WO2023093621A1 - 通信方法以及通信装置 - Google Patents

通信方法以及通信装置 Download PDF

Info

Publication number
WO2023093621A1
WO2023093621A1 PCT/CN2022/132729 CN2022132729W WO2023093621A1 WO 2023093621 A1 WO2023093621 A1 WO 2023093621A1 CN 2022132729 W CN2022132729 W CN 2022132729W WO 2023093621 A1 WO2023093621 A1 WO 2023093621A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
terminal device
measurement result
measurement
signal quality
Prior art date
Application number
PCT/CN2022/132729
Other languages
English (en)
French (fr)
Inventor
袁世通
张希
樊波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023093621A1 publication Critical patent/WO2023093621A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data

Definitions

  • the present application relates to the technical field of communication, and in particular, to a communication method and a related device.
  • the fifth generation mobile communication system can use high-frequency communication, that is, use ultra-high frequency (>6GHz) signals to transmit data.
  • high-frequency communication A major problem with high-frequency communication is that the signal energy drops dramatically with the transmission distance, resulting in short signal transmission distances.
  • high-frequency communication adopts analog beam technology. By weighting the antenna array, the signal energy is concentrated in a small angle range to form a signal similar to a beam (called an analog beam, or beam for short). ), thereby increasing the transmission distance.
  • the base station configures the terminal equipment to measure the reference signal.
  • the base station can trigger the terminal device to report the measurement result through downlink control indication (DCI).
  • DCI downlink control indication
  • the terminal device reports the measurement result to the base station based on the DCI, so that the base station indicates the beam to the terminal device based on the measurement result.
  • the terminal device can switch to this beam, thereby improving the communication quality of the terminal device.
  • the present application provides a communication method and a communication device for reducing signaling overhead.
  • the first aspect of the present application provides a communication method, the method includes:
  • the terminal device performs the first type of measurement on the first reference signal to obtain the first measurement result; the terminal device sends the first measurement result to the network device; the terminal device performs the second type of measurement on the second reference signal based on the first measurement result to obtain the first measurement result Second measurement result: the terminal device sends the second measurement result to the network device.
  • the terminal device performs the first type of measurement on the first reference signal, obtains the first measurement result, and sends the first measurement result to the network device.
  • the terminal device triggers the terminal device to perform the second type of measurement on the second reference signal based on the first measurement result, and reports the second measurement result.
  • the terminal device reports the second measurement result to the network device without the network device triggering the terminal device to report the measurement result through DCI, thereby reducing signaling overhead.
  • the terminal device performs the second type of measurement on the second reference signal based on the first measurement result, and reports the second measurement result.
  • the network device selects a suitable beam for the terminal device based on the second measurement result, thereby reducing the time delay overhead for the terminal device to switch beams and improving communication quality.
  • the first measurement result includes measurement results of the first reference signal reported by the terminal device for N consecutive times, where N is an integer greater than or equal to 1; the terminal device performs a measurement on the second reference signal according to the first measurement result.
  • the second type of measurement, to obtain a second measurement result including:
  • the terminal device performs the second type of measurement on the second reference signal to obtain the second measurement result ;or,
  • the terminal device performs a measurement on the second reference signal.
  • a second type of measurement is used to obtain a second measurement result.
  • the foregoing shows some possible trigger conditions for triggering the terminal device to perform the second type of measurement on the second reference signal.
  • the terminal device is triggered to perform the second type of measurement based on the measurement results of the first reference signal reported by the terminal device for N consecutive times, thereby improving the reliability of the second measurement result reported by the terminal device.
  • the measurement results reported by the terminal equipment cannot truly reflect the overall situation of the link.
  • the method further includes:
  • the terminal device switches to the first beam corresponding to the second reference signal; or,
  • the terminal device maintains the current serving beam.
  • the terminal device performs the second type of measurement on the second reference signal based on the first measurement result, and reports the second measurement result.
  • the terminal device therefore determines whether the terminal device switches beams based on the second measurement result. It is beneficial for the terminal equipment to select a suitable beam, thereby improving the communication quality of the terminal equipment.
  • the network device does not need to instruct the terminal device to switch beams, which reduces signaling overhead.
  • the method further includes:
  • the terminal device receives the first feedback message from the network device
  • the terminal device switches to the first beam corresponding to the second reference signal; or,
  • the terminal device maintains the current serving beam.
  • the terminal device may select an appropriate beam based on the first feedback message from the network device, thereby improving the communication quality of the terminal device.
  • the method further includes:
  • the terminal device receives the first confirmation message from the network device, and the terminal device switches to the first beam corresponding to the second reference signal; or,
  • the terminal device receives the first negative message from the network device, and the terminal device maintains the current serving beam.
  • the network device sends a feedback message to the terminal device in combination with the second measurement result.
  • the terminal device performs the second type of measurement on the second reference signal based on the first measurement result, and reports the second measurement result. It is conducive to improving the reliability of the measurement results reported by the terminal equipment, and is beneficial to the network equipment instructing the terminal equipment to switch to a suitable beam, thereby improving the communication quality.
  • the method further includes:
  • the terminal device receives first indication information from the network device
  • the terminal device switches to the first beam
  • the terminal device maintains the current serving beam.
  • the terminal device may switch to an appropriate beam based on the first indication information of the network device, thereby improving the communication quality of the terminal device.
  • the method further includes:
  • the terminal device continues to perform the first type of measurement on the first reference signal.
  • the terminal device can continue to perform the first type of measurement on the first reference signal, which is beneficial for the terminal device to perform the second type of measurement based on the measurement result obtained from the first type of measurement. It is convenient for the terminal device to report the measurement result of the second type of measurement to the network device, and the network device does not need to schedule the terminal device to report the measurement result of the second type of measurement through the DCI, thereby reducing signaling overhead.
  • the method further includes:
  • the terminal device receives the first instruction information from the network device, and the first instruction information instructs the terminal device to switch to the signal corresponding to the second reference signal. the first beam, the terminal device switches to the first beam; or,
  • the terminal device receives the first instruction information from the network device, the first instruction information indicates that the terminal device maintains the current service beam, and the terminal device maintains the current service beam beam.
  • the network device sends indication information to the terminal device in combination with the second measurement result.
  • the terminal device performs the second type of measurement on the second reference signal based on the first measurement result, and reports the second measurement result. It is conducive to improving the reliability of the measurement results reported by the terminal equipment, and is beneficial to the network equipment instructing the terminal equipment to switch to a suitable beam, thereby improving the communication quality.
  • the method also includes:
  • the terminal device performs the first type of measurement on the third reference signal to obtain the third measurement result; the terminal device sends the third measurement result to the network device; the terminal device performs the second type of measurement on the fourth reference signal based on the third measurement result to obtain the third measurement result Fourth measurement result: the terminal device sends the fourth measurement result to the network device.
  • the terminal device implements the second type of measurement on multiple reference signals and reports the corresponding measurement results through the technical solution of the present application.
  • the terminal device performs the second type of measurement on the beam based on the measurement result obtained by performing the first type of measurement on the beam corresponding to each reference signal, and reports the measurement result. It is beneficial to improve the reliability of the measurement results reported by the terminal equipment, and avoid the influence caused by short-term link quality fluctuations that the measurement results reported by the terminal equipment cannot truly reflect the overall situation of the link.
  • the terminal device sends the fourth measurement result to the network device, and the method further includes:
  • the terminal device switches to the first beam corresponding to the second reference signal.
  • the first condition includes: the signal quality of the second reference signal in the second measurement result is greater than or equal to the second threshold, and the second reference signal The signal quality of is greater than the signal quality of the fourth reference signal in the fourth measurement result; or,
  • the second condition includes: the signal quality of the fourth reference signal in the fourth measurement result is greater than or equal to the second threshold, and the signal quality of the fourth reference signal is greater than the signal quality of the second reference signal; or,
  • the terminal device maintains the current serving beam, and the terminal device continues to perform the first type of measurement on the first reference signal and the third reference signal, and the third condition includes: the signal of the second reference signal in the second measurement result Both the quality and the signal quality of the fourth reference signal in the fourth measurement result are less than the second threshold.
  • the terminal device may determine, based on the second measurement result and the fourth measurement result, that the terminal device switches to an appropriate beam, so as to improve the communication quality of the terminal device.
  • the network device does not need to instruct the terminal device to switch beams, which reduces signaling overhead.
  • the method further includes:
  • the terminal device receives the second feedback message from the network device
  • the terminal device switches to the first beam
  • the terminal device switches to the second beam; or ,
  • the terminal device maintains the current serving beam.
  • the terminal device may switch to an appropriate beam based on the second feedback message, so as to improve the communication quality of the terminal device.
  • the network device does not need to instruct the terminal device to switch beams through additional signaling, which reduces signaling overhead.
  • the method further includes:
  • the terminal device receives the first signal from the network device Two confirmation messages, the second confirmation message is used to instruct the terminal device to switch to the first beam corresponding to the second reference signal, and the terminal device switches to the first beam corresponding to the second reference signal; or,
  • the terminal device receives the first signal from the network device. Two confirmation messages, the terminal device switches to the second beam corresponding to the fourth reference signal; or,
  • the terminal device receives a second negative message from the network device, and the terminal device maintains the current service beam.
  • the network device sends a feedback message to the terminal device in combination with the second measurement result and the fourth measurement result.
  • the terminal device performs the second type of measurement on the second reference signal based on the first measurement result, and reports the second measurement result.
  • the terminal device performs the second type of measurement on the fourth reference signal based on the third measurement result and reports the fourth measurement result. It is conducive to improving the reliability of the measurement results reported by the terminal equipment, and is beneficial to the network equipment instructing the terminal equipment to switch to a suitable beam, thereby improving the communication quality.
  • the method also includes:
  • the terminal device If the terminal device does not receive the feedback message of the second measurement result from the network device, the terminal device maintains the current serving beam, and the terminal device continues to perform the first type of measurement on the first reference signal and the third reference signal.
  • the terminal device if the terminal device does not receive the feedback message from the network device, the terminal device maintains the current serving beam, thereby ensuring normal communication between the terminal device and the network device.
  • the method further includes:
  • the terminal device receives second indication information from the network device
  • the terminal device switches to the first beam corresponding to the second reference signal
  • the terminal device switches to the second beam
  • the terminal device maintains the current serving beam.
  • the terminal device may switch to an appropriate beam based on the second indication information, so as to improve the communication quality of the terminal device.
  • the method further includes:
  • the terminal device receives the Second indication information of the device, where the second indication information instructs the terminal device to switch to the first beam corresponding to the second reference signal, and the terminal device switches to the first beam; or,
  • the terminal device receives the first signal from the network device.
  • Two indication information instructs the terminal device to switch to the second beam corresponding to the fourth reference signal, and the terminal device switches to the second beam; or,
  • the terminal device receives the second indication information from the network device, and the second indication information indicates The terminal device maintains the current serving beam, the terminal device maintains the current serving beam, and the terminal device continues to perform the first type of measurement on the first reference signal and the third reference signal.
  • the network device sends indication information to the terminal device in combination with the second measurement result and the fourth measurement result.
  • the terminal device performs the second type of measurement on the second reference signal based on the first measurement result, and reports the second measurement result.
  • the terminal device performs the second type of measurement on the fourth reference signal based on the third measurement result and reports the fourth measurement result. It is conducive to improving the reliability of the measurement results reported by the terminal equipment, and is beneficial to the network equipment instructing the terminal equipment to switch to a suitable beam, thereby improving the communication quality.
  • the method further includes:
  • the terminal device continues to perform the first type of measurement on the first reference signal and the third reference signal.
  • the terminal device can continue to perform the first type of measurement on the first reference signal and the third reference signal, which is beneficial for the terminal device to perform the second type of measurement based on the measurement results obtained from the first type of measurement.
  • Two types of measurements It is convenient for the terminal device to report the measurement result of the second type of measurement to the network device, and the network device does not need to schedule the terminal device to report the measurement result of the second type of measurement through the DCI, thereby reducing signaling overhead.
  • the method also includes:
  • the terminal device receives first configuration information from the network device, where the first configuration information is used to instruct the terminal device to perform the second type of measurement on the second reference signal based on the first measurement result and report the measurement result; or, the first configuration information is used to indicate The terminal device performs a second type of measurement on the second reference signal based on the first measurement result.
  • the network device may configure the terminal device to perform the second type of measurement on the second reference signal based on the first measurement result and report the measurement result through the first configuration information. Realize that the terminal device reports the second measurement result to the network device. There is no need for the network device to trigger the terminal device to report the measurement result through the DCI, thereby reducing signaling overhead and delay overhead. And it is beneficial to improve the reliability of the measurement results reported by the terminal equipment, and avoid the influence caused by short-term link quality fluctuations that the measurement results reported by the terminal equipment cannot truly reflect the overall situation of the link. It is beneficial for the network device to select a suitable beam for the terminal device based on the second measurement result, thereby improving communication quality.
  • the first type of measurement includes the terminal device performing periodic measurement on the reference signal
  • the second type of measurement includes the terminal device performing semi-persistent measurement on the reference signal resource
  • the first type of measurement includes the terminal device performing periodic measurement on the reference signal
  • the second type of measurement includes the terminal device performing aperiodic measurement on the reference signal
  • the first type of measurement includes that the terminal device performs semi-persistent measurement on the reference signal
  • the second type of measurement includes that the terminal device performs aperiodic measurement on the reference signal
  • the method also includes:
  • the terminal device receives second configuration information from the network device, where the second configuration information is used to instruct the terminal device to perform the first type of measurement on the first reference signal.
  • the network device may use the second configuration information to instruct the terminal device to perform the first type of measurement on the first reference signal, thereby implementing the solution of the present application.
  • the terminal device switches to the first beam, including:
  • the first beam set includes beams for the terminal device to initiate beam switching.
  • the above implementations show the specific conditions for the terminal device to switch to the first beam.
  • the first beam should also belong to the beam used for the terminal device to initiate beam switching. beam. It is beneficial for the terminal equipment to switch to the appropriate beam, thus ensuring the normal communication between the terminal equipment and the network equipment.
  • the first beam belongs to a first beam set, and the first beam set includes beams for initiating beam switching by a communication device.
  • the method also includes:
  • the terminal device updates the first beam set according to the first rule.
  • the terminal device can update the first beam set by itself, so that the network device does not need to update the first beam set through signaling, thereby reducing signaling overhead.
  • the terminal device updates the first beam set according to the first rule, including:
  • the terminal device updates the beams in the first beam set to beams corresponding to one or more transmission configuration indicator (TCI) states activated by the network device for the terminal device, to obtain the updated first beam set.
  • TCI transmission configuration indicator
  • the terminal device uses the TCI state activated by the network device for the terminal device as a beam in the first beam set. It is beneficial to realize rapid updating of the first beam set by the terminal equipment, and improves the real-time performance of the beams of the first beam set.
  • the first beam set includes beams corresponding to one or more TCI states activated by the network device for the terminal device.
  • the TCI state activated by the network device for the terminal device is used as a beam in the first beam set. It is beneficial to improve the real-time performance of the beams of the first beam set.
  • the terminal device updates the first beam set according to the first rule, including:
  • the terminal device adds beams corresponding to one or more TCI states activated by the network device for the terminal device to the first beam set to obtain an updated first beam set.
  • the terminal device adds the TCI state activated by the network device for the terminal device to the first beam set, which is beneficial and improves the real-time performance of the beams of the first beam set.
  • the method also includes:
  • the terminal device receives third indication information from the network device, where the third indication information indicates one or more TCI states activated for the terminal device; the terminal device sends a third confirmation message to the network device, and the third confirmation message is used to indicate that the terminal device successfully The third indication information is received.
  • the terminal device may determine the TCI status activated by the network device for the terminal device through the third indication information.
  • the terminal device may feed back a third confirmation message.
  • the third beam deleted by the terminal device from the first beam set is not used for the terminal device to initiate beam switching after the first preset time period from the moment when the terminal device sends the third confirmation message;
  • the third beam can still be used by the terminal device to initiate beam switching.
  • the method also includes:
  • the terminal device receives fourth instruction information from the network device, where the fourth instruction information instructs the terminal device to enable the function of updating the first beam set by using the TCI state activated by the network device for the terminal device.
  • the terminal device may use the fourth indication information to enable the function of updating the first beam set by using the TCI state activated by the network device for the terminal device. Therefore, the terminal device updates the first beam set through the activated TCI state, and improves the real-time performance of the first beam set.
  • the terminal device updates the first beam set according to the first rule, including:
  • the terminal device determines X TCI states according to the fifth measurement result, the fifth measurement result includes the measurement result of one or more reference signal resources measured and reported by the terminal device, each of the one or more reference signal resources corresponds to one TCI state, X TCI states are the TCI states corresponding to the first X reference signal resources with the strongest signal quality in the fifth measurement result, X is an integer greater than or equal to 1; the terminal device updates the beams in the first beam set to The beams corresponding to the X TCI states obtain an updated first beam set.
  • This implementation manner shows another way for the terminal device to update the beam set.
  • the terminal device updates the first beam set based on the fifth measurement result, which is beneficial to improve the real-time performance of the beams in the first beam set.
  • the updated first beam set includes beams corresponding to the fifth reference signal; the method further includes:
  • the terminal device determines that the beam corresponding to the fifth reference signal is not used for the terminal device to initiate beam switching, and Y is greater than or equal to 1 integer.
  • This implementation shows some regulations on whether the beams in the first beam set are used to initiate beam switching, so that the solution is more comprehensive and helps to further improve the real-time performance of the beams in the first beam set.
  • the second aspect of the present application provides a communication method, including:
  • the network device receives a first measurement result from the terminal device, where the first measurement result is a measurement result obtained by the terminal device performing a first type of measurement on the first reference signal; the network device receives a second measurement result from the terminal device, and the second measurement result is a measurement result obtained by the terminal device performing the second type of measurement on the second reference signal based on the first measurement result.
  • the network device receives the second measurement result from the terminal device.
  • the second measurement result is a measurement result obtained by the terminal device from performing a second type of measurement on the second reference signal based on the first measurement result
  • the first measurement result is a measurement result obtained by the terminal device from performing a first type of measurement on the first reference signal.
  • the terminal device performs the second type of measurement on the second reference signal based on the first measurement result, and reports the second measurement result.
  • the network device selects a suitable beam for the terminal device based on the second measurement result, thereby reducing the time delay overhead for the terminal device to switch beams and improving communication quality.
  • the method also includes:
  • the network device sends first configuration information to the terminal device, where the first configuration information is used to instruct the terminal device to perform a second type of measurement on the second reference signal based on the first measurement result and report the measurement result; or, the first configuration information is used to instruct the terminal
  • the device performs a second type of measurement on the second reference signal based on the first measurement.
  • the network device may configure the terminal device to perform the second type of measurement on the second reference signal based on the first measurement result and report the measurement result through the first configuration information. Realize that the terminal device reports the second measurement result to the network device. There is no need for the network device to trigger the terminal device to report the measurement result through the DCI, thereby reducing signaling overhead and delay overhead. And it is beneficial to improve the reliability of the measurement results reported by the terminal equipment, and avoid the influence caused by short-term link quality fluctuations that the measurement results reported by the terminal equipment cannot truly reflect the overall situation of the link. It is beneficial for the network device to select a suitable beam for the terminal device based on the second measurement result, thereby improving communication quality.
  • the first measurement result includes measurement results of the first reference signal reported by the terminal device for N consecutive times, where N is an integer greater than or equal to 1;
  • the first configuration information is used to indicate: if the signal quality of the first reference signal in the measurement results of the first reference signal reported by the terminal device for N consecutive times is greater than or equal to the first threshold, the terminal device triggers the second reference signal to perform the second Two types of measurement and reporting of measurement results, N is an integer greater than or equal to 1; or,
  • the first configuration information is used to indicate: if the signal quality of the first reference signal in the measurement results of the first reference signal reported by the terminal device for N consecutive times is greater than or equal to the signal quality of the reference signal corresponding to the current serving beam of the terminal device, then The terminal device triggers the second type of measurement on the second reference signal and reports the measurement result.
  • the foregoing shows some possible trigger conditions for triggering the terminal device to perform the second type of measurement on the second reference signal.
  • the terminal device is triggered to perform the second type of measurement based on the measurement results of the first reference signal reported by the terminal device for N consecutive times, thereby improving the reliability of the second measurement result reported by the terminal device.
  • the measurement results reported by the terminal equipment cannot truly reflect the overall situation of the link. It is beneficial for the network device to select a suitable beam for the terminal device based on the second measurement result, thereby reducing the time delay overhead for the terminal device to switch beams and improving communication quality.
  • the method further includes:
  • the network device determines that the terminal device switches to the first beam; or,
  • the network device determines that the terminal device maintains the current serving beam.
  • the second measurement result is a measurement result obtained by the terminal device performing a second type of measurement on the second reference signal based on the first measurement result.
  • the network device determines whether the terminal device switches beams based on the second measurement result, so that the network device can use an appropriate beam for communication between the terminal device and the terminal device for the beams accessed by the network device. Thereby improving communication quality.
  • the method further includes:
  • the network device sends a first feedback message to the terminal device
  • the first feedback message is a first confirmation message, and the first confirmation message is used to instruct the terminal device to switch to the first beam; or, the first feedback message is a first negative message, and the first negative message is used to instruct the terminal device to keep the current service beam.
  • the second measurement result is a measurement result obtained by the terminal device performing a second type of measurement on the second reference signal based on the first measurement result.
  • the network device may send the first feedback message to the terminal device according to the second measurement result, so that the network device indicates a suitable beam to the terminal device. Thereby improving communication quality.
  • the method further includes:
  • the network device sends a first confirmation message to the terminal device, and the first confirmation message is used to instruct the terminal device to switch to the second reference signal corresponding to the second reference signal.
  • the network device sends a first negative message to the terminal device, where the first negative message is used to instruct the terminal device to keep the current serving beam.
  • the second measurement result is a measurement result obtained by the terminal device performing a second type of measurement on the second reference signal based on the first measurement result.
  • the network device may send the first feedback message to the terminal device according to the second measurement result, so that the network device indicates a suitable beam to the terminal device. Thereby improving communication quality.
  • the method further includes:
  • the network device sends the first indication information to the terminal device
  • the first instruction information instructs the terminal device to switch to the first beam; or, the first instruction information instructs the terminal device to keep the current serving beam or not to perform beam switching.
  • the second measurement result is a measurement result obtained by the terminal device performing a second type of measurement on the second reference signal based on the first measurement result.
  • the network device may send the first indication message to the terminal device according to the second measurement result, so that the network device indicates a suitable beam to the terminal device. Thereby improving communication quality.
  • the method further includes:
  • the network device sends the first indication information to the terminal device, and the first indication information instructs the terminal device to switch to the first beam corresponding to the second reference signal ;or,
  • the network device sends first indication information to the terminal device, where the first indication information instructs the terminal device to maintain the current serving beam or not to perform beam switching.
  • the second measurement result is a measurement result obtained by the terminal device performing a second type of measurement on the second reference signal based on the first measurement result.
  • the network device may send the first indication message to the terminal device according to the second measurement result, so that the network device indicates a suitable beam to the terminal device. Thereby improving communication quality.
  • the method also includes:
  • the network device receives a third measurement result from the terminal device, where the third measurement result is a measurement result obtained by the terminal device performing the first type of measurement on the third reference signal;
  • the network device receives the fourth measurement result from the terminal device, where the fourth measurement result is a measurement result obtained by the terminal device performing the second type of measurement on the fourth reference signal based on the third measurement result.
  • the network device may also receive the fourth measurement result, that is, the terminal device may perform the second type on multiple reference signals and report the corresponding measurement result. There is no need for the network device to trigger the terminal device to report the measurement result through the DCI, thereby reducing signaling overhead.
  • the terminal device performs the second type of measurement on the beam based on the measurement result obtained by performing the first type of measurement on the beam corresponding to each reference signal, and reports the measurement result. It is conducive to improving the reliability of the measurement results reported by the terminal equipment, and avoiding the influence caused by short-term link quality fluctuations that the measurement results reported by the terminal equipment cannot truly reflect the overall situation of the link. It is beneficial for the network device to select a suitable beam for the terminal device based on the second measurement result, thereby reducing the time delay overhead for the terminal device to switch beams and improving communication quality.
  • the method further includes:
  • the network device determines that the terminal device switches to the first beam corresponding to the second reference signal, and the first condition includes: the signal quality of the second reference signal in the second measurement result is greater than or equal to the second threshold, and the second The signal quality of the second reference signal is greater than the signal quality of the fourth reference signal in the fourth measurement result; or,
  • the network device determines that the terminal device switches to the second beam, and the second condition includes: the signal quality of the second reference signal in the fourth measurement result is greater than or equal to the second threshold, and the fourth reference the signal quality of the signal is greater than the signal quality of the second reference signal; or,
  • the network device determines that the terminal device maintains the current serving beam.
  • the third condition includes: the signal quality of the second reference signal in the second measurement result and the signal quality of the fourth reference signal in the fourth measurement result are both less than the second threshold.
  • the network device may determine the beam accessed by the terminal device based on the second measurement result and the fourth measurement result, so as to facilitate communication transmission between the network device and the terminal device.
  • the network device does not need to instruct the terminal device to switch beams, which reduces signaling overhead.
  • the method further includes:
  • the network device sends a second feedback message to the terminal device; wherein, the second feedback message is a second confirmation message, and the second confirmation message is used to instruct the terminal device to switch to the beam with the best signal quality, and the beam with the best signal quality is the second The beam with the best signal quality among the first beam corresponding to the reference signal and the second beam corresponding to the fourth reference signal; or, the second feedback message is a second negative message, and the second negative message is used to instruct the terminal device to maintain the current service beam.
  • the network device sends the second feedback message to the terminal device to indirectly indicate the beam to the terminal device, so as to improve the communication quality of the terminal device.
  • the network device does not need to instruct the terminal device to switch beams through additional signaling, which reduces signaling overhead.
  • the method further includes:
  • the network device sends the second reference signal to the terminal device.
  • Two confirmation messages the second confirmation message is used to instruct the terminal device to switch to the first beam corresponding to the second reference signal; or,
  • the network device sends the second reference signal to the terminal device.
  • Two confirmation messages the second confirmation message is used to instruct the terminal device to switch to the second beam corresponding to the fourth reference signal; or,
  • the network device sends a second negative message to the terminal device, and the second negative message is used to Instructs the terminal device to maintain the current serving beam.
  • the network device may determine the beam accessed by the terminal device based on the second measurement result and the fourth measurement result, which facilitates communication transmission between the network device and the terminal device, and is conducive to improving communication quality. Therefore, the network device does not need to instruct the terminal device to switch beams, which reduces signaling overhead.
  • the method further includes:
  • the network device sends the second indication information to the terminal device
  • the second indication information instructs the terminal device to switch to the first beam corresponding to the second reference signal; or, the second indication information instructs the terminal device to switch to the second beam corresponding to the fourth reference signal; or, the second indication information indicates the terminal The device maintains the current serving beam.
  • the network device sends the second indication information to the terminal device, so as to indicate the beam to the terminal device, so as to improve the communication quality of the terminal device.
  • the method further includes:
  • the network device sends the terminal device Sending second indication information, where the second indication information instructs the terminal device to switch to the first beam corresponding to the second reference signal;
  • the network device sends the terminal device Sending second indication information, where the second indication information instructs the terminal device to switch to the second beam corresponding to the fourth reference signal;
  • the network device sends the second indication information to the terminal device, and the second indication information indicates the terminal The device maintains the current serving beam.
  • the network device may indicate the beam to be switched to by the terminal device based on the second measurement result and the fourth measurement result, which facilitates communication transmission between the network device and the terminal device, and improves communication quality.
  • the network device does not need to instruct the terminal device to switch beams, which reduces signaling overhead.
  • the first type of measurement includes the terminal device performing periodic measurement on the reference signal
  • the second type of measurement includes the terminal device performing semi-persistent measurement on the reference signal resource
  • the first type of measurement includes the terminal device performing periodic measurement on the reference signal
  • the second type of measurement includes the terminal device performing aperiodic measurement on the reference signal
  • the first type of measurement includes that the terminal device performs semi-persistent measurement on the reference signal
  • the second type of measurement includes that the terminal device performs aperiodic measurement on the reference signal
  • the method also includes:
  • the network device sends second configuration information to the terminal device, where the second configuration information is used to instruct the terminal device to perform the first type of measurement on the first reference signal.
  • the network device may configure the terminal device to perform the first type of measurement on the first reference signal through the second configuration information, so as to implement the solution of the present application.
  • the network device determines that the terminal device switches to the first beam, including:
  • the first beam set includes beams for the terminal device to initiate beam switching.
  • the above implementations show the specific conditions for the network device to determine that the terminal device switches to the first beam.
  • the first beam should also belong to the beam used for the terminal device. The beam that initiated the beam switch. In this way, the normal communication between the terminal device and the network device is guaranteed.
  • the first beam belongs to a first beam set, and the first beam set includes beams for a terminal device to initiate beam switching.
  • the method also includes:
  • the network device updates the first beam set according to the first rule.
  • the network device may update the first beam set, so as to guarantee the real-time performance of the first beam set.
  • the network device updates the first beam set according to the first rule, including:
  • the network device updates the beams in the first beam set to beams corresponding to one or more TCI states activated by the network device for the terminal device, to obtain the updated first beam set.
  • the network device uses the TCI state activated by the network device for the terminal device as a beam in the first beam set. Improved the real-time performance of the beams of the first beam set.
  • the first beam set includes beams corresponding to one or more TCI states activated by the network device for the terminal device.
  • the TCI state activated by the network device for the terminal device is used as a beam in the first beam set. It is beneficial to improve the real-time performance of the beams of the first beam set.
  • the network device updates the first beam set according to the first rule, including:
  • the network device adds beams corresponding to one or more TCI states activated by the network device for the terminal device to the first beam set to obtain an updated first beam set.
  • the network device adds the TCI status activated by the network device for the terminal device to the first beam set, which is beneficial to improve the real-time performance of the beams.
  • the method also includes:
  • the network device sends third indication information to the terminal device, where the third indication information indicates the one or more TCI states activated for the terminal device;
  • the network device receives a third confirmation message from the terminal device, where the third confirmation message is used to indicate that the terminal device has successfully received the third indication information.
  • the third beam deleted by the network device from the first beam set is not used for the terminal device to initiate beam switching after the first preset time period from the moment when the terminal device sends the third determination message;
  • the third beam can still be used by the terminal device to initiate beam switching.
  • the method also includes:
  • the network device sends fourth indication information to the terminal device, where the fourth indication information instructs the terminal device to enable the function of updating the first beam set by using the TCI state activated by the network device for the terminal device.
  • the network device instructs the terminal device to enable the function of updating the first beam set by using the TCI state activated by the network device for the terminal device. Therefore, the terminal device updates the first beam set through the activated TCI state, and improves the real-time performance of the first beam set.
  • the network device updates the first beam set according to the first rule, including:
  • the network device determines X TCI states according to the fifth measurement result, where the fifth measurement result includes the measurement results of one or more reference signals measured and reported by the terminal device, and each of the one or more reference signals corresponds to a TCI state,
  • the X TCI states are the TCI states corresponding to the first X reference signal resources with the strongest signal quality in the fifth measurement result, and X is an integer greater than or equal to 1; the network device updates the beams in the first beam set to X Beams corresponding to TCI states to obtain the updated first beam set.
  • This implementation shows another way for the network device to update the first beam set.
  • the network device updates the first beam set based on the fifth measurement result, which is beneficial to improve the real-time performance of the beams of the first beam set.
  • the updated first beam set includes beams corresponding to the fifth reference signal; the method further includes:
  • the network device determines that the beam corresponding to the fifth reference signal is not used for the terminal device to initiate beam switching, and Y is greater than or equal to 1 an integer of .
  • This implementation shows some regulations on whether the beams in the first beam set are used to initiate beam switching, so that the solution is more comprehensive and helps to further improve the real-time performance of the beams in the first beam set.
  • the third aspect of the present application provides a communication method, including:
  • the terminal device performs the first type of measurement on the first reference signal to obtain the first measurement result; the terminal device performs the second type of measurement on the second reference signal based on the first measurement result to obtain the second measurement result; the terminal device sends the first measurement result to the network device 2. Measurement results.
  • the terminal device performs a first type of measurement on the first reference signal to obtain a first measurement result.
  • the terminal device triggers the terminal device to perform the second type of measurement on the second reference signal based on the first measurement result, and reports the second measurement result.
  • the terminal device reports the second measurement result to the network device without the network device triggering the terminal device to report the measurement result through DCI, thereby reducing signaling overhead.
  • the terminal device performs the second type of measurement on the second reference signal based on the first measurement result, and reports the second measurement result. It is beneficial to improve the reliability of the second measurement result reported by the terminal device, and avoid the fact that the second measurement result reported by the terminal device cannot truly reflect the overall situation of the link due to the influence caused by short-term link quality fluctuations. It is beneficial for the network device to select a suitable beam for the terminal device based on the second measurement result, thereby reducing the time delay overhead for the terminal device to switch beams and improving communication quality.
  • the first measurement result includes the measurement result of the first reference signal measured by the terminal device for N consecutive times, where N is an integer greater than or equal to 1; the terminal device performs a measurement on the second reference signal according to the first measurement result.
  • the second type of measurement, to obtain a second measurement result including:
  • the terminal device If the signal quality of the first reference signal in the measurement results of the first reference signal measured N consecutive times by the terminal device is greater than or equal to the first threshold, the terminal device performs a second type of measurement on the second reference signal to obtain a second measurement result ;or,
  • the terminal device performs the second reference signal A second type of measurement is used to obtain a second measurement result.
  • the fourth aspect of the present application provides a communication method, including:
  • the network device receives a second measurement result from the terminal device, where the second measurement result is a measurement result obtained by the terminal device from performing a second type of measurement on the second reference signal based on the first measurement result; the first measurement result is the terminal device's measurement of the first reference signal The signal is the measurement result of the first type of measurement.
  • the network device receives the second measurement result from the terminal device.
  • the second measurement result is a measurement result obtained by the terminal device from performing a second type of measurement on the second reference signal based on the first measurement result
  • the first measurement result is a measurement result obtained by the terminal device from performing a first type of measurement on the first reference signal.
  • the terminal device performs the second type of measurement on the second reference signal based on the first measurement result, and reports the second measurement result.
  • the network device selects a suitable beam for the terminal device based on the second measurement result, thereby reducing the time delay overhead for the terminal device to switch beams and improving communication quality.
  • the first measurement result includes a measurement result of the first reference signal measured by the terminal device for N consecutive times, where N is an integer greater than or equal to 1;
  • the first configuration information is used to indicate: if the signal quality of the first reference signal in the measurement results of the first reference signal measured N consecutive times by the terminal device is greater than or equal to the first threshold, the terminal device triggers the second reference signal to perform the second Two types of measurement and reporting of measurement results, N is an integer greater than or equal to 1; or,
  • the first configuration information is used to indicate: if the signal quality of the first reference signal in the measurement results of the first reference signal measured by the terminal device for N consecutive times is greater than or equal to the signal quality of the reference signal corresponding to the current serving beam of the terminal device, then The terminal device triggers the second type of measurement on the second reference signal and reports the measurement result.
  • the present application provides a fifth aspect to provide a communication method, including:
  • the communication device determines a first beam set, where the first beam set includes beams for the terminal device to initiate beam switching; the communication device updates the first beam set according to a first rule.
  • the communication device may update the first beam set.
  • the communication device is a terminal device, and the terminal device may update the first beam set according to the first rule, which reduces the signaling overhead for the network device to configure the first beam set for the terminal device.
  • the network device uses a radio resource control (radio resource control, RRC) message to configure the first beam set for the terminal device, but it takes a long time for the network device to update the first beam set by using the RRC message, resulting in the time for updating the first beam set.
  • RRC radio resource control
  • the extension is larger.
  • adopting the method for updating the first beam set shown in this application is beneficial to quickly update the first beam set and improve the real-time performance of the beams in the first beam set.
  • the communication device updates the first beam set according to the first rule, including:
  • the communication device updates the beams in the first beam set to beams corresponding to one or more TCI states in which the network device is activated by the terminal device, to obtain the updated first beam set.
  • the communication device uses beams corresponding to one or more active TCI states in which the network device is the terminal device as beams of the updated first beam set. It is beneficial to quickly update the first beam set, and improve the real-time performance of the beams in the first beam set.
  • the communication device updates the first beam set according to the first rule, including:
  • the communication device adds to the first beam set the beams corresponding to one or more active TCI states in which the network device is the terminal device, to obtain an updated first beam set.
  • the communication device adds beams corresponding to one or more TCI states activated by the network device as the terminal device to the first beam set, which helps to improve the real-time performance of the beams in the first beam set.
  • the communication device is a terminal device, and the method further includes:
  • the terminal device receives third indication information from the network device, where the third indication information indicates one or more TCI states activated for the terminal device;
  • the terminal device sends a third confirmation message to the network device, where the third confirmation message is used to indicate that the terminal device has successfully received the third indication information.
  • the third beam deleted by the terminal device from the first beam set is not used for the terminal device to initiate beam switching after the first preset time period from the moment when the terminal device sends the third confirmation message;
  • the third beam can still be used by the terminal device to initiate beam switching.
  • This implementation manner shows some regulations on whether the beam deleted from the first beam set by the communication device can be used by the terminal device to initiate beam switching. This makes the program more comprehensive.
  • the communication device is a terminal device, and the method further includes:
  • the terminal device receives fourth instruction information from the network device, where the fourth instruction information instructs the terminal device to enable the function of updating the first beam set by using the TCI state activated by the network device for the terminal device.
  • the terminal device may use the fourth indication information to enable the function of updating the first beam set by using the TCI state activated by the network device for the terminal device. Therefore, the terminal device updates the first beam set through the activated TCI state, and improves the real-time performance of the first beam set.
  • the communication device updates the first beam set according to the first rule, including:
  • the communication device determines X TCI states according to the fifth measurement result, where the fifth measurement result includes measurement results of one or more reference signals measured and reported by the terminal device, and each of the one or more reference signals corresponds to a TCI state,
  • the X TCI states are the TCI states corresponding to the first X reference signals with the strongest signal quality in the fifth measurement result, and X is an integer greater than or equal to 1;
  • the communication device updates the beams in the first beam set to X
  • the beam corresponding to the TCI state is obtained from the updated first beam set.
  • This implementation shows another way for the communication device to update the beam set.
  • the communication device updates the first beam set based on the fifth measurement result, which is beneficial to improve the real-time performance of the beams in the first beam set.
  • the updated first beam set includes beams corresponding to the fifth reference signal; the method further includes:
  • the communication device determines that the beam corresponding to the fifth reference signal is not used for the terminal device to initiate beam switching, and Y is greater than or equal to 1 an integer of .
  • This implementation shows some regulations on whether the beams in the first beam set are used to initiate beam switching, so that the solution is more comprehensive and helps to further improve the real-time performance of the beams in the first beam set.
  • the communication device is a terminal device; the method also includes:
  • the terminal device initiates beam switching based on the first beam set.
  • the sixth aspect of the present application provides a communication device, including:
  • a processing module configured to perform a first type of measurement on the first reference signal to obtain a first measurement result
  • a transceiver module configured to send the first measurement result to the network device
  • the processing module is further configured to perform a second type of measurement on the second reference signal based on the first measurement result to obtain a second measurement result;
  • the transceiver module is further configured to send the second measurement result to the network device.
  • the first measurement result includes the measurement result of the first reference signal reported by the communication device for N consecutive times, where N is an integer greater than or equal to 1; the processing module is specifically used for:
  • the signal quality of the first reference signal in the measurement results of the first reference signal reported by the communication device for N consecutive times is greater than or equal to the first threshold, performing a second type of measurement on the second reference signal to obtain a second measurement result; or ,
  • the second reference signal is performed on the second reference signal. Type measurement to get the second measurement result.
  • processing module is also used for:
  • the current serving beam is maintained.
  • the transceiver module is also used for:
  • the processing module is also used to:
  • the first feedback message is the first confirmation message, switching to the first beam corresponding to the second reference signal; or,
  • the current serving beam is maintained.
  • the transceiver module is further configured to: if the signal quality of the second reference signal in the second measurement result is greater than or equal to the second threshold, receive the first confirmation message from the network device; the processing module further uses In: switching to the first beam corresponding to the second reference signal;
  • the transceiver module is further configured to: if the signal quality of the second reference signal in the second measurement result is less than the second threshold, then receive a first negative message from the network device; the processing module is further configured to maintain the current serving beam.
  • the transceiver module is also used for:
  • the processing module is also used to:
  • the first indication information indicates that the communication device switches to the first beam corresponding to the second reference signal, switch to the first beam; or,
  • the first indication information indicates that the communication device maintains the current service beam, then maintain the current service beam.
  • the transceiver module is further configured to: if the signal quality of the second reference signal in the second measurement result is greater than or equal to a second threshold, receive first indication information from the network device, and the first The indication information instructs the communication device to switch to the first beam corresponding to the second reference signal; the processing module is further configured to: switch to the first beam; or,
  • the transceiver module is also used for: if the signal quality of the second reference signal in the second measurement result is less than the second threshold, then receive the first instruction information from the network equipment, the first instruction information instructs the communication device to maintain the current service beam; the processing module Also used to: maintain the current serving beam.
  • the processing module is further configured to:
  • the first type of measurement continues on the first reference signal.
  • processing module is also used for:
  • Transceiver modules are also used to:
  • the processing module is also used to:
  • Transceiver modules are also used to:
  • processing module is also used for:
  • the first condition includes: the signal quality of the second reference signal in the second measurement result is greater than or equal to the second threshold, and the signal quality of the second reference signal The quality is greater than the signal quality of the fourth reference signal in the fourth measurement result; or,
  • the second condition includes: the signal quality of the fourth reference signal in the fourth measurement result is greater than or equal to the second threshold, and the signal quality of the fourth reference signal the quality is greater than the signal quality of the second reference signal in the second measurement; or,
  • the third condition includes: the signal quality of the second reference signal in the second measurement result and the signal quality of the fourth reference signal in the fourth measurement result are both smaller than the second threshold.
  • the transceiver module is also used for:
  • the processing module is also used to:
  • the second feedback message is the second confirmation message, and the signal quality of the second reference signal in the second measurement result is greater than the signal quality of the fourth reference signal in the fourth measurement result, switch to the first beam corresponding to the second reference signal ;or,
  • the second feedback message is the second confirmation message, and the signal quality of the fourth reference signal in the fourth measurement result is greater than the signal quality of the second reference signal in the second measurement result, then switch to the fourth reference signal corresponding to the fourth reference signal.
  • the current serving beam is maintained.
  • the transceiver module is also used for:
  • the second confirmation message is used to instruct the communication device to switch to the first beam corresponding to the second reference signal; the processing module is also used to: switch to the first beam corresponding to the second reference signal; or,
  • the transceiver module is also used for: if the signal quality of the fourth reference signal in the fourth measurement result is greater than or equal to the second threshold, and the signal quality of the fourth reference signal is greater than the signal quality of the second reference signal in the second measurement result, then receiving the signal quality from A second confirmation message from the network device; the second confirmation message is used to instruct the communication device to switch to the second beam corresponding to the fourth reference signal; the processing module is also used to: switch to the second beam corresponding to the fourth reference signal; or,
  • the transceiver module is also used for: if the signal quality of the second reference signal in the second measurement result and the signal quality of the fourth reference signal in the fourth measurement result are both smaller than the second threshold, receive a second negative message from the network device; the second The two negative messages are used to instruct the communication device to keep the current service beam; the processing module is also used to: keep the current service beam.
  • processing module is also used for:
  • the communication device does not receive the feedback message of the second measurement result from the network equipment, it maintains the current serving beam and continues to perform the first type of measurement on the first reference signal and the third reference signal.
  • the transceiver module is also used for:
  • the processing module is also used to:
  • the second indication information indicates that the communication device switches to the first beam corresponding to the second reference signal, switch to the first beam; or,
  • the second indication information indicates that the communication device switches to the second beam corresponding to the fourth reference signal, switch to the second beam; or,
  • the second indication information indicates that the communication device maintains the current service beam, then maintain the current service beam.
  • the transceiver module is further configured to: if the signal quality of the second reference signal in the second measurement result is greater than or equal to the second threshold, the signal quality of the second reference signal is greater than that described in the fourth measurement result
  • the second indication information from the network device is received, and the second indication information instructs the terminal device to switch to the first beam corresponding to the second reference signal
  • the processing module is also used to: switch to the first beam; or
  • the transceiver module is also used for: if the signal quality of the fourth reference signal in the fourth measurement result is greater than or equal to the second threshold, and the signal quality of the fourth reference signal is greater than the signal quality of the second reference signal in the second measurement result, then receiving the signal quality from The second instruction information of the network device, the second instruction information instructs the terminal device to switch to the second beam corresponding to the fourth reference signal; the processing module is also used to: switch to the second beam; or,
  • the transceiver module is also used for: if the signal quality of the second reference signal in the second measurement result and the signal quality of the fourth reference signal in the fourth measurement result are both smaller than the second threshold, then receive the second indication information from the network device, the second Two indication information instructs the terminal device to maintain the current service beam; the processing module is also used to: maintain the current service beam.
  • the processing module is further configured to:
  • the first type of measurement continues to be performed on the first reference signal and the third reference signal.
  • the transceiver module is also used for:
  • Receive first configuration information from the network device where the first configuration information is used to instruct the communication device to perform a second type of measurement on the second reference signal based on the first measurement result and report the measurement result; or, the first configuration information is used to instruct the communication device A second type of measurement is performed on the second reference signal based on the first measurement.
  • the first type of measurement includes the communication device performing periodic measurement on the reference signal
  • the second type of measurement includes the communication device performing semi-persistent measurement on the reference signal resource
  • the first type of measurement includes the communication device performing periodic measurement on the reference signal
  • the second type of measurement includes the communication device performing aperiodic measurement on the reference signal
  • the first type of measurement includes the communication device performing semi-persistent measurement on the reference signal
  • the second type of measurement includes the communication device performing aperiodic measurement on the reference signal
  • the transceiver module is also used for:
  • processing module is specifically used for:
  • the first beam belongs to the first beam set, switch to the first beam, and the first beam set includes beam switching initiated by the communication device. beam.
  • the first beam belongs to a first beam set, and the first beam set includes beams for initiating beam switching by a communication device.
  • processing module is also used for:
  • the first set of beams is updated according to a first rule.
  • processing module is specifically used for:
  • the beams in the first beam set are updated to beams corresponding to one or more TCI states activated by the network device for the communication device, to obtain the updated first beam set.
  • the transceiver module is also used for:
  • the third indication information indicating one or more TCI states activated for the communication device
  • the first beam set includes beams corresponding to one or more TCI states activated by the network device for the communication device.
  • the third beam deleted by the communication device from the first beam set is not used for the communication device to initiate beam switching after a first preset time period from the moment when the communication device sends the third confirmation message;
  • the third beam can still be used by the communication device to initiate beam switching.
  • the transceiver module is also used for:
  • Receive fourth instruction information from the network device where the fourth instruction information instructs the communication device to enable the function of updating the first beam set using the TCI state activated by the network device for the communication device.
  • processing module is specifically used for:
  • the fifth measurement results include measurement results of one or more reference signal resources measured and reported by the communication device, each of the one or more reference signal resources corresponds to a TCI state , the X TCI states are the TCI states corresponding to the first X reference signal resources with the strongest signal quality in the fifth measurement result, and X is an integer greater than or equal to 1; update the beams in the first beam set to X TCI states Corresponding beams, the updated first beam set is obtained.
  • the updated first beam set includes beams corresponding to the fifth reference signal; the processing module is further configured to:
  • the measurement results reported by the communication device for Y consecutive times do not include the measurement results of the beam corresponding to the fifth reference signal, it is determined that the beam corresponding to the fifth reference signal is not used for the communication device to initiate beam switching, and Y is an integer greater than or equal to 1.
  • the seventh aspect of the present application provides a communication device, including:
  • the transceiver module is configured to receive a first measurement result from the terminal device, the first measurement result is a measurement result obtained by the terminal device from performing a first type of measurement on the first reference signal; receive a second measurement result from the terminal device, the second measurement result The result is a measurement result obtained by the terminal device performing the second type of measurement on the second reference signal based on the first measurement result.
  • the transceiver module is also used for:
  • the device performs a second type of measurement on the second reference signal based on the first measurement.
  • the first measurement result includes measurement results of the first reference signal reported by the terminal device for N consecutive times, where N is an integer greater than or equal to 1;
  • the first configuration information is used to indicate: if the signal quality of the first reference signal in the measurement results of the first reference signal reported by the terminal device for N consecutive times is greater than or equal to the first threshold, the terminal device triggers the second reference signal to perform the second Two types of measurement and reporting of measurement results, N is an integer greater than or equal to 1; or,
  • the first configuration information is used to indicate: if the signal quality of the first reference signal in the measurement results of the first reference signal reported by the terminal device for N consecutive times is greater than or equal to the signal quality of the reference signal corresponding to the current serving beam of the terminal device, then The terminal device triggers the second type of measurement on the second reference signal and reports the measurement result.
  • the communication device further includes a processing module
  • a processing module configured to determine that the terminal device switches to the first beam corresponding to the second reference signal if the signal quality of the second reference signal in the second measurement result is greater than or equal to a second threshold; or,
  • the processing module is configured to determine that the terminal device maintains the current serving beam if the signal quality of the second reference signal in the second measurement result is less than the second threshold.
  • the transceiver module is also used for:
  • the first feedback message is a first confirmation message, and the first confirmation message is used to instruct the terminal device to switch to the first beam; or, the first feedback message is a first negative message, and the first negative message is used to instruct the terminal device to keep the current service beam.
  • the transceiver module is also used for:
  • a first confirmation message is sent to the terminal device, and the first confirmation message is used to instruct the terminal device to switch to the first beam corresponding to the second reference signal ;or,
  • a first negative message is sent to the terminal device, where the first negative message is used to instruct the terminal device to maintain the current serving beam.
  • the transceiver module is also used for:
  • the first indication information instructs the terminal device to switch to the first beam; or, the first indication information instructs the terminal device to maintain the current serving beam or not to perform beam switching.
  • the transceiver module is also used for:
  • the first indication information is sent to the terminal device, where the first indication information instructs the terminal device to maintain the current serving beam or not to perform beam switching.
  • the transceiver module is also used for:
  • the fourth measurement result is a measurement result obtained by the terminal device performing the second type of measurement on the fourth reference signal based on the third measurement result.
  • processing module is also used for:
  • the first condition includes: the signal quality of the second reference signal in the second measurement result is greater than or equal to the second threshold, and the second reference The signal quality of the signal is greater than the signal quality of the fourth reference signal in the fourth measurement result; or,
  • the second condition includes: the signal quality of the fourth reference signal in the fourth measurement result is greater than or equal to the second threshold, and the signal quality of the fourth reference signal the signal quality is greater than the signal quality of the second reference signal; or,
  • the third condition includes: the signal quality of the second reference signal in the second measurement result and the signal quality of the fourth reference signal in the fourth measurement result are both lower than the second threshold.
  • the transceiver module is also used for:
  • the second feedback message is a second confirmation message
  • the second confirmation message is used to instruct the terminal device to switch to the beam with the best signal quality.
  • the beam with the best signal quality is the first beam corresponding to the second reference signal and the fourth reference signal.
  • the beam with the best signal quality among the second beams corresponding to the signal; or, the second feedback message is a second negative message, and the second negative message is used to instruct the terminal device to keep the current serving beam.
  • the transceiver module is also used for:
  • the second confirmation message is used to instruct the terminal device to switch to the first beam corresponding to the second reference signal
  • the signal quality of the fourth reference signal in the fourth measurement result is greater than or equal to the second threshold, and the signal quality of the fourth reference signal is greater than the signal quality of the second reference signal in the second measurement result, sending a second confirmation to the terminal device message, the second confirmation message is used to instruct the terminal device to switch to the second beam corresponding to the fourth reference signal; or,
