WO2024022053A1 - 一种速率匹配的方法及装置 - Google Patents

一种速率匹配的方法及装置 Download PDF

Info

Publication number
WO2024022053A1
WO2024022053A1 PCT/CN2023/105809 CN2023105809W WO2024022053A1 WO 2024022053 A1 WO2024022053 A1 WO 2024022053A1 CN 2023105809 W CN2023105809 W CN 2023105809W WO 2024022053 A1 WO2024022053 A1 WO 2024022053A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
rate matching
terminal device
measurement
threshold
Prior art date
Application number
PCT/CN2023/105809
Other languages
English (en)
French (fr)
Inventor
袁世通
樊波
李芳�
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024022053A1 publication Critical patent/WO2024022053A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate

Definitions

  • the present application relates to the field of communication technology, and in particular, to a rate matching method and device.
  • the fifth generation mobile communication system can use high-frequency communication, that is, high-frequency band signals are used to transmit data.
  • high-frequency communications A major problem with high-frequency communications is that signal energy drops sharply with transmission distance, resulting in short signal transmission distances.
  • high-frequency communication uses analog beam technology, which concentrates the signal energy in a smaller angular range to form a beam-like signal (called an analog beam, or beam for short), thereby improving the transmission distance.
  • beams are used for transmission between network equipment (such as base stations) and terminal equipment.
  • the network device can configure one or more resource sets for the terminal device. Each resource set contains one or more resources. For each resource, the network device sends the reference signal corresponding to the resource through a beam for terminal device measurement. Corresponding beam quality. After measuring the reference signal, the terminal equipment can report the reference signal receiving power (RSRP) corresponding to each resource, so that the network equipment can learn the quality of the corresponding beam.
  • RSRP reference signal receiving power
  • the terminal equipment In order to achieve cross-cell beam management, the terminal equipment needs to measure the reference signal of the neighboring cell; when the terminal equipment measures the same-frequency neighboring cell, the transmission of the current cell (i.e., the serving cell) needs to be suspended. In the standard protocol, this pause behavior is called a rate match.
  • the terminal device receives a continuous transmission resource allocated by the network device, for example: starting from the Xth orthogonal frequency division multiplexing (OFDM) symbol in a time slot and continuing for Y
  • OFDM orthogonal frequency division multiplexing
  • SSB synchronization signal block
  • no data will be mapped on the OFDM symbols where SSB exists.
  • SSB is also called synchronization signal and physical broadcast channel (PBCH) block (synchronization signal and PBCH block).
  • L1/L2 layer 1/layer 2
  • rate matching is performed on the SSBs of multiple neighboring cells for the purpose of neighboring cell measurement. This will affect the scheduling resources of the terminal device and cause the throughput of the terminal device to decrease.
  • the terminal equipment often performs rate matching in order to measure the SSB of neighboring cells, resulting in frequent interruption of transmission in the local cell, thereby affecting transmission efficiency.
  • the terminal equipment when measuring the SSB of multiple pre-configured neighboring cells, sometimes the terminal equipment may not be able to measure all of them, or only some beams of some neighboring cells can be measured. If the terminal device only performs rate matching based on the SSB configuration of the neighboring cell, it may cause the terminal device to perform a large number of unnecessary rate matching for the SSB measurement of the neighboring cell, thus frequently interrupting the transmission of the local cell and affecting the transmission efficiency.
  • This application provides a rate matching method and device to improve the reliability of rate matching.
  • the method provided in this application can be applied to terminal equipment or chips in terminal equipment, and can also be applied to network equipment or chips in network equipment.
  • the embodiments of this application are not limited to the specific execution subject of the method.
  • the method can be implemented by a terminal device or a network device, or can be implemented by a chip or multiple functional modules thereof.
  • a rate matching method includes: a terminal device measuring a reference signal issued by a serving network device; the terminal device reporting a measurement result to the serving network device; if the measurement result indicates the quality of the reference signal is less than or equal to the first threshold, rate matching is performed on the transmission resources of the serving cell according to the location of the reference signal resources of the neighboring cells.
  • the serving network device sends a reference signal to the terminal device; receives the measurement result reported by the terminal device when measuring the reference signal; and if the measurement result indicates that the quality of the reference signal is less than or equal to the first threshold, determines that the quality of the reference signal is less than or equal to the first threshold.
  • the terminal equipment needs to perform rate matching, that is, it is determined that the terminal equipment performs rate matching on the transmission resources of the serving cell according to the location of the reference signal resources of the neighboring cells.
  • the service network equipment needs to refer to the location of the reference signal resource of the neighboring cell to transmit with the terminal equipment or allocate transmission resources to the terminal equipment, and does not transmit or allocate transmission resources to the terminal equipment at the corresponding location.
  • the service network device can deliver reference signals through one or more beams, and each beam can correspond to one or more reference signals. Therefore, the quality of the reference signal can reflect the quality of the beam; if the measurement result indicates at least If the quality of a beam is less than or equal to the first threshold, rate matching is performed on the transmission resources of the serving cell according to the location of the reference signal resources of the neighboring cell.
  • rate matching is performed on the transmission resources of the serving cell according to the position of the reference signal resource of the neighboring cell; otherwise, rate matching is not performed.
  • the location of the reference signal resource of the neighboring cell may be the location of at least one reference signal resource of the neighboring cell, or may be the location of part or all of the reference signal resources of the neighboring cell.
  • each threshold can be associated with one or more neighboring cells, or one or more measurement resource sets.
  • rate matching is performed on the transmission resources of the serving cell according to the position of the reference signal resource of the first neighboring cell.
  • the first threshold can be a cell-level threshold or a beam-level threshold.
  • the serving cell shares the first threshold, and one threshold can be associated with one or more measurement resource sets; or different beams use different thresholds, and one threshold One or more beams can be associated.
  • a rate matching method includes: a terminal device measuring a reference signal delivered by a neighboring network device; the terminal device reporting the measurement result to the serving network device; if the measurement result indicates the quality of the reference signal is greater than or equal to the second threshold, then rate matching is performed on the transmission resources of the serving cell according to the location of the reference signal resources of the neighboring cell.
  • the neighboring cell network device sends the reference signal; the serving network device receives the measurement result reported by the terminal device when measuring the reference signal; if the measurement result indicates that the quality of the reference signal is greater than or equal to the second threshold, then Determining that the terminal device needs to perform rate matching means that the terminal device determines that the terminal device performs rate matching on the transmission resources of the serving cell according to the location of the reference signal resource of the neighboring cell.
  • the service network equipment needs to refer to the location of the reference signal resource of the neighboring cell to transmit with the terminal equipment or allocate transmission resources to the terminal equipment, and does not transmit or allocate transmission resources to the terminal equipment at the corresponding location.
  • neighboring cell network equipment can deliver reference signals through one or more beams, and each beam can correspond to one or more reference signals. Therefore, the quality of the reference signal can reflect the quality of the beam; if the measurement results indicate If the quality of at least one beam is greater than or equal to the second threshold, rate matching is performed on the transmission resources of the serving cell according to the location of the reference signal resources of the neighboring cell.
  • rate matching is performed on the transmission resources of the serving cell according to the position of the reference signal resource of the neighboring cell; otherwise, rate matching is not performed.
  • the location of the reference signal resource of the adjacent cell may be the location of the reference signal resource corresponding to the reference signal with quality greater than or equal to the second threshold, or may be the location of part or all of the reference signal resources of the adjacent cell.
  • each threshold can correspond to one or more neighboring cells, or one or more measurement resource sets.
  • rate matching is performed on the transmission resources of the serving cell according to the position of the reference signal resource of the second neighboring cell.
  • the second threshold can be a cell-level threshold or a beam-level threshold.
  • neighboring cells share the second threshold, and one threshold can be associated with one or more measurement resource sets; or different beams use different thresholds, and one threshold One or more beams can be associated.
  • the measurement results of the reference signal are used to determine whether to perform rate matching, which improves the reliability of rate matching. Furthermore, unnecessary rate matching is reduced and transmission efficiency is improved.
  • a rate matching method which includes: the terminal device measures the layer 3 reference signal, and reports the layer 3 measurement results to the network device; if the layer 3 measurement results include the measurement results of neighboring cells, Rate matching is performed on the transmission resources of the serving cell according to the location of the reference signal resources of the neighboring cell.
  • the network device receives the layer 3 measurement results reported by the terminal device; if the layer 3 measurement results include the measurement results of neighboring cells, it is determined that the terminal device needs to perform rate matching, that is, it is determined that the terminal device needs to perform rate matching according to the The location of the reference signal resource of the neighboring cell performs rate matching on the transmission resource of the serving cell.
  • the network equipment transmits with the terminal equipment or allocates transmission resources to the terminal equipment, it needs to refer to the location of the reference signal resource of the neighboring cell, and does not transmit or allocate transmission resources to the terminal equipment at the corresponding location.
  • the transmission to the serving cell is based on the location of the reference signal resource of the neighboring cell. Resources are rate matched.
  • the measurement results of the neighboring cells can be the quality of one or more beams, or the quality of one or more reference signals.
  • One beam can correspond to one or more reference signals; layer 3 measurement can measure the serving cell, or it can Measure neighborhoods.
  • the method further includes: the terminal device receives indication information sent by the network device, where the indication information is used to indicate rate matching of transmission resources of the serving cell based on layer 3 (L3) measurement results.
  • the indication information may be associated with the neighboring cell and may be carried in the L3 measurement configuration.
  • the location of the reference signal resource of the neighboring cell may be the location of the reference signal resource corresponding to the reference signal or beam whose quality is greater than or equal to the second threshold, or may be the location of some or all of the reference signal resources of the neighboring cell.
  • the layer 3 measurement results are used to determine whether to perform rate matching, which improves the reliability of rate matching. Furthermore, it also reduces unnecessary rate matching and improves transmission efficiency.
  • a rate matching method including: a terminal device receiving first configuration information issued by a network device, where the first configuration information is used to configure a period and window length of rate matching (rate match); according to In the rate matching period, within the corresponding window length, the terminal device performs rate matching on the transmission resources of the serving cell according to the position of the reference signal resource of the neighboring cell.
  • the network device delivers the first configuration information to the terminal device, and the first configuration information is used to configure the period and window length of rate matching; the network device determines that the terminal device performs rate matching within the corresponding window length, When the network device transmits with the terminal device or allocates transmission resources to the terminal device within the corresponding window length, it needs to refer to the location of the reference signal resource of the neighboring cell, and does not transmit or allocate transmission resources to the terminal device at the corresponding location.
  • the method further includes: the terminal device receives second configuration information issued by the network device, where the second configuration information instructs the terminal device to report the measurement result of at least one neighboring cell.
  • the second configuration information is also used to indicate the maximum or minimum number of neighboring cell beams corresponding to a single reported measurement result.
  • the terminal device reports the measurement results to the network device; if the measurement results include the measurement results of neighboring cells, between the two adjacent window lengths, the service is determined based on the location of the reference signal resources of the neighboring cells.
  • the transmission resources of the cell are rate matched, otherwise rate matching is not performed.
  • the measurement result includes the measurement result of the neighboring cell, and the measurement result is greater than or equal to the second threshold, then between the two adjacent window lengths, according to the reference signal resource of the neighboring cell
  • the location performs rate matching on the transmission resources of the serving cell, otherwise no rate matching is performed.
  • the rate matching period and window length are configured by the network device to the terminal device, and the terminal device performs rate matching according to the configuration of the network device, reducing the frequency of rate matching and improving transmission efficiency. Furthermore, rate matching is performed between adjacent window lengths based on the measurement results, which improves the reliability of rate matching.
  • the measurement result of the neighboring cell is the beam quality of at least one beam of the neighboring cell, and may also be the quality of one or more reference signals of the neighboring cell, and one beam may correspond to one or more reference signals; so
  • the position of the reference signal resource of the neighboring cell may be the position of the reference signal resource corresponding to at least one beam or reference signal of the neighboring cell; it may also be based on the position of some or all of the reference signal resources of the neighboring cell;
  • the second threshold can be associated with the neighbor cell; optionally, there can be multiple second thresholds, and different neighbor cells use different thresholds, or different thresholds are associated with different neighbor cells.
  • Measurement resource set that is, different neighboring cells or measurement resource sets can set different thresholds, some neighboring cells or measurement resource sets can use one threshold, or all neighboring cells or measurement resource sets share a threshold; therefore, each threshold can Associate one or more neighboring cells, or one or more measurement resource sets.
  • X can be any value, configured by the network device for the terminal device, or in advance. Settings; measurement results are also called measurement reports.
  • the transmission resources are used to transmit one or more of the following: physical uplink control channel (PUCCH), physical uplink shared channel (PUSCH), and sounding reference signal (sounding reference signal, SRS), physical downlink control channel (physical downlink control channel, PDCCH), physical downlink shared channel (physical downlink shared channel, PDSCH) or channel state information reference signal (channel state information reference signal, CSI-RS); wherein, the terminal equipment sends PUCCH, PUSCH or SRS One or more items are sent to the network equipment, and the network equipment sends one or more items of PDCCH, PDSCH or CSI-RS to the terminal equipment.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • SRS sounding reference signal
  • PDCCH physical downlink control channel
  • PDCCH physical downlink shared channel
  • PDSCH physical downlink shared channel
  • channel state information reference signal channel state information reference signal
  • the reference signal resources of the neighboring cells belong to the measurement resource set configured or activated by the network device.
  • the network device can configure the measurement resource set for the terminal device through radio resource control (RRC) signaling. , activate the measurement resource set for the terminal device through the MAC control element (Media Access Control element, MAC-CE).
  • RRC radio resource control
  • MAC-CE Media Access Control element
  • the neighboring cell reference signal resource is the neighboring cell SSB or CSI-RS resource;
  • the CSI-RS resource can be the neighboring cell CSI-RS resource, or it can be associated with the neighboring cell SSB.
  • the CSI-RS resource may also be a CSI-RS resource associated with a physical cell identifier (PCI) of a neighboring cell or other cell, a neighboring cell or other cell identifier, or a logical identifier.
  • the CSI-RS resource may be Serving cell CSI-RS resources.
  • the measurement results can be N consecutive measurement results, N measurement results within a period of time, N non-continuous measurement results, or partially continuous and partially discontinuous. .
  • the first threshold and the second threshold may be configured by the network device to the terminal device, or may be preset thresholds.
  • this application implementation provides a communication device, which can be applied to a terminal device and has the function of implementing the above aspects or the method in any possible implementation of the above aspects.
  • This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions. For example, it includes a transceiver unit and a processing unit.
  • the transceiver unit may also be called a communication unit or a transceiver module, and the processing unit may also be called a processing module.
  • this application implementation provides a communication device, which can be applied to network equipment and has the function of implementing the above aspects or the method in any possible implementation of the above aspects.
  • This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions. For example, it includes a transceiver unit and a processing unit.
  • the transceiver unit may also be called a communication unit or a transceiver module, and the processing unit may also be called a processing module.
  • the transceiver unit is used to perform the transceiver steps of the terminal device or network device in each of the above solutions.
  • the transceiver unit may specifically include a receiving unit and a sending unit.
  • the sending unit may perform the sending step, and the receiving unit may perform the receiving step; the processing unit is used to Perform other steps besides sending and receiving, such as: judgment, determination or rate matching, etc.
  • the present application provides a communication device, which includes: a processor and a memory.
  • the memory stores computer programs or computer instructions
  • the processor is used to execute the computer programs or computer instructions stored in the memory, so that the processor implements the above aspects or any possible implementation of the aspects, or causes the processor to Implement each of the above aspects or any possible implementation of each aspect.
  • the communication device also includes an interface circuit, and the processor is used to control the interface circuit to send and receive signals and/or information and/or data.
  • the present application provides a communication device, which includes a processor.
  • the processor is used to execute computer programs or computer instructions in the memory, so that the processor implements the above aspects or any possible implementation manner, or the processor is used to execute the above various aspects or any possible implementation manner.
  • it further includes a memory, the processor is coupled to the memory through an interface, and the memory is used to store computer programs or computer instructions.
  • the communication device also includes an interface circuit, and the processor is used to control the interface circuit to send and receive signals and/or information and/or data.
  • the implementation of this application also provides a computer program product including instructions, which, when run on a computer, causes the computer to execute the solutions of the above aspects and any possible implementation of the aspects.
  • the implementation of this application also provides a computer-readable storage medium, including computer instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to execute the solutions of the above aspects and any possible implementation of the aspects. .
