WO2020057459A1 - 指示波束的方法和装置 - Google Patents

指示波束的方法和装置 Download PDF

Info

Publication number
WO2020057459A1
WO2020057459A1 PCT/CN2019/105950 CN2019105950W WO2020057459A1 WO 2020057459 A1 WO2020057459 A1 WO 2020057459A1 CN 2019105950 W CN2019105950 W CN 2019105950W WO 2020057459 A1 WO2020057459 A1 WO 2020057459A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
signal
uplink
downlink
reference signal
Prior art date
Application number
PCT/CN2019/105950
Other languages
English (en)
French (fr)
Inventor
邵华
余子明
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19862532.9A priority Critical patent/EP3843477A4/en
Publication of WO2020057459A1 publication Critical patent/WO2020057459A1/zh
Priority to US17/207,012 priority patent/US20210211893A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • H04L5/0025Spatial division following the spatial signature of the channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method and an apparatus for indicating a beam.
  • terminal equipment receives downlink signals and sends uplink signals based on base station scheduling.
  • the scheduling of downlink signals and the scheduling of uplink signals are independently performed based on their respective physical downlink control channels (PDCCH). That is, the network device schedules the reception of downlink signals through one PDCCH, and schedules the transmission of uplink signals through another PDCCH.
  • PDCCH physical downlink control channels
  • the controller sends an instruction to the terminal device, which may be a request to obtain data from the terminal device, or the instruction is used to control the terminal device to perform certain operations and / or commands.
  • the terminal device After the terminal device receives the instruction, if the instruction is to request data, the terminal device returns the data requested by the network device to the controller. If the instruction is used to control the terminal device to perform certain operations and / or commands, the terminal device replies the execution result to the controller after executing the operations and / or commands.
  • the sending of the uplink signal and the receiving of the downlink signal are independently scheduled, and the scheduling overhead is large.
  • the present application provides a method and an apparatus for indicating a beam, which can save scheduling overhead of receiving downlink signals and sending uplink signals.
  • the present application provides a method for indicating a beam, the method including: receiving first information from a network device, where the first information is used to determine a first receive beam of a downlink signal and / or a first transmit beam of an uplink signal; According to the first information, a first receiving beam of the downlink signal and / or a first transmitting beam of the uplink signal are determined.
  • the network device sends the first information to the terminal device, so that the terminal device determines the first receiving beam of the downlink signal and the first transmitting beam of the uplink signal according to the first information, so that the device can be scheduled in pairs.
  • the receiving of the downlink signal and the sending of the uplink signal by the terminal device can save the scheduling overhead of receiving the downlink signal and sending the uplink signal.
  • the first information may be broadcast information sent by a network device. After receiving the first information, different terminal devices may only be used to determine the first receiving beam, or determine the first transmitting beam, or determine the first receiving beam and the first transmitting beam at the same time.
  • one type may be that the terminal device only receives downlink signals, and the other type may include transmission of uplink and downlink signals.
  • the terminal device may use the same beam as the first receiving beam as the first transmitting beam.
  • the terminal device determines only the first transmission beam
  • the same beam as that used to send the uplink signal may be used as the first receiving beam for downlink signal reception.
  • the first information includes first reference signal configuration information and second reference signal configuration information
  • the first reference signal configuration information is used to indicate a first downlink reference signal.
  • Identification the second reference signal configuration information is used to indicate the identification of the second downlink reference signal
  • determining the first receive beam and / or the second transmit beam according to the first information includes: determining the first reference beam according to the first reference signal configuration information Line reference signals, and determine the first receive beam according to the first downlink reference signal; and / or, determine a second downlink reference signal according to the second reference signal configuration information, and determine the first transmit beam according to the second downlink reference signal .
  • the first downlink reference signal or the second downlink reference signal includes any one of the following signals: a synchronization signal block, a channel state information reference signal CSI-RS, and a downlink The demodulation reference signal DMRS of the control channel PDCCH, the demodulation reference signal DMRS of the downlink shared channel PDSCH, and the phase tracking reference signal PTRS.
  • the first information includes third reference signal configuration information and fourth reference signal configuration information
  • the third reference signal configuration information is used to indicate an identifier of a third downlink reference signal
  • the fourth reference signal configuration information is used to indicate an identifier of the first uplink reference signal
  • determining the first receive beam and / or the first transmit beam according to the first information includes: determining the third downlink reference according to the third reference signal configuration information. And determine a first receiving beam according to the third downlink reference signal; and / or determine a first uplink reference signal according to the fourth reference signal configuration information, and determine a first transmitting beam according to the first uplink reference signal.
  • the third downlink reference signal includes any one of the following signals: a synchronization signal block, a channel state information reference signal CSI-RS, and a demodulation reference for a downlink control channel PDCCH Signal DMRS, demodulation reference signal DMRS for downlink shared channel PDSCH, and phase tracking reference signal PTRS;
  • the first uplink reference signal includes any one of the following signals: demodulation reference signal DMRS for uplink control channel PUCCH, solution for uplink shared channel PDSCH The tuned reference signal DMRS, the monitoring reference signal SRS, and the physical random access channel PRACH.
  • the first information is used to indicate an identifier of a fourth downlink reference signal
  • determining the first receiving beam and / or the first transmitting beam according to the first information includes: Determine a fourth downlink reference signal according to the first information, and determine a first receive beam and / or the first transmit beam according to the fourth downlink reference signal; or, the first information is used to indicate an identifier of the second uplink reference signal, according to
  • determining the first receiving beam and / or the first transmitting beam includes: determining the second uplink reference signal according to the first information, and determining the first transmitting beam and / or the first receiving according to the second uplink reference signal. Beam.
  • the fourth downlink reference signal includes any one of the following signals: a synchronization signal block, a channel state information reference signal CSI-RS, and a demodulation reference for a downlink control channel PDCCH Signal DMRS, demodulation reference signal DMRS of downlink shared channel PDSCH, and phase tracking reference signal PTRS; or, the second uplink reference signal includes any one of the following signals: demodulation reference signal DMRS of uplink control channel PUCCH, uplink shared channel PDSCH Demodulation reference signal DMRS, measurement reference signal SRS and physical random access channel PRACH.
  • the method further includes: detecting a beam failure of the first receiving beam; using a beam configured by the network device for recovering the beam failure, and performing uplink with the network device transmission.
  • the method further includes: receiving second information from a network device, where the second information is used to indicate a second receiving beam of the downlink signal and / or an uplink signal A second transmitting beam; using a second receiving beam to receive a downlink signal from a network device, and / or using a second transmitting beam to send an uplink signal to the network device.
  • a time interval between a first time to receive the downlink signal and a second time to send the uplink signal is greater than a preset threshold.
  • the method further includes: the terminal device receives time interval indication information from the network device, and the time interval indication information is used to indicate the first time and the first time configured by the network device. Two time intervals; when the time interval indicated by the time interval indication information is greater than or equal to a preset threshold, the terminal device switches from the first receiving beam of the downlink signal to the first transmitting beam of the uplink signal, or The second receiving beam of the downlink signal is switched to the second transmitting beam of the uplink signal.
  • the present application provides a method for indicating a beam.
  • the method includes: receiving third information from a network device, where the third information is used to indicate a third receiving beam of a downlink signal; and determining the third receiving beam according to the third information.
  • the fourth information is used to indicate an identifier of multiple downlink reference signals, and determining the third transmission beam according to the fourth information includes: One downlink reference signal among the three downlink reference signals to determine a third transmission beam; or, the fourth information is used to indicate an identifier of one or more uplink reference signals, and determining the third transmission beam according to the fourth information includes: One uplink reference signal among the plurality of uplink reference signals indicated by the four information determines the third transmission beam.
  • the fourth information is used to indicate identifiers of multiple downlink reference signals
  • the third transmission beam includes reception beams of the multiple downlink reference signals.
  • the method further includes: using the plurality of downlink reference signal receiving beams to poll the uplink signal to send; or, the fourth information is used to indicate the identifiers of the multiple uplink reference signals, and the third transmission beam includes the multiple uplink reference signals.
  • the method further includes: using the transmission beams of the plurality of uplink reference signals to poll and transmit the uplink signals.
  • the method further includes: detecting a beam failure of the third receiving beam of the downlink signal; using a beam configured by the network device for performing beam failure recovery, and The network device performs uplink transmission.
  • the method further includes: receiving fifth information from a network device, where the fifth information is used to indicate a fourth receiving beam of the downlink signal and / or the uplink signal A fourth transmitting beam; using a fourth receiving beam to receive the downlink signal from the network device, and / or using a fourth transmitting beam to send the uplink signal to the network device.
  • a time interval between a first time to receive the downlink signal and a second time to send the uplink signal is greater than a preset threshold.
  • the method further includes: receiving time interval indication information from the network device, where the time interval indication information is used to indicate the first time and the second time configured by the network device Time interval; when the time interval indicated by the time interval indication information is greater than or equal to a preset threshold, the terminal device switches from the third receiving beam of the downlink signal to the third receiving beam of the uplink signal, or the terminal device switches from the downlink The fourth receiving beam of the signal is switched to the fourth transmitting beam of the uplink signal.
  • the present application provides a method for indicating a beam.
  • the method includes: the network device generates first information, and the first information is used by the terminal device to determine a first receive beam of a downlink signal and / or a first transmit beam of an uplink signal. ; The network device sends the first information to the terminal device.
  • the first information includes first reference signal configuration information and second reference signal configuration information
  • the first reference signal configuration information is used to indicate a first downlink reference signal.
  • Identification the second reference signal configuration information is used to indicate the identification of the second downlink reference signal.
  • the first downlink reference signal or the second downlink reference signal includes any one of the following signals: a synchronization signal block, a channel state information reference signal CSI-RS
  • the first information includes third reference signal configuration information and fourth reference signal configuration information
  • the third reference signal configuration information is used to indicate an identifier of a third downlink reference signal
  • the fourth reference signal configuration information is used to indicate an identifier of the first uplink reference signal.
  • the third downlink reference signal includes any one of the following signals: a synchronization signal block, a channel state information reference signal CSI-RS, and a demodulation reference for a downlink control channel PDCCH Signal DMRS, demodulation reference signal DMRS for downlink shared channel PDSCH, and phase tracking reference signal PTRS;
  • the first uplink reference signal includes any one of the following signals: demodulation reference signal DMRS for uplink control channel PUCCH, solution for uplink shared channel PDSCH
  • the first information is used to indicate an identifier of a fourth downlink reference signal, or the first information is used to indicate an identifier of a second uplink reference signal.
  • the fourth downlink reference signal includes any one of the following signals: a synchronization signal block, a channel state information reference signal CSI-RS, and a demodulation reference for a downlink control channel PDCCH Signal DMRS, demodulation reference signal DMRS and phase tracking reference signal PTRS of downlink shared channel PDSCH; or the second uplink reference signal includes any one of the following signals: demodulation reference signal DMRS of uplink control channel PUCCH, uplink sharing The demodulation reference signal DMRS, the measurement reference signal SRS, and the physical random access channel PRACH of the channel PDSCH.
  • the method further includes: the network device sends second information to the terminal device, and the second information is used to indicate a second receiving beam of the downlink signal and / or the uplink The second transmit beam of the signal.
  • the method further includes: the network device sends time interval indication information to the terminal device, where the time interval indication information is used to instruct the terminal device configured by the network device to receive the downlink signal The time interval between the first time and the second time.
  • the present application provides a method for indicating a beam.
  • the method includes: the network device generates third information, the third information is used to indicate a third receiving beam of a downlink signal; the network device sends the third information to the terminal device; and the network The device sends the downlink signal to the terminal device, where the downlink signal carries fourth information, and the fourth information is used to indicate a third transmission beam of the uplink signal.
