure PCTCN2019086447-appb-000001
TCI中可以包括多种参数,例如,小区编号,BWP ID,参考信号ID,同步信号块ID,QCL类型等。终端可以根据TCI指示确定接收方法。例如,控制信道的波束指示为某一个TCI状态,终端可以使用接收该TCI状态中的参考信号ID或同步信号块ID所对应的参考信号或同步信号块时使用的该TCI状态中的QCL类型所对应的QCL假设来接收控制信道。
相应的,接入节点可以将SSB index#0作为一个波束方向的参考,并将这个信息配置为TCI通知给UE:
TCI#0 SSB index#0
接收到这个配置信息,UE侧维护的对应关系则为:
TCI#0 SSB index#0 接收波束#0
接下来,以CSI-RS为例,接入节点可以为UE配置CSI-RS的资源做进一步的波束管理。为了达到波束准确对齐的目的,接入节点和UE侧可以分别扫描它们的发送和接收波束。在接入节点配置CSI-RS资源(resource)的时候,可以指示其波束方向,便于UE接收。例如,接入节点配置CSI-RS resource#x和CSI-RS resource#y,并指示UE做接收波束扫描。需要说明的是,本文中通过资源索引的配置来指示/指代对应的CSI-RS,下文中均以CSI-RS resource#指代对应的CSI-RS,不再单独描述CSI-RS。
CSI-RS resource#x TCI#0
CSI-RS resource#y TCI#0
测量方式 接收波束扫描
UE在接收到上述配置后,可以调整接收天线的参数,例如根据TCI#0对应的接收波束#0来进一步确定使用接收波束#1和接收波束#2来对CSI-RS resource#1和CSI-RS resource#2进行测量。进而获得以下关联关系。
CSI-RS resource#x 接收波束#1
CSI-RS resource#y 接收波束#2
需要说明的是:接收或发送波束扫描在NR中是通过repetition ON/OFF控制的,为了不引入太多概念,这里只用文字说明。
随后,接入节点侧可以重新配置TCI状态。其中SSB index#0,CSI-RS resource#x,CSI-RS resource#y都是已经传输/测量过的信号。
TCI#0 SSB index#0
TCI#1 CSI-RS resource#x
TCI#2 CSI-RS resource#y
UE侧接收到该配置后,则获得以下关联关系。
TCI#0 SSB index#0 接收波束#0
TCI#1 CSI-RS resource#x 接收波束#1
TCI#2 CSI-RS resource#y 接收波束#2
进入本实施例的发送干扰的相关指示信息的配置,进行干扰可知的测量,接入节点侧可以重新配置波束管理的资源,例如通过隐式指示的方式来指示。其中可选配置为:波束管理资源{CSI-RS resource#1,CSI-RS resource#2,CSI-RS resource#3},参考信号资源的QCL指示如下:
CSI-RS resource#1 TCI#1
CSI-RS resource#2 n/a
CSI-RS resource#3 TCI#2
可以规定波束管理资源集合中没有QCL指示的resource为干扰,可见本示例中CSI-RS resource#2即为所指示的干扰。
或者,本实施例通过显式指示的方式来指示,进行干扰可知的测量时,可选配置为:波束管理资源{CSI-RS resource#1,CSI-RS resource#2,CSI-RS resource#3},显式干扰源指示{CSI-RS resource#2},参考信号资源的QCL指示如下:
CSI-RS resource#1 TCI#1
CSI-RS resource#2 TCI#1和TCI#2
CSI-RS resource#3 TCI#2
可见,该示例中,明确指示CSI-RS resource#2为干扰源,并且指示UE分别采用接收CSI-RS resource#1的接收波束1和接收CSI-RS resource#3的接收波束2去接收CSI-RS resource#2,以进行干扰测量。
如果,1个RS resource只能对应一个TCI状态的情况下,通过显式指示的方式来指示,进行干扰可知的测量时,可选配置为:波束管理资源{CSI-RS resource#1,CSI-RS resource#2,CSI-RS resource#3,CSI-RS resource#4},显式干扰源指示{CSI-RS resource#2,CSI-RS resource#4},其中,CSI-RS resource#2和CSI-RS resource#4 均是对应干扰对应的波束(例如,图3中的波束2),参考信号资源的QCL指示如下:
CSI-RS resource#1 TCI#1
CSI-RS resource#2 TCI#1
CSI-RS resource#3 TCI#2
CSI-RS resource#4 TCI#2
可选的,另一种配置方式为:
波束质量测量 干扰波束测量 QCL指示
CSI-RS resource#1 CSI-RS resource#2 TCI#1
CSI-RS resource#3 CSI-RS resource#2 TCI#2
可以理解,上述几种配置方式均旨在通知UE,CSI-RS resource#2(某种情况下还包括CSI-RS resource#4)是一个干扰,UE需要在做进一步波束选择时考虑这个干扰的影响。需要说明的是,以上配置仅为示例,本申请中,对于干扰的指示不限于以上示例,所述干扰的相关指示信息旨在可以用于指示所述干扰对应的波束发送的下行信号的传输资源,和/或接收所述干扰对应的波束发送的下行信号的接收波束。可选的,所述指示信息不单可以指示终端设备分别用所有接收非干扰对应的下行信号的接收波束去接收干扰对应的下行信号,可选的,也可以指示终端设备用部分接收非干扰对应的下行信号的接收波束分别去接收干扰对应的下行信号,进一步可选的,还可以指示终端设备用某一接收非干扰对应的下行信号的接收波束去接收干扰对应的下行信号。使得终端设备通过接收非干扰对应的下行信号的接收波束,来接收干扰对应的下行信号,可以使得终端设备获得干扰对应的下行信号对其他非干扰对应的下行信号的干扰量。可选的,对于指示的干扰对应的下行信号,终端设备也可以默认,通过接收非干扰对应的下行信号的接收波束去接收而无需接入节点指示。
S102、接入节点通过两个或多个波束发送下行信号,其中,所述两个或多个波束包括所述干扰对应的波束。
根据上文中描述的相关配置,在进行配置后,接入节点通过发送下行信号进行基于干扰测量的波束训练。其中,所述下行信号,包括但不限于主同步信号(Primary Synchronization Signal,简称PSS)/辅同步信号(Secondary Synchronization Signal,简称SSS),下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS,相位噪声跟踪信号PTRS,信道状态信息参考信号(Channel status information reference signal,CSI-RS),小区信号(Cell Reference Signal,简称CRS)(NR没有),精同步信号(Tim/frequency tracking Reference Signal,简称TRS)(LTE没有)等,可选的,还可是包括下行物理信道,其中下行物理信道包括广播信道(Physical broadcast channel,简称PBCH),下行控制信道(Physical downlink control channel,简称PDCCH),下行数据信道(Physical downlink shared channel,简称PDSCH)等。
S103、UE对接收的所述下行信号进行测量,进行波束选择。