  • the device If the signal quality of the second reference signal in the second measurement result and the signal quality of the fourth reference signal in the fourth measurement result are both less than the second threshold, send a second negative message to the terminal device, and the second negative message is used to indicate the terminal The device maintains the current serving beam.
  • the transceiver module is also used for:
  • the second indication information instructs the terminal device to switch to the first beam corresponding to the second reference signal; or, the second indication information instructs the terminal device to switch to the second beam corresponding to the fourth reference signal; or, the second indication information indicates the terminal The device maintains the current serving beam.
  • the transceiver module is also used for:
  • the second indication information instructs the terminal device to switch to the first beam corresponding to the second reference signal
  • the signal quality of the fourth reference signal in the fourth measurement result is greater than or equal to the second threshold, and the signal quality of the fourth reference signal is greater than the signal quality of the second reference signal in the second measurement result, sending a second indication to the terminal device information, the second indication information instructs the terminal device to switch to the second beam corresponding to the fourth reference signal; or,
  • the first type of measurement includes the terminal device performing periodic measurement on the reference signal
  • the second type of measurement includes the terminal device performing semi-persistent measurement on the reference signal resource
  • the first type of measurement includes the terminal device performing periodic measurement on the reference signal
  • the second type of measurement includes the terminal device performing aperiodic measurement on the reference signal
  • the first type of measurement includes that the terminal device performs semi-persistent measurement on the reference signal
  • the second type of measurement includes that the terminal device performs aperiodic measurement on the reference signal
  • the transceiver module is also used for:
  • processing module is specifically used for:
  • the first beam set includes The beam to which the beam is switched.
  • the first beam belongs to a first beam set, and the first beam set includes beams for a terminal device to initiate beam switching.
  • processing module is also used for:
  • the first set of beams is updated according to a first rule.
  • processing module is specifically used for:
  • the beams in the first beam set are updated to beams corresponding to one or more TCI states activated by the communication apparatus for the terminal equipment, to obtain the updated first beam set.
  • the transceiver module is also used for:
  • the first beam set includes beams corresponding to one or more TCI states activated by the communication apparatus for the terminal device.
  • the third beam deleted by the communication device from the first beam set is not used for the terminal device to initiate beam switching after the first preset time period from the moment when the terminal device sends the third determination message;
  • the third beam can still be used by the terminal device to initiate beam switching.
  • the transceiver module is also used for:
  • processing module is specifically used for:
  • the fifth measurement result includes the measurement results of one or more reference signals measured and reported by the terminal device, each of the one or more reference signals corresponds to a TCI state, X
  • the TCI state is the TCI state corresponding to the first X reference signal resources with the strongest signal quality in the fifth measurement result, where X is an integer greater than or equal to 1;
  • the communication device updates the beams in the first beam set to X TCI The beam corresponding to the state is obtained to obtain the updated first beam set.
  • the updated first beam set includes beams corresponding to the fifth reference signal; the processing module is further configured to:
  • the beam corresponding to the fifth reference signal is not used for the terminal equipment to initiate beam switching, and Y is an integer greater than or equal to 1 .
  • the eighth aspect of the present application provides a communication device, including:
  • a processing module configured to determine a first beam set, where the first beam set includes beams for the terminal device to initiate beam switching; and update the first beam set according to a first rule.
  • the processing module is specifically used for:
  • the beams in the first beam set are updated to beams corresponding to one or more activated TCI states in which the network device is the terminal device, to obtain the updated first beam set.
  • processing module is specifically used for:
  • the beams corresponding to one or more TCI states activated by the network device for the terminal device are added to the first beam set to obtain an updated first beam set.
  • the communication device is a terminal device, and the communication device further includes a transceiver module;
  • a transceiver module configured to receive third indication information from the network device, where the third indication information indicates one or more TCI states activated for the terminal device; send a third confirmation message to the network device, where the third confirmation message is used to instruct the terminal device The third indication information is successfully received.
  • the third beam deleted by the terminal device from the first beam set is not used for the terminal device to initiate beam switching after the first preset time period from the moment when the terminal device sends the third confirmation message;
  • the third beam can still be used by the terminal device to initiate beam switching.
  • the communication device is a terminal device, and the transceiver module is also used for:
  • processing module is specifically used for:
  • the fifth measurement result includes the measurement results of one or more reference signals measured and reported by the terminal device, each of the one or more reference signals corresponds to a TCI state, X
  • the TCI state is the TCI state corresponding to the first X reference signals with the strongest signal quality in the fifth measurement result, and X is an integer greater than or equal to 1; the beams in the first beam set are updated to correspond to the X TCI states Beam, the updated first beam set is obtained.
  • the updated first beam set includes beams corresponding to the fifth reference signal; the output processing module is also used for:
  • the beam corresponding to the fifth reference signal is not used for the terminal equipment to initiate beam switching, and Y is an integer greater than or equal to 1 .
  • the communication device is a terminal device; the processing module is also used for:
  • Beam switching is initiated based on the first set of beams.
  • the ninth aspect of the present application provides a communication device, including:
  • a processing module configured to perform a first type of measurement on the first reference signal to obtain a first measurement result; perform a second type of measurement on the second reference signal based on the first measurement result to obtain a second measurement result;
  • the transceiver module is further configured to send the second measurement result to the network device.
  • the first measurement result includes a measurement result of the first reference signal measured by the communication device for N consecutive times, where N is an integer greater than or equal to 1; the processing module is specifically used for:
  • the signal quality of the first reference signal in the measurement results of the first reference signal measured by the communication device for N consecutive times is greater than or equal to the first threshold, performing a second type of measurement on the second reference signal to obtain a second measurement result; or ,
  • the second reference signal is performed on the second reference signal. Type measurement to get the second measurement result.
  • the tenth aspect of the present application provides a communication device, including:
  • the transceiver module is configured to receive a second measurement result from the terminal device, where the second measurement result is a measurement result obtained by the terminal device performing a second type of measurement on the second reference signal based on the first measurement result; the first measurement result is the terminal device's measurement of the second reference signal.
  • the measurement result obtained by performing the first type of measurement on the first reference signal is the measurement result obtained by performing the first type of measurement on the first reference signal.
  • the first measurement result includes a measurement result of the first reference signal measured by the terminal device for N consecutive times, where N is an integer greater than or equal to 1;
  • the first configuration information is used to indicate: if the signal quality of the first reference signal in the measurement results of the first reference signal measured N consecutive times by the terminal device is greater than or equal to the first threshold, the terminal device triggers the second reference signal to perform the second Two types of measurement and reporting of measurement results, N is an integer greater than or equal to 1; or,
  • the first configuration information is used to indicate: if the signal quality of the first reference signal in the measurement results of the first reference signal measured by the terminal device for N consecutive times is greater than or equal to the signal quality of the reference signal corresponding to the current serving beam of the terminal device, then The terminal device triggers the second type of measurement on the second reference signal and reports the measurement result.
  • An eleventh aspect of the present application provides a communication device, where the communication device includes: a processor and a memory.
  • Computer programs or computer instructions are stored in the memory, and the processor is used to call and run the computer programs or computer instructions stored in the memory, so that the processor implements any one of the first to fifth aspects Method to realize.
  • the communication device further includes a transceiver, and the processor is used to control the transceiver to send and receive signals.
  • a twelfth aspect of the present application provides a communication device, where the communication device includes a processor.
  • the processor is used for invoking a stored computer program or computer instruction, so that the processor realizes any one of the implementation manners of any one of the first aspect to the fifth aspect.
  • the communication device further includes a transceiver, and the processor is used to control the transceiver to send and receive signals.
  • a thirteenth aspect of the present application provides a communication device, where the communication device includes a processor, and the processor is configured to execute any implementation manner of any one of the first aspect to the fifth aspect.
  • the fourteenth aspect of the present application provides a computer program product including instructions, which is characterized in that, when it is run on a computer, it makes the computer execute any one of any one of the first to fifth aspects. Method to realize.
  • a fifteenth aspect of the present application provides a computer-readable storage medium, including computer instructions.
  • the instructions When the instructions are run on a computer, the computer executes any of the implementation methods of any one of the first to fifth aspects. .
  • the sixteenth aspect of the present application provides a chip device, including a processor, used to call the computer program or computer instruction in the memory, so that the processor executes any of the above-mentioned aspects from the first aspect to the fifth aspect. any implementation.
  • the processor is coupled with the memory through an interface.
  • a seventeenth aspect of the present application provides a communication system, including the terminal device described in the first aspect and the network device described in the second aspect; or, including the terminal device described in the fourth aspect and the fifth aspect the network device described.
  • the terminal device performs the first type of measurement on the first reference signal, obtains the first measurement result, and sends the first measurement result to the network device.
  • the terminal device performs the second type of measurement on the second reference signal based on the first measurement result, obtains the second measurement result, and sends the second measurement result to the network device.
  • the terminal device triggers the terminal device to perform the second type of measurement on the second reference signal based on the first measurement result obtained from the first type of measurement, and reports the second measurement result.
  • the terminal device reports the second measurement result to the network device without the network device triggering the terminal device to report the measurement result through DCI, thereby reducing signaling overhead and delay overhead.
  • the network device selects a suitable beam for the terminal device based on the second measurement result, thereby improving communication quality.
  • Fig. 1 is a schematic diagram of the communication system of the embodiment of the present application.
  • FIG. 2 is a schematic diagram of a scene applicable to the communication method of the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a scenario where the communication method of the embodiment of the present application is applicable
  • FIG. 4 is a schematic structural diagram of a media access control control element (media access control control element, MAC CE) for activating a TCI applicable to the method for using a beam according to an embodiment of the present application;
  • media access control control element media access control control element, MAC CE
  • FIG. 5 is a schematic diagram of an embodiment of a communication method in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a scenario of a communication method in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another embodiment of the communication method of the embodiment of the present application.
  • FIG. 8 is a schematic diagram of another embodiment of the communication method of the embodiment of the present application.
  • FIG. 9 is a schematic diagram of another embodiment of the communication method of the embodiment of the present application.
  • FIG. 10 is a schematic diagram of another embodiment of the communication method of the embodiment of the present application.
  • FIG. 11 is a schematic diagram of an embodiment of a method for updating a beam set according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a scenario of a method for updating a beam set according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another embodiment of a method for updating a beam set according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 15 is another schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 16 is another schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 17 is another schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • Embodiments of the present application provide a communication method and a communication device, which are used to reduce signaling overhead.
  • 5G system new radio (new radio, NR) system
  • long term evolution (long term evolution, LTE) system LTE frequency division duplex (frequency division duplex, FDD) system
  • LTE time division duplex time division duplex, TDD)
  • UMTS universal mobile telecommunication system
  • 5G network for example, 6G mobile communication system
  • vehicle networking vehicle to everything, V2X
  • the communication system to which this application applies includes terminal equipment and network equipment. Communications can be transmitted between terminal devices and network devices.
  • the terminal equipment and network equipment of the present application are introduced below.
  • the terminal device may be a wireless terminal device capable of receiving network device scheduling and indication information.
  • a terminal device may be a device that provides voice and/or data connectivity to a user, or a handheld device with wireless connectivity, or other processing device connected to a wireless modem.
  • Terminal equipment is also called user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT) and so on.
  • a terminal device is a device that includes wireless communication functionality (providing voice/data connectivity to the user). For example, a handheld device with a wireless connection function, or a vehicle-mounted device, etc.
  • examples of some terminal devices are: mobile phone, tablet computer, notebook computer, palmtop computer, train, airplane, mobile internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR ) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in Internet of Vehicles, wireless terminals in self driving, remote medical surgery Wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, etc.
  • the wireless terminal in the Internet of Vehicles may be a vehicle-mounted device, a complete vehicle device, a vehicle-mounted module, a vehicle, and the like.
  • the wireless terminal in industrial control can be a robot, etc.
  • a network device may be a device in a wireless network.
  • a network device may be a device deployed in a radio access network to provide a wireless communication function for a terminal device.
  • the network device may be a radio access network (radio access network, RAN) node that connects the terminal device to the wireless network, and may also be called an access network device.
  • RAN radio access network
  • Network equipment includes but not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC) , base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system in Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be used in the 5G mobile communication system network equipment.
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • base transceiver station base transceiver station
  • BTS home base station
  • base station for example, home evolved NodeB, or home Node B, HNB
  • next generation base station (next generation NodeB, gNB), transmission reception point (transmission reception point, TRP), TP in the NR system; or one or a group of base stations (including multiple antenna panels) in the 5G mobile communication system ) antenna panel; or, the network device may also be a network node constituting a gNB or a transmission point.
  • BBU or, distributed unit (distributed unit, DU), etc.
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizes functions of RRC and packet data convergence protocol (PDCP) layer.
  • the DU is responsible for processing physical layer protocols and real-time services, and realizes the functions of the radio link control (radio link control, RLC) layer, the MAC layer, and the physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in the RAN, and the CU can also be divided into network devices in the core network (core network, CN), which is not limited in this application.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system includes at least one network device and at least one terminal device.
  • network device 111 may transmit with the terminal device 121 and the terminal device 122 using beams.
  • the terminal device may initiate beam switching.
  • Specific application scenarios include:
  • the terminal device measures the reference signal of the non-serving beam of the current serving cell, and reports the corresponding measurement result.
  • the terminal device may switch from the current serving beam to the beam reported in the measurement result based on the measurement result or the instruction of the network device. That is, the terminal equipment performs beam switching in the same cell.
  • the terminal device is in cell 1 of the network device, and the terminal device accesses beam 1 .
  • the terminal device is in a mobile state.
  • the terminal device measures the beam quality of beam 2 and reports the measurement result to the network device.
  • the terminal device may switch from beam 1 to beam 2 based on the measurement result or an indication of the network device.
  • the terminal device measures the reference signal of the non-serving cell, and reports it to the current serving cell.
  • the terminal device may switch from the current serving beam to the beam reported by the measurement result based on the measurement result or an instruction of the network device. That is, the terminal device switches from the beam of the current serving cell to the beam of other cells.
  • the current serving cell of the terminal device may not change or may change. For example, the terminal device switches from the current serving cell to the cell corresponding to the beam reported by the measurement result. For the scenario where the current serving cell of the terminal device remains unchanged, it can be simply understood that the terminal device receives a signal from an antenna of another cell, but the current serving cell of the terminal device remains unchanged.
  • the terminal device is in cell 1 of network device 1 , and the terminal device accesses beam 1 .
  • the terminal device is located in the cell 2' which is moved to the network device 2 .
  • the terminal device measures the beam quality of beam 2 and reports the measurement result to network device 1.
  • the terminal device can switch from beam 1 to beam 2 based on the measurement result or the indication of the network device 1 .
  • the current serving cell of the terminal device may be the cell 1, that is, the current serving cell of the terminal device remains unchanged.
  • the terminal device may also switch from the current serving cell (cell 1) to cell 2.
  • the current serving cell and non-serving cell of the terminal device may also be two cells of the same network device, which is not limited in this application.
  • a beam is a communication resource.
  • the beam may be a wide beam, or a narrow beam, or other types of beams, and the beam forming technology may be a beam forming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
  • the beam can be called a spatial domain filter, a spatial filter, a spatial domain parameter, a spatial parameter, a spatial domain setting, and a spatial setting (spatial setting), quasi-colocation (QCL) information, QCL assumption, or QCL indication, etc.
  • Beams can be indicated by a TCI-state parameter, or by a spatial relation parameter. Therefore, in this application, beams can be replaced by spatial filters, spatial filters, spatial parameters, spatial parameters, spatial settings, spatial settings, QCL information, QCL assumptions, QCL indications, TCI-state (including uplink TCI-state, downlink TCI-state), or spatial relationship, etc.
  • Beam can also be replaced with other terms representing beams, which is not limited in this application.
  • a beam used to transmit a signal may be referred to as a transmission beam (transmission beam, Tx beam), a spatial domain transmission filter (spatial domain transmission filter), a spatial transmission filter (spatial transmission filter), a spatial domain transmission parameter (spatial domain transmission parameter), Spatial transmission parameter, spatial domain transmission setting, or spatial transmission setting.
  • the downlink transmit beam can be indicated by TCI-state.
  • a beam used to receive a signal may be called a reception beam (reception beam, Rx beam), a spatial domain reception filter (spatial domain reception filter), a spatial reception filter (spatial reception filter), a spatial domain reception parameter (spatial domain reception parameter) or Spatial reception parameter, spatial domain reception setting, or spatial reception setting.
  • the uplink transmission beam may be indicated by any one of spatial relationship, uplink TCI-state, and sounding reference signal (sounding reference signal, SRS) resource (indicating the transmission beam using the SRS). Therefore, the uplink beams can also be replaced by SRS resources.
  • the transmitting beam may refer to the distribution of signal strength formed in different directions in space after the signal is transmitted by the antenna
  • the receiving beam may refer to the distribution of signal strength in different directions in space of the wireless signal received from the antenna.
  • the beams may be wide beams, or narrow beams, or other types of beams.
  • the beamforming technique may be beamforming technique or other techniques.
  • the beamforming technology may be a digital beamforming technology, an analog beamforming technology, a hybrid digital beamforming technology, or a hybrid analog beamforming technology, and the like.
  • Beams generally correspond to resources. For example, when performing beam measurement, network devices use different resources to measure different beams. Terminal devices feed back the measured resource quality, and network devices know the quality of the corresponding beams. When data is transmitted, beam information is also indicated through its corresponding resource. For example, the network device indicates the information of the physical downlink shared channel (physical downlink shared channel, PDSCH) beam of the terminal device through the TCI field in the DCI.
  • PDSCH physical downlink shared channel
  • multiple beams having the same or similar communication characteristics are regarded as one beam.
  • One or more antenna ports may be included in one beam, which are used to transmit data channels, control channels, sounding signals, and so on.
  • One or more antenna ports forming a beam can also be regarded as an antenna port set.
  • Quasi-co-location (quasi-co-location, QCL): The co-location relationship is used to indicate that multiple resources have one or more identical or similar communication features. For multiple resources with a co-location relationship, the same or Similar communication configuration. For example, if two antenna ports have a co-location relationship, then the large-scale properties of the channel transmitting a symbol on one port can be inferred from the large-scale properties of the channel transmitting a symbol on the other port.
  • the co-location indication is used to indicate whether at least two groups of antenna ports have a co-location relationship, including: the co-location indication is used to indicate whether the channel state information reference signals sent by at least two groups of antenna ports come from the same transmission point, or the co-location indication is used to indicate at least two Whether the channel state information reference signals sent by the antenna ports of the group come from the same beam group.
  • TCI-state is used to indicate the downlink beam.
  • Network devices can generate different beams, pointing to different transmission directions.
  • the network device uses a specific beam to send data to the terminal device, it needs to notify the terminal device of the information of the sending beam it uses, so that the terminal device can use the receiving beam corresponding to the sending beam to Receive data sent by network devices.
  • the network device indicates to the terminal device information about the transmit beam it uses through the TCI field in the DCI.
  • the size of the TCI field is 3 bits, which can specifically represent 8 different field values (code points).
  • Each value of the TCI field corresponds to a TCI-state index, and a TCI-state index can uniquely identify a TCI-state.
  • a TCI-state includes several parameters, through which the related information of the transmitting beam can be determined.
  • the TCI-state is configured by the network device to each terminal device. The structure of the TCI-state is as follows:
  • Each TCI-state includes its own index tci-StateId, and two QCL-Info.
  • Each QCL-Info includes a cell (cell) field and bwp-Id, respectively indicating which bandwidth part (BWP) of which cell the TCI-state applies to, that is, different cells or different BWPs of the same cell can be configured differently
  • the QCL-Info also includes a reference signal (reference signal), which is used to indicate which reference signal resource constitutes a quasi-colocated relationship.
  • the beam is generally replaced by other terms. For example, in data transmission and channel measurement, both beams correspond to reference signal resources, and one beam corresponds to one reference signal resource.
  • the QCL relationship means that two reference signal resources (or two antenna ports, antenna ports and reference signal resources are also in one-to-one correspondence) have some of the same spatial parameters, which specific spatial parameters are the same depends on the type of QCL-Info, That is, another field qcl-Type of QCL-Info.
  • qcl-Type can have four values ⁇ typeA, typeB, typeC, typeD ⁇ . Taking typeD as an example, typeD indicates that two reference signal resources have the same spatial receiving parameter information, that is, two beams have the same receiving beam. At most one of the two QCL-Info included in TCI-state can be TypeD.
  • the following is an example to specifically explain how a network device based on the 3GPP R15 protocol or 3GPP R16 protocol indicates to a terminal device the receiving beam information of the data transmission beam through the TCI-state, including the configuration, activation and indication of the TCI-state.
  • TCI-state configuration The network device configures multiple TCI-states to the terminal device through RRC signaling. These TCI-states all include a QCL-Info of type D.
  • the network device can also be configured with TCI-states that do not include QCL-info of type D, but these TCI-states are not indications for data transmission beams, so further elaboration will not be made here.
  • TCI-state activation After multiple TCI-states are configured on the network device, at most 8 or 8 groups of TCI-states need to be activated through MAC-CE, of which 8 groups correspond to multi-transmission and reception points (mTRP) Scenes.
  • the 8 TCI-states are in one-to-one correspondence with the 8 values of the TCI field in the DCI. That is, the 8 TCI-states corresponding to the 8 values of the TCI field of the DCI are determined by the MAC CE.
  • the current service beam of the terminal device refers to the beam currently used by the terminal device.
  • the terminal device receives a signal based on the service beam (for example, a physical downlink control channel (physical downlink control channel, PDCCH), a physical downlink shared channel (physical downlink shared channel, PDSCH), and/or, the terminal device sends an uplink signal based on the beam
  • a signal based on the service beam for example, a physical downlink control channel (physical downlink control channel, PDCCH), a physical downlink shared channel (physical downlink shared channel, PDSCH), and/or, the terminal device sends an uplink signal based on the beam
  • physical uplink shared channel physical uplink shared channel, PUSCH
  • physical uplink control channel physical uplink control channel
  • PUCCH physical uplink control channel
  • SRS etc.
  • the terminal device can also receive channel state information based on the service beam based on the configuration information of the network device Reference (channel state information reference signal, CSI-RS).
  • CSI-RS channel state
  • the terminal device switches to the first beam: it means that the terminal device selects the first beam, and starts when the effective conditions are met (for example, after a certain preset time period), the terminal device regards the first beam as the service beam, that is, the first beam One beam becomes effective, and the terminal device can communicate with the network device through the first beam.
  • the switching of the terminal equipment to the second beam is also similarly understood.
  • FIG. 4 is a schematic structural diagram of a MAC CE for activating the TCI state applicable to the embodiment of the present application.
  • the fields T0 to T(R-2)*8+07 correspond to the TCI-states whose indexes configured in the first step are 0 to (R-2)*8+7 respectively, and each field The size is 1 bit, and the value can be 0 or 1.
  • a value of 1 indicates that the TCI-state is activated, and a value of 0 indicates that the TCI-state is not activated.
  • Each MAC CE can theoretically have 8 activation fields with a value of 1, and the rest are all 0.
  • the TCI-states corresponding to the eight fields whose value is 1 are the eight TCI-states corresponding to the eight values of the TCI field in the DCI.
  • the minimum value (000) of the TCI field corresponds to the TCI-state with the smallest active index in the MAC CE, and so on, one-to-one correspondence.
  • the network device indicates a specific TCI-state through the TCI field in the DCI.
  • the value of the TCI field in the DCI sent by the network device to the terminal device is 000, indicating the TCI-state corresponding to 000 used by the data transmission beam.
  • the reference signal included in the QCL-Info of type D in the TCI-state is the channel state information-reference signal (channel state information–reference signal, CSI-RS) with the index #1, which indicates the beam used for data transmission and
  • CSI-RS channel state information-reference signal
  • the receiving beams corresponding to the CSI-RS with index #1 are the same.
  • the receiving beam corresponding to the CSI-RS with index #1 can be determined through the beam measurement process, and is known to the terminal device.
  • the terminal device can determine the receiving beam corresponding to the data transmission beam, so as to use the corresponding receiving beam to receive data. It should be noted that the descriptions of TCI-state and TCI state in this document can be replaced with each other.
  • the beam quality of a beam may be represented by the signal quality of a reference signal corresponding to the beam, or may be represented by other methods, which are not specifically limited in this application.
  • the technical solution of the present application is introduced by taking the beam quality of a beam represented by the signal quality of a reference signal corresponding to the beam as an example.
  • FIG. 5 is a schematic diagram of an embodiment of a communication method according to an embodiment of the present application. See Figure 5, methods include:
  • the terminal device performs a first type of measurement on a first reference signal to obtain a first measurement result.
  • the first reference signal includes a channel state information reference signal CSI-RS, or a synchronization signal (synchronization signal and physical broadcasting channel block, SSB).
  • CSI-RS channel state information reference signal
  • SSB synchronization signal and physical broadcasting channel block
  • the first type of measurement includes that the terminal device performs periodic (Period) measurement on the reference signal; or, the terminal device performs semi-persistent or semi-persistent (semi-persistent) measurement on the reference signal.
  • the terminal device receives the first reference signal from the network device, and performs a first type of measurement on the first reference signal to obtain a first measurement result.
  • the first measurement result includes the signal quality of the first reference signal.
  • the first reference signal corresponds to the first beam, and the signal quality of the first reference signal represents the beam quality of the first beam.
  • the terminal device periodically measures the CSI-RS1 sent by the network device, and reports the CSI-RS1 measurement result to the terminal device.
  • the CSI-RS1 measurement result includes the signal quality of the CSI-RS1.
  • reference signal received power reference signal received power, RSRP
  • reference signal received quality reference signal received quality, RSRQ
  • the CSI-RS1 corresponds to the first beam, and the RSRP or RSRQ of the CSI-RS1 represents the beam quality of the first beam.
  • the foregoing first measurement result may include CSI-RS1 measurement results obtained by one or more measurements by the terminal device.
  • the first measurement result includes periodic measurement CSI-RS1 report 1, periodic measurement CSI-RS1 report 2, and periodic measurement CSI-RS1 report 3.
  • the network device needs to configure reference signal resources of the first reference signal for the terminal device.
  • reference signal resources For example, periodic reference signal resources, or semi-persistent reference signal resources.
  • the semi-persistent reference signal resource is also periodic, but it can be activated or deactivated by a network device through signaling, so the reference signal resource can be called a semi-persistent reference signal resource.
  • the reference signal resource of the first reference signal corresponds to the first beam, and for the relationship between the beam and the resource, reference may be made to the foregoing introduction to the term beam.
  • the above step 501 may also be replaced by: the terminal device performs the first type of measurement on the reference signal resource of the first reference signal to obtain a first measurement result. Or, the terminal device performs the first type of measurement on the first beam to obtain the first measurement result.
  • the embodiment shown in FIG. 5 further includes 501a, and 501a is executed before 501.
  • the network device sends second configuration information to the terminal device.
  • the terminal device receives the second configuration information from the network device.
  • the second configuration information instructs the terminal device to perform the first type of measurement on the first reference signal.
  • the second configuration information includes reference signal resources of the first reference signal.
  • the second configuration information further instructs the terminal device to report the measurement result obtained by the terminal device performing the first type of measurement on the first reference signal.
  • the second configuration information also includes uplink resources for the terminal device to report the measurement result.
  • the network device may configure the reference signal resource of the first reference signal and the uplink resource for the terminal device to report the measurement result for the terminal device through the same configuration information or different configuration information.
  • the technical solution of the present application is introduced by taking the reference signal resource of the first reference signal configured by the network device through the second configuration information and the uplink resource used for the terminal device to report the measurement result as an example.
  • the above 501a shows a manner in which the network device instructs the terminal device to perform the first type of measurement on the first reference signal through the second configuration information.
  • the network device may use separate indication information to instruct the terminal device to perform the first type of measurement on the first reference signal.
  • the terminal device sends the first measurement result to the network device.
  • the network device receives the first measurement result from the terminal device.
  • the network device may send a second reference signal on a specific time-frequency resource, which is used by the terminal device to determine the first measurement result.
  • the second type of measurement is performed on the two reference signals to obtain a second measurement result.
  • the first measurement result includes measurement results of the first reference signal reported by the terminal device for N consecutive times, where N is an integer greater than or equal to 1.
  • the network device sends the second reference signal.
  • the network device sends the second reference signal Signal.
  • the terminal device may report the second measurement result to the network device on the corresponding time-frequency resource, because after the network device obtains the first measurement result, the network device may know that the terminal device will report the second measurement result on the time-frequency resource result. Therefore, the network device can reserve the time-frequency resource instead of using the time-frequency resource for other scheduling.
  • the terminal device performs a second type of measurement on the second reference signal based on the first measurement result to obtain a second measurement result.
  • the terminal device receives the second reference signal from the network device, and performs the second type of measurement on the second reference signal based on the first measurement result to obtain the second measurement result.
  • the first reference signal and the second reference signal are the same reference signal; or, the first reference signal and the second reference signal have a QCL relationship.
  • the first reference signal has the same QCL TypeD as the second reference signal. That is, the terminal device assumes that the first reference signal and the second reference signal can be received by using the same spatial receiving parameter.
  • Both the reference signal resource corresponding to the first reference signal and the reference signal resource corresponding to the second reference signal correspond to the first beam.
  • the beam and the resource please refer to the related introduction of the term beam mentioned above.
  • the above step 503 may also be replaced by: the terminal device performs the second type of measurement on the reference signal resource of the second reference signal based on the first measurement result to obtain the second measurement result.
  • the terminal device performs the second type of measurement on the first beam based on the first measurement result obtained by the terminal device performing the first type of measurement on the first beam, to obtain the second measurement result.
  • both the first reference signal and the second reference signal are CSI-RS1
  • the reference signal resource occupied by the CSI-RS1 is the reference of the periodic CSI-RS1 configured for the terminal device by the network device in 501a.
  • Signal resource is another reference signal resource designated by the network device, and the reference signal resource may be an aperiodic reference signal resource.
  • the first type of measurement includes the terminal device performing periodic measurement on the reference signal
  • the second type of measurement includes the terminal device performing semi-persistent measurement on the reference signal
  • the first type of measurement includes the terminal device performing periodic measurement on the reference signal
  • the second type of measurement includes the terminal device performing aperiodic measurement on the reference signal
  • the first type of measurement includes the terminal device performing semi-persistent measurement on the reference signal
  • the second type of measurement includes the terminal device performing aperiodic measurement on the reference signal.
  • the second measurement result may be a measurement result obtained by the terminal device performing one or more second-type measurements on the second reference signal. For example, as shown in FIG. 6 , the terminal device performs aperiodic measurement on CSI-RS1 three times, obtains a second measurement result, and reports it to the network device.
  • the second measurement result includes a report identifier (identifier, ID), and the report ID is associated with the report ID in the first measurement result. Therefore, it is convenient for the network device to determine that the second measurement result is a measurement result obtained by performing a second type of measurement based on the first measurement result. That is, the network device may determine the first measurement result as a measurement result for the first beam, and the second measurement result is a measurement result obtained by the terminal device triggering the execution of the second type of measurement on the first beam based on the first measurement result. It is convenient for the network device to determine the beam quality of the first beam.
  • the first measurement result includes the measurement result of the first reference signal reported by the terminal device N consecutive times, where N is an integer greater than or equal to 1.
  • the above-mentioned 503 specifically includes:
  • the terminal device performs the second type of measurement on the second reference signal to obtain the second measurement result .
  • the terminal device performs the second type of measurement on the second reference signal to obtain the second measurement result . That is, the signal quality of the second reference signal characterizes the beam quality of the first beam corresponding to the second reference signal.
  • the terminal device reports the measurement results of the first reference signal for N consecutive times including: the terminal device measures the first reference signal periodically, and the terminal device measures the first reference signal in consecutive N periods to obtain corresponding measurement results , the terminal device respectively reports the measurement result corresponding to each period in the consecutive N periods. Therefore, the measurement results of the first reference signal reported continuously by the terminal device for N times include measurement results respectively corresponding to the N periods.
  • the signal quality of CSI-RS1 in each of the CSI-RS1 measurement results reported by the terminal device for three consecutive periodic reports is greater than or equal to the first threshold.
  • the CSI-RS1 performs aperiodic measurement to obtain a second measurement result.
  • the terminal device may perform multiple aperiodic measurements on the CSI-RS1 to obtain a second measurement result.
  • the setting of the first threshold may consider the following factors: the location of the terminal device, and the expected transmission rate of the terminal device.
  • the first threshold may belong to the interval [-60dB, -90dB].
  • the first threshold may be smaller. If the expected transmission rate is higher, the first threshold may be larger.
  • the first measurement result includes measurement results of the first reference signal reported by the terminal device for N consecutive times, where N is an integer greater than or equal to 1.
  • the above-mentioned 503 specifically includes:
  • the terminal device performs a measurement on the second reference signal.
  • a second type of measurement is used to obtain a second measurement result.
  • the terminal device will measure the second reference signal A second type of measurement is performed to obtain a second measurement result.
  • the signal quality of the second reference signal characterizes the beam quality of the first beam corresponding to the second reference signal.
  • the current serving beam of the terminal device is beam 1.
  • the CSI-RS1 measurement results reported by the terminal device for 3 consecutive periods are in the CSI-RS1 measurement results reported each time, the CSI- The signal qualities of RS1 are all greater than or equal to the signal quality of the current serving beam of the terminal device, and the terminal device performs aperiodic measurement on the CSI-RS1 to obtain a second measurement result.
  • implementation mode 1 and implementation mode 2 show two possible trigger conditions for triggering the terminal device to perform the second type of measurement on the second reference signal. In practical applications, there may also be other trigger conditions. Applications are not limited.
  • the terminal device does not perform the second type of measurement on the second reference signal, and continues to perform the first type of measurement on the first reference signal.
  • the embodiment shown in FIG. 5 further includes 501b, and 501b may be performed before the foregoing 501.
  • the network device sends the first configuration information to the terminal device.
  • the terminal device receives the first configuration information from the network device.
  • the first configuration information is used to instruct the terminal device to perform the second type of measurement on the second reference signal based on the first measurement result and report the measurement result.
  • the first configuration information includes at least one of the following: a reference signal resource of the second reference signal, and an uplink resource used for the terminal device to report the second measurement result.
  • the network device may indicate through the first configuration information: when the signal quality of the first reference signal in the measurement results of the first reference signal reported by the terminal device for N consecutive times is greater than or equal to the first threshold, the terminal device triggers the second The second type of measurement is performed on the reference signal and the measurement result is reported. Or, when the signal quality of the first reference signal in the measurement results of the first reference signal reported by the terminal device for N consecutive times is greater than the first threshold, the terminal device triggers the second type of measurement on the second reference signal and reports the measurement result.
  • the network device can configure through the first configuration information: when the signal quality of the first reference signal in the measurement results of the first reference signal reported by the terminal device for N consecutive times is greater than or equal to that of the reference signal corresponding to the current serving beam of the terminal device signal quality, the terminal device triggers the second type of measurement on the second reference signal and reports the measurement result. Or, when the signal quality of the first reference signal in the measurement results of the first reference signal reported by the terminal device for N consecutive times is greater than the signal quality of the reference signal corresponding to the current serving beam of the terminal device, the terminal device triggers the second reference signal Take the second type of measurement and report the measurement result.
  • the network device configures the reference signal resource of the second reference signal and the uplink resource for the terminal device to report the second measurement result for the terminal device through the same configuration information.
  • the network device may configure the reference signal resource of the second reference signal and the uplink resource for the terminal device to report the second measurement result for the terminal device through different configuration information, which is not limited in this application. That is, the network device configures the reference signal resource of the second reference signal through one of the configuration information, but the configuration is not associated with reporting.
  • the network device configures uplink resources for the terminal device to report the second measurement result through another piece of configuration information.
  • the above 501b shows a manner in which the network device instructs the terminal device to perform the second type of measurement on the second reference signal based on the first measurement result and report the measurement result through the first configuration information.
  • the network device may also use separate indication information to instruct the terminal device to perform the second type of measurement on the second reference signal based on the first measurement result and report the measurement result, which is not limited in this application.
  • 501a can be executed first, and then 501b; or, 501b can be executed first, and then 501a can be executed; or, 501a and 501b can be executed at the same time according to the situation, which is not limited in this application.
  • the terminal device sends the second measurement result to the network device.
  • the terminal device may report the second measurement result through the uplink resource for reporting the second measurement result configured in the first configuration information in 501b. Since the network device in 502 above receives the first measurement result from the terminal device, the network device determines through the first measurement result that the terminal device will report the second measurement result. Therefore, the network device may receive the second measurement result of the terminal device on the uplink resource configured by the first configuration information for reporting the second measurement result.
  • the terminal device performs aperiodic measurement on CSI-RS1, obtains the aperiodic measurement CSI-RS1 measurement result, and reports it to the network device.
  • the terminal device performs the first type of measurement on the first reference signal to obtain the first measurement result.
  • the terminal device triggers the terminal device to perform the second type of measurement on the second reference signal based on the first measurement result, and reports the second measurement result. Realize that the terminal device reports the second measurement result to the network device. There is no need for the network device to trigger the terminal device to report the measurement result through the DCI, thereby reducing signaling overhead.
  • the terminal device performs the second type of measurement on the second reference signal based on the first measurement result, and reports the second measurement result. It is conducive to improving the reliability of the measurement results reported by the terminal equipment, and avoiding the influence caused by short-term link quality fluctuations that the measurement results reported by the terminal equipment cannot truly reflect the overall situation of the link. It is beneficial for the network device to select an appropriate switching beam for the terminal device based on the measurement results, thereby reducing the delay overhead of the terminal device switching beams and improving communication quality.
  • the terminal device may initiate beam switching.
  • the terminal device may initiate beam switching.
  • Two possible implementation manners for the terminal device to initiate beam switching based on the above-mentioned processes of 501 to 504 are introduced below through the embodiments shown in FIG. 7 and FIG. 8 .
  • the embodiment shown in FIG. 5 further includes 505 to 508.
  • 505 to 508 can be executed first, and then 501 to 504 can be executed; or, 501 to 504 can be executed first, and then 505 to 508 can be executed; or, 501 to 504 and 505 to 508 can be executed at the same time depending on the situation, which is not limited in this application.
  • the terminal device performs the first type of measurement on the third reference signal to obtain a third measurement result.
  • the terminal device receives the third reference signal from the network device, and performs the first type of measurement on the third reference signal to obtain a third measurement result.
  • the reference signal resource of the third reference signal corresponds to the second beam, and for the relationship between the beam and the resource, reference may be made to the foregoing introduction to the term beam.
  • the above step 505 may be replaced by: the terminal device performs the first type of measurement on the reference signal of the third reference signal to obtain a third measurement result.
  • the terminal device performs the first type of measurement on the second beam to obtain a third measurement result.
  • the third measurement result includes a measurement result obtained by the terminal device performing the first type of measurement on the third reference signal one or more times. For example, as shown in FIG. 6 , the terminal device performs three measurements on CSI-RS2 to obtain a third measurement result.
  • the third measurement result includes Periodic Measurement CSI-RS2 Report 1 , Periodic Measurement CSI-RS2 Report 2 and Periodic Measurement CSI-RS2 Report 3 .
  • the reference signal resource of the third reference signal corresponds to the second beam, and for the relationship between the beam and the resource, reference may be made to the foregoing introduction to the term beam.
  • the above step 505 may also be replaced by: the terminal device performs the first type of measurement on the third reference signal to obtain a third measurement result.
  • the terminal device performs the first type of measurement on the second beam to obtain a third measurement result.
  • the terminal device sends the third measurement result to the network device.
  • the second configuration information in 501a is further used to instruct the terminal device to perform the first type of measurement on the third reference signal.
  • the second configuration information further includes reference signal resources of the third reference signal.
  • the second configuration information is further used to instruct the terminal device to report the measurement result of the first type of measurement performed by the terminal device on the third reference signal.
  • the second configuration information further includes reference signal resources of the third reference signal.
  • the network device configures the terminal device to perform the first type of measurement on the first reference signal and the third reference signal through the same configuration information and report the corresponding measurement results.
  • the network device may respectively configure the terminal device to perform the first type of measurement on the first reference signal and report the measurement result, and the terminal device to perform the first type of measurement on the third reference signal and report the measurement result through different configuration information.
  • the specific application is not limited.
  • the network device may configure the terminal device to perform the first type of measurement on the third reference signal through the same configuration information or different configuration information, and configure the terminal device to report the first type of measurement on the third reference signal Measurement.
  • the terminal device sends the third measurement result to the network device.
  • the network device receives the third measurement result from the terminal device.
  • 506 is similar to the aforementioned 502 , for details, please refer to the related introduction of the aforementioned 502 , which will not be repeated here.
  • the terminal device performs the second type of measurement on the fourth reference signal based on the third measurement result, to obtain a fourth measurement result.
  • the terminal device receives the fourth reference signal from the network device, and performs the second type of measurement on the fourth reference signal based on the third measurement result to obtain the fourth measurement result.
  • the third reference signal and the fourth reference signal are the same reference signal; or, the third reference signal and the fourth reference signal have a QCL relationship.
  • Both the reference signal resource corresponding to the third reference signal and the reference signal resource corresponding to the fourth reference signal correspond to the second beam.
  • the relationship between the beam and the resource please refer to the related introduction of the term beam mentioned above.
  • the above step 507 may also be replaced by: the terminal device performs the second type of measurement on the fourth reference signal based on the third measurement result to obtain the fourth measurement result.
  • the terminal device performs the second type of measurement on the second beam based on the third measurement result to obtain the fourth measurement result.
  • the network device configures the terminal device to perform the second type of measurement on the second reference signal and the fourth reference signal through the same configuration information and report the corresponding measurement results.
  • the network device may respectively configure the terminal device to perform the second type of measurement on the second reference signal and report the measurement result, and the terminal device to perform the second type of measurement on the fourth reference signal and report the measurement result through different configuration information.
  • the specific application is not limited.
  • the network device can configure the terminal device to perform the second type of measurement on the fourth reference signal through the same configuration information or different configuration information, and configure the terminal device to report the second type of measurement on the fourth reference signal Measurement.
  • the fourth measurement result includes a measurement result obtained by the terminal device performing the second type of measurement on the fourth reference signal one or more times. For example, as shown in FIG. 6 , the terminal device performs three aperiodic measurements on CSI-RS2 to obtain a fourth measurement result.
  • the foregoing first configuration information is further used to instruct the terminal device to perform the second type of measurement on the fourth reference signal based on the third measurement result and report the measurement result.
  • the first configuration information further includes at least one of the following: a reference signal resource of the fourth reference signal, and an uplink resource used for the terminal device to report the fourth measurement result.
  • the terminal device sends the fourth measurement result to the network device.
  • the network device receives the fourth measurement result from the terminal device.
  • the terminal device may report the fourth measurement result through the uplink resource for reporting the fourth measurement result configured in the first configuration information in 501b. Since the network device in 506 above receives the third measurement result from the terminal device, the network device may determine that the terminal device will report the fourth measurement result based on the third measurement result. Therefore, the network device may receive the fourth measurement result of the terminal device on the uplink resource configured by the first configuration information for reporting the fourth measurement result.
  • the terminal device performs aperiodic measurement on CSI-RS2, obtains the aperiodic measurement CSI-RS2 measurement result, and reports it to the network device.
  • the terminal device may report the second measurement result in 504 and the fourth measurement result in 508 to the network device at the same time, or report separately.
  • the actual network device may be the reporting configuration indicated by the terminal device.
  • the terminal device realizes the measurement corresponding to multiple beams and reports the corresponding measurement results, and the network device does not need to trigger the terminal device to report the measurement results through DCI, thereby reducing signaling overhead.
  • the terminal device performs the second type of measurement on each beam based on the measurement result obtained by performing the first type of measurement on the beam and reports the measurement result. It is conducive to improving the reliability of the measurement results reported by the terminal equipment, and avoiding the influence caused by short-term link quality fluctuations that the measurement results reported by the terminal equipment cannot truly reflect the overall situation of the link. It is beneficial for the network device to select an appropriate switching beam for the terminal device based on the measurement results, thereby reducing the delay overhead of the terminal device switching beams and improving communication quality.
  • the terminal device may initiate beam switching.
  • the terminal device may initiate beam switching.
  • the following introduces several possible scenarios in which the terminal device can initiate beam switching based on the above-mentioned processes from 501 to 508.
  • the terminal device simultaneously reports the second measurement result and the fourth measurement result.
  • the second measurement result and the fourth measurement result may be measurement results obtained by the terminal device within a certain period of time.
  • the terminal device may initiate beam switching based on the second measurement result and the fourth measurement result.
  • the terminal device does not report the second measurement result and the fourth measurement result at the same time.
  • Four measurement results The terminal device executes the foregoing 501 to 504, and the terminal device may initiate beam switching based on the second measurement result. For example, if the signal quality of the second reference signal is better, the terminal device may switch to the first beam corresponding to the second reference signal. After a time greater than the certain duration, the terminal device executes the foregoing 505 to 508, and the terminal device may initiate beam switching again based on the fourth measurement result.
  • the terminal device switches to the first beam corresponding to the second reference signal based on the second measurement result.
  • the terminal device obtains the fourth measurement result, and determines that the signal quality of the fourth reference signal in the fourth measurement result is greater than the signal quality of the second reference signal, and the terminal device may switch from the first beam corresponding to the second reference signal to the fourth reference signal corresponding to the second beam.
  • the terminal device reports the second measurement result and the fourth measurement result separately.
  • the second measurement result and the fourth measurement result may be measurement results obtained by the terminal device within a certain period of time.
  • the terminal device may initiate beam switching based on the second measurement result and the fourth measurement result.
  • the network device determines the beam switched by the terminal device based on the second measurement result and the fourth measurement result.
  • the network device determines the beam switched by the terminal device based on the second measurement result. After a time greater than the certain duration, the network device receives the fourth measurement result, the network device may determine the beam switched by the terminal device based on the fourth measurement result.
  • the above steps 501 to 508 are based on the process that the terminal device performs corresponding measurements on the two beams (the first beam corresponding to the first reference signal and the second beam corresponding to the third reference signal) and reports the measurement results through the technical solution of this application. Examples are introduced. In practical applications, the terminal device can measure more beams and report corresponding measurement results, so that the terminal device or network device can determine the beam used by the terminal device from multiple beams, so as to improve communication quality.
  • the terminal device may report only the second measurement result or only the fourth measurement result.
  • the present application also provides an embodiment, which is similar to the above-mentioned embodiment shown in FIG.
  • the first measurement result performs a second type of measurement on the second reference signal to obtain a second measurement result;
  • the terminal device sends the second measurement result to the network device, and correspondingly, the network device receives the second measurement result from the terminal device. That is, in this embodiment, the terminal device does not execute the foregoing 502 and 506.
  • the first measurement result includes the measurement result of the first reference signal measured by the terminal device for N consecutive times, where N is an integer greater than or equal to 1; the processing module is specifically used for:
  • the terminal device If the signal quality of the first reference signal in the measurement results of the first reference signal measured N consecutive times by the terminal device is greater than or equal to the first threshold, the terminal device performs a second type of measurement on the second reference signal to obtain a second measurement result ;or,
  • the terminal device performs the second reference signal A second type of measurement is used to obtain a second measurement result.
  • FIG. 7 is a schematic diagram of another embodiment of a communication method according to an embodiment of the present application. See Figure 7, methods include:
  • the terminal device judges whether the signal quality of the second reference signal in the second measurement result is greater than or equal to a second threshold, and if yes, execute 702; if not, execute 703.
  • step 701 may also be replaced by: the terminal device judges whether the signal quality of the second reference signal in the second measurement result is greater than the second threshold, if yes, execute step 702; if not, execute step 703.
  • the embodiment shown in FIG. 7 further includes 701a, and 701a may be performed before 701.
  • the terminal device updates the first beam set according to the first rule.
  • the first beam set includes a beam set for the terminal device to initiate beam switching.
  • a beam set for the terminal device to initiate beam switching for the detailed process of 701a, please refer to the related introduction of 1102 in the embodiment shown in FIG. 11 later, which will not be introduced in detail here.
  • the above 701 specifically includes: the terminal device judges whether the signal quality of the second reference signal in the second measurement result is greater than or equal to a second threshold, and whether the first beam belongs to the first beam set; if , then execute 702; if not, execute 703.
  • the terminal device switches to the first beam corresponding to the second reference signal. If the signal quality of the second reference signal in the second measurement result is less than the second threshold, or the first beam does not belong to the first beam set, the terminal device maintains the current serving beam. Optionally, the terminal device continues to perform the first type of measurement on the first reference signal.
  • the terminal device switches to the first beam corresponding to the second reference signal.
  • the terminal device switches to the first beam corresponding to the second reference signal.
  • the terminal device switches to the first beam corresponding to the second reference signal. For example, as shown in Figure 2, a terminal device switches from beam 1 to beam 2.
  • the terminal device switches to the first beam corresponding to the second reference signal, and the first beam takes effect after a certain preset time period.
  • Validation of the first beam can be understood as: the terminal device uses the first beam to communicate with the network device.
  • the terminal device maintains the current service beam.
  • the terminal device maintains the current serving beam.
  • the terminal device maintains the current serving beam.
  • the terminal device continues to perform the first type of measurement on the first reference signal.
  • the network device judges whether the signal quality of the second reference signal in the second measurement result is greater than or equal to the second threshold, and if yes, execute 705; if not, execute 706.
  • the embodiment shown in FIG. 7 further includes 704a, and 704a may be performed before 704.
  • the network device updates the first beam set according to the first rule.
  • the above 704 specifically includes: the network device judges whether the signal quality of the second reference signal in the second measurement result is greater than or equal to a second threshold, and whether the first beam belongs to the first beam set; if , then execute 705; if not, execute 706.
  • the network device determines that the terminal device switches to the first beam.
  • the network device determines that the terminal device switches to the first beam corresponding to the second reference signal, and after a certain preset time period, the network device communicates with the terminal device through the first beam.
  • the network device determines that the terminal device maintains the current service beam.
  • the network device After the network device determines that the terminal device maintains the current service beam, the network device still uses the service beam to communicate with the terminal device.
  • the terminal device initiates beam switching based on the measurement result of the terminal device at layer 1
  • corresponding signaling overhead will be brought.
  • the terminal device or the network device cannot determine a handover beam more suitable for the terminal device based on the measurement result, which affects the communication quality of the terminal device.
  • the terminal device and the network device determine whether to initiate beam switching based on the second measurement result. Since the second measurement result is obtained by the terminal device by performing the second type of measurement on the second reference signal based on the first measurement result, it can be seen that the reliability of the measurement result reported by the terminal device is relatively high. To avoid the impact of short-term link quality fluctuations, the measurement results reported by the terminal equipment cannot truly reflect the overall situation of the link. It is beneficial for the terminal equipment to adopt a suitable beam, and improves the reliability of triggering the terminal equipment to perform beam switching, so as to improve the communication quality of the terminal equipment.
  • the terminal device and the network device respectively determine whether the terminal device initiates beam switching based on the second measurement result, without requiring the network device to indicate the beam to the terminal device, thereby saving signaling overhead and delay overhead.
  • the terminal device does not need to send the beam it wants to switch to the network device by itself, thereby avoiding the uplink resources reserved by the network for the terminal device to report the beam it wants to switch. Save uplink resource overhead and improve system performance.
  • 701 to 703 and 704 to 706 there is no fixed execution order among the above 701 to 703 and 704 to 706 .
  • 701 to 703 can be executed first, and then 704 to 706 can be executed; or, 704 to 706 can be executed first, and then 701 to 703 can be executed; or, depending on the situation, 701 to 703 and 704 to 706 can be executed simultaneously, which is not limited in this application.
  • FIG. 8 is a schematic diagram of another embodiment of a communication method according to an embodiment of the present application. See Figure 8, methods include:
  • the network device sends a first feedback message or first indication information to a terminal device.
  • the terminal device receives the first feedback message or the first indication information from the network device.
  • the first feedback message is a first acknowledgment message (acknowledgment, ACK), or the first indication information instructs the terminal device to switch to the first beam.
  • ACK first acknowledgment message
  • the network device may send the first ACK or the first indication information to the terminal device.
  • the first indication information instructs the terminal device to switch to the first indication information of the first beam corresponding to the second reference signal.
  • the network device may determine that the terminal device switches to the first beam corresponding to the second reference signal.
  • the network device may use the first beam to communicate with the terminal device. Within the preset time period, the network device may still use the current serving beam of the terminal device to communicate with the terminal device.
  • the first feedback message is a first negative message (non-acknowledgment, NACK), or the first indication information is used by the terminal device to maintain the current serving beam or not to perform beam switching.
  • NACK non-acknowledgment
  • the network device may feed back the first NACK or first indication information to the terminal device, where the first indication information instructs the terminal device to maintain the current serving beam .
  • the network device may determine that the terminal device maintains the current serving beam. The network device still uses the service beam to communicate with the terminal device.
  • the first feedback message is a first confirmation message or first indication information for the terminal device to switch to the second reference signal corresponding to the second reference signal.
  • One beam the terminal device switches to the first beam.
  • the terminal device switches to the first beam, and after the terminal device receives the first feedback message or the first indication information for a preset period of time, the terminal device may use the first beam to communicate with the network device. Within the preset time period, the terminal device may still use the current service beam of the terminal device to communicate with the network device.
  • the first feedback message is the first negative message, or the first indication information is used for the terminal device to maintain the current serving beam, and the terminal device maintains the current service beam. service beam.
  • the terminal device continues to perform the first type of measurement on the first reference signal.
  • the above-mentioned first indication information is used for the terminal device to maintain the current serving beam, which is also described as: the first indication information is used for instructing the terminal device not to perform beam switching.
  • the terminal device still uses the service beam to communicate with the network device.
  • the terminal device initiates beam switching based on the measurement results of the terminal device at layer 1, if multiple measurements are performed and the measurement results are reported, corresponding signaling overhead will be brought. If fewer measurements are performed and measurement results are reported, it is difficult for short-term link quality fluctuations to cause the measurement results reported by the terminal device to not truly reflect the overall situation of the link, resulting in less reliable measurement results reported by the terminal device. Low. In turn, the terminal device or the network device cannot determine a handover beam more suitable for the terminal device based on the measurement result, which affects the communication quality of the terminal device.
  • the embodiment shown in FIG. 8 above shows the process based on the above 501 to 504.
  • the network device determines the first feedback message or the first indication information based on the second measurement result, and sends the first feedback message or the first indication information to the terminal device. Instructions. Since the second measurement result is obtained by the terminal device by performing the second type of measurement on the second reference signal based on the first measurement result, it can be seen that the reliability of the measurement result reported by the terminal device is high, and the influence caused by short-term link quality fluctuations is avoided As a result, the measurement results reported by the terminal equipment cannot truly reflect the overall situation of the link. It is beneficial for the terminal equipment to adopt a suitable beam, and improves the reliability of triggering the terminal equipment to perform beam switching, so as to improve the communication quality of the terminal equipment. The terminal device does not need to send the beam it wants to switch to the network device by itself, thereby avoiding the uplink resources reserved by the network for the terminal device to report the beam it wants to switch. Save uplink resource overhead and improve system performance.