  • the fourth information is used to indicate an identifier of multiple downlink reference signals
  • determining the third transmission beam of the uplink signal according to the fourth information includes: One of the plurality of downlink reference signals indicated by the information determines the third transmit beam of the uplink signal; or the fourth information is used to indicate the identifier of one or more uplink reference signals, and is determined according to the fourth information
  • the transmission beam of the uplink signal includes: determining a third transmission beam of the uplink signal according to an uplink reference signal of the multiple uplink reference signals indicated by the fourth information.
  • the fourth information is used to indicate identifiers of multiple downlink reference signals, and the third transmission beam includes reception beams of the multiple downlink reference signals; or, the fourth information An identifier for indicating multiple uplink reference signals, and the third transmission beam includes the transmission beams of the multiple uplink reference signals.
  • the fourth information is used to indicate identifiers of multiple downlink reference signals, and the third transmission beam includes reception beams of the multiple downlink reference signals; or, the fourth information An identifier for indicating multiple uplink reference signals, and the third transmission beam includes the transmission beams of the multiple uplink reference signals.
  • the method further includes: sending fifth information to the terminal device, where the fifth information is used to indicate a fourth receiving beam of the downlink signal and / or the uplink signal Fourth transmit beam.
  • the method further includes: the network device sends time interval indication information to the terminal device, and the time interval indication information is used to instruct the terminal device configured by the network device to receive the downlink signal. The time interval between the first time and the second time.
  • the present application provides a communication device having the functions of a terminal device in any possible implementation manner of the first aspect or the second aspect. These functions can be implemented by hardware, or they can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to these functions.
  • the present application provides a communication apparatus having a function of implementing a network device in the third aspect or any possible implementation manner of the fourth aspect.
  • These functions can be implemented by hardware, or they can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to these functions.
  • the present application provides a terminal device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store the computer program
  • the processor is used to call and run the computer program stored in the memory, so that the terminal device executes the method in any possible implementation manner of the first aspect or the second aspect.
  • the present application provides a network device, including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store the computer program
  • the processor is used to call and run the computer program stored in the memory, so that the network device performs the method in the third aspect or any possible implementation manner of the fourth aspect.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the computer is enabled to execute any possible implementation of the foregoing first aspect or the second aspect. Way in the way.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the instructions When the instructions are run on a computer, the computer is allowed to execute any possible implementation manner of the third aspect or the fourth aspect. Method.
  • the present application provides a chip provided by the present application, including a processor.
  • the processor is configured to read and execute the computer program stored in the memory to perform the method in any possible implementation manner of the first aspect or the second aspect.
  • the chip should include a memory, and the memory and the processor are connected to the memory through a circuit or a wire.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and / or information that needs to be processed.
  • the processor obtains the data and / or information from the communication interface, processes the data and / or information, and outputs the processing result through the communication interface.
  • the communication interface may be an input-output interface.
  • the present application provides a chip including a processor.
  • the processor is configured to read and execute a computer program stored in the memory to perform the method in the third aspect or any possible implementation manner of the fourth aspect.
  • the chip should include a memory, and the memory and the processor are connected to the memory through a circuit or a wire.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and / or information that needs to be processed.
  • the processor obtains the data and / or information from the communication interface, processes the data and / or information, and outputs the processing result through the communication interface.
  • the communication interface may be an input-output interface.
  • the foregoing memory and the memory may be physically independent units, or the memory may be integrated with the processor.
  • the present application provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer causes the computer to execute any one of the foregoing first or second aspects. Method in implementation.
  • the present application provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer is caused to execute the third aspect or any possible implementation manner of the fourth aspect. Methods.
  • the network device sends the first information to the terminal device, so that the terminal device determines the first receiving beam of the downlink signal and the first transmitting beam of the uplink signal according to the first information, so that the device can be scheduled in pairs.
  • the receiving of the downlink signal and the sending of the uplink signal by the terminal device can save the scheduling overhead of receiving the downlink signal and sending the uplink signal.
  • FIG. 1 is a schematic architecture diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a beam indicating method 200 provided in the present application.
  • FIG. 3 is an example of a method 200 for indicating a beam provided in the present application.
  • FIG. 4 is another example of a method 200 for indicating a beam provided by the present application.
  • FIG. 5 is another example of a method 200 for indicating a beam provided in this application.
  • FIG. 6 is a schematic flowchart of a beam indicating method 300 provided in the present application.
  • FIG. 7 is an example of a method 300 for indicating a beam provided by the present application.
  • FIG. 8 is an example of a case where a beam failure occurs in the process of receiving a PDSCH
  • FIG. 9 is a schematic structural block diagram of a communication device 500 provided in the present application.
  • FIG. 10 is a schematic structural block diagram of a communication device 600 provided in the present application.
  • FIG. 11 is a schematic structural diagram of a terminal device 700 provided in the present application.
  • FIG. 12 is a schematic structural diagram of a network device 300 provided in the present application.
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device 101, and the network device 101 performs wireless communication with one or more terminal devices (for example, the terminal device 102 and the terminal device 103 shown in FIG. 1).
  • the wireless communication system 100 involved in this application includes, but is not limited to, a global mobile communication (GSM) system, a code division multiple access (CDMA) system, and a wideband code division multiple access (wideband code).
  • division multiple access (WCDMA) system general packet radio service (GPRS), long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division Duplex (Time Division Duplex, TDD), Universal Mobile Telecommunications System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, next-generation mobile communication system (e.g., 5G)
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • next-generation mobile communication system e.g., 5G
  • the terminal devices involved in the embodiments of the present application may be user equipment (UE), terminals, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile devices , User terminal, terminal, wireless communication device, user agent, or user device.
  • Terminal equipment can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital processing (PDA), and wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or public land mobile network (PLMN) in future evolution Terminal equipment, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital processing
  • PLMN public land mobile network
  • the network equipment involved in the embodiments of the present application may be a global system (GSM) system or a base station (BTS) in a code division multiple access (CDMA) system. It can be a base station (nodeB, NB) in a wideband code division multiple access (WCDMA) system, or an evolved base station (evolved nodeB, eNB, or eNodeB) in an LTE system, or cloud wireless A wireless controller in a cloud access network (CRAN) scenario.
  • the network device may also be a relay station, an access point, a vehicle-mounted device, a wearable device, etc. of a future communication system (for example, 5G).
  • the technical solution provided in this application is applicable to a scenario in which a network device schedules uplink signals and downlink signals in pairs.
  • the uplink signal refers to a signal sent by a terminal device to a network device.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • the downlink signal refers to the signal sent by the network device to the terminal device.
  • a physical downlink shared channel physical downlink shared channel (physical downlink shared channel (PDSCH)
  • PBCH physical broadcast channel
  • PDCCH physical downlink control channel
  • NR new radio
  • BPL beams and beam pairs
  • a beam is a type of communication resource.
  • a beam can also be called a spatial filter (SDF), or transmission state indication (TCI).
  • SDF spatial filter
  • TCI transmission state indication
  • Beams can be divided into transmit beams and receive beams.
  • the beam forming technology may be a beam forming technology or other technical means. Beamforming includes transmit beamforming and receive beamforming.
  • a beam may include one or more antenna ports for transmitting data channels, control channels and sounding signals.
  • Transmitting beam It can refer to the distribution of signal strength in different directions in space after a signal is transmitted through an antenna.
  • the transmitting end sends a signal with a certain beamforming weight, so that the transmitted signal forms a beam with spatial directivity.
  • the transmitting end may be a terminal; in the downlink direction, the transmitting end may be a network device.
  • Receiving beam It can mean that the antenna array strengthens or weakens the reception distribution of wireless signals in different directions in space.
  • the receiving end receives the signal with a certain beamforming weight, so that the spatially directional beam formed by the received signal.
  • the receiving end in the uplink direction, the receiving end may be a network device; in the downlink direction, the receiving end may be a terminal.
  • Transmitter beamforming When a transmitting device with an antenna array sends a signal, a specific amplitude and phase are set on each antenna array of the antenna array, so that the transmitted signal has a certain spatial directivity, that is, the signal in certain directions High power, low signal power in some directions, and the direction with the highest signal power is the direction of the transmitted beam.
  • the antenna array includes multiple antenna elements, and the specific amplitude and phase added are the beamforming weights.
  • Receiving beamforming When a receiving device with an antenna array receives a signal, a specific amplitude and phase are set on each antenna array of the antenna array, so that the power gain of the received signal is directional, that is, receiving in certain directions The power gain is high when the signal is received. The power gain is low when the signal is received in some directions. The direction in which the power gain is highest when the signal is received is the direction of the received beam.
  • the antenna array includes multiple antenna elements, and the specific amplitude and phase added are the beamforming weights.
  • Send a signal using a transmit beam Send a signal using a beamforming weight.
  • Receive signal with receive beam Use a beamforming weight to receive the signal.
  • Different beams can be considered as different resources, and the same information or different information can be sent using (or through) different beams.
  • the beam pair is based on the concept of a beam.
  • a beam pair usually includes a transmitting beam of a transmitting end device and a receiving beam of a receiving end device.
  • both a network device and a terminal device can generate one or more transmit beams and one or more receive beams. Before transmitting data, beam alignment is required.
  • one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the beam can be reflected by the antenna port quasi co-location (QCL) relationship.
  • QCL refers to quasi colocation (QCL).
  • the signals of two co-beams have a QCL relationship with respect to a spatial domain Rx parameter. That is, QCL-TypeD: ⁇ Spatial Rx parameter in the existing protocol ⁇ .
  • the identification of the beam may be the identification of various signals.
  • the identification of the beam may be a resource identification (ID) of a channel state indication reference signal (CSI-RS).
  • the identification of the beam may also be a time domain index of a synchronization signal / physical broadcast channel (SS / PBCH).
  • the identification of the beam may also be a resource ID of a sounding signal (SRS).
  • the beam identifier may also be a resource ID of a tracking signal (TRS).
  • the present application provides a method 200 for indicating a beam and a method 300 for indicating a beam. Compared with the prior art, it can save the scheduling overhead of a network device scheduling a terminal device to receive a downlink signal and send an uplink signal. The following describes the method 200 and the method 300 respectively.
  • a terminal device receives first information from a network device, and the first information is used to determine a first receive beam of a downlink signal and a first transmit beam of an uplink signal.
  • the terminal device determines a first receiving beam of a downlink signal and a first transmitting beam of an uplink signal according to the first information.
  • the terminal device receives the first information indicating the beam from the network device, and according to the first information, the terminal device can determine the receiving beam of the downlink signal and the transmitting beam of the uplink signal.
  • FIG. 2 is a schematic flowchart of a beam indicating method 200 provided in the present application.
  • the network device sends the first information to the terminal device.
  • the terminal device receives the first information from the network device.
  • the first information is used to determine a first receiving beam of a downlink signal and / or a first transmitting beam of an uplink signal.
  • the first information is used to determine a first receive beam of a downlink signal and / or a first transmit beam of an uplink signal.
  • the terminal device can determine, according to the first information, that the network device is configured to receive the downlink signal.
  • the first receiving beam of the signal, or the terminal device may determine the first transmitting beam for transmitting the uplink signal, or the terminal device may determine the first transmitting beam and the first receiving beam at the same time.
  • the network device may configure more than one receive beam for the terminal device to receive the downlink signal, and may also configure more than one transmit beam for the terminal device to send the uplink signal. For example, the network device first configures a receiving beam for the terminal device to receive the downlink signal, and then configures another receiving beam (that is, configuring a new receiving beam). Similarly, the network device may also configure one transmit beam for the uplink signal sent by the terminal device, and then configure another transmit beam later. For another example, the network device configures multiple receive beams for the terminal device to receive the downlink signal at a time, and / or configures multiple transmit beams for the terminal device to send the uplink signal at a time.