UE根据接入节点的配置,接收所述下行信号,以上文中的示例为例进行说明,UE采用接收波束1接收CSI-RS resource#1,采用接收波束2接收CSI-RS resource#3;并且,UE根据所述干扰的相关指示信息,还接收通过干扰对应的波束发送的下行信号,为了进 行干扰测量,考虑在不同接收波束(或者说接收参数)上,干扰带来的影响,UE通过接收波束1和接收波束2分别接收干扰对应的CSI-RS resource#2(某些情况下包括CSI-RS resource#4)。可选的,UE可以通过接收波束1上,CSI-RS resource#1的参考信号接收功率(Reference Signal Received Power,简称RSRP)RSRP#i-1与CSI-RS resource#2的参考信号接收功率RSRP#1-2的比值RSRP#1-1/RSRP#1-2,与接收波束2上CSI-RS resource#3的参考信号接收功率RSRP#2-3与CSI-RS resource#2的参考信号接收功率RSRP#2-2的比值RSRP#2-3/RSRP#2-2进行比较,来进行发送波束和接收波束的配对和选择。例如,如果RSRP#1-1/RSRP#1-2<RSRP#2-3/RSRP#2-2,那么接收波束2(或者说接收参数2)是一个更好的接收波束,CSI-RS resource#3对应的发送波束可作为UE选择的服务波束。可选的,也可以根据以CSI-RS resource#2为干扰计算出的参考信号接收质量(reference signal received quality,简称RSRQ)或者信号干扰噪声比(signal to interference and noise ratio,或者SINR)等作为波束质量比较的指标。
S104、UE向接入节点反馈选择的波束的相关信息。
UE进行波束选择后,上报选择的作为服务波束的发送波束,可以采用以下至少一项信息的上报:上报对应波束发送的下行参考信号的资源索引(CSI-RS resource index,简称CRI),例如{CRI#1},还可以上报该下行信号的接收功率(如RSRP#1-1),还可以上报干扰量,可选的,干扰量可以是该下行信号的接收功率(如RSRP#1-1)与干扰对应的下行信号的接收功率(如RSRP#1-2)的比值,如,RSRP#1-1/RSRP#1-2,还可以是干扰对应的下行信号的接收功率(如RSRP#1-2)。可选的,也可以是RSRQ或者SINR等指标。通过相关信息的上报,使得接入节点获知UE选择的波束,可选的,还可以获知接收功率、干扰量等信息,为接入节点的进行进一步配置提供了更好的参考。
本申请实施例的一种波束训练的方法,通过在波束训练中考虑干扰的因素进行波束选择,能够实现有效的按需波束训练。
实施例二
图4是本申请提供的另一种波束训练方法的实施例的流程图。与实施例一的区别在于,该实施例的按需波束训练是针对多波束组合的上报,例如分组上报进行的,考虑到可能影响分组上报结果的因素(如,干扰等),通过具体的波束选择准则进行分组上报的波束的选择,来实现波束训练。为了便于方案理解,在描述时,本实施例以UE和接入节点双侧的行为展开,从交互多方的角度进行整体描述,但绝非限定系统中改进在于交互各侧的步骤必须合在一起执行,本申请提出的技术方案,在系统中每一侧均有改进。
该方法包括:
S201、UE确定分组上报波束的选择准则。
进行波束训练时,网络侧会通过发送波束向UE发送下行信号,UE采用接收波束(对应接收参数)对下行信号进行接收,UE通过对下行信号进行测量,进行服务波束选择,本实施例中,波束选择是针对分组上报的情形,即选择的网络侧的发送波束满足某种定义上能够被UE“同时接收”。举例来说,如果网络侧通过发送波束Beam1发送CSI-RS#1,通过发送波束Beam2发送CSI-RS#2,通过发送波束Beam3发送CSI-RS#3,UE如果能通过其接收波束在对应的CSI-RS resource#1和CSI-RS resource#3上收到CSI-RS#1和CSI-RS#3,那么可以假设,如果UE同时使用CSI-RS resource#1和CSI-RS resource#3, 那么能够同时接收到CSI-RS#1和CSI-RS#3。因此,UE在波束选择时,会将Beam1和Beam3作为一组进行上报(具体在实现时可以通过将CSI-RS resource#1和CSI-RS resource#3作为一组进行上报来实现对Beam1和Beam3的选择上报)。
如上所述的例子,针对“同时接收”可以分具体的情况,一种是UE通过同一接收波束(采用同一接收参数)在对应的CSI-RS resource#1和CSI-RS resource#3上收到CSI-RS#1和CSI-RS#3;另一种是,UE通过不同的接收波束(采用不同的接收参数)在对应的CSI-RS resource#1和CSI-RS resource#3上收到CSI-RS#1和CSI-RS#3。故而,所述选择准则为选定的分组上报的每组中的波束发送的下行信号是UE采用同一接收参数接收到的,或分组上报的每组中的波束发送的下行信号是UE采用不同接收参数接收到的。
可选的,针对波束训练中分组上报的情况,分组上报的波束的选择准则可以由网络侧(如,接入节点或TRP)配置给UE,可选的,可以通过向UE发送的配置信息携带所述选择准则,可以通过无线资源控制(Radio Resource Control,简称为RRC)消息和/或下行控制信息(Downlink Control Information,简称DCI)进行发送,还可以通过将该选择准则携带在MAC CE中发往终端设备。进一步可选的,对于分组上报,网络侧可以配置分组的信息,或者分组的配置也可以是统一约定的,如果分组的信息由网络侧配置,网络侧向UE发送分组上报的分组数目和/或每组的波束数目的配置信息(可以通过与上述选择准则配置的类似手段通过RRC、DCI、MAC CE进行配置)。可选的,分组上报的波束的选择准则也可以由UE根据实际情况或者基于UE的能力来确定。如果该选择准则是由网络侧确定的,那么分组上报的波束是什么准则下选择的波束,网络侧会知道,则网络侧在波束调度时,能有更多参考信息;如果该选择准则是由UE确定的,那么UE需将所述选择准则的信息发给网络侧。可选的,UE可以在分组上报之前将支持的选择准则通知网络侧,也可以在分组上报时或分组上报之后将分组上报的波束的选择准则通知网络侧,使得网络侧在波束调度时,能有更多参考信息。例如,如果对于某场景下“同时接收”(假设针对Beam4和Beam5)是UE1采用同一接收参数实现的,对于某场景下“同时接收”(假设针对Beam1和Beam3)是UE1采用不同接收参数实现的,如果Beam5还被接入节点使用给UE2发送信号,则接入节点调度时不能使用Beam4给UE1发送信号,因为接入节点使用Beam5给UE2发送的信号会对UE1的接收造成强干扰。在另一场景下,接入节点可以使用Beam1给UE1发送信号,使用Beam3给UE2发送信号。因此,如果UE分组上报不区分“同时接收”的分组上报的选择准则,接入节点在调度时就会出现问题。
S202、接入节点通过两个或多个波束向UE发送下行信号。
进行波束训练时,接入节点通过两个或多个波束向UE发送下行信号,使得UE能够进行下行信号的测量,实现波束训练。可选的,所述下行信号包括但不限于主同步信号(Primary Synchronization Signal,简称PSS)/辅同步信号(Secondary Synchronization Signal,简称SSS),下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS,相位噪声跟踪信号PTRS,信道状态信息参考信号(Channel status information reference signal,简称CSI-RS),小区信号(Cell Reference Signal,简称CRS)(NR没有),精同步信号(Tim/frequency tracking Reference Signal,简称TRS)(LTE没有)等。
需要说明,以上步骤S201和步骤S202无必然的先后顺序,可根据不同方案进行灵活配置。
S203、UE根据对所述下行信号的接收及选择准则选定分组上报的波束。
UE通过对下行信号的接收,将在所述波束中选择进行分组上报的波束。可选的,所述终端设备对所述下行信号的接收功率RSRP进行测量,根据测量结果和所述选择准则确定分组上报的波束。可选的,所述终端设备还可以对所述下行信号的RSRQ或者SINR等指标进行测量。可以理解,终端设备对波束选择时,除了要考虑分组上报波束的选择准则,还需要考虑信号质量。