  • the implementation of this application also provides a chip, including at least one processor, for executing computer programs or computer instructions in the memory to implement the solutions of the above aspects and any possible implementation of the aspects, or
  • the at least one processor is used to execute the solutions of the above various aspects and any possible implementation of the various aspects.
  • embodiments of the present application provide a communication system, which includes the above network device and the above terminal device.
  • FIG. 1 is a schematic diagram of the beam communication system of this application.
  • FIG. 2 is a schematic diagram of rate matching in this application.
  • FIG. 3 is a schematic diagram of beam detection in this application.
  • Figure 4 is a schematic diagram of the communication scenario according to the embodiment of the present application.
  • Figure 5 is a flow chart of the rate matching method according to the embodiment of the present application.
  • Figure 6 is a schematic diagram of a rate matching method scenario according to an embodiment of the present application.
  • Figure 7 is a flow chart of a rate matching method according to another embodiment of the present application.
  • Figure 8 is a flow chart of a rate matching method according to another embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 10 is a schematic diagram of another communication device of the present application.
  • Figure 11 is a schematic diagram of another communication device according to the present application.
  • the communication method provided by the embodiment of the present application can be applied to the fifth generation (5th generation, 5G) communication system, such as 5G new radio (NR), or to various future communication systems, such as the sixth generation ( 6th generation, 6G) communication system.
  • 5th generation, 5G 5G new radio
  • 6th generation, 6G 6th generation
  • the beam involved in the embodiment of this application is a communication resource.
  • the beam may be a wide beam, a narrow beam, or other types of beams, and the beam forming technology may be beam forming technology or other technical means.
  • Beamforming technology can be specifically digital beamforming technology, analog beamforming technology, and hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
  • a beam can be called a spatial domain filter, a spatial filter, a spatial domain parameter, a spatial parameter, a spatial domain setting, a spatial setting. , quasi-colocation (QCL) information, QCL assumption, or QCL indication, etc.
  • Beams can be indicated by a transmission configuration indicator state (TCI-state) parameter, or by a spatial relation parameter. Therefore, in this application, the beam can be replaced by spatial filter, spatial filter, spatial parameter, spatial parameter, spatial setting, spatial setting, QCL information, QCL assumption, QCL indication, TCI-state (including uplink TCI-state, downlink TCI-state). TCI-state), or spatial relationship, etc.
  • TCI-state including uplink TCI-state, downlink TCI-state. TCI-state
  • TCI-state TCI-state
  • Beam can also be replaced by other terms indicating beam, which is not limited in this application.
  • the beam used to transmit signals can be called transmission beam (transmission beam, Tx beam), spatial domain transmission filter (spatial domain transmission filter), spatial transmission filter (spatial transmission filter), spatial domain transmission parameter (spatial domain transmission parameter), spatial transmission parameter, spatial domain transmission setting, or spatial transmission setting.
  • the downlink transmit beam can be indicated by TCI-state.
  • the beam used to receive the signal can be called a reception beam (reception beam, Rx beam), spatial domain reception filter (spatial domain reception filter), spatial reception filter (spatial reception filter), spatial domain reception parameter (spatial domain reception parameter) or spatial reception parameter, spatial domain reception setting, or spatial reception setting.
  • the uplink transmit beam can be indicated by any of spatial relationships, uplink TCI-state, and sounding reference signal (SRS) resources (indicating the transmit beam using the SRS). Therefore, the uplink beam can also be replaced by SRS resources.
  • SRS sounding reference signal
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after the signal is emitted by the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam forming technology may be beam forming technology or other technologies.
  • the beamforming technology can be digital beamforming technology, analog beamforming technology, hybrid digital beamforming technology, or hybrid analog beamforming technology.
  • Beams generally correspond to resources. For example, when performing beam measurement, the network device measures different beams through different resources. The terminal device feeds back the measured resource quality, and the network device knows the quality of the corresponding beam. When data is transmitted, beam information is also indicated by its corresponding resources. For example, the network device indicates the information of the physical downlink shared channel (PDSCH) beam of the terminal device through the transmission configuration indicator (TCI) field in the downlink control information (DCI).
  • PDSCH physical downlink shared channel
  • TCI transmission configuration indicator
  • One beam may include one or more antenna ports for transmitting data channels, control channels, detection signals, etc.
  • One or more antenna ports forming a beam can also be regarded as a set of antenna ports.
  • the beam refers to the transmission beam of the network device.
  • each beam of the network device corresponds to a resource, so the index of the resource can be used to uniquely identify the beam corresponding to the resource.
  • the network device may send measurement configuration information to the terminal device in advance, and the measurement configuration information may include measurement resource configuration information and measurement reporting configuration information.
  • the network device sends a measurement reference signal to the terminal device based on the measurement configuration information.
  • the measurement resource configuration information includes relevant configuration of the measurement resources.
  • measurement resources can be configured as a three-level resource structure: Resource setting, Resource set, and Resource.
  • the network device can configure one or more Resource settings for the terminal device.
  • Each Resource setting can include one or more Resource sets, and each Resource set can include one or more Resources.
  • each Resource can also include one or more ports.
  • the measurement reporting configuration information includes relevant information that needs to be reported by the terminal device.
  • the measurement reporting configuration information includes one or more of the following: reporting quantity (report quantity), calculation method indication information used for the reporting quantity, measurement resources associated with the measurement reporting configuration information (for example, the One or more Resource settings and/or resource sets and/or resources associated with the measurement reporting configuration.
  • the reported amount may include one or more of the following information: channel measurement reference signal resource identifier, interference resource identifier, reference signal receiving power (RSRP), reference signal receiving quality (reference signal receiving quality) quality, RSRQ), signal to interference plus noise ratio (SINR), received signal strength indicator (received signal strength indicator, RSSI), channel status information (channel status information, CSI), channel quality indicator (channel quality indicator (CQI), precoding matrix indicator (precoding matrix indicator, PMI), precoding type indicator (precoding type indicator, PTI), diversity indicator (rank indication, RI), etc.
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • SINR signal to interference plus noise ratio
  • the terminal device After receiving the measurement configuration information of the network device, the terminal device can perform measurements based on the measurement configuration information. For example, if the measurement reporting configuration information in the measurement configuration information includes reference signal reception quality RSRQ and signal-to-interference-noise ratio SINR, the terminal device needs to measure the resources indicated by the measurement resource configuration information and report the measured RSRQ to the network device. , SINR.
  • RSRQ reference signal reception quality
  • SINR signal-to-interference-noise ratio
  • the beam indication used by the downlink channel or the beam transmitting the reference signal is implemented by the reference resource index in the associated transmission configuration indicator (transmission configuration indicator, TCI) state table.
  • each TCI state table contains several TCI states.
  • Each TCI status includes a TCI status identifier (TCI-RS-SetID), one or two quasi-co-location (QCL) type indications (QCL-type A/B/C/D) and each type indication Corresponding reference signal identifier (RS-ID).
  • QCL types include the following:
  • QCL-Type A ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇
  • QCL-type D represents spatial quasi-homogeneity.
  • the network device indicates one of the TCI states containing spatial quasi-colocation information through high-level signaling or control information.
  • the terminal device reads the reference RS-ID corresponding to QCL-type D according to the TCI state, and then the terminal The device can receive according to the currently maintained spatial reception configuration (reception beam) corresponding to the RS-ID.
  • Spatial QCL can be considered as a type of QCL. There are two perspectives to understand spatial: from the sending end or from the receiving end. From the perspective of the transmitter, if two antenna ports are quasi-colocated in the air domain, it means that the corresponding beam directions of the two antenna ports are consistent in space. From the receiving end, If two antenna ports are quasi-co-located in the air domain, it means that the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • Channel measurement reference signal resources resources used for reference signals sent on the beam to be measured.
  • the channel measurement reference signal resource is used to measure beam quality, that is, it is used to measure the quality of the beam transmitting the reference signal.
  • the measurement results (RSRQ/SINR/RSRP) in the embodiments of this application are all measurement results for channel measurement reference signal resources.
  • the plurality involved in the embodiments of this application refers to two or more than two.
  • “And/or” describes the relationship between related objects, indicating that there can be three relationships.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone.
  • the character "/” generally indicates that the related objects are in an "or” relationship.
  • words such as “first” and “second” are only used for the purpose of distinguishing the description, and cannot be understood as indicating or implying relative importance, nor can they be understood as indicating. Or suggestive order.
  • the network devices involved in the embodiments of this application may be devices in a wireless network.
  • the network device may be a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • the network device may be a radio access network (RAN) node that connects the terminal device to the wireless network, and may also be called an access network device.
  • RAN radio access network
  • Network equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (BSC) , base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc., can also be used in 5G mobile communication systems network equipment.
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • BTS home base station
  • BBU baseband unit
  • WIFI wireless fidelity
  • AP wireless relay node
  • TP transmission point
  • TRP transmission and reception point
  • next generation base station next generation NodeB, gNB
  • transmission reception point TRP
  • TP transmission reception point
  • the network device may also be a network node that constitutes a gNB or transmission point.
  • BBU BBU, or distributed unit (DU), etc.
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, the media access control (Media Access Control, MAC) layer and the physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in the RAN, or the CU can be divided into network devices in the core network (core network, CN), which is not limited in this application.
  • Terminal equipment is also called user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • An end device is a device that includes wireless communication capabilities (providing voice/data connectivity to the user).
  • handheld devices with wireless connection functions or vehicle-mounted devices.
  • some examples of terminal devices are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality devices Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in the Internet of Vehicles, wireless terminals in self-driving, and wireless terminals in remote medical surgery , wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in Internet of Things (IoT) or smart homes Wireless terminals in (smart home), etc.
  • IoT Internet of Things
  • wireless terminals in the Internet of Vehicles can be vehicle-mounted equipment, vehicle equipment, vehicle-mounted modules, vehicles, etc.
  • Wireless terminals in industrial control can be cameras, robots, etc.
  • Wireless terminals in smart homes can be TVs, air conditioners, sweepers, speakers, set-top boxes, etc.
  • beams can be used for data transmission between network equipment and terminal equipment.
  • the network equipment can decide by itself which beam to use, and the terminal equipment instructs the network equipment which beam to use. For example, the network equipment sends a downlink signal to the terminal equipment.
  • Control information contains the transmission configuration number TCI field.
  • the TCI field can be used to indicate a TCI-state.
  • the TCI-state is used for uplink transmission or downlink transmission, and the TCI-state includes a target reference signal. resource.
  • the terminal device uses the receiving beam corresponding to the target reference signal resource to receive. Since the receiving beam corresponding to the target reference signal resource has been determined by the terminal device, the network device can be the terminal. The device indicates the correct receive beam.
  • the terminal equipment uses the transmission beam corresponding to the target reference signal to transmit, or uses the transmission beam corresponding to the target reference signal to transmit.
  • the network device can configure one or more resource sets for the terminal device.
  • Each resource set contains one or more resources.
  • the network device sends a signal corresponding to the resource through a beam to measure the corresponding beam quality.
  • the terminal device can report the beam quality after measurement, such as: terminal device
  • the RSRP of one or more resources can be reported to indicate the corresponding beam quality.
  • layer 1 (L1) measurement only supports measuring the resources of the serving cell.
  • the terminal device measures the SSB of the current serving cell, or measures the CSI-RS resources configured in the current serving cell. Therefore, the resource set configured by the network device only includes the resources of the serving cell.
  • L1 measurement further supports the measurement of reference signals associated with the physical cell identifier (PCI) of non-serving cells.
  • PCI physical cell identifier
  • the network device will associate an additional PCI with the SSB configuration to be measured by the terminal device in the RRC configuration, which means that the SSB is not the SSB of the current serving cell. Therefore, the resource set configured by the network device includes resources of the serving cell and resources of the non-serving cell.
  • the QCL relationship of the CSI-RS needs to be configured to be associated with the SSB of the neighbor cell PCI.
  • the terminal device does not obtain the CSI-RS configuration of the neighboring cell. Instead, it adds the QCL to the neighboring cell based on the CSI-RS resources of the serving cell. District SSB to complete measured.
  • the terminal equipment when the terminal equipment receives the PDSCH or PDCCH from the neighboring cell, if there are reference signal resources of the neighboring cell at the same time, such as SSB, it will perform rate matching, that is, interrupt the transmission of the PDSCH or PDCCH on the SSB resource. , giving priority to SSB measurement.
  • the terminal device will not perform uplink transmission or downlink reception on the same symbol of SSB.
  • the standard describes as follows:
  • the UE is not expected to transmit PUCCH/PUSCH/SRS or receive PDCCH/PDSCH/CSI-RS for tracking/CSI-RS for CQI on symbols corresponding to the SSB indexes configured for L1-RSRP measurement,where the transmission of PUCCH/PUSCH /SRS and reception of PDCCH/PDSCH/CSI-RS for tracking/CSI-RS for CQI may be on serving cell(s)and cell(s)with PCI different from serving cell(s).
  • the UE does not want to send PUCCH/PUSCH/SRS or receive PDCCH/PDSCH/CSI-RS for tracking/CSI-RS for CQI on the symbol corresponding to the SSB index of the L1-RSRP measurement configuration.
  • the transmission of PUCCH/PUSCH/SRS and the reception of PDCCH/PDSCH/CSI-RS for tracking/CQI can be on the serving cell(s) and the cell(s) whose PCI is different from the serving cell(s).
  • Uplink transmission includes sending PUCCH, PUSCH or SRS, etc.; downlink reception includes receiving PDCCH, PDSCH or CSI-RS, etc.
  • the terminal device For intra-frequency measurement of layer 1/layer 2 (L1/L2) mobility, if the terminal device has multiple candidate cells, according to the neighboring cell SSB configuration, the SSBs of multiple neighboring cells are rate matched for the purpose of neighboring cell measurement. , the uplink and downlink transmission of the serving cell will be interrupted on the corresponding SSB, which will affect the scheduling resources of the terminal equipment and cause the throughput of the terminal equipment to decrease. For example: Referring to Figure 2, if the SSB resource locations of multiple cells are staggered, the terminal equipment will often need to perform rate matching in order to measure SSB, resulting in frequent interruption of transmission in this cell, thereby affecting transmission efficiency.
  • the terminal equipment may not be able to measure it, or only some beams of some neighboring cells can be measured. . If the terminal device only performs rate matching based on the SSB configuration of neighboring cells, it may cause the terminal device to perform a large number of unnecessary neighbor cell measurements, causing frequent transmission interruptions in the local cell and affecting transmission efficiency.
  • This application provides a rate matching method to reduce transmission interruptions caused by frequent neighbor cell measurements of terminal equipment and improve transmission efficiency.
  • the application communication system of this application mainly includes network equipment (such as base station) and terminal equipment (such as UE), and may also include one or more network equipment and one or more terminal equipment.
  • Figure 4 takes a network device and a terminal device as an example.
  • the network device can send data or control signaling to the terminal device.
  • the terminal device measures the reference signal based on the configuration information of the network device and reports the measurement result of the reference signal, that is, the measurement result of the corresponding beam, which is used to switch the service beam of the terminal device.
  • Scenario 1 Inter-cell transmission model (the terminal device reports the measurement results and then switches to the beam of other cells)
  • the reference signal of the beam of the non-serving cell is measured for the terminal equipment and reported to the current serving cell. Scenario in which after switching the non-serving cell beam, PDCCH/PDSCH is received from another cell but the serving cell is not switched. It can be simply understood that the terminal device receives a signal from the antenna of another cell, but the serving cell remains unchanged.
  • Scenario 2 Transmission model within the cell (the terminal device switches to other beams in the serving cell)
  • the reference signal of the non-serving beam of the current serving cell is measured for the terminal equipment and reported to the current serving cell. Switch the service beam to the reported beam based on the configuration.
  • the terminal only measures the beam of the non-serving cell, but the terminal does not actually perform data transmission based on the beam of the non-serving cell.
  • the current serving cell configures the terminal equipment to measure and report neighbor cell reference signals.
  • the terminal equipment does not necessarily need to perform beam switching, but it needs to measure one or more reference signals.
  • the measured reference signal may be a reference signal of the current serving cell or a reference signal of a non-serving cell.
  • the rate matching method includes:
  • the network device configures a quality threshold for the terminal device.
  • the quality threshold includes a first threshold and/or a second threshold.
  • the first threshold is for the serving cell, and the second threshold is for the neighboring cell.
  • the threshold can be a beam-level threshold or a cell-level threshold; the threshold can be configured for the network device for the terminal device. , or it can be preset.
  • the first threshold can be configured for the measurement resource set of the serving cell. There can be one or more measurement resource sets of the serving cell. Different measurement resource sets can use different thresholds; each measurement resource set can be configured with a threshold. Multiple measurement resource sets can also be configured with a threshold, so one threshold can correspond to one or more measurement resource sets.
  • the first threshold may also be a cell-level threshold, and the serving cell uses one threshold.
  • the first threshold can also be a beam-level threshold, that is, different thresholds are set for different beams of the serving cell; one threshold can correspond to one or more beams, that is, one threshold can correspond to one or more reference signal resources.
  • first thresholds when there are multiple first thresholds, they can correspond to different neighboring cells, that is, one threshold can be associated with one or more neighboring cells.
  • the first threshold can be associated with adjacent PCI or additional PCI.
  • the second threshold is similar to the first threshold and can be configured for the measurement resource set of the neighboring cell.