  • the present application also provides another implementation manner. After the above step 504, if the terminal device does not receive a feedback message from the network device for the second measurement result, the terminal device may maintain the current serving beam. Optionally, the terminal device continues to perform the first type of measurement on the first reference signal.
  • the terminal device receives the DCI from the network device, and if the beam indicated by the DCI is the first beam corresponding to the second reference signal, the terminal device switches to the first beam.
  • the DCI can be understood as the response of the network device to the second measurement result.
  • the terminal device does not need to feed back an ACK for the DCI.
  • the terminal device directly switches to the first beam, and the first beam takes effect after a certain preset period of time. That is, the terminal device uses the first beam as the serving beam, and the terminal device communicates with the network device through the first beam.
  • the terminal device switches to the beam indicated by the DCI, and the terminal device feeds back an ACK to the network device for the DCI.
  • the beam indicated by the DCI takes effect. That is, the terminal device uses the beam indicated by the DCI as the serving beam, and the terminal device communicates with the network device through the beam indicated by the DCI.
  • FIG. 9 is a schematic diagram of another embodiment of the communication method of the embodiment of the present application. See Figure 9, methods include:
  • the terminal device determines to switch to the first beam corresponding to the second reference signal.
  • the first condition includes: the signal quality of the second reference signal in the second measurement result is greater than or equal to a second threshold, and the signal quality of the second reference signal is greater than the signal quality of the fourth reference signal. Or, the signal quality of the second reference signal in the second measurement result is greater than the second threshold.
  • the signal quality of the fourth reference signal in the fourth measurement result is greater than or equal to the second threshold.
  • the terminal device determines to switch to the second beam corresponding to the fourth reference signal.
  • the second condition includes: the signal quality of the fourth reference signal in the fourth measurement result is greater than or equal to the second threshold, and the signal quality of the fourth reference signal is greater than the signal quality of the second reference signal. Or, the signal quality of the fourth reference signal in the fourth measurement result is greater than the second threshold, and the signal quality of the fourth reference signal is greater than the signal quality of the second reference signal.
  • the signal quality of the second reference signal in the second measurement result is greater than or equal to the second threshold.
  • the terminal device can switch to the first beam corresponding to the second reference signal and the index in the second beam corresponding to the fourth reference signal is smaller Or index larger beams.
  • the terminal device maintains the current serving beam.
  • the terminal device continues to perform the first type of measurement on the first reference signal and the third reference signal.
  • the third condition includes: the signal quality of the second reference signal in the second measurement result and the signal quality of the fourth reference signal in the fourth measurement result are both smaller than the second threshold; or, the signal quality of the second reference signal in the second measurement result Both the signal quality of the fourth reference signal and the fourth measurement result are less than or equal to the second threshold.
  • the embodiment shown in FIG. 9 further includes 901a, and 901a may be performed before 901.
  • the terminal device updates the first beam set according to the first rule.
  • the first beam set includes beams for the terminal device to initiate beam switching.
  • the detailed process of 901a please refer to the related introduction of 1102 in the embodiment shown in FIG. 11 later, which will not be introduced in detail here.
  • the above 901 specifically includes:
  • the terminal device switches to the first beam.
  • both the signal quality of the second reference signal in the second measurement result and the signal quality of the fourth reference signal in the fourth measurement result are greater than or equal to the second threshold, and the second beam corresponding to the fourth reference signal belongs to In the first beam set, the first beam corresponding to the first reference signal does not belong to the first beam set, and the terminal device switches to the second beam.
  • the signal quality of the second reference signal is lower than the signal quality of the fourth reference signal.
  • the terminal device maintains the current serving beam.
  • the terminal device continues to perform the first type of measurement on the first reference signal and the third reference signal.
  • the above 902 specifically includes:
  • the terminal device switches to the second beam.
  • both the signal quality of the fourth reference signal in the fourth measurement result and the signal quality of the fourth reference signal in the fourth measurement result are greater than or equal to the second threshold, and the first beam corresponding to the second reference signal belongs to In the first beam set, the second beam corresponding to the fourth reference signal does not belong to the first beam set, and the terminal device switches to the first beam corresponding to the second reference signal.
  • the signal quality of the fourth reference signal is greater than the signal quality of the second reference signal.
  • the terminal device maintains the current serving beam.
  • the terminal device continues to perform the first type of measurement on the first reference signal and the third reference signal.
  • the signal quality of the fourth reference signal is greater than the signal quality of the second reference signal.
  • the network device determines that the terminal device switches to the first beam corresponding to the second reference signal.
  • the network device determines that the terminal device switches to the second beam corresponding to the fourth reference signal.
  • the network device determines that the terminal device maintains the current serving beam.
  • 904 to 906 are similar to the aforementioned 901 to 903 , for details, please refer to the relevant introduction of the aforementioned 901 to 903 , and details will not be repeated here.
  • the embodiment shown in FIG. 9 further includes 904a, and 904a may be performed before 704.
  • the network device updates the first beam set according to the first rule.
  • the above 904 specifically includes:
  • the network device determines that the terminal device switches to the first beam.
  • both the signal quality of the second reference signal in the second measurement result and the signal quality of the fourth reference signal in the fourth measurement result are greater than or equal to the second threshold, and the second beam corresponding to the fourth reference signal belongs to In the first beam set, the first beam corresponding to the second reference signal does not belong to the first beam set, and the network device determines that the terminal device switches to the second beam.
  • the signal quality of the second reference signal is greater than the signal quality of the fourth reference signal.
  • the network device determines that the terminal device maintains the current serving beam.
  • the above 902 specifically includes:
  • the network device determines that the terminal device switches to the second beam.
  • both the signal quality of the fourth reference signal in the fourth measurement result and the signal quality of the fourth reference signal in the fourth measurement result are greater than or equal to the second threshold, and the first beam corresponding to the second reference signal belongs to In the first beam set, the second beam corresponding to the fourth reference signal does not belong to the first beam set, and the network device determines that the terminal device switches to the first beam.
  • the signal quality of the second reference signal is greater than the signal quality of the fourth reference signal.
  • the network device determines that the terminal device maintains the current serving beam.
  • the signal quality of the fourth reference signal is greater than the signal quality of the second reference signal.
  • the embodiment shown in FIG. 9 above shows the process of determining whether the terminal device initiates beam switching based on the above processes 501 to 508 , and the process of the network device determining whether the terminal device initiates beam switching. Both the terminal device and the network device determine whether to initiate beam switching based on the second measurement result and the fourth measurement result. Since the second measurement result is obtained by the terminal device by performing the second type of measurement on the second reference signal based on the first measurement result, the fourth measurement result is obtained by the terminal device by performing the second type of measurement on the fourth reference signal based on the third measurement result . It can be seen that the reliability of the measurement results reported by the terminal equipment is high, and the measurement results reported by the terminal equipment cannot truly reflect the overall situation of the link due to the impact of short-term link quality fluctuations.
  • the terminal equipment it improves the reliability of triggering the terminal equipment to switch beams, so as to improve the communication quality of the terminal equipment.
  • the terminal device triggers reporting of the measurement results obtained by the second type of measurement corresponding to the multiple beams based on the first type of measurement of the multiple beams, so as to select a beam with better signal quality from the multiple beams as the switching beam. Further improve the communication quality of the terminal equipment.
  • Both the terminal device and the network device determine whether to initiate beam switching based on the second measurement result and the fourth measurement result, and the network device does not need to indicate the beam to the terminal device, thereby saving signaling overhead and delay overhead.
  • the end device does not need to send the network device which beam it wants to switch by itself. It is avoided that the network always reserves uplink resources for the terminal equipment to report the beam it wants to switch. Save uplink resource overhead and improve system performance.
  • 901 to 903 can be executed first, and then 904 to 906 can be executed; or, 904 to 906 can be executed first, and then 901 to 903 can be executed; or, 901 to 903 and 904 to 906 can be executed at the same time depending on the situation, which is not limited in this application.
  • FIG. 10 is a schematic diagram of another embodiment of a communication method according to an embodiment of the present application. See Figure 10, methods include:
  • the network device sends a second feedback message or second indication information to the terminal device.
  • the second feedback message is a second confirmation message
  • the second confirmation message is used to instruct the terminal device to switch to the signal in the first beam corresponding to the second reference signal and the signal in the second beam corresponding to the fourth reference signal The best quality beams.
  • the network device A second confirmation message may be sent to the terminal device, and after receiving the second confirmation message, the terminal device may switch to the first beam.
  • the network device determines that the terminal device switches to the first beam, and after a preset period of time, the network device and the terminal device can communicate and transmit through the first beam.
  • the network device A second confirmation message may be sent to the terminal device, and after receiving the second confirmation message, the terminal device may switch to the second beam.
  • the network device determines that the terminal device switches to the second beam, and after a preset period of time, the network device and the terminal device can communicate and transmit through the second beam.
  • the second indication information instructs the terminal device to switch to the first beam corresponding to the second reference signal.
  • the network device may send second indication information to the terminal device, where the second indication information instructs the terminal device to switch to the first beam corresponding to the second reference signal.
  • a terminal device may switch to the first beam.
  • the network device may determine that the terminal device switches to the first beam, and after a preset period of time, the network device and the terminal device may communicate and transmit through the first beam.
  • the network device Second indication information may be sent to the terminal device, where the second indication information instructs the terminal device to switch to the second beam corresponding to the fourth reference signal. After the terminal device receives the second indication information, the terminal device may switch to the second beam. The network device determines that the terminal device switches to the second beam, and after a preset period of time, the network device and the terminal device can communicate and transmit through the second beam.
  • the second feedback message is a second negative message
  • the second negative message is used to instruct the terminal device to maintain the current serving beam, or to instruct the terminal device not to perform beam switching.
  • the network device may send a second negative message to the terminal device, and the terminal device receives After receiving the second negative message, the terminal device maintains the current serving beam.
  • the second indication information is used for the terminal device to maintain the current serving beam or not to perform beam switching.
  • the network device may instruct the terminal device to maintain the current serving beam or instruct the terminal device to No beam switching is performed. Then, after the terminal device receives the second indication information, the terminal device may maintain the current serving beam.
  • the second feedback message is the second confirmation message or the second indication information instructing the terminal device to switch to the first beam corresponding to the second reference signal, and the terminal device switches to the first beam.
  • the terminal device switches to the first beam, and after the terminal device receives the second feedback message or the second indication information for a preset period of time, the terminal device can use the first beam to communicate with the network device. Within the preset time period, the terminal device may still use the current service beam of the terminal device to communicate with the network device.
  • the second feedback message is a second confirmation message or second indication information instructing the terminal device to switch to the second beam corresponding to the fourth reference signal, and the terminal device switches to the second beam.
  • the terminal device switches to the second beam, and after the terminal device receives the second feedback message or the second indication information for a preset period of time, the terminal device may use the second beam to communicate with the network device. Within the preset time period, the terminal device may still use the current service beam of the terminal device to communicate with the network device.
  • the second feedback message is a second negative message or a second indication information indication If the current serving beam of the terminal device does not perform beam switching, the terminal device maintains the current serving beam.
  • the terminal device continues to perform the first type of measurement on the first reference signal and the third reference signal.
  • the terminal device still uses the current service beam of the terminal device to communicate with the network device.
  • the embodiment shown in FIG. 10 above shows the process based on the above 501 to 508.
  • the network device determines the second feedback message or the second indication information based on the second measurement result and the fourth measurement result, and sends the second feedback message to the terminal device. message or second indication information. Since the second measurement result is obtained by the terminal device by performing the second type of measurement on the second reference signal based on the first measurement result, the fourth measurement result is obtained by the terminal device by performing the second type of measurement on the fourth reference signal based on the third measurement result . Therefore, it can be seen that the reliability of the measurement results reported by the terminal equipment is high, and the measurement results reported by the terminal equipment cannot truly reflect the overall situation of the link due to the impact of short-term link quality fluctuations.
  • an appropriate beam is determined for the terminal device, that is, the reliability of triggering the terminal device to perform beam switching is improved, so as to improve the communication quality of the terminal device.
  • the terminal device Based on the first type of measurement of multiple beams, the terminal device triggers and reports the measurement results obtained by the second type of measurement corresponding to multiple beams, so as to select the beam with better signal quality from multiple beams as the switching beam to improve the performance of the terminal device. communication quality.
  • the terminal device does not need to send the beam it wants to switch to the network device by itself, avoiding the uplink resources reserved by the network for the terminal device to report the beam it wants to switch. Save uplink resource overhead and improve system performance.
  • FIG. 11 is a schematic diagram of an embodiment of a method for updating a beam set according to an embodiment of the present application.
  • the beam set update method includes:
  • the communications device determines a first beam set.
  • the first beam set includes beams for the terminal device to initiate beam switching.
  • the first beam set may also be called a candidate beam set, or a beam switching set. Specifically, this application does not limit the name of the first beam set.
  • the beams in the first beam set may be regarded as beams that are reported by the terminal device, that is, switched. For example, if the terminal device reports the measurement result of the beam 1, it means that the terminal device 1 has switched to the beam 1. End devices can use beam 1 for communication.
  • Communication equipment is network equipment or terminal equipment.
  • the communication device is a terminal device, and the above step 1101 specifically includes: the terminal device receives third configuration information from the network device, where the third configuration information is used to configure the first beam set for the terminal device.
  • the third configuration information is carried in an RRC message.
  • the communication device updates the first beam set according to the first rule.
  • the communication device may update the first beam set according to one or more TCI states activated by the network device for the terminal device and/or the fifth measurement result.
  • Each TCI state in the one or more TCI states corresponds to one or more beams.
  • TCI states For a detailed introduction about the TCI states, please refer to the relevant introduction above.
  • the fifth measurement result includes measurement results of one or more reference signals measured and reported by the terminal device.
  • Each reference signal in the one or more reference signals corresponds to a TCI state, and each TCI state corresponds to one or more beams.
  • the communication device updates the first beam set according to one or more TCI states activated by the network device for the terminal device and/or the fifth measurement result are introduced below.
  • the communication device updates the beams in the first beam set to beams corresponding to one or more TCI states activated by the network device for the terminal device, and obtains the updated first beam set.
  • the network device may send third indication information to the terminal device, where the first indication information is used to activate one or more TCI states for the terminal device, and each TCI state corresponds to one or more beams.
  • the TCI status please refer to the related introduction above.
  • eight TCI states are activated in the first indication information, and the communication device uses beams corresponding to the eight TCI states as beams in the updated first beam set.
  • the first indication information is carried in the MAC CE.
  • the one or more TCI states do not include a TCI state corresponding to a serving beam that has been indicated as the terminal device.
  • the terminal device may feed back a third confirmation message to the network device to indicate that the terminal device has successfully received the third indication information.
  • the third confirmation message is the third ACK.
  • the third beam deleted by the terminal device from the first beam set is not used for the terminal device to initiate beam switching; after the terminal device sends the first determination message Within the first preset time period from the time of the message, the third beam can still be used by the terminal device to initiate beam switching.
  • the first preset duration is 3ms (milliseconds).
  • the communication device adds beams corresponding to one or more TCI states activated by the network device for the terminal device to the first beam set to obtain an updated first beam set.
  • the communication device adds the beams corresponding to the one or more TCI states to the first beam set, so as to update the first beam set.
  • the communication device determines X TCI states according to the fifth measurement result, and updates beams in the first beam set to beams corresponding to the X TCI states, to obtain an updated first beam set.
  • the X TCI states are the TCI states corresponding to the first X reference signals with the strongest signal quality in the fifth measurement result, and X is an integer greater than or equal to 1.
  • Each TCI state in the X TCI states corresponds to one or more beams.
  • the reference signal is a reference signal with QCL TypeD configured in the TCI state.
  • the TCI state includes configuration information of the reference signal, and the configuration information includes the QCL TypeD of the reference signal.
  • the TCI state corresponding to the reference signal may be understood as that the reference signal is a reference signal configured by the TCI state.
  • the reference signal has the same QCL TypeD as the reference signal configured in the TCI state.
  • the TCI state includes configuration information of the reference signal, and the configuration information includes the QCL TypeD of the reference signal.
  • This reference signal has the same QCL TypeD as that of the TCI state configuration.
  • the updated first beam set includes beams corresponding to the fifth reference signal. If the measurement results reported by the terminal device for Y consecutive times no longer include the measurement results of the beam corresponding to the fifth reference signal, the communication device determines that the beam corresponding to the fifth reference signal is not used for the terminal device to initiate beam switching, and Y is greater than or An integer equal to 1.
  • the measurement results of beams with better signal quality are usually reported, and there is no measurement result of the beam corresponding to the fifth reference signal in the measurement results reported by the terminal equipment for Y consecutive times, it can be considered that the For the terminal device, the signal quality of the beam corresponding to the fifth reference signal is poor, and the beam corresponding to the fifth reference signal is not suitable for the terminal device to perform beam switching.
  • the communication device uses the union of the beams corresponding to one or more TCI states activated by the network device for the terminal device and the beams corresponding to the X TCI states as the beams included in the updated first beam set; or, the communication device takes A union of beams corresponding to one or more TCI states activated by the network device for the terminal device and beams corresponding to the X TCI states is added to the first beam set to obtain an updated first beam set.
  • the one or more TCI states please refer to the relevant introduction of the aforementioned implementation mode 1.
  • the X TCI states please refer to the relevant introduction of the aforementioned implementation mode 2.
  • the communication device uses the union of beams corresponding to one or more TCI states activated by the network device for the terminal device and beams corresponding to the X TCI states as the beams included in the updated first beam set .
  • the communication device may also use the intersection of beams corresponding to one or more TCI states activated by the network device for the terminal device and beams corresponding to the X TCI states as the updated first beam set to include beam.
  • the communication device adds the intersection of beams corresponding to one or more TCI states activated by the network device for the terminal device and beams corresponding to the X TCI states to the first beam set to obtain an updated first beam set,
  • the specific application is not limited.
  • the technical solution of the present application introduces an update mechanism of the first beam set, which reduces the signaling overhead for the network device to configure the first beam set for the terminal device.
  • the network device uses the RRC message to configure the first beam set for the terminal device, but it takes a long time for the network device to update the first beam set by using the RRC message, resulting in a long delay in updating the first beam set.
  • adopting the method for updating the first beam set shown in this application is beneficial to quickly update the first beam set and improve the real-time performance of the beams in the first beam set.
  • FIG. 13 is a schematic diagram of another embodiment of a method for updating a beam set according to an embodiment of the present application. Methods include:
  • the network device sends third indication information to the terminal device.
  • the terminal device receives third indication information from the network device.
  • the embodiment shown in FIG. 13 further includes 1301a, and 1301a may be performed before 1302.
  • the network device sends fourth indication information to the terminal device.
  • the terminal device receives fourth indication information from the network device.
  • the fourth indication information instructs the terminal device to enable the function of updating the first beam set by using the TCI state activated by the network device for the terminal device.
  • the network device may also instruct the terminal device to disable this function based on the indication information. After the function is disabled, the beam corresponding to the activated TCI state cannot be used by the terminal device to initiate beam switching.
  • the terminal device updates the first beam set according to the third indication information.
  • the terminal device updates the first beam set according to the third indication information and the fifth measurement result.
  • 1302 is similar to the process of updating the first beam set by the communication device in the foregoing embodiment shown in FIG. 12 .
  • the terminal device initiates beam switching based on the first beam set.
  • the communication device provided by the embodiment of the present application is described below.
  • FIG. 14 is a schematic structural diagram of a communication device according to an embodiment of the present application. Please refer to FIG. 14 , the communication device may be used to execute the processes performed by the terminal device in the embodiments shown in FIG. 5 , FIG. 7 to FIG. 10 , and for details, please refer to the relevant introduction in the foregoing method embodiments.
  • the communication device 1400 includes a processing module 1401 and a transceiver module 1402 .
  • the transceiver module 1402 can implement corresponding communication functions, and the processing module 1401 is used for data processing.
  • the transceiver module 1402 may also be called a communication interface or a communication module.
  • the communication device 1400 may further include a storage module, which may be used to store instructions and/or data, and the processing module 1401 may read the instructions and/or data in the storage module, so that the communication device implements the aforementioned method Example.
  • a storage module which may be used to store instructions and/or data
  • the processing module 1401 may read the instructions and/or data in the storage module, so that the communication device implements the aforementioned method Example.
  • the communication device module 1400 may be used to perform the actions performed by the terminal device in the above method embodiments.
  • the communication apparatus 1400 may be a terminal device or a component configurable in the terminal device.
  • the processing module 1401 is configured to perform processing-related operations on the terminal device side in the above method embodiments.
  • the transceiver module 1402 is configured to perform reception-related operations on the terminal device side in the above method embodiments.
  • the transceiver module 1402 may include a sending module and a receiving module.
  • the sending module is configured to perform the sending operation in the above method embodiments.
  • the receiving module is configured to perform the receiving operation in the above method embodiments.
  • the communication device 1400 may include a sending module instead of a receiving module.
  • the communication device 1400 may include a receiving module instead of a sending module. Specifically, it may depend on whether the foregoing solution executed by the communication device 1400 includes a sending action and a receiving action.
  • the processing module 1401 is further configured to perform a second type of measurement on the second reference signal based on the first measurement result to obtain a second measurement result;
  • the transceiver module 1402 is further configured to send the second measurement result to the network device.
  • the first measurement result includes the measurement result of the first reference signal reported by the communication device 1400 for N consecutive times, where N is an integer greater than or equal to 1; the processing module 1401 is specifically used to:
  • the signal quality of the first reference signal in the measurement results of the first reference signal reported by the communication device 1400 for N consecutive times is greater than or equal to the first threshold, perform a second type of measurement on the second reference signal to obtain a second measurement result; or,
  • the second reference signal is performed.
  • a second type of measurement is used to obtain a second measurement result.
  • processing module 1401 is also used to:
  • the current serving beam is maintained.
  • the transceiver module 1402 is also used to:
  • the processing module 1401 is also used for:
  • the first feedback message is the first confirmation message, switching to the first beam corresponding to the second reference signal; or,
  • the current serving beam is maintained.
  • the transceiver module 1402 is further configured to: if the signal quality of the second reference signal in the second measurement result is greater than or equal to the second threshold, receive the first confirmation message from the network device; the processing module 1401 Also used for: switching to the first beam corresponding to the second reference signal;
  • the transceiver module 1402 is further configured to: if the signal quality of the second reference signal in the second measurement result is less than the second threshold, then receive a first negative message from the network device; the processing module 1401 is further configured to: maintain the current serving beam.
  • the transceiver module 1402 is also used to:
  • the processing module 1401 is also used for:
  • the first indication information indicates that the communication device 1400 switches to the first beam corresponding to the second reference signal, switch to the first beam; or,
  • the first indication information indicates that the communication device 1400 maintains the current service beam, then maintain the current service beam.
  • the transceiver module 1402 is further configured to: if the signal quality of the second reference signal in the second measurement result is greater than or equal to a second threshold, receive the first indication information from the network device, and the second The instruction information instructs the communication device 1400 to switch to the first beam corresponding to the second reference signal; the processing module 1401 is further configured to: switch to the first beam; or,
  • the transceiver module 1402 is further configured to: if the signal quality of the second reference signal in the second measurement result is less than the second threshold, receive first indication information from the network device, the first indication information instructs the communication device 1400 to maintain the current service beam;
  • the processing module 1401 is also configured to: maintain the current serving beam.
  • the processing module 1401 is further configured to:
  • the first type of measurement continues on the first reference signal.
  • processing module 1401 is also used to:
  • the transceiver module 1402 is also used for:
  • the transceiver module 1402 is also used for:
  • processing module 1401 is also used to:
  • the first condition includes: the signal quality of the second reference signal in the second measurement result is greater than or equal to the second threshold, and the signal quality of the second reference signal The quality is greater than the signal quality of the fourth reference signal in the fourth measurement result; or,
  • the second condition includes: the signal quality of the fourth reference signal in the fourth measurement result is greater than or equal to the second threshold, and the signal quality of the fourth reference signal the quality is greater than the signal quality of the second reference signal; or,
  • the third condition includes: the signal quality of the second reference signal in the second measurement result and the signal quality of the fourth reference signal in the fourth measurement result are both smaller than the second threshold.
  • the transceiver module 1402 is also used to:
  • the processing module 1401 is also used for:
  • the second feedback message is the second confirmation message, and the signal quality of the second reference signal in the second measurement result is greater than the signal quality of the fourth reference signal in the fourth measurement result, switch to the first beam corresponding to the second reference signal ;or,
  • the second feedback message is the second confirmation message, and the signal quality of the fourth reference signal in the fourth measurement result is greater than the signal quality of the second reference signal in the second measurement result, then switch to the fourth reference signal corresponding to the fourth reference signal.
  • the current serving beam is maintained.
  • the transceiver module 1402 is also used to:
  • the processing module 1401 is also used for:
  • the second indication information indicates that the communication device 1400 switches to the first beam corresponding to the second reference signal, switch to the first beam; or,
  • the second indication information indicates that the communication device 1400 switches to the second beam corresponding to the fourth reference signal, switch to the second beam; or,
  • the second indication information indicates that the communication device 1400 maintains the current service beam, then maintain the current service beam.
  • the transceiver module 1402 is also used to:
  • the second confirmation message is used to instruct the communication device 1400 to switch to the first beam corresponding to the second reference signal; the processing module 1401 is also used to: switch to the first beam corresponding to the second reference signal; or,
  • the transceiver module 1402 is also used for: if the signal quality of the fourth reference signal in the fourth measurement result is greater than or equal to the second threshold, and the signal quality of the fourth reference signal is greater than the signal quality of the second reference signal in the second measurement result, receive A second confirmation message from the network device; the second confirmation message is used to instruct the communication apparatus 1400 to switch to the second beam corresponding to the fourth reference signal; the processing module 1401 is also used to: switch to the second beam corresponding to the fourth reference signal; or,
  • the transceiver module 1402 is further configured to: if the signal quality of the second reference signal in the second measurement result and the signal quality of the fourth reference signal in the fourth measurement result are both smaller than the second threshold, receive a second negative message from the network device; The second negative message is used to instruct the communication device 1400 to keep the current service beam; the processing module 1401 is also used to: keep the current service beam.
  • the transceiver module 1402 is further configured to: if the signal quality of the second reference signal in the second measurement result is greater than or equal to the second threshold, the signal quality of the second reference signal is greater than the signal quality of the fourth measurement result If the signal quality corresponding to the fourth reference signal is received, the second indication information from the network device is received, and the second indication information instructs the communication device 1400 to switch to the first beam corresponding to the second reference signal; the processing module 1401 is further configured to: switch to first beam; or,
  • the transceiver module 1402 is also used for: if the signal quality of the fourth reference signal in the fourth measurement result is greater than or equal to the second threshold, and the signal quality of the fourth reference signal is greater than the signal quality of the second reference signal in the second measurement result, receive The second instruction information from the network device, the second instruction information instructs the communication apparatus 1400 to switch to the second beam corresponding to the fourth reference signal; the processing module 1401 is also used to: switch to the second beam; or,
  • the transceiver module 1402 is further configured to: if the signal quality of the second reference signal in the second measurement result and the signal quality of the fourth reference signal in the fourth measurement result are both smaller than the second threshold, receive second indication information from the network device, The second indication information instructs the communication apparatus 1400 to maintain the current service beam; the processing module 1401 is further configured to: maintain the current service beam.
  • the processing module 1401 is further configured to:
  • the first type of measurement continues to be performed on the first reference signal and the third reference signal.
  • the transceiver module 1402 is also used to:
  • the apparatus 1400 performs a second type of measurement on the second reference signal based on the first measurement result.
  • the first type of measurement includes the communication device 1400 performing periodic measurement on the reference signal
  • the second type of measurement includes the communication device 1400 performing semi-persistent measurement on the reference signal resource
  • the first type of measurement includes the communication device 1400 performing periodic measurement on the reference signal
  • the second type of measurement includes the communication device 1400 performing aperiodic measurement on the reference signal
  • the first type of measurement includes the communication device 1400 performing semi-persistent measurement on the reference signal
  • the second type of measurement includes the communication device 1400 performing aperiodic measurement on the reference signal.
  • the transceiver module 1402 is also used to:
  • processing module 1401 is specifically configured to:
  • the communications device 1400 initiates a beam for beam switching.
  • processing module 1401 is also used to:
  • the first set of beams is updated according to a first rule.
  • processing module 1401 is specifically configured to:
  • the beams in the first beam set are updated to beams corresponding to one or more TCI states activated by the network device for the communication apparatus 1400, to obtain the updated first beam set.
  • the transceiver module 1402 is also used to:
  • the third beam deleted by the communication device 1400 from the first beam set is not used for the communication device 1400 to initiate beam switching after the first preset time period from the moment when the communication device 1400 sends the third determination message ;
  • the third beam can still be used by the communication device 1400 to initiate beam switching.
  • the transceiver module 1402 is also used to:
  • Receive fourth instruction information from the network device where the fourth instruction information instructs the communication apparatus 1400 to enable the function of updating the first beam set using the TCI state activated by the network equipment for the communication apparatus 1400 .
  • processing module 1401 is specifically configured to:
  • the fifth measurement result includes the measurement result of one or more reference signal resources measured and reported by the communication device 1400, each of the one or more reference signal resources corresponds to one TCI State, X TCI states are the TCI states corresponding to the first X reference signal resources with the strongest signal quality in the fifth measurement result, X is an integer greater than or equal to 1; update the beams in the first beam set to X TCI The beam corresponding to the state is obtained to obtain the updated first beam set.
  • the updated first beam set includes beams corresponding to the fifth reference signal; the processing module 1401 is further configured to:
  • the measurement results reported by the communication device 1400 for Y consecutive times do not include the measurement results of the beam corresponding to the fifth reference signal, it is determined that the beam corresponding to the fifth reference signal is not used for the communication device 1400 to initiate beam switching, and Y is greater than or equal to 1 integer.
  • the processing module 1401 in the foregoing embodiments may be implemented by at least one processor or processor-related circuits.
  • the transceiver module 1402 may be implemented by a transceiver or transceiver-related circuits.
  • the transceiver module 1402 may also be referred to as a communication module or a communication interface.
  • the storage module can be realized by at least one memory.
  • the communication device shown in Figure 14 above may also be used to implement the following solutions:
  • the processing module 1401 is configured to perform a first type of measurement on the first reference signal to obtain a first measurement result; perform a second type of measurement on the second reference signal based on the first measurement result to obtain a second measurement result;
  • the first measurement result includes the measurement result of the first reference signal measured continuously by the communication device 1400 for N times, where N is an integer greater than or equal to 1; the processing module 1401 is specifically configured to:
  • the signal quality of the first reference signal in the measurement results of the first reference signal measured by the communication device 1400 for N consecutive times is greater than or equal to the first threshold, perform a second type of measurement on the second reference signal to obtain a second measurement result; or,
  • the second reference signal is performed.
  • a second type of measurement is used to obtain a second measurement result.
  • FIG. 15 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device may be used to execute the processes performed by the network device in the embodiments shown in FIG. 5 , FIG. 7 to FIG. 10 , and for details, please refer to relevant introductions in the foregoing method embodiments.
  • the communication device 1500 includes a transceiver module 1501 .
  • the communication device 1500 further includes a processing module 1502 .
  • the transceiver module 1501 can implement corresponding communication functions, and the processing module 1502 is used for data processing.
  • the transceiver module 1501 may also be called a communication interface or a communication module.
  • the communication device 1500 may further include a storage module, which may be used to store instructions and/or data, and the processing module 1502 may read the instructions and/or data in the storage module, so that the communication device implements the foregoing method Example.
  • a storage module which may be used to store instructions and/or data
  • the processing module 1502 may read the instructions and/or data in the storage module, so that the communication device implements the foregoing method Example.
  • the communication apparatus 1500 may be used to perform the actions performed by the network device in the above method embodiments.
  • the communication apparatus 1500 may be a network device or a component configurable in the network device.
  • the transceiver module 1501 is configured to perform operations related to reception on the network device side in the method embodiments above
  • the processing module 1502 is configured to perform operations related to processing on the network device side in the method embodiments above.
  • the transceiver module 1501 may include a sending module and a receiving module.
  • the sending module is configured to perform the sending operation in the above method embodiments.
  • the receiving module is configured to perform the receiving operation in the above method embodiments.
  • the communication device 1500 may include a sending module instead of a receiving module.
  • the communication device 1500 may include a receiving module instead of a sending module. Specifically, it may depend on whether the above solution executed by the communication device 1500 includes a sending action and a receiving action.
  • the transceiver module 1501 is configured to receive a first measurement result from the terminal device, where the first measurement result is a measurement result obtained by the terminal device performing a first type of measurement on the first reference signal; receive a second measurement result from the terminal device, the second The measurement result is a measurement result obtained by the terminal device performing the second type of measurement on the second reference signal based on the first measurement result.
  • the transceiver module 1501 is also used to:
  • the first configuration information is used to indicate: if the signal quality of the first reference signal in the measurement results of the first reference signal reported by the terminal device for N consecutive times is greater than or equal to the first threshold, the terminal device The device triggers the second type of measurement on the second reference signal and reports the measurement result, where N is an integer greater than or equal to 1; or,
  • the first configuration information is used to indicate: if the signal quality of the first reference signal in the measurement results of the first reference signal reported by the terminal device for N consecutive times is greater than or equal to the signal quality of the reference signal corresponding to the current serving beam of the terminal device, then The terminal device triggers the second type of measurement on the second reference signal and reports the measurement result.
  • the communication device further includes a processing module 1502;
  • a processing module 1502 configured to determine that the terminal device switches to the first beam corresponding to the second reference signal if the signal quality of the second reference signal in the second measurement result is greater than or equal to the second threshold; or, if the second measurement As a result, if the signal quality of the second reference signal is less than the second threshold, it is determined that the terminal device maintains the current serving beam.
  • the transceiver module 1501 is also used to:
  • the first feedback message is a first confirmation message, and the first confirmation message is used to instruct the terminal device to switch to the first beam; or, the first feedback message is a first negative message, and the first negative message is used to instruct the terminal device to keep the current service beam.
  • the transceiver module 1501 is also used to:
  • a first confirmation message is sent to the terminal device, and the first confirmation message is used to instruct the terminal device to switch to the first beam corresponding to the second reference signal ;or,
  • a first negative message is sent to the terminal device, where the first negative message is used to instruct the terminal device to keep the current serving beam.
  • the transceiver module 1501 is also used to:
  • the first instruction information instructs the terminal device to switch to the first beam corresponding to the second reference signal; or, the first instruction information instructs the terminal device to maintain the current serving beam or not to perform beam switching.
  • the transceiver module 1501 is also used to:
  • the first indication information is sent to the terminal device, where the first indication information instructs the terminal device to maintain the current serving beam or not to perform beam switching.
  • the transceiver module 1501 is also used to:
  • the fourth measurement result is a measurement result obtained by the terminal device performing the second type of measurement on the fourth reference signal based on the third measurement result.
  • processing module 1502 is also used to:
  • the first condition includes: the signal quality of the second reference signal in the second measurement result is greater than or equal to the second threshold, and the second reference The signal quality of the signal is greater than the signal quality of the fourth reference signal in the fourth measurement result; or,
  • the second condition includes: the signal quality of the second reference signal in the fourth measurement result is greater than or equal to the second threshold, and the second The signal quality of the four reference signals is greater than the signal quality of the second reference signal; or,
  • the third condition includes: the signal quality of the second reference signal in the second measurement result and the signal quality of the fourth reference signal in the fourth measurement result are both smaller than the second threshold.
  • the transceiver module 1501 is also used to:
  • the second feedback message is a second confirmation message
  • the second confirmation message is used to instruct the terminal device to switch to the beam with the best signal quality.
  • the beam with the best signal quality is the first beam corresponding to the second reference signal and the fourth reference signal.
  • the beam with the best signal quality among the second beams corresponding to the signal; or, the second feedback message is a second negative message, and the second negative message is used to instruct the terminal device to keep the current serving beam.
  • the transceiver module 1501 is also used to:
  • the second confirmation message is used to instruct the terminal device to switch to the first beam corresponding to the second reference signal
  • the signal quality of the fourth reference signal in the fourth measurement result is greater than or equal to the second threshold, and the signal quality of the fourth reference signal is greater than the signal quality of the second reference signal in the second measurement result, sending a second confirmation to the terminal device message, the second confirmation message is used to instruct the terminal device to switch to the second beam corresponding to the fourth reference signal; or,
  • the device If the signal quality of the second reference signal in the second measurement result and the signal quality of the fourth reference signal in the fourth measurement result are both less than the second threshold, send a second negative message to the terminal device, and the second negative message is used to indicate the terminal The device maintains the current serving beam.
  • the transceiver module 1501 is also used to:
  • the second indication information instructs the terminal device to switch to the first beam corresponding to the second reference signal; or, the second indication information instructs the terminal device to switch to the second beam corresponding to the fourth reference signal; or, the second indication information indicates the terminal The device maintains the current serving beam.
  • the transceiver module 1501 is also used to:
  • the second indication information instructs the terminal device to switch to the first beam corresponding to the second reference signal
  • the signal quality of the fourth reference signal in the fourth measurement result is greater than or equal to the second threshold, and the signal quality of the fourth reference signal is greater than the signal quality of the second reference signal in the second measurement result, sending a second indication to the terminal device information, the second indication information instructs the terminal device to switch to the second beam corresponding to the fourth reference signal; or,
  • the first type of measurement includes the terminal device performing periodic measurement on the reference signal
  • the second type of measurement includes the terminal device performing semi-persistent measurement on the reference signal resource
  • the first type of measurement includes the terminal device performing periodic measurement on the reference signal
  • the second type of measurement includes the terminal device performing aperiodic measurement on the reference signal
  • the first type of measurement includes that the terminal device performs semi-persistent measurement on the reference signal
  • the second type of measurement includes that the terminal device performs aperiodic measurement on the reference signal
  • the transceiver module 1501 is also used to:
  • processing module 1502 is specifically configured to:
  • the first beam set includes The beam to which the beam is switched.
  • the first beam belongs to a first beam set, and the first beam set includes beams for a terminal device to initiate beam switching.
  • processing module 1502 is also used to:
  • the first set of beams is updated according to a first rule.
  • processing module 1502 is specifically configured to:
  • the beams in the first beam set are updated to beams corresponding to one or more TCI states activated by the communication apparatus for the terminal equipment, to obtain the updated first beam set.
  • the transceiver module 1501 is also used to:
  • the third beam deleted by the communication device from the first beam set is not used for the terminal device to initiate beam switching after the first preset time period from the moment when the terminal device sends the third determination message;
  • the third beam can still be used by the terminal device to initiate beam switching.
  • the transceiver module 1501 is also used to:
  • processing module 1502 is specifically configured to:
  • the fifth measurement result includes the measurement results of one or more reference signals measured and reported by the terminal device, each of the one or more reference signals corresponds to a TCI state, X
  • the TCI state is the TCI state corresponding to the first X reference signal resources with the strongest signal quality in the fifth measurement result, where X is an integer greater than or equal to 1;
  • the communication device updates the beams in the first beam set to X TCI The beam corresponding to the state is obtained to obtain the updated first beam set.
  • the updated first beam set includes beams corresponding to the fifth reference signal; the processing module 1502 is further configured to:
  • the beam corresponding to the fifth reference signal is not used for the terminal equipment to initiate beam switching, and Y is an integer greater than or equal to 1 .
  • the processing module 1502 in the foregoing embodiments may be implemented by at least one processor or processor-related circuits.
  • the transceiver module 1501 may be implemented by a transceiver or transceiver-related circuits.
  • the transceiver module 1501 can also be called a communication module or a communication interface.
  • the storage module can be realized by at least one memory.
  • the communication device shown in Figure 15 above may also be used to implement the following solutions:
  • the transceiver module 1501 is configured to receive a second measurement result from the terminal device, the second measurement result is a measurement result obtained by the terminal device from performing a second type of measurement on a second reference signal based on the first measurement result; the first measurement result is a measurement result obtained by the terminal device A measurement result obtained by performing the first type of measurement on the first reference signal.
  • the first configuration information is used to indicate: if the signal quality of the first reference signal in the measurement results of the first reference signal measured by the terminal device for N consecutive times is greater than or equal to the first threshold, the terminal device Triggering the second type of measurement on the second reference signal and reporting the measurement result, where N is an integer greater than or equal to 1; or,
  • the first configuration information is used to indicate: if the signal quality of the first reference signal in the measurement results of the first reference signal measured by the terminal device for N consecutive times is greater than or equal to the signal quality of the reference signal corresponding to the current serving beam of the terminal device, then The terminal device triggers the second type of measurement on the second reference signal and reports the measurement result.
  • FIG. 16 is a schematic structural diagram of a communication device according to an embodiment of the present application. Please refer to Figure 16, the communication device can be used to execute the process performed by the communication device in the embodiment shown in Figure 11, and the process performed by the network device or terminal device in the embodiment shown in Figure 13, please refer to the above method embodiment for details Related introductions in .
  • the communication device 1600 includes a processing module 1601 ; optionally, the communication device 1600 further includes a transceiver module 1602 .
  • the transceiver module 1602 can implement corresponding communication functions, and the processing module 1601 is used for data processing.
  • the transceiver module 1602 may also be called a communication interface or a communication module.
  • the communication device 1600 may further include a storage module, which may be used to store instructions and/or data, and the processing module 1601 may read the instructions and/or data in the storage module, so that the communication device implements the foregoing method Example.
  • a storage module which may be used to store instructions and/or data
  • the processing module 1601 may read the instructions and/or data in the storage module, so that the communication device implements the foregoing method Example.
  • the communication apparatus 1600 may be used to perform the actions performed by the communication device in the method embodiment shown in FIG. 11 above.
  • the communication apparatus 1600 may be a communication device or a component configurable in the communication device.
  • the transceiver module 1602 is configured to perform operations related to reception on the communication device side in the method embodiments above, and the processing module 1601 is configured to perform operations related to processing on the communication device side in the method embodiments above.
  • the communication apparatus 1600 may be used to perform the actions performed by the network device or the terminal device in the method embodiment shown in FIG. 13 above.
  • the communication apparatus 1600 may be a network device or a terminal device, or may be configured as a component of the network device or the terminal device.
  • the transceiver module 1602 is used to perform reception-related operations on the terminal device or network device side in the method embodiment shown in Figure 13 above, and the processing module 1601 is used to perform terminal device or network Processing-related operations on the device side.
  • the transceiver module 1602 may include a sending module and a receiving module.
  • the sending module is configured to perform the sending operation in the above method embodiments.
  • the receiving module is configured to perform the receiving operation in the above method embodiments.
  • the communication device 1600 may include a sending module instead of a receiving module.
  • the communication device 1600 may include a receiving module instead of a sending module. Specifically, it may depend on whether the foregoing solution executed by the communication device 1600 includes a sending action and a receiving action.
  • the processing module 1601 is configured to determine a first beam set, where the first beam set includes beams for a terminal device to initiate beam switching; and update the first beam set according to a first rule.
  • processing module 1601 is specifically configured to:
  • the beams in the first beam set are updated to beams corresponding to one or more activated TCI states in which the network device is the terminal device, to obtain the updated first beam set.
  • the communication device is a terminal device, and the communication device further includes a transceiver module 1602;
  • the transceiver module 1602 is configured to receive third indication information from the network device, where the third indication information indicates one or more TCI states activated for the terminal device; and send a third confirmation message to the network device, where the third confirmation message is used to indicate the terminal The device successfully receives the third indication information.
  • the third beam deleted by the terminal device from the first beam set is not used for the terminal device to initiate beam switching after the first preset time period from the moment when the terminal device sends the third confirmation message;
  • the third beam can still be used by the terminal device to initiate beam switching.
  • the communication device is a terminal device, and the transceiver module 1602 is also used for:
  • processing module 1601 is specifically configured to:
  • the fifth measurement result includes the measurement results of one or more reference signals measured and reported by the terminal device, each of the one or more reference signals corresponds to a TCI state, X
  • the TCI state is the TCI state corresponding to the first X reference signals with the strongest signal quality in the fifth measurement result, and X is an integer greater than or equal to 1; the beams in the first beam set are updated to correspond to the X TCI states Beam, the updated first beam set is obtained.
  • the updated first beam set includes beams corresponding to the fifth reference signal; the output processing module 1601 is further configured to:
  • the beam corresponding to the fifth reference signal is not used for the terminal equipment to initiate beam switching, and Y is an integer greater than or equal to 1 .
  • the communication device is a terminal device; the processing module 1601 is further configured to:
  • Beam switching is initiated based on the first set of beams.
  • the processing module 1601 in the foregoing embodiments may be implemented by at least one processor or processor-related circuits.
  • the transceiver module 1602 may be implemented by a transceiver or transceiver-related circuits.
  • the transceiver module 1602 may also be referred to as a communication module or a communication interface.
  • the storage module can be realized by at least one memory.
  • the embodiment of the present application also provides a communication device 1700 .
  • the communication device 1700 includes a processor 1710, the processor 1710 is coupled with a memory 1720, the memory 1720 is used for storing computer programs or instructions and/or data, and the processor 1710 is used for executing the computer programs or instructions and/or data stored in the memory 1720, The methods in the above method embodiments are executed.
  • the communication device 1700 includes one or more processors 1710 .
  • the communication device 1700 may further include a memory 1720 .
  • the communication device 1700 may include one or more memories 1720 .
  • the memory 1720 may be integrated with the processor 1710, or set separately.
  • the communication device 1700 may further include a transceiver 1730, and the transceiver 1730 is used for receiving and/or sending signals.
  • the processor 1710 is configured to control the transceiver 1730 to receive and/or send signals.
  • the communication apparatus 1700 is configured to implement the operations performed by the network device, the terminal device, or the communication device in the above method embodiments.
  • the processor 1710 is used to implement the processing-related operations performed by the network device, the terminal device, or the communication device in the method embodiments above
  • the transceiver 1730 is used to implement the processing-related operations performed by the network device, the terminal device, or the communication device in the method embodiments above. Or operations related to sending and receiving performed by the communication device.
  • the present application also provides a communication apparatus 1800, where the communication apparatus 1800 may be a terminal device, a processor of the terminal device, or a chip.
  • the communication apparatus 1800 may be configured to perform operations performed by a terminal device or a communication device in the foregoing method embodiments.
  • FIG. 18 shows a schematic structural diagram of a simplified terminal device.
  • the terminal device includes a processor, a memory, and a transceiver.
  • the memory can store computer program codes
  • the transceiver includes a transmitter 1831, a receiver 1832, a radio frequency circuit (not shown in the figure), an antenna 1833, and an input and output device (not shown in the figure).
  • the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, process data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices For example, touch screens, display screens, keyboards, etc. are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • a memory may also be called a storage medium or a storage device. The memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with the transceiver function may be regarded as the transceiver module of the terminal device, and the processor with the processing function may be regarded as the processing module of the terminal device.
  • the terminal device includes a processor 1810 , a memory 1820 and a transceiver 1830 .
  • the processor 1810 may also be called a processing unit, a processing board, a processing module, a processing device, etc.
  • the transceiver 1830 may also be called a transceiver unit, a transceiver, a transceiver device, and the like.
  • the device in the transceiver 1830 for realizing the receiving function may be regarded as a receiving module
  • the device in the transceiver 1830 for realizing the sending function may be regarded as a sending module
  • the transceiver 1830 includes a receiver and a transmitter.
  • a transceiver may sometimes be called a transceiver, a transceiver module, or a transceiver circuit, etc.
  • a receiver may sometimes be called a receiver, a receiving module, or a receiving circuit, etc.
  • the transmitter can sometimes be called a transmitter, a transmitting module, or a transmitting circuit, etc.
  • the processor 1810 is configured to perform processing actions on the terminal device side in the embodiment shown in FIG. 5
  • the transceiver 1830 is configured to perform transceiving actions on the terminal device side in FIG. 4
  • the processor 1810 is used to execute 501 and 503 in the embodiment shown in FIG. 5
  • the transceiver 1830 is used to execute 502 and 504 in the embodiment shown in FIG. 5 .
  • the processor 1810 is configured to execute processing actions on the terminal device side in the embodiment shown in FIG. 7 .
  • the processor 1810 is configured to execute 701 to 703 in the embodiment shown in FIG. 7 .
  • the processor 1810 is configured to perform processing actions on the terminal device side in the embodiment shown in FIG. 8
  • the transceiver 1830 is configured to perform transceiving actions on the terminal device side in FIG. 8
  • the transceiver 1830 is used to execute 801 in the embodiment shown in FIG. 8
  • the processor 1810 is used to execute 802 and 803 in the embodiment shown in FIG. 8 .
  • the processor 1810 is configured to execute processing actions on the terminal device side in the embodiment shown in FIG. 9 .
  • the processor 1810 is configured to execute 901 to 903 in the embodiment shown in FIG. 9 .
  • the processor 1810 is configured to execute processing actions on the terminal device side in the embodiment shown in FIG. 10
  • the transceiver 1830 is configured to execute transceiving actions on the terminal device side in FIG. 10
  • the transceiver 1830 is used to execute 1001 in the embodiment shown in FIG. 10
  • the processor 1810 is used to execute 1002 and 1003 in the embodiment shown in FIG. 10 .
  • the processor 1810 is configured to execute processing actions on the terminal device side in the embodiment shown in FIG. 11 .
  • the processor 1810 is configured to execute 1001 to 1002 in the embodiment shown in FIG. 11 .
  • the processor 1810 is configured to perform processing actions on the terminal device side in the embodiment shown in FIG. 13
  • the transceiver 1830 is configured to perform transceiving actions on the terminal device side in FIG. 13
  • the transceiver 1830 is used to execute 1301 and 1303 in the embodiment shown in FIG. 13
  • the processor 1810 is used to execute 1302 in the embodiment shown in FIG. 13 .
  • FIG. 18 is only an example rather than a limitation, and the foregoing terminal device including a transceiver module and a processing module may not depend on the structure shown in FIG. 14 or FIG. 16 .
  • the chip When the communication device 1800 is a chip, the chip includes a processor, a memory and a transceiver.
  • the transceiver may be an input-output circuit or a communication interface;
  • the processor may be a processing module or a microprocessor or an integrated circuit integrated on the chip.
  • the present application also provides a communication device 1900, and the communication device 1900 may be a network device or a chip.
  • the communication device 1900 can be used to perform the operations performed by the network device in the above-mentioned method embodiments shown in FIG. 5, FIG. 7 to FIG. 10 and FIG. operations performed by the communication device.
  • the communication device 1900 is a network device, it is, for example, a base station.
  • Fig. 19 shows a simplified structure diagram of a base station.
  • the base station includes a 1910 part, a 1920 part and a 1930 part.
  • the part 1910 is mainly used for baseband processing, controlling the base station, etc.; the part 1910 is usually the control center of the base station, which can usually be called a processor, and is used to control the base station to perform processing operations on the network device side in the above method embodiments.
  • Part 1920 is primarily used to store computer program code and data.
  • the 1930 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals; the 1930 part can usually be called a transceiver module, a transceiver, a transceiver circuit, or a transceiver.
  • the transceiver module of part 1930 may also be referred to as a transceiver or transceiver, etc., which includes an antenna 1933 and a radio frequency circuit (not shown in the figure), wherein the radio frequency circuit is mainly used for radio frequency processing.
  • the device used to implement the receiving function in part 1930 can be regarded as a receiver, and the device used to realize the sending function can be regarded as a transmitter, that is, part 1930 includes a receiver 1932 and a transmitter 1931 .
  • the receiver can also be called a receiving module, a receiver, or a receiving circuit, etc.
  • the transmitter can be called a transmitting module, a transmitter, or a transmitting circuit, etc.
  • Part 1910 and part 1920 may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to realize baseband processing functions and control the base station. If there are multiple single boards, each single board can be interconnected to enhance the processing capability. As an optional implementation, it is also possible that multiple single boards share one or more processors, or that multiple single boards share one or more memories, or that multiple single boards share one or more processors at the same time. device.
  • the transceiving module in part 1930 is configured to perform transceiving-related processes performed by the network device in the embodiments shown in FIG. 5 , FIG. 7 to FIG. 10 .
  • the processor in part 1910 is configured to execute processing-related procedures executed by the network device in the embodiments shown in FIG. 5 , FIG. 7 to FIG. 10 .
  • the processor in part 1910 is configured to execute processing-related procedures executed by the communication device in the embodiment shown in FIG. 11 .
  • the transceiving module in part 1930 is configured to perform processes related to transceiving performed by the network device in the embodiment shown in FIG. 13 .
  • FIG. 19 is only an example rather than a limitation, and the foregoing network device including a processor, a memory, and a transceiver may not depend on the structure shown in FIG. 14 or FIG. 15 .
  • the chip When the communication device 1900 is a chip, the chip includes a transceiver, a memory and a processor.
  • the transceiver may be an input-output circuit or a communication interface;
  • the processor may be a processor integrated on the chip, or a microprocessor, or an integrated circuit.
  • the sending operation of the network device in the above method embodiment can be understood as the output of the chip, and the receiving operation of the network device in the above method embodiment can be understood as the input of the chip.
  • the embodiment of the present application also provides a computer-readable storage medium, including computer instructions, and when the computer instructions are run on the computer, the methods shown in the above method embodiments are executed.
  • the embodiments of the present application also provide a computer program product including instructions, which, when run on a computer, cause the methods shown in the above method embodiments to be executed.
  • An embodiment of the present application further provides a communication system, where the communication system includes the terminal device and the network device in the foregoing embodiments.
  • the embodiment of the present application also provides a chip device, including a processor, which is used to call the computer programs or computer instructions stored in the memory, so that the processor executes the above-mentioned steps shown in FIG. 5 , FIG. 7 to FIG. 11 and FIG. 13 .
  • the input of the chip device corresponds to the receiving operation in the embodiment shown in the above-mentioned Fig. 5, Fig. 7 to Fig. 11 and Fig. 13, and the output of the chip device corresponds to the above-mentioned Fig. 5, Fig. 7 to Fig. 11 and the sending operation in the embodiment shown in FIG. 13 .
  • the processor is coupled to the memory through an interface.
  • the chip device further includes a memory in which computer programs or computer instructions are stored.
  • the processor mentioned in any of the above-mentioned places can be a general-purpose central processing unit, a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), or one or more for controlling the above-mentioned Fig. 5, An integrated circuit for program execution of the method provided by the embodiments shown in FIG. 7 to FIG. 11 and FIG. 13 .
  • the memory mentioned in any of the above can be read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
  • a terminal device or a network device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer may include hardware such as a central processing unit (central processing unit, CPU), a memory management module (memory management unit, MMU), and memory (also called main memory).
  • the operating system of the operating system layer can be any one or more computer operating systems that realize business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer may include applications such as browsers, address books, word processing software, and instant messaging software.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or modules may be in electrical, mechanical or other forms.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or may be distributed to multiple network modules. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, each module may exist separately physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • the integrated modules are realized in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application that contributes substantially or all or part of the technical solution may be embodied in the form of a software product, the computer software product is stored in a storage medium, including several instructions for Make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the processes of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法和通信装置。本申请实施例方法包括:终端设备对第一参考信号进行第一类型测量,得到第一测量结果;所述终端设备向网络设备发送第一测量结果;所述终端设备基于所述第一测量结果对第二参考信号进行第二类型测量,得到第二测量结果;所述终端设备向所述网络设备发送所述第二测量结果。由此可知,通过上述技术方案实现终端设备向网络设备上报第二测量结果,无需由网络设备通过下行控制信息触发终端设备上报测量结果,从而降低信令开销和时延开销。提高了终端设备上报的第二测量结果的可靠性。进一步的,有利于网络设备基于第二测量结果为终端设备选择合适切换波束,从而提高通信质量。