  • the first receiving beam and the second receiving beam of the downlink signal in the embodiments of the present application are only for distinguishing different receiving beams configured by the network device for the terminal device to receive the downlink signal.
  • the first transmission beam and the second transmission beam of the uplink signal are also only for distinguishing different transmission beams configured by the network device for the terminal device to send the uplink signal, and should not constitute any limitation to the technical solution of this application.
  • a receiving beam of a downlink signal refers to a beam for receiving a downlink signal.
  • the transmission beam of an uplink signal refers to a beam for transmitting an uplink signal.
  • the terminal device determines a first receiving beam of a downlink signal and / or a first transmitting beam of an uplink signal according to the first information.
  • the terminal device can learn the first receiving beam of the downlink signal and / or the first transmitting beam of the uplink signal configured by the network device.
  • the terminal device determines the first receiving beam and the first transmitting beam according to the first information.
  • the terminal device determines only the first receiving beam according to the first information. In this case, one possibility is that the terminal device only needs to receive the downlink signal. Another possibility is that the terminal device needs to receive downlink signals and send uplink signals. At this time, the terminal device may use the same beam as the first receiving beam as the first transmitting beam, so as to determine the first receiving beam and the first transmitting beam.
  • the terminal device determines the first transmission beam according to the first information.
  • the terminal device only needs to send the uplink signal, and the other possibility is that the terminal device needs to receive the downlink signal and send the uplink signal.
  • the terminal device can use the same beam as the first receiving beam as the first receiving beam, so A first receive beam and a first transmit beam may be determined.
  • the first information may include a radio resource control (RRC) message, a media access control-control element (MAC-CE), and downlink control information (downlink control information).
  • RRC radio resource control
  • MAC-CE media access control-control element
  • DCI downlink control information
  • broadcast message and may also be other information and / or messages.
  • the method 200 is exemplified below by taking the first information as DCI as an example.
  • the network device configures a beam set for the terminal device to receive downlink signals and / or send uplink signals, and the beam set includes multiple beams.
  • the network device indicates the beam set to the terminal device through an RRC message. Further, the network device selects multiple candidate beams from the beam set to indicate to the terminal device through the MAC-CE.
  • the network device sends a DCI to the terminal device.
  • the DCI is used to indicate that the receive beam of the downlink signal and the transmit beam of the uplink signal are among the multiple candidate beams. Which one or several.
  • the DCI here can be considered as the first information in the embodiment of the present application.
  • the network device first configures a beam set for the terminal device to receive a downlink signal and / or send an uplink signal.
  • the network device indicates to the terminal device through the MAC-CE which one or more of the beam set the downlink beam received and the uplink beam sent.
  • the MAC-CE here may be considered as the first information in the embodiment of the present application.
  • Those skilled in the art may also design the network device to indicate the receiving beam of the downlink signal and the sending beam of the uplink signal to the terminal device through other information or messages according to the idea of the method 200 for indicating a beam provided in the present application, which will not be listed here one by one .
  • a terminal device receiving a downlink signal and sending an uplink signal are both scheduled separately by a network device through its own PDCCH.
  • the network device indicates the receiving beam of the downlink signal and / or the transmitting beam of the uplink signal to the terminal device through a first message, so that the terminal device can determine the receiving beam of the downlink signal and the receiving signal based on the first information.
  • the transmit beam of the uplink signal Compared with the scheduling of uplink signals and downlink signals through their respective PDCCHs, scheduling overhead is saved.
  • the first information schedules the reception of the downlink signal and the transmission of the uplink signal in a pair.
  • the first information explicitly indicates the reception beam of the downlink signal and the transmission of the uplink signal.
  • the first information indicates the receiving beam of the downlink signal, and the terminal device determines the receiving beam of the downlink signal according to the first information, and also uses the receiving beam as the transmitting beam of the uplink signal.
  • the first information indicates the reception beam of the uplink signal, and the terminal device determines the transmission beam of the uplink signal based on the first information, and uses the transmission beam as the reception beam of the downlink signal. Therefore, when the terminal device needs to perform uplink and downlink transmission, the terminal device can always determine the receiving beam of the downlink signal and the sending beam of the uplink signal in pairs.
  • the terminal device may determine the receiving beam according to the first information.
  • the terminal device may determine the transmission beam according to the first information.
  • the scheduling overhead mentioned here can include signaling overhead and time overhead. That is to say, with the technical solution of this application, the signaling overhead and time overhead for scheduling the reception of downlink signals and the transmission of uplink signals can be reduced.
  • the receiving beam for indicating a downlink signal and the sending beam for an uplink signal can be scheduled at one time, so the complexity of network device scheduling can also be reduced.
  • the complexity and power consumption of receiving scheduling information (for example, DCI) can also be reduced.
  • the method 200 may further include step 230.
  • the terminal device uses the first receiving beam of the downlink signal to receive the downlink signal from the network device.
  • the method 200 may further include step 240.
  • the terminal device uses the first transmission beam of the uplink signal to send the uplink signal to the network device.
  • the terminal device Before the terminal device determines the first receive beam of the downlink signal and the first transmit beam of the uplink signal, it uses the first receive beam to receive the downlink signal sent by the network device.
  • the network device does not need to reschedule, and the terminal device can send the uplink signal to the network device by using the first transmission beam.
  • the network device may indicate the receiving beam of the downlink signal and the sending beam of the uplink signal to the terminal device in multiple ways through one piece of information. That is, the network device schedules the downlink signal and the uplink signal in pairs through one message. Each of these methods is described below.
  • the network device configures a downlink reference signal for the terminal device to receive the downlink signal and send the uplink signal, respectively, see Mode 1.
  • the network device sends the first information to the terminal device, and the first information includes first reference signal configuration information and second reference signal configuration information.
  • the first reference signal configuration information is used to indicate the identity of the first downlink reference signal
  • the second reference signal configuration information is used to indicate the identity of the second downlink reference signal.
  • the first information includes first reference signal configuration information and second reference signal configuration information.
  • the first reference signal configuration information indicates an identifier of a first downlink reference signal, and the terminal device determines a first receiving beam that uses the first downlink reference signal as a downlink signal according to the identifier of the first downlink reference signal.
  • the second reference signal configuration information indicates an identifier of a second downlink reference signal, and the terminal device determines, according to the identifier of the second downlink reference signal, to use the second downlink reference signal as a first transmission beam of an uplink signal.
  • the first information is DCI as an example. That is to say that the DCI may include 2 fields, and each field is used to carry an identifier of a reference signal.
  • the two fields included in the DCI may correspond to the first reference signal configuration information and the second reference signal configuration information in the embodiment of the present application.
  • the identifier of the beam may be the identifier of some reference signals. Therefore, in the embodiment of the present application, the identifier of the uplink reference signal or the identifier of the downlink reference signal refers to the identifier of the beam.
  • the first information is used to indicate the identifiers of two beams at the same time, the identifier of one beam is an identifier of a receiving beam of a downlink signal, and the identifier of the other beam is an identifier of a transmitting beam of an uplink signal. Therefore, the terminal device may determine the receiving beam of the downlink signal and the sending beam of the uplink signal configured by the network device according to the identifiers of the uplink reference signals and / or the downlink reference signals indicated by the network device.
  • the network device indicates the receiving beam of the downlink signal to the terminal device, including the network indicating the receiving beam parameter of the downlink signal to the terminal device.
  • the network device instructs the terminal device to transmit a beam of the uplink signal, including the network device instructing the terminal device to transmit a parameter of the uplink signal.
  • the network device when the network device indicates a downlink beam, it means that the network device indicates a beam parameter for receiving the downlink beam.
  • the network device indicates an uplink beam, which means that the network device instructs the terminal device to transmit beam parameters of the uplink beam.
  • the first downlink reference signal and the second downlink reference signal may be any one of the following signals: synchronization signal block (SS / PBCH block), CSI-RS, PDCCH DMRS, or PDSCH DMRS .
  • SS / PBCH block synchronization signal block
  • CSI-RS CSI-RS
  • PDCCH DMRS PDCCH DMRS
  • PDSCH DMRS PDSCH DMRS
  • the first downlink reference signal is a CSI-RS
  • the second downlink reference signal is a PDCCH DMRS.
  • both the first downlink reference signal and the second downlink reference signal are synchronization signal blocks.
  • the first downlink reference signal is a PDSCH, DMRS, and the second downlink reference signal is a CSI-RS.
  • the network device configures a downlink reference signal for the terminal device to receive the downlink signal, and configures a downlink reference signal for the terminal device to send the uplink signal. See Mode 2.
  • the network device sends the first information to the terminal device, and the first information includes third reference signal configuration information and fourth reference signal configuration information.
  • the third reference signal configuration information is used to indicate the identifier of the third downlink reference signal
  • the fourth reference signal configuration information is used to indicate the identifier of the first uplink reference signal.
  • the terminal device determines that the third downlink reference signal is a receiving beam of the downlink signal according to the identifier of the third downlink reference signal indicated by the third reference configuration information.
  • the terminal device determines that the first uplink reference signal is a transmission beam of the uplink signal according to the identifier of the first uplink reference signal indicated by the fourth reference signal configuration information.
  • the network device indicates to the terminal device a downlink beam as a receiving beam of the downlink signal, and indicates an uplink beam as a transmitting beam of the uplink signal.
  • the DCI may include two fields, and the two fields may each carry an identifier of a reference signal.
  • the two fields included in the DCI may correspond to the third reference signal configuration information and the fourth reference signal configuration information in manner 2.
  • the third downlink reference signal may be any one of the following signals: SS / PBCH, CSI-RS, PDCCH, DMRS, and PDSCH and DMRS.
  • the first uplink reference signal may be any one of the following signals: a demodulation reference signal DMRS of the uplink control channel PUCCH, a demodulation reference signal DMRS of the uplink shared channel PDSCH, a monitoring reference signal SRS, and a physical random access channel PRACH.
  • the network device indicates the first receiving beam of the downlink signal and the first transmitting beam of the uplink signal through one piece of first information.
  • the terminal device can pre-schedule the first transmission beam of the uplink signal indicated by the network device in advance, thereby reducing the delay.
  • the downlink signals are PDSCH as an example, and the uplink signals are PUSCH as an example.
  • FIG. 3 is an example of a method 200 for indicating a beam provided by the present application.
  • the network device sends the PDCCH to the terminal device by using the beam # 1.
  • the PDCCH carries DCI.
  • DCI is used to indicate that the PDSCH receiving beam is beam # 2, and the PUSCH transmitting beam is beam # 3.
  • the network device and the terminal device may agree in advance that the terminal device has the same beam parameters or beamforming parameters for the reception beam of the downlink signal and the transmission beam of the uplink signal.
  • the beam parameters or beamforming parameters may include one or more of a beam direction, a beam gain, a Doppler frequency shift, a Doppler spread, a delay, a delay spread, a space reception parameter, and a space transmission parameter.
  • the network device only needs to indicate one beam to the terminal device, and the terminal device serves as both a receiving beam for the downlink signal and a transmitting beam for the uplink signal. See method 3.
  • the network device sends first information to the terminal device, where the first information is used to indicate an identifier of a fourth downlink reference signal.
  • the terminal device receives the first information from the network device, and determines, according to the identifier of the fourth downlink reference signal, that the fourth downlink reference signal is the first receiving beam of the downlink signal and the first transmitting beam of the uplink signal.
  • the first information is used to indicate an identifier of the second uplink reference signal.