  • the first threshold may also be a cell-level threshold, and one or more neighboring cells use one threshold.
  • the second threshold can also be a beam-level threshold, that is, different thresholds are set for different beams in neighboring cells; one threshold can correspond to one or more beams, that is, one threshold can correspond to one or more reference signal resources.
  • the above threshold is a reference signal quality threshold or a beam quality threshold, such as: RSRP threshold of SSB or CSI-RS; the network device can deliver it through configuration information or instruction information.
  • the measurement resource set may be a measurement resource set configured by RRC, or a measurement resource set activated by MAC-CE or DCI.
  • the terminal device measures the reference signal delivered by the network device and reports the measurement result to the network device.
  • the reference signal may be one or more, and may be delivered through one or more beams.
  • the one or more beams may correspond to one or more resources in the measurement resource set, or may be in one-to-one correspondence, or may be One-to-many or many-to-one.
  • the reference signal can be SSB or CSI-RS. Since the reference signal is delivered through a beam, the quality of the reference signal is the quality of the beam that sends the reference signal. Each beam can send one or more reference signals.
  • the above-mentioned network device may be a serving network device, that is, the terminal device measures the reference signal delivered by the serving network device through one or more beams and reports the measurement result. If the measurement result indicates that at least one beam or reference signal is The quality is greater than or equal to the first threshold. At this time, the beam quality of the serving cell is better, then the terminal device The device does not need to enable neighbor cell measurement, and does not need to rate match the transmission resources of the serving cell based on the location of the neighbor cell's reference signal resources. As shown in the upper figure of Figure 6, the terminal device can perform the rate matching on the transmission resources scheduled by the network device. Normal uplink and downlink transmission, such as sending PUCCH, PUSCH or SRS, etc., or receiving PDCCH, PDSCH or CSI-RS, etc.
  • Normal uplink and downlink transmission such as sending PUCCH, PUSCH or SRS, etc., or receiving PDCCH, PDSCH or CSI-RS, etc.
  • the terminal device needs to enable neighbor cell measurement, as shown in the lower figure of Figure 6. Therefore, The terminal equipment performs rate matching on the transmission resources of the serving cell based on the location of the reference signal resources of the neighboring cell; if the transmission resources allocated by the network device include the reference signal resources of the neighboring cell, such as SSB, then the reference signal resources of the neighboring cell are used. Interrupt uplink and downlink transmission of the serving cell.
  • the measurement results may be multiple times, such as: N consecutive times or N non-consecutive times within a period of time; if the N consecutive measurement results of the terminal device all indicate that the quality of at least one beam or reference signal is greater than or equal to If the first threshold or the N measurement results of the terminal device within the preset time period all indicate that the quality of at least one beam or reference signal is greater than or equal to the first threshold, the terminal device does not need to turn on neighbor cell measurement. It is necessary to rate match the transmission resources of the serving cell according to the location of the reference signal resources of the neighboring cells.
  • the terminal device needs to enable neighboring cell measurement. Therefore, the terminal device performs rate matching on the transmission resources of the serving cell according to the location of the reference signal resource of the neighboring cell.
  • N is an integer greater than 1, which can be set in advance or configured by the network device for the terminal device.
  • first thresholds there can be multiple first thresholds, corresponding to different neighboring cells respectively.
  • One threshold can be associated with one or more neighboring cells.
  • the first threshold can be associated with the identity of the cell, such as PCI or additional PCI.
  • the terminal device determines the location of the reference signal resource of the first neighboring cell.
  • the transmission resources of the serving cell are rate matched; the measurement results may be the measurement results of the above-mentioned N measurements.
  • the terminal device turns off rate matching; the measurement result may be the above-mentioned N measurements.
  • the measurement result further, if the first threshold is associated with the PCI of the first neighboring cell, the terminal device turns off the rate matching of the first neighboring cell.
  • the reference signal resources of the above-mentioned neighboring cells may be one or more reference signal resources of other cells in the measurement resource set.
  • the other cells may be some neighboring cells or all neighboring cells.
  • the reporting method of measurement results is periodic or semi-continuous measurement reporting.
  • the reporting method can be configured by the network device for the terminal device, or it can be preset; different measurement resource collections can use different reporting methods, or the same reporting method can be used. .
  • the periodic or semi-persistent reporting results meet preset conditions, for example: after periodic or semi-persistent reporting N times, N is an integer greater than 1, the above-mentioned opening or closing rate matching rule takes effect.
  • the network device After the network device receives the measurement results of the terminal device, it can determine whether the terminal device enables rate matching based on the measurement results.
  • the judgment method is the same as that of the terminal device, and will not be described in detail.
  • the L1-RSRP measurement result reported by the terminal device is, for example: at least one beam or all beams are greater than the first threshold, the beam quality of the serving cell is good at this time, and the terminal device does not need to measure the neighboring cell SSB. Therefore, there is no need to turn it on.
  • Rate matching means that there is no need to rate match the transmission resources of the serving cell based on the location of the SSBs of other cells in the measurement resource set;
  • the L1-RSRP measurement result reported by the terminal device is, for example: at least one beam or all beams are smaller than the first threshold, the beam quality of the serving cell is not good at this time, and the terminal device needs to enable rate matching, that is, focus on other beams based on the measurement resources.
  • the location of the SSB of the cell performs rate matching on the transmission resources of the serving cell to facilitate measurement of the SSB of neighboring cells.
  • the terminal device When the L3-RSRP measurement result reported by the terminal device is, for example: the beam-level L3 measurement result of any beam or the cell-level measurement result of L3 filtering is greater than or equal to the first threshold, the terminal device does not need to perform neighbor cell measurements. Therefore, There is no need to enable rate matching, that is, there is no need to rate match the transmission resources of the serving cell based on the location of the SSBs of other cells in the measurement resource set;
  • the terminal device When the L3-RSRP measurement result reported by the terminal device is, for example: the beam-level L3 measurement result of any beam or the cell-level measurement result of L3 filtering is less than or equal to the first threshold, the terminal device needs to perform neighbor cell measurements. Therefore, the terminal The device needs to enable rate matching, that is, rate matching the transmission resources of the serving cell based on the location of the SSBs of other cells in the measurement resource set, in order to facilitate the measurement of SSBs in neighboring cells.
  • rate matching that is, rate matching the transmission resources of the serving cell based on the location of the SSBs of other cells in the measurement resource set, in order to facilitate the measurement of SSBs in neighboring cells.
  • the terminal device can measure the reference signal delivered by the neighboring network device and report the measurement results to the serving network device.
  • the reference signal can be delivered through one or more beams, and each beam corresponds to one or more reference signals;
  • the measurement result indicates that the quality of at least one beam or reference signal is greater than or equal to the second threshold, at this time, the beam quality of the neighboring cell is better, and the terminal equipment needs to enable neighboring cell measurement, that is, based on the reference signal resources of the neighboring cell.
  • the location performs rate matching on the transmission resources of the serving cell. If the transmission resources allocated by the network device include reference signal resources of the neighboring cell, such as SSB, the uplink and downlink transmission of the serving cell will be interrupted on the reference signal resources of the neighboring cell.
  • the terminal equipment does not need to turn on the neighboring cell measurement, and therefore, the terminal equipment does not need to turn on the rate Matching; the terminal device can perform normal uplink and downlink transmission on the transmission resources scheduled by the network device, such as sending PUCCH/PUSCH/SRS, or receiving PDCCH/PDSCH/CSI-RS.
  • the measurement results may be multiple times, such as: N consecutive times or N non-consecutive times within a period of time; if the N consecutive measurement results of the terminal device all indicate that the quality of at least one beam or reference signal is greater than or equal to If the second threshold or the N measurement results of the terminal device within the preset time period all indicate that the quality of at least one beam or reference signal is greater than or equal to the second threshold, the terminal device needs to enable neighbor cell measurement, that is, according to The location of the reference signal resource of the neighboring cell performs rate matching on the transmission resource of the serving cell.
  • N consecutive measurement results of the terminal equipment indicate that the quality of at least one beam or reference signal is less than or equal to the second threshold, or the N measurement results of the terminal equipment within the preset time period all indicate at least two beams, Or the quality of the reference signal is less than or equal to the first threshold, then the terminal device does not need to enable neighbor cell measurement, and therefore, the terminal device does not need to enable rate matching.
  • N is an integer greater than 1, which can be set in advance or configured by the network device for the terminal device.
  • the second threshold can be associated with the identity of the cell, such as PCI or additional PCI.
  • the corresponding Rate matching should be performed with reference signal resources of the cell.
  • the terminal device determines the location of the reference signal resource of the second neighboring cell.
  • the transmission resources of the serving cell are rate matched; the measurement results may be the measurement results of the above-mentioned N measurements.
  • the terminal device turns off rate matching; the measurement result may be the above-mentioned N measurements.
  • the measurement result further, if the second threshold is associated with the PCI of the second neighboring cell, the terminal device turns off the rate matching of the second neighboring cell.
  • the network device can determine whether the terminal device has enabled rate matching based on the measurement results reported by the terminal device. If it is determined that the terminal device has enabled rate matching, the location of the neighboring cell reference signal resource needs to be considered when allocating transmission resources or performing transmission. , no resources are allocated or no transmission is performed at the corresponding location.
  • the measurement resource set may be a measurement resource set configured by RRC, or may be a measurement resource set activated by MAC-CE or DCI.
  • the SSB of other cells can also be replaced by CSI-RS, for example, the CSI-RS of the SSB of other cells is associated.
  • the network device can configure the reporting mode of the measurement resource set to be periodic or semi-persistent measurement reporting; or, the network device can activate some aperiodic measurement configurations through DCI, and the reporting mode can be aperiodic measurement reporting. .
  • the terminal device measures the reference signal resources delivered by the network device and reports the measurement results.
  • the network device and the terminal device can determine whether to enable rate matching based on the measurement results, reducing unnecessary rate matching and improving the efficiency of rate matching. Reliability and improved transmission efficiency.
  • layer 1 measurement supports measurement of configured reference signal resources, including the reference signal resources of the current cell and neighboring cells, if the reference signal resources of multiple neighboring cells are configured, the reference signal resources of multiple neighboring cells are required for layer 1 measurement.
  • Signal resources are measured, and the transmission resources of the serving cell are rate matched based on the reference signal resources of multiple neighboring cells; sometimes the terminal equipment is far away from some neighboring cells, and the reference signals of these neighboring cells cannot be measured.
  • the reference signal resources of the area are used to rate match the transmission resources of the serving cell, which results in a waste of transmission resources; in another embodiment, the measurement results of layer 3 can be used to determine whether to match the reference signal resources of neighboring cells in layer 1 measurements. Make adjustments to reduce unnecessary rate matching and improve transmission efficiency; referring to Figure 7, the method includes:
  • the network device sends indication information to the terminal device to indicate whether to perform rate matching based on L3 measurement results, such as RRC measurement reports.
  • the indication information can be carried in the L3 measurement configuration or L3 reporting configuration.
  • This indication information is optional, and both parties can perform rate matching based on L3 measurement results by default.
  • the indication information may be a switch, for example, 1 and 0 are used to indicate whether to perform rate matching on the transmission resources of the serving cell based on the L3 measurement results.
  • Implicit indication can also be used. If the indication information is included in the L3 measurement configuration, it means that the transmission resources of the serving cell are rate matched based on the L3 measurement results; if there is no such indication information in the L3 measurement configuration, it means that the rate matching is not based on the L3 measurement. As a result, the transmission resources of the serving cell are rate matched.
  • rate matching is performed according to the synchronization signal measurement time configuration (SSB measurement timing configuration, SMTC) to ensure the measurement of the neighbor cell reference signal.
  • SSB measurement timing configuration synchronization signal measurement time configuration
  • the indication information can be configured for all neighboring cells, or for one or part of the neighboring cells, for example, for the specified PCI neighbor cells. At this time, rate matching is only performed on the neighboring cells configured with the indication information. Adjustment.
  • the terminal device performs L3 measurement and reports the measurement results to the network device.
  • L3 measurement can measure the reference signal of the serving cell, that is, the reference signal sent by the serving network device; it can also measure the reference signal of the neighboring cell, that is, the reference signal sent by the neighboring cell network device. For example: in actual implementation, when the terminal equipment is at the edge of the cell, the reference signal of the neighboring cell can be measured.
  • the measurement results are reported to the serving network device. If the layer 3 measurement results include the measurement results of the reference signal of the neighboring cell, the transmission resources of the serving cell are rate matched according to the location of the reference signal resource of the neighboring cell, that is: Subsequent L1 measurements need to perform rate matching on the neighboring cell reference signal resources.
  • the L1 measurement configuration includes reference signal resources of three neighboring cells, but the L3 measurement results only include the measurement results of two neighboring cells, then the transmission resources of the serving cell are determined based on the locations of the reference signal resources of these two neighboring cells.
  • the reference signal resources of another neighboring cell do not need to be rate matched, that is, the subsequent L1 measurement is only for the two neighboring cells, and the other neighboring cell does not need to perform L1 measurement, because at this time, the other neighboring cell The reference signal of the area cannot be measured.
  • a second threshold can be set for the measurement results of the neighboring cell, such as the RSRP threshold of SSB or CSI-RS.
  • the second threshold can be configured by the network device for the terminal device, or can be set in advance.
  • the second threshold can be carried In the L3 measurement configuration of 201, the cell-level threshold can be used.
  • a corresponding threshold can be configured for each neighboring cell, or a threshold can be configured uniformly for all neighboring cells. This is similar to the previous embodiment and will not be described in detail.
  • the terminal equipment will provide the service according to the location of the reference signal resource of the neighboring cell. Rate matching of cell transmission resources;
  • the terminal device does not need to enable rate matching, that is, the terminal device does not need to enable rate matching according to the neighboring cell.
  • the location of the reference signal resource performs rate matching on the transmission resource of the serving cell.
  • the indication information is only configured for some neighboring cells, when the L3 measurement results reported by the terminal equipment include the neighboring cells configured with the indication information, subsequent L1 measurements need to perform rate calculation on the reference signal resources of the neighboring cells.
  • Match for example:
  • the transmission resources of the serving cell are configured according to the location of the reference signal resource of the neighboring cell. Rate matching, that is, subsequent L1 measurements need to rate match the reference signal resources of the neighboring cell.
  • the layer 3 measurement results include the measurement results of the reference signal of the neighboring cell, but the neighboring cell is not configured or associated with the indication information, there is no need to enable rate matching, that is, it is not based on the location of the reference signal resource of the neighboring cell. Rate matching is performed on the transmission resources of the serving cell; therefore, subsequent L1 measurements by the terminal equipment do not rate match the reference signal resources of the neighboring cell.
  • the neighboring cell configured with the indication information also sets a corresponding second threshold, then if the measurement result of the layer 3 measurement result includes the measurement result of the neighboring cell's reference signal is greater than or equal to the second threshold, and the neighboring cell If the indication information is configured or associated, rate matching is performed on the transmission resources of the serving cell according to the location of the reference signal resource of the neighboring cell; otherwise, rate matching is not enabled.
  • the subsequent L1 measurement will perform rate matching on the neighboring cell's beam, that is, based on the rate corresponding to the neighboring cell's beam.
  • Rate matching is performed on the transmission resources of the serving cell with reference to the location of the signal resources. For example: Rate matching is performed on the transmission resources of the serving cell based on the SSB resources corresponding to the beam and the CSI-RS resources of the QCL.
  • the network device can also set corresponding thresholds for beam-level measurements, for example: the second threshold is the beam-level threshold; if the layer 3 measurement results include the measurement results of the beams of neighboring cells, and the quality of the beams is greater than or is equal to the second threshold, then the transmission resources of the serving cell are rate matched according to the position of the reference signal resource corresponding to the beam of the neighboring cell. If the quality of the beam is less than or equal to the second threshold, there is no need to enable rate matching.
  • the second threshold is the beam-level threshold
  • the network device After the network device receives the L3 measurement results reported by the terminal device, it can confirm whether the terminal device has enabled rate matching based on the content of the measurement results.
  • the judgment method is similar to that of the terminal device and will not be described in detail.
  • the rate matching start time can be Xms after the L3 measurement report is reported and confirmed, Xms after the network device receives the L3 measurement report from the terminal device, or Xms after the terminal device sends the L3 measurement report, the terminal device turns on rate matching, and the network device confirms that the terminal turns on the rate Match, X is an integer.
  • the terminal device after the terminal device reports the L3 measurement report, when performing the first L1 measurement (a set of measurements including multiple reference signals), the terminal device turns on rate matching, and the network device confirms that the terminal turns on rate matching.
  • the signal quality of neighboring cells can be determined through L3 measurement, thereby determining whether to enable rate matching, reducing unnecessary rate matching, enhancing the reliability of rate matching, and improving transmission efficiency.