Description

通信方法以及通信装置
本申请要求于2021年11月29日提交中国专利局,申请号为202111434486.6,发明名称为“通信方法以及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法以及相关装置。
背景技术
第五代移动通信系统(5th generation,5G)可以采用高频通信,即采用超高频段(>6GHz)信号传输数据。高频通信的一个主要问题是信号能量随传输距离急剧下降,导致信号传输距离短。为了克服这个问题,高频通信采用模拟波束技术,通过对天线阵列进行加权处理,将信号能量集中在一个较小的角度范围内,形成一个类似于光束一样的信号(称为模拟波束,简称波束),从而提高传输距离。
终端设备在高速移动的情况下,需要进行相对较频繁的波束切换。基站配置终端设备对参考信号进行测量。当基站需要触发终端设备上报测量结果时,基站可以通过下行控制信息(downlink control indication,DCI)触发终端设备上报测量结果。终端设备基于DCI向基站上报测量结果,以便于基站基于该测量结果向终端设备指示波束。终端设备可以切换到该波束,从而提高终端设备的通信质量。
由此可知,基站通过DCI触发终端设备上报测量结果的过程带来了相应的信令开销。因此,如何触发终端设备上报测量结果以降低信令开销是值得考虑的问题。
发明内容
本申请提供了一种通信方法和通信装置,用于降低信令开销。
本申请第一方面提供一种通信方法,方法包括:
终端设备对第一参考信号进行第一类型测量,得到第一测量结果;终端设备向网络设备发送第一测量结果;终端设备基于第一测量结果对第二参考信号进行第二类型测量,得到第二测量结果;终端设备向网络设备发送第二测量结果。
上述技术方案中,终端设备对第一参考信号进行第一类型测量,得到第一测量结果,并向网络设备发送第一测量结果。终端设备基于第一测量结果触发终端设备对第二参考信号进行第二类型测量,并上报第二测量结果。实现终端设备向网络设备上报第二测量结果,无需由网络设备通过DCI触发终端设备上报测量结果,从而降低信令开销。终端设备基于第一测量结果对第二参考信号进行第二类型测量,并上报第二测量结果。有利于提高终端设备上报的第二测量结果的可靠性,避免由于短时链路质量波动造成的影响导致终端设备上报的第二测量结果并不能真实的反映链路的整体情况。进一步的,有利于网络设备基于第二测量结果为终端设备选择合适的波束,从而降低终端设备切换波束的时延开销,提高通信质量。
一种可能的实现方式中,第一测量结果包括终端设备连续N次上报的第一参考信号的测量结果,N为大于或等于1的整数;终端设备根据第一测量结果对第二参考信号进行第二类型测量,得到第二测量结果,包括:
若终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于第一阈值,则终端设备对第二参考信号进行第二类型测量,得到第二测量结果;或者,
若终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于终端设备当前的服务波束对应的参考信号的信号质量,则终端设备对第二参考信号进行第二类型测量,得到第二测量结果。
上述示出了触发终端设备对第二参考信号进行第二类型测量的一些可能的触发条件。基于终端设备连续N次上报的第一参考信号的测量结果触发终端设备进行第二类型测量,从而提高终端设备上报的第二测量结果的可靠性。避免由于短时链路质量波动造成的影响导致终端设备上报的测量结果并不能真实的反映链路的整体情况。进一步的,有利于网络设备基于第二测量结果为终端设备选择合适的波束,从而降低终端设备切换波束的时延开销,提高通信质量。
另一种可能的实现方式中,终端设备向网络设备发送所述第二测量结果之后,方法还包括:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则终端设备切换到第二参考信号对应的第一波束;或者,
若第二测量结果中第二参考信号的信号质量小于第二阈值,则终端设备保持当前的服务波束。
上述实现方式中,终端设备基于第一测量结果对第二参考信号进行第二类型测量,并上报第二测量结果。因此终端设备基于第二测量结果确定终端设备是否切换波束。有利于终端设备选择合适的波束,从而提高终端设备的通信质量。网络设备无需向终端设备指示切换波束,降低了信令开销。
另一种可能的实现方式中,终端设备向网络设备发送第二测量结果之后,方法还包括:
终端设备接收来自网络设备的第一反馈消息;
若第一反馈消息为第一确认消息,则终端设备切换至第二参考信号对应的第一波束;或者,
若第一反馈消息为第一否定消息,则终端设备保持当前的服务波束。
在该实现方式中,终端设备可以基于网络设备的第一反馈消息选择合适的波束,从而提高终端设备的通信质量。
另一种可能的实现方式中,终端设备向网络设备发送第二测量结果之后,方法还包括:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则终端设备接收来自网络设备的第一确认消息,终端设备切换到第二参考信号对应的第一波束;或者,
若第二测量结果中第二参考信号的信号质量小于第二阈值,则终端设备接收来自网络设备的第一否定消息,终端设备保持当前的服务波束。
在该实现方式中,示出了网络设备结合第二测量结果向终端设备发送反馈消息的具体实现方式。终端设备基于第一测量结果对第二参考信号进行第二类型测量,并上报第二测量结果。有利于提高终端设备上报的测量结果的可靠性,有利于网络设备指示终端设备切换到合适的波束,提升通信质量。
另一种可能的实现方式中,终端设备向网络设备发送第二测量结果之后,方法还包括:
终端设备接收来自网络设备的第一指示信息;
若第一指示信息指示终端设备切换到第二参考信号对应的第一波束,则终端设备切换至第一波束;或者,
若第一指示信息指示终端设备保持当前的服务波束,则终端设备保持当前的服务波束。
上述实现方式中,终端设备可以基于网络设备的第一指示信息切换到合适的波束,从而提高终端设备的通信质量。
另一种可能的实现方式中,若终端设备保持当前的服务波束,方法还包括:
终端设备继续对第一参考信号进行第一类型测量。
在该实现方式中,如果终端设备保持当前的服务波束,终端设备可以继续对第一参考信号进行第一类型测量,有利于终端设备基于第一类型测量得到的测量结果进行第二类型测量。便于终端设备向网络设备上报第二类型测量的测量结果,无需网络设备通过DCI调度终端设备上报第二类型测量的测量结果,从而降低信令开销。
另一种可能的实现方式中,终端设备向网络设备发送第二测量结果之后,方法还包括:
若第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,则终端设备接收来自网络设备的第一指示信息,第一指示信息指示终端设备切换到第二参考信号对应的第一波束,终端设备切换至第一波束;或者,
若第二测量结果中第二参考信号的信号质量小于第二阈值,则终端设备接收来自网络设备的第一指示信息,第一指示信息指示终端设备保持当前的服务波束,终端设备保持当前的服务波束。
在该实现方式中,示出了网络设备结合第二测量结果向终端设备发送指示信息的具体实现方式。终端设备基于第一测量结果对第二参考信号进行第二类型测量,并上报第二测量结果。有利于提高终端设备上报的测量结果的可靠性,有利于网络设备指示终端设备切换到合适的波束,提升通信质量。
另一种可能的实现方式中,方法还包括:
终端设备对第三参考信号进行第一类型测量,得到第三测量结果;终端设备向网络设备发送第三测量结果;终端设备基于第三测量结果对第四参考信号进行第二类型测量,得到第四测量结果;终端设备向网络设备发送第四测量结果。
上述实现方式中,终端设备通过本申请的技术方案实现对多个参考信号进行第二类型测量并上报相应的测量结果。无需由网络设备通过DCI触发终端设备上报测量结果,从而降低信令开销。终端设备基于对每个参考信号对应的波束进行第一类型测量得到的测量结果对该波束进行第二类型测量并上报测量结果。有利于提高终端设备上报的测量结果的可靠性,避免由于短时链路质量波动造成的影响导致终端设备上报的测量结果并不能真实的 反映链路的整体情况。有利于网络设备基于第二测量结果为终端设备选择合适的波束,从而降低终端设备切换波束的时延开销,提高通信质量。
另一种可能的实现方式中,终端设备向网络设备发送所述第四测量结果,方法还包括:
若满足第一条件,则终端设备切换到第二参考信号对应的第一波束,第一条件包括:第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量;或者,
若满足第二条件,则终端设备切换到所述第二波束,第二条件包括:第四测量结果中第四参考信号的信号质量大于或等于第二阈值,且第四参考信号的信号质量大于第二参考信号的信号质量;或者,
若满足第三条件,则终端设备保持当前的服务波束,终端设备继续对第一参考信号和第三参考信号进行第一类型测量,第三条件包括:第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值。
上述实现方式中,终端设备可以基于第二测量结果和第四测量结果确定终端设备切换到合适的波束,提高终端设备的通信质量。网络设备无需向终端设备指示切换波束,降低了信令开销。
另一种可能的实现方式中,终端设备向网络设备发送所述第四测量结果之后,方法还包括:
终端设备接收来自网络设备的第二反馈消息;
若第二反馈消息为第二确认消息,且第二测量结果中第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量,则终端设备切换到第一波束;或者,
若第二反馈消息为第二确认消息,且第四测量结果中第四参考信号的信号质量大于所述第二测量结果中第二参考信号的信号质量,则终端设备切换到第二波束;或者,
若第二反馈消息为第二否定消息,则终端设备保持当前的服务波束。
上述实现方式中,终端设备可以基于第二反馈消息切换到合适的波束,提高终端设备的通信质量。网络设备无需通过额外的信令向终端设备指示切换波束,降低了信令开销。
另一种可能的实现方式中,终端设备向网络设备发送第四测量结果之后,方法还包括:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量,则终端设备接收来自网络设备的第二确认消息,第二确认消息用于指示终端设备切换到第二参考信号对应的第一波束,终端设备切换到第二参考信号对应的第一波束;或者,
若第四测量结果中第四参考信号的信号质量大于或等于第二阈值,第四参考信号的信号质量大于第二测量结果中第二参考信号的信号质量,则终端设备接收来自网络设备的第二确认消息,终端设备切换到第四参考信号对应的第二波束;或者,
若第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值,则终端设备接收来自网络设备的第二否定消息,终端设备保持当前的服务波束。
在该实现方式中,示出了网络设备结合第二测量结果和第四测量结果向终端设备发送 反馈消息的具体实现方式。终端设备基于第一测量结果对第二参考信号进行第二类型测量,并上报第二测量结果。终端设备基于第三测量结果对第四参考信号进行第二类型测量并上报第四测量结果。有利于提高终端设备上报的测量结果的可靠性,有利于网络设备指示终端设备切换到合适的波束,提升通信质量。
另一种可能的实现方式中,方法还包括:
若终端设备没有接收到网络设备针对第二测量结果中的反馈消息,则终端设备保持当前的服务波束,终端设备继续对第一参考信号和第三参考信号进行第一类型测量。
在该实现方式中,如果终端设备没有接收网络设备的反馈消息,终端设备保持当前的服务波束,从而保证终端设备与网络设备之间的正常通信。
另一种可能的实现方式中,终端设备向网络设备发送第四测量结果之后,方法还包括:
终端设备接收来自网络设备的第二指示信息;
若第二指示信息指示终端设备切换到第二参考信号对应的第一波束,则终端设备切换到第一波束;或者,
若第二指示信息指示终端设备切换到第四参考信号对应的第二波束,则终端设备切换到第二波束;或者,
若第二指示信息指示终端设备保持当前的服务波束,则终端设备保持当前的服务波束。
上述实现方式中,终端设备可以基于第二指示信息切换到合适的波束,提高终端设备的通信质量。
另一种可能的实现方式中,终端设备向网络设备发送第四测量结果之后,方法还包括:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,第二参考信号的信号质量大于第四测量结果中所述第四参考信号对应的信号质量,则终端设备接收来自网络设备的第二指示信息,第二指示信息指示终端设备切换到第二参考信号对应的第一波束,终端设备切换到第一波束;或者,
若第四测量结果中第四参考信号的信号质量大于或等于第二阈值,第四参考信号的信号质量大于第二测量结果中第二参考信号的信号质量,则终端设备接收来自网络设备的第二指示信息,第二指示信息指示终端设备切换到第四参考信号对应的第二波束,终端设备切换到第二波束;或者,
若第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值,则终端设备接收来自网络设备的第二指示信息,第二指示信息指示终端设备保持当前的服务波束,终端设备保持当前的服务波束,终端设备继续对第一参考信号和第三参考信号进行第一类型测量。
在该实现方式中,示出了网络设备结合第二测量结果和第四测量结果向终端设备发送指示信息的具体实现方式。终端设备基于第一测量结果对第二参考信号进行第二类型测量,并上报第二测量结果。终端设备基于第三测量结果对第四参考信号进行第二类型测量并上报第四测量结果。有利于提高终端设备上报的测量结果的可靠性,有利于网络设备指示终端设备切换到合适的波束,提升通信质量。
另一种可能的实现方式中,若终端设备保持当前的服务波束,方法还包括:
终端设备继续对第一参考信号和第三参考信号进行第一类型测量。
在该实现方式中,如果终端设备保持当前的服务波束,终端设备可以继续对第一参考信号和第三参考信号进行第一类型测量,有利于终端设备基于第一类型测量得到的测量结果进行第二类型测量。便于终端设备向网络设备上报第二类型测量的测量结果,无需网络设备通过DCI调度终端设备上报第二类型测量的测量结果,从而降低信令开销。
另一种可能的实现方式中,方法还包括:
终端设备接收来自网络设备的第一配置信息,第一配置信息用于指示终端设备基于第一测量结果对第二参考信号进行第二类型测量并上报测量结果;或者,第一配置信息用于指示终端设备基于第一测量结果对第二参考信号进行第二类型测量。
上述实现方式中网络设备可以通过第一配置信息配置终端设备基于第一测量结果对第二参考信号进行第二类型测量并上报测量结果。实现终端设备向网络设备上报第二测量结果。无需由网络设备通过DCI触发终端设备上报测量结果,从而降低信令开销和时延开销。且有利于提高终端设备上报的测量结果的可靠性,避免由于短时链路质量波动造成的影响导致终端设备上报的测量结果并不能真实的反映链路的整体情况。有利于网络设备基于第二测量结果为终端设备选择合适的波束,从而提高通信质量。
另一种可能的实现方式中,第一类型测量包括终端设备对参考信号进行周期性测量,第二类型测量包括终端设备对参考信号资源进行半持续测量;或者,
第一类型测量包括终端设备对参考信号进行周期性测量,第二类型测量包括终端设备对参考信号进行非周期性测量;或者,
第一类型测量包括终端设备对参考信号进行半持续测量,第二类型测量包括终端设备对参考信号进行非周期性测量。
上述实现方式中示出了第一类型测量和第二类型测量的几种可能的实现方式,有利于提高方案的可实现性和多样性。
另一种可能的实现方式中,方法还包括:
终端设备接收来自网络设备的第二配置信息,第二配置信息用于指示终端设备对第一参考信号进行第一类型测量。
上述实现方式中网络设备可以通过第二配置信息指示终端设备对第一参考信号进行第一类型测量,从而实现本申请的方案的实施。
另一种可能的实现方式中,若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则终端设备切换到第一波束,包括:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第一波束属于第一波束集合,第一波束集合包括用于终端设备发起波束切换的波束。
上述实现方式中示出了终端设备切换到第一波束的具体条件,除了该第二参考信号的信号质量大于或等于第二阈值之外,该第一波束还应当属于用于终端设备发起波束切换的波束。有利于终端设备切换到合适的波束,从而保障终端设备与网络设备之间的正常通信。
另一种可能的实现方式中,第一波束属于第一波束集合,第一波束集合包括用于通信装置发起波束切换的波束。
另一种可能的实现方式中,方法还包括:
终端设备根据第一规则更新第一波束集合。
在该实现方式中终端设备可以自行更新第一波束集合,这样网络设备无需通过信令更新第一波束集合,从而降低信令开销。
另一种可能的实现方式中,终端设备根据第一规则更新第一波束集合,包括:
终端设备将第一波束集合中的波束更新为网络设备为终端设备激活的一个或多个传输配置指示(transmission configuration indicator state,TCI)状态对应的波束,得到更新后的第一波束集合。
在该实现方式中,终端设备将网络设备为终端设备激活的TCI状态作为第一波束集合中的波束。有利于实现终端设备快速更新第一波束集合,且提升了第一波束集合的波束的实时性。
另一种可能的实现方式中,第一波束集合包括网络设备为终端设备激活的一个或多个TCI状态对应的波束。在该实现方式中,将网络设备为终端设备激活的TCI状态作为第一波束集合中的波束。有利于提升第一波束集合的波束的实时性。
另一种可能的实现方式中,终端设备根据第一规则更新第一波束集合,包括:
终端设备将网络设备为终端设备激活的一个或多个TCI状态对应的波束添加到第一波束集合中,得到更新后的第一波束集合。
在该实现方式中,终端设备将网络设备为终端设备激活的TCI状态添加到第一波束集合中,有利于且提升第一波束集合的波束的实时性。
另一种可能的实现方式中,方法还包括:
终端设备接收来自网络设备的第三指示信息,第三指示信息指示为终端设备激活的一个或多个TCI状态;终端设备向网络设备发送第三确认消息,第三确认消息用于指示终端设备成功接收到第三指示信息。
在该实现方式中,终端设备可以通过第三指示信息确定网络设备为终端设备激活的TCI状态。当接收成功该第三指示信息时,终端设备可以反馈第三确认消息。
另一种可能的实现方式中,在终端设备发送第三确定消息的时刻起第一预设时长之后,终端设备从第一波束集合中删除的第三波束不用于终端设备发起波束切换;
在终端设备发送第三确定消息的时刻起第一预设时长内,第三波束仍可用于终端设备发起波束切换。
在该实现方式中示出了终端设备从第一波束集合中删除的波束是否可用于终端设备发起波束切换的一些规定。从而使得方案更为全面。
另一种可能的实现方式中,方法还包括:
终端设备接收来自网络设备的第四指示信息,第四指示信息指示终端设备开启采用网络设备为终端设备激活的TCI状态更新第一波束集合的功能。
在该实现方式中终端设备可以通过该第四指示信息开启采用网络设备为终端设备激活的TCI状态更新第一波束集合的功能。从而实现终端设备通过激活的TCI状态更新第一波束集合,提升第一波束集合的实时性。
另一种可能的实现方式中,终端设备根据第一规则更新第一波束集合,包括:
终端设备根据第五测量结果确定X个TCI状态,第五测量结果包括终端设备测量并上报的一个或多个参考信号资源的测量结果,一个或多个参考信号资源中每个参考信号资源对应一个TCI状态,X个TCI状态是第五测量结果中信号质量最强的前X个参考信号资源对应的TCI状态,X为大于或等于1的整数;终端设备将第一波束集合中的波束更新为X个TCI状态对应的波束,得到更新后的第一波束集合。
在该实现方式中示出了终端设备的另一种更新波束的集合的方式,终端设备基于第五测量结果更新第一波束集合,有利于提升第一波束集合的波束的实时性。
另一种可能的实现方式中,更新后的第一波束集合包括第五参考信号对应的波束;方法还包括:
如果终端设备连续Y次上报的测量结果中不包括第五参考信号对应的波束的测量结果,则终端设备确定第五参考信号对应的波束不用于终端设备发起波束切换,Y为大于或等于1的整数。
在该实现方式中示出了针对第一波束集合中的波束是否用于发起波束切换的一些规定,从而使得方案更为全面,有利于进一步提升第一波束集合的波束的实时性。
本申请第二方面提供一种通信方法,包括:
网络设备接收来自终端设备的第一测量结果,第一测量结果是终端设备对第一参考信号进行第一类型测量得到的测量结果;网络设备接收来自终端设备的第二测量结果,第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的测量结果。
上述技术方案中,网络设备接收来自终端设备的第二测量结果。第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的测量结果,第一测量结果是终端设备对第一参考信号进行第一类型测量得到的测量结果。无需由网络设备通过DCI触发终端设备上报测量结果,从而降低信令开销。终端设备基于第一测量结果对第二参考信号进行第二类型测量,并上报第二测量结果。有利于提高终端设备上报的第二测量结果的可靠性,避免由于短时链路质量波动造成的影响导致终端设备上报的测量结果并不能真实的反映链路的整体情况。有利于网络设备基于第二测量结果为终端设备选择合适的波束,从而降低终端设备切换波束的时延开销,提高通信质量。
一种可能的实现方式中,方法还包括:
网络设备向终端设备发送第一配置信息,第一配置信息用于指示终端设备基于第一测量结果对第二参考信号进行第二类型测量并上报测量结果;或者,第一配置信息用于指示终端设备基于第一测量结果对第二参考信号进行第二类型测量。
上述实现方式中网络设备可以通过第一配置信息配置终端设备基于第一测量结果对第二参考信号进行第二类型测量并上报测量结果。实现终端设备向网络设备上报第二测量结果。无需由网络设备通过DCI触发终端设备上报测量结果,从而降低信令开销和时延开销。且有利于提高终端设备上报的测量结果的可靠性,避免由于短时链路质量波动造成的影响导致终端设备上报的测量结果并不能真实的反映链路的整体情况。有利于网络设备基于第 二测量结果为终端设备选择合适的波束,从而提高通信质量。
另一种可能的实现方式中,第一测量结果包括终端设备连续N次上报的第一参考信号的测量结果,N为大于或等于1的整数;
第一配置信息用于指示:若终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于第一阈值,则终端设备触发对第二参考信号进行第二类型测量并上报测量结果,N为大于或等于1的整数;或者,
第一配置信息用于指示:若终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于终端设备当前的服务波束对应的参考信号的信号质量,则终端设备触发对第二参考信号进行第二类型测量并上报测量结果。
上述示出了触发终端设备对第二参考信号进行第二类型测量的一些可能的触发条件。基于终端设备连续N次上报的第一参考信号的测量结果触发终端设备进行第二类型测量,从而提高终端设备上报的第二测量结果的可靠性。避免由于短时链路质量波动造成的影响导致终端设备上报的测量结果并不能真实的反映链路的整体情况。有利于网络设备基于第二测量结果为终端设备选择合适的波束,从而降低终端设备切换波束的时延开销,提高通信质量。
另一种可能的实现方式中,网络设备接收来自终端设备的第二测量结果之后,方法还包括:
若第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,则网络设备确定所述终端设备切换到所述第一波束;或者,
若第二测量结果中第二参考信号的信号质量小于所述第二阈值,则网络设备确定终端设备保持当前的服务波束。
上述实现方式中,第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的测量结果。网络设备基于第二测量结果确定终端设备是否切换波束,从而网络设备对终端设备所接入的波束,便于网络设备采用合适的波束与终端设备之间的通信传输。从而提高通信质量。
另一种可能的实现方式中,网络设备接收来自终端设备的第二测量结果之后,方法还包括:
网络设备向终端设备发送第一反馈消息;
其中,第一反馈消息为第一确认消息,第一确认消息用于指示终端设备切换到第一波束;或者,第一反馈消息为第一否定消息,第一否定消息用于指示终端设备保持当前的服务波束。
在该实现方式中,第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的测量结果。网络设备可以针对第二测量结果向终端设备发送第一反馈消息,从而实现网络设备向终端设备指示合适的波束。从而提高通信质量。
另一种可能的实现方式中,网络设备接收来自终端设备的第二测量结果之后,方法还包括:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则网络设备向终端 设备发送第一确认消息,第一确认消息用于指示终端设备切换到第二参考信号对应的第一波束;或者,
若第二测量结果中第二参考信号的信号质量小于第二阈值,则网络设备向终端设备发送第一否定消息,第一否定消息用于指示终端设备保持当前的服务波束。
在该实现方式中,第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的测量结果。网络设备可以针对第二测量结果向终端设备发送第一反馈消息,从而实现网络设备向终端设备指示合适的波束。从而提高通信质量。
另一种可能的实现方式中,网络设备接收来自终端设备的第二测量结果之后,方法还包括:
网络设备向终端设备发送第一指示信息;
其中,第一指示信息指示终端设备切换到所述第一波束;或者,第一指示信息指示终端设备保持当前的服务波束或不进行波束切换。
在该实现方式中,第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的测量结果。网络设备可以针对第二测量结果向终端设备发送第一指示消息,从而实现网络设备向终端设备指示合适的波束。从而提高通信质量。
另一种可能的实现方式中,网络设备接收来自终端设备的第二测量结果之后,方法还包括:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则网络设备向终端设备发送第一指示信息,第一指示信息指示终端设备切换到第二参考信号对应的第一波束;或者,
若第二测量结果中第二参考信号的信号质量小于第二阈值,则网络设备向终端设备发送第一指示信息,第一指示信息指示终端设备保持当前的服务波束或不进行波束切换。
在该实现方式中,第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的测量结果。网络设备可以针对第二测量结果向终端设备发送第一指示消息,从而实现网络设备向终端设备指示合适的波束。从而提高通信质量。
另一种可能的实现方式中,方法还包括:
网络设备接收来自终端设备的第三测量结果,第三测量结果是终端设备对第三参考信号进行第一类型测量得到的测量结果;
网络设备接收来自终端设备的第四测量结果,第四测量结果是终端设备基于第三测量结果对第四参考信号进行第二类型测量得到的测量结果。
上述实现方式中,网络设备还可以接收第四测量结果,也就是终端设备可以对多个参考信号进行第二类型并上报相应的测量结果。无需由网络设备通过DCI触发终端设备上报测量结果,从而降低信令开销。终端设备基于对每个参考信号对应的波束进行第一类型测量得到的测量结果对该波束进行第二类型测量并上报测量结果。有利于提高终端设备上报的测量结果的可靠性,避免由于短时链路质量波动造成的影响导致终端设备上报的测量结果并不能真实的反映链路的整体情况。有利于网络设备基于第二测量结果为终端设备选择合适的波束,从而降低终端设备切换波束的时延开销,提高通信质量。
另一种可能的实现方式中,网络设备接收来自终端设备的第四测量结果之后,方法还包括:
若满足第一条件,则网络设备确定终端设备切换到第二参考信号对应的第一波束,第一条件包括:第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量;或者,
若满足第二条件,则网络设备确定终端设备切换到所述第二波束,第二条件包括:第四测量结果中第二参考信号的信号质量大于或等于所述第二阈值,且第四参考信号的信号质量大于第二参考信号的信号质量;或者,
若满足第三条件,则网络设备确定终端设备保持当前的服务波束,第三条件包括:第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于所述第二阈值。
上述实现方式中,网络设备可以基于第二测量结果和第四测量结果确定终端设备所接入的波束,从而便于网络设备与终端设备之间进行通信传输。网络设备无需向终端设备指示切换波束,降低了信令开销。
另一种可能的实现方式中,网络设备接收来自终端设备的第四测量结果之后,方法还包括:
网络设备向终端设备发送第二反馈消息;其中,第二反馈消息为第二确认消息,第二确认消息用于指示终端设备切换到信号质量最好的波束,信号质量最好的波束是第二参考信号对应的第一波束和第四参考信号对应的第二波束中信号质量最好的波束;或者,第二反馈消息为第二否定消息,第二否定消息用于指示终端设备保持当前的服务波束。
上述实现方式中,网络设备向终端设备发送第二反馈消息,以间接向终端设备指示波束,提高终端设备的通信质量。网络设备无需通过额外的信令向终端设备指示切换波束,降低了信令开销。
另一种可能的实现方式中,网络设备接收来自终端设备的第四测量结果之后,方法还包括:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量,则网络设备向终端设备发送第二确认消息,第二确认消息用于指示终端设备切换到第二参考信号对应的第一波束;或者,
若第四测量结果中第四参考信号的信号质量大于或等于第二阈值,且第四参考信号的信号质量大于第二测量结果中第二参考信号的信号质量,则网络设备向终端设备发送第二确认消息,第二确认消息用于指示终端设备切换到第四参考信号对应的第二波束;或者,
若第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值,则网络设备向终端设备发送第二否定消息,第二否定消息用于指示终端设备保持当前的服务波束。
上述实现方式中,网络设备可以基于第二测量结果和第四测量结果确定终端设备所接入的波束,便于网络设备与终端设备之间进行通信传输,有利于提升通信质量。从而网络设备无需向终端设备指示切换波束,降低了信令开销。
另一种可能的实现方式中,网络设备接收来自终端设备的第四测量结果之后,方法还包括:
网络设备向终端设备发送第二指示信息;
其中,第二指示信息指示终端设备切换到第二参考信号对应的第一波束;或者,第二指示信息指示终端设备切换到第四参考信号对应的第二波束;或者,第二指示信息指示终端设备保持当前的服务波束。
上述实现方式中,网络设备向终端设备发送第二指示信息,以向终端设备指示波束,提高终端设备的通信质量。
另一种可能的实现方式中,网络设备接收来自终端设备的第四测量结果之后,方法还包括:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第二参考信号的信号质量大于第四测量结果中所述第四参考信号的信号质量,则网络设备向终端设备发送第二指示信息,第二指示信息指示终端设备切换到第二参考信号对应的第一波束;或者,
若第四测量结果中第四参考信号的信号质量大于或等于第二阈值,且第四参考信号的信号质量大于第二测量结果中所述第二参考信号的信号质量,则网络设备向终端设备发送第二指示信息,第二指示信息指示终端设备切换到第四参考信号对应的第二波束;或者,
若第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值,则网络设备向终端设备发送第二指示信息,第二指示信息指示终端设备保持当前的服务波束。
上述实现方式中,网络设备可以基于第二测量结果和第四测量结果指示终端设备所切换到的波束,便于网络设备与终端设备之间进行通信传输,有利于提升通信质量。网络设备无需向终端设备指示切换波束,降低了信令开销。
另一种可能的实现方式中,第一类型测量包括终端设备对参考信号进行周期性测量,第二类型测量包括所述终端设备对参考信号资源进行半持续测量;或者,
第一类型测量包括终端设备对参考信号进行周期性测量,第二类型测量包括终端设备对参考信号进行非周期性测量;或者,
第一类型测量包括终端设备对参考信号进行半持续测量,第二类型测量包括终端设备对参考信号进行非周期性测量。
上述实现方式中示出了第一类型测量和第二类型测量的几种可能的实现方式,有利于提高方案的可实现性和多样性。
另一种可能的实现方式中,方法还包括:
网络设备向终端设备发送第二配置信息,第二配置信息用于指示终端设备对第一参考信号进行第一类型测量。
上述实现方式中网络设备可以通过第二配置信息配置终端设备对第一参考信号进行第一类型测量,从而实现本申请的方案的实施。
另一种可能的实现方式中,若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则网络设备确定终端设备切换到第一波束,包括:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第一波束属于第一波束集合,第一波束集合包括用于终端设备发起波束切换的波束。
上述实现方式中示出了网络设备确定终端设备切换到第一波束的具体条件,除了该第二参考信号的信号质量大于或等于第二阈值之外,该第一波束还应当属于用于终端设备发起波束切换的波束。从而保障终端设备与网络设备之间的正常通信。
另一种可能的实现方式中,第一波束属于第一波束集合,第一波束集合包括用于终端设备发起波束切换的波束。
另一种可能的实现方式中,方法还包括:
网络设备根据第一规则更新第一波束集合。
在该实现方式中,网络设备可以更新第一波束集合,以便于保障第一波束集合的实时性。
另一种可能的实现方式中,网络设备根据第一规则更新第一波束集合,包括:
网络设备将第一波束集合中的波束更新为网络设备为终端设备激活的一个或多个TCI状态对应的波束,得到更新后的第一波束集合。
在该实现方式中,网络设备将网络设备为终端设备激活的TCI状态作为第一波束集合中的波束。提升了第一波束集合的波束的实时性。
另一种可能的实现方式中,第一波束集合包括网络设备为终端设备激活的一个或多个TCI状态对应的波束。在该实现方式中,将网络设备为终端设备激活的TCI状态作为第一波束集合中的波束。有利于提升第一波束集合的波束的实时性。
另一种可能的实现方式中,网络设备根据第一规则更新第一波束集合,包括:
网络设备将网络设备为终端设备激活的一个或多个TCI状态对应的波束添加到第一波束集合中,得到更新后的第一波束集合。在该实现方式中,网络设备将网络设备为终端设备激活的TCI状态添加到第一波束集合,有利于提高波束的实时性。
另一种可能的实现方式中,方法还包括:
网络设备向终端设备发送第三指示信息,第三指示信息指示为终端设备激活的所述一个或多个TCI状态;
网络设备接收来自终端设备的第三确认消息,第三确认消息用于指示终端设备成功接收到第三指示信息。
另一种可能的实现方式中,在终端设备发送第三确定消息的时刻起第一预设时长之后,网络设备从第一波束集合中删除的第三波束不用于所端设备发起波束切换;
在终端设备发送第三确定消息的时刻起第一预设时长内,第三波束仍可用于终端设备发起波束切换。
在该实现方式中示出了终端设备从第一波束集合中删除的波束是否可用于终端设备发起波束切换的一些规定。从而使得方案更为全面。
另一种可能的实现方式中,方法还包括:
网络设备向终端设备发送第四指示信息,第四指示信息指示终端设备开启采用网络设备为终端设备激活的TCI状态更新第一波束集合的功能。
在该实现方式中网络设备指示终端设备开启采用网络设备为终端设备激活的TCI状态更新第一波束集合的功能。从而实现终端设备通过激活的TCI状态更新第一波束集合,提升第一波束集合的实时性。
另一种可能的实现方式中,网络设备根据第一规则更新第一波束集合,包括:
网络设备根据第五测量结果确定X个TCI状态,第五测量结果包括终端设备测量并上报的一个或多个参考信号的测量结果,一个或多个参考信号中每个参考信号对应一个TCI状态,X个TCI状态是所述第五测量结果中信号质量最强的前X个参考信号资源对应的TCI状态,X为大于或等于1的整数;网络设备将第一波束集合中的波束更新为X个TCI状态对应的波束,得到更新后的第一波束集合。
在该实现方式中示出了网络设备的另一种更新第一波束集合的方式,网络设备基于第五测量结果更新第一波束集合,有利于提升第一波束集合的波束的实时性。
另一种可能的实现方式中,更新后的第一波束集合包括第五参考信号对应的波束;方法还包括:
如果终端设备连续Y次上报的测量结果中都不包括第五参考信号对应的波束的测量结果,则网络设备确定第五参考信号对应的波束不用于终端设备发起波束切换,Y为大于或等于1的整数。
在该实现方式中示出了针对第一波束集合中的波束是否用于发起波束切换的一些规定,从而使得方案更为全面,有利于进一步提升第一波束集合的波束的实时性。
本申请第三方面提供一种通信方法,包括:
终端设备对第一参考信号进行第一类型测量,得到第一测量结果;终端设备基于第一测量结果对第二参考信号进行第二类型测量,得到第二测量结果;终端设备向网络设备发送第二测量结果。
上述技术方案中,终端设备对第一参考信号进行第一类型测量,得到第一测量结果。终端设备基于第一测量结果触发终端设备对第二参考信号进行第二类型测量,并上报第二测量结果。实现终端设备向网络设备上报第二测量结果,无需由网络设备通过DCI触发终端设备上报测量结果,从而降低信令开销。终端设备基于第一测量结果对第二参考信号进行第二类型测量,并上报第二测量结果。有利于提高终端设备上报的第二测量结果的可靠性,避免由于短时链路质量波动造成的影响导致终端设备上报的第二测量结果并不能真实的反映链路的整体情况。有利于网络设备基于第二测量结果为终端设备选择合适的波束,从而降低终端设备切换波束的时延开销,提高通信质量。
一种可能的实现方式中,第一测量结果包括终端设备连续N次测量的第一参考信号的测量结果,N为大于或等于1的整数;终端设备根据第一测量结果对第二参考信号进行第二类型测量,得到第二测量结果,包括:
若终端设备连续N次测量的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于第一阈值,则终端设备对第二参考信号进行第二类型测量,得到第二测量结果;或者,
若终端设备连续N次测量的第一参考信号的测量结果中第一参考信号的信号质量均大 于或等于终端设备当前的服务波束对应的参考信号的信号质量,则终端设备对第二参考信号进行第二类型测量,得到第二测量结果。
本申请第四方面提供一种通信方法,包括:
网络设备接收来自终端设备的第二测量结果,第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的测量结果;第一测量结果是终端设备对第一参考信号进行第一类型测量得到的测量结果。
上述技术方案中,网络设备接收来自终端设备的第二测量结果。第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的测量结果,第一测量结果是终端设备对第一参考信号进行第一类型测量得到的测量结果。无需由网络设备通过DCI触发终端设备上报测量结果,从而降低信令开销。终端设备基于第一测量结果对第二参考信号进行第二类型测量,并上报第二测量结果。有利于提高终端设备上报的第二测量结果的可靠性,避免由于短时链路质量波动造成的影响导致终端设备上报的测量结果并不能真实的反映链路的整体情况。有利于网络设备基于第二测量结果为终端设备选择合适的波束,从而降低终端设备切换波束的时延开销,提高通信质量。
另一种可能的实现方式中,第一测量结果包括终端设备连续N次测量的第一参考信号的测量结果,N为大于或等于1的整数;
第一配置信息用于指示:若终端设备连续N次测量的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于第一阈值,则终端设备触发对第二参考信号进行第二类型测量并上报测量结果,N为大于或等于1的整数;或者,
第一配置信息用于指示:若终端设备连续N次测量的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于终端设备当前的服务波束对应的参考信号的信号质量,则终端设备触发对第二参考信号进行第二类型测量并上报测量结果。
本申请提供第五方面提供一种通信方法,包括:
通信设备确定第一波束集合,第一波束集合包括用于终端设备发起波束切换的波束;通信设备根据第一规则更新第一波束集合。
上述技术方案中通信设备可以更新第一波束集合。例如,通信设备为终端设备,终端设备可以根据第一规则更新第一波束集合,减少了网络设备为终端设备配置第一波束集合的信令开销。通常网络设备采用无线资源控制(radio resource control,RRC)消息为终端设备配置第一波束集合,而网络设备采用RRC消息更新第一波束集合所需的时间较长,导致更新第一波束集合的时延较大。而采用本申请示出的更新第一波束集合的方式,有利于快速更新第一波束集合,提升第一波束集合中的波束的实时性。
一种可能的实现方式中,通信设备根据第一规则更新第一波束集合,包括:
通信设备将第一波束集合中的波束更新为网络设备为终端设备的激活的一个或多个TCI状态对应的波束,得到更新后的第一波束集合。
在该实现方式中,通信设备将网络设备为终端设备的激活的一个或多个TCI状态对应的波束作为更新后的第一波束集合的波束。有利于快速更新第一波束集合,提升第一波束集合中的波束的实时性。
另一种可能的实现方式中,通信设备根据第一规则更新第一波束集合,包括:
通信设备将网络设备为终端设备的激活的一个或多个TCI状态对应的波束添加到第一波束集合中,得到更新后的第一波束集合。
在该实现方式中,通信设备将网络设备为终端设备的激活的一个或多个TCI状态对应的波束添加到第一波束集合中,有利于提升第一波束集合中的波束的实时性。
另一种可能的实现方式中,通信设备为终端设备,方法还包括:
终端设备接收来自网络设备的第三指示信息,第三指示信息指示为终端设备激活的一个或多个TCI状态;
终端设备向网络设备发送第三确认消息,第三确认消息用于指示终端设备成功接收到所述第三指示信息。
另一种可能的实现方式中,在终端设备发送第三确定消息的时刻起第一预设时长之后,终端设备从第一波束集合中删除的第三波束不用于终端设备发起波束切换;
在终端设备发送第三确定消息的时刻起所述第一预设时长内,第三波束仍可用于终端设备发起波束切换。
在该实现方式中示出了通信设备从第一波束集合中删除的波束是否可用于终端设备发起波束切换的一些规定。从而使得方案更为全面。
另一种可能的实现方式中,通信设备为终端设备,方法还包括:
终端设备接收来自网络设备的第四指示信息,第四指示信息指示终端设备开启采用网络设备为终端设备激活的TCI状态更新第一波束集合的功能。
在该实现方式中终端设备可以通过该第四指示信息开启采用网络设备为终端设备激活的TCI状态更新第一波束集合的功能。从而实现终端设备通过激活的TCI状态更新第一波束集合,提升第一波束集合的实时性。
另一种可能的实现方式中,通信设备根据第一规则更新第一波束集合,包括:
通信设备根据第五测量结果确定X个TCI状态,第五测量结果包括终端设备测量并上报的一个或多个参考信号的测量结果,一个或多个参考信号中每个参考信号对应一个TCI状态,X个TCI状态是所述第五测量结果中信号质量最强的前X个参考信号对应的TCI状态,X为大于或等于1的整数;通信设备将第一波束集合中的波束更新为X个TCI状态对应的波束,得到更新后的第一波束集合。
在该实现方式中示出了通信设备的另一种更新波束的集合的方式,通信设备基于第五测量结果更新第一波束集合,有利于提升第一波束集合的波束的实时性。
另一种可能的实现方式中,更新后的第一波束集合包括第五参考信号对应的波束;所述方法还包括:
如果终端设备连续Y次上报的测量结果中都不包括第五参考信号对应的波束的测量结果,则通信设备确定第五参考信号对应的波束不用于终端设备发起波束切换,Y为大于或等于1的整数。
在该实现方式中示出了针对第一波束集合中的波束是否用于发起波束切换的一些规定,从而使得方案更为全面,有利于进一步提升第一波束集合的波束的实时性。
另一种可能的实现方式中,通信设备为终端设备;方法还包括:
终端设备基于第一波束集合发起波束切换。
本申请第六方面提供一种通信装置,包括:
处理模块,用于对第一参考信号进行第一类型测量,得到第一测量结果;
收发模块,用于向网络设备发送第一测量结果;
处理模块,还用于基于第一测量结果对第二参考信号进行第二类型测量,得到第二测量结果;
收发模块,还用于向网络设备发送第二测量结果。
一种可能的实现方式中,第一测量结果包括通信装置连续N次上报的第一参考信号的测量结果,N为大于或等于1的整数;处理模块具体用于:
若通信装置连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于第一阈值,则对第二参考信号进行第二类型测量,得到第二测量结果;或者,
若通信装置连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于通信装置当前的服务波束对应的参考信号的信号质量,则对第二参考信号进行第二类型测量,得到第二测量结果。
另一种可能的实现方式中,处理模块还用于:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则切换到第一波束;或者,
若第二测量结果中第二参考信号的信号质量小于第二阈值,则保持当前的服务波束。
另一种可能的实现方式中,收发模块还用于:
接收来自网络设备的第一反馈消息;
处理模块还用于:
若第一反馈消息为第一确认消息,则切换至第二参考信号对应的第一波束;或者,
若第一反馈消息为第一否定消息,则保持当前的服务波束。
另一种可能的实现方式中,收发模块还用于:若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则接收来自网络设备的第一确认消息;处理模块还用于:切换到第二参考信号对应的第一波束;
或者,
收发模块还用于:若第二测量结果中第二参考信号的信号质量小于第二阈值,则接收来自网络设备的第一否定消息;处理模块还用于:保持当前的服务波束。
另一种可能的实现方式中,收发模块还用于:
接收来自网络设备的第一指示信息;
处理模块还用于:
若第一指示信息指示通信装置切换到第二参考信号对应的第一波束,则切换至第一波束;或者,
若第一指示信息指示通信装置保持当前的服务波束,则保持当前的服务波束。
另一种可能的实现方式中,收发模块还用于:若第二测量结果中所述第二参考信号的 信号质量大于或等于第二阈值,则接收来自网络设备的第一指示信息,第一指示信息指示通信装置切换到第二参考信号对应的第一波束;处理模块还用于:切换至第一波束;或者,
收发模块还用于:若第二测量结果中第二参考信号的信号质量小于第二阈值,则接收来自网络设备的第一指示信息,第一指示信息指示通信装置保持当前的服务波束;处理模块还用于:保持当前的服务波束。
另一种可能的实现方式中,若通信装置保持当前的服务波束,处理模块还用于:
继续对第一参考信号进行第一类型测量。
另一种可能的实现方式中,处理模块还用于:
对第三参考信号进行第一类型测量,得到第三测量结果;
收发模块还用于:
向网络设备发送第三测量结果;
处理模块还用于:
基于第三测量结果对第四参考信号进行第二类型测量,得到第四测量结果;
收发模块还用于:
向网络设备发送第四测量结果。
另一种可能的实现方式中,处理模块还用于:
若满足第一条件,则切换到第二参考信号对应的第一波束,第一条件包括:第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量;或者,
若满足第二条件,则切换到第四参考信号对应的第二波束,第二条件包括:第四测量结果中第四参考信号的信号质量大于或等于第二阈值,且第四参考信号的信号质量大于第二测量结果中第二参考信号的信号质量;或者,
若满足第三条件,则保持当前的服务波束,第三条件包括:第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值。
另一种可能的实现方式中,收发模块还用于:
接收来自网络设备的第二反馈消息;
处理模块还用于:
若第二反馈消息为第二确认消息,且第二测量结果中第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量,则切换到第二参考信号对应的第一波束;或者,
若第二反馈消息为第二确认消息,且第四测量结果中第四参考信号的信号质量大于所述第二测量结果中第二参考信号的信号质量,则切换到第四参考信号对应的第二波束;或者,
若第二反馈消息为第二否定消息,则保持当前的服务波束。
另一种可能的实现方式中,收发模块还用于:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量,则接收来自网络设备的第二确认消息,第二确认消息用于指示通信装置切换到第二参考信号对应的第一波束;处理模块还用 于:切换到第二参考信号对应的第一波束;或者,
收发模块还用于:若第四测量结果中第四参考信号的信号质量大于或等于第二阈值,第四参考信号的信号质量大于第二测量结果中第二参考信号的信号质量,则接收来自网络设备的第二确认消息;第二确认消息用于指示通信装置切换到第四参考信号对应的第二波束;处理模块还用于:切换到第四参考信号对应的第二波束;或者,
收发模块还用于:若第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值,则接收来自网络设备的第二否定消息;第二否定消息用于指示通信装置保持当前的服务波束;处理模块还用于:保持当前的服务波束。
另一种可能的实现方式中,处理模块还用于:
若通信装置没有接收到网络设备针对第二测量结果中的反馈消息,则保持当前的服务波束,并继续对第一参考信号和第三参考信号进行第一类型测量。
另一种可能的实现方式中,收发模块还用于:
接收来自网络设备的第二指示信息;
处理模块还用于:
若第二指示信息指示通信装置切换到第二参考信号对应的第一波束,则切换到第一波束;或者,
若第二指示信息指示通信装置切换到第四参考信号对应的第二波束,则切换到第二波束;或者,
若第二指示信息指示通信装置保持当前的服务波束,则保持当前的服务波束。
另一种可能的实现方式中,收发模块还用于:若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,第二参考信号的信号质量大于第四测量结果中所述第四参考信号的信号质量,则接收来自网络设备的第二指示信息,第二指示信息指示终端设备切换到第二参考信号对应的第一波束;处理模块还用于:切换到第一波束;或者,
收发模块还用于:若第四测量结果中第四参考信号的信号质量大于或等于第二阈值,第四参考信号的信号质量大于第二测量结果中第二参考信号的信号质量,则接收来自网络设备的第二指示信息,第二指示信息指示终端设备切换到第四参考信号对应的第二波束;处理模块还用于:切换到第二波束;或者,
收发模块还用于:若第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值,则接收来自网络设备的第二指示信息,第二指示信息指示终端设备保持当前的服务波束;处理模块还用于:保持当前的服务波束。
另一种可能的实现方式中,若通信装置保持当前的服务波束,处理模块还用于:
继续对第一参考信号和第三参考信号进行第一类型测量。
另一种可能的实现方式中,收发模块还用于:
接收来自网络设备的第一配置信息,第一配置信息用于指示通信装置基于第一测量结果对第二参考信号进行第二类型测量并上报测量结果;或者,第一配置信息用于指示通信装置基于第一测量结果对第二参考信号进行第二类型测量。
另一种可能的实现方式中,第一类型测量包括通信装置对参考信号进行周期性测量, 第二类型测量包括通信装置对参考信号资源进行半持续测量;或者,
第一类型测量包括通信装置对参考信号进行周期性测量,第二类型测量包括通信装置对参考信号进行非周期性测量;或者,
第一类型测量包括通信装置对参考信号进行半持续测量,第二类型测量包括通信装置对参考信号进行非周期性测量。
另一种可能的实现方式中,收发模块还用于:
接收来自网络设备的第二配置信息,第二配置信息用于指示通信装置对第一参考信号进行第一类型测量。
另一种可能的实现方式中,处理模块具体用于:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第一波束属于第一波束集合,则切换到第一波束,第一波束集合包括用于通信装置发起波束切换的波束。
另一种可能的实现方式中,第一波束属于第一波束集合,第一波束集合包括用于通信装置发起波束切换的波束。
另一种可能的实现方式中,处理模块还用于:
根据第一规则更新第一波束集合。
另一种可能的实现方式中,处理模块具体用于:
将第一波束集合中的波束更新为网络设备为通信装置激活的一个或多个TCI状态对应的波束,得到更新后的第一波束集合。
另一种可能的实现方式中,收发模块还用于:
接收来自网络设备的第三指示信息,第三指示信息指示为通信装置激活的一个或多个TCI状态;
向网络设备发送第三确认消息,第三确认消息用于指示通信装置成功接收到第三指示信息。
另一种可能的实现方式中,第一波束集合包括网络设备为通信装置激活的一个或多个TCI状态对应的波束。
另一种可能的实现方式中,在通信装置发送第三确定消息的时刻起第一预设时长之后,通信装置从第一波束集合中删除的第三波束不用于通信装置发起波束切换;
在通信装置发送第三确定消息的时刻起第一预设时长内,第三波束仍可用于通信装置发起波束切换。
另一种可能的实现方式中,收发模块还用于:
接收来自网络设备的第四指示信息,第四指示信息指示通信装置开启采用网络设备为通信装置激活的TCI状态更新第一波束集合的功能。
另一种可能的实现方式中,处理模块具体用于:
根据第五测量结果确定X个TCI状态,第五测量结果包括通信装置测量并上报的一个或多个参考信号资源的测量结果,一个或多个参考信号资源中每个参考信号资源对应一个TCI状态,X个TCI状态是第五测量结果中信号质量最强的前X个参考信号资源对应的TCI状态,X为大于或等于1的整数;将第一波束集合中的波束更新为X个TCI状态对应的波 束,得到更新后的第一波束集合。
另一种可能的实现方式中,更新后的第一波束集合包括第五参考信号对应的波束;处理模块还用于:
如果通信装置连续Y次上报的测量结果中不包括第五参考信号对应的波束的测量结果,则确定第五参考信号对应的波束不用于通信装置发起波束切换,Y为大于或等于1的整数。
本申请第七方面提供一种通信装置,包括:
收发模块,用于接收来自终端设备的第一测量结果,第一测量结果是终端设备对第一参考信号进行第一类型测量得到的测量结果;接收来自终端设备的第二测量结果,第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的测量结果。
一种可能的实现方式中,收发模块还用于:
向终端设备发送第一配置信息,第一配置信息用于指示终端设备基于第一测量结果对所述第二参考信号进行第二类型测量并上报测量结果;或者,第一配置信息用于指示终端设备基于第一测量结果对第二参考信号进行第二类型测量。
另一种可能的实现方式中,第一测量结果包括终端设备连续N次上报的第一参考信号的测量结果,N为大于或等于1的整数;
第一配置信息用于指示:若终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于第一阈值,则终端设备触发对第二参考信号进行第二类型测量并上报测量结果,N为大于或等于1的整数;或者,
第一配置信息用于指示:若终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于终端设备当前的服务波束对应的参考信号的信号质量,则终端设备触发对第二参考信号进行第二类型测量并上报测量结果。
另一种可能的实现方式中,通信装置还包括处理模块;
处理模块,用于若第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,则确定终端设备切换到第二参考信号对应的第一波束;或者,
处理模块,若第二测量结果中第二参考信号的信号质量小于所述第二阈值,则确定终端设备保持当前的服务波束。
另一种可能的实现方式中,收发模块还用于:
向终端设备发送第一反馈消息;
其中,第一反馈消息为第一确认消息,第一确认消息用于指示终端设备切换到第一波束;或者,第一反馈消息为第一否定消息,第一否定消息用于指示终端设备保持当前的服务波束。
另一种可能的实现方式中,收发模块还用于:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则向终端设备发送第一确认消息,第一确认消息用于指示终端设备切换到第二参考信号对应的第一波束;或者,
若第二测量结果中第二参考信号的信号质量小于第二阈值,则向终端设备发送第一否 定消息,第一否定消息用于指示终端设备保持当前的服务波束。
另一种可能的实现方式中,收发模块还用于:
向终端设备发送第一指示信息;
其中,第一指示信息指示终端设备切换到第一波束;或者,第一指示信息指示终端设备保持当前的服务波束或不进行波束切换。
另一种可能的实现方式中,收发模块还用于:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则向终端设备发送第一指示信息,第一指示信息指示终端设备切换到第二参考信号对应的第一波束;或者,
若第二测量结果中第二参考信号的信号质量小于第二阈值,则向终端设备发送第一指示信息,第一指示信息指示终端设备保持当前的服务波束或不进行波束切换。
另一种可能的实现方式中,收发模块还用于:
接收来自终端设备的第三测量结果,第三测量结果是终端设备对第三参考信号进行第一类型测量得到的测量结果;
接收来自终端设备的第四测量结果,第四测量结果是终端设备基于第三测量结果对第四参考信号进行第二类型测量得到的测量结果。
另一种可能的实现方式中,处理模块还用于:
若满足第一条件,则确定终端设备切换到第二参考信号对应的第一波束,第一条件包括:第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量;或者,
若满足第二条件,则确定终端设备切换到所述第二波束,第二条件包括:第四测量结果中第四参考信号的信号质量大于或等于所述第二阈值,且第四参考信号的信号质量大于第二参考信号的信号质量;或者,
若满足第三条件,则确定终端设备保持当前的服务波束,第三条件包括:第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值。
另一种可能的实现方式中,收发模块还用于:
向终端设备发送第二反馈消息;
其中,第二反馈消息为第二确认消息,第二确认消息用于指示终端设备切换到信号质量最好的波束,信号质量最好的波束是第二参考信号对应的第一波束和第四参考信号对应的第二波束中信号质量最好的波束;或者,第二反馈消息为第二否定消息,第二否定消息用于指示终端设备保持当前的服务波束。
另一种可能的实现方式中,收发模块还用于:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量,则向终端设备发送第二确认消息,第二确认消息用于指示终端设备切换到第二参考信号对应的第一波束;或者,
若第四测量结果中第四参考信号的信号质量大于或等于第二阈值,且第四参考信号的信号质量大于第二测量结果中第二参考信号的信号质量,则向终端设备发送第二确认消息, 第二确认消息用于指示终端设备切换到第四参考信号对应的第二波束;或者,
若第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值,则向终端设备发送第二否定消息,第二否定消息用于指示终端设备保持当前的服务波束。
另一种可能的实现方式中,收发模块还用于:
向终端设备发送第二指示信息;
其中,第二指示信息指示终端设备切换到第二参考信号对应的第一波束;或者,第二指示信息指示终端设备切换到第四参考信号对应的第二波束;或者,第二指示信息指示终端设备保持当前的服务波束。
另一种可能的实现方式中,收发模块还用于:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量,则向终端设备发送第二指示信息,第二指示信息指示终端设备切换到第二参考信号对应的第一波束;或者,