  • the terminal device receives the first information from the network device, and determines, according to the identifier of the second uplink reference signal, that the second uplink reference signal is a first transmit beam of the uplink signal and a first receive beam of the downlink signal.
  • the network device can indicate only one beam to the terminal device.
  • the network device may indicate a reception beam of a downlink signal.
  • the terminal device determines the receiving beam of the downlink signal, and also determines the sending beam of the uplink signal.
  • the network device may indicate a transmission beam of an uplink signal.
  • the terminal device determines the transmission beam of the uplink signal, and also determines the reception beam of the downlink signal.
  • the network device may carry the identifier of the reference signal through a field in the DCI.
  • the identifier of the reference signal may be an identifier of a downlink reference signal or an identifier of an uplink reference signal.
  • Example 3 is described below with reference to FIG. 4.
  • FIG. 4 is another example of a method 200 for indicating a beam provided by the present application.
  • the network device and the terminal device agree in advance that the reception beam parameters of the PDSCH and the transmission beam parameters of the PUSCH are the same.
  • the network device uses beam # 1 to send the PDCCH to the terminal device.
  • the PDCCH carries DCI, which is used to indicate beam # 2.
  • the terminal device determines that the beam # 2 is used as a beam for receiving the PDSCH and a beam for transmitting the PUSCH according to the received DCI.
  • the reception beam of the PDSCH and the transmission beam of the PUSCH are the same as the reception beam of the PDCCH.
  • FIG. 4 only shows that the network device indicates the receiving beam of the PDSCH and the transmitting beam of the PUSCH to the terminal device through the PDCCH, and the network device may also indicate through other messages and / or information.
  • the network device indicates the receiving beam of the downlink signal and the transmitting beam of the uplink signal to the terminal device, which may be displayed or implicitly indicated, which is not limited in this application.
  • the network device indicates to the terminal device that the reception beam of the downlink signal and the transmission beam of the uplink signal may be period-based. For example, every fixed time, the network device re-indicates the receiving beam of the downlink signal and the sending beam of the uplink signal to the terminal device.
  • the network device may also indicate to the terminal device the reception beam of the downlink signal and the transmission beam of the uplink beam, and then only to the terminal device when the reception beam of the downlink signal and / or the transmission beam of the uplink signal need to be updated Indicate the reconfigured receive beam of the downlink signal and / or the transmit beam of the uplink signal.
  • the network device can only reconfigure the receiving beam of the downlink signal, or only the transmitting beam of the uplink signal, or can reconfigure both the receiving beam of the downlink signal and the transmitting beam of the uplink signal. Therefore, the method 200 may further include a step 250.
  • the terminal device receives second information from the network device, and the second information is used to indicate a second receiving beam of the downlink signal and / or a second transmitting beam of the uplink signal.
  • the manner in which the network device indicates the second receiving beam of the downlink signal and / or the second transmitting beam of the uplink signal to the terminal device through the second information may indicate the first signal of the downlink signal to the terminal device through the first information.
  • a receiving beam is the same as a first transmitting beam of an uplink signal, and details are not described herein again.
  • step 250 indicates that the network device can only indicate the second receiving beam of the downlink signal through the second information, or only the second transmitting beam of the uplink signal, or simultaneously indicate the second receiving of the downlink signal. Beam and a second transmit beam of the uplink signal.
  • the network device defines a default beam configuration for the terminal device in advance, and the default beam configuration includes a receiving beam of a downlink signal and a receiving beam of an uplink signal.
  • the terminal device may always use the default beam configuration. If the terminal device receives information (e.g., second information) for updating the receiving beam of the downlink signal and / or the sending beam of the uplink signal sent by the network device, updating the default receiving beam of the downlink signal and the default sending beam of the uplink signal .
  • the process of updating the receiving beam of the downlink signal and the sending beam of the uplink signal by the network device is described below with reference to FIG. 5 as an example.
  • FIG. 5 is still another example of a method 200 for indicating a beam provided by the present application.
  • the downlink signal is taken as an example of PDSCH
  • the uplink signal is taken as an example of PUSCH.
  • the network device uses beam # 1 to send PDCCH # 1 to the terminal device.
  • DCI # 1 is carried on PDCCH # 1.
  • DCI # 1 is used to instruct the terminal device to receive the PDSCH and transmit the beam in the first time period.
  • Configuration hereinafter referred to as beam configuration 1).
  • the terminal device receives the PDSCH using the receiving beam indicated in the beam configuration 1, and transmits the PUSCH using the transmitting beam indicated in the beam configuration 1.
  • the network device uses beam # 2 to send PDCCH # 2 to the terminal device, and DCI # 2 is carried on PDCCH # 2, and the DCI # 2 is used to instruct the terminal device to receive the PDSCH and send the PUSCH in the second time period Beam configuration (hereinafter referred to as beam configuration 2), that is, the network device instructs the terminal device to update the beam receiving the PDSCU and the beam transmitting the PUSCH. Therefore, in the second time period, the terminal device will receive the PDSCH according to the receiving beam indicated by the beam configuration 2, and use the transmission beam indicated by the beam configuration 2 to transmit the PUSCH.
  • beam configuration 2 Beam configuration
  • first time period and the second time period of FIG. 5 are any two time periods in time.
  • the first time period and the second time period may be continuous or discontinuous in time.
  • the terminal device After the terminal device determines the second receiving beam of the downlink signal reconfigured by the network device according to the second information, it uses the second receiving beam to receive the downlink signal. And / or, after the terminal device determines the second transmission beam of the uplink signal configured by the network device according to the second information, it uses the second transmission beam to receive the downlink signal.
  • the method 300 renumbers the receiving beam of the downlink signal and the transmitting beam of the uplink signal, and renumbers the information appearing in the method 300. . It should be understood that these numbers are only introduced to distinguish different information, receive beams, and transmit beams, and should not constitute any restrictions on the technical solutions implemented in this application.
  • the terminal device receives the third information from the network device. According to the third information, the terminal device may first determine a receiving beam of a downlink signal. The terminal device uses the receiving beam to receive a downlink signal, and the downlink signal carries fourth information indicating a transmitting beam of the uplink signal. The terminal device determines the transmission beam of the uplink signal according to the fourth information.
  • the network device sends third information to the terminal device, and the third information is used to indicate a third receiving beam of the downlink signal.
  • the terminal device receives the downlink signal using the third receiving beam, and the downlink signal carries fourth information indicating a third transmitting beam of the uplink signal.
  • FIG. 6 is a schematic flowchart of a beam indicating method 300 provided in the present application.
  • the network device sends the third information to the terminal device, and the terminal device receives the third information from the network device.
  • the third information is used to indicate a third receiving beam of the downlink signal.
  • the terminal device determines a third receiving beam of the downlink signal according to the third information.
  • the terminal device receives the downlink signal from the network device by using a third receiving beam.
  • the downlink signal carries fourth information, and the fourth information is used to indicate a third transmitting beam of the uplink signal.
  • the terminal device determines a third transmission beam of the uplink signal according to the fourth information.
  • the reception beam of the downlink signal and the transmission beam of the uplink signal are indicated in a chain.
  • the network device first indicates the third receiving beam of the downlink signal by using the third information.
  • the terminal device receives the downlink signal by using a third receiving beam, where the downlink signal carries fourth information indicating a third transmitting beam of the uplink signal. Therefore, the terminal device determines the reception beam of the downlink signal and the transmission beam of the uplink signal according to the third information and the fourth information, respectively.
  • the network device indicates the receiving beam of the downlink signal and the sending beam of the uplink signal to the terminal device in a "chain" manner. It can be understood that although the network device only indicates the receiving beam of the downlink signal (that is, the third beam) through the third information, the terminal device uses the receiving beam to receive the downlink signal, and the downlink signal carries the sending of the indicating uplink signal.
  • the fourth information of the beam ie, the third transmission beam. Therefore, when the terminal device receives the downlink signal, the third transmission beam of the uplink signal is also determined according to the fourth information carried in the downlink signal. Therefore, the network device only needs to perform a scheduling process once to complete the scheduling of the terminal device receiving the downlink signal and sending the uplink signal, thereby saving scheduling overhead.
  • the third information also includes a radio resource control (RRC) message, a media access control-control element (MAC-CE), or downlink control information (downlink control information, DCI), and may also be other information and / or messages.
  • RRC radio resource control
  • MAC-CE media access control-control element
  • DCI downlink control information
  • the method 300 is exemplified by taking the third information as the DCI as an example.
  • the network device configures a beam set for the terminal device to receive downlink signals and / or send uplink signals, and the beam set includes multiple beams.
  • the network device indicates the beam set to the terminal device through an RRC message.
  • the network device selects multiple candidate beams from the beam set to indicate to the terminal device through the MAC-CE.
  • the network device sends a DCI to the terminal device, where the DCI is used to indicate which one or more of the multiple candidate beams the third receiving beam of the downlink signal is.
  • the DCI here can be considered as the third information in the embodiment of the present application.
  • the network device sends the downlink signal to the terminal device, and carries the fourth information of the third transmission beam instructing the terminal device to send the uplink signal in the downlink signal.
  • the terminal device determines a third receiving beam of the downlink signal according to the DCI, and uses the third receiving beam to receive the downlink signal.
  • the terminal device acquires the fourth information indicating the third transmission beam of the uplink signal from the received downlink signal. Further, according to the fourth information, the terminal device can determine a third transmission beam of the uplink signal. No longer list them one by one.
  • the fourth information configured by the network device is used to indicate an identifier of multiple downlink reference signals.
  • the terminal device determines a third transmission beam of the uplink signal according to one downlink reference signal of the multiple downlink reference signals indicated by the fourth information. That is, the terminal device selects a downlink reference signal from a plurality of downlink reference signals indicated by the fourth information to determine a third transmission beam of the uplink signal. For example, the terminal device selects a downlink reference signal with the best quality or better quality from the multiple downlink reference signals indicated by the fourth information, and determines the transmission beam of the uplink signal. Alternatively, the terminal device may also use the plurality of downlink reference signals indicated by the fourth information to poll and send uplink signals. That is, the terminal device uses the multiple downlink reference signals as transmission beams of the uplink signals.
  • the fourth information configured by the network device is used to indicate the identity of one or more uplink reference signals.
  • the terminal device determines a third transmission beam of the uplink signal according to one uplink reference signal among the one or more uplink reference signals indicated by the fourth information. For example, the terminal device may select the one with the best quality or better quality from the plurality of uplink reference signals indicated by the fourth information, or may randomly select one from the plurality of uplink reference signals, or may Other rules select one uplink reference signal as the third transmission beam of the uplink signal. This application does not limit the manner in which the terminal device selects the third transmission beam of the uplink signal from the multiple uplink reference signals. Alternatively, the terminal device may also use the plurality of uplink reference signals indicated by the fourth information to poll and send uplink signals. That is, the terminal device uses the multiple uplink reference signals as transmission beams of the uplink signals.
  • FIG. 7 is an example of a method 300 for indicating a beam provided by the present application.
  • a downlink signal is taken as an example of a PDCCH
  • an uplink signal is taken as an example of a PUSCH.
  • the network device sends the PDCCH to the terminal device by using the beam # 1.
  • a DCI is carried on the PDCCH, and the DCI is used to indicate a reception beam of PDSCH (denoted as beam # 2).
  • the terminal device receives the PDSCH from the network device using beam # 2.
  • the PDSCH indicates the transmission beam of the PUSCH. Specifically, the PDSCH indicates beam # 3 and beam # 4 as transmission beams of the PUSCH.
  • FIG. 4 only uses the network device to indicate that the PUSCH has two transmission beams (ie, beam # 3 and beam # 4) as an example, and the network device may also instruct more than two beams as the PUSCH transmission beam.