  • the network device can configure the rate matching period and window length for the terminal device. Within the corresponding window length, the terminal device enables rate matching. Between two adjacent window lengths, the terminal device performs rate matching according to the measurement results. Determines whether to start rate matching. Referring to Figure 8, the method includes:
  • the network device sends first configuration information to the terminal device, where the first configuration information is used to configure the rate matching period and window length for the terminal device;
  • the terminal device performs reference signal measurement and turns on rate matching, that is, rate matching of the transmission resources of the serving cell according to the location of the reference signal resources of the neighboring cells, and Report the measurement results to the network device.
  • the terminal equipment when the terminal equipment measures the SSB of the neighboring cell within the rate matching window, it performs rate matching on the transmission resources of the serving cell, such as PDCCH, PDSCH, etc., based on the location of the SSB of the neighboring cell.
  • the PDCCH, PDSCH, etc. of this cell are not transmitted at the location.
  • the terminal device does not enable rate matching, that is, it does not rate match the transmission resources of the serving cell according to the location of the reference signal resources of the neighboring cells, thus reducing the waste of transmission resources.
  • the terminal device measures the reference signal within the corresponding window length and reports the measurement results to the network device.
  • the reference signal may include the reference signal of the serving cell or the reference signal of the neighboring cell.
  • the network device may also instruct the terminal device to report that the measurement results need to include the measurement results of at least one neighboring cell;
  • the network device delivers instruction information to the terminal device, instructing the terminal device to report that the measurement results include the measurement results of at least one neighboring cell.
  • the indication information may be carried in the measurement resource set configuration or measurement reporting configuration of L1 measurement.
  • the network device specifies the maximum or minimum neighbor for a single report in the measurement resource set configuration or measurement reporting configuration of L1 measurement. Number of area beams.
  • the terminal equipment After receiving the indication information, the terminal equipment performs reference signal measurement.
  • the reported measurement results need to include the measurement results of at least one neighboring cell. If no neighboring cell reference signal is measured, fill it with a special value. For example, use X to indicate no Measure the reference signal of any neighbor cell.
  • the network device can also configure a second threshold for the terminal device.
  • the second threshold can be configured separately for each neighboring cell, or one can be configured uniformly. That is, one threshold or threshold can correspond to one or more neighboring cells.
  • threshold For relevant content, please refer to the previous embodiments.
  • the terminal device determines whether rate matching is required during the period between two adjacent rate matching windows based on the measurement results, specifically including:
  • the transmission resources of the serving cell are rate matched according to the position of the reference signal resource of the neighboring cell.
  • rate matching is not performed between two adjacent rate matching windows, that is, the transmission resources of the serving cell are not calculated based on the location of the reference signal resources of the neighboring cells. Perform rate matching.
  • the measurement result includes the measurement result of a neighboring cell, and the measurement result is greater than or equal to the second threshold, between two adjacent rate matching windows, according to the location of the reference signal resource of the neighboring cell Rate matching is performed on the transmission resources of the serving cell.
  • the measurement result includes the measurement result of a neighboring cell, and the measurement result is less than or equal to the second threshold, no rate matching is performed between two adjacent rate matching windows, that is, no rate matching is performed based on the neighboring cell.
  • the location of the reference signal resources of the area performs rate matching on the transmission resources of the serving cell.
  • the measurement result may be the quality of at least one beam or reference signal.
  • the transmission to the serving cell is based on the location of the reference signal resource of the neighboring cell. Resources are rate matched.
  • the measurement result may be the quality of at least one beam or reference signal of the serving cell.
  • the first threshold and the second threshold can refer to the above embodiment, and other contents are similar to the above embodiment.
  • the first threshold and the second threshold can be associated with neighboring cells, and the number of measurements can be N times, etc.; for specific content, refer to the above. The description of the embodiment will not be described in detail.
  • the terminal device performs rate matching according to the configuration of the network device, which reduces the frequency of rate matching and improves transmission efficiency. Furthermore, rate matching is performed between adjacent window lengths based on the measurement results, which improves the reliability of rate matching.
  • the network device determines whether the terminal device enables rate matching based on the measurement results reported by the terminal device. In addition, combined with the above embodiments, in some implementations, the network device can also determine whether the terminal device enables rate matching based on the measurement results reported by the terminal device. Determine whether to instruct the terminal device to adjust the neighboring cell reference signal resource set related to rate matching. In this method, the terminal device will not enable rate matching independently. Instead, after receiving the instruction information sent by the network device, it will determine whether to enable rate matching based on the instruction information. .
  • the network device reconfigures the measurement resource set of the neighboring cells for the terminal device, and further, may instruct the terminal device to perform the measurement.
  • the resource set needs to be rate matched, that is, the transmission resources of the serving cell are rate matched according to the location of the reference signal resource set of the neighboring cell.
  • the measurement may be the quality of at least one beam or reference signal.
  • the network device reconfigures the measurement resource set of the neighboring cell for the terminal device by issuing RRC, and sends instruction information to instruct the terminal device to perform rate matching on the resource set, or instruct the terminal device to perform rate matching on some or all of the resources in the resource set. Rate matching; after receiving the instruction, the terminal device starts rate matching for the corresponding resource set according to the instruction information.
  • the rate matching is performed on the resource set, it is a cell-level (or PCI-level) rate matching. If the rate matching is only performed on some resources (one or more), it is a beam-level rate matching. Usually one resource corresponds to one A beam can also correspond to multiple beams.
  • the network device can send indication information, such as MAC-CE, to the terminal device to indicate the identity of the one or more reference signal resources, or the identity of the neighbor cell to which the one or more reference signal resources belong.
  • indication information such as MAC-CE
  • the network device can deliver DCI to the terminal device.
  • the DCI is used to trigger aperiodic measurement reporting.
  • the DCI includes indication information to indicate whether the resource set corresponding to the measurement trigger state is enabled for neighboring cells. Rate matching of reference signal resources.
  • the terminal device determines whether to perform rate matching on the resource set corresponding to the trigger state based on the location of the neighboring cell reference signal resource.
  • the indication information is 1 bit, and the value is 1, which means that rate matching is turned on, that is, the resource set corresponding to the trigger state is rate matched according to the location of the neighboring cell reference signal resource. If the value is 0, it means that the rate is not turned on. matches, and vice versa, or can be represented by other values.
  • each step in the above embodiments of the present application is only an exemplary description and is not strictly limited.
  • the size of the serial numbers of the above steps does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • each embodiment of the present application involves some message names, such as the first message, etc., and their naming does not limit the protection scope of the embodiments of the present application.
  • an embodiment of the present application also provides a communication device 500 for realizing the functions of the network device or terminal device in the above method.
  • the device may be a software module or a system on a chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 500 may include: a processing unit 501 and a communication unit 502.
  • the communication unit may also be called a transceiver unit, and may include a sending unit and/or a receiving unit, respectively configured to perform the steps of sending and receiving by the network device or terminal device in the above method embodiment; when the communication When the device is a chip, sending and receiving correspond to output and input respectively.
  • the communication unit may also be called an interface circuit, a transceiver, a transceiver device, etc.
  • the processing unit can also be called a processor, a processing board, a processing module, a processing device, etc.
  • the device used to implement the receiving function in the communication unit 502 can be regarded as a receiving unit
  • the device used to implement the sending function in the communication unit 502 can be regarded as a sending unit, that is, the communication unit Element 502 includes a receiving unit and a sending unit.
  • the communication unit may sometimes be called a transceiver, an interface circuit, or a transceiver circuit.
  • the receiving unit may also be called a receiver, receiver, or receiving circuit.
  • the sending unit may sometimes be called a transmitter, transmitter or transmitting circuit.
  • a communication unit configured to report measurement results to the service network device
  • rate matching is performed on the transmission resources of the serving cell according to the location of the reference signal resources of the neighboring cell.
  • the processing unit is used to measure the reference signal sent by the network equipment in the neighboring area
  • a communication unit used to report measurement results to the service network device
  • rate matching is performed on the transmission resources of the serving cell according to the location of the reference signal resources of the neighboring cell.
  • a communication unit used to send reference signals to terminal equipment
  • a processing unit configured to receive the measurement results reported by the terminal device when measuring the reference signal
  • the terminal device performs rate matching on the transmission resources of the serving cell according to the location of the reference signal resources of the neighboring cell.
  • the communication unit is used to report layer 3 measurement results to the network device
  • rate matching is performed on the transmission resources of the serving cell according to the location of the reference signal resource of the neighboring cell.
  • the communication unit is used to receive the layer 3 measurement results reported by the terminal device;
  • Processing unit configured to determine, if the layer 3 measurement results include measurement results of neighboring cells, that the terminal equipment performs rate matching on the transmission resources of the serving cell based on the location of the reference signal resources of the neighboring cells.
  • a communication unit configured to receive first configuration information issued by the network device, where the first configuration information is used to configure the period and window length of rate match (rate match);
  • a processing unit configured to rate match the transmission resources of the serving cell according to the position of the reference signal resource of the neighboring cell within the corresponding window length according to the rate match period.
  • the communication unit is used to deliver first configuration information to the terminal device, where the first configuration information is used to configure the period and window length of the rate match;
  • a processing unit configured to determine, according to the period of the rate match, within the corresponding window length, that the terminal device performs rate matching on the transmission resources of the serving cell based on the position of the reference signal resource of the neighboring cell.
  • the processing unit 501 and the communication unit 502 can also perform other functions.
  • the communication unit implements the transceiver function, and the processing unit implements functions other than transceiver.
  • the processing unit implements functions other than transceiver.
  • Figure 10 shows a communication device 600 provided by an embodiment of the present application.
  • the device shown in Figure 10 can be a hardware circuit implementation of the device shown in Figure 9.
  • the communication device can be adapted to the flow chart shown above to perform the functions of the terminal device or network device in the above method embodiment.
  • FIG. 10 shows only the main components of the communication device.
  • the communication device 600 includes a processor 610 and an interface circuit 620 .
  • the processor 610 and the interface circuit 620 are coupled to each other.
  • the interface circuit 620 may be an interface circuit, a pin, an interface circuit or an input-output interface.
  • the communication device 600 may also include a memory 630 for storing instructions executed by the processor 610 or input data required for the processor 610 to run the instructions or data generated after the processor 610 executes the instructions.
  • Interface circuit 620 may also be a transceiver.
  • the processor 610 is used to realize the function of the processing unit 501 in Figure 9
  • the interface circuit 620 is used to realize the function of the above communication unit 502.
  • the terminal device chip implements the functions of the terminal device in the above method embodiment.
  • the terminal equipment chip receives information from other modules (such as radio frequency modules or antennas) in the terminal equipment, and the information is sent by the network equipment to the terminal equipment; or, the terminal equipment chip sends information to other modules (such as radio frequency modules or antennas) in the terminal equipment.
  • Antenna sends information, which is sent by the terminal device to the network device.
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiment.
  • the network device chip receives information from other modules in the network device (such as a radio frequency module or antenna), and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or antenna).
  • Antenna sends information, which is sent by the network device to the terminal device.
  • the communication device 2100 may be a terminal device or a network device, or may be a chip.
  • the communication device 2100 may be used to perform operations performed by the terminal device or network device in the above method embodiment.
  • Figure 11 shows a schematic structural diagram of a simplified communication device.
  • the communication device 2100 when the communication device 2100 is a terminal device, the communication device includes a processor, a memory, and a transceiver, where the memory can store computer program codes.
  • the transceiver includes a transmitter 2131, a receiver 2132, and a radio frequency circuit (Fig. (not shown in the figure), antenna 2133 and input and output devices (not shown in the figure).
  • the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, process data of software programs, etc.
  • Memory is mainly used to store software programs and data.
  • Radio frequency circuits are mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • Only one memory, processor and transceiver are shown in Figure 11. In an actual product, there may be one or more processors and one or more memories. Memory can also be called storage media or storage devices.
  • the memory may be provided independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and the radio frequency circuit with the transceiver function can be regarded as the transceiver unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a processor 2110, a memory 2120 and a transceiver 2130.
  • the processor 2110 may also be called a processing unit, a processing board, a processing module, a processing device, etc.
  • the transceiver 2130 may also be called a transceiver unit, a transceiver, a transceiver device, etc.
  • the components in the transceiver 2130 used to implement the receiving function can be regarded as a receiving unit
  • the components in the transceiver 2130 used to implement the transmitting function can be regarded as a sending unit, that is, the transceiver 2130 includes a receiver and a transmitter.
  • a transceiver may also be called a transceiver, a transceiver unit, or a transceiver circuit.
  • the receiver may also be called a receiver, receiving unit, or receiving circuit.
  • the transmitter may also be called a transmitter, a transmitting unit or a transmitting circuit.
  • FIG. 11 is only an example and not a limitation.
  • the above-mentioned terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 11 .
  • the communication device 2100 When the communication device 2100 is a network device, such as a base station, it includes a 2110 part, a 2120 part and a 2130 part.
  • Part 2110 is mainly used for baseband processing, controlling the base station, etc.
  • Part 2110 is usually the control center of the base station, which can usually be called a processor, and is used to control the base station to perform processing operations on the network device side in the above method embodiments.
  • Part 2120 is mainly used to store computer program code and data.
  • Part 2130 is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals; part 2130 can usually be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc.
  • the transceiver unit of part 2130 can also be called a transceiver or transceiver, etc., which includes an antenna 2133 and a radio frequency circuit (not shown in the figure), where the radio frequency circuit is mainly used for radio frequency processing.
  • the device used to implement the receiving function in part 2210 can be regarded as a receiver, and the device used to implement the transmitting function can be regarded as a transmitter, that is, part 2130 includes a receiver 2132 and a transmitter 2131.
  • the receiver may also be called a receiving unit, receiver, or receiving circuit, etc.
  • the transmitter may be called a transmitting unit, transmitter, or transmitting circuit, etc.
  • Parts 2110 and 2120 may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processors at the same time. device.
  • FIG. 11 is only an example and not a limitation.
  • the above-mentioned network device including a processor, a memory, and a transceiver may not rely on the structure shown in FIG. 11 .
  • the chip When the communication device 2100 is a chip, the chip includes a transceiver, a memory and a processor.
  • the transceiver may be an input-output circuit or a communication interface;
  • the processor may be a processor or microprocessor or integrated circuit integrated on the chip.
  • Embodiments of the present application also provide a computer-readable storage medium on which are stored computer instructions for implementing the method executed by the terminal device or the method executed by the network device in the above method embodiment.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device in the above method embodiment, or the method executed by the network device.
  • Embodiments of the present application also provide a computer program product containing a computer program or instructions.
  • the instructions When the instructions are executed by a computer, the computer implements the method executed by the terminal device or the method executed by the network device in the above method embodiment.
  • An embodiment of the present application also provides a communication system, which includes the network device and terminal device in the above embodiment.
  • Embodiments of the present application also provide a chip, including at least one processor, configured to execute computer programs or computer instructions in a memory, so as to implement the methods of the above embodiments.
  • the processor is coupled to the memory through an interface.
  • the chip device also includes a memory, and computer programs or computer instructions are stored in the memory.
  • the processor mentioned in any of the above places can be a general central processing unit, a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling each of the above embodiments.
  • the memory mentioned in any of the above places can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
  • the terminal device or the network device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer can include hardware such as central processing unit (CPU), memory management unit (MMU) and memory (also called main memory).
  • the operating system of the operating system layer can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system or windows operating system, etc.
  • the application layer can include applications such as browsers, address books, word processing software, and instant messaging software.
  • processor in the embodiment of the present application may be a central processing unit, or other general-purpose processor, digital signal processor, application-specific integrated circuit or other programmable logic device, transistor logic device, hardware component or any combination thereof.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the memory may be random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory, register, hard disk, mobile phone hard drive or any other form of storage media well known in the art.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • a computer-usable storage media including, but not limited to, disk storage, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种速率匹配的方法及装置,该方法包括:终端设备测量服务网络设备下发的参考信号;所述终端设备向所述服务网络设备上报测量结果;若所述测量结果指示所述参考信号的质量小于或等于第一门限,则根据邻区的参考信号资源的位置对服务小区的传输资源进行速率匹配。该方法减少了邻区测量中非必要的速率匹配,增强了速率匹配的可靠性,提高了传输效率。