如果所述选择准则是由网络侧通知UE的,当网络侧通知UE将能使用相同接收参数同时接收的波束分为一组时,UE应该能使用相同接收参数同时接收的波束分为一组,并比较各组的波束质量;当网络侧通知UE将需使用不同接收参数同时接收的波束分为一组时,UE需使用不同接收参数同时接收的波束分为一组,并比较各组的波束质量。一组波束的波束质量可以是该组内多个波束质量的平均值,或者该组内多个波束所构成的多天线信道容量,或者多个波束所构成的链路的稳定性等。
如果所述选择准则是由UE确定的,UE可以按照自身能力,波束质量,信道容量或者鲁棒性等指标确定最适合该UE的分组方法,将能使用相同接收参数同时接收的波束分为一组或者将需使用不同接收参数的波束分为一组。
S204、UE将选定的分组上报的波束的相关信息发送给接入节点。
UE将选定的分组上报的波束的相关信息发送给接入节点即为分组上报,可选的,所述相关信息包括以下至少一项:所述分组上报的波束对应的下行信号的资源索引(CSI-RS resource index,简称CRI)、所述分组上报的波束对应的下行信号的接收功率、干扰量(可以是接收功率的比值),组标识。以上面例子为例,可以是{CRI#1,CRI#3,RSRP#1,RSRP#3,RSRP#1/RSRP#3}。
此外,如果所述选择准则是由UE确定的,那么UE可以在分组上报时将分组上报的波束的选择准则发送给网络侧,可选的,可以通过比特图或者相应字段的取值进行指示。可选的,UE可以在每一分组上报中携带信息用以说明该分组的方法,例如比特“0”说明该分组内的波束能被同一接收参数同时接收,比特“1”说明该分组内的波束能被不同接收参数同时接收。
本申请实施例的一种波束训练的方法,通过在波束训练中考虑分组上报波束的具体选择准则进行波束选择,避免针对“同时接收”UE可能采用的不同实现方式,导致接入节点在进行调度时存在问题,本申请实施例的方法能够实现有效的按需波束训练。
实施例三
图5是本申请提供的又一种波束训练方法的实施例的流程图;与实施例一、实施例二的区别在于,该实施例的按需波束训练是考虑传输流的因素。为了便于方案理解,在描述时,本实施例以UE和接入节点双侧的行为展开,从交互多方的角度进行整体描述,但绝非限定系统中改进在于交互各侧的步骤必须合在一起执行,本申请提出的技术方案,在系统中每一侧均有改进。
该方法包括:
S301、UE确定秩Rank条件。
MIMO信道矩阵的秩(Rank),是当前信道能支持的最大传输流数的体现。在基于波束的通信中,不同的波束或者波束的组合构成的MIMO信道的RANK是不同的。网络侧在 给UE进行数据传输时,使用多流传输可以有效地提高频谱效率。在实际传输中,网络侧需要服务多个UE,为每个UE分配的传输流数是由调度算法确定的,因此需要UE选择能支持该流数的波束或者波束组合构成MIMO信道用以进行多流数据传输。UE在接收下行信号时,可以进行基于下行信号的信道估计,在波束训练时,UE可以基于信道传输流数的需求,进行波束的配对和选择。可选的,Rank条件可以由网络侧配置,发送给UE,可以通过RRC、DCI、MAC CE中的至少一种来发送Rank条件的信息。可选的,Rank条件包括以下至少一种:rank值指示,例如rank2,rank4等;MCS(modulation and coding scheme调制编码方法)需求或者SINR需求,例如,UE选择的波束构成的MIMO信道的每一个rank对应信道质量必须能够支持特定的信号调制方式和/或编码方式,或者必须大于一定的SINR,可选的,SINR需求也可以体现为CQI(channel quality indicator)指示;每一流分别的最低MCS需求或者SINR需求。可选的,Rank条件还可以包括码本的指示。可选的,Rank条件还可以包括波束的指示,例如网络侧可以指示UE一定要选择与某一发送波束配对的波束来构成多波束MIMO信道。可选的,Rank条件可以由UE自主选择,在进行波束训练时UE可将选择的Rank条件告知网络侧,使得网络侧有足够的信息,不会调度失误。
S302、接入节点通过一个或多个波束向UE发送下行信号。
可选的,所述下行信号包括但不限于主同步信号(Primary Synchronization Signal,简称PSS)/辅同步信号(Secondary Synchronization Signal,简称SSS),下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS,相位噪声跟踪信号PTRS,信道状态信息参考信号(Channel status information reference signal,简称CSI-RS),小区信号(Cell Reference Signal,简称CRS)(NR没有),精同步信号(Tim/frequency tracking Reference Signal,简称TRS)(LTE没有)等。
需要说明,以上步骤S301和步骤S302无必然的先后顺序,可根据不同方案进行灵活配置。
S303、UE基于所述下行信号进行信道估计,选择对应信道满足Rank条件的下行信号的发送波束。
UE基于对所述下行信号的接收,进行波束配对,根据信道矩阵,确定满足Rank条件的一个或多个波束,具体的,满足Rank条件的一个或多个波束可以理解为能够构成大于或等于Rank条件中Rank数的信道的一个或多个波束。
S304、UE将所述波束中选定上报的波束的相关信息发送给所述接入节点。
可选的,UE可以以分组上报的方式将所述波束中选定上报的波束的相关信息发送给所述接入节点。采用分组上报的方式能够减少终端设备所需预留的时频资源,从而大大提高资源利用率。所述相关信息,可选的包括:对应波束发送的下行信号信号的资源索引、还可以是下行信号的接收功率、还可以干扰量,具体详见实施例一和实施例二的相关描述在此不再赘述。通过相关信息的上报,使得接入节点获知UE选择的波束,可选的,还可以获知接收功率、干扰量等信息,为接入节点的进行进一步配置提供了更好的参考。
此外,如果Rank条件是UE自主选择的,那么UE还可以在波束上报时,一并将Rank条件告知接入节点。
可以理解的是,如果在S303中UE根据所述下行信号确定的对应信道未存在满足Rank条件的,则UE将向所述接入节点发送异常指示信息。
本申请实施例的一种波束训练的方法,通过在波束训练中考虑传输流的因素进行波束选择,能够实现有效的按需波束训练。
实施例二和实施例三分别给出了考虑选择准则(涉及干扰)的波束选择和考虑传输流数的波束选择。可选的,结合或者替代实施例二或实施例三的考虑因素的其他因素进行波束选择和波束分组还可以有更多,例如考虑:最大化容量(capacity)、最小化组内干扰、最小化组间干扰、最大化组内波束相关性、最小化组内波束相关性、最大化组间波束相关性、最小化组间波束相关性、满足指定条件(如:容量)并最小化功耗、满足指定条件(如:容量)并最小化UE开启的射频链路数、满足指定条件(如:容量)并最小化UE开启的天线面板数、最优化鲁棒性指标(如,误码率(block error rate,简称BLER))。其中,容量是指信道中能够支持传输信息的速率。最大化容量是指UE选择的波束或波束组合所能支持传输速率的最大化。UE可以根据测量不同波束或波束组合的信道计算信道容量。
以上实施例以下行方向波束训练的技术方案进行描述,以下实施例将给出上行方向波束训练的技术方案的描述。
实施例四
图6是本申请提供的再一种波束训练方法的实施例的流程图;本实施例以UE和接入节点双侧的行为展开,从交互多方的角度进行整体描述,但绝非限定系统中改进在于交互各侧的步骤必须合在一起执行,本申请提出的技术方案,在系统中每一侧均有改进。
该方法包括:
S401、UE向接入节点发送第一上行信号。
可选的,上行信号包括但不限于信道探测信号(Sounding Reference Signal,简称SRS),上行控制信道解调参考信号(PUCCH De-modulation Reference Signal,简称PUCCH-DMRS),上行数据信道解调参考信号PUSCH-DMRS,上行相位噪声跟踪信号(phase noise tracking reference signal,简称PTRS)等。