  • the method 300 may further include step 350.
  • the terminal device uses the third transmission beam of the uplink signal to send the uplink signal to the network device.
  • the network device receives the uplink signal from the terminal device.
  • the network device may also update the receiving beam of the downlink signal and / or the transmitting beam of the uplink signal.
  • the method 300 may further include step 360.
  • the terminal device receives fifth information from the network device, and the fifth information is used to indicate a fourth receiving beam of the downlink signal and / or a fourth transmitting beam of the uplink signal.
  • the terminal device After determining the fourth receiving beam of the downlink signal and the fourth transmitting beam of the uplink signal according to the fifth information, the terminal device receives the downlink signal from the network device by using the fourth receiving beam, and sends the uplink signal to the network device by using the fourth transmitting beam.
  • the fifth information also includes a radio resource control (RRC) message, a media access control-control element (MAC-CE), or downlink control information (DCI).
  • RRC radio resource control
  • MAC-CE media access control-control element
  • DCI downlink control information
  • RRC radio resource control
  • MAC-CE media access control-control element
  • DCI downlink control information
  • step 360 is a process in which the network device instructs the terminal device to update a receiving beam of a downlink signal and / or a transmitting beam of an uplink signal.
  • Step 360 may be combined with the method 200. That is, in a certain beam indication, the network device instructs the terminal device to receive the downlink beam and the uplink beam by the method 300. In the next beam indication, the network device indicates to the terminal device a new receiving beam of the downlink signal and a new transmitting beam of the uplink signal by the method 200. Alternatively, the network device may always use the method 200 or the method 300 to instruct the terminal device about the receiving beam of the downlink signal and the sending beam of the uplink signal.
  • the method 200 and method 300 for instructing the network device provided by the present application to the terminal device to receive the downlink signal and the uplink signal by the network device provided in the present application have been described in detail with reference to FIG. 1 to FIG. 7.
  • the time when the terminal device receives the downlink signal using the first receiving beam indicated by the network device (denoted as the first time) until the terminal device sends the uplink signal using the first transmitting beam indicated by the network device
  • the time interval is related to multiple factors of the terminal device, for example, the time interval is related to one or more of the terminal device's ability to switch beams, the processing delay of the physical layer and the MAC layer, and the Panel switching ability.
  • this time interval also reflects the scheduling capabilities of the network equipment.
  • the time interval between the time when the terminal device receives the downlink signal by using the third receiving beam and the time when the terminal device sends the uplink signal by using the third transmitting beam also needs to be satisfied.
  • the time interval may be predetermined by the network device and the terminal device, or may also be notified by the network device to the terminal device.
  • the terminal device may report its switching capability of the beam and / or antenna panel to the network device.
  • the network device configures the time interval according to the switching capability of the terminal device to the beam and / or the antenna panel.
  • the network device may also consider the switching capability of the terminal device to the beam and / or antenna panel reported by the terminal device and its own scheduling capability to configure the time interval.
  • the network device sends time interval information to the terminal device.
  • the time interval information is used to indicate a time interval between a first time and a second time configured by the network device.
  • the terminal device can save a preset threshold value.
  • the preset threshold value is used by the terminal device to determine whether to switch from the receiving beam of the downlink signal to the sending beam of the uplink signal.
  • the preset threshold is usually set according to the beam switching capability of the terminal device. of. Specifically, after receiving the time interval information from the network device, the terminal device determines a magnitude relationship between the time interval indicated by the time interval information and the preset threshold. If the time interval indicated by the time interval information is less than a preset threshold, it indicates that the beam switching capability of the terminal device may not meet the requirement of the time interval indicated by the network device. Therefore, the terminal device may not perform the receiving beam of the downlink signal to the uplink signal. Switching of transmit beam. If the time interval indicated by the time interval is equal to or greater than a preset threshold, the terminal device switches to a transmission beam to send an uplink signal after receiving a downlink signal using a receiving beam.
  • the terminal device receives the time interval information before step 250, the receiving beam configured by the network device for the downlink signal is the first receiving beam, and the transmitting beam of the uplink signal is the first transmitting beam. If the time interval indicated in the time interval information is less than a preset threshold, the terminal device does not switch from the first receiving beam to the first transmitting beam to send the uplink signal after receiving the downlink signal using the first receiving beam. If the time interval indicated in the time interval information is equal to or greater than a preset threshold, the terminal device switches from the first receiving beam to the first transmitting beam to send the uplink signal after receiving the downlink signal using the first receiving beam.
  • the terminal device receives the time interval information after step 250, the receiving beam of the downlink signal configured by the network device is the second receiving beam, and the sending beam of the uplink signal is the second transmitting beam. If the time interval indicated in the time interval information is less than a preset threshold, the terminal device does not switch from the second receiving beam to the second transmitting beam to send the uplink signal after receiving the downlink signal using the second receiving beam. If the time interval indicated in the time interval information is equal to or greater than a preset threshold, the terminal device switches from the second receiving beam to the second transmitting beam to send the uplink signal after receiving the downlink signal using the second receiving beam.
  • whether the terminal device needs to perform beam switching is also based on the time interval indicated by the time interval information. It is determined by the size relationship with the preset threshold value. It is the same as the description in method 200, and will not be described in detail here.
  • the terminal device determines the first receiving beam of the downlink signal according to the foregoing method 200, in the process of receiving the downlink signal by using the first receiving beam, if the terminal device detects that the first receiving beam fails, the terminal device may not And then using the first transmission beam of the uplink signal indicated by the first information to send the uplink signal to the network device.
  • the terminal device determines the third receiving beam of the downlink signal according to the above method 300, in the process of receiving the downlink signal using the third receiving beam, if the terminal device detects that the third receiving beam fails to transmit the beam, the terminal device no longer Sending the uplink signal to the network device using the third transmission beam of the uplink signal indicated by the fourth information.
  • the terminal device may use the beam configured by the network device to recover the beam failure, and perform uplink transmission with the network device.
  • the uplink transmission mentioned here includes that the terminal device uses the beam for recovering the beam failure to send one or more of the following contents to the network device:
  • Beam failure recovery request acknowledgement (ACK) or negative acknowledgement (NACK), PUSCH, PUCCH, SRS; and PRACH.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • FIG. 8 is an example of a case where a beam failure occurs in the process of receiving a PDSCH.
  • the network device sends a PDCCH to the terminal device, where the PDCCH indicates a PDSCH receiving beam (denoted as beam # 1) and a PUSCH transmitting beam (denoted as beam # 2) configured by the network device for the terminal device.
  • the terminal device detects beam failure in beam # 1 during the process of receiving PDSCH using beam # 1.
  • the terminal device no longer sends the PUSCH to the network device using the beam # 2.
  • the terminal device uses the beam corresponding to the reference signal (corresponding to the BFR-RS marked in FIG.
  • the beam corresponding to the BFR-RS is used to send a beam failure recovery request, PRACH, PUCCH, PDSCH, SRS, etc. to the network device.
  • a network device configures a terminal device with a reference signal for performing beam failure recovery.
  • the beam corresponding to the reference signal configured by the network device for the terminal device to perform beam failure recovery may be used for the terminal device to send a signal to the network when a beam failure occurs on the receiving beam of the downlink channel indicated by the network device
  • the device sends an uplink channel or performs other uplink transmissions.
  • the network device When the network device receives the foregoing uplink channel, signal, or request signal sent by the terminal device, it can learn that a beam failure has occurred, and then instruct the terminal device again on the receiving beam of the downlink channel.
  • the receive beam of the downlink channel and the transmit beam of the uplink channel may be re-indicated.
  • FIG. 9 is a schematic structural block diagram of a communication device 500 provided by the present application.
  • the apparatus 500 includes a communication unit 510 and a processing unit 520.
  • the communication device 500 may correspond to the beam indicating method 200 provided in this application and the terminal device in each embodiment thereof.
  • Each unit included in the communication device 500 is respectively configured to implement corresponding operations and / or processes in the method 200 and its embodiments.
  • the communication unit 510 and the processing unit 520 are respectively configured to perform the following operations:
  • a communication unit 510 configured to receive first information from a network device, where the first information is used to determine a first receive beam of a downlink signal and / or a first transmit beam of an uplink signal;
  • the processing unit 520 is configured to determine a first receiving beam of a downlink signal and / or a first transmitting beam of an uplink signal according to the first information received by the communication unit 510.
  • the communication device 500 may correspond to the beam indicating method 300 provided in the present application and the terminal device in each embodiment.
  • the units included in the communication device 500 are respectively used to implement the corresponding operations and / or processes performed by the terminal device in the method 300 and its embodiments.
  • the communication unit 510 and the processing unit 520 are respectively configured to perform the following operations:
  • a communication unit 510 configured to receive third information from a network device, where the third information is used to indicate a third receiving beam of a downlink signal;
  • a processing unit 520 configured to determine a third receiving beam according to the third information received by the communication unit 510;
  • the communication unit 510 is further configured to receive a downlink signal from a network device by using a first receiving beam, where the downlink signal carries fourth information, and the fourth information is used to indicate a third transmitting beam of the uplink signal;
  • the processing unit 520 is further configured to determine a third transmission beam according to the fourth information.
  • the communication device 600 may also be a chip or an integrated circuit installed in a terminal device.
  • the communication unit 510 may be a transceiver, and the processing unit 520 may be a processor.
  • the transceiver may include a transmitter and a receiver, which collectively implement the function of transmitting and receiving.
  • the communication unit 510 may also be an input / input interface or an input / output circuit.
  • FIG. 10 is a schematic structural block diagram of a communication device 600 provided by the present application. As shown in FIG. 10, the communication device 600 includes a processing unit 610 and a communication unit 620.
  • the communication device 600 may correspond to the beam indicating method 200 and the network device in each embodiment provided in the present application, or may also be a chip or an integrated circuit installed in the network device.
  • processing unit 610 and the communication unit 620 are configured to perform the following operations:
  • a processing unit 610 configured to generate first information, where the first information is used by the terminal device to determine a first receive beam of a downlink signal and / or a first transmit beam of an uplink signal;
  • the communication unit 620 is configured to send the first information to the terminal device.
  • the communication device 600 may correspond to the beam indicating method 300 and the network device in each embodiment provided in the present application.
  • the units included in the communication device 600 are respectively used to implement the corresponding operations and / or processes performed by the network device in the method 300 and its embodiments.
  • a processing unit 610 configured to generate third information, where the third information is used by the terminal device to determine a third receiving beam of a downlink signal;
  • a communication unit 620 configured to send third information to the terminal device
  • the communication unit 620 is further configured to send a downlink signal to the terminal device, where the downlink signal carries fourth information, and the fourth information is used to indicate a third transmission beam of the uplink signal.
  • the communication device 600 may be a chip or an integrated circuit installed in a network device.
  • the processing unit 610 may be a processor
  • the communication unit 620 may be a transceiver.
  • the transceiver may include a transmitter and a receiver, which collectively implement the function of transmitting and receiving.
  • the communication unit 620 may also be an input / input interface or an input / output circuit.
  • the network device in each of the foregoing device embodiments corresponds exactly to the network device or terminal device in the terminal device and method embodiments, and the corresponding unit executes the corresponding steps of the method.
  • the communication unit performs the steps of sending and receiving in the method embodiment, and the steps other than sending and receiving may be performed by the processing unit.
  • the communication unit may also be referred to as a transceiver unit.
  • the transceiver unit includes a sending unit and a receiving unit, and has the functions of sending and receiving at the same time.
  • FIG. 11 is a schematic structural diagram of a terminal device 700 provided in the present application.