Description

一种速率匹配的方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种速率匹配的方法及装置。
背景技术
第五代移动通信系统(5th generation,5G)可以采用高频通信,即采用高频段信号传输数据。高频通信的一个主要问题是信号能量随传输距离急剧下降,导致信号传输距离短。为了克服这个问题,高频通信采用模拟波束技术,通过将信号能量集中在一个较小的角度范围内,形成一个类似于光束一样的信号(称为模拟波束,简称波束),从而提高传输距离。参考图1,网络设备(如基站)和终端设备之间采用波束进行传输。
在进行上下行数据传输时,网络设备和终端设备需要采用特定的波束来进行。具体采用哪个波束来进行传输是通过波束测量过程来确定的。例如:网络设备可以为终端设备配置一个或多个资源集合,每个资源集合包含一个或多个资源,对于每个资源,网络设备通过一个波束发送该资源对应的参考信号,用于终端设备测量对应的波束质量。终端设备测量参考信号后可以上报各个资源对应的参考信号接收功率(reference signal receiving power,RSRP),网络设备从而获知相应波束的质量。
为了实现跨小区的波束管理,终端设备需要对邻区的参考信号进行测量;当终端设备对同频邻区进行测量时,本小区(即服务小区)的传输需要暂停。标准协议中,对该暂停行为称为速率匹配(rate match)。具体表现为,当终端设备收到网络设备分配的一段连续的传输资源时,例如:从一个时隙中的第X个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号开始,持续Y个符号结束,如果该段连续的传输资源中存在参考信号资源,如:同步信号块(synchronization signal block,SSB),则在存在SSB的OFDM符号上不映射数据。SSB也称为同步信号和物理广播信道(physical broadcast channel,PBCH)块(synchronization signal and PBCH block)。
对于层1/层2(L1/L2)移动性的同频测量,如果终端设备存在多个候选小区,根据邻区SSB配置,为了进行邻区测量而对多个邻区的SSB进行速率匹配,则会影响终端设备的调度资源,导致终端设备吞吐下降。例如:参考图2,如果多个邻区的SSB资源位置错开,则终端设备经常为了测量邻区SSB而进行速率匹配,导致本小区的传输频繁中断,从而影响传输效率。
另外,由于信道环境或终端设备姿态等因素,针对预先配置的多个邻区的SSB进行测量,有时终端设备不一定都能测量到,或仅部分邻区的部分波束能测量到。如果终端设备仅仅根据邻区的SSB配置进行速率匹配,可能会导致终端设备为了邻区SSB测量进行了大量不必要的速率匹配,从而频繁中断本小区的传输,影响传输效率。
因此,减小终端设备在邻区测量时进行频繁的速率匹配导致终端设备的传输效率下降,进一步的,尽量避免漏测邻区参考信号资源,从而提高速率匹配的可靠性,是一个亟待解决的问题。
发明内容
本申请提供一种速率匹配的方法及装置,提高速率匹配的可靠性。
本申请提供的方法可以应用于终端设备或者终端设备中的芯片,也可以应用于网络设备或者网络设备中的芯片,本申请实施例不限该方法的具体的执行主体。可选的,该方法可以由终端设备或网络设备实现,也可以由其中的芯片或多个功能模块共同实现。
一方面,一种速率匹配的方法,包括:终端设备测量服务网络设备下发的参考信号;所述终端设备向所述服务网络设备上报测量结果;若所述测量结果指示所述参考信号的质量小于或等于第一门限,则根据邻区的参考信号资源的位置对服务小区的传输资源进行速率匹配。
相应的,服务网络设备向终端设备发送参考信号;接收所述终端设备测量所述参考信号上报的测量结果;若所述测量结果指示所述参考信号的质量小于或等于第一门限,则确定所述终端设备需要进行速率匹配,即确定所述终端设备根据邻区的参考信号资源的位置对服务小区的传输资源进行速率匹配。服务网络设备则与终端设备进行传输或为终端设备分配传输资源需要参考邻区的参考信号资源的位置,在相应的位置上不传输或不分配传输资源给终端设备。
结合上述方案,服务网络设备可以通过一个或多个波束下发参考信号,每个波束可以对应一个或多个参考信号,因此,参考信号的质量可以反映波束的质量;若所述测量结果指示至少一个波束的质量小于或等于第一门限,则根据邻区的参考信号资源的位置对服务小区的传输资源进行速率匹配。
结合上述方案,若所述测量结果指示服务小区的波束质量小于或等于第一门限,则根据邻区的参考信号资源的位置对所述服务小区的传输资源进行速率匹配,否则不进行速率匹配。
所述邻区的参考信号资源的位置可以为所述邻区的至少一个参考信号资源的位置,也可以为所述邻区部分或全部参考信号资源的位置。
所述第一门限可以为多个,不同的门限关联不同的邻区,或者不同的门限关联不同的邻区测量资源集,即不同的邻区或测量资源集可以关联不同的门限,也可以部分邻区或测量资源集使用一个门限,或所有邻区或测量资源集共用一个门限;因此,每个门限可以关联一个或多个邻区,或者一个或多个测量资源集。
当满足上述条件时,若所述第一门限关联第一邻区,则根据所述第一邻区的参考信号资源的位置对服务小区的传输资源进行速率匹配。
另外,第一门限可以为小区级门限,也可以为波束级门限,例如:服务小区共用第一门限,一个门限可以关联一个或多个测量资源集;或者不同的波束使用不同的门限,一个门限可以关联一个或多个波束。
另一方面,一种速率匹配的方法,包括:终端设备测量邻区网络设备下发的参考信号;所述终端设备向服务网络设备上报测量结果;若所述测量结果指示所述参考信号的质量大于或等于第二门限,则根据所述邻区的参考信号资源的位置对服务小区的传输资源进行速率匹配。
相应的,邻区网络设备下发参考信号;服务网络设备接收所述终端设备测量所述参考信号上报的测量结果;若所述测量结果指示所述参考信号的质量大于或等于第二门限,则 确定所述终端设备需要进行速率匹配,即确定所述终端设备根据邻区的参考信号资源的位置对服务小区的传输资源进行速率匹配。服务网络设备则与终端设备进行传输或为终端设备分配传输资源需要参考邻区的参考信号资源的位置,在相应的位置上不传输或不分配传输资源给终端设备。
结合上述方案,邻区网络设备可以通过一个或多个波束下发参考信号,每个波束可以对应一个或多个参考信号,因此,参考信号的质量可以反映波束的质量;若所述测量结果指示至少一个波束的质量大于或等于第二门限,则根据邻区的参考信号资源的位置对服务小区的传输资源进行速率匹配。
结合上述方案,若所述测量结果指示邻区的波束质量大于或等于第二门限,则根据邻区的参考信号资源的位置对所述服务小区的传输资源进行速率匹配,否则不进行速率匹配。
所述邻区的参考信号资源的位置可以为质量大于或等于第二门限的参考信号对应的参考信号资源的位置,也可以为邻区的部分或全部参考信号资源的位置。
所述第二门限可以为多个,不同的门限关联不同的邻区,或者不同的门限关联不同的邻区测量资源集,即不同的邻区或测量资源集可以使用不同的门限,也可以部分邻区或测量资源集使用一个门限,或所有邻区或测量资源集共用一个门限;因此,每个门限可以对应一个或多个邻区,或者一个或多个测量资源集。
当满足上述条件时,若所述第二门限关联第二邻区,则根据所述第二邻区的参考信号资源的位置对服务小区的传输资源进行速率匹配。
另外,第二门限可以为小区级门限,也可以为波束级门限,例如:邻区共用第二门限,一个门限可以关联一个或多个测量资源集;或者不同的波束使用不同的门限,一个门限可以关联一个或多个波束。
上述方案中,通过参考信号的测量结果确定是否进行速率匹配,提高了速率匹配的可靠性,进一步的,也减小了不必要的速率匹配,提高了传输效率。
另一方面,公开了一种速率匹配的方法,包括:终端设备进行层3参考信号的测量,并向网络设备上报层3测量结果;若所述层3测量结果中包括邻区的测量结果,根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。
相应的,网络设备接收终端设备上报的层3测量结果;若所述层3测量结果中包括邻区的测量结果,则确定所述终端设备需要进行速率匹配,即确定所述终端设备根据所述邻区的参考信号资源的位置对服务小区的传输资源进行速率匹配。网络设备则与终端设备进行传输或为终端设备分配传输资源需要参考邻区的参考信号资源的位置,在相应的位置上不传输或不分配传输资源给终端设备。
结合上述方案,若所述层3测量结果包括邻区的测量结果,进一步的,且所述测量结果大于或等于第二门限,则根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。
所述邻区的测量结果可以为一个或多个波束的质量,也可以为一个或多个参考信号的质量,一个波束可以对应一个或多个参考信号;层3测量可以测量服务小区,也可以测量邻区。
结合上述方案,还包括:终端设备接收网络设备发送的指示信息,所述指示信息用于指示基于层3(L3)测量结果对服务小区的传输资源的进行速率匹配。所述指示信息可以与所述邻区关联,可以携带在L3测量配置中。
所述邻区的参考信号资源的位置可以为质量大于或等于第二门限的参考信号或波束对应的参考信号资源的位置,也可以为邻区的部分或全部参考信号资源的位置。
上述方案中,通过层3测量结果确定是否进行速率匹配,提高了速率匹配的可靠性,进一步的,也减小了不必要的速率匹配,提高了传输效率。
又一方面,公开了一种速率匹配的方法,包括:终端设备接收网络设备下发的第一配置信息,所述第一配置信息用于配置速率匹配(rate match)的周期和窗长;根据所述速率匹配的周期,在相应的窗长内,所述终端设备根据邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。
相应的,网络设备下发的第一配置信息给终端设备,所述第一配置信息用于配置速率匹配的周期和窗长;所述网络设备确定终端设备在相应的窗长内进行速率匹配,网络设备在相应的窗长内与终端设备进行传输或为终端设备分配传输资源需要参考邻区的参考信号资源的位置,在相应的位置上不传输或不分配传输资源给终端设备。
结合上述方案,该方法还包括:终端设备接收网络设备下发的第二配置信息,所述第二配置信息指示终端设备上报至少一个邻区的测量结果。
进一步的,所述第二配置信息还用于指示单次上报的测量结果对应的最大或最小邻区波束数量。
结合上述方案,终端设备上报测量结果给网络设备;若所述测量结果包括邻区的测量结果,则在相邻的2个窗长之间,根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配,否则不进行速率匹配。
结合上述方案,若所述测量结果包括邻区的测量结果,且所述测量结果大于或等于第二门限,则在相邻的2个窗长之间,根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配,否则不进行速率匹配。
上述方案中,速率匹配的周期和窗长由网络设备配置给终端设备,终端设备按照网络设备的配置进行速率匹配,减少了速率匹配的频率,提高了传输效率。进一步的,在相邻的窗长之间,根据测量结果进行速率匹配,提高了速率匹配的可靠性。
结合各个上述方案,所述邻区的测量结果为邻区的至少一个波束的波束质量,也可以为邻区的一个或多个参考信号的质量,一个波束可以对应一个或多个参考信号;所述邻区的参考信号资源的位置可以为所述邻区的至少一个波束或参考信号对应的参考信号资源的位置;也可以根据所述邻区的部分或全部参考信号资源的位置;
结合上述各个方案,所述第二门限可以与所述邻区关联;可选的,所述第二门限可以为多个,不同的邻区使用不同的门限,或者不同的门限关联不同的邻区测量资源集,即不同的邻区或测量资源集可以设置不同的门限,也可以部分邻区或测量资源集使用一个门限,或所有邻区或测量资源集共用一个门限;因此,每个门限可以关联一个或多个邻区,或者一个或多个测量资源集。
结合上述各个方案,终端设备发送所述测量结果后X ms,或网络设备接收所述测量结果后X ms,所述速率匹配生效,X可以为任意数值,由网络设备为终端设备配置,或者预先设定;测量结果也称为测量报告。
结合上述各个方面的方案,所述传输资源用于传输以下一项或多项:物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)、探测参考信号(sounding reference signal,SRS)、物理下行控制信道 (physical downlink control channel,PDCCH)、物理下行共享信道(physical downlink shared channel,PDSCH)或信道状态信息参考信号(channel state information reference signal,CSI-RS);其中,终端设备发送PUCCH、PUSCH或SRS中一项或多项给网络设备,网络设备发送PDCCH、PDSCH或CSI-RS中一项或多项给终端设备。
结合上述各个方面的方案,所述邻区的参考信号资源属于网络设备配置的或激活的测量资源集,网络设备可以通过无线资源控制(radio resource control,RRC)信令为终端设备配置测量资源集,通过MAC控制元素(Media Access Control control element,MAC-CE)为终端设备激活测量资源集。
结合上述各个方面的方案,所述邻区参考信号资源为所述邻区SSB或CSI-RS资源;所述CSI-RS资源可以为邻区CSI-RS资源,也可以为关联了邻区SSB的CSI-RS资源,也可以为者为关联了邻区或其它小区物理小区标识(physical cell identifier,PCI)、邻区或其它小区标识或逻辑标识的CSI-RS资源,该CSI-RS资源可以为服务小区CSI-RS资源。
结合上述各个方面的方案,所述测量结果可以为连续的N次测量结果,也可以为一段时间内N次测量结果,可以为非连续的N次测量结果,也可以为部分连续,部分非连续。
结合上述各个方面的方案,所述第一门限和第二门限可以由所述网络设备配置给所述终端设备,也可以为预先设定的门限。
另一方面,本申请实施提供一种通信装置,该装置可应用于终端设备,具有实现上述各个方面或上述各个方面的任意一种可能的实施方式中的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。比如包括收发单元和处理单元,所述收发单元还可以称为通信单元或收发模块,所述处理单元又可称为处理模块。
另一方面,本申请实施提供一种通信装置,该装置可应用于网络设备,具有实现上述各个方面或上述各个方面的任意一种可能的实施方式中的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。比如包括收发单元和处理单元,所述收发单元还可以称为通信单元或收发模块,所述处理单元又可称为处理模块。
收发单元用于执行上述各个方案中终端设备或网络设备收发步骤,所述收发单元可以具体包括接收单元和发送单元,可以由发送单元执行发送的步骤,接收单元执行接收的步骤;处理单元用于执行除收发之外的其它步骤,如:判断,确定或速率匹配等。
另一方面,本申请实施提供一种通信装置,该通信装置包括:处理器和存储器。该存储器中存储有计算机程序或计算机指令,该处理器用于执行该存储器中存储的计算机程序或计算机指令,使得处理器实现上述各个方面或各个方面中任一种可能的实施方式,或者使得处理器实现上述各个方面或各个方面中任一种可能的实施方式。
可选的,该通信装置还包括接口电路,该处理器用于控制该接口电路收发信号和/或信息和/或数据等。
另一方面,本申请实施提供一种通信装置,该通信装置包括处理器。该处理器用于执行存储器中的计算机程序或计算机指令,使得处理器实现上述各个方面或任一种可能的实施方式,或者该处理器用于执行上述各个方面或任一种可能的实施方式。
可选的,进一步包括存储器,该处理器通过接口与该存储器耦合,该存储器用于存储计算机程序或计算机指令。
可选的,该通信装置还包括接口电路,该处理器用于控制该接口电路收发信号和/或信息和/或数据等。
另一方面,本申请实施还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行如上述各个方面的方案及各个方面中任一种可能的实施方式。
另一方面,本申请实施还提供一种计算机可读存储介质,包括计算机指令,当该指令在计算机上运行时,使得计算机执行如上述各个方面的方案及各个方面中任一种可能的实施方式。
另一方面,本申请实施还提供一种芯片,包括至少一个处理器,用于执行存储器中的计算机程序或计算机指令,实现上述各个方面的方案及各个方面中任一种可能的实施方式,或所述至少一个处理器用于执行上述各个方面的方案及各个方面中任一种可能的实施方式。
另一方面,本申请实施例提供一种通信系统,该通信系统包括上述网络设备和上述终端设备。
附图说明
图1为本申请波束通信系统示意图;
图2为本申请速率匹配示意图;
图3为本申请波束检测示意图;
图4为本申请实施例通信场景示意图;
图5为本申请实施例的速率匹配方法流程图;
图6为本申请实施例的速率匹配方法场景示意图;
图7为本申请另一实施例的速率匹配方法流程图;
图8为本申请又一实施例的速率匹配方法流程图;
图9为本申请实施例通信装置结构示意图;
图10为本申请又一通信装置示意图;
图11为本申请另一通信装置示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例提供的通信方法可以应用于第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR),或应用于未来的各种通信系统,例如,第六代(6th generation,6G)通信系统。
本申请实施例提供的方法和装置是基于同一或相似技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
以下,首先对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
本申请实施例中涉及的波束,是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束,形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术、模拟波束成形技术和混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。
波束可以称为空域滤波器(spatial domain filter),空间滤波器(spatial filter),空域参数(spatial domain parameter),空间参数(spatial parameter),空域设置(spatial domain setting),空间设置(spatial setting),准共址(quasi-colocation,QCL)信息,QCL假设,或QCL指示等。波束可以通过传输配置指示状态(transmission configuration indicator state,TCI-state)参数来指示,或者通过空间关系(spatial relation)参数来指示。因此,本申请中,波束可以替换为空域滤波器,空间滤波器,空域参数,空间参数,空域设置,空间设置,QCL信息,QCL假设,QCL指示,TCI-state(包括上行TCI-state,下行TCI-state),或空间关系等。上述术语之间也相互等效。波束也可以替换为其他表示波束的术语,本申请在此不作限定。
用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),空域发送滤波器(spatial domain transmission filter),空间发送滤波器(spatial transmission filter),空域发送参数(spatial domain transmission parameter),空间发送参数(spatial transmission parameter),空域发送设置(spatial domain transmission setting),或者空间发送设置(spatial transmission setting)。下行发送波束可以通过TCI-state来指示。
用于接收信号的波束可以称为接收波束(reception beam,Rx beam),空域接收滤波器(spatial domain reception filter),空间接收滤波器(spatial reception filter),空域接收参数(spatial domain reception parameter)或者空间接收参数(spatial reception parameter),空域接收设置(spatial domain reception setting),或者空间接收设置(spatial reception setting)。上行发送波束可以通过空间关系、上行TCI-state、探测参考信号(sounding reference signal,SRS)资源(表示使用该SRS的发送波束)中任一种来指示。因此,上行波束还可以替换为SRS资源。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术、混合数字波束赋形技术或者混合模拟波束赋形技术等。
波束一般和资源对应,例如进行波束测量时,网络设备通过不同的资源来测量不同的波束,终端设备反馈测得的资源质量,网络设备就知道对应的波束的质量。当数据传输时,波束信息也是通过其对应的资源来进行指示的。例如,网络设备通过下行控制信息(downlink control information,DCI)中的传输配置指示(transmission configuration indicator,TCI)字段指示终端设备的物理下行共享信道(physical downlink shared channel,PDSCH)波束的信息。
可选的,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或者多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或者多个天线端口也可以看作是一个天线端口集。
在本申请实施例中,若未做出特别说明,波束是指网络设备的发送波束。在波束测量中,网络设备的每一个波束对应一个资源,因此可以使用资源的索引来唯一标识该资源对应的波束。
在波束测量中,网络设备可向终端设备提前发送测量配置信息,该测量配置信息中可以包括测量资源配置信息和测量上报配置信息。网络设备基于该测量配置信息向终端设备发送测量参考信号。
其中,测量资源配置信息中包括测量资源的相关配置。比如,测量资源可以被配置为三级资源结构:资源设置(Resource setting)、资源集(Resource set)和资源(Resource)。网络设备可以为终端设备配置一个或多个Resource setting,每个Resource setting中可以包括一个或多个Resource set,每个Resource set中可以包括一个或多个Resource。可选地,每个Resource中还可以包括一个或多个端口(port)。
测量上报配置信息中包括需要终端设备测量上报的相关信息。可选地,该测量上报配置信息中包括以下中的一项或多项:上报量(report quantity)、上报量采用的计算方法指示信息、该测量上报配置信息所关联的测量资源(比如,该测量上报配置所关联的一个或多个Resource setting和/或resource set和/或resource)。其中,所述上报量可以包括以下信息中的一项或多项:信道测量参考信号资源标识、干扰资源标识、参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、信号与干扰噪声比(signal to interference plus noise ratio,SINR)、接收信号强度指示(received signal strength indicator,RSSI)、信道状态信息(channel status information,CSI)、信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、预编码类型指示(precoding type indicator,PTI)、分集指示(rank indication,RI)等。应理解,上述只是示例性地给出测量上报配置信息中可能包括的信息,测量上报配置信息中还可以包括其他信息,本申请实施例对此不作限定。