若第四测量结果中第四参考信号的信号质量大于或等于第二阈值,且第四参考信号的信号质量大于第二测量结果中第二参考信号的信号质量,则向终端设备发送第二指示信息,第二指示信息指示终端设备切换到第四参考信号对应的第二波束;或者,
若第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值,则向终端设备发送第二指示信息,第二指示信息指示终端设备保持当前的服务波束。
另一种可能的实现方式中,第一类型测量包括终端设备对参考信号进行周期性测量,第二类型测量包括所述终端设备对参考信号资源进行半持续测量;或者,
第一类型测量包括终端设备对参考信号进行周期性测量,第二类型测量包括终端设备对参考信号进行非周期性测量;或者,
第一类型测量包括终端设备对参考信号进行半持续测量,第二类型测量包括终端设备对参考信号进行非周期性测量。
另一种可能的实现方式中,收发模块还用于:
向终端设备发送第二配置信息,第二配置信息指示终端设备对第一参考信号进行第一类型测量。
另一种可能的实现方式中,处理模块具体用于:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第一波束属于第一波束集合,则确定终端设备切换到第一波束,第一波束集合包括用于终端设备发起波束切换的波束。
另一种可能的实现方式中,第一波束属于第一波束集合,第一波束集合包括用于终端设备发起波束切换的波束。
另一种可能的实现方式中,处理模块还用于:
根据第一规则更新第一波束集合。
另一种可能的实现方式中,处理模块具体用于:
将第一波束集合中的波束更新为通信装置为终端设备激活的一个或多个TCI状态对应的波束,得到更新后的第一波束集合。
另一种可能的实现方式中,收发模块还用于:
向终端设备发送第三指示信息,第三指示信息指示为终端设备激活的所述一个或多个TCI状态;
接收来自终端设备的第三确认消息,第三确认消息用于指示终端设备成功接收到第三指示信息。
另一种可能的实现方式中,第一波束集合包括通信装置为终端设备激活的一个或多个TCI状态对应的波束。
另一种可能的实现方式中,在终端设备发送第三确定消息的时刻起第一预设时长之后,通信装置从第一波束集合中删除的第三波束不用于所端设备发起波束切换;
在终端设备发送第三确定消息的时刻起第一预设时长内,第三波束仍可用于终端设备发起波束切换。
另一种可能的实现方式中,收发模块还用于:
向终端设备发送第四指示信息,第四指示信息指示终端设备开启采用通信装置为终端设备激活的TCI状态更新第一波束集合的功能。
另一种可能的实现方式中,处理模块具体用于:
根据第五测量结果确定X个TCI状态,第五测量结果包括终端设备测量并上报的一个或多个参考信号的测量结果,一个或多个参考信号中每个参考信号对应一个TCI状态,X个TCI状态是所述第五测量结果中信号质量最强的前X个参考信号资源对应的TCI状态,X为大于或等于1的整数;通信装置将第一波束集合中的波束更新为X个TCI状态对应的波束,得到更新后的第一波束集合。
另一种可能的实现方式中,更新后的第一波束集合包括第五参考信号对应的波束;处理模块还用于:
如果终端设备连续Y次上报的测量结果中都不包括第五参考信号对应的波束的测量结果,则确定第五参考信号对应的波束不用于终端设备发起波束切换,Y为大于或等于1的整数。
本申请提供第八方面提供一种通信装置,包括:
处理模块,用于确定第一波束集合,第一波束集合包括用于终端设备发起波束切换的波束;根据第一规则更新第一波束集合。
一种可能的实现方式中,处理模块具体用于:
将第一波束集合中的波束更新为网络设备为终端设备的激活的一个或多个TCI状态对应的波束,得到更新后的第一波束集合。
另一种可能的实现方式中,处理模块具体用于:
将网络设备为终端设备激活的一个或多个TCI状态对应的波束添加到第一波束集合中,得到更新后的第一波束集合。
另一种可能的实现方式中,通信装置为终端设备,通信装置还包括收发模块;
收发模块,用于接收来自网络设备的第三指示信息,第三指示信息指示为终端设备激活的一个或多个TCI状态;向网络设备发送第三确认消息,第三确认消息用于指示终端设备成功接收到所述第三指示信息。
另一种可能的实现方式中,在终端设备发送第三确定消息的时刻起第一预设时长之后,终端设备从第一波束集合中删除的第三波束不用于终端设备发起波束切换;
在终端设备发送第三确定消息的时刻起所述第一预设时长内,第三波束仍可用于终端设备发起波束切换。
另一种可能的实现方式中,通信装置为终端设备,收发模块还用于:
接收来自网络设备的第四指示信息,第四指示信息指示终端设备开启采用网络设备为终端设备激活的TCI状态更新第一波束集合的功能。
另一种可能的实现方式中,处理模块具体用于:
根据第五测量结果确定X个TCI状态,第五测量结果包括终端设备测量并上报的一个或多个参考信号的测量结果,一个或多个参考信号中每个参考信号对应一个TCI状态,X个TCI状态是所述第五测量结果中信号质量最强的前X个参考信号对应的TCI状态,X为大于或等于1的整数;将第一波束集合中的波束更新为X个TCI状态对应的波束,得到更新后的第一波束集合。
另一种可能的实现方式中,更新后的第一波束集合包括第五参考信号对应的波束;出处理模块还用于:
如果终端设备连续Y次上报的测量结果中都不包括第五参考信号对应的波束的测量结果,则确定第五参考信号对应的波束不用于终端设备发起波束切换,Y为大于或等于1的整数。
另一种可能的实现方式中,通信装置为终端设备;处理模块还用于:
基于第一波束集合发起波束切换。
本申请第九方面提供一种通信装置,包括:
处理模块,用于对第一参考信号进行第一类型测量,得到第一测量结果;基于第一测量结果对第二参考信号进行第二类型测量,得到第二测量结果;
收发模块,还用于向网络设备发送第二测量结果。
一种可能的实现方式中,第一测量结果包括通信装置连续N次测量的第一参考信号的测量结果,N为大于或等于1的整数;处理模块具体用于:
若通信装置连续N次测量的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于第一阈值,则对第二参考信号进行第二类型测量,得到第二测量结果;或者,
若通信装置连续N次测量的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于通信装置当前的服务波束对应的参考信号的信号质量,则对第二参考信号进行第二类型测量,得到第二测量结果。
本申请第十方面提供一种通信装置,包括:
收发模块,用于接收来自终端设备的第二测量结果,第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的测量结果;第一测量结果是终端设备 对第一参考信号进行第一类型测量得到的测量结果。
另一种可能的实现方式中,第一测量结果包括终端设备连续N次测量的第一参考信号的测量结果,N为大于或等于1的整数;
第一配置信息用于指示:若终端设备连续N次测量的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于第一阈值,则终端设备触发对第二参考信号进行第二类型测量并上报测量结果,N为大于或等于1的整数;或者,
第一配置信息用于指示:若终端设备连续N次测量的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于终端设备当前的服务波束对应的参考信号的信号质量,则终端设备触发对第二参考信号进行第二类型测量并上报测量结果。
本申请第十一方面提供一种通信装置,该通信装置包括:处理器和存储器。该存储器中存储有计算机程序或计算机指令,该处理器用于调用并运行该存储器中存储的计算机程序或计算机指令,使得处理器实现如第一方面至第五方面中任一方面中的任意一种实现方式。
可选的,该通信装置还包括收发器,该处理器用于控制该收发器收发信号。
本申请第十二方面提供一种通信装置,该通信装置包括处理器。该处理器用于调用存储起中的计算机程序或计算机指令,使得处理器实现如第一方面至第五方面中任一方面中的任意一种实现方式。
可选的,该通信装置还包括收发器,该处理器用于控制该收发器收发信号。
本申请第十三方面提供一种通信装置,该通信装置包括处理器,处理器用于执行如第一方面至第五方面中任一方面的任意一种实现方式。
本申请第十四方面提供一种包括指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得该计算机执行如第一方面至第五方面中任一方面中的任一种的实现方式。
本申请第十五方面提供一种计算机可读存储介质,包括计算机指令,当该指令在计算机上运行时,使得计算机执行如第一方面至第五方面中任一方面中的任一种实现方式。
本申请第十六方面提供一种芯片装置,包括处理器,用于调用该存储器中的计算机程序或计算机指令,以使得该处理器执行上述如第一方面至第五方面中任一方面中的任一种实现方式。
可选的,该处理器通过接口与该存储器耦合。
本申请第十七方面提供一种通信系统,包括如第一方面所述的终端设备和如第二方面所述的网络设备;或者,包括如第四方面所述的终端设备和如第五方面所述的网络设备。
从以上技术方案可以看出,本申请实施例具有以下优点:
经由上述技术方案可知,终端设备对第一参考信号进行第一类型测量,得到第一测量结果,并向网络设备发送第一测量结果。终端设备基于第一测量结果对第二参考信号进行第二类型测量,得到第二测量结果,并向网络设备发送第二测量结果。由此可知,本申请的技术方案中,终端设备基于第一类型测量得到的第一测量结果触发终端设备对第二参考信号进行第二类型测量,并上报第二测量结果。实现终端设备向网络设备上报第二测量结果,无需由网络设备通过DCI触发终端设备上报测量结果,从而降低信令开销和时延开销。 有利于提高终端设备上报的第二测量结果的可靠性,避免由于短时链路质量波动造成的影响导致终端设备上报的测量结果并不能真实的反映链路的整体情况。有利于网络设备基于第二测量结果为终端设备选择合适的波束,从而提高通信质量。
附图说明
图1为本申请实施例通信系统的一个示意图;
图2为本申请实施例通信方法适用的一个场景示意图;
图3为本申请实施例通信方法适用的一个场景示意图;
图4为本申请实施例波束使用方法适用的用于激活TCI的媒体接入控制控制元素(media access control control element,MAC CE)的一个结构示意图;
图5为本申请实施例通信方法的一个实施例示意图;
图6为本申请实施例通信方法的一个场景示意图;
图7为本申请实施例通信方法的另一个实施例示意图;
图8为本申请实施例通信方法的另一个实施例示意图;
图9为本申请实施例通信方法的另一个实施例示意图;
图10为本申请实施例通信方法的另一个实施例示意图;
图11为本申请实施例波束集合更新方法的一个实施例示意图;
图12为本申请实施例波束集合更新方法的一个场景示意图;
图13为本申请实施例波束集合更新方法的另一个实施例示意图;
图14为本申请实施例通信装置的一个结构示意图;
图15为本申请实施例通信装置的另一个结构示意图;
图16为本申请实施例通信装置的另一个结构示意图;
图17为本申请实施例通信装置的另一个结构示意图;
图18为本申请实施例终端设备的一个结构示意图;
图19为本申请实施例网络设备的一个结构示意图。
具体实施方式
本申请实施例提供了一种通信方法和通信装置,用于降低信令开销。
下面将结合附图,对本申请中的技术方案进行描述。
本申请的技术方案可以应用于各种通信系统。例如,5G系统、新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、5G网络之后的移动通信系统(例如,6G移动通信系统)、车联网(vehicle to everything,V2X)通信系统等。
本申请适用的通信系统包括终端设备和网络设备。终端设备与网络设备之间可以进行通信传输。
下面对本申请的终端设备和网络设备进行介绍。
终端设备可以是能够接收网络设备调度和指示信息的无线终端设备。终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。
终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备是包括无线通信功能(向用户提供语音/数据连通性)的设备。例如,具有无线连接功能的手持式设备、或车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、列车、飞机、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、车联网中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端等。例如,车联网中的无线终端可以为车载设备、整车设备、车载模块、车辆等。工业控制中的无线终端可以为机器人等。
网络设备可以无线网络中的设备。例如,网络设备可以是部署在无线接入网中为终端设备提供无线通信功能的设备。例如,网络设备可以为将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点,又可以称为接入网设备。
网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G移动通信系统中的网络设备。例如,NR系统中的下一代基站(next generation NodeB,gNB),传输接收点(transmission reception point,TRP),TP;或者,5G移动通信系统中的基站的一个或一组(包括多个天线面板)天线面板;或者,网络设备还可以为构成gNB或传输点的网络节点。例如,BBU,或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。例如,CU负责处理非实时协议和服务,实现RRC,分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、MAC层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来。因此在该架构下,高层信令(如RRC层信令)也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一个或多个的设备。此外,可以将CU划 分为RAN中的网络设备,也可以将CU划分为核心网(corenetwork,CN)中的网络设备,本申请对此不做限定。
下面介绍本申请提供的方法适用的一种可能的通信系统。
图1为本申请实施例通信系统的一个示意图。请参阅图1,通信系统包括至少一个网络设备和至少一个终端设备。例如,如图1所示的网络设备111、终端设备121和终端设备122。网络设备111可以与终端设备121和终端设备122之间可以采用波束进行传输。
本申请实施例中,终端设备可以发起波束切换。具体的应用场景包括:
1、终端设备测量当前服务小区的非服务波束的参考信号,并上报相应的测量结果。终端设备可以基于测量结果或网络设备的指示从当前服务波束切换到测量结果中上报的波束。也就是终端设备在同一小区内进行波束切换。
例如,如图2所示,终端设备处于网络设备的小区1,终端设备接入波束1。终端设备处于移动状态。终端设备测量波束2的波束质量并向网络设备上报测量结果。终端设备可以基于该测量结果或网络设备的指示从波束1切换到波束2。
2、终端设备测量非服务小区的参考信号,并上报给当前服务小区。终端设备可以基于测量结果或网络设备的指示从当前服务波束切换到测量结果上报的波束。也就是终端设备在当前服务小区的波束切换到其他小区的波束。
需要说明的是,终端设备进行波束切换之后,终端设备的当前服务小区可以不变,也可以发生改变。例如,终端设备从当前服务小区切换到测量结果上报的波束对应的小区。对于终端设备的当前服务小区不变的场景,可以简单理解为终端设备从另外一个小区的天线接收信号,但终端设备的当前服务小区不变。
例如,如图3所述,终端设备处于网络设备1的小区1,终端设备接入波束1。终端设备处于移动至网络设备2的小区2,。终端设备测量波束2的波束质量并向网络设备1上报测量结果。终端设备可以基于测量结果或网络设备1的指示从波束1切换到波束2。而此时终端设备的当前服务小区可以是该小区1,也就是终端设备的当前服务小区不变。或者,终端设备也可以从当前服务小区(小区1)切换到小区2。
需要说明的是,上述图3所示的场景仅仅是一种示例。实际应用中,终端设备的当前服务小区和非服务小区也可以是同一网络设备的两个小区,具体本申请不做限定。
为了便于理解本申请的技术方案,下面对本申请涉及的一些技术术语进行介绍。
1、波束(beam):波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束,形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术、模拟波束成形技术和混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。
波束在NR协议中可以称为空域滤波器(spatial domain filter),空间滤波器(spatial filter),空域参数(spatial domain parameter),空间参数(spatial parameter),空域设置(spatial domain setting),空间设置(spatial setting),准共址(quasi-colocation,QCL)信息,QCL假设,或QCL指示等。波束可以通过TCI-state参数来指示,或者通过空间关系(spatial relation)参数来指示。因此,本申请中,波束 可以替换为空域滤波器,空间滤波器,空域参数,空间参数,空域设置,空间设置,QCL信息,QCL假设,QCL指示,TCI-state(包括上行TCI-state,下行TCI-state),或空间关系等。上述术语之间也相互等效。波束也可以替换为其他表示波束的术语,本申请在此不作限定。
用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),空域发送滤波器(spatial domain transmission filter),空间发送滤波器(spatial transmission filter),空域发送参数(spatial domain transmission parameter),空间发送参数(spatial transmission parameter),空域发送设置(spatial domain transmission setting),或者空间发送设置(spatial transmission setting)。下行发送波束可以通过TCI-state来指示。
用于接收信号的波束可以称为接收波束(reception beam,Rx beam),空域接收滤波器(spatial domain reception filter),空间接收滤波器(spatial reception filter),空域接收参数(spatial domain reception parameter)或者空间接收参数(spatial reception parameter),空域接收设置(spatial domain reception setting),或者空间接收设置(spatial reception setting)。上行发送波束可以通过空间关系、上行TCI-state、探测参考信号(sounding reference signal,SRS)资源(表示使用该SRS的发送波束)中任一种来指示。因此,上行波束还可以替换为SRS资源。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其他类型的波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术、混合数字波束赋形技术、或者混合模拟波束赋形技术等。
波束一般和资源对应,例如进行波束测量时,网络设备通过不同的资源来测量不同的波束,终端设备反馈测得的资源质量,网络设备就知道对应的波束的质量。当数据传输时,波束信息也是通过其对应的资源来进行指示的。例如,网络设备通过DCI中的TCI字段指示终端设备的物理下行共享信道(physical downlink shared channel,PDSCH)波束的信息。
在可能实现的一种方式中,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或者多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或者多个天线端口也可以看作是一个天线端口集。
2、准同位(quasi-co-location,QCL):同位关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有同位关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(Angel-of-Arrival,AoA),平均到达角,AoA的扩展等。例如,同位指示用于指示至少 两组天线端口是否具有同位关系包括:同位指示用于指示至少两组天线端口发送的信道状态信息参考信号是否来自相同的传输点,或同位指示用于指示至少两组天线端口发送的信道状态信息参考信号是否来自相同的波束组。
3、TCI-state
TCI-state用于指示下行波束。网络设备可以生成不同的波束,指向不同的传输方向。在下行数据传输中,当网络设备使用一个特定的波束向终端设备发送数据时,需要通知终端设备其使用的发送波束的信息,由此,终端设备才能使用与该发送波束相对应的接收波束来接收网络设备发送的数据。在第三代合作伙伴计划第15个版本(3rd generation partnership project release15,3GPP R15)协议或3GPPR16协议中,网络设备通过DCI中的TCI字段向终端设备指示其使用的发送波束的相关信息。具体的,TCI字段大小为3比特,可以具体表示8个不同的字段值(code point)。TCI字段的每个值对应一个TCI-state的索引,一个TCI-state索引可以唯一标识一个TCI-state。一个TCI-state包括若干参数,通过这些参数可以确定发送波束的相关信息。TCI-state是由网络设备配置给各个终端设备的,TCI-state的结构如下所示:
Figure PCTCN2022132729-appb-000001
每个TCI-state包括一个自身的索引tci-StateId,和两个QCL-Info。每个QCL-Info包括一个小区(cell)字段和bwp-Id,分别表示该TCI-state应用于哪个cell的哪个带宽部分(bandwidth part,BWP),即不同cell或相同cell的不同BWP可以配置不同的QCL-Info。QCL-Info还包括一个参考信号(reference signal),用于表示与哪个参考信号资源构成准同位关系。在3GPP R15协议或3GPP R16协议中,波束一般是通过其他术语进行代替的。例如,在数据传输和信道测量中,波束都是与参考信号资源对应的,一个波束对应一个参考信号资源。因此,此处表示与哪个参考信号资源构成QCL关系,实质是指 与哪个波束构成QCL关系。QCL关系是指两个参考信号资源(或两个天线端口,天线端口和参考信号资源也是一一对应的)具有某些相同的空间参数,具体哪些空间参数相同取决于该QCL-Info的类型,即QCL-Info的另一个字段qcl-Type。qcl-Type可以有四种取值{typeA,typeB,typeC,typeD}。以typeD为例,typeD表示两个参考信号资源具有相同的空间接收参数信息,即两个波束具有相同的接收波束。TCI-state包括的两个QCL-Info中最多只能有一个是TypeD。
下面以一个示例来具体阐述,基于3GPP R15协议或3GPP R16协议网络设备是如何通过TCI-state来向一个终端设备指示数据传输波束的接收波束信息的,包括TCI-state的配置,激活和指示。
TCI-state配置:网络设备通过RRC信令向终端设备配置多个TCI-state。这些TCI-state均包括一个类型为typeD的QCL-Info。网络设备也可以配置不包括类型为typeD的QCL-info的TCI-state,不过这些TCI-state不是用于数据传输波束的指示,故此处不进一步阐述。
TCI-state激活:网络设备配置多个TCI-state后,还需要通过MAC-CE激活至多8个或者8组TCI-state,其中8组对应多收发节点(multi-transmission and reception points,mTRP)的场景。这8个TCI-state与DCI中的TCI字段的8个值是一一对应的。即,DCI的TCI字段的8个值对应的是哪8个TCI-state,是通过MAC CE来确定的。
4、终端设备当前的服务波束:指终端设备当前使用的波束。终端设备基于该服务波束接收信号(例如,物理下行控制信道(physical downlink control channel,PDCCH)、物理下行共享信道(physical downlink shared channel,PDSCH),和/或,该终端设备基于该波束发送上行信号。例如,物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical uplink control channel,PUCCH)、SRS等。终端设备基于网络设备的配置信息还可以基于该服务波束接收信道状态信息参考(channel state information reference signal,CSI-RS)。
5、终端设备切换到第一波束:指终端设备选择第一波束,在满足生效条件的时刻开始(例如,在一定预设时长之后),终端设备将该第一波束作为服务波束,即该第一波束生效,终端设备可以通过该第一波束与网络设备进行通信传输。终端设备切换到第二波束也同样类似理解。
图4适用于本申请实施例的用于激活TCI状态的MAC CE的一种结构示意图。如图4所示,其中字段T0至T(R-2)*8+07分别对应第一步配置的索引分别为0至(R-2)*8+7的各个TCI-state,每个字段的大小为1比特,值可以是0或1。取值为1表示激活该TCI-state,取值为0表示不激活该TCI-state。每个MAC CE理论上可以有8个取值为1的激活字段,其余全为0。这8个取值为1的字段对应的TCI-state即为DCI中TCI字段的8个值对应的8个TCI-state。例如,TCI字段的最小值(000)对应MAC CE中激活的索引最小的TCI-state,以此类推,一一对应。MAC CE的类型有很多,除了用于TCI-state激活的MAC CE,还有许多其他用途的MAC CE。本申请只涉及用于TCI-state或TCI-state组合激活的MAC CE。因此,若无特别说明,本申请所述的MAC CE均指这类MAC CE。
TCI-state指示:网络设备通过DCI中的TCI字段来指示一个具体的TCI-state。例如,网络设备发送给终端设备的DCI中的TCI字段的值为000,表示数据传输波束采用的000对应的TCI-state。该TCI-state内的类型为typeD的QCL-Info所包含的参考信号是索引为#1的信道状态信息-参考信号(channel state information–reference signal,CSI-RS),表示数据传输采用的波束与索引为#1的CSI-RS对应的接收波束是相同的。索引为#1的CSI-RS对应的接收波束可通过波束测量流程来确定,对终端设备来说是已知的。因此,通过TCI字段的具体取值,终端设备就可以确定数据传输波束对应的接收波束,从而采用相应的接收波束来接收数据。需要说明的是,本文中TCI-state和TCI状态两个描述方式可以互相替换。
本申请中,波束的波束质量可以通过波束对应的参考信号的信号质量表征,也可以通过其他方式表征,具体本申请不做限定。下述实施例中以波束的波束质量通过波束对应的参考信号的信号质量表征为例介绍本申请的技术方案。
下面结合具体实施例介绍本申请的技术方案。
图5为本申请实施例通信方法的一个实施例示意图。请参阅图5,方法包括:
501、终端设备对第一参考信号进行第一类型测量,得到第一测量结果。
可选的,第一参考信号包括信道状态信息参考信号CSI-RS、或同步信号(synchronization signal and physical broadcasting channel block,SSB)。
第一类型测量包括终端设备对参考信号进行周期(Period)性测量;或,终端设备对参考信号进行半持续或半静态(semi-persistent)测量。
具体的,终端设备接收来自网络设备的第一参考信号,并对第一参考信号进行第一类型测量,得到第一测量结果。第一测量结果包括第一参考信号的信号质量。该第一参考信号对应第一波束,该第一参考信号的信号质量表征了该第一波束的波束质量。
例如,如图6所示,终端设备周期地测量网络设备发送的CSI-RS1,并向终端设备上报CSI-RS1测量结果。CSI-RS1测量结果包括该CSI-RS1的信号质量。例如,该CSI-RS1的参考信号接收功率(reference signal received power,RSRP)或参考信号接收质量(reference signal received quality,RSRQ)。该CSI-RS1对应第一波束,该CSI-RS1的RSRP或RSRQ表征了该第一波束的波束质量。
上述第一测量结果可以包括终端设备一次或多次测量得到的CSI-RS1测量结果。例如,第一测量结果包括周期性测量CSI-RS1报告1、周期性测量CSI-RS1报告2和周期性测量CSI-RS1报告3。
可选的,网络设备需要为终端设备配置第一参考信号的参考信号资源。例如,周期性的参考信号资源,或,半持续的参考信号资源。其中,半持续的参考信号资源也具有周期性,但其可以被网络设备通过信令激活或去激活,因此该参考信号资源可以称为半持续的参考信号资源。
第一参考信号的参考信号资源对应第一波束,关于波束与资源之间的关系可以参阅前述对波束这一术语的相关介绍。上述501也可以替换为:终端设备对第一参考信号的参考信号资源进行第一类型测量,得到第一测量结果。或者,终端设备对第一波束进行第一类 型测量,得到第一测量结果。
可选的,图5所示的实施例还包括501a,501a在501之前执行。
501a、网络设备向终端设备发送第二配置信息。相应的,终端设备接收来自网络设备的第二配置信息。
第二配置信息指示终端设备对第一参考信号进行第一类型测量。例如,第二配置信息包括第一参考信号的参考信号资源。
可选的,第二配置信息还指示终端设备上报终端设备对第一参考信号进行第一类型测量得到的测量结果。在该实现方式下,该第二配置信息还包括用于终端设备上报测量结果的上行资源。
需要说明的是,网络设备可以通过同一配置信息或不同的配置信息为终端设备配置第一参考信号的参考信号资源以及用于终端设备上报测量结果的上行资源。这里以网络设备通过第二配置信息配置第一参考信号的参考信号资源以及用于终端设备上报测量结果的上行资源为例介绍本申请的技术方案。
需要说明的是,上述501a示出了网络设备通过第二配置信息指示终端设备对第一参考信号进行第一类型测量的方式。实际应用中,网络设备可以单独的指示信息指示终端设备对第一参考信号进行第一类型测量。
502、终端设备向网络设备发送第一测量结果。相应的,网络设备接收来自终端设备的第一测量结果。
一种可能的实现方式中,网络设备获取到第一测量结果之后,若第一测量结果满足相应的条件,网络设备可以在特定的时频资源上发送第二参考信号,用于终端设备对第二参考信号进行第二类型测量,得到第二测量结果。
可选的,第一测量结果包括终端设备连续N次上报的第一参考信号的测量结果,N为大于或等于1的整数。
例如,若终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于第一阈值,则网络设备发送第二参考信号。
例如,若终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于终端设备当前的服务波束对应的参考信号的信号质量,则网络设备发送第二参考信号。
可选的,终端设备可以在相应的时频资源向网络设备上报该第二测量结果,由于网络设备获取第一测量结果之后,网络设备可以获知终端设备将在该时频资源上上报第二测量结果。因此网络设备可以预留在时频资源,而不用该时频资源进行其他调度。
503、终端设备基于第一测量结果对第二参考信号进行第二类型测量,得到第二测量结果。
具体的,终端设备接收来自网络设备的第二参考信号,并基于第一测量结果对第二参考信号进行第二类型测量,得到第二测量结果。
可选的,第一参考信号和第二参考信号是同一参考信号;或者,第一参考信号与第二参考信号具有QCL关系。例如,第一参考信号与第二参考信号具有相同的QCL TypeD。即 终端设备假设可以采用相同的空间接收参数接收第一参考信号与第二参考信号。
第一参考信号对应的参考信号资源和第二参考信号对应的参考信号资源都对应第一波束。关于波束与资源之间的关系可以参阅前述对波束这一术语的相关介绍。
上述503也可以替换为:终端设备基于第一测量结果对第二参考信号的参考信号资源进行第二类型测量得到第二测量结果。或者,终端设备基于终端设备对第一波束进行第一类型测量得到的第一测量结果对第一波束进行第二类型测量,得到第二测量结果。
例如,如图6所示,第一参考信号和第二参考信号都为CSI-RS1,该CSI-RS1占用的参考信号资源是上述501a中网络设备为终端设备配置的周期性CSI-RS1的参考信号资源。或者,第二参考信号占用的参考信号资源是网络设备指定的其他参考信号资源,该参考信号资源可以是非周期的参考信号资源。
下面介绍第一类型测量和第二类型测量的几种可能的形式。
1、第一类型测量包括终端设备对参考信号进行周期性测量,第二类型测量包括终端设备对参考信号进行半持续测量。
2、第一类型测量包括终端设备对参考信号进行周期性测量,第二类型测量包括终端设备对参考信号进行非周期性测量。
3、第一类型测量包括终端设备对参考信号进行半持续测量,第二类型测量包括终端设备对参考信号进行非周期性测量。
上述503中,第二测量结果可以是终端设备对第二参考信号进行一次或多次第二类型测量得到的测量结果。例如,如图6所示,终端设备对三次CSI-RS1进行非周期性测量,得到第二测量结果,并上报给网络设备。
需要说明的是,第二测量结果包括报告标识(identifier,ID),该报告ID与第一测量结果中的报告ID之间关联。从而便于网络设备确定该第二测量结果是基于该第一测量结果进行第二类型测量得到的测量结果。也就是网络设备可以确定该第一测量结果时针对第一波束的测量结果,该第二测量结果是终端设备基于第一测量结果触发对第一波束执行第二类型测量得到的测量结果。便于网络设备确定第一波束的波束质量。
下面介绍上述503的两种可能的实现方式。
实现方式1、第一测量结果包括终端设备连续N次上报的第一参考信号的测量结果,N为大于或等于1的整数。上述503具体包括:
若终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于第一阈值,则终端设备对第二参考信号进行第二类型测量,得到第二测量结果。或者,若终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于第一阈值,则终端设备对第二参考信号进行第二类型测量,得到第二测量结果。也就是通过第二参考信号的信号质量表征第二参考信号对应的第一波束的波束质量。
需要说明的是,终端设备连续N次上报第一参考信号的测量结果包括:终端设备按照周期性测量第一参考信号,终端设备在连续的N个周期分别测量第一参考信号得到相应的测量结果,终端设备分别上报该连续的N个周期中每个周期对应的测量结果。因此该终端设备连续N次上报的第一参考信号的测量结果包括该N个周期分别对应的测量结果。
例如,如图6所示,终端设备连续3次周期上报的CSI-RS1测量结果中每次上报的CSI-RS1测量结果中CSI-RS1的信号质量都大于或等于第一阈值,则终端设备对该CSI-RS1进行非周期性测量,得到第二测量结果。如图6所示,终端设备可以对该CSI-RS1进行多次非周期性测量,得到第二测量结果。
需要说明的是,可选的,第一阈值的大小设定可以考虑以下因素:终端设备的位置、终端设备的期望传输速率。通常第一阈值可以属于[-60dB,-90dB]区间内。
例如,终端设备的位置较远,则第一阈值可以较小。期望传输速率较高,则第一阈值可以较大。
实现方式2、第一测量结果包括终端设备连续N次上报的第一参考信号的测量结果,N为大于或等于1的整数。上述503具体包括:
若终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于终端设备当前的服务波束对应的参考信号的信号质量,则终端设备对第二参考信号进行第二类型测量,得到第二测量结果。或者,若终端设备连续N次上报的第一参考信号的测量结果中第一参考信号对应的第一波束的信号质量均大终端设备当前的服务波束的信号质量,则终端设备对第二参考信号进行第二类型测量,得到第二测量结果。关于终端设备连续N次上报的第一参考信号的测量结果请参阅前述的相关介绍。也就是通过第二参考信号的信号质量表征第二参考信号对应的第一波束的波束质量。
例如,如图2所示,终端设备当前的服务波束为波束1,在图6中,如果终端设备连续3次周期上报的CSI-RS1测量结果中每次上报的CSI-RS1测量结果中CSI-RS1的信号质量均大于或等于终端设备当前的服务波束的信号质量,则终端设备对该CSI-RS1进行非周期性测量,得到第二测量结果。
需要说明的是,上述实现方式1和实现方式2示出了触发终端设备对第二参考信号进行第二类型测量的两种可能的触发条件,实际应用中,还可以有其他触发条件,具体本申请不做限定。
如果不满足上述实现方式1或实现方式2示出的条件,则终端设备不对第二参考信号进行第二类型测量,继续对第一参考信号进行第一类型测量。
可选的,图5所示的实施例还包括501b,501b可以在上述501之前执行。
501b、网络设备向终端设备发送第一配置信息。相应的,终端设备接收来自网络设备的第一配置信息。
第一配置信息用于指示终端设备基于第一测量结果对第二参考信号进行第二类型测量并上报测量结果。例如,第一配置信息包括以下至少一项:第二参考信号的参考信号资源、用于终端设备上报第二测量结果的上行资源。
例如,网络设备通过第一配置信息可以指示:当终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于第一阈值,则终端设备触发对第二参考信号进行第二类型测量并上报测量结果。或者,当终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于第一阈值,则终端设备触发对第二参考信号进行第二类型测量并上报测量结果。
例如,网络设备通过第一配置信息可以配置:当终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于终端设备当前的服务波束对应的参考信号的信号质量,则终端设备触发对第二参考信号进行第二类型测量并上报测量结果。或者,当终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大终端设备当前的服务波束对应的参考信号的信号质量,则终端设备触发对第二参考信号进行第二类型测量并上报测量结果。
需要说明的是,上述501b中是以网络设备通过同一配置信息为终端设备配置第二参考信号的参考信号资源和用于终端设备上报第二测量结果的上行资源的方式。实际应用中,网络设备可以通过不同的配置信息分别为终端设备配置第二参考信号的参考信号资源和用于终端设备上报第二测量结果的上行资源,具体本申请不做限定。也就是网络设备通过其中一个配置信息配置第二参考信号的参考信号资源,但不关联上报配置。而网络设备通过另外一个配置信息配置用于终端设备上报第二测量结果的上行资源。
需要说明的是,上述501b示出了网络设备通过第一配置信息指示终端设备基于第一测量结果对第二参考信号进行第二类型测量并上报测量结果的方式。实际应用中,网络设备也可以单独的指示信息指示终端设备基于第一测量结果对第二参考信号进行第二类型测量并上报测量结果,具体本申请不做限定。
上述501b与上述501a之间可以没有固定的执行顺序。可以先执行501a,再执行501b;或者,先执行501b,再执行501a;或者,依据情况同时执行501a和501b,具体本申请不做限定。
504、终端设备向网络设备发送第二测量结果。
具体的,终端设备可以通过上述501b的第一配置信息配置的上报第二测量结果的上行资源上报该第二测量结果。由于上述502中网络设备接收来自终端设备的第一测量结果,网络设备通过该第一测量结果确定终端设备将上报第二测量结果。因此,网络设备可以在第一配置信息配置的上报第二测量结果的上行资源接收终端设备的第二测量结果。
例如,如图6所示,终端设备对CSI-RS1进行非周期性测量,得到非周期性测量CSI-RS1测量结果,并上报给网络设备。
由此可知,终端设备对第一参考信号进行第一类型测量,得到第一测量结果。终端设备基于第一测量结果触发终端设备对第二参考信号进行第二类型测量,并上报第二测量结果。实现终端设备向网络设备上报第二测量结果。无需由网络设备通过DCI触发终端设备上报测量结果,从而降低信令开销。终端设备基于第一测量结果对第二参考信号进行第二类型测量,并上报第二测量结果。有利于提高终端设备上报的测量结果的可靠性,避免由于短时链路质量波动造成的影响导致终端设备上报的测量结果并不能真实的反映链路的整体情况。有利于网络设备基于测量结果为终端设备选择合适切换波束,从而降低终端设备切换波束的时延开销,提高通信质量。
可选的,基于上述501至504的过程,终端设备可以发起波束切换,具体终端设备发起波束切换的方式有多种,具体本申请不做限定。后文通过图7和图8所示的实施例介绍基于上述501至504的过程,终端设备发起波束切换的两种可能的实现方式。
可选的,图5所示的实施例还包括505至508。505至508与前述501至504之间没有固定顺序。可以先执行505至508,再执行501至504;或者,可以先执行501至504,再执行505至508;或者,依据情况同时执行501至504和505至508,具体本申请不做限定。
505、终端设备对第三参考信号进行第一类型测量,得到第三测量结果。
关于第一类型测量请参阅前述501的相关介绍,这里不再赘述。
具体的,终端设备接收来自网络设备的第三参考信号,并对第三参考信号进行第一类型测量,得到第三测量结果。
第三参考信号的参考信号资源对应第二波束,关于波束与资源之间的关系可以参阅前述对波束这一术语的相关介绍。上述505可以替换为:终端设备对第三参考信号的参考信号进行第一类型测量,得到第三测量结果。或者,终端设备对第二波束进行第一类型测量,得到第三测量结果。
可选的,第三测量结果包括终端设备一次或多次对第三参考信号进行第一类型测量得到的测量结果。例如,如图6所示,终端设备对CSI-RS2进行三次测量,得到第三测量结果。第三测量结果包括周期性测量CSI-RS2报告1、周期性测量CSI-RS2报告2和周期性测量CSI-RS2报告3。
第三参考信号的参考信号资源对应第二波束,关于波束与资源之间的关系可以参阅前述对波束这一术语的相关介绍。上述505也可以替换为:终端设备对第三参考信号进行第一类型测量,得到第三测量结果。或者,终端设备对第二波束进行第一类型测量,得到第三测量结果。可选的,终端设备向网络设备发送该第三测量结果。
一种可能的实现方式中,上述501a中的第二配置信息还用于指示终端设备对第三参考信号进行第一类型测量。例如,第二配置信息还包括第三参考信号的参考信号资源。
可选的,第二配置信息还用于指示终端设备上报终端设备对第三参考信号进行第一类型测量得到的测量结果。例如,第二配置信息还包括第三参考信号的参考信号资源。
上述实现方式中示出的是网络设备通过同一配置信息配置终端设备对第一参考信号和第三参考信号进行第一类型测量并上报相应的测量结果。实际应用中,网络设备可以通过不同的配置信息分别配置终端设备对第一参考信号进行第一类型测量并上报测量结果,以及终端设备对第三参考信号进行第一类型测量并上报测量结果。具体本申请不做限定。
可选的,对于第三参考信号,网络设备可以通过同一配置信息或不同的配置信息配置终端设备对第三参考信号进行第一类型测量,以及配置终端设备上报对第三参考信号进行第一类型测量。
506、终端设备向网络设备发送第三测量结果。相应的,网络设备接收来自终端设备的第三测量结果。
506与前述502类似,具体可以参阅前述502的相关介绍,这里不再赘述。
507、终端设备基于第三测量结果对第四参考信号进行第二类型测量,得到第四测量结果。
具体的,终端设备接收来自网络设备的第四参考信号,并基于第三测量结果对第四参考信号进行第二类型测量,得到第四测量结果。
可选的,第三参考信号和第四参考信号是同一参考信号;或者,第三参考信号与第四参信号具有QCL关系。
第三参考信号对应的参考信号资源和第四参考信号对应的参考信号资源都对应第二波束。关于波束与资源之间的关系可以参阅前述对波束这一术语的相关介绍。
上述507也可以替换为:终端设备基于第三测量结果对第四参考信号进行第二类型测量,得到第四测量结果。或者,终端设备基于第三测量结果对第二波束进行第二类型测量,得到第四测量结果。
关于第一类型测量和第二类型测量的几种可能的形式请参阅前述502的相关介绍,这里不再赘述。
关于上述507的具体实现方式与前述503类似,具体可以参阅前述503中提供的实现方式。这里不再赘述。
上述实现方式中示出的是网络设备通过同一配置信息配置终端设备对第二参考信号和第四参考信号进行第二类型测量并上报相应的测量结果。实际应用中,网络设备可以通过不同的配置信息分别配置终端设备对第二参考信号进行第二类型测量并上报测量结果,以及终端设备对第四参考信号进行第二类型测量并上报测量结果。具体本申请不做限定。
可选的,对于第四参考信号,网络设备可以通过同一配置信息或不同的配置信息配置终端设备对第四参考信号进行第二类型测量,以及配置终端设备上报对第四参考信号进行第二类型测量。
上述507中,可选的,第四测量结果包括终端设备一次或多次对第四参考信号进行第二类型测量得到的测量结果。例如,如图6所示,终端设备对CSI-RS2进行三次非周期性测量,得到第四测量结果。
可选的,上述第一配置信息还用于指示终端设备基于第三测量结果对第四参考信号进行第二类型测量并上报测量结果。例如,第一配置信息还包括以下至少一项:第四参考信号的参考信号资源、用于终端设备上报第四测量结果的上行资源。
508、终端设备向网络设备发送第四测量结果。相应的,网络设备接收来自终端设备的第四测量结果。
具体的,终端设备可以通过上述501b的第一配置信息配置的上报第四测量结果的上行资源上报该第四测量结果。由于上述506中网络设备接收来自终端设备的第三测量结果,网络设备通过该第三测量结果可以确定该终端设备将上报第四测量结果。因此,网络设备可以在第一配置信息配置的上报第四测量结果的上行资源上接收该终端设备的第四测量结果。
例如,如图6所示,终端设备对CSI-RS2进行非周期性测量,得到非周期性测量CSI-RS2测量结果,并上报给网络设备。
需要说明的是,终端设备可以同时向网络设备上报上述504中的第二测量结果和上述508的第四测量结果,也可以分开上报,具体可以视实际网络设备为终端设备指示的上报配置。
由此可知,终端设备通过本申请的技术方案实现对多个波束对应的测量和上报相应的 测量结果,无需由网络设备通过DCI触发终端设备上报测量结果,从而降低信令开销。终端设备基于对每个波束进行第一类型测量得到的测量结果对该波束进行第二类型测量并上报测量结果。有利于提高终端设备上报的测量结果的可靠性,避免由于短时链路质量波动造成的影响导致终端设备上报的测量结果并不能真实的反映链路的整体情况。有利于网络设备基于测量结果为终端设备选择合适切换波束,从而降低终端设备切换波束的时延开销,提高通信质量。
可选的,基于上述501至508的过程,终端设备可以发起波束切换,具体终端设备发起波束切换的方式有多种,具体本申请不做限定。后文通过图9和图10所示的实施例介绍基于上述501至508的过程,终端设备发起波束切换的两种可能的实现方式。
下面介绍终端设备可以基于上述501至508的过程发起波束切换的几种可能的场景。
1、终端设备同时上报第二测量结果和第四测量结果。
在该场景下,该第二测量结果与该第四测量结果可以是终端设备在一定时长内得到的测量结果。终端设备可以基于第二测量结果和第四测量结果发起波束切换,具体的实现方式请参阅后文图9和图10所示的实施例的相关介绍。
需要说明的是,如果该终端设备获取到该第二测量结果的时间与终端设备获取该第四测量结果的时间之间的时间间隔大于一定时长,则终端设备不同时上报第二测量结果和第四测量结果。终端设备执行上述501至504,终端设备可以基于第二测量结果发起波束切换。例如,若第二参考信号的信号质量较好,则终端设备可以切换到第二参考信号对应的第一波束。在大于该一定时长的时间之后,终端设备执行上述505至508,终端设备可以基于第四测量结果再次发起波束切换。例如,终端设备基于第二测量结果切换到第二参考信号对应的第一波束。终端设备获得第四测量结果,并确定第四测量结果中第四参考信号的信号质量大于第二参考信号的信号质量,终端设备可以从第二参考信号对应的第一波束切换到第四参考信号对应的第二波束。
2、终端设备分开上报第二测量结果和第四测量结果。
在该场景下,该第二测量结果与该第四测量结果可以是终端设备在一定时长内得到的测量结果。终端设备可以基于第二测量结果和第四测量结果发起波束切换。而对于网络设备来说,若网络设备在一定时长内接收到第二测量结果和第四测量结果,则网络设备基于第二测量结果和第四测量结果确定终端设备所切换的波束。
需要说明的是,若网络设备接收到该第二测量结果之后一定时长内没有接收到该终端设备的其他测量结果,网络设备基于第二测量结果确定终端设备所切换的波束。在大于该一定时长的时间之后,网络设备接收到该第四测量结果,则网络设备可以基于第四测量结果确定终端设备所切换的波束。
上述501至508是以终端设备通过本申请的技术方案对两个波束(第一参考信号对应的第一波束和第三参考信号对应的第二波束)进行相应的测量和上报测量结果的过程为例进行介绍。实际应用中,终端设备可以测量更多波束并上报相应的测量结果,以便于终端设备或网络设备从多个波束中确定终端设备采用的波束,以提高通信质量。
需要说明的是,如果第二测量结果和第四测量结果是终端设备在一定时长内得到的测 量结果,且第二测量结果中第二参考信号的信号质量与第四测量结果中第四参考信号的信号质量相同或接近,则终端设备可以只上报第二测量结果或只上报第四测量结果。
本申请还提供一种实施例,该实施例与上述图5所示的实施例类似,该实施例包括:终端设备对第一参考信号进行第一类型测量,得到第一测量结果;终端设备基于第一测量结果对第二参考信号进行第二类型测量,得到第二测量结果;终端设备向网络设备发送第二测量结果,相应的,网络设备接收来自终端设备的第二测量结果。也就是该实施例中终端设备不执行上述502和506。
可选的,第一测量结果包括终端设备连续N次测量的第一参考信号的测量结果,N为大于或等于1的整数;处理模块具体用于:
若终端设备连续N次测量的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于第一阈值,则终端设备对第二参考信号进行第二类型测量,得到第二测量结果;或者,
若终端设备连续N次测量的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于终端设备当前的服务波束对应的参考信号的信号质量,则终端设备对第二参考信号进行第二类型测量,得到第二测量结果。
图7为本申请实施例通信方法的另一个实施例示意图。请参阅图7,方法包括:
701、终端设备判断第二测量结果中第二参考信号的信号质量是否大于或等于第二阈值,若是,则执行702;若否,则执行703。
第二阈值的大小设定方式可以参阅前述图5所示的实施例中第一阈值的大小设定方式,具体可以参阅前述图5所示的实施例的相关介绍。
上述701也可以替换为:终端设备判断第二测量结果中第二参考信号的信号质量是否大于第二阈值,若是,则执行702;若否,则执行703。
可选的,图7所示的实施例还包括701a,701a可以在701之前执行。
701a、终端设备根据第一规则更新第一波束集合。
第一波束集合包括用于终端设备发起波束切换的波束集合。关于701a的详细过程请参阅后文图11所示的实施例中的1102的相关介绍,这里不详细介绍。
基于701a,可选的,上述701具体包括:终端设备判断该第二测量结果中第二参考信号的信号质量是否大于或等于第二阈值,且所述第一波束是否属于第一波束集合;若是,则执行702;若否,则执行703。
如果第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第一波束属于第一波束集合,则终端设备切换到第二参考信号对应的第一波束。如果第二测量结果中第二参考信号的信号质量小于第二阈值,或,第一波束不属于第一波束集合,则终端设备保持当前的服务波束。可选的,终端设备继续对第一参考信号进行第一类型测量。
702、终端设备切换到第二参考信号对应的第一波束。
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则终端设备切换到第二参考信号对应的第一波束。或者,若第二测量结果中第二参考信号的信号质量大于第二阈值,则终端设备切换到第二参考信号对应的第一波束。例如,如图2所示,终端设备 从波束1切换到波束2。
需要说明的是,终端设备切换到第二参考信号对应的第一波束,在一定预设时长之后,第一波束生效。第一波束生效可以理解为:终端设备采用第一波束与网络设备进行通信传输。
703、终端设备保持当前的服务波束。
若第二测量结果中第二参考信号的信号质量小于第二阈值,则终端设备保持当前的服务波束。或者,若第二测量结果中第二参考信号的信号质量小于或等于第二阈值,则终端设备保持当前的服务波束。
可选的,终端设备继续对第一参考信号进行第一类型测量。
704、网络设备判断第二测量结果中第二参考信号的信号质量是否大于或等于第二阈值,若是,则执行705;若否,则执行706。
704与前述701类似,具体可以参阅前述701的相关介绍。
可选的,图7所示的实施例还包括704a,704a可以在704之前执行。
704a、网络设备根据第一规则更新第一波束集合。
基于704a,可选的,上述704具体包括:网络设备判断该第二测量结果中第二参考信号的信号质量是否大于或等于第二阈值,且所述第一波束是否属于第一波束集合;若是,则执行705;若否,则执行706。
关于704a的详细过程请参阅后文图11所示的实施例中的1102的相关介绍,这里不详细介绍。
705、网络设备确定终端设备切换到第一波束。
网络设备确定终端设备切换到第二参考信号对应的第一波束,在一定预设时长后,网络设备通过第一波束与终端设备进行通信传输。
706、网络设备确定终端设备保持当前的服务波束。
网络设备确定终端设备保持当前的服务波束,则网络设备仍采用该服务波束与终端设备进行通信传输。
目前终端设备基于终端设备在层1的测量结果发起波束切换的方案中,如果执行多次测量和上报测量结果,则带来相应的信令开销。如果执行较少次测量和上报测量结果,则难以短时链路质量波动造成的影响导致终端设备上报的测量结果并不能真实的反映链路的整体情况,导致终端设备上报的测量结果可靠性较低。进而导致终端设备或网络设备无法基于该测量结果确定更适用于该终端设备的切换波束,影响终端设备的通信质量。而上述图7所示的实施例示出了基于上述501至504的过程,终端设备判断是否发起波束切换的过程,以及网络设备确定终端设备是否发起波束切换的过程。终端设备和网络设备基于第二测量结果确定是否发起波束切换。由于第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的,可知终端设备上报的测量结果的可靠性较高。避免由于短时链路质量波动造成的影响导致终端设备上报的测量结果并不能真实的反映链路的整体情况。有利于终端设备采用合适的波束,改善了触发终端设备进行波束切换的可靠性,以提高终端设备的通信质量。终端设备和网络设备分别基于该第二测量结果确定终端设备 是否发起波束切换,无需网络设备向终端设备指示波束,从而节省了信令开销和时延开销。终端设备无需自行向网络设备发送其想要切换的波束,从而避免网络一直预留用于终端设备上报其想要切换的波束的上行资源。节省了上行资源开销,提升系统性能。
需要说明的是,上述701至703与704至706之间没有固定的执行顺序。可以先执行701至703,再执行704至706;或者,先执行704至706,再执行701至703;或者,依据情况同时执行701至703和704至706,具体本申请不做限定。
图8为本申请实施例通信方法的另一个实施例示意图。请参阅图8,方法包括:
801、网络设备向终端设备发送第一反馈消息或第一指示信息。相应的,终端设备接收来自网络设备的第一反馈消息或第一指示信息。
一种可能的实现方式中,第一反馈消息为第一确认消息(acknowledgment,ACK),或者,第一指示信息指示终端设备切换到第一波束。
例如,如果第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则网络设备可以向终端设备发送第一ACK或第一指示信息。该第一指示信息指示终端设备切换到第二参考信号对应的第一波束的第一指示信息。网络设备可以确定终端设备切换到第二参考信号对应的第一波束。在网络设备发送该第一ACK或第一指示信息的预设时长之后,网络设备可以采用第一波束与终端设备进行通信传输。在该预设时长内,网络设备可以仍采用终端设备当前的服务波束与终端设备进行通信传输。
另一种可能的实现方式中,第一反馈消息为第一否定消息(non-acknowledgment,NACK),或,第一指示信息用于终端设备保持当前的服务波束或不进行波束切换。
例如,如果第二测量结果中第二参考信号的信号质量小于第二阈值,则网络设备可以向终端设备反馈第一NACK或第一指示信息,该第一指示信息指示终端设备保持当前的服务波束。网络设备可以确定终端设备保持当前的服务波束。网络设备仍采用该服务波束与终端设备进行通信传输。
802、若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则第一反馈消息为第一确认消息或第一指示信息用于终端设备切换到第二参考信号对应的第一波束,终端设备切换到第一波束。
终端设备切换到第一波束,在终端设备接收到该第一反馈消息或第一指示信息的预设时长之后,终端设备可以采用该第一波束与网络设备进行通信传输。在该预设时长内,终端设备可以仍采用终端设备当前的服务波束与网络设备进行通信传输。
803、若第二测量结果中第二参考信号的信号质量小于第二阈值,则第一反馈消息为第一否定消息,或第一指示信息用于终端设备保持当前的服务波束,终端设备保持当前的服务波束。
可选的,终端设备继续对第一参考信号进行第一类型测量。
可选的,上述第一指示信息用于终端设备保持当前的服务波束也替换描述为:第一指示信息用于指示终端设备不进行波束切换。
在803的情况下,终端设备仍采用该服务波束与网络设备之间进行通信传输。
目前终端设备基于终端设备在层1的测量结果发起波束切换的方案中,如果执行多次 测量和上报测量结果,则带来相应的信令开销。如果执行较少次测量和上报测量结果,则难以短时链路质量波动造成的影响导致终端设备上报的测量结果并不能真实的反映链路的整体情况,导致终端设备上报的测量结果可靠性较低。进而导致终端设备或网络设备无法基于该测量结果确定更适用于该终端设备的切换波束,影响终端设备的通信质量。而上述图8所示的实施例示出了基于上述501至504的过程,网络设备基于第二测量结果确定第一反馈消息或第一指示信息,并向终端设备发送该第一反馈消息或第一指示信息。由于第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的,可知终端设备上报的测量结果的可靠性较高,避免由于短时链路质量波动造成的影响导致终端设备上报的测量结果并不能真实的反映链路的整体情况。有利于终端设备采用合适的波束,改善了触发终端设备进行波束切换的可靠性,以提高终端设备的通信质量。终端设备无需自行向网络设备发送其想要切换的波束,从而避免网络一直预留用于终端设备上报其想要切换的波束的上行资源。节省了上行资源开销,提升系统性能。
本申请还提供另一种实现方式,在上述504之后,若终端设备没有接收到网络设备针对第二测量结果的反馈消息,则终端设备可以保持当前的服务波束。可选的,终端设备继续对第一参考信号进行第一类型测量。