S402、接入节点根据对所述第一上行信号的测量结果,确定增益调整指示。
不同的场景下,对UE上行波束的需求是不同的,比如,需要明确指示UE使用更窄的波束进行通信。
在下行通信链路中,UE接收到的信号功率可以简要表达如下:
Figure PCTCN2019086447-appb-000002
其中
Figure PCTCN2019086447-appb-000003
是UE接收到的信号功率,
Figure PCTCN2019086447-appb-000004
是接入节点发送信号的功率,
Figure PCTCN2019086447-appb-000005
是接入节点发送天线增益,
Figure PCTCN2019086447-appb-000006
是由于下行传输路径导致的信号强度衰减,
Figure PCTCN2019086447-appb-000007
是UE接收天线增益。
相反,在上行链路中,接入节点接收到的信号功率可以简要表达如下:
Figure PCTCN2019086447-appb-000008
其中,
Figure PCTCN2019086447-appb-000009
是接入节点接收到的信号功率,
Figure PCTCN2019086447-appb-000010
是UE发送信号的功率,
Figure PCTCN2019086447-appb-000011
是UE发送天线增益,
Figure PCTCN2019086447-appb-000012
是由于传输路径导致的信号强度衰减,
Figure PCTCN2019086447-appb-000013
是接入节点接收天线增益。 简单的,可以假设
Figure PCTCN2019086447-appb-000014
即上下行传输路径导致的信号强度衰减相同。
此外,UE发送上行信号,例如SRS时,需要确定上发送使用的功率。上行发送功率的控制基本原理是估计路径损耗并反推信号到达接收端的强度。如下是一种SRS功率的控制方法。
Figure PCTCN2019086447-appb-000015
其中,
Figure PCTCN2019086447-appb-000016
是UE发送信号的功率,P 0是一个接入节点指定的值,α是一个接入节点指示的缩放系数,
Figure PCTCN2019086447-appb-000017
是UE估计的路损(可以由接入节点指示路损估计的参考下行信号),others是包括带宽在内的一些调整量,在本申请中others可以考虑也可以不考虑,下面进一步示例以暂不考虑为例进行描述。
其中路径损耗估计可以由以下方式获得
Figure PCTCN2019086447-appb-000018
其中, 是接入节点通知的信号发送功率,
Figure PCTCN2019086447-appb-000020
是UE真实测量到的信号强度,例如可以用RSRP衡量。
将公式1代入公式4,得到下述公式5,可以看出路径损耗估计
Figure PCTCN2019086447-appb-000021
是考虑了接收天线增益
Figure PCTCN2019086447-appb-000022
和发送天线增益
Figure PCTCN2019086447-appb-000023
和由于下行传输路径导致的信号强度衰减
Figure PCTCN2019086447-appb-000024
Figure PCTCN2019086447-appb-000025
将公式(5)和公式(3)代入公式(2),暂不考虑others,得到:
Figure PCTCN2019086447-appb-000026
令α=1,则简化为
Figure PCTCN2019086447-appb-000027
可以看出,为了提高
Figure PCTCN2019086447-appb-000028
而不改变
Figure PCTCN2019086447-appb-000029
(即不通过提高发送功率的方法来增强上行覆盖),可选的方法是增大
Figure PCTCN2019086447-appb-000030
和/或增大
Figure PCTCN2019086447-appb-000031
(即使用更高增益的UE发送波束或者接入节点接收波束)。
本实施例中,以UE侧的增益调整进行描述。因此,接入节点根据对所述第一上行信号的测量结果,确定对UE增益调整的指示。
S403、接入节点向UE发送所述增益调整指示。
在一种可能的设计中,所述增益调整指示的方式包括显式指示的方式或隐式指示的方式。为了考虑增益调整因素进行波束的按需训练,网络设备向UE发送增益调整指示,可以通过显式指示或隐式指示的方式进行指示。
在一种可能的设计中,所述显式指示的方式包括:发送目标天线增益的指示信息,例如,指示使用17dBi的发送天线增益进行上行信号的发送;或发送天线增益的调节因子的指示信息,即指示在当前的天线增益基础上增加多少dB,例如,天线增益+5dB。通过显式指示的方式能简化UE的运算。
在一种可能的设计中,所述隐式指示的方法包括:发送UE用于确定发送功率的计算参数,所述计算参数用于使得UE确定出的发送功率超过预设的发送功率阈值。即,通过这样隐式的指示方式,UE确定出超过阈值的发送功率,则UE为了不超过所述阈值会采取调高发送天线增益的方式,从而实现了增益调整。所述计算参数包括以下至少一项:网络侧指定值P 0、网络侧指示的缩放系数α、路损估计参考。或者,可选的,所述隐式指示的方法包括:发送UE分别用于确定发送功率的第一计算参数和第二计算参数,所述第一计算参数包括网络设备指定值P 0_1,所述第二计算参数包括网络设备指定值P 0_2,其中,例如P 0_1与现有P 0相同,通过P 0_2与P 0_1差值隐式通知发送天线增益调整量,即,所述第一计算参数与第二计算参数的差值为所述天线的增益调整量,即
Figure PCTCN2019086447-appb-000032
或者,可选的,所述隐式指示的方法包括:发送接入节点收到所述第一上行信号的接收功率和目标接收功率,使得UE根据所述目标接收功率,通过增益调整达到实现目标接收功率的目的,例如,反馈接入节点接收到上行信号的质量为-100dBm,并要求终端目标质量要达到-90dBm。通过隐式指示的方式能节省信令开销。
在一种可能的设计中,UE有多种波束形态,例如,UE有多个低增益的宽波束和多个高增益的窄波束这两种波束形态。可选的,其中宽波束和窄波束存在对应关系,一一对应或者一对多或者多对一。UE可以通过能力上报支持所述的多种波束形态。基站可以通过指示UE切换波束形态来提高天线增益进而改善上行传输的质量。例如,基站可以指示UE使用宽波束#1进行上行传输或者上行波束训练,同时指示UE应该切换波束形态到窄波束,那么UE则应使用宽波束#1对应窄波束进行上行传输或者进行上行波束训练。
可选的,增益调整指示可以由接入节点通过向UE发送的配置信息携带,可以通过RRC消息和/或DCI进行发送,还可以通过MAC CE中携带发往UE。
S404、UE根据所述增益调整指示对天线进行增益调整。
根据网络侧的指示,UE将调整天线的增益,以通过调整增益后的天线发送后续上行信号。
S405、UE向所述接入节点发送第二上行信号。
根据接入节点的指示/配置,UE经过对天线的增益调整,在增益调整后,向所述接入节点发送第二上行信号。也就是在进行上行波束训练时,考虑增益调整的因素进行。可选的,UE进行波束训练,在空间上的扫描可以是全向扫描,也可以是根据网络设备的指示,在宽波束范围内进行窄波束的扫描。本申请中,UE在空间上扫描多个高增益的窄波束,即,使用不同的高增益窄波束来发送上行信号。其中,可选的,在所述向所述网络设备发送第二上行信号之前,还包括:接收所述网络设备发送的用于UE发送所述第二上行信号的波束的相关信息指示,所述发送波束指示包括以下至少一项:发送第一上行信号的资源索引、接入过程中随机接入的波束相关信息、基于互异性的对应的CSI-RS的资源/SSB的ID。通过所述第一上行信号的资源索引、接入过程中随机接入的波束相关信息可以指示UE之前使用过的宽波束,为UE提供一定的参考,使UE在空间上的扫描可以聚焦在一定的宽波束范围内。