终端设备在收到网络设备的测量配置信息后,可以基于测量配置信息进行测量。比如,若测量配置信息中的测量上报配置信息中包括参考信号接收质量RSRQ、信号与干扰噪声比SINR,则终端设备需要对测量资源配置信息指示的资源进行测量,并向网络设备上报测量的RSRQ、SINR。
在NR(new radio)中,下行信道所使用的波束或发送参考信号的波束采用的波束指示是通过关联传输配置指示(transmission configuration indicator,TCI)状态表中的参考资源索引实现的。
具体而言,基站通过无线资源控制(radio resource control,RRC)信令配置了一个TCI状态表,每个TCI状态表包含若干个TCI状态。每个TCI状态包括TCI状态标识(TCI-RS-SetID)、一种或两种准同位(quasi-co-location,QCL)类型指示(QCL-type A/B/C/D)以及各个类型指示对应的参考信号标识(reference signal identifier,RS-ID)。QCL类型包含了以下几种:
QCL-Type A:{多普勒频移,多普勒扩展,平均时延,时延扩展}
QCL-Type B:{多普勒频移,多普勒扩展}
QCL-Type C:{平均时延,多普勒频移}
QCL-Type D:{空间接收参数}
其中,QCL-type D表示空间准同位。当需要指示接收波束时,网络设备通过高层信令或控制信息指示其中的一个包含空间准同位信息的TCI状态,终端设备根据该TCI状态读取QCL-type D对应的参考RS-ID,然后终端设备可以根据当前维护的与RS-ID相对应的空间接收配置(接收波束)进行接收。
空域准同位(spatial QCL):spatial QCL可以认为是QCL的一种类型。对于spatial有两个角度可以理解:从发送端或者从接收端。从发送端来看,如果说两个天线端口是空域准同位的,那么是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看, 如果说两个天线端口是空域准同位的,那么是指接收端能够在相同的波束方向上接收到这两个天线端口发送的信号。
信道测量参考信号资源:待测量波束上发送的参考信号采用的资源。信道测量参考信号资源用于测量波束质量,即用于测量发送参考信号的波束的质量。本申请实施例中的测量结果(RSRQ/SINR/RSRP)等都是针对信道测量参考信号资源的测量结果。
本申请实施例中涉及的多个,是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例中涉及的网络设备,可以为无线网络中的设备。例如,网络设备可以是部署在无线接入网中为终端设备提供无线通信功能的设备。例如,网络设备可以为将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点,又可以称为接入网设备。
网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G移动通信系统中的网络设备。例如,NR系统中的下一代基站(next generation NodeB,gNB),传输接收点(transmission reception point,TRP),TP;或者,5G移动通信系统中的基站的一个或一组(包括多个天线面板)天线面板;或者,网络设备还可以为构成gNB或传输点的网络节点。例如,BBU,或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。例如,CU负责处理非实时协议和服务,实现无线资源控制RRC,分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(Media Access Control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来。因此在该架构下,高层信令(如RRC层信令)也可以认为是由DU发 送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一个或多个的设备。此外,可以将CU划分为RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备是包括无线通信功能(向用户提供语音/数据连通性)的设备。例如,具有无线连接功能的手持式设备、或车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、车联网中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、物联网(Internet of Things,IoT)中的无线终端或智慧家庭(smart home)中的无线终端等。例如,车联网中的无线终端可以为车载设备、整车设备、车载模块、车辆等。工业控制中的无线终端可以为摄像头、机器人等。智慧家庭中的无线终端可以为电视、空调、扫地机、音箱、机顶盒等。
下面对采用波束进行通信的技术进行简单介绍。
在5G通信系统中,网络设备与终端设备之间可以采用波束进行数据传输,网络设备可以由自身决定使用什么波束,而终端设备通过网络设备指示使用什么波束,例如网络设备向终端设备发送一个下行控制信息,该下行控制信息中包含传输配置编号TCI字段,该TCI字段可以用于指示一个TCI-state,该TCI-state用于上行传输或下行传输,并且该TCI-state中包括一个目标参考信号资源。针对采用该TCI-state进行下行传输时,终端设备采用该目标参考信号资源对应的接收波束进行接收,由于该目标参考信号资源对应的接收波束是终端设备已经确定的,因此,网络设备可以为终端设备指示正确的接收波束。针对采用该TCI-state进行上行传输时,终端设备采用该目标参考信号对应的发送波束进行发送,或者采用该目标参考信号对应的发送波束进行发送。
终端设备与网络设备之间传输信号时,网络设备可以为终端设备配置一个或多个资源集合。每个资源集合包含一个或多个资源,对于每个资源,网络设备通过一个波束发送该资源对应的信号,用于测量对应的波束质量,终端设备测量后可以上报该波束质量,如:终端设备可以上报一个或多个资源的RSRP,表示对应的波束质量。
在标准Rel-16及以前的版本中,层1(L1)测量仅支持对服务小区的资源进行测量,例如:终端设备测量当前服务小区的SSB,或者测量当前服务小区配置的CSI-RS资源。因此,网络设备配置的资源集合仅包括服务小区的资源。
在标准Rel-17版本中,为了实现跨小区的波束管理,需要测量邻区的资源,L1测量进一步支持了测量关联了非服务小区物理小区标识(physical cell identifier,PCI)的参考信号。例如,当需要测量相邻小区的SSB时,网络设备将在RRC配置中,为终端设备待测量的SSB配置关联额外的PCI,即表示该SSB不是当前服务小区的SSB。因此,网络设备配置的资源集合中包括服务小区的资源和非服务小区的资源。
而对于邻区CSI-RS的测量,则需要将CSI-RS的QCL关系配置为关联了邻区PCI的SSB。也就是说,即使要对邻区CSI-RS进行测量,获得邻区波束的质量,终端设备也没有获取邻区的CSI-RS配置,而是基于服务小区的CSI-RS资源加上QCL到邻区SSB来完成 测量的。
在跨小区波束管理中,终端设备在接收到来自邻区的PDSCH或PDCCH时,如果同时存在邻区的参考信号资源,如SSB,则进行速率匹配,即在SSB资源上中断PDSCH或PDCCH的传输,优先进行SSB测量。
因此,对于配置了L1-RSRP测量的SSB,在SSB相同的符号上,终端设备不会进行上行发送,或者下行接收,标准中描述如下:
The UE is not expected to transmit PUCCH/PUSCH/SRS or receive PDCCH/PDSCH/CSI-RS for tracking/CSI-RS for CQI on symbols corresponding to the SSB indexes configured for L1-RSRP measurement,where the transmission of PUCCH/PUSCH/SRS and reception of PDCCH/PDSCH/CSI-RS for tracking/CSI-RS for CQI may be on serving cell(s)and cell(s)with PCI different from serving cell(s).
也就是说:UE不希望在L1-RSRP测量配置的SSB索引对应的符号上发送PUCCH/PUSCH/SRS或接收PDCCH/PDSCH/CSI-RS用于跟踪/CSI-RS用于CQI。其中PUCCH/PUSCH/SRS的传输和PDCCH/PDSCH/CSI-RS用于跟踪/CQI的CSI-RS的接收可以在服务小区(s)和PCI不同于服务小区(s)的小区(s)上。
上行发送包括发送PUCCH、PUSCH或SRS等;下行接收包括接收PDCCH、PDSCH或CSI-RS等。
对于层1/层2(L1/L2)移动性的同频测量,如果终端设备存在多个候选小区,根据邻区SSB配置,为了进行邻区测量需要而对多个邻区的SSB进行速率匹配,则会在相应的SSB上中断服务小区的上下行传输,这会影响终端设备的调度资源,导致终端设备吞吐下降。例如:参考图2,如果多个小区的SSB资源位置错开,则导致终端设备需要经常为了测量SSB进行速率匹配,导致频繁中断本小区传输,从而影响传输效率。
另外,由于信道环境或终端设备姿态等因素,参考图3,针对预先配置的多个邻区的SSB,有些时候,终端设备不一定都能测量到,或仅部分邻区的部分波束能测量到。如果终端设备仅仅根据邻区的SSB配置进行速率匹配,可能会导致终端设备进行大量不必要的邻区测量,导致本小区频繁中断传输,影响传输效率。
本申请提供一种速率匹配的方法,减少终端设备由于频繁的邻区测量导致的传输中断,提高传输效率。
本申请应用通信系统主要包括网络设备(如:基站)和终端设备(如UE),也可以包括一个或多个网络设备,和一个或多个终端设备。图4以一个网络设备和一个终端设备为例,网络设备可以向终端设备发送数据或控制信令。例如:终端设备基于网络设备的配置信息进行参考信号的测量,并上报参考信号的测量结果,即对应的波束的测量结果,用于切换终端设备的服务波束。
本申请公开的方法可以应用于多种场景,例如:
场景一:小区间传输模型(终端设备上报测量结果后切换到其他小区的波束)
针对终端设备测量非服务小区的波束的参考信号,并上报给当前服务小区。切换非服务小区波束后,从另一个小区接收PDCCH/PDSCH但不切换服务小区的场景。可以简单的理解为终端设备从另一个小区的天线接收信号,但服务小区不变。
场景二:小区内的传输模型(终端设备切换到服务小区内的其他波束)
针对终端设备测量当前服务小区的非服务波束的参考信号,并上报给当前服务小区。 基于配置切换服务波束为上报的波束。终端仅对非服务小区的波束进行测量,但终端并不会真正基于所述非服务小区的波束进行数据传输。
场景三:移动性场景
针对终端设备可能在小区间移动,当前服务小区为了降低终端设备移动对通信性能的影响,配置终端设备对邻区参考信号进行测量和上报。该场景下终端设备不一定需要进行波束切换,但需要对一个或多个参考信号进行测量。测量的参考信号可以是当前服务小区的参考信号,也可以是非服务小区的参考信号。
上述应用场景仅为举例,不限于上述场景。
在一些实施例中,参考图5,该速率匹配的方法包括:
101,网络设备为终端设备配置质量门限。
质量门限包括第一门限和/或第二门限,第一门限针对服务小区,第二门限针对邻区,门限可以为波束级门限,也可以为小区级门限;门限可以为网络设备为终端设备配置的,也可以为预先设置的。
例如:第一门限可以针对服务小区的测量资源集进行配置,服务小区的测量资源集可以为一个或多个,不同的测量资源集可以使用不同的门限;每个测量资源集可以配置一个门限,也可以多个测量资源集可以统一配置一个门限,因此一个门限可以对应一个或多个测量资源集。另外,第一门限也可以为小区级门限,所述服务小区使用一个门限。
第一门限也可以为波束级门限,即针对服务小区不同的波束设置不同的门限;一个门限可以对应一个或多个波束,即一个门限可以对应一个或多个参考信号资源。
进一步的,第一门限为多个时,可以对应不同的邻区,即一个门限可以关联一个或多个邻区,例如:第一门限可以关联邻区PCI或additional PCI。
第二门限与第一门限类似,可以针对邻区的测量资源集进行配置,邻区的测量资源集可以为一个或多个,不同的测量资源集可以使用不同的门限;每个测量资源集可以配置一个门限,也可以多个测量资源集可以统一配置一个门限,因此一个门限可以对应一个或多个测量资源集。另外,第一门限也可以为小区级门限,一个或多个邻区使用一个门限。
第二门限也可以为波束级门限,即针对邻区不同的波束设置不同的门限;一个门限可以对应一个或多个波束,即一个门限可以对应一个或多个参考信号资源。
上述门限为参考信号质量门限或波束质量门限,如:SSB或CSI-RS的RSRP阈值;所述网络设备可以通过配置信息下发或指示信息下发。
测量资源集可以为RRC配置的测量资源集,也可以为MAC-CE或DCI激活的测量资源集。
102,终端设备对网络设备下发的参考信号进行测量,并向所述网络设备上报测量结果。
所述参考信号可以为一个或多个,可以通过一个或多个波束下发,所述一个或多个波束与测量资源集中的一个或多个资源对应,也可以为一一对应,也可以为一对多或多对一。参考信号可以为SSB或CSI-RS等,由于参考信号通过波束下发,因此参考信号的质量即为发送该参考信号的波束的质量,每个波束可以发送一个或多个参考信号。
一个例子中,上述网络设备可以为服务网络设备,即终端设备对服务网络设备通过一个或多个波束下发的参考信号进行测量,并上报测量结果,如果测量结果指示至少一个波束或参考信号的质量大于或等于所述第一门限,此时,服务小区波束质量较好,则终端设 备不需要开启邻区测量,不需要根据邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配,如图6上图所示,终端设备可以在网络设备调度的传输资源上进行正常的上下行传输,例如:发送PUCCH、PUSCH或SRS等,或接收PDCCH、PDSCH或CSI-RS等。
如果测量结果指示至少一个波束或参考信号的质量小于或等于所述第一门限,此时,服务小区波束质量较差,则终端设备需要开启邻区测量,如图6下图所示,因此,终端设备根据邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配;如果网络设备分配的传输资源中包括邻区的参考信号资源,如SSB,则在邻区的参考信号资源上中断服务小区的上下行传输。
进一步的,所述测量结果可以为多次,如:连续的N次或一段时间内非连续的N次;如果终端设备连续N次的测量结果均指示至少一个波束或参考信号的质量大于或等于所述第一门限,或者终端设备在预设时间段内N次的测量结果均指示至少一个波束或参考信号的质量大于或等于所述第一门限,则终端设备不需要开启邻区测量,不需要根据邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。反之,如果终端设备连续N次的测量结果均指示至少一个波束或参考信号的质量小于或等于所述第一门限,或者终端设备在预设时间段内N次的测量结果均指示至少一个波束或参考信号的质量小于或等于所述第一门限,则终端设备需要开启邻区测量,因此,终端设备根据邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。N为大于1的整数,可以预先设置,或由网络设备为终端设备配置。
进一步的,第一门限可以为多个,分别对应不同的邻区,一个门限可以关联一个或多个邻区,例如:第一门限可以关联小区的标识,如PCI或additional PCI,当终端设备上报的波束质量满足相应门限,则针对相应小区的参考信号资源进行速率匹配。
例如:如果测量结果指示至少一个波束或参考信号的质量小于或等于所述第一门限,且第一门限关联第一邻区的PCI,则终端设备根据第一邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配;所述测量结果可以为上述N次测量的测量结果。
进一步的,若服务小区波束质量变化,例如:若所述测量结果指示至少一个波束或参考信号的质量大于或等于第一门限,则终端设备关闭速率匹配;所述测量结果可以为上述N次测量的测量结果;进一步的,如果第一门限关联第一邻区的PCI,则终端设备关闭第一邻区的速率匹配。
上述邻区的参考信号资源可以为测量资源集中其他小区的一个或多个参考信号资源,其他小区可以为部分邻区,也可以为所有邻区。
测量结果的上报方式周期性或半持续性测量上报,上报方式可以由网络设备为终端设备配置,也可以为预先设置;不同的测量资源集合可以采用不同的上报方式,也可以采用相同的上报方式。
另外,可以进一步规定为周期或半持续性上报结果满足预设条件,例如:周期或半持续性的上报N次后,N为大于1的整数,上述开启或关闭速率匹配规则生效。
相应的,网络设备接收到终端设备的测量结果后,根据测量结果可以确定终端设备是否开启速率匹配,判断方式与终端设备判断方式相同,不再详述。
以下分两种情况举例进行说明:
1)L1测量的情况下:
当终端设备上报的L1-RSRP测量结果为,例如:至少一个波束或所有波束大于第一门限时,此时服务小区波束质量较好,终端设备不需要进行邻区SSB的测量,因此,不用开启速率匹配,即不需要根据测量资源集中其他小区的SSB的位置对服务小区的传输资源进行速率匹配;
当终端设备上报的L1-RSRP测量结果为,例如:至少一个波束或所有波束小于所述第一门限时,此时服务小区波束质量不好,终端设备需要开启速率匹配,即根据测量资源集中其他小区的SSB的位置对服务小区的传输资源进行速率匹配,以便于进行邻区SSB的测量。
2)L3测量的情况下:
当终端设备上报的L3-RSRP测量结果为,例如:任意一个波束的波束级L3测量结果或L3滤波的小区级测量结果大于或等于第一门限时,终端设备不需要进行邻区测量,因此,不用开启速率匹配,即不需要根据测量资源集中其他小区的SSB的位置对服务小区的传输资源进行速率匹配;
当终端设备上报的L3-RSRP测量结果为,例如:任意一个波束的波束级L3测量结果或L3滤波的小区级测量结果小于或等于第一门限时,终端设备需要进行邻区测量,因此,终端设备需要开启速率匹配,即根据测量资源集中其他小区的SSB的位置对服务小区的传输资源进行速率匹配,以便于进行邻区SSB的测量。
另一个例子中,终端设备可以对邻区网络设备下发的参考信号进行测量,并向服务网络设备上报测量结果。
和上述例子类似,所述参考信号可以通过一个或多个波束下发,每个波束对应一个或多个参考信号;
如果测量结果指示至少一个波束或参考信号的质量大于或等于所述第二门限,此时,邻区的波束质量较好,则终端设备需要开启邻区测量,即根据邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配,如果网络设备分配的传输资源中包括邻区的参考信号资源,如SSB,则在邻区的参考信号资源上中断服务小区的上下行传输。
如果测量结果指示至少一个波束或参考信号的质量小于或等于所述第二门限,此时,邻区的波束质量较差,则终端设备不需要开启邻区测量,因此,终端设备不需要开启速率匹配;终端设备可以在网络设备调度的传输资源上进行正常的上下行传输,例如:发送PUCCH/PUSCH/SRS,或接收PDCCH/PDSCH/CSI-RS。
进一步的,所述测量结果可以为多次,如:连续的N次或一段时间内非连续的N次;如果终端设备连续N次的测量结果均指示至少一个波束或参考信号的质量大于或等于所述第二门限,或者终端设备在预设时间段内N次的测量结果均指示至少一个波束或参考信号的质量大于或等于所述第二门限,则终端设备需要开启邻区测量,即根据邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。反之,如果终端设备连续N次的测量结果均指示至少一个波束或参考信号的质量小于或等于所述第二门限,或者终端设备在预设时间段内N次的测量结果均指示至少二个波束或参考信号的质量小于或等于所述第一门限,则终端设备不需要开启邻区测量,因此,终端设备不需要开启速率匹配。N为大于1的整数,可以预先设置,或由网络设备为终端设备配置。
进一步的,第二门限可以为多个,分别对应不同的邻区,例如:第二门限可以关联小区的标识,如PCI或additional PCI,当终端设备上报的波束质量满足相应门限,则针对相 应小区的参考信号资源进行速率匹配。
例如:如果测量结果指示至少一个波束或参考信号的质量大于或等于所述第二门限,且第二门限关联第二邻区的PCI,则终端设备根据第二邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配;所述测量结果可以为上述N次测量的测量结果。
进一步的,若服务小区波束质量变化,例如:若所述测量结果指示至少一个波束或参考信号的质量小于或等于第二门限,则终端设备关闭速率匹配;所述测量结果可以为上述N次测量的测量结果;进一步的,如果第二门限关联第二邻区的PCI,则终端设备关闭第二邻区的速率匹配。
其他情况,如果上报方式等,与第一个例子类似,可以参考相关描述,不再详述。
上述各个例子中,网络设备根据终端设备上报的测量结果,便可以确定终端设备是否开启速率匹配,如果确定终端设备开启速率匹配,在分配传输资源或进行传输时需要考虑邻区参考信号资源的位置,在相应的位置上不分配资源或不进行传输。
本申请的中的传输包括发送和接收。上述各个例子中,所述测量资源集可以为RRC配置的测量资源集,也可以为MAC-CE或DCI激活的测量资源集。
其他小区的SSB也可以替换为CSI-RS,例如:关联了其他小区SSB的CSI-RS。
结合上述各个实现方式,网络设备可以配置测量资源集合的上报方式为周期性或半持续性测量上报;或者,网络设备通过DCI激活部分非周期测量配置,所述上报方式可以为非周期性测量上报。
上述方案中,终端设备对网络设备下发的参考信号资源进行测量,并上报测量结果,网络设备和终端设备可以根据测量结果判断是否开启速率匹配,减少了非必要的速率匹配,提高速率匹配的可靠性,提高了传输效率。
由于层1测量支持对配置的参考信号资源进行测量,包括本小区及邻小区的参考信号资源,如果配置了多个邻区的参考信号资源,则层1测量时需要对多个邻区的参考信号资源进行测量,并根据多个邻区的参考信号资源对服务小区的传输资源进行速率匹配;有时候终端设备与一些邻区较远,这些邻区的参考信号无法测量到,如果根据这些邻区的参考信号资源对服务小区的传输资源进行速率匹配,则造成了传输资源的浪费;在另一个实施例中,可以利用层3的测量结果判定是否对层1测量中邻区的参考信号资源进行调整,以减少不必要的速率匹配,提高传输效率;参考图7,该方法包括:
201、网络设备向终端设备发送指示信息,用于指示是否基于L3测量结果,如RRC的测量报告,进行速率匹配,该指示信息可以携带在L3测量配置或L3上报配置中。
该指示信息为可选,可以双方默认基于L3测量结果进行速率匹配。
该指示信息可以为一个开关,比如用1和0表示是否基于L3测量结果对服务小区的传输资源的进行速率匹配。
也可以采用隐式指示,如果L3测量配置中包括该指示信息,则表示基于L3测量结果对服务小区的传输资源的进行速率匹配;如果L3测量配置中没有该指示信息,则表示不基于L3测量结果对服务小区的传输资源的进行速率匹配,默认根据同步信号测量时间配置(SSB measurement timing configuration,SMTC)进行速率匹配以保证邻区参考信号的测量。
另外,该指示信息可以为所有邻区配置,也可以为一个或部分邻区配置,例如:为指定的PCI的邻区配置,此时,仅对配置了该指示信息的邻区进行速率匹配的调整。
202、终端设备进行L3测量,并向网络设备上报测量结果。
L3测量可以测量服务小区的参考信号,即服务网络设备发送的参考信号;也可以测量邻区的参考信号,即邻区网络设备发送的参考信号。例如:在实际实现中,当终端设备处于小区边缘地带时,便可以测量到邻区的参考信号。
测量结果上报给服务网络设备,若所述层3测量结果中包括邻区的参考信号的测量结果,根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配,即:后续的L1测量需对该邻区参考信号资源进行速率匹配。
例如:L1测量配置包括3个邻区的参考信号资源,而L3测量结果中仅包括2个邻区的测量结果,则根据这2个邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配,另外1个邻区的参考信号资源不需要进行速率匹配,即后续的L1测量只针对该2个邻区,另外1个邻区不需要进行L1测量,因为此时,另外一个邻区的参考信号无法测量到。