  • the terminal device 700 includes: one or more processors 701, one or more memories 702, and one or more transceivers 703.
  • the processor 71 is configured to control the transceiver 703 to send and receive signals
  • the memory 702 is configured to store a computer program
  • the processor 701 is configured to call and run the computer program from the memory 702 to execute the method 200 or 300 for indicating a beam provided in this application, and Corresponding processes and / or operations performed by the terminal device in each embodiment. For brevity, I will not repeat them here.
  • the terminal device 700 may be the terminal device 102 or 103 in the wireless communication system shown in FIG. 1.
  • the processor 701 may correspond to the processing unit 520 in FIG. 9, and the transceiver 703 may correspond to the communication unit 510 shown in FIG. 9.
  • FIG. 12 is a schematic structural diagram of a network device 3000 provided in the present application.
  • the network device 3000 may be applied to the wireless communication system shown in FIG. 1 described above, and performs the functions of the network device in the embodiment of the method for indicating a beam provided in this application.
  • the network device 3000 may be, for example, a base station.
  • the network device 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU).
  • the baseband unit can also be referred to as a digital unit (DU) 3200.
  • the RRU 3100 may be referred to as a transceiver unit, and corresponds to the communication unit 620 in FIG. 8.
  • the transceiver unit 3100 may also be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiver unit 3100 may include a receiving unit and a transmitting unit.
  • the receiving unit may correspond to a receiver (or a receiver or a receiving circuit), and the transmitting unit may correspond to a transmitter (or a transmitter or a transmitting circuit).
  • the RRU 3100 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending configuration information of a first random access resource to a terminal device.
  • the BBU 3200 part is mainly used for baseband processing and controlling base stations.
  • the RRU 3100 and the BBU3200 may be physically located together or physically separated, that is, a distributed base station.
  • the BBU 3200 is the control center of the network device 3000, and may also be called a processing unit, which may correspond to the processing unit 610 in FIG. 10, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spreading, etc. .
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation process performed by the network device in the foregoing method embodiment.
  • the method 200 generates first information and second information.
  • the method 300 generates third information and fourth information.
  • the BBU 3200 may be composed of one or more boards, and multiple boards may jointly support a wireless access network (for example, an LTE network) of a single access system, or may separately support different access systems. Wireless access network (for example, LTE network, 5G network or other network).
  • the BBU 3200 further includes a memory 3201 and a processor 3202.
  • the memory 3201 is configured to store necessary instructions and data.
  • the processor 3202 is configured to control the network device 3000 to perform necessary actions.
  • the processor 3202 is configured to control the network device 3000 to execute the operation process performed by the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. That is, the memory and processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • the network device 3000 shown in FIG. 12 can implement various processes related to the network device in the method embodiments in FIG. 1 to FIG. 8.
  • the operations and / or functions of each unit in the network device 3000 are respectively to implement corresponding processes in the method embodiments. To avoid repetition, detailed descriptions are appropriately omitted here.
  • the foregoing BBU 3200 may be used to perform the actions implemented by the network device described in the foregoing method embodiments, for example, generating the first information.
  • the RRU 3100 can be used to perform the actions that the network device described in the foregoing method embodiment sends to or receives from the terminal device.
  • step 210 of sending first information to a terminal device, step 230 of sending a downlink signal to the terminal device, step 240 of receiving an uplink signal from the terminal device, step 250 of sending second information to the terminal device, and the like .
  • step 310 of sending first information to the terminal device, step 330 of sending a downlink signal to the terminal device, and step 350 of receiving an uplink signal from the terminal device are performed.
  • step 310 of sending first information to the terminal device, step 330 of sending a downlink signal to the terminal device, and step 350 of receiving an uplink signal from the terminal device are performed.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions.
  • the computer instructions When executed on a computer, the computer is caused to execute the method 200 or the method for indicating a beam according to the embodiments of the present application. Corresponding operations and / or processes performed by the terminal device in 300.
  • the present application also provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer causes the computer to execute the method 200 or the method 300 for instructing beams in the embodiment of the present application by a terminal device. The corresponding action and / or process performed.
  • the present application also provides a chip, including a processor.
  • the processor is configured to call and run a computer program stored in a memory to execute a corresponding operation and / or process performed by a terminal device in the method 200 or the method 300 for indicating a beam according to the embodiment of the present application.
  • the chip further includes a memory, which is connected to the processor through a circuit or a wire to the memory, and the processor is configured to read and execute a computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is configured to receive data and / or information to be processed, and the processor obtains the data and / or information from the communication interface and processes the data and / or information.
  • the communication interface may be an input-output interface.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions.
  • the computer instructions When executed on a computer, the computer is caused to execute the method 200 or the method 300 for indicating a beam according to the embodiment of the present application. Corresponding operations and / or processes performed by network devices.
  • the present application also provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer causes the computer to execute the method 200 or the method 300 for indicating a beam according to the embodiment of the present application by a network device. The corresponding action and / or process performed.
  • the present application also provides a chip, including a processor.
  • the processor is configured to call and run a computer program stored in a memory to execute a corresponding operation and / or process performed by a network device in the beam indicating method 200 or 300 in the embodiment of the present application.
  • the chip further includes a memory, which is connected to the processor through a circuit or a wire to the memory, and the processor is configured to read and execute a computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is configured to receive data and / or information to be processed, and the processor obtains the data and / or information from the communication interface and processes the data and / or information.
  • the communication interface may be an input-output interface.
  • the processor may be a central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more technologies for controlling the present application.