本申请还提供另一种实现方式,在上述504之后,终端设备接收来自网络设备的DCI,若该DCI指示的波束为第二参考信号对应的第一波束,则终端设备切换到第一波束。该DCI可以理解为是网络设备对于第二测量结果的响应,终端设备不需要针对该DCI反馈ACK,终端设备直接切换到第一波束,并在一定预设时长后,第一波束生效。即终端设备将第一波束作为服务波束,终端设备通过该第一波束与网络设备进行通信。
可选的,若该DCI指示的波束不为第二参考信号对应的第一波束,则终端设备切换到该DCI指示的波束,终端设备针对该DCI向网络设备反馈ACK。在一定预设时长后,该DCI指示的波束生效。即终端设备将该DCI指示的波束作为服务波束,终端设备通过该DCI指示的波束与网络设备进行通信。
图9为本申请实施例通信方法的另一个实施例示意图。请参阅图9,方法包括:
901、若满足第一条件,则终端设备确定切换到第二参考信号对应的第一波束。
第一条件包括:第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且,第二参考信号的信号质量大于第四参考信号的信号质量。或者,第二测量结果中第二参考信号的信号质量大于第二阈值。
可选的,第四测量结果中第四参考信号的信号质量大于或等于第二阈值。
关于第二阈值的大小设定方式可以参阅前述图5所示的实施例中第一阈值的大小设定方式,具体可以参阅前述图5所示的实施例的相关介绍。
902、若满足第二条件,则终端设备确定切换到第四参考信号对应的第二波束。
第二条件包括:第四测量结果中第四参考信号的信号质量大于或等于第二阈值,且,第四参考信号的信号质量大于第二参考信号的信号质量。或者,第四测量结果中第四参考信号的信号质量大于第二阈值,且,第四参考信号的信号质量大于第二参考信号的信号质量。
可选的,第二测量结果中第二参考信号的信号质量大于或等于第二阈值。
需要说明的是,可选的,如果第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量都大于或等于第二阈值,且第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量相等,则终端设备可以切换到第二参考信号对应的第一波束和第四参考信号对应的第二波束中索引较小或索引较大的波束。
903、若满足第三条件,则终端设备保持当前的服务波束。
可选的,终端设备继续对第一参考信号和第三参考信号进行第一类型测量。
第三条件包括:第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量都小于第二阈值;或,第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量都小于或等于第二阈值。
可选的,图9所示的实施例还包括901a,901a可以在901之前执行。
901a、终端设备根据第一规则更新第一波束集合。
第一波束集合包括用于终端设备发起波束切换的波束。关于901a的详细过程请参阅后文图11所示的实施例中的1102的相关介绍,这里不详细介绍。
基于上述901a,可选的,上述901具体包括:
若满足第一条件,且第一波束属于第一波束集合,则终端设备切换到第一波束。
需要说明的是,如果第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量都大于或等于第二阈值,且第四参考信号对应的第二波束属于第一波束集合,第一参考信号对应的第一波束不属于第一波束集合,则终端设备切换到第二波束。可选的,第二参考信号的信号质量小于第四参考信号的信号质量。
需要说明的是,如果第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量都大于或等于第二阈值,且第二参考信号对应的第一波束和第四参考信号对应的第二波束都不属于第一波束集合,则终端设备保持当前的服务波束。可选的,终端设备继续对第一参考信号和第三参考信号进行第一类型测量。
基于上述901a,可选的,上述902具体包括:
若满足第二条件,且第四参考信号对应的第二波束属于第一波束集合,则终端设备切换到第二波束。
需要说明的是,如果第四测量结果中第四参考信号的信号质量和第四测量结果中第四参考信号的信号质量都大于或等于第二阈值,且第二参考信号对应的第一波束属于第一波束集合,第四参考信号对应的第二波束不属于第一波束集合,则终端设备切换到第二参考信号对应的第一波束。可选的,第四参考信号的信号质量大于第二参考信号的信号质量。
需要说明的是,如果第四测量结果中第四参考信号的信号质量和第四测量结果中第四参考信号的信号质量都大于或等于第二阈值,且第二参考信号对应的第一波束和第四参考信号对应的第二波束都不属于第一波束集合,则终端设备保持当前的服务波束。可选的,终端设备继续对第一参考信号和第三参考信号进行第一类型测量。可选的,第四参考信号的信号质量大于第二参考信号的信号质量。
904、若满足第一条件,则网络设备确定终端设备切换到第二参考信号对应的第一波束。
905、若满足第二条件,则网络设备确定终端设备切换到第四参考信号对应的第二波束。
906、若满足第三条件,则网络设备确定终端设备保持当前的服务波束。
904至906与前述901至903类似,具体可以参阅前述901至903的相关介绍,这里不再赘述。
可选的,图9所示的实施例还包括904a,904a可以在704之前执行。
904a、网络设备根据第一规则更新第一波束集合。
关于904a的详细过程请参阅后文图11所示的实施例中的1102的相关介绍,这里不详细介绍。
基于上述904a,可选的,上述904具体包括:
若满足第一条件,且第二参考信号对应的第一波束属于第一波束集合,则网络设备确定终端设备切换到第一波束。
需要说明的是,如果第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量都大于或等于第二阈值,且第四参考信号对应的第二波束属于第一波束集合,第二参考信号对应的第一波束不属于第一波束集合,则网络设备确定终端设备切换到第二波束。可选的,第二参考信号的信号质量大于第四参考信号的信号质量。
需要说明的是,如果第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量都大于或等于第二阈值,且第二参考信号对应的第一波束和第四参考信号对应的第二波束都不属于第一波束集合,则网络设备确定终端设备保持当前的服务波束。
基于上述901a,可选的,上述902具体包括:
若满足第二条件,且第四参考信号对应的第二波束属于第一波束集合,则网络设备确定终端设备切换到第二波束。
需要说明的是,如果第四测量结果中第四参考信号的信号质量和第四测量结果中第四参考信号的信号质量都大于或等于第二阈值,且第二参考信号对应的第一波束属于第一波束集合,第四参考信号对应的第二波束不属于第一波束集合,则网络设备确定终端设备切换到第一波束。可选的,第二参考信号的信号质量大于第四参考信号的信号质量。
需要说明的是,如果第四测量结果中第四参考信号的信号质量和第四测量结果中第四参考信号的信号质量都大于或等于第二阈值,且第二参考信号对应的第一波束和第四参考信号对应的第二波束都不属于第一波束集合,则网络设备确定终端设备保持当前的服务波束。可选的,第四参考信号的信号质量大于第二参考信号的信号质量。
上述图9所示的实施例示出了基于上述501至508的过程,终端设备判断是否发起波束切换的过程,以及网络设备确定终端设备是否发起波束切换的过程。终端设备和网络设备都基于第二测量结果和第四测量结果确定是否发起波束切换。由于第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的,第四测量结果是终端设备基于第三测量结果对第四参考信号进行第二类型测量得到的。可知终端设备上报的测量结果的可靠性较高,避免由于短时链路质量波动造成的影响导致终端设备上报的测量结果并不能真实的反映链路的整体情况。有利于终端设备采用合适的波束,也就是改善了触发 终端设备进行波束切换的可靠性,以提高终端设备的通信质量。终端设备基于多个波束的第一类型测量触发上报多个波束对应的第二类型测量得到的测量结果,从而实现从多个波束中选择信号质量较好的波束作为切换波束。进一步提高终端设备的通信质量。终端设备和网络设备都基于第二测量结果和第四测量结果确定是否发起波束切换,无需网络设备向终端设备指示波束,从而节省了信令开销和时延开销。终端设备无需自行向网络设备发送其想要切换的波束。避免网络一直预留用于终端设备上报其想要切换的波束的上行资源。节省了上行资源开销,提升系统性能。
需要说明的是,上述901至903与904至906之间没有固定的执行顺序。可以先执行901至903,再执行904至906;或者,先执行904至906,再执行901至903;或者,依据情况同时执行901至903和904至906,具体本申请不做限定。
图10为本申请实施例通信方法的另一个实施例示意图。请参阅图10,方法包括:
1001、网络设备向终端设备发送第二反馈消息或第二指示信息。
一种可能的实现方式中,第二反馈消息为第二确认消息,第二确认消息用于指示终端设备切换到第二参考信号对应的第一波束和第四参考信号对应的第二波束中信号质量最好的波束。
例如,如果第二测量结果中第二参考信号的信号质量大于或等于第二阈值,第二测量结果中第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量,网络设备可以向终端设备发送第二确认消息,终端设备接收到该第二确认消息后,终端设备可以切换到第一波束。网络设备确定终端设备切换到第一波束,在预设时长后,网络设备与终端设备可以通过第一波束进行通信传输。
例如,如果第四测量结果中第四参考信号的信号质量大于或等于第二阈值,第四测量结果中第四参考信号的信号质量大于第二测量结果中第二参考信号的信号质量,网络设备可以向终端设备发送第二确认消息,终端设备接收到该第二确认消息后,终端设备可以切换到第二波束。网络设备确定终端设备切换到第二波束,在预设时长后,网络设备与终端设备可以通过第二波束进行通信传输。
另一种可能的实现方式中,第二指示信息指示终端设备切换到第二参考信号对应的第一波束。
例如,如果第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第二测量结果中第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量,则网络设备可以向终端设备发送第二指示信息,该第二指示信息指示终端设备切换到第二参考信号对应的第一波束。终端设备可以切换到第一波束。网络设备可以确定终端设备切换到第一波束,在预设时长后,网络设备与终端设备可以通过第一波束进行通信传输。
例如,如果第四测量结果中第四参考信号的信号质量大于或等于第二阈值,第四测量结果中第四参考信号的信号质量大于第二测量结果中第二参考信号的信号质量,网络设备可以向终端设备发送第二指示信息,该第二指示信息指示终端设备切换到第四参考信号对应的第二波束。终端设备接收到该第二指示信息后,终端设备可以切换到第二波束。网络设备确定终端设备切换到第二波束,在预设时长后,网络设备与终端设备可以通过第二波 束进行通信传输。
另一种可能的实现方式中,第二反馈消息为第二否定消息,第二否定消息用于指示终端设备保持当前的服务波束,或者用于指示终端设备不进行波束切换。
例如,如果第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量都小于第二阈值,则网络设备可以向终端设备发送第二否定消息,终端设备接收到该第二否定消息后,终端设备保持当前的服务波束。
另一种可能的实现方式中,第二指示信息用于终端设备保持当前的服务波束或不进行波束切换。
例如,如果第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量都小于第二阈值,则网络设备可以指示终端设备保持当前的服务波束或指示终端设备不进行波束切换。那么终端设备接收到该第二指示信息之后,终端设备可以保持当前的服务波束。
1002、若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,第二测量结果中第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量,则第二反馈消息为第二确认消息或第二指示信息指示终端设备切换到第二参考信号对应的第一波束,终端设备切换到第一波束。
在1002的情况下,终端设备切换到第一波束,在终端设备接收到该第二反馈消息或第二指示信息的预设时长之后,终端设备可以采用该第一波束与网络设备进行通信传输。在该预设时长内,终端设备可以仍采用终端设备当前的服务波束与网络设备进行通信传输。
1003、若第四测量结果中第四参考信号的信号质量大于或等于第二阈值,第二测量结果中第二参考信号的信号质量小于第四测量结果中第四参考信号的信号质量,则第二反馈消息为第二确认消息或第二指示信息指示终端设备切换到第四参考信号对应的第二波束,终端设备切换到第二波束。
在1003的情况下,终端设备切换到第二波束,在终端设备接收到该第二反馈消息或第二指示信息的预设时长之后,终端设备可以采用该第二波束与网络设备进行通信传输。在该预设时长内,终端设备可以仍采用终端设备当前的服务波束与网络设备进行通信传输。
1004、若第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值,则第二反馈消息为第二否定消息或第二指示信息指示终端设备当前的服务波束或不进行波束切换,则终端设备保持当前的服务波束。
可选的,终端设备继续对第一参考信号和第三参考信号进行第一类型测量。
在1004的情况下,终端设备仍采用终端设备当前的服务波束与网络设备之间进行通信传输。
上述图10所示的实施例示出了基于上述501至508的过程,网络设备基于第二测量结果和第四测量结果确定第二反馈消息或第二指示信息,并向终端设备发送该第二反馈消息或第二指示信息。由于第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的,第四测量结果是终端设备基于第三测量结果对第四参考信号进行第二类型测量得到的。因此可知终端设备上报的测量结果的可靠性较高,避免由于短时链路质 量波动造成的影响导致终端设备上报的测量结果并不能真实的反映链路的整体情况。从而为终端设备确定合适的波束,也就是改善了触发终端设备进行波束切换的可靠性,以提高终端设备的通信质量。终端设备基于多个波束的第一类型测量触发上报多个波束对应的第二类型测量得到的测量结果,从而实现从多个波束中选择信号质量较好的波束作为切换波束,以提高终端设备的通信质量。终端设备无需自行向网络设备发送其想要切换的波束,避免网络一直预留用于终端设备上报其想要切换的波束的上行资源。节省了上行资源开销,提升系统性能。
图11为本申请实施例波束集合更新方法的一个实施例示意图。请参阅图11,波束集合更新方法包括:
1101、通信设备确定第一波束集合。
第一波束集合包括用于终端设备发起波束切换的波束。第一波束集合也可以称为候选波束集合,或者,波束切换集合,具体本申请对第一波束集合的名称不做限定。
一种可能的实现方式中,第一波束集合中的波束可以认为是终端设备上报即切换的波束。例如,终端设备上报了波束1的测量结果,那么代表终端设备1切换到了该波束1。终端设备可以采用波束1进行通信。
通信设备为网络设备或终端设备。例如,通信设备为终端设备,上述1101具体包括:终端设备接收来自网络设备的第三配置信息,该第三配置信息用于为终端设备配置第一波束集合。可选的,该第三配置信息承载于RRC消息中。
1102、通信设备根据第一规则更新第一波束集合。
具体的,通信设备可以根据网络设备为终端设备激活的一个或多个TCI状态和/或第五测量结果更新第一波束集合。
该一个或多个TCI状态中每个TCI状态对应一个或多个波束,具体关于TCI状态的详细介绍请参阅前文的相关介绍。
第五测量结果包括终端设备测量并上报的一个或多个参考信号的测量结果。该一个或多个参考信号中每个参考信号对应一个TCI状态,每个TCI状态对应一个或多个波束。
下面介绍通信设备根据网络设备为终端设备激活的一个或多个TCI状态和/或第五测量结果更新第一波束集合的几种可能的实现方式。
1、通信设备将第一波束集合中的波束更新为网络设备为终端设备激活的一个或多个TCI状态对应的波束,得到更新后的第一波束集合。
具体的,网络设备可以向终端设备发送第三指示信息,该第一指示信息用于为终端设备激活一个或多个TCI状态,每个TCI状态对应一个或多个波束。具体关于TCI状态的详细介绍请参阅前文的相关介绍。例如,第一指示信息中激活八个TCI状态,则通信设备将该八个TCI状态对应的波束作为更新后的第一波束集合中的波束。可选的,第一指示信息承载于MAC CE中。
可选的,该一个或多个TCI状态不包括已经被指示为终端设备的服务波束对应的TCI状态。
终端设备成功接收该第三指示信息之后,终端设备可以向网络设备反馈第三确认消息, 以指示终端设备成功接收到该第三指示信息。例如,第三确认消息为第三ACK。
可选的,在终端设备发送第一确定消息的时刻起第一预设时长之后,终端设备从第一波束集合中删除的第三波束不用于终端设备发起波束切换;在终端设备发送第一确定消息的时刻起第一预设时长内,第三波束仍可用于终端设备发起波束切换。例如,第一预设时长为3ms(毫秒)。
2、通信设备将网络设备为终端设备激活的一个或多个TCI状态对应的波束添加到第一波束集合中,得到更新后的第一波束集合。
在该实现方式中,通信设备将该一个或多个TCI状态对应的波束添加到第一波束集合,实现对第一波束集合的更新。
3、通信设备根据第五测量结果确定X个TCI状态,并将该第一波束集合中的波束更新为X个TCI状态对应的波束,得到更新后的第一波束集合。
该X个TCI状态是第五测量结果中信号质量最强的前X个参考信号对应的TCI状态,X为大于或等于1的整数。该X个TCI状态中每个TCI状态对应一个或多个波束。
下面介绍参考信号对应的TCI状态包括以下两种可能的含义:
1、该参考信号为该TCI状态配置的具有QCL TypeD的参考信号。
由上述TCI状态的介绍可知,TCI状态包括参考信号的配置信息,该配置信息包括该参考信号的QCL TypeD。参考信号对应的TCI状态可以理解为该参考信号是该TCI状态配置的参考信号。
2、该参考信号与该TCI状态配置的参考信号具有相同的QCL TypeD。
由上述TCI状态的介绍可知,TCI状态包括参考信号的配置信息,该配置信息包括该参考信号的QCL TypeD。该参考信号与TCI状态配置的参考信号具有相同的QCL TypeD。
可选的,更新后的第一波束集合包括第五参考信号对应的波束。如果终端设备连续Y次上报的测量结果中都不再包括该第五参考信号对应的波束的测量结果,则通信设备确定第五参考信号对应的波束不用于终端设备发起波束切换,Y为大于或等于1的整数。
在上报测量结果中通常上报的是信号质量较好的波束的测量结果,而在终端设备连续Y次上报的测量结果中都没有该第五参考信号对应的波束的测量结果,则可以认为对于该终端设备来说,该第五参考信号对应的波束的信号质量较差,该第五参考信号对应的波束不适用于终端设备进行波束切换。
4、通信设备将网络设备为终端设备激活的一个或多个TCI状态对应的波束以及该X个TCI状态对应的波束的并集作为更新后的第一波束集合包括的波束;或者,通信设备将网络设备为终端设备激活的一个或多个TCI状态对应的波束以及该X个TCI状态对应的波束的并集添加到第一波束集合中,得到更新后的第一波束集合。
关于该一个或多个TCI状态请参阅前述实现方式1的相关介绍。关于该X个TCI状态请参阅前述实现方式2的相关介绍。关于波束是否可用于该终端设备发起波束切换的相关介绍可以参阅前述实现方式1和实现方式2的相关介绍。
例如,如图12所示,通信设备将网络设备为终端设备激活的一个或多个TCI状态对应的波束以及该X个TCI状态对应的波束的并集作为更新后的第一波束集合包括的波束。
需要说明的是,可选,通信设备也可以将该网络设备为终端设备激活的一个或多个TCI状态对应的波束以及该X个TCI状态对应的波束的交集作为更新后的第一波束集合包括的波束。或者,通信设备将该网络设备为终端设备激活的一个或多个TCI状态对应的波束以及该X个TCI状态对应的波束的交集添加到第一波束集合中,得到更新后的第一波束集合,具体本申请不做限定。
由此可知,本申请的技术方案中引入第一波束集合的更新机制,减少了网络设备为终端设备配置第一波束集合的信令开销。通常网络设备采用RRC消息为终端设备配置第一波束集合,而网络设备采用RRC消息更新第一波束集合所需的时间较长,导致更新第一波束集合的时延较大。而采用本申请示出的更新第一波束集合的方式,有利于快速更新第一波束集合,提升第一波束集合中的波束的实时性。
下面以通信设备为终端设备介绍本申请的技术方案。请参阅图13,图13为本申请实施例波束集合更新方法的另一个实施例示意图。方法包括:
1301、网络设备向终端设备发送第三指示信息。相应的,终端设备接收来自网络设备的第三指示信息。
关于第三指示信息的相关介绍请参阅前述图12所示的实施例中的相关介绍,这里不再赘述。
可选的,图13所示的实施例还包括1301a,1301a可以在1302之前执行。
1301a、网络设备向终端设备发送第四指示信息。相应的,终端设备接收来自网络设备的第四指示信息。
第四指示信息指示终端设备开启采用网络设备为终端设备激活的TCI状态更新第一波束集合的功能。
需要说明的是,网络设备也可以基于指示信息指示终端设备关闭该功能,关闭后,则激活的TCI状态对应的波束不能用于终端设备发起波束切换。
关于第三指示信息可以参阅前述图12所示的实施例中1201中的相关介绍。
1302、终端设备根据第三指示信息更新第一波束集合。
可选的,终端设备根据第三指示信息和第五测量结果更新第一波束集合。
1302与前述图12所示的实施例中通信设备更新第一波束集合的过程类似,具体可以参阅前述图12所示的实施例中的相关介绍。
1303、终端设备基于第一波束集合发起波束切换。
下面对本申请实施例提供的通信装置进行描述。
图14为本申请实施例通信装置的一个结构示意图。请参阅图14,通信装置可以用于执行图5、图7至图10所示的实施例中终端设备执行的过程,具体请参考上述方法实施例中的相关介绍。
通信装置1400包括处理模块1401和收发模块1402。收发模块1402可以实现相应的通信功能,处理模块1401用于进行数据处理。收发模块1402还可以称为通信接口或通信模块。
可选地,该通信装置1400还可以包括存储模块,该存储模块可以用于存储指令和/或 数据,处理模块1401可以读取存储模块中的指令和/或数据,以使得通信装置实现前述方法实施例。
该通信装置模块1400可以用于执行上文方法实施例中终端设备所执行的动作。该通信装置1400可以为终端设备或者可配置于终端设备的部件。处理模块1401用于执行上文方法实施例中终端设备侧的处理相关的操作。可选的,收发模块1402用于执行上文方法实施例中终端设备侧的接收相关的操作。
可选的,收发模块1402可以包括发送模块和接收模块。发送模块用于执行上述方法实施例中的发送操作。接收模块用于执行上述方法实施例中的接收操作。
需要说明的是,通信装置1400可以包括发送模块,而不包括接收模块。或者,通信装置1400可以包括接收模块,而不包括发送模块。具体可以视通信装置1400执行的上述方案中是否包括发送动作和接收动作。
处理模块1401,用于对第一参考信号进行第一类型测量,得到第一测量结果;
收发模块1402,用于向网络设备发送第一测量结果;
处理模块1401,还用于基于第一测量结果对第二参考信号进行第二类型测量,得到第二测量结果;
收发模块1402,还用于向网络设备发送第二测量结果。
一种可能的实现方式中,第一测量结果包括通信装置1400连续N次上报的第一参考信号的测量结果,N为大于或等于1的整数;处理模块1401具体用于:
若通信装置1400连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于第一阈值,则对第二参考信号进行第二类型测量,得到第二测量结果;或者,
若通信装置1400连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于通信装置1400当前的服务波束对应的参考信号的信号质量,则对第二参考信号进行第二类型测量,得到第二测量结果。
另一种可能的实现方式中,处理模块1401还用于:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则切换到第一波束;或者,
若第二测量结果中第二参考信号的信号质量小于第二阈值,则保持当前的服务波束。
另一种可能的实现方式中,收发模块1402还用于:
接收来自网络设备的第一反馈消息;
处理模块1401还用于:
若第一反馈消息为第一确认消息,则切换至第二参考信号对应的第一波束;或者,
若第一反馈消息为第一否定消息,则保持当前的服务波束。
另一种可能的实现方式中,收发模块1402还用于:若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则接收来自网络设备的第一确认消息;处理模块1401还用于:切换到第二参考信号对应的第一波束;
或者,
收发模块1402还用于:若第二测量结果中第二参考信号的信号质量小于第二阈值,则 接收来自网络设备的第一否定消息;处理模块1401还用于:保持当前的服务波束。
另一种可能的实现方式中,收发模块1402还用于:
接收来自网络设备的第一指示信息;
处理模块1401还用于:
若第一指示信息指示通信装置1400切换到第二参考信号对应的第一波束,则切换至第一波束;或者,
若第一指示信息指示通信装置1400保持当前的服务波束,则保持当前的服务波束。
另一种可能的实现方式中,收发模块1402还用于:若第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,则接收来自网络设备的第一指示信息,第一指示信息指示通信装置1400切换到第二参考信号对应的第一波束;处理模块1401还用于:切换至第一波束;或者,
收发模块1402还用于:若第二测量结果中第二参考信号的信号质量小于第二阈值,则接收来自网络设备的第一指示信息,第一指示信息指示通信装置1400保持当前的服务波束;处理模块1401还用于:保持当前的服务波束。
另一种可能的实现方式中,若通信装置1400保持当前的服务波束,处理模块1401还用于:
继续对第一参考信号进行第一类型测量。
另一种可能的实现方式中,处理模块1401还用于:
对第三参考信号进行第一类型测量,得到第三测量结果;
收发模块1402还用于:
向网络设备发送第三测量结果;
基于第三测量结果对第四参考信号进行第二类型测量,得到第四测量结果;
收发模块1402还用于:
向网络设备发送第四测量结果。
另一种可能的实现方式中,处理模块1401还用于:
若满足第一条件,则切换到第二参考信号对应的第一波束,第一条件包括:第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量;或者,
若满足第二条件,则切换到第四参考信号对应的第二波束,第二条件包括:第四测量结果中第四参考信号的信号质量大于或等于第二阈值,且第四参考信号的信号质量大于第二参考信号的信号质量;或者,
若满足第三条件,则保持当前的服务波束,第三条件包括:第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值。
另一种可能的实现方式中,收发模块1402还用于:
接收来自网络设备的第二反馈消息;
处理模块1401还用于:
若第二反馈消息为第二确认消息,且第二测量结果中第二参考信号的信号质量大于第 四测量结果中第四参考信号的信号质量,则切换到第二参考信号对应的第一波束;或者,
若第二反馈消息为第二确认消息,且第四测量结果中第四参考信号的信号质量大于所述第二测量结果中第二参考信号的信号质量,则切换到第四参考信号对应的第二波束;或者,
若第二反馈消息为第二否定消息,则保持当前的服务波束。
另一种可能的实现方式中,收发模块1402还用于:
接收来自网络设备的第二指示信息;
处理模块1401还用于:
若第二指示信息指示通信装置1400切换到第二参考信号对应的第一波束,则切换到第一波束;或者,
若第二指示信息指示通信装置1400切换到第四参考信号对应的第二波束,则切换到第二波束;或者,
若第二指示信息指示通信装置1400保持当前的服务波束,则保持当前的服务波束。
另一种可能的实现方式中,收发模块1402还用于:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量,则接收来自网络设备的第二确认消息,第二确认消息用于指示通信装置1400切换到第二参考信号对应的第一波束;处理模块1401还用于:切换到第二参考信号对应的第一波束;或者,
收发模块1402还用于:若第四测量结果中第四参考信号的信号质量大于或等于第二阈值,第四参考信号的信号质量大于第二测量结果中第二参考信号的信号质量,则接收来自网络设备的第二确认消息;第二确认消息用于指示通信装置1400切换到第四参考信号对应的第二波束;处理模块1401还用于:切换到第四参考信号对应的第二波束;或者,
收发模块1402还用于:若第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值,则接收来自网络设备的第二否定消息;第二否定消息用于指示通信装置1400保持当前的服务波束;处理模块1401还用于:保持当前的服务波束。
另一种可能的实现方式中,收发模块1402还用于:若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,第二参考信号的信号质量大于第四测量结果中所述第四参考信号对应的信号质量,则接收来自网络设备的第二指示信息,第二指示信息指示通信装置1400切换到第二参考信号对应的第一波束;处理模块1401还用于:切换到第一波束;或者,
收发模块1402还用于:若第四测量结果中第四参考信号的信号质量大于或等于第二阈值,第四参考信号的信号质量大于第二测量结果中第二参考信号的信号质量,则接收来自网络设备的第二指示信息,第二指示信息指示通信装置1400切换到第四参考信号对应的第二波束;处理模块1401还用于:切换到第二波束;或者,
收发模块1402还用于:若第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值,则接收来自网络设备的第二指示信息,第二指 示信息指示通信装置1400保持当前的服务波束;处理模块1401还用于:保持当前的服务波束。
另一种可能的实现方式中,若通信装置1400保持当前的服务波束,处理模块1401还用于:
继续对第一参考信号和第三参考信号进行第一类型测量。
另一种可能的实现方式中,收发模块1402还用于:
接收来自网络设备的第一配置信息,第一配置信息用于指示通信装置1400基于第一测量结果对第二参考信号进行第二类型测量并上报测量结果;或者,第一配置信息用于指示通信装置1400基于第一测量结果对第二参考信号进行第二类型测量。
另一种可能的实现方式中,第一类型测量包括通信装置1400对参考信号进行周期性测量,第二类型测量包括通信装置1400对参考信号资源进行半持续测量;或者,
第一类型测量包括通信装置1400对参考信号进行周期性测量,第二类型测量包括通信装置1400对参考信号进行非周期性测量;或者,
第一类型测量包括通信装置1400对参考信号进行半持续测量,第二类型测量包括通信装置1400对参考信号进行非周期性测量。
另一种可能的实现方式中,收发模块1402还用于:
接收来自网络设备的第二配置信息,第二配置信息用于指示通信装置1400对第一参考信号进行第一类型测量。
另一种可能的实现方式中,处理模块1401具体用于:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第二参考信号对应的第一波束属于第一波束集合,则切换到第一波束,第一波束集合包括用于通信装置1400发起波束切换的波束。
另一种可能的实现方式中,处理模块1401还用于:
根据第一规则更新第一波束集合。
另一种可能的实现方式中,处理模块1401具体用于:
将第一波束集合中的波束更新为网络设备为通信装置1400激活的一个或多个TCI状态对应的波束,得到更新后的第一波束集合。
另一种可能的实现方式中,收发模块1402还用于:
接收来自网络设备的第三指示信息,第三指示信息指示为通信装置1400激活的一个或多个TCI状态;
向网络设备发送第三确认消息,第三确认消息用于指示通信装置1400成功接收到第三指示信息。
另一种可能的实现方式中,在通信装置1400发送第三确定消息的时刻起第一预设时长之后,通信装置1400从第一波束集合中删除的第三波束不用于通信装置1400发起波束切换;
在通信装置1400发送第三确定消息的时刻起第一预设时长内,第三波束仍可用于通信装置1400发起波束切换。
另一种可能的实现方式中,收发模块1402还用于:
接收来自网络设备的第四指示信息,第四指示信息指示通信装置1400开启采用网络设备为通信装置1400激活的TCI状态更新第一波束集合的功能。
另一种可能的实现方式中,处理模块1401具体用于:
根据第五测量结果确定X个TCI状态,第五测量结果包括通信装置1400测量并上报的一个或多个参考信号资源的测量结果,一个或多个参考信号资源中每个参考信号资源对应一个TCI状态,X个TCI状态是第五测量结果中信号质量最强的前X个参考信号资源对应的TCI状态,X为大于或等于1的整数;将第一波束集合中的波束更新为X个TCI状态对应的波束,得到更新后的第一波束集合。
另一种可能的实现方式中,更新后的第一波束集合包括第五参考信号对应的波束;处理模块1401还用于:
如果通信装置1400连续Y次上报的测量结果中不包括第五参考信号对应的波束的测量结果,则确定第五参考信号对应的波束不用于通信装置1400发起波束切换,Y为大于或等于1的整数。
应理解,各模块执行上述相应过程的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
上文实施例中的处理模块1401可以由至少一个处理器或处理器相关电路实现。收发模块1402可以由收发器或收发器相关电路实现。收发模块1402还可称为通信模块或通信接口。存储模块可以通过至少一个存储器实现。
可选的,上述图14所示的通信装置还可以用于执行以下方案:
处理模块1401,用于对第一参考信号进行第一类型测量,得到第一测量结果;基于第一测量结果对第二参考信号进行第二类型测量,得到第二测量结果;
收发模块1402,用于向网络设备发送第二测量结果。
一种可能的实现方式中,第一测量结果包括通信装置1400连续N次测量的第一参考信号的测量结果,N为大于或等于1的整数;处理模块1401具体用于:
若通信装置1400连续N次测量的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于第一阈值,则对第二参考信号进行第二类型测量,得到第二测量结果;或者,
若通信装置1400连续N次测量的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于通信装置1400当前的服务波束对应的参考信号的信号质量,则对第二参考信号进行第二类型测量,得到第二测量结果。
下面对本申请实施例提供的另一种通信装置进行描述。
图15为本申请实施例通信装置的一个结构示意图。请参阅图15,通信装置可以用于执行图5、图7至图10所示的实施例中网络设备执行的过程,具体请参考上述方法实施例中的相关介绍。
通信装置1500包括收发模块1501。可选的,通信装置1500还包括处理模块1502。收发模块1501可以实现相应的通信功能,处理模块1502用于进行数据处理。收发模块1501还可以称为通信接口或通信模块。
可选地,该通信装置1500还可以包括存储模块,该存储模块可以用于存储指令和/或数据,处理模块1502可以读取存储模块中的指令和/或数据,以使得通信装置实现前述方法实施例。
该通信装置1500可以用于执行上文方法实施例中网络设备所执行的动作。该通信装置1500可以为网络设备或者可配置于网络设备的部件。收发模块1501用于执行上文方法实施例中网络设备侧的接收相关的操作,处理模块1502用于执行上文方法实施例中网络设备侧的处理相关的操作。
可选的,收发模块1501可以包括发送模块和接收模块。发送模块用于执行上述方法实施例中的发送操作。接收模块用于执行上述方法实施例中的接收操作。
需要说明的是,通信装置1500可以包括发送模块,而不包括接收模块。或者,通信装置1500可以包括接收模块,而不包括发送模块。具体可以视通信装置1500执行的上述方案中是否包括发送动作和接收动作。
收发模块1501,用于接收来自终端设备的第一测量结果,第一测量结果是终端设备对第一参考信号进行第一类型测量得到的测量结果;接收来自终端设备的第二测量结果,第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的测量结果。
一种可能的实现方式中,收发模块1501还用于:
向终端设备发送第一配置信息,第一配置信息用于指示终端设备基于第一测量结果对第二参考信号进行第二类型测量并上报测量结果。
另一种可能的实现方式中,第一配置信息用于指示:若终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于第一阈值,则终端设备触发对第二参考信号进行第二类型测量并上报测量结果,N为大于或等于1的整数;或者,
第一配置信息用于指示:若终端设备连续N次上报的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于终端设备当前的服务波束对应的参考信号的信号质量,则终端设备触发对第二参考信号进行第二类型测量并上报测量结果。
另一种可能的实现方式中,通信装置还包括处理模块1502;
处理模块1502,用于若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则确定所述终端设备切换到第二参考信号对应的第一波束;或者,若第二测量结果中第二参考信号的信号质量小于所述第二阈值,则确定终端设备保持当前的服务波束。
另一种可能的实现方式中,收发模块1501还用于:
向终端设备发送第一反馈消息;
其中,第一反馈消息为第一确认消息,第一确认消息用于指示终端设备切换到第一波束;或者,第一反馈消息为第一否定消息,第一否定消息用于指示终端设备保持当前的服务波束。
另一种可能的实现方式中,收发模块1501还用于:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则向终端设备发送第一确认消息,第一确认消息用于指示终端设备切换到第二参考信号对应的第一波束;或 者,
若第二测量结果中第二参考信号的信号质量小于第二阈值,则向终端设备发送第一否定消息,第一否定消息用于指示终端设备保持当前的服务波束。
另一种可能的实现方式中,收发模块1501还用于:
向终端设备发送第一指示信息;
其中,第一指示信息指示终端设备切换到第二参考信号对应的第一波束;或者,第一指示信息指示终端设备保持当前的服务波束或不进行波束切换。
另一种可能的实现方式中,收发模块1501还用于:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,则向终端设备发送第一指示信息,第一指示信息指示终端设备切换到第二参考信号对应的第一波束;或者,
若第二测量结果中第二参考信号的信号质量小于第二阈值,则向终端设备发送第一指示信息,第一指示信息指示终端设备保持当前的服务波束或不进行波束切换。
另一种可能的实现方式中,收发模块1501还用于:
接收来自终端设备的第三测量结果,第三测量结果是终端设备对第三参考信号进行第一类型测量得到的测量结果;
接收来自终端设备的第四测量结果,第四测量结果是终端设备基于第三测量结果对第四参考信号进行第二类型测量得到的测量结果。
另一种可能的实现方式中,处理模块1502还用于:
若满足第一条件,则确定终端设备切换到第二参考信号对应的第一波束,第一条件包括:第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量;或者,
若满足第二条件,则确定终端设备切换到第四参考信号对应的第二波束,第二条件包括:第四测量结果中第二参考信号的信号质量大于或等于所述第二阈值,且第四参考信号的的信号质量大于第二参考信号的信号质量;或者,
若满足第三条件,则确定终端设备保持当前的服务波束,第三条件包括:第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于所述第二阈值。
另一种可能的实现方式中,收发模块1501还用于:
向终端设备发送第二反馈消息;
其中,第二反馈消息为第二确认消息,第二确认消息用于指示终端设备切换到信号质量最好的波束,信号质量最好的波束是第二参考信号对应的第一波束和第四参考信号对应的第二波束中信号质量最好的波束;或者,第二反馈消息为第二否定消息,第二否定消息用于指示终端设备保持当前的服务波束。
另一种可能的实现方式中,收发模块1501还用于:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量,则向终端设备发送第二确认消息,第二确认消息用于指示终端设备切换到第二参考信号对应的第一波束;或者,
若第四测量结果中第四参考信号的信号质量大于或等于第二阈值,且第四参考信号的信号质量大于第二测量结果中第二参考信号的信号质量,则向终端设备发送第二确认消息,第二确认消息用于指示终端设备切换到第四参考信号对应的第二波束;或者,
若第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值,则向终端设备发送第二否定消息,第二否定消息用于指示终端设备保持当前的服务波束。
另一种可能的实现方式中,收发模块1501还用于:
向终端设备发送第二指示信息;
其中,第二指示信息指示终端设备切换到第二参考信号对应的第一波束;或者,第二指示信息指示终端设备切换到第四参考信号对应的第二波束;或者,第二指示信息指示终端设备保持当前的服务波束。
另一种可能的实现方式中,收发模块1501还用于:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第二参考信号的信号质量大于第四测量结果中第四参考信号的信号质量,则向终端设备发送第二指示信息,第二指示信息指示终端设备切换到第二参考信号对应的第一波束;或者,
若第四测量结果中第四参考信号的信号质量大于或等于第二阈值,且第四参考信号的信号质量大于第二测量结果中第二参考信号的信号质量,则向终端设备发送第二指示信息,第二指示信息指示终端设备切换到第四参考信号对应的第二波束;或者,
若第二测量结果中第二参考信号的信号质量和第四测量结果中第四参考信号的信号质量均小于第二阈值,则向终端设备发送第二指示信息,第二指示信息指示终端设备保持当前的服务波束。
另一种可能的实现方式中,第一类型测量包括终端设备对参考信号进行周期性测量,第二类型测量包括所述终端设备对参考信号资源进行半持续测量;或者,
第一类型测量包括终端设备对参考信号进行周期性测量,第二类型测量包括终端设备对参考信号进行非周期性测量;或者,
第一类型测量包括终端设备对参考信号进行半持续测量,第二类型测量包括终端设备对参考信号进行非周期性测量。
另一种可能的实现方式中,收发模块1501还用于:
向终端设备发送第二配置信息,第二配置信息用于指示终端设备对第一参考信号进行第一类型测量。
另一种可能的实现方式中,处理模块1502具体用于:
若第二测量结果中第二参考信号的信号质量大于或等于第二阈值,且第一波束属于第一波束集合,则确定终端设备切换到第一波束,第一波束集合包括用于终端设备发起波束切换的波束。
另一种可能的实现方式中,第一波束属于第一波束集合,第一波束集合包括用于终端设备发起波束切换的波束。
另一种可能的实现方式中,处理模块1502还用于:
根据第一规则更新第一波束集合。
另一种可能的实现方式中,处理模块1502具体用于:
将第一波束集合中的波束更新为通信装置为终端设备激活的一个或多个TCI状态对应的波束,得到更新后的第一波束集合。
另一种可能的实现方式中,收发模块1501还用于:
向终端设备发送第三指示信息,第三指示信息指示为终端设备激活的所述一个或多个TCI状态;
接收来自终端设备的第三确认消息,第三确认消息用于指示终端设备成功接收到第三指示信息。
另一种可能的实现方式中,在终端设备发送第三确定消息的时刻起第一预设时长之后,通信装置从第一波束集合中删除的第三波束不用于所端设备发起波束切换;
在终端设备发送第三确定消息的时刻起第一预设时长内,第三波束仍可用于终端设备发起波束切换。
另一种可能的实现方式中,收发模块1501还用于:
向终端设备发送第四指示信息,第四指示信息指示终端设备开启采用通信装置为终端设备激活的TCI状态更新第一波束集合的功能。
另一种可能的实现方式中,处理模块1502具体用于:
根据第五测量结果确定X个TCI状态,第五测量结果包括终端设备测量并上报的一个或多个参考信号的测量结果,一个或多个参考信号中每个参考信号对应一个TCI状态,X个TCI状态是所述第五测量结果中信号质量最强的前X个参考信号资源对应的TCI状态,X为大于或等于1的整数;通信装置将第一波束集合中的波束更新为X个TCI状态对应的波束,得到更新后的第一波束集合。
另一种可能的实现方式中,更新后的第一波束集合包括第五参考信号对应的波束;处理模块1502还用于:
如果终端设备连续Y次上报的测量结果中都不包括第五参考信号对应的波束的测量结果,则确定第五参考信号对应的波束不用于终端设备发起波束切换,Y为大于或等于1的整数。
应理解,各模块执行上述相应过程的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
上文实施例中的处理模块1502可以由至少一个处理器或处理器相关电路实现。收发模块1501可以由收发器或收发器相关电路实现。收发模块1501还可称为通信模块或通信接口。存储模块可以通过至少一个存储器实现。
可选的,上述图15所示的通信装置还可以用于执行以下方案:
收发模块1501,用于接收来自终端设备的第二测量结果,第二测量结果是终端设备基于第一测量结果对第二参考信号进行第二类型测量得到的测量结果;第一测量结果是终端设备对第一参考信号进行第一类型测量得到的测量结果。
一种可能的实现方式中,第一配置信息用于指示:若终端设备连续N次测量的第一参 考信号的测量结果中第一参考信号的信号质量均大于或等于第一阈值,则终端设备触发对第二参考信号进行第二类型测量并上报测量结果,N为大于或等于1的整数;或者,
第一配置信息用于指示:若终端设备连续N次测量的第一参考信号的测量结果中第一参考信号的信号质量均大于或等于终端设备当前的服务波束对应的参考信号的信号质量,则终端设备触发对第二参考信号进行第二类型测量并上报测量结果。
下面对本申请实施例提供的另一种通信装置进行描述。
图16为本申请实施例通信装置的一个结构示意图。请参阅图16,通信装置可以用于执行图11所示的实施例中通信设备执行的过程,和图13所示的实施例中网络设备或终端设备执行的过程,具体请参考上述方法实施例中的相关介绍。
通信装置1600包括处理模块1601;可选的,通信装置1600还包括收发模块1602。收发模块1602可以实现相应的通信功能,处理模块1601用于进行数据处理。收发模块1602还可以称为通信接口或通信模块。
可选地,该通信装置1600还可以包括存储模块,该存储模块可以用于存储指令和/或数据,处理模块1601可以读取存储模块中的指令和/或数据,以使得通信装置实现前述方法实施例。
该通信装置1600可以用于执行上文图11所示的方法实施例中通信设备所执行的动作。该通信装置1600可以为通信设备或者可配置于通信设备的部件。收发模块1602用于执行上文方法实施例中通信设备侧的接收相关的操作,处理模块1601用于执行上文方法实施例中通信设备侧的处理相关的操作。
该通信装置1600可以用于执行上文图13所示的方法实施例中网络设备或终端设备所执行的动作。该通信装置1600可以为网络设备或终端设备,或者可配置于网络设备或终端设备的部件。收发模块1602用于执行上文图13所示的方法实施例中终端设备或网络设备侧的接收相关的操作,处理模块1601用于执行上文图13所示的方法实施例中终端设备或网络设备侧的处理相关的操作。
可选的,收发模块1602可以包括发送模块和接收模块。发送模块用于执行上述方法实施例中的发送操作。接收模块用于执行上述方法实施例中的接收操作。
需要说明的是,通信装置1600可以包括发送模块,而不包括接收模块。或者,通信装置1600可以包括接收模块,而不包括发送模块。具体可以视通信装置1600执行的上述方案中是否包括发送动作和接收动作。
处理模块1601,用于确定第一波束集合,第一波束集合包括用于终端设备发起波束切换的波束;根据第一规则更新第一波束集合。
一种可能的实现方式中,处理模块1601具体用于:
将第一波束集合中的波束更新为网络设备为终端设备的激活的一个或多个TCI状态对应的波束,得到更新后的第一波束集合。
另一种可能的实现方式中,通信装置为终端设备,通信装置还包括收发模块1602;
收发模块1602,用于接收来自网络设备的第三指示信息,第三指示信息指示为终端设备激活的一个或多个TCI状态;向网络设备发送第三确认消息,第三确认消息用于指示终 端设备成功接收到所述第三指示信息。
另一种可能的实现方式中,在终端设备发送第三确定消息的时刻起第一预设时长之后,终端设备从第一波束集合中删除的第三波束不用于终端设备发起波束切换;
在终端设备发送第三确定消息的时刻起所述第一预设时长内,第三波束仍可用于终端设备发起波束切换。
另一种可能的实现方式中,通信装置为终端设备,收发模块1602还用于:
收来自网络设备的第四指示信息,第四指示信息指示终端设备开启采用网络设备为终端设备激活的TCI状态更新第一波束集合的功能。
另一种可能的实现方式中,处理模块1601具体用于:
根据第五测量结果确定X个TCI状态,第五测量结果包括终端设备测量并上报的一个或多个参考信号的测量结果,一个或多个参考信号中每个参考信号对应一个TCI状态,X个TCI状态是所述第五测量结果中信号质量最强的前X个参考信号对应的TCI状态,X为大于或等于1的整数;将第一波束集合中的波束更新为X个TCI状态对应的波束,得到更新后的第一波束集合。
另一种可能的实现方式中,更新后的第一波束集合包括第五参考信号对应的波束;出处理模块1601还用于:
如果终端设备连续Y次上报的测量结果中都不包括第五参考信号对应的波束的测量结果,则确定第五参考信号对应的波束不用于终端设备发起波束切换,Y为大于或等于1的整数。
另一种可能的实现方式中,通信装置为终端设备;处理模块1601还用于:
基于第一波束集合发起波束切换。
应理解,各模块执行上述相应过程的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
上文实施例中的处理模块1601可以由至少一个处理器或处理器相关电路实现。收发模块1602可以由收发器或收发器相关电路实现。收发模块1602还可称为通信模块或通信接口。存储模块可以通过至少一个存储器实现。
本申请实施例还提供一种通信装置1700。该通信装置1700包括处理器1710,处理器1710与存储器1720耦合,存储器1720用于存储计算机程序或指令和/或数据,处理器1710用于执行存储器1720存储的计算机程序或指令和/或数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置1700包括的处理器1710为一个或多个。
可选地,如图17所示,该通信装置1700还可以包括存储器1720。
可选地,该通信装置1700包括的存储器1720可以为一个或多个。
可选地,该存储器1720可以与该处理器1710集成在一起,或者分离设置。
可选地,如图17所示,该通信装置1700还可以包括收发器1730,收发器1730用于信号的接收和/或发送。例如,处理器1710用于控制收发器1730进行信号的接收和/或发送。
作为一种方案,该通信装置1700用于实现上文方法实施例中由网络设备、终端设备、或通信设备执行的操作。
例如,处理器1710用于实现上文方法实施例中由网络设备、终端设备、或通信设备执行的处理相关的操作,收发器1730用于实现上文方法实施例中由网络设备、终端设备、或通信设备执行的收发相关的操作。
本申请还提供一种通信装置1800,该通信装置1800可以为终端设备、终端设备的处理器、或芯片。该通信装置1800可以用于执行上述方法实施例中由终端设备或通信设备所执行的操作。
当该通信装置1800为终端设备时,图18示出了一种简化的终端设备的结构示意图。如图18所示,终端设备包括处理器、存储器、以及收发器。存储器可以存储计算机程序代码,收发器包括发射机1831、接收机1832、射频电路(图中未示出)、天线1833以及输入输出装置(图中未示出)。
处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置。例如,触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图18中仅示出了一个存储器、处理器和收发器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发模块,将具有处理功能的处理器视为终端设备的处理模块。
如图18所示,终端设备包括处理器1810、存储器1820和收发器1830。处理器1810也可以称为处理单元,处理单板,处理模块、处理装置等,收发器1830也可以称为收发单元、收发机、收发装置等。
可选地,可以将收发器1830中用于实现接收功能的器件视为接收模块,将收发器1830中用于实现发送功能的器件视为发送模块,即收发器1830包括接收器和发送器。收发器有时也可以称为收发机、收发模块、或收发电路等。接收器有时也可以称为接收机、接收模块、或接收电路等。发送器有时也可以称为发射机、发射模块或者发射电路等。
例如,在一种实现方式中,处理器1810用于执行图5所示的实施例中终端设备侧的处理动作,收发器1830用于执行图4中终端设备侧的收发动作。例如,处理器1810用于执行图5所示的实施例中的501和503,收发器1830用于执行图5所示的实施例中的502和 504。
例如,在一种实现方式中,处理器1810用于执行图7所示的实施例中终端设备侧的处理动作。例如,处理器1810用于执行图7所示的实施例中的701至703。
例如,在一种实现方式中,处理器1810用于执行图8所示的实施例中终端设备侧的处理动作,收发器1830用于执行图8中终端设备侧的收发动作。例如,收发器1830用于执行图8所示的实施例中的801,处理器1810用于执行图8所示的实施例中的802和803。
例如,在一种实现方式中,处理器1810用于执行图9所示的实施例中终端设备侧的处理动作。例如,处理器1810用于执行图9所示的实施例中的901至903。
例如,在一种实现方式中,处理器1810用于执行图10所示的实施例中终端设备侧的处理动作,收发器1830用于执行图10中终端设备侧的收发动作。例如,收发器1830用于执行图10所示的实施例中的1001,处理器1810用于执行图10所示的实施例中的1002和1003。
例如,在一种实现方式中,处理器1810用于执行图11所示的实施例中终端设备侧的处理动作。例如,处理器1810用于执行图11所示的实施例中的1001至1002。
例如,在一种实现方式中,处理器1810用于执行图13所示的实施例中终端设备侧的处理动作,收发器1830用于执行图13中终端设备侧的收发动作。例如,收发器1830用于执行图13所示的实施例中的1301和1303,处理器1810用于执行图13所示的实施例中的1302。
应理解,图18仅为示例而非限定,上述包括收发模块和处理模块的终端设备可以不依赖于图14或图16所示的结构。
当该通信装置1800为芯片时,该芯片包括处理器、存储器和收发器。其中,收发器可以是输入输出电路或通信接口;处理器可以为该芯片上集成的处理模块或者微处理器或者集成电路。上述方法实施例中终端设备的发送操作可以理解为芯片的输出,上述方法实施例中终端设备的接收操作可以理解为芯片的输入。
本申请还提供一种通信装置1900,该通信装置1900可以是网络设备也可以是芯片。该通信装置1900可以用于执行上述图5、图7至图10和图13所示的方法实施例中由网络设备所执行的操作,也可以用于执行上述图11所示的方法实施例中的通信设备所执行的操作。
当该通信装置1900为网络设备时,例如为基站。图19示出了一种简化的基站结构示意图。基站包括1910部分、1920部分以及1930部分。1910部分主要用于基带处理,对基站进行控制等;1910部分通常是基站的控制中心,通常可以称为处理器,用于控制基站执行上述方法实施例中网络设备侧的处理操作。1920部分主要用于存储计算机程序代码和数据。1930部分主要用于射频信号的收发以及射频信号与基带信号的转换;1930部分通常可以称为收发模块、收发机、收发电路、或者收发器等。1930部分的收发模块,也可以称为收发机或收发器等,其包括天线1933和射频电路(图中未示出),其中射频电路主要用于进行射频处理。可选地,可以将1930部分中用于实现接收功能的器件视为接收机,将用于实现发送功能的器件视为发射机,即1930部分包括接收机1932和发射机1931。接收机也 可以称为接收模块、接收器、或接收电路等,发送机可以称为发射模块、发射器或者发射电路等。
1910部分与1920部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1930部分的收发模块用于执行图5、图7至图10所示实施例中由网络设备执行的收发相关的过程。1910部分的处理器用于执行图5、图7至图10所示实施例中由网络设备执行的处理相关的过程。
另一种实现方式中,1910部分的处理器用于执行图11所示实施例中由通信设备执行的处理相关的过程。
另一种实现方式中,1930部分的收发模块用于执行图13所示实施例中由网络设备执行的收发相关的过程。
应理解,图19仅为示例而非限定,上述包括处理器、存储器以及收发器的网络设备可以不依赖于图14或图15所示的结构。
当该通信装置1900为芯片时,该芯片包括收发器、存储器和处理器。其中,收发器可以是输入输出电路、通信接口;处理器为该芯片上集成的处理器、或者微处理器、或者集成电路。上述方法实施例中网络设备的发送操作可以理解为芯片的输出,上述方法实施例中网络设备的接收操作可以理解为芯片的输入。
本申请实施例还提供了一种计算机可读存储介质,包括计算机指令,当该计算机指令在计算机上运行时,使得上述方法实施例所示的方法被执行。
本申请实施例还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得上述方法实施例所示的方法被执行。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的终端设备与网络设备。
本申请实施例还提供一种芯片装置,包括处理器,用于调用该存储器中存储的计算机程度或计算机指令,以使得该处理器执行上述图5、图7至图11和图13所示的实施例提供的方法。
一种可能的实现方式中,该芯片装置的输入对应上述图5、图7至图11和图13所示的实施例中的接收操作,该芯片装置的输出对应上述图5、图7至图11和图13所示的实施例中的发送操作。
可选的,该处理器通过接口与存储器耦合。
可选的,该芯片装置还包括存储器,该存储器中存储有计算机程度或计算机指令。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述图5、图7至图11和图13所示的实施例提供的方法的程序执行的集成电路。上述 任一处提到的存储器可以为只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
所属领域的技术人员可以清楚地了解到,为描述方便和简洁,上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
本申请中,终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理模块(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分过程。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案范围。