本申请实施例的一种波束训练的方法,通过在上行波束训练中考虑增益调整的因素进行,能够实现有效的按需波束训练。
上述主要从系统各实体之间交互或者实体内部实现流程角度对本申请实施例提供的 方案进行了介绍。可以理解的是,各实体,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对UE、接入节点进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
本申请实施例还提供了一种终端设备。该终端设备可以用于执行图2,图4-图6任一附图中UE所执行的步骤。图7示出了一种简化的终端设备结构示意图。便于理解和图示方便,图7中,终端设备以手机作为例子。如图7所示,终端设备70包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备70进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备70可以不具有输入输出装置。其中,存储器和处理器可以是集成在一起的,也可以是独立设置的;此外,射频电路和处理器可以是集成在一起的,也可以是独立设置的。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备70时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图7中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备70的收发单元,将具有处理功能的处理器视为终端设备70的处理单元。如图7所示,终端设备70包括收发单元701和处理单元702。收发单元也可以称为收发器(包括发射机和/或接收器)、收发机、收发装置、收发电路等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元701中用于实现接收功能的器件视为接收单元,将收发单元701中用于实现发送功能的器件视为发送单元,即收发单元701包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。在一些实施例中,收发单元701和处理单元702可以是集成在 一起的,也可以是独立设置的。另外,处理单元702中的全部功能可以集成在一个芯片中实现,也可以部分功能集成在一个芯片中实现,另外一部分功能集成在其他一个或多个芯片中实现,本申请对此不进行限定。本文所使用的术语“单元”可指执行一个或多个软件或固件程序的专用集成电路(ASIC)、电子电路、(共享、专用或组)处理器以及存储器,组合逻辑电路,和/或提供所述功能的其它合适的部件。
例如,在一种实现方式中,收发单元701可以用于执行图2的S101、S102和/或S104中UE接收和/或发送的操作,和/或本申请中的其他步骤。处理单元702可以用于执行图2的S103,和/或本申请中的其他步骤。
例如,在一种实现方式中,收发单元701可以用于执行图4的S202和/或S204中UE接收和/或发送的操作,和/或本申请中的其他步骤。处理单元702可以用于执行图4的S201和/或S203,和/或本申请中的其他步骤。
例如,在一种实现方式中,收发单元701可以用于执行图5的S302和/或S304中UE接收和/或发送的操作,和/或本申请中的其他步骤。处理单元702可以用于执行图5的S301和/或S303,和/或本申请中的其他步骤。
例如,在一种实现方式中,收发单元701可以用于执行图6的S401、S403和/或S405中UE接收和/或发送的操作,和/或本申请中的其他步骤。处理单元702可以用于执行图6的S404,和/或本申请中的其他步骤。
本申请实施例还提供了一种网络设备。该网络设备可以作为接入节点或传输接收点,用于执行图2、图3-图6任一附图中接入节点所执行的步骤。图8示出了一种简化的网络设备结构示意图。网络设备80包括801部分以及802部分。801部分主要用于射频信号的收发以及射频信号与基带信号的转换;802部分主要用于基带处理,对网络设备80进行控制等。801部分通常可以称为收发单元、收发机、收发电路、或者收发器等。802部分通常是网络设备80的控制中心,通常可以称为处理单元、控制单元、处理器、或者控制器等,用于控制网络设备80执行上述相关实施例中关于接入侧的测量功能实体,或作为接入侧的测量功能实体的接入节点/传输接收点所执行的步骤。具体可参见上述相关部分的描述。
801部分的收发单元,也可以称为收发机,或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选的,可以将801部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即801部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
802部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络设备80的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。其中,存储器和处理器可以是集成在一起的,也可以是独立设置的。在一些实施例中,801部分和802部分可以是集成在一起的,也可以是独立设置的。另外,802部分中的全部功能可以集成在一个芯片中实现,也可以部分功能集成在一个芯片中实现,另外一部分功能集成在其他一个或多个芯片中 实现,本申请对此不进行限定。
例如,在一种实现方式中,收发单元可以用于执行图2的S101、S102和/或S104中接入节点接收和/或发送的操作,和/或本申请中的其他步骤。处理单元可以用于执行图2相关实施例中确定干扰的相关指示信息、确定波束训练结果等操作,和/或本申请中的其他步骤。
例如,在一种实现方式中,收发单元可以用于执行图4的S202和/或S204中接入节点接收和/或发送的操作,和/或本申请中的其他步骤。处理单元可以用于执行图4相关实施例中确定选择准则、确定波束训练结果等操作,和/或本申请中的其他步骤。
例如,在一种实现方式中,收发单元可以用于执行图5的S302和/或S304中接入节点接收和/或发送的操作,和/或本申请中的其他步骤。处理单元可以用于执行图5相关实施例中确定秩Rank条件、确定波束训练结果等操作,和/或本申请中的其他步骤。
例如,在一种实现方式中,收发单元可以用于执行图6的S401、S403和/或S405中接入节点接收和/或发送的操作,和/或本申请中的其他步骤。处理单元可以用于执行图6的S402,和/或本申请中的其他步骤。
以上提供的终端侧的装置可以为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
以上提供的网络侧的装置,其具体实现形式可以是接入节点设备,例如:可以为接入节点设备,也可以为接入节点设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
上述提供的任一种终端设备、网络设备及对应装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
本申请还提供了一种用于波束失败检测的系统,包括上述实施方式中UE(还可以是实现上述UE功能的UE端装置),以及接入节点(还可以是实现上述接入节点功能的接入侧装置或传输接收点)。
本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述提供的任一种方法。
本申请还提供了一种芯片,其中存储有指令,当其在上述各设备上运行时,使得各设备执行上述提供的方法。
本申请还提供了一种计算机存储介质,其上储存有计算机程序(指令),当该程序(指令)在计算机上运行时,使得计算机执行上述任一方面所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计 算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器/控制器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (49)