  • Integrated circuit of program execution may be a digital signal processor device, a microprocessor device, an analog-to-digital converter, a digital-to-analog converter, and the like.
  • the processor may allocate control and signal processing functions of the terminal device or network device among these devices according to their respective functions.
  • the processor may have a function of operating one or more software programs, and the software programs may be stored in a memory.
  • the functions of the processor may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the memory can be read-only memory (ROM), other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types of information and instructions that can store Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), read-only memory (CD-ROM) or other compact disc storage, CD-ROM (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media, or other magnetic storage devices, or they can be used to carry or store the desired program code in the form of instructions or data structures and can Any other media etc. accessed by the computer.
  • ROM read-only memory
  • RAM random access memory
  • Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), read-only memory (CD-ROM) or other compact disc storage, CD-ROM (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media, or other magnetic storage devices, or
  • the memory and the memory involved in the above embodiments may be physically independent units, or the memory may be integrated with the processor.
  • "at least one” means one or more, and “multiple” means two or more.
  • “And / or” describes the association relationship of the associated objects, and indicates that there can be three kinds of relationships, for example, A and / or B, which can indicate that A exists alone, A and B exist simultaneously, and B exists alone. Where A and B can be singular or plural.
  • the character “/” generally indicates that the related objects are an "or” relationship.
  • “At least one of the following” and similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, and c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c may be single or multiple.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic, for example, the division of units is only a logical function division, and there may be another division manner in actual implementation.
  • multiple units or components can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may not be physically separated, and the components displayed as units may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the technical solution of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Abstract

本申请提供了一种指示波束的方法,能够节省下行信号接收和上行信号的发送的调度开销。该方法包括:从网络设备接收第一信息,第一信息用于确定下行信号的第一接收波束和/或上行信号的第一发送波束;根据第一信息,确定下行信号的第一接收波束和/或上行信号的第一发送波束。

Description

指示波束的方法和装置
本申请要求于2018年09月20日提交国家知识产权局、申请号为201811099017.1、申请名称为“指示波束的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种指示波束的方法和装置。
背景技术
在长期演进(long term evolution,LTE)通信系统中,终端设备对下行信号的接收和对上行信号的发送都是基于基站调度的。通常,下行信号的调度和上行信号的调度都是基于各自的物理下行控制信道(physical downlink control channel,PDCCH)独立进行调度的。即是说,网络设备通过一个PDCCH调度下行信号的接收,再通过另一个PDCCH调度上行信号的发送。
但是,在一些需要集中控制的场景下,下行信号的接收和上行信号的发送一般都是成对出现的。例如,控制器给终端设备发送一个指令,该指令可能是请求从终端设备获取数据,或者该指令用于控制终端设备执行某些操作和/或命令。终端设备接收到该指令之后,如果该指令是请求获取数据,终端设备向控制器回复网络设备请求获取的数据。如果该指令是用于控制终端设备执行某些操作和/或命令,终端设备在执行操作和/或命令之后,向控制器回复执行结果。而上行信号的发送和下行信号的接收各自独立调度,调度开销较大。
发明内容
本申请提供一种指示波束的方法和装置,能够节省下行信号的接收和上行信号的发送的调度开销。
第一方面,本申请提供一种指示波束的方法,该方法包括:从网络设备接收第一信息,第一信息用于确定下行信号的第一接收波束和/或上行信号的第一发送波束;根据第一信息,确定该下行信号的第一接收波束和/或该上行信号的第一发送波束。
在本申请的提供的技术方案中,网络设备通过向终端设备发送第一信息,使得终端设备根据第一信息确定下行信号的第一接收波束和上行信号的第一发送波束,从而可以成对调度终端设备对下行信号的接收和上行信号的发送,可以节省下行信号的接收和上行信号的发送的调度开销。
需要说明的是,第一信息可以是网络设备发送的广播信息。不同的终端设备接收第一信息之后,可以只用于确定第一接收波束,或者确定第一发送波束,或者同时确定第一接收波束和第一发送波束。
对于终端设备只确定第一接收波束的情况,一种可能是终端设备只有下行信号接收, 另一种可能是包括上下行信号的传输。在后一种情况下,终端设备可以采用和第一接收波束相同的波束作为第一发送波束。
对于终端设备只确定第一发送波束的情况,一种可能是终端设备只有上行信号发送,另一种可能是包括上下行信号的传输。在后一种情况下,下行信号接收可以采用与发送上行信号相同的波束作为第一接收波束。
结合第一方面,在第一方面的某些实现方式中,第一信息包括第一参考信号配置信息和第二参考信号配置信息,第一参考信号配置信息用于指示第一下行参考信号的标识,第二参考信号配置信息用于指示第二下行参考信号的标识,根据第一信息,确定第一接收波束和/或第二发送波束,包括:根据第一参考信号配置信息确定第一下行参考信号,并根据第一下行参考信号确定该第一接收波束;和/或,根据第二参考信号配置信息确定第二下行参考信号,并根据第二下行参考信号确定该第一发送波束。
结合第一方面,在第一方面的某些实现方式中,第一下行参考信号或第二下行参考信号包括如下信号中的任意一个:同步信号块、信道状态信息参考信号CSI-RS、下行控制信道PDCCH的解调参考信号DMRS、下行共享信道PDSCH的解调参考信号DMRS和相位跟踪参考信号PTRS。
结合第一方面,在第一方面的某些实现方式中,第一信息包括第三参考信号配置信息和第四参考信号配置信息,第三参考信号配置信息用于指示第三下行参考信号的标识,第四参考信号配置信息用于指示第一上行参考信号的标识,根据第一信息,确定第一接收波束和/或第一发送波束,包括:根据第三参考信号配置信息确定第三下行参考信号,并根据第三下行参考信号确定第一接收波束;和/或,根据第四参考信号配置信息确定第一上行参考信号,并根据第一上行参考信号确定第一发送波束。
结合第一方面,在第一方面的某些实现方式中,第三下行参考信号包括如下信号中的任意一个:同步信号块、信道状态信息参考信号CSI-RS、下行控制信道PDCCH的解调参考信号DMRS、下行共享信道PDSCH的解调参考信号DMRS和相位跟踪参考信号PTRS;第一上行参考信号包括如下信号中的任意一个:上行控制信道PUCCH的解调参考信号DMRS、上行共享信道PDSCH的解调参考信号DMRS、监听参考信号SRS和物理随机接入信道PRACH。
结合第一方面,在第一方面的某些实现方式中,第一信息用于指示第四下行参考信号的标识,根据第一信息,确定第一接收波束和/或第一发送波束,包括:根据第一信息确定第四下行参考信号,并根据第四下行参考信号确定第一接收波束和/或所述第一发送波束;或者,第一信息用于指示第二上行参考信号的标识,根据第一信息,确定第一接收波束和/或第一发送波束,包括:根据第一信息确定所述第二上行参考信号,并根据第二上行参考信号确定第一发送波束和/或第一接收波束。
结合第一方面,在第一方面的某些实现方式中,第四下行参考信号包括如下信号中的任意一个:同步信号块、信道状态信息参考信号CSI-RS、下行控制信道PDCCH的解调参考信号DMRS、下行共享信道PDSCH的解调参考信号DMRS和相位跟踪参考信号PTRS;或者,第二上行参考信号包括如下信号中的任意一个:上行控制信道PUCCH的解调参考信号DMRS、上行共享信道PDSCH的解调参考信号DMRS、测量参考信号SRS和物理随机接入信道PRACH。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:检测到第一接收波束发生波束失败;使用网络设备配置的用于进行波束失败恢复的波束,与网络设备进行上行传输。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:从网络设备接收第二信息,第二信息用于指示该下行信号的第二接收波束和/或该上行信号的第二发送波束;使用第二接收波束从网络设备接收下行信号,和/或使用第二发送波束向网络设备发送上行信号。
结合第一方面,在第一方面的某些实现方式中,接收该下行信号的第一时间和发送该上行信号的第二时间之间的时间间隔大于预设的阈值。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:终端设备从网络设备接收时间间隔指示信息,时间间隔指示信息用于指示网络设备配置的该第一时间和该第二时间的时间间隔;在时间间隔指示信息指示的时间间隔大于或等于预设的阈值时,终端设备从该下行信号的第一接收波束切换到该上行信号的第一发送波束,或者终端从该下行信号的第二接收波束切换到该上行信号的第二发送波束。
第二方面,本申请提供一种指示波束的方法,该方法包括:从网络设备接收第三信息,第三信息用于指示下行信号的第三接收波束;根据第三信息,确定第三接收波束;使用第三接收波束从网络设备接收该下行信号,该下行信号上承载有第四信息,第四信息用于指示上行信号的第三发送波束;根据第四信息,确定第三发送波束。
结合第二方面,在第二方面的某些实现方式中,第四信息用于指示多个下行参考信号的标识,根据第四信息,确定第三发送波束,包括:根据第四信息指示的多个下行参考信号中的一个下行参考信号,确定第三发送波束;或者,第四信息用于指示一个或多个上行参考信号的标识,根据第四信息,确定第三发送波束,包括:根据第四信息指示的多个上行参考信号中的一个上行参考信号,确定第三发送波束。
结合第二方面,在第二方面的某些实现方式中,第四信息用于指示多个下行参考信号的标识,所述第三发送波束包括所述多个下行参考信号的接收波束,该方法还包括:使用该多个下行参考信号的接收波束,轮询发送该上行信号;或者,第四信息用于指示多个上行参考信号的标识,所述第三发送波束包括该多个上行参考信号的发送波束,该方法还包括:使用该多个上行参考信号的发送波束,轮询发送该上行信号。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:检测到该下行信号的第三接收波束发生波束失败;使用网络设备配置的用于进行波束失败恢复的波束,与网络设备进行上行传输。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:从网络设备接收第五信息,第五信息用于指示该下行信号的第四接收波束和/或该上行信号的第四发送波束;使用第四接收波束从网络设备接收该下行信号,和/或使用第四发送波束向网络设备发送该上行信号。
结合第二方面,在第二方面的某些实现方式中,接收该下行信号的第一时间和发送该上行信号的第二时间之间的时间间隔大于预设的阈值。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:从网络设备接收时间间隔指示信息,该时间间隔指示信息用于指示网络设备配置的第一时间和第二时间的时间 间隔;在时间间隔指示信息指示的时间间隔大于或等于预设的阈值时,终端设备从该下行信号的第三接收波束切换到该上行信号的第三接收波束,或者,终端设备从该下行信号的第四接收波束切换到该上行信号的第四发送波束。
第三方面,本申请提供一种指示波束的方法,该方法包括:网络设备生成第一信息,第一信息用于终端设备确定下行信号的第一接收波束和/或上行信号的第一发送波束;网络设备向终端设备发送第一信息。
结合第三方面,在第三方面的某些实现方式中,第一信息包括第一参考信号配置信息和第二参考信号配置信息,第一参考信号配置信息用于指示第一下行参考信号的标识,第二参考信号配置信息用于指示第二下行参考信号的标识。
结合第三方面,在第三方面的某些实现方式中,第一下行参考信号或所述第二下行参考信号包括如下信号中的任意一个:同步信号块、信道状态信息参考信号CSI-RS、下行控制信道PDCCH的解调参考信号DMRS、下行共享信道PDSCH的解调参考信号DMRS和相位跟踪参考信号PTRS。
结合第三方面,在第三方面的某些实现方式中,第一信息包括第三参考信号配置信息和第四参考信号配置信息,第三参考信号配置信息用于指示第三下行参考信号的标识,第四参考信号配置信息用于指示第一上行参考信号的标识。
结合第三方面,在第三方面的某些实现方式中,第三下行参考信号包括如下信号中的任意一个:同步信号块、信道状态信息参考信号CSI-RS、下行控制信道PDCCH的解调参考信号DMRS、下行共享信道PDSCH的解调参考信号DMRS和相位跟踪参考信号PTRS;第一上行参考信号包括如下信号中的任意一个:上行控制信道PUCCH的解调参考信号DMRS、上行共享信道PDSCH的解调参考信号DMRS、监听参考信号SRS和物理随机接入信道PRACH。
结合第三方面,在第三方面的某些实现方式中,第一信息用于指示第四下行参考信号的标识,或者,第一信息用于指示第二上行参考信号的标识。
结合第三方面,在第三方面的某些实现方式中,第四下行参考信号包括如下信号中的任意一个:同步信号块、信道状态信息参考信号CSI-RS、下行控制信道PDCCH的解调参考信号DMRS、下行共享信道PDSCH的解调参考信号DMRS和相位跟踪参考信号PTRS;或者,所述第二上行参考信号包括如下信号中的任意一个:上行控制信道PUCCH的解调参考信号DMRS、上行共享信道PDSCH的解调参考信号DMRS、测量参考信号SRS和物理随机接入信道PRACH。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:网络设备向终端设备发送第二信息,第二信息用于指示该下行信号的第二接收波束和/或该上行信号的第二发送波束。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:网络设备向终端设备发送时间间隔指示信息,该时间间隔指示信息用于指示网络设备配置的终端设备接收该下行信号的第一时间和发送所述第二时间的时间间隔。
第四方面,本申请提供一种指示波束的方法,该方法包括:网络设备生成第三信息,第三信息用于指示下行信号的第三接收波束;网络设备向终端设备发送第三信息;网络设备向终端设备发送该下行信号,该下行信号携带第四信息,第四信息用于指示上行信号的 第三发送波束。
结合第四方面,在第四方面的某些实现方式中,第四信息用于指示多个下行参考信号的标识,根据第四信息,确定该上行信号的第三发送波束,包括:根据第四信息指示的该多个下行参考信号中的一个下行参考信号,确定该上行信号的第三发送波束;或者,第四信息用于指示一个或多个上行参考信号的标识,根据第四信息,确定该上行信号的发送波束,包括:根据第四信息指示的该多个上行参考信号中的一个上行参考信号,确定该上行信号的第三发送波束。