Claims (47)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端设备对第一参考信号进行第一类型测量,得到第一测量结果;
    所述终端设备向网络设备发送所述第一测量结果;
    所述终端设备基于所述第一测量结果对第二参考信号进行第二类型测量,得到第二测量结果;
    所述终端设备向所述网络设备发送所述第二测量结果。
  2. 根据权利要求1所述的方法,其特征在于,所述第一测量结果包括所述终端设备连续N次上报的所述第一参考信号的测量结果,所述N为大于或等于1的整数;
    所述终端设备根据所述第一测量结果对所述第二参考信号进行第二类型测量,得到第二测量结果,包括:
    若所述终端设备连续N次上报的所述第一参考信号的测量结果中所述第一参考信号的信号质量均大于或等于第一阈值,则所述终端设备对所述第二参考信号进行第二类型测量,得到第二测量结果;或者,
    若所述终端设备连续N次上报的所述第一参考信号的测量结果中所述第一参考信号的信号质量均大于或等于所述终端设备当前的服务波束对应的参考信号的信号质量,则所述终端设备对所述第二参考信号进行第二类型测量,得到第二测量结果。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备向所述网络设备发送所述第二测量结果之后,所述方法还包括:
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,则所述终端设备切换到所述第二参考信号对应的第一波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量小于所述第二阈值,则所述终端设备保持当前的服务波束。
  4. 根据权利要求1或2所述的方法,其特征在于,所述终端设备向所述网络设备发送所述第二测量结果之后,所述方法还包括:
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,则所述终端设备接收来自所述网络设备的第一确认消息,所述终端设备切换至所述第二参考信号对应的第一波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量小于所述第二阈值,则所述终端设备接收来自所述网络设备的第一否定消息,所述终端设备保持当前的服务波束。
  5. 根据权利要求1或2所述的方法,其特征在于,所述终端设备向所述网络设备发送所述第二测量结果之后,所述方法还包括:
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,则所述终端设备接收来自所述网络设备的第一指示信息,所述第一指示信息指示所述终端设备切换到所述第二参考信号对应的第一波束,所述终端设备切换至所述第一波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量小于所述第二阈值,则所述终端设备接收来自所述网络设备的第一指示信息,所述第一指示信息指示所述终端设备保持当 前的服务波束,所述终端设备保持当前的服务波束。
  6. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备对第三参考信号进行第一类型测量,得到第三测量结果;
    所述终端设备向所述网络设备发送所述第三测量结果;
    所述终端设备基于所述第三测量结果对第四参考信号进行第二类型测量,得到第四测量结果;
    所述终端设备向所述网络设备发送所述第四测量结果。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备向所述网络设备发送所述第四测量结果之后,所述方法还包括:
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,且所述第二参考信号的信号质量大于所述第四测量结果中所述第四参考信号的信号质量,则所述终端设备切换到所述第二参考信号对应的第一波束;或者,
    若所述第四测量结果中所述第四参考信号的信号质量大于或等于所述第二阈值,且所述第四参考信号的信号质量大于所述第二测量结果中所述第二参考信号的信号质量,则所述终端设备切换到所述第四参考信号对应的第二波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量和所述第四测量结果中所述第四参考信号的信号质量均小于所述第二阈值,则所述终端设备保持当前的服务波束。
  8. 根据权利要求6所述的方法,其特征在于,所述终端设备向所述网络设备发送所述第四测量结果之后,所述方法还包括:
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,所述第二参考信号的信号质量大于所述第四测量结果中所述第四参考信号的信号质量,则所述终端设备接收来自所述网络设备的第二确认消息,所述第二确认消息用于指示所述终端设备切换到所述第二参考信号对应的第一波束,所述终端设备切换到所述第二参考信号对应的第一波束;或者,
    若所述第四测量结果中所述第四参考信号的信号质量大于或等于所述第二阈值,所述第四参考信号的信号质量大于所述第二测量结果中所述第二参考信号的信号质量,则所述终端设备接收来自所述网络设备的第二确认消息,所述终端设备切换到所述第四参考信号对应的第二波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量和所述第四测量结果中所述第四参考信号的信号质量均小于所述第二阈值,则所述终端设备接收来自所述网络设备的第二否定消息,所述终端设备保持当前的服务波束。
  9. 根据权利要求6所述的方法,其特征在于,所述终端设备向所述网络设备发送所述第四测量结果之后,所述方法还包括:
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,所述第二参考信号的信号质量大于所述第四测量结果中所述第四参考信号对应的信号质量,则所述终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述终端设备切换到所述第二参考信号对应的第一波束,所述终端设备切换到所述第一波束;或者,
    若所述第四测量结果中所述第四参考信号的信号质量大于或等于所述第二阈值,所述第四参考信号的信号质量大于所述第二测量结果中所述第二参考信号的信号质量,所述终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述终端设备切换到所述第四参考信号对应的第二波束,则所述终端设备切换到所述第二波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量和所述第四测量结果中所述第四参考信号的信号质量均小于所述第二阈值,则所述终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述终端设备保持当前的服务波束,所述终端设备保持当前的服务波束。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第一配置信息,所述第一配置信息指示所述终端设备基于所述第一测量结果对所述第二参考信号进行第二类型测量并上报测量结果。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一类型测量包括所述终端设备对参考信号进行周期性测量,所述第二类型测量包括所述终端设备对参考信号资源进行半持续测量;或者,
    所述第一类型测量包括所述终端设备对参考信号进行周期性测量,所述第二类型测量包括所述终端设备对参考信号进行非周期性测量;或者,
    所述第一类型测量包括所述终端设备对参考信号进行半持续测量,所述第二类型测量包括所述终端设备对参考信号进行非周期性测量。
  12. 一种通信方法,其特征在于,所述方法包括:
    网络设备接收来自终端设备的第一测量结果,所述第一测量结果是所述终端设备对第一参考信号进行第一类型测量得到的测量结果;
    所述网络设备接收来自所述终端设备的第二测量结果,所述第二测量结果是所述终端设备基于所述第一测量结果对第二参考信号进行第二类型测量得到的测量结果。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一配置信息,所述第一配置信息用于指示所述终端设备基于所述第一测量结果对所述第二参考信号进行第二类型测量并上报测量结果。
  14. 根据权利要求13所述的方法,其特征在于,所述第一测量结果包括所述终端设备连续N次上报的所述第一参考信号的测量结果,所述N为大于或等于1的整数;
    所述第一配置信息用于指示:若所述终端设备连续N次上报的所述第一参考信号的测量结果中所述第一参考信号的信号质量均大于或等于第一阈值,则所述终端设备触发对第二参考信号进行第二类型测量并上报测量结果,所述N为大于或等于1的整数;或者,
    所述第一配置信息用于指示:若所述终端设备连续N次上报的所述第一参考信号的测量结果中所述第一参考信号的信号质量均大于或等于所述终端设备当前的服务波束对应的参考信号的信号质量,则所述终端设备触发对所述第二参考信号进行第二类型测量并上报测量结果。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述网络设备接收来自所述终端设备的第二测量结果之后,所述方法还包括:
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,则所述网络设备确定所述终端设备切换到所述第二参考信号对应的第一波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量小于所述第二阈值,则所述网络设备确定所述终端设备保持当前的服务波束。
  16. 根据权利要求12至14中任一项所述的方法,其特征在于,所述网络设备接收来自所述终端设备的第二测量结果之后,所述方法还包括:
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,则所述网络设备向所述终端设备发送第一确认消息,所述第一确认消息用于指示所述终端设备切换到所述第二参考信号对应的第一波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量小于所述第二阈值,则所述网络设备向所述终端设备发送第一否定消息,所述第一否定消息用于指示所述终端设备保持当前的服务波束。
  17. 根据权利要求12至14中任一项所述的方法,其特征在于,所述网络设备接收来自所述终端设备的第二测量结果之后,所述方法还包括:
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,则所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息指示所述终端设备切换到所述第二参考信号对应的第一波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量小于所述第二阈值,则所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息指示所述终端设备保持当前的服务波束或不进行波束切换。
  18. 根据权利要求12至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三测量结果,所述第三测量结果是所述终端设备对第三参考信号进行第一类型测量得到的测量结果;
    所述网络设备接收来自所述终端设备的第四测量结果,所述第四测量结果是所述终端设备基于所述第三测量结果对第四参考信号进行第二类型测量得到的测量结果。
  19. 根据权利要求18所述的方法,其特征在于,所述网络设备接收来自所述终端设备的第四测量结果之后,所述方法还包括:
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,且所述第二参考信号的信号质量大于所述第四测量结果中所述第四参考信号的信号质量,则所述网络设备确定所述终端设备切换到所述第二参考信号对应的第一波束;或者,
    若所述第四测量结果中所述第四参考信号的信号质量大于或等于所述第二阈值,且所述第四参考信号的信号质量大于所述第二测量结果中所述第二参考信号的信号质量,则所述网络设备确定所述终端设备切换到所述第四参考信号对应的第二波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量和所述第四测量结果中所述第四参考信号的信号质量均小于所述第二阈值,则所述网络设备确定所述终端设备保持当前的服务波束。
  20. 根据权利要求18所述的方法,其特征在于,所述网络设备接收来自所述终端设备 的第四测量结果之后,所述方法还包括:
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,且所述第二参考信号的信号质量大于所述第四测量结果中所述第四参考信号的信号质量,则所述网络设备向所述终端设备发送第二确认消息,所述第二确认消息用于指示所述终端设备切换到所述第二参考信号对应的第一波束;或者,
    若所述第四测量结果中所述第四参考信号的信号质量大于或等于所述第二阈值,且所述第四参考信号的信号质量大于所述第二测量结果中所述第二参考信号的信号质量,则所述网络设备向所述终端设备发送第二确认消息,所述第二确认消息用于指示所述终端设备切换到所述第四参考信号对应的第二波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量和所述第四测量结果中所述第四参考信号的信号质量均小于所述第二阈值,则所述网络设备向所述终端设备发送第二否定消息,所述第二否定消息用于指示所述终端设备保持当前的服务波束。
  21. 根据权利要求18所述的方法,其特征在于,所述网络设备接收来自所述终端设备的第四测量结果之后,所述方法还包括:
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,且所述第二参考信号的信号质量大于所述第四测量结果中所述第四参考信号的信号质量,则所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息指示所述终端设备切换到所述第二参考信号对应的第一波束;或者,
    若所述第四测量结果中所述第四参考信号的信号质量大于或等于所述第二阈值,且所述第四参考信号的信号质量大于所述第二测量结果中所述第二参考信号的信号质量,则所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息指示所述终端设备切换到所述第四参考信号对应的第二波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量和所述第四测量结果中所述第四参考信号的信号质量均小于所述第二阈值,则所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息指示所述终端设备保持当前的服务波束。
  22. 根据权利要求12至21中任一项所述的方法,其特征在于,
    所述第一类型测量包括所述终端设备对参考信号进行周期性测量,所述第二类型测量包括所述终端设备对参考信号资源进行半持续测量;或者,
    所述第一类型测量包括所述终端设备对参考信号进行周期性测量,所述第二类型测量包括所述终端设备对参考信号进行非周期性测量;或者,
    所述第一类型测量包括所述终端设备对参考信号进行半持续测量,所述第二类型测量包括所述终端设备对参考信号进行非周期性测量。
  23. 一种通信装置,其特征在于,所述通信装置包括:
    处理模块,用于对第一参考信号进行第一类型测量,得到第一测量结果;
    收发模块,用于向网络设备发送所述第一测量结果;
    所述处理模块,还用于向网络设备发送所述第一测量结果;
    所述收发模块,还用于向所述网络设备发送所述第二测量结果。
  24. 根据权利要求23所述的通信装置,其特征在于,所述第一测量结果包括所述通信装置连续N次上报的所述第一参考信号的测量结果,所述N为大于或等于1的整数;
    所述处理模块具体用于:
    若所述通信装置连续N次上报的所述第一参考信号的测量结果中所述第一参考信号的信号质量均大于或等于第一阈值,则对所述第二参考信号进行第二类型测量,得到第二测量结果;或者,
    若所述通信装置连续N次上报的所述第一参考信号的测量结果中所述第一参考信号的信号质量均大于或等于所述通信装置当前的服务波束对应的参考信号的信号质量,则对所述第二参考信号进行第二类型测量,得到第二测量结果。
  25. 根据权利要求23或24所述的通信装置,其特征在于,所述处理模块还用于:
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,则切换到所述第二参考信号对应的第一波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量小于所述第二阈值,则保持当前的服务波束。
  26. 根据权利要求23或24所述的通信装置,其特征在于,
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,则所述收发模块还用于:接收来自所述网络设备的第一确认消息;所述处理模块还用于:切换至所述第二参考信号对应的第一波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量小于所述第二阈值,则所述收发模块还用于:接收来自所述网络设备的第一否定消息;所述处理模块还用于:保持当前的服务波束。
  27. 根据权利要求23或24所述的通信装置,其特征在于,
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,则所述收发模块还用于:接收来自所述网络设备的第一指示信息,所述第一指示信息指示所述通信装置切换到所述第二参考信号对应的第一波束;所述处理模块还用于:切换至所述第一波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量小于所述第二阈值,则所述收发模块还用于:接收来自所述网络设备的第一指示信息,所述第一指示信息指示所述通信装置保持当前的服务波束;所述处理模块还用于:保持当前的服务波束。
  28. 根据权利要求23或24所述的通信装置,其特征在于,所述处理模块还用于:
    对第三参考信号进行第一类型测量,得到第三测量结果;
    所述收发模块还用于:向所述网络设备发送所述第三测量结果;
    所述处理模块还用于:基于所述第三测量结果对第四参考信号进行第二类型测量,得到第四测量结果;
    所述收发模块还用于:向所述网络设备发送所述第四测量结果。
  29. 根据权利要求28所述的通信装置,其特征在于,所述处理模块还用于:
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,且所述第 二参考信号的信号质量大于所述第四测量结果中所述第四参考信号的信号质量,则切换到所述第二参考信号对应的第一波束;或者,
    若所述第四测量结果中所述第四参考信号的信号质量大于或等于所述第二阈值,且所述第四参考信号的信号质量大于所述第二测量结果中所述第二参考信号的信号质量,则切换到所述第四参考信号对应的第二波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量和所述第四测量结果中所述第四参考信号的信号质量均小于所述第二阈值,则保持当前的服务波束。
  30. 根据权利要求28所述的通信装置,其特征在于,
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,所述第二参考信号的信号质量大于所述第四测量结果中所述第四参考信号的信号质量,则所述收发模块还用于:接收来自所述网络设备的第二确认消息,所述第二确认消息用于指示所述通信装置切换到所述第二参考信号对应的第一波束;所述处理模块还用于:切换到所述第二参考信号对应的第一波束;或者,
    若所述第四测量结果中所述第四参考信号的信号质量大于或等于所述第二阈值,所述第四参考信号的信号质量大于所述第二测量结果中所述第二参考信号的信号质量,则所述收发模块还用于:接收来自所述网络设备的第二确认消息;所述处理模块还用于:切换到所述第四参考信号对应的第二波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量和所述第四测量结果中所述第四参考信号的信号质量均小于所述第二阈值,则所述收发模块还用于:接收来自所述网络设备的第二否定消息;所述处理模块还用于:保持当前的服务波束。
  31. 根据权利要求28所述的通信装置,其特征在于,
    若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,所述第二参考信号的信号质量大于所述第四测量结果中所述第四参考信号对应的信号质量,则所述收发模块还用于:接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述通信装置切换到所述第二参考信号对应的第一波束;所述处理模块还用于:切换到所述第一波束;或者,
    若所述第四测量结果中所述第四参考信号的信号质量大于或等于所述第二阈值,所述第四参考信号的信号质量大于所述第二测量结果中所述第二参考信号的信号质量,所述收发模块还用于:接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述通信装置切换到所述第四参考信号对应的第二波束;所述处理模块还用于:切换到所述第二波束;或者,
    若所述第二测量结果中所述第二参考信号的信号质量和所述第四测量结果中所述第四参考信号的信号质量均小于所述第二阈值,则所述收发模块还用于:接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述通信装置保持当前的服务波束;所述处理模块还用于:保持当前的服务波束。
  32. 根据权利要求23至31中任一项所述的通信装置,其特征在于,所述收发模块还用于:
    接收来自所述网络设备的第一配置信息,所述第一配置信息指示所述通信装置基于所述第一测量结果对所述第二参考信号进行第二类型测量并上报测量结果。
  33. 根据权利要求23至32中任一项所述的通信装置,其特征在于,所述第一类型测量包括所述通信装置对参考信号进行周期性测量,所述第二类型测量包括所述通信装置对参考信号资源进行半持续测量;或者,
    所述第一类型测量包括所述通信装置对参考信号进行周期性测量,所述第二类型测量包括所述通信装置对参考信号进行非周期性测量;或者,
    所述第一类型测量包括所述通信装置对参考信号进行半持续测量,所述第二类型测量包括所述通信装置对参考信号进行非周期性测量。
  34. 一种通信装置,其特征在于,所述通信装置包括:
    收发模块,用于接收来自终端设备的第一测量结果,所述第一测量结果是所述终端设备对第一参考信号进行第一类型测量得到的测量结果;接收来自所述终端设备的第二测量结果,所述第二测量结果是所述终端设备基于所述第一测量结果对第二参考信号进行第二类型测量得到的测量结果。
  35. 根据权利要求34所述的通信装置,其特征在于,所述收发模块还用于:
    向所述终端设备发送第一配置信息,所述第一配置信息用于指示所述终端设备基于所述第一测量结果对所述第二参考信号进行第二类型测量并上报测量结果。
  36. 根据权利要求35所述的通信装置,其特征在于,所述第一测量结果包括所述终端设备连续N次上报的所述第一参考信号的测量结果,所述N为大于或等于1的整数;
    所述第一配置信息用于指示:若所述终端设备连续N次上报的所述第一参考信号的测量结果中所述第一参考信号的信号质量均大于或等于第一阈值,则所述终端设备触发对第二参考信号进行第二类型测量并上报测量结果,所述N为大于或等于1的整数;或者,
    所述第一配置信息用于指示:若所述终端设备连续N次上报的所述第一参考信号的测量结果中所述第一参考信号的信号质量均大于或等于所述终端设备当前的服务波束对应的参考信号的信号质量,则所述终端设备触发对所述第二参考信号进行第二类型测量并上报测量结果。
  37. 根据权利要求34至36中任一项所述的通信装置,其特征在于,所述通信装置还包括处理模块;
    所述处理模块,用于若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,则确定所述终端设备切换到所述第二参考信号对应的第一波束;或者,
    所述处理模块,用于若所述第二测量结果中所述第二参考信号的信号质量小于所述第二阈值,则确定所述终端设备保持当前的服务波束。
  38. 根据权利要求34至36中任一项所述的通信装置,其特征在于,所述收发模块,还用于若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,则向所述终端设备发送第一确认消息,所述第一确认消息用于指示所述终端设备切换到所述第二参考信号对应的第一波束;或者,
    所述收发模块,还用于若所述第二测量结果中所述第二参考信号的信号质量小于所述 第二阈值,则向所述终端设备发送第一否定消息,所述第一否定消息用于指示所述终端设备保持当前的服务波束。
  39. 根据权利要求34至36中任一项所述的通信装置,其特征在于,
    所述收发模块,还用于若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,则向所述终端设备发送第一指示信息,所述第一指示信息指示所述终端设备切换到所述第二参考信号对应的第一波束;或者,
    所述收发模块,还用于若所述第二测量结果中所述第二参考信号的信号质量小于所述第二阈值,则向所述终端设备发送第一指示信息,所述第一指示信息指示所述终端设备保持当前的服务波束或不进行波束切换。
  40. 根据权利要求34至36中任一项所述的通信装置,其特征在于,所述收发模块还用于:
    向所述终端设备发送第三测量结果,所述第三测量结果是所述终端设备对第三参考信号进行第一类型测量得到的测量结果;
    接收来自所述终端设备的第四测量结果,所述第四测量结果是所述终端设备基于所述第三测量结果对第四参考信号进行第二类型测量得到的测量结果。
  41. 根据权利要求40所述的通信装置,其特征在于,所述通信装置还包括处理模块;
    所述处理模块,用于若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,且所述第二参考信号的信号质量大于所述第四测量结果中所述第四参考信号的信号质量,则确定所述终端设备切换到所述第二参考信号对应的第一波束;或者,
    所述处理模块,用于若所述第四测量结果中所述第四参考信号的信号质量大于或等于所述第二阈值,且所述第四参考信号的信号质量大于所述第二测量结果中所述第二参考信号的信号质量,则确定所述终端设备切换到所述第四参考信号对应的第二波束;或者,
    所述处理模块,用于若所述第二测量结果中所述第二参考信号的信号质量和所述第四测量结果中所述第四参考信号的信号质量均小于所述第二阈值,则确定所述终端设备保持当前的服务波束。
  42. 根据权利要求40所述的通信装置,其特征在于,
    所述收发模块,还用于若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,且所述第二参考信号的信号质量大于所述第四测量结果中所述第四参考信号的信号质量,则向所述终端设备发送第二确认消息,所述第二确认消息用于指示所述终端设备切换到所述第二参考信号对应的第一波束;或者,
    所述收发模块,还用于若所述第四测量结果中所述第四参考信号的信号质量大于或等于所述第二阈值,且所述第四参考信号的信号质量大于所述第二测量结果中所述第二参考信号的信号质量,则向所述终端设备发送第二确认消息,所述第二确认消息用于指示所述终端设备切换到所述第四参考信号对应的第二波束;或者,
    所述收发模块,还用于若所述第二测量结果中所述第二参考信号的信号质量和所述第四测量结果中所述第四参考信号的信号质量均小于所述第二阈值,则向所述终端设备发送第二否定消息,所述第二否定消息用于指示所述终端设备保持当前的服务波束。
  43. 根据权利要求40所述的通信装置,其特征在于,
    所述收发模块,还用于若所述第二测量结果中所述第二参考信号的信号质量大于或等于第二阈值,且所述第二参考信号的信号质量大于所述第四测量结果中所述第四参考信号的信号质量,则向所述终端设备发送第二指示信息,所述第二指示信息指示所述终端设备切换到所述第二参考信号对应的第一波束;或者,
    所述收发模块,还用于若所述第四测量结果中所述第四参考信号的信号质量大于或等于所述第二阈值,且所述第四参考信号的信号质量大于所述第二测量结果中所述第二参考信号的信号质量,则向所述终端设备发送第二指示信息,所述第二指示信息指示所述终端设备切换到所述第四参考信号对应的第二波束;或者,
    所述收发模块,还用于若所述第二测量结果中所述第二参考信号的信号质量和所述第四测量结果中所述第四参考信号的信号质量均小于所述第二阈值,则向所述终端设备发送第二指示信息,所述第二指示信息指示所述终端设备保持当前的服务波束。
  44. 根据权利要求34至43中任一项所述的通信装置,其特征在于,
    所述第一类型测量包括所述终端设备对参考信号进行周期性测量,所述第二类型测量包括所述终端设备对参考信号资源进行半持续测量;或者,
    所述第一类型测量包括所述终端设备对参考信号进行周期性测量,所述第二类型测量包括所述终端设备对参考信号进行非周期性测量;或者,
    所述第一类型测量包括所述终端设备对参考信号进行半持续测量,所述第二类型测量包括所述终端设备对参考信号进行非周期性测量。
  45. 一种通信装置,其特征在于,所述通信装置包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机程序或计算机指令,使得所述通信装置执行如权利要求1至11中任一项所述的方法;或者,使得所述通信装置执行如权利要求12至22中任一项所述的方法。
  46. 一种通信装置,其特征在于,所述通信装置包括处理器;所述处理器用于执行如权利要求1至11中任一项所述的方法,或者,所述处理器用于执行如权利要求12至22中任一项所述的方法。
  47. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置执行如权利要求1至11中任一项所述的方法,或者,使得所述通信装置执行如权利要求12至22中任一项所述的方法。
PCT/CN2022/132729 2021-11-29 2022-11-18 通信方法以及通信装置 WO2023093621A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111434486.6A CN116193485A (zh) 2021-11-29 2021-11-29 通信方法以及相关装置
CN202111434486.6 2021-11-29