  1. 一种波束训练的方法,其特征在于,所述方法包括:
    接收网络设备发送的干扰的相关指示信息;
    接收网络设备通过两个或多个波束发送的下行信号,所述两个或多个波束包括所述干扰对应的波束;
    向所述网络设备发送在所述两个或多个波束中选择的波束的相关信息;
    其中,所述选择的波束为根据所述干扰的相关指示信息和对所述下行信号的测量结果选择的波束。
  2. 根据权利要求1所述的方法,其特征在于,所述干扰的相关指示信息用于指示所述干扰对应的波束发送的下行信号的传输资源,和/或接收所述干扰对应的波束发送的下行信号的接收波束。
  3. 根据权利要求1所述的方法,其特征在于,所述接收波束包括接收非干扰对应的下行信号的接收波束,其中,所述非干扰对应的下行信号为通过所述两个或多个波束中非干扰对应的波束发送的下行信号。
  4. 根据权利要求3所述的方法,其特征在于,所述干扰的相关指示信息用于指示接收所述干扰对应的波束发送的下行信号的接收波束,包括:所述干扰的相关指示信息用于指示通过接收所述非干扰对应的下行信号的接收波束,分别接收所述干扰对应的波束发送的下行信号;
    所述接收网络设备通过两个或多个波束发送的下行信号,包括:根据所述干扰的相关指示信息,通过接收所述非干扰对应的下行信号的接收波束,分别接收所述干扰对应的波束发送的下行信号。
  5. 根据权利要求1所述的方法,其特征在于,
    所述干扰的相关指示信息包括以下至少一项信息:通过所述干扰对应的波束发送下行信号的传输资源的指示信息、所述传输资源对应的接收波束的指示信息。
  6. 根据权利要求1所述的方法,其特征在于,
    所述干扰的相关指示信息包括:通过所述干扰对应的波束发送下行信号的传输资源的指示信息、以及所述两个或多个波束发送的下行信号中非干扰对应的下行信号的接收波束的指示信息;
    所述非干扰对应的下行信号为下行信号中不通过所述干扰对应的波束发送的下行信号。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述相关信息包括以下至少一项:通过所述选择的波束发送的下行信号的资源索引、通过所述选择的波束发送的下行信号的接收功率RSRP、所述干扰的干扰量信息。
  8. 一种波束训练的方法,其特征在于,所述方法包括:
    向终端设备发送干扰的相关指示信息;
    通过两个或多个波束向所述终端设备发送下行信号,所述两个或多个波束包括所述干扰对应的波束;
    接收所述终端设备发送的所述终端设备选择的波束的相关信息;
    其中,所述选择的波束为所述终端设备根据所述干扰的相关指示信息和对所述下行信号的测量结果选择的波束。
  9. 根据权利要求8所述的方法,其特征在于,所述干扰的相关指示信息用于指示所述干扰对应的波束发送的下行信号的传输资源,和/或所述终端设备接收所述干扰对应的波束发送的下行信号的接收波束。
  10. 根据权利要求8所述的方法,其特征在于,所述接收波束包括接收非干扰对应的下行信号的接收波束,其中,所述非干扰对应的下行信号为通过所述两个或多个波束中非干扰对应的波束发送的下行信号。
  11. 根据权利要求10所述的方法,其特征在于,所述干扰的相关指示信息用于指示所述终端设备接收所述干扰对应的波束发送的下行信号的接收波束,包括:所述干扰的相关指示信息用于指示所述终端设备通过接收所述非干扰对应的下行信号的接收波束,分别接收所述干扰对应的波束发送的下行信号。
  12. 根据权利要求8所述的方法,其特征在于,
    所述干扰的相关指示信息包括以下至少一项信息:通过所述干扰对应的波束发送下行信号的传输资源的指示信息、所述传输资源对应的接收波束的指示信息。
  13. 根据权利要求8所述的方法,其特征在于,
    所述干扰的相关指示信息包括:通过所述干扰对应的波束发送下行信号的传输资源的指示信息、以及所述两个或多个波束发送的下行信号中非干扰对应的下行信号的接收波束的指示信息;
    所述非干扰对应的下行信号为下行信号中不通过所述干扰对应的波束发送的下行信号。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述相关信息包括以下至少一项:通过所述选择的波束发送的下行信号的资源索引、通过所述选择的波束发送的下行信号的接收功率RSRP、所述干扰的干扰量信息。
  15. 一种波束训练的装置,其特征在于,所述装置包括:
    收发单元,用于接收网络设备发送的干扰的相关指示信息;
    所述收发单元,还用于接收网络设备通过两个或多个波束发送的下行信号,所述两个或多个波束包括所述干扰对应的波束;向所述网络设备发送在所述两个或多个波束中选择的波束的相关信息;
    其中,所述选择的波束为根据所述干扰的相关指示信息和对所述下行信号的测量结果选择的波束。
  16. 根据权利要求15所述的装置,其特征在于,所述干扰的相关指示信息用于指示所述干扰对应的波束发送的下行信号的传输资源,和/或接收所述干扰对应的波束发送的下行信号的接收波束。
  17. 根据权利要求15所述的装置,其特征在于,所述接收波束包括接收非干扰对应的下行信号的接收波束,其中,所述非干扰对应的下行信号为通过所述两个或多个波束中非干扰对应的波束发送的下行信号。
  18. 根据权利要求17所述的装置,其特征在于,所述干扰的相关指示信息用于指示接收所述干扰对应的波束发送的下行信号的接收波束,包括:所述干扰的相关指示信息用于指示通过接收所述非干扰对应的下行信号的接收波束,分别接收所述干扰对应的波束发送的下行信号;
    所述接收网络设备通过两个或多个波束发送的下行信号,包括:根据所述干扰的相 关指示信息,通过接收所述非干扰对应的下行信号的接收波束,分别接收所述干扰对应的波束发送的下行信号。
  19. 根据权利要求15所述的装置,其特征在于,
    所述干扰的相关指示信息包括以下至少一项信息:通过所述干扰对应的波束发送下行信号的传输资源的指示信息、所述传输资源对应的接收波束的指示信息。
  20. 根据权利要求15所述的装置,其特征在于,
    所述干扰的相关指示信息包括:通过所述干扰对应的波束发送下行信号的传输资源的指示信息、以及所述两个或多个波束发送的下行信号中非干扰对应的下行信号的接收波束的指示信息;
    所述非干扰对应的下行信号为下行信号中不通过所述干扰对应的波束发送的下行信号。
  21. 根据权利要求15-20任一项所述的装置,其特征在于,所述相关信息包括以下至少一项:通过所述选择的波束发送的下行信号的资源索引、通过所述选择的波束发送的下行信号的接收功率RSRP、所述干扰的干扰量信息。
  22. 一种波束训练的装置,其特征在于,所述装置包括:
    收发单元,用于向终端设备发送干扰的相关指示信息;
    所述收发单元,还用于通过两个或多个波束向所述终端设备发送下行信号,所述两个或多个波束包括所述干扰对应的波束;接收所述终端设备发送的所述终端设备选择的波束的相关信息;
    其中,所述选择的波束为所述终端设备根据所述干扰的相关指示信息和对所述下行信号的测量结果选择的波束。
  23. 根据权利要求22所述的装置,其特征在于,所述干扰的相关指示信息用于指示所述干扰对应的波束发送的下行信号的传输资源,和/或所述终端设备接收所述干扰对应的波束发送的下行信号的接收波束。
  24. 根据权利要求22所述的装置,其特征在于,所述接收波束包括接收非干扰对应的下行信号的接收波束,其中,所述非干扰对应的下行信号为通过所述两个或多个波束中非干扰对应的波束发送的下行信号。
  25. 根据权利要求24所述的装置,其特征在于,所述干扰的相关指示信息用于指示所述终端设备接收所述干扰对应的波束发送的下行信号的接收波束,包括:所述干扰的相关指示信息用于指示所述终端设备通过接收所述非干扰对应的下行信号的接收波束,分别接收所述干扰对应的波束发送的下行信号。
  26. 根据权利要求22所述的装置,其特征在于,
    所述干扰的相关指示信息包括以下至少一项信息:通过所述干扰对应的波束发送下行信号的传输资源的指示信息、所述传输资源对应的接收波束的指示信息。
  27. 根据权利要求22所述的装置,其特征在于,