进一步的,可以为邻区的测量结果设置第二门限,如SSB或CSI-RS的RSRP阈值,第二门限可以由网络设备为终端设备配置,也可以预先设置,例如,该第二门限可以携带在201的L3测量配置中,可以为小区级门限,例如:为每个邻区分别配置对应的门限,也可以为所有邻区统一配置一个门限,与上一个实施例类似,不再详述。
若所述层3测量结果中包括邻区的参考信号的测量结果大于或等于所述第二门限,此时邻区信号较好,则终端设备根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配;
若所述层3测量结果中包括邻区的参考信号的测量结果小于或等于所述第二门限,此时邻区信号不好,则终端设备不需要开启速率匹配,即不根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。
进一步的,如果所述指示信息仅为部分邻区进行配置,当终端设备上报的L3测量结果包括了配置了该指示信息的邻区时,后续L1测量需对该邻区的参考信号资源进行速率匹配,例如:
若所述层3测量结果中包括邻区的参考信号的测量结果,且该邻区配置或关联了该指示信息,则根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配,即:后续的L1测量需对该邻区的参考信号资源进行速率匹配。
若所述层3测量结果中包括邻区的参考信号的测量结果,但该邻区没有配置或关联该指示信息,则不需要开启速率匹配,即不根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配;因此,终端设备后续的L1测量不对该邻区的参考信号资源进行速率匹配。
如果上述配置了该指示信息的邻区也设置了相应的第二门限,则若所述层3测量结果中包括邻区的参考信号的测量结果大于或等于所述第二门限,且该邻区配置或关联了该指示信息,则根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配;否则,不开启速率匹配。
如果L3测量结果为波束级测量结果,若所述层3测量结果中包括邻区的波束的测量结果,后续L1测量针对该邻区的波束进行速率匹配,即根据所述邻区的波束对应的参考信号资源的位置对服务小区的传输资源的进行速率匹配。例如:根据该波束对应的SSB资源及QCL的CSI-RS资源对服务小区的传输资源的进行速率匹配。
同样,网络设备也可以为波束级测量设置相应的门限,例如:第二门限为波束级门限;若所述层3测量结果中包括邻区的波束的测量结果,且所述波束的质量大于或等于所述第二门限,则根据所述邻区的波束对应的参考信号资源的位置对服务小区的传输资源的进行速率匹配。如果所述波束的质量小于或等于所述第二门限,则不需要开启速率匹配。
网络设备收到终端设备上报的L3测量结果后,便可根据测量结果的内容确认终端设备是否开启速率匹配;判断方法与终端设备的判断方法类似,不再详述。
速率匹配开始时间可以为L3测量报告上报确认后Xms,网络设备收到终端设备的L3测量报告后Xms,或终端设备发送L3测量报告后Xms,终端设备开启速率匹配,并且网络设备确认终端开启速率匹配,X为整数。
或者,终端设备上报L3测量报告后,进行第一次L1测量时(包括多个参考信号的一组测量),终端设备开启速率匹配,并且网络设备确认终端开启速率匹配。
上述实施例中,通过L3测量,可以确定邻区的信号质量,从而确定是否开启速率匹配,减少了非必要的速率匹配,增强了速率匹配的可靠性,提高了传输效率。
在另一个实施例中,网络设备可以为终端设备配置速率匹配周期和窗长,在相应的窗长内,终端设备开启速率匹配,在相邻的两个窗长之间,终端设备根据测量结果确定是否开始速率匹配。参考图8,该方法包括:
301,网络设备向终端设备发送第一配置信息,所述第一配置信息用于为终端设备配置速率匹配的周期和窗长;
302,根据所述速率匹配的周期,在相应的窗长内,终端设备进行参考信号测量,开启速率匹配,即根据邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配,并上报测量结果给网络设备。
例如,终端设备在速率匹配窗长内,测量邻区SSB时,根据所述邻区SSB的位置对服务小区的传输资源,如PDCCH、PDSCH等,进行速率匹配,即在所述邻区SSB的位置上不传输本小区的PDCCH、PDSCH等。
在相邻的两个窗长之间,终端设备不开启速率匹配,即不根据邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配,这样便减小了传输资源的浪费。
终端设备在相应的窗长内测量参考信号,并上报测量结果给网络设备,参考信号可以包括服务小区的参考信号,也可以包括邻区的参考信号。
302之前,网络设备还可以指示终端设备上报的测量结果需要包括至少一个邻区的测量结果;
例如:网络设备向终端设备下发指示信息,指示终端设备上报的测量结果包括至少一个邻区的测量结果。
所述指示信息可以携带在L1测量的测量资源集合配置或测量上报配置中,例如:网络设备在L1测量的测量资源集合配置或测量上报配置中,为终端设备指定单次上报的最大或最小邻区波束数量。
终端设备收到该指示信息后,进行参考信号的测量,上报的测量结果需要包括至少一个邻区的测量结果,如果没测到任何邻区参考信号的话用特殊值填充,比如,用X表示没有测量到任何邻区的参考信号。
另外,网络设备还可以为终端设备配置第二门限,该第二门限可以针对每个邻区分别进行配置,也可以统一配置一个,即一个阈值或门限可以对应一个或多个邻区,第二门限 相关内容可以参考前面的实施例。
303,终端设备根据测量结果,确定相邻的两个速率匹配窗口之间的这段时间是否需要进行速率匹配,具体包括:
若所述测量结果包括邻区的测量结果,在相邻的两个速率匹配窗口之间,根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。
若所述测量结果不包括邻区的测量结果,在相邻的两个速率匹配窗口之间,不进行速率匹配,即不根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。
进一步的,若所述测量结果包括邻区的测量结果,且所述测量结果大于或等于第二门限,在相邻的两个速率匹配窗口之间,根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。
进一步的,若所述测量结果包括邻区的测量结果,且所述测量结果小于或等于第二门限,在相邻的两个速率匹配窗口之间,不进行速率匹配,即不根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。
上述邻区可以为一个或多个,测量结果可以为至少一个波束或参考信号的质量。
若所述测量结果包括服务小区的测量结果,且所述测量结果小于或等于第一门限,在相邻的两个速率匹配窗口之间,根据邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。
所述测量结果可以为服务小区至少一个波束或参考信号的质量。
第一门限及第二门限可以参考上述实施例,其他内容也与上述实施例类似,例如:所述第一门限及第二门限可以关联邻区,测量次数可以为N次等;具体内容参考上面实施例的描述,不再详述。
上述实施例方案中,终端设备按照网络设备的配置进行速率匹配,减少了速率匹配的频率,提高了传输效率。进一步的,在相邻的窗长之间,根据测量结果进行速率匹配,提高了速率匹配的可靠性。
上述各个实施例中,网络设备根据终端设备上报的测量结果,确定终端设备是否开启速率匹配;另外,结合上述各个实施例,在一些实现方式中,网络设备还可以根据终端设备上报的测量结果,确定是否指示终端设备调整速率匹配相关的邻区参考信号资源集合,此方式下终端设备不会自主开启速率匹配,而是收到网络设备下发的指示信息后,根据指示信息确定是否开启速率匹配。
例如:若所述测量结果包括邻区的测量结果或邻区的测量结果大于预设的门限,则网络设备为终端设备重新配置该邻区的测量资源集合,进一步的,可以指示终端设备该测量资源集合需进行速率匹配,即根据所述邻区的参考信号资源集合的位置对服务小区的传输资源的进行速率匹配。测量结果可以为至少一个波束或参考信号的质量。
例如,网络设备通过下发RRC为终端设备重配邻区的测量资源集合,并下发指示信息,指示终端设备对该资源集合进行速率匹配,或指示对该资源集合中的部分或全部资源进行速率匹配;终端设备接收后,根据该指示信息针对相应的资源集合开启速率匹配。
如果对该资源集合进行速率匹配,则为小区级(或PCI级)的速率匹配,如果只对部分资源(一个或多个)进行速率匹配,则为波束级的速率匹配,通常一个资源对应一个波束,也可以对应多个波束。
上述各个实施例中,如果邻区的测量结果包括一个或多个参考信号资源的测量结果, 则网络设备接收后,可以向终端设备下发指示信息,如MAC-CE,指示所述一个或多个参考信号资源的标识,或所述一个或多个参考信号资源所属的邻区标识,终端设备接收后,针对该一个或多个参考信号资源开启速率匹配,也可以开启针对该邻区所有参考信号资源的速率匹配。
在另一个实施例中,网络设备可以向终端设备下发DCI,所述DCI用于触发非周期测量上报,所述DCI包括指示信息,用于指示测量trigger state对应的资源集合是否开启针对邻区参考信号资源的速率匹配。终端设备接收后,根据该指示信息,确定是否根据邻区参考信号资源的位置对trigger state对应的资源集合进行速率匹配。
例如:该指示信息为1比特,取值为1,表示开启速率匹配,即根据邻区参考信号资源的位置对trigger state对应的资源集合进行速率匹配,如果为取值为0,表示不开启速率匹配,反之亦可,也可以用其他值表示。
可以理解,本申请实施例中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据本申请实施例提供的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
还可以理解,上述本申请实施例中各个步骤仅是示例性说明,对此不作严格限定。此外,上述各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,本申请的各实施例中的方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,在本申请的各实施例中的各种数字序号的大小并不意味着执行顺序的先后,仅为描述方便进行的区分,不应对本申请实施例的实施过程构成任何限定。
还可以理解,在本申请的各实施例中涉及到一些消息名称,如第一消息等,其命名不对本申请实施例的保护范围造成限定。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
与上述构思相同,如图9所示,本申请实施例还提供一种通信装置500用于实现上述方法中网络设备或终端设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该通信装置500可以包括:处理单元501和通信单元502。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中网络设备或终端设备发送和接收的步骤;当所述通信装置为芯片时,发送与接收分别对应输出和输入。
通信单元也可以称为接口电路、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信单元502中用于实现接收功能的器件视为接收单元,将通信单元502中用于实现发送功能的器件视为发送单元,即通信单 元502包括接收单元和发送单元。通信单元有时也可以称为收发机、接口电路、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
通信装置500执行上面实施例中图5所示的流程中终端设备的功能时:
处理单元,用于测量服务网络设备下发的参考信号;
通信单元,用于向所述服务网络设备上报测量结果;
其中,若所述测量结果指示所述参考信号的质量小于或等于第一门限,则根据邻区的参考信号资源的位置对服务小区的传输资源进行速率匹配。
另一个实现方式中:
处理单元,用于测量邻区网络设备下发的参考信号;
通信单元,用于向服务网络设备上报测量结果;
其中,若所述测量结果指示所述参考信号的质量大于或等于第二门限,则根据邻区的参考信号资源的位置对服务小区的传输资源进行速率匹配。
通信装置500执行上面实施例中图5所示的流程中网络设备的功能时:
通信单元,用于向终端设备发送参考信号;
处理单元,用于接收所述终端设备测量所述参考信号上报的测量结果;
若所述测量结果指示所述参考信号的质量小于或等于第一门限,则确定所述终端设备根据邻区的参考信号资源的位置对服务小区的传输资源进行速率匹配。
通信装置500执行上面实施例中图7所示的流程中终端设备的功能时:
处理单元,用于进行层3测量;
通信单元,用于向网络设备上报层3测量结果;
若所述层3测量结果中包括邻区的测量结果,根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。
通信装置500执行上面实施例中图7所示的流程中网络设备的功能时:
通信单元,用于接收终端设备上报的层3测量结果;
处理单元:用于若所述层3测量结果中包括邻区的测量结果,则确定所述终端设备根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。
通信装置500执行上面实施例中图8所示的流程中终端设备的功能时:
通信单元,用于接收网络设备下发的第一配置信息,所述第一配置信息用于配置速率匹配(rate match)的周期和窗长;
处理单元,用于根据所述rate match的周期,在相应的窗长内,所述终端设备根据邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。
通信装置500执行上面实施例中图8所示的流程中网络设备的功能时:
通信单元,用于下发的第一配置信息给终端设备,所述第一配置信息用于配置速率匹配rate match的周期和窗长;
处理单元,用于根据所述rate match的周期,在相应的窗长内,确定所述终端设备根据邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。
以上只是示例,处理单元501和通信单元502还可以执行其他功能,其中通信单元实现收发功能,处理单元实现除收发之外的功能,更详细的描述可以参考上述方法实施例中相关描述,这里不加赘述。
如图10所示为本申请实施例提供的通信装置600,图10所示的装置可以为图9所示的装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中终端设备或者网络设备的功能。为了便于说明,图10仅示出了该通信装置的主要部件。
如图10所示,通信装置600包括处理器610和接口电路620。处理器610和接口电路620之间相互耦合。可以理解的是,接口电路620可以为接口电路、管脚、接口电路或输入输出接口。可选的,通信装置600还可以包括存储器630,用于存储处理器610执行的指令或存储处理器610运行指令所需要的输入数据或存储处理器610运行指令后产生的数据。接口电路620还可以为收发器。
当通信装置600用于实现上述实施例中的方法时,处理器610用于实现图9中处理单元501的功能,接口电路620用于实现上述通信单元502的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
本申请实施例还提供一种通信装置,该通信装置2100可以是终端设备或网络设备,也可以是芯片。该通信装置2100可以用于执行上述方法实施例中由终端设备或网络设备所执行的操作。图11示出了一种简化的通信装置的结构示意图。
如图11所示,当该通信装置2100为终端设备时,通信装置包括处理器、存储器、收发器,其中存储器可以存储计算机程序代码,收发器包括发射机2131、接收机2132、射频电路(图中未示出)、天线2133以及输入输出装置(图中未示出)。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图11中仅示出了一个存储器、处理器和收发器,在实际的产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图11所示,终端设备包括处理器2110、存储器2120和收发器2130。处理器2110也可以称为处理单元,处理单板,处理模块、处理装置等,收发器2130也可以称为收发单元、收发机、收发装置等。
可选地,可以将收发器2130中用于实现接收功能的器件视为接收单元,将收发器2130中用于实现发送功能的器件视为发送单元,即收发器2130包括接收器和发送器。收发器有时也可以称为收发机、收发单元、或收发电路等。接收器有时也可以称为接收机、接收单元、或接收电路等。发送器有时也可以称为发射机、发射单元或者发射电路等。
应理解,图11仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图11所示的结构。
当该通信装置2100为网络设备时,例如为基站,包括2110部分、2120部分以及2130部分。2110部分主要用于基带处理,对基站进行控制等;2110部分通常是基站的控制中心,通常可以称为处理器,用于控制基站执行上述方法实施例中网络设备侧的处理操作。2120部分主要用于存储计算机程序代码和数据。2130部分主要用于射频信号的收发以及射频信号与基带信号的转换;2130部分通常可以称为收发单元、收发机、收发电路、或者收发器等。2130部分的收发单元,也可以称为收发机或收发器等,其包括天线2133和射频电路(图中未示出),其中射频电路主要用于进行射频处理。可选地,可以将2210部分中用于实现接收功能的器件视为接收机,将用于实现发送功能的器件视为发射机,即2130部分包括接收机2132和发射机2131。接收机也可以称为接收单元、接收器、或接收电路等,发送机可以称为发射单元、发射器或者发射电路等。
2110部分与2120部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
应理解,图11仅为示例而非限定,上述包括处理器、存储器以及收发器的网络设备可以不依赖于图11所示的结构。
当该通信装置2100为芯片时,该芯片包括收发器、存储器和处理器。其中,收发器可以是输入输出电路、通信接口;处理器为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含计算机程序或指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的网络设备与终端设备。
本申请实施例还提供一种芯片,包括至少一个处理器,用于执行存储器中的计算机程序或计算机指令,以使得实现上述各个实施例的方法。
可选的,该处理器通过接口与存储器耦合。
可选的,该芯片装置还包括存储器,该存储器中存储有计算机程序或计算机指令。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各个实施例的方法的程序执行的集成电路。上述任一处提到的存储器可以为只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
所属领域的技术人员可以清楚地了解到,为描述方便和简洁,上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元,还可以是其它通用处理器、数字信号处理器、专用集成电路或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中存储器可以是随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘或者本领域熟知的任何其它形式的存储介质中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1. 一种速率匹配的方法,其特征在于,包括:
    终端设备测量服务网络设备下发的参考信号;
    所述终端设备向所述服务网络设备上报测量结果;
    若所述测量结果指示所述参考信号的质量小于或等于第一门限,则根据邻区的参考信号资源的位置对服务小区的传输资源进行速率匹配。
  2. 一种速率匹配的方法,其特征在于,包括:
    服务网络设备向终端设备发送参考信号;
    接收所述终端设备测量所述参考信号上报的测量结果;
    若所述测量结果指示所述参考信号的质量小于或等于第一门限,则确定所述终端设备根据邻区的参考信号资源的位置对服务小区的传输资源进行速率匹配。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一门限关联第一邻区,所述邻区的参考信号资源的位置为所述第一邻区的参考信号资源的位置。
  4. 一种速率匹配的方法,其特征在于,包括:
    终端设备测量邻区网络设备下发的参考信号;
    所述终端设备向服务网络设备上报测量结果;
    若所述测量结果指示所述参考信号的质量大于或等于第二门限,则根据邻区的参考信号资源的位置对服务小区的传输资源进行速率匹配。
  5. 如权利要求4所述的方法,其特征在于,所述第二门限与所述邻区关联。
  6. 如权利要求1、2或4所述的方法,其特征在于,所述邻区参考信号资源为所述邻区同步信号块SSB或信道状态信息参考信号CSI-RS资源。
  7. 如权利要求1、2或4所述的方法,其特征在于,所述测量结果包括连续的N次测量结果或一段时间内的N次测量结果。
  8. 一种速率匹配的方法,其特征在于,包括:
    终端设备进行层3测量,并向网络设备上报层3测量结果;
    若所述层3测量结果中包括邻区的测量结果,根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。
  9. 一种速率匹配的方法,其特征在于,包括:
    网络设备接收终端设备上报的层3测量结果;
    若所述层3测量结果中包括邻区的测量结果,则确定所述终端设备根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。
  10. 如权利要求8或9所述的方法,其特征在于:
    若所述层3测量结果包括邻区的测量结果,且所述测量结果大于或等于第二门限,则根据所述邻区的参考信号资源的位置对服务小区的传输资源的进行速率匹配。
  11. 如权利要求8或9所述的方法,还包括:
    所述终端设备接收所述网络设备发送的指示信息,所述指示信息指示基于层3测量结果对服务小区的传输资源的进行速率匹配。
  12. 如权利要求11所述的方法,其特征在于:所述指示信息与所述邻区关联,且携带在层3测量配置中。
  13. 一种通信装置,其特征在于,所述通信装置包括收发单元、处理单元;
    所述收发单元,用于执行上述权利要求1至12中任一项所述方法的收发操作;
    所述处理单元,用于执行上述权利要求1至12中任一项所述方法的处理操作。
  14. 一种通信装置,其特征在于,包括:处理器和存储器;
    所述处理器用于执行所述存储器中的计算机程序或计算机指令,使得所述通信设备执行如权利要求1至12任一项所述的方法。
  15. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行如权利要求1至12中任一项所述的方法。
  16. 一种非易失性计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序通过处理器进行加载来执行如权利要求1-12任一项所述的方法。
  17. 一种通信系统,包括:用于执行权利要求1所述的方法的终端设备,以及用于执行权利要求2所述的方法的网络设备;或
    用于执行权利要求8所述的方法的终端设备,以及用于执行权利要求9所述的方法的网络设备。
PCT/CN2023/105809 2022-07-29 2023-07-05 一种速率匹配的方法及装置 WO2024022053A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210910108.9A CN117528608A (zh) 2022-07-29 2022-07-29 一种速率匹配的方法及装置
CN202210910108.9 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024022053A1 true WO2024022053A1 (zh) 2024-02-01