Publications (1)

Publication Number Publication Date
WO2023093621A1 true WO2023093621A1 (zh) 2023-06-01

Family

ID=86431243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132729 WO2023093621A1 (zh) 2021-11-29 2022-11-18 通信方法以及通信装置

Country Status (2)

Country Link
CN (1) CN116193485A (zh)
WO (1) WO2023093621A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190058513A1 (en) * 2016-03-30 2019-02-21 Sony Corporation Communication apparatus, communication method, and program
CN111034258A (zh) * 2017-08-11 2020-04-17 瑞典爱立信有限公司 无线设备、网络节点及其执行的用于处理对小区集合的测量的方法
US20200128412A1 (en) * 2017-11-17 2020-04-23 Telefonaktiebolaget Lm Ericsson (Publ) User equipment and network node for configuring measurements of cells and beams in a wireless communication system
WO2021147956A1 (zh) * 2020-01-23 2021-07-29 维沃移动通信有限公司 一种测量上报、配置方法、终端及网络侧设备
WO2021204002A1 (zh) * 2020-04-08 2021-10-14 华为技术有限公司 测量方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190058513A1 (en) * 2016-03-30 2019-02-21 Sony Corporation Communication apparatus, communication method, and program
CN111034258A (zh) * 2017-08-11 2020-04-17 瑞典爱立信有限公司 无线设备、网络节点及其执行的用于处理对小区集合的测量的方法
US20200128412A1 (en) * 2017-11-17 2020-04-23 Telefonaktiebolaget Lm Ericsson (Publ) User equipment and network node for configuring measurements of cells and beams in a wireless communication system
WO2021147956A1 (zh) * 2020-01-23 2021-07-29 维沃移动通信有限公司 一种测量上报、配置方法、终端及网络侧设备
WO2021204002A1 (zh) * 2020-04-08 2021-10-14 华为技术有限公司 测量方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "On supporting the short periodicity of SSB measurement for IDLE/Inactive UE", 3GPP DRAFT; R2-1911451 ON SUPPORTING THE SHORT PERIODICITY OF SSB MEASUREMENT FOR IDLE INACTIVE UE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Prague, Czech Republic; 20190826 - 20190830, 16 August 2019 (2019-08-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051769208 *

Also Published As

Publication number Publication date
CN116193485A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
CN111510267B (zh) 波束指示的方法和通信装置
WO2020030050A1 (zh) 训练天线面板的方法与装置
EP3952419A1 (en) Secondary cell activation method and apparatus
CN111586858B (zh) 信号传输方法和通信装置
JP2020504549A (ja) リソース指示方法、装置およびシステム
WO2020057459A1 (zh) 指示波束的方法和装置
US11799520B2 (en) Communication method and communications apparatus
WO2018099328A1 (zh) 通信方法、基站和终端设备
WO2023051188A1 (zh) 分组管理方法和通信装置
US20240155371A1 (en) Communication method and communication apparatus
WO2023093621A1 (zh) 通信方法以及通信装置
WO2021013138A1 (zh) 无线网络通信方法和通信装置
US20210250949A1 (en) Methods and Apparatus of Spatial Relation Switching in New Radio System
WO2021159398A1 (zh) 波束失败恢复的方法和装置
WO2021088038A1 (zh) 一种参考信号测量方法、资源指示方法及装置
WO2023088114A1 (zh) 波束恢复方法、波束失败检测方法以及相关装置
WO2024067412A1 (zh) 波束确定方法以及相关装置
WO2023273969A1 (zh) 资源测量方法和通信装置
WO2023072116A1 (zh) 波束使用方法以及相关装置
WO2024032767A1 (zh) 上行传输方法以及相关装置
WO2024022053A1 (zh) 一种速率匹配的方法及装置
WO2024094196A1 (zh) 资源测量方法、测量间隙配置方法和相关装置
WO2024032640A1 (zh) 传输配置指示tci模式配置方法、tci状态指示方法及装置
WO2023208166A1 (zh) 一种定时指示的方法及通信装置
WO2022099660A1 (zh) 一种波束切换的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897704

Country of ref document: EP

Kind code of ref document: A1