    所述干扰的相关指示信息包括:通过所述干扰对应的波束发送下行信号的传输资源的指示信息、以及所述两个或多个波束发送的下行信号中非干扰对应的下行信号的接收波束的指示信息;
    所述非干扰对应的下行信号为下行信号中不通过所述干扰对应的波束发送的下行信号。
  28. 根据权利要求22-27任一项所述的装置,其特征在于,所述相关信息包括以下至少一项:通过所述选择的波束发送的下行信号的资源索引、通过所述选择的波束发送的下行信号的接收功率RSRP、所述干扰的干扰量信息。
  29. 一种波束训练的装置,其特征在于,所述装置包括:
    收发器,用于接收网络设备发送的干扰的相关指示信息;
    所述收发器,还用于接收网络设备通过两个或多个波束发送的下行信号,所述两个或多个波束包括所述干扰对应的波束;向所述网络设备发送在所述两个或多个波束中选择的波束的相关信息;
    其中,所述选择的波束为根据所述干扰的相关指示信息和对所述下行信号的测量结果选择的波束。
  30. 根据权利要求29所述的装置,其特征在于,所述干扰的相关指示信息用于指示所述干扰对应的波束发送的下行信号的传输资源,和/或接收所述干扰对应的波束发送的下行信号的接收波束。
  31. 根据权利要求29所述的装置,其特征在于,所述接收波束包括接收非干扰对应的下行信号的接收波束,其中,所述非干扰对应的下行信号为通过所述两个或多个波束中非干扰对应的波束发送的下行信号。
  32. 根据权利要求31所述的装置,其特征在于,所述干扰的相关指示信息用于指示接收所述干扰对应的波束发送的下行信号的接收波束,包括:所述干扰的相关指示信息用于指示通过接收所述非干扰对应的下行信号的接收波束,分别接收所述干扰对应的波束发送的下行信号;
    所述接收网络设备通过两个或多个波束发送的下行信号,包括:根据所述干扰的相关指示信息,通过接收所述非干扰对应的下行信号的接收波束,分别接收所述干扰对应的波束发送的下行信号。
  33. 根据权利要求29所述的装置,其特征在于,
    所述干扰的相关指示信息包括以下至少一项信息:通过所述干扰对应的波束发送下行信号的传输资源的指示信息、所述传输资源对应的接收波束的指示信息。
  34. 根据权利要求29所述的装置,其特征在于,
    所述干扰的相关指示信息包括:通过所述干扰对应的波束发送下行信号的传输资源的指示信息、以及所述两个或多个波束发送的下行信号中非干扰对应的下行信号的接收波束的指示信息;
    所述非干扰对应的下行信号为下行信号中不通过所述干扰对应的波束发送的下行信号。
  35. 根据权利要求29-34任一项所述的装置,其特征在于,所述相关信息包括以下至少一项:通过所述选择的波束发送的下行信号的资源索引、通过所述选择的波束发送的下行信号的接收功率RSRP、所述干扰的干扰量信息。
  36. 一种波束训练的装置,其特征在于,所述装置包括:
    收发器,用于向终端设备发送干扰的相关指示信息;
    所述收发器,还用于通过两个或多个波束向所述终端设备发送下行信号,所述两个或多个波束包括所述干扰对应的波束;接收所述终端设备发送的所述终端设备选择的波束的相关信息;
    其中,所述选择的波束为所述终端设备根据所述干扰的相关指示信息和对所述下行信号的测量结果选择的波束。
  37. 根据权利要求36所述的装置,其特征在于,所述干扰的相关指示信息用于指示所述干扰对应的波束发送的下行信号的传输资源,和/或所述终端设备接收所述干扰对应的波束发送的下行信号的接收波束。
  38. 根据权利要求36所述的装置,其特征在于,所述接收波束包括接收非干扰对应的下行信号的接收波束,其中,所述非干扰对应的下行信号为通过所述两个或多个波束中非干扰对应的波束发送的下行信号。
  39. 根据权利要求38所述的装置,其特征在于,所述干扰的相关指示信息用于指示所述终端设备接收所述干扰对应的波束发送的下行信号的接收波束,包括:所述干扰的相关指示信息用于指示所述终端设备通过接收所述非干扰对应的下行信号的接收波束,分别接收所述干扰对应的波束发送的下行信号。
  40. 根据权利要求36所述的装置,其特征在于,
    所述干扰的相关指示信息包括以下至少一项信息:通过所述干扰对应的波束发送下行信号的传输资源的指示信息、所述传输资源对应的接收波束的指示信息。
  41. 根据权利要求36所述的装置,其特征在于,
    所述干扰的相关指示信息包括:通过所述干扰对应的波束发送下行信号的传输资源的指示信息、以及所述两个或多个波束发送的下行信号中非干扰对应的下行信号的接收波束的指示信息;
    所述非干扰对应的下行信号为下行信号中不通过所述干扰对应的波束发送的下行信号。
  42. 根据权利要求36-41任一项所述的装置,其特征在于,所述相关信息包括以下至少一项:通过所述选择的波束发送的下行信号的资源索引、通过所述选择的波束发送的下行信号的接收功率RSRP、所述干扰的干扰量信息。
  43. 一种波束训练的系统,其特征在于,所述系统包括:
    如权利要求15至21任一项所述的装置,以及如权利要求22至28任一项所述的装置;或
    如权利要求29至35任一项所述的装置,以及如权利要求36至42任一项所述的装置。
  44. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被计算机执行时实现如权利要求1至14中任一项所述的方法。
  45. 一种波束训练的装置,包括存储器、处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至14中任一项所述的方法。
  46. 根据权利要求45所述的装置,其特征在于,所述存储器独立于所述处理器设置或集成在所述处理器上。
  47. 一种波束训练的装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如权利要求1至14中任一项所述的方法。
  48. 一种计算机程序产品,其特征在于,包括计算机程序指令,当所述计算机程序指令在计算机上运行时,使得计算机执行如权利要求1至14中任一项所述的方法。
  49. 一种波束训练的装置,其特征在于,所述装置用于实现如权利要求1至14中任一项所述的方法。
PCT/CN2019/086447 2018-05-11 2019-05-10 一种波束训练的方法、装置及系统 WO2019214725A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112020022873-7A BR112020022873A2 (pt) 2018-05-11 2019-05-10 método, aparelho e sistema de treinamento de feixe
EP19798936.1A EP3787359B1 (en) 2018-05-11 2019-05-10 Beam training method, apparatus, and system
CA3100559A CA3100559C (en) 2018-05-11 2019-05-10 Beam training method, apparatus, and system
US17/095,017 US11496204B2 (en) 2018-05-11 2020-11-11 Beam training method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810451328.3A CN110475355B (zh) 2018-05-11 2018-05-11 一种波束训练的方法、装置及系统
CN201810451328.3 2018-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/095,017 Continuation US11496204B2 (en) 2018-05-11 2020-11-11 Beam training method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2019214725A1 true WO2019214725A1 (zh) 2019-11-14