Family

ID=89705293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105809 WO2024022053A1 (zh) 2022-07-29 2023-07-05 一种速率匹配的方法及装置

Country Status (2)

Country Link
CN (1) CN117528608A (zh)
WO (1) WO2024022053A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200374806A1 (en) * 2019-05-20 2020-11-26 Qualcomm Incorporated Fallback procedures when the path loss or spatial transmit quasi-collocation (qcl) reference from neighboring cells is failing for sounding reference signals (srs) for positioning
US20210376894A1 (en) * 2018-11-02 2021-12-02 Lg Electronics Inc. Method for performing beam-related reporting in wireless communication system and apparatus therefor
US20220022120A1 (en) * 2020-07-20 2022-01-20 Qualcomm Incorporated Radio link management for ultra-reliable low-latency communication
US20220095376A1 (en) * 2019-01-24 2022-03-24 Lg Electronics Inc. Method for transmitting and receiving uplink in unlicensed band, and device therefor
WO2022151208A1 (en) * 2021-01-14 2022-07-21 Apple Inc. Method for cross-cell beam measurement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210376894A1 (en) * 2018-11-02 2021-12-02 Lg Electronics Inc. Method for performing beam-related reporting in wireless communication system and apparatus therefor
US20220095376A1 (en) * 2019-01-24 2022-03-24 Lg Electronics Inc. Method for transmitting and receiving uplink in unlicensed band, and device therefor
US20200374806A1 (en) * 2019-05-20 2020-11-26 Qualcomm Incorporated Fallback procedures when the path loss or spatial transmit quasi-collocation (qcl) reference from neighboring cells is failing for sounding reference signals (srs) for positioning
US20220022120A1 (en) * 2020-07-20 2022-01-20 Qualcomm Incorporated Radio link management for ultra-reliable low-latency communication
WO2022151208A1 (en) * 2021-01-14 2022-07-21 Apple Inc. Method for cross-cell beam measurement

Also Published As

Publication number Publication date
CN117528608A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
US11337189B2 (en) Terminal, network device, and communication method to improve transmission reliability
CN111510267B (zh) 波束指示的方法和通信装置
JP2022501964A (ja) 信号送信方法および通信装置
CN111756458B (zh) 波束失败恢复方法和通信装置
CN111586858A (zh) 信号传输方法和通信装置
EP4087345A1 (en) Beam pair training method and communication apparatus
CN110932820A (zh) 发送和接收上行控制信息的方法以及通信装置
CN111769919A (zh) 探测参考信号srs的传输方法及通信装置
WO2021003620A1 (zh) 下行信号传输的方法和设备
CN112399597A (zh) 更新波束信息的方法和通信装置
WO2022077478A1 (zh) 一种基于波束的通信方法以及相关装置
US20240155371A1 (en) Communication method and communication apparatus
WO2022110188A1 (zh) 侧行链路载波管理方法、装置和系统
WO2018202168A1 (zh) 信息传输方法及装置
EP3826370B1 (en) Configuring different quantities of layers for transmitting data through a pdsch under different conditions
WO2021088042A1 (zh) 一种通信方法及装置
US20230081073A1 (en) Resource determining method and apparatus
WO2024022053A1 (zh) 一种速率匹配的方法及装置
EP4171140A1 (en) Beam indication method and communication apparatus
WO2024094196A1 (zh) 资源测量方法、测量间隙配置方法和相关装置
WO2023208145A1 (zh) 一种信息传输方法及装置
WO2024067412A1 (zh) 波束确定方法以及相关装置
WO2023093621A1 (zh) 通信方法以及通信装置
WO2024032767A1 (zh) 上行传输方法以及相关装置
WO2023273969A1 (zh) 资源测量方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845266

Country of ref document: EP

Kind code of ref document: A1