Family

ID=68467809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086447 WO2019214725A1 (zh) 2018-05-11 2019-05-10 一种波束训练的方法、装置及系统

Country Status (6)

Country Link
US (1) US11496204B2 (zh)
EP (1) EP3787359B1 (zh)
CN (1) CN110475355B (zh)
BR (1) BR112020022873A2 (zh)
CA (1) CA3100559C (zh)
WO (1) WO2019214725A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210235299A1 (en) * 2020-01-29 2021-07-29 Qualcomm Incorporated Indication of single or dual receive beams in group-based report
EP4165895A4 (en) * 2020-06-11 2024-03-13 Qualcomm Inc CROSS-LINK INTERFERENCE MEASUREMENT VIA MULTIPLE BEAMS

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110753400A (zh) * 2018-07-24 2020-02-04 索尼公司 用户设备、电子设备、无线通信方法和存储介质
US11522596B2 (en) * 2018-09-28 2022-12-06 Lenovo (Beijing) Limited Beam reporting
CN111106864B (zh) * 2018-11-16 2023-02-24 维沃移动通信有限公司 上行波束训练方法、终端设备和网络侧设备
US11552693B2 (en) * 2019-02-12 2023-01-10 Nokia Technologies Oy Dynamic inter-beam-interference indication, configuration and communication in wireless networks
WO2020239049A1 (en) * 2019-05-31 2020-12-03 Qualcomm Incorporated Downlink and uplink beam management enhancements for full duplex
CN115053469A (zh) * 2020-02-11 2022-09-13 中兴通讯股份有限公司 关于多个发送/接收点的信道状态信息的增强
US11937107B2 (en) * 2020-09-29 2024-03-19 Samsung Electronics Co., Ltd. Method and apparatus for fast beam measurement and reporting
CN112243261B (zh) 2020-10-10 2021-09-14 中兴通讯股份有限公司 信息反馈、接收方法、装置、设备和存储介质
CN117793767A (zh) * 2022-09-29 2024-03-29 华为技术有限公司 Ai模型训练中用于获取训练数据的方法以及通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220802A (zh) * 2012-01-19 2013-07-24 中兴通讯股份有限公司 下行数据处理方法及装置
CN106817157A (zh) * 2015-11-28 2017-06-09 华为技术有限公司 一种波束训练方法及装置
CN107836124A (zh) * 2015-07-16 2018-03-23 Sk电信有限公司 使用混合波束成形的无线通信方法及其设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225401B2 (en) 2012-05-22 2015-12-29 Mediatek Singapore Pte. Ltd. Method and apparatus of beam training for MIMO operation and multiple antenna beamforming operation
US9503216B2 (en) 2012-11-02 2016-11-22 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices related to effective measurements
CN106471752A (zh) * 2014-08-08 2017-03-01 富士通株式会社 基于波束的信息传输方法、装置以及通信系统
WO2016179804A1 (en) * 2015-05-12 2016-11-17 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for beam selection
WO2017079544A1 (en) * 2015-11-05 2017-05-11 Ntt Docomo, Inc. Radio communication system, radio base station, and user equipment
US11088747B2 (en) 2016-04-13 2021-08-10 Qualcomm Incorporated System and method for beam management
US11050469B2 (en) * 2016-08-12 2021-06-29 Telefonaktiebolaget Lm Ericsson (Publ) Reference signaling in with antenna arrays
WO2018128940A2 (en) * 2017-01-05 2018-07-12 Intel IP Corporation Interference measurements with ue beam indication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220802A (zh) * 2012-01-19 2013-07-24 中兴通讯股份有限公司 下行数据处理方法及装置
CN107836124A (zh) * 2015-07-16 2018-03-23 Sk电信有限公司 使用混合波束成形的无线通信方法及其设备
CN106817157A (zh) * 2015-11-28 2017-06-09 华为技术有限公司 一种波束训练方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210235299A1 (en) * 2020-01-29 2021-07-29 Qualcomm Incorporated Indication of single or dual receive beams in group-based report
EP4165895A4 (en) * 2020-06-11 2024-03-13 Qualcomm Inc CROSS-LINK INTERFERENCE MEASUREMENT VIA MULTIPLE BEAMS

Also Published As

Publication number Publication date
US11496204B2 (en) 2022-11-08
EP3787359A1 (en) 2021-03-03
CA3100559A1 (en) 2019-11-14
BR112020022873A2 (pt) 2021-03-23
EP3787359A4 (en) 2021-06-23
CA3100559C (en) 2023-10-17
EP3787359B1 (en) 2023-11-22
CN110475355A (zh) 2019-11-19
US20210067233A1 (en) 2021-03-04
CN110475355B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2019214725A1 (zh) 一种波束训练的方法、装置及系统
US11924772B2 (en) System and method for wireless power control
US11522597B2 (en) Beam information feedback method and apparatus, and configuration information feedback method and apparatus
US11477838B2 (en) Communication method and communications apparatus for handling beam failure
US20200396036A1 (en) Systems and Methods for UE-Specific Beam Management for High Frequency Wireless Communication
CN110546929B (zh) 传输信道状态信息参考信号(csi-rs)的方法和装置及计算机可读存储介质
KR102308639B1 (ko) 신호 전송 방법 및 장치
CN110476396B (zh) 在空间准共址的高频多载波操作中用于波束管理的系统和方法
US11082864B2 (en) Method for transmitting and receiving signal by means of beam in wireless communication system, and apparatus for said method
CN111511010B (zh) 发送和接收指示的方法和装置
WO2019101204A1 (zh) 一种功率控制的方法、装置及系统
CN110809321A (zh) 接收和发送信号的方法以及通信装置
US11323222B2 (en) Communication method, and apparatus
CN115119292A (zh) 多输入多输出无线系统的探测参考信号功率控制
US10368325B2 (en) System and method for beam adaptation in a beam-based communications system
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
WO2018202137A1 (zh) 一种通信方法及装置
WO2023050472A1 (zh) 用于寻呼的方法和装置
US20230254030A1 (en) Beam-based communication method and related apparatus
WO2018177164A1 (en) Resource and power allocation indication in beam-based access system
WO2018205436A1 (zh) 波束管理的方法、网络设备及终端
RU2783388C2 (ru) Способ подстройки луча, устройство, система, устройство обработки, машиночитаемый носитель информации и компьютерный программный продукт
US20240121649A1 (en) Method and apparatus for measuring of ue-to-ue crosslink interference in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19798936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3100559

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020022873

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019798936

Country of ref document: EP

Effective date: 20201123

ENP Entry into the national phase

Ref document number: 112020022873

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201110