结合第四方面,在第四方面的某些实现方式中,第四信息用于指示多个下行参考信号的标识,第三发送波束包括该多个下行参考信号的接收波束;或者,第四信息用于指示多个上行参考信号的标识,第三发送波束包括该多个上行参考信号的发送波束。
结合第四方面,在第四方面的某些实现方式中,第四信息用于指示多个下行参考信号的标识,第三发送波束包括该多个下行参考信号的接收波束;或者,第四信息用于指示多个上行参考信号的标识,第三发送波束包括该多个上行参考信号的发送波束。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:向终端设备发送第五信息,第五信息用于指示该下行信号的第四接收波束和/或该上行信号的第四发送波束。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:网络设备向终端设备发送时间间隔指示信息,时间间隔指示信息用于指示网络设备配置的终端设备接收该下行信号的第一时间和发送所述第二时间的时间间隔。
第五方面,本申请提供一种通信装置,所述通信装置具有实现第一方面或第二方面的任意可能的实现方式中终端设备的功能。这些功能可以通过硬件实现,或者,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与这些功能相对应的单元。
第六方面,本申请提供一种通信装置,所述通信装置具有实现第三方面或第四方面的任意可能的实现方式中网络设备的功能。这些功能可以通过硬件实现,或者,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与这些功能相对应的单元。
第七方面,本申请提供一种终端设备,包括收发器、处理器和存储器。处理器用于控制收发器收发信号,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,使得终端设备执行第一方面或第二方面的任意可能的实现方式中的方法。
第八方面,本申请提供一种网络设备,包括收发器、处理器和存储器。处理器用于控制收发器收发信号,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,使得网络设备执行第三方面或第四方面的任意可能的实现方式中的方法。
第九方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行上述第一方面或第二方面的任意可能的实现方式中的方法。
第十方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行第三方面或第四方面的任意可能的实现方式中的方法。
第十一方面,本申请提供一种本申请提供一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行上述第一方面或第二方面的任意可能的实现方式中的方法。可选地,该芯片该包括存储器,该存储器与该处理器通过电路或电线与存储器 连接。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
第十二方面,本申请提供一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行第三方面或第四方面的任意可能的实现方式中的方法。可选地,该芯片该包括存储器,该存储器与该处理器通过电路或电线与存储器连接。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
可选的,上述的存储器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
第十三方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第二方面的任意一种可能的实现方式中的方法。
第十四方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行第三方面或第四方面的任意可能的实现方式中的方法。
在本申请的提供的技术方案中,网络设备通过向终端设备发送第一信息,使得终端设备根据第一信息确定下行信号的第一接收波束和上行信号的第一发送波束,从而可以成对调度终端设备对下行信号的接收和上行信号的发送,可以节省下行信号的接收和上行信号的发送的调度开销。
附图说明
图1是适用于本申请实施例的无线通信系统100的示意性架构图。
图2是本申请提供的指示波束的方法200的示意性流程图。
图3是本申请提供的指示波束的方法200的一个示例。
图4是本申请提供的指示波束的方法200的另一个示例。
图5本申请提供的指示波束的方法200的再一个示例。
图6是本申请提供的指示波束的方法300的示意性流程图。
图7是本申请提供的指示波束的方法300的一个示例。
图8是接收PDSCH的过程中发生波束失败的情况的示例
图9是本申请提供的通信装置500的示意性结构框图。
图10是本申请提供的通信装置600的示意性结构框图。
图11是本申请提供的终端设备700的示意性结构图。
图12是本申请提供的网络设备300的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
参见图1,图1是适用于本申请实施例的无线通信系统100的示意图。如图1所示, 无线通信系统100中可以包括至少一个网络设备101,网络设备101与一个或多个终端设备(例如,图1中所示的终端设备102和终端设备103)进行无线通信。
本申请中涉及的无线通信系统100,包括但不限于全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE的频分双工(frequency division duplex,FDD)系统、LTE的时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、下一代移动通信系统(例如,5G)的三大应用场景,即增强移动带宽(enhance mobile broadband,eMBB),高可靠性低延迟通信(ultra reliable low latency communication,URLLC)和增强海量机器连接通信(enhanced massive machine type communication,eMTC)或者将来出现的新的通信系统等。
本申请实施例中涉及的终端设备,可以是用户设备(user equipment,UE)、终端(terminal)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
本申请实施例中涉及的网络设备,可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolved nodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。或者,该网络设备还可以是未来通信系统(例如,5G)的中继站、接入点、车载设备、可穿戴设备等。
本申请提供的技术方案,适用于网络设备成对调度上行信号和下行信号的场景。其中,上行信号是指终端设备发送给网络设备的信号。例如,物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical uplink control channel,PUCCH)、物理随机接入信道(physical random access channel,PRACH)等。下行信号是指网络设备发送给终端设备的信号。例如,物理下行共享信道(physical downlink shared channel,PDSCH)、物理广播信道(physical broadcast channel,PBCH)、物理下行控制信道(physical downlink control channel,PDCCH)等。
为了便于理解本申请实施例,首先介绍几个基本的概念。
在新无线(new radio,NR)中,波束(beam)和波束对(beam pair link,BPL)被引入到通信系统中。
波束是一种通信资源,波束也可以被称为空间滤波器(spatial domain filter,SDF),或者 传输状态指示(transmission state indication,TCI)等。
波束可以分为发射波束和接收波束。形成波束的技术可以是波束赋形技术或者其他技术手段。波束赋形包括发射波束赋形和接收波束赋形。
可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等。
发射波束:可以是指,信号经天线发射出去后在空间不同方向上形成的信号强度的分布。发射端以一定的波束赋形权值发送信号,使发送信号形成的具有空间指向性的波束。其中,在上行方向上,发射端可以是终端;在下行方向上,发射端可以是网络设备。
接收波束:可以是指,天线阵列对无线信号在空间不同方向上进行加强或削弱接收的分布。接收端以一定的波束赋形权值接收信号,使接收信号形成的具有空间指向性的波束。其中,在上行方向上,接收端可以是网络设备;在下行方向上,接收端可以是终端。
发射波束赋形:具有天线阵列的发射端设备发送信号时,在天线阵列的每个天线阵子上设置一个特定的幅度和相位,使得发送信号具有一定的空间指向性,即在某些方向上信号功率高,在某些方向上信号功率低,信号功率最高的方向即为发射波束的方向。该天线阵列包括多个天线阵子,所附加的特定的幅度和相位即为波束赋形权值。
接收波束赋形:具有天线阵列的接收端设备接收信号时,在天线阵列的每个天线阵子上设置一个特定的幅度和相位,使得接收信号的功率增益具有方向性,即接收某些方向上的信号时功率增益高,接收某些方向上的信号时功率增益低,接收信号时功率增益最高的方向就是接收波束的方向。该天线阵列包括多个天线阵子,所附加的特定的幅度和相位即为波束赋形权值。
使用某个发射波束发送信号:使用某个波束赋形权值发送信号。
使用接收波束接收信号:使用某个波束赋形权值接收信号。
不同的波束可以认为是不同的资源,使用(或通过)不同的波束可以发送相同的信息或者不同的信息。
波束对建立在波束的概念上,一个波束对通常包括发射端设备的一个发射波束和接收端设备的一个接收波束。
在通信系统中,网络设备和终端设备均可生成一个或多个发射波束,以及一个或多个接收波束。在传输数据前,需要进行波束对准。
可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。在目前的NR协议中,波束可通过天线端口准共址(antenna port QCL)关系体现。其中,QCL指的是准共址(quasi colocation,QCL)。
具体地,两个同波束的信号具有关于空域接收参数(spatial Rx parameter)的QCL关系。即,现有协议中的QCL-Type D:{Spatial Rx parameter}。
在标准协议中,波束的标识可以是各种信号的标识。
例如,波束的标识可以是信道状态指示参考信号(channel state indication-reference signal,CSI-RS)的资源标识(identify,ID)。波束的标识还可以是同步信号/物理广播信道(synchronization signal/physical broadcast channel,SS/PBCH)的时域索引。波束的标识还可以是探测信号(sounding reference signal,SRS)的资源ID。或者,波束的标识还可以是跟踪信号(tracking reference signal,TRS)的资源ID等。
在上面介绍的这些概念的基础上,下面对本申请提供的指示波束的方法进行说明。
本申请提供一种指示波束的方法200和一种指示波束的方法300,与现有技术相比,都可以节省网络设备调度终端设备接收下行信号和发送上行信号的调度开销。下面分别对方法200和方法300进行说明。
在方法200中,终端设备从网络设备接收第一信息,第一信息用于确定下行信号的第一接收波束和上行信号的第一发送波束。终端设备根据第一信息,确定下行信号的第一接收波束和上行信号的第一发送波束。
即是说,在方法200中,终端设备从网络设备接收指示波束的第一信息,根据该第一信息,终端设备既可以确定下行信号的接收波束,也可以确定上行信号的发送波束。
参见图2,图2是本申请提供的指示波束的方法200的示意性流程图。
210、网络设备向终端设备发送第一信息。终端设备从网络设备接收第一信息。
其中,第一信息用于确定下行信号的第一接收波束和/或上行信号的第一发送波束。这里,第一信息用于确定下行信号的第一接收波束和/或上行信号的第一发送波束,换句话说,是指终端设备根据第一信息可以确定网络设备为其配置的用于接收下行信号的第一接收波束,或者终端设备可以确定用于发送上行信号的第一发送波束,或者,终端设备可以同时确定第一发送波束和第一接收波束。
需要说明的是,网络设备可以为终端设备接收下行信号配置不止一个接收波束,也可以为终端设备发送上行信号配置不止一个发送波束。例如,网络设备为终端设备接收下行信号先配置一个接收波束,并在后续再配置另一个接收波束(也即,配置一个新的接收波束)。同样地,网络设备也可以为终端设备发送上行信号先配置一个发送波束,并在后续再配置另一个发送波束。又例如,网络设备为终端设备接收下行信号一次配置多个接收波束,和/或为终端设备发送上行信号一次配置多个发送波束。因此,本申请实施例中所说的下行信号的第一接收波束和第二接收波束仅是为了区分网络设备为终端设备接收下行信号而配置的不同的接收波束。上行信号的第一发送波束和第二发送波束也仅是为了区分网络设备为终端设备发送上行信号而配置的不同的发送波束,不应对本申请的技术方案构成任何限定。
应理解,下行信号的接收波束是指用于接收下行信号的波束。上行信号的发送波束是指用于发送上行信号的波束。
220、终端设备根据第一信息,确定下行信号的第一接收波束和/或上行信号的第一发送波束。
通过步骤210和步骤220,终端设备可以获知网络设备配置的下行信号的第一接收波束和/或上行信号的第一发送波束。
在一种情况下,终端设备根据第一信息确定第一接收波束和第一发送波束。
在另一种情况下,终端设备根据第一信息,只确定第一接收波束。在这种情况下,一种可能是终端设备只需要接收下行信号。另一种可能是终端设备需要接收下行信号以及发送上行信号,此时,终端设备可以采用和第一接收波束相同的波束作为第一发送波束,从而确定第一接收波束和第一发送波束。
在另一种情况下,终端设备根据第一信息,确定第一发送波束。一种可能是终端设备只需要发送上行信号,另一种可能是终端设备需要接收下行信号以及发送上行信号,此时, 终端设备可以采用和第一发送波束相同的波束作为第一接收波束,从而可以确定第一接收波束和第一发送波束。
在本申请实施例中,第一信息可以包括无线资源控制(radio resource control,RRC)消息、媒体接入控制控制元素(media access control-control element,MAC-CE)、下行控制信息(downlink control information,DCI)或广播消息,还可以是其它信息和/或消息等。
下面以第一信息为DCI为例对方法200进行举例说明。
例如,网络设备为终端设备接收下行信号和/或发送上行信号配置一个波束集合,该波束集合中包括多个波束。首先,网络设备通过RRC消息向终端设备指示该波束集合,进一步地,网络设备通过MAC-CE从该波束集合中选择多个候选波束指示给终端设备。之后,网络设备需要调度终端设备接收下行信号和发送上行信号时,网络设备向终端设备发送DCI,该DCI用于指示下行信号的接收波束和上行信号的发送波束分别是该多个候选波束中的哪一个或哪几个。这里的DCI即可以认为是本申请实施例中的第一信息。
又例如,网络设备首先为终端设备接收下行信号和/或发送上行信号配置一个波束集合。接下来,网络设备通过MAC-CE向终端设备指示下行信号的接收波束和上行信号的发送波束分别是该波束集合中的哪一个或哪几个。这里的MAC-CE即可以认为是本申请实施例中的第一信息。
本领域技术人员根据本申请提供的指示波束的方法200的思路,还可以设计网络设备通过其它的信息或消息向终端设备指示下行信号的接收波束和上行信号的发送波束,这里不再一一列举。
现有技术中,终端设备接收下行信号和发送上行信号都是网络设备通过其各自的PDCCH分开调度的。而在方法200的技术方案中,网络设备通过一个第一信息向终端设备指示下行信号的接收波束和/或上行信号的发送波束,从而终端设备可以根据第一信息,确定下行信号的接收波束和上行信号的发送波束。与上行信号和下行信号通过各自的PDCCH进行调度相比,节省了调度开销。
例如,在需要集中化控制的场景下(例如,工业4.0的上行和下行的数据调度),由于网络设备的下行指令和终端设备的上行回复常常是成对出现。如果网络设备将上行信号和下行信号各自通过一个PDCCH进行调度,调度开销较大。相比之下,如果采用本申请的技术方案,通过一个第一信息成对调度该下行信号的接收和上行信号的发送,可以节省调度开销。
应理解,第一信息成对调度下行信号的接收和上行信号的发送,一种方式是第一信息显式指示下行信号的接收波束和上行信号的发送。另一种方式是第一信息指示下行信号的接收波束,终端设备根据第一信息确定下行信号的接收波束,同时将接收波束也作为上行信号的发送波束。再一种方式是第一信息指示上行信号的接收波束,终端设备根第一信息确定上行信号的发送波束,同时将发送波束作为下行信号的接收波束。从而,在终端设备需要进行上下行传输时,终端设备总是可以成对确定下行信号的接收波束和上行信号的发送波束。
或者,如果第一信息仅指示下行信号的接收波束,而终端设备只需要接收下行信号,则终端设备根据第一信息确定接收波束即可。或者,如果第一信息仅指示上行信号的发送波束,而终端设备只需要发送上行信号,则终端设备根据第一信息确定发送波束即可。
这里所说的调度开销,可以包括信令开销和时间开销。即是说,采用本申请的技术方案,用于调度下行信号的接收和上行信号的发送的信令开销和时间开销都可以降低。
相对应地,由于本申请提供的指示波束的方法200中,用于指示下行信号的接收波束和上行信号的发送波束的可以一次调度完成,因此也可以降低网络设备调度的复杂度。并且,对于终端设备而言,也可以降低接收调度信息(例如,DCI)的复杂度和功耗。
可选地,终端设备根据第一信息确定下行信号的接收波束和上行信号的发送波束之后,方法200还可以包括步骤230。
230、终端设备使用下行信号的第一接收波束,从网络设备接收下行信号。
可选地,方法200还可以包括步骤240。
240、终端设备使用上行信号的第一发送波束,向网络设备发送上行信号。
终端设备确定下行信号的第一接收波束和上行信号的第一发送波束之前,使用第一接收波束接收网络设备发送的下行信号。可选地,在有上行信号发送时,不需要网络设备再次调度,终端设备使用第一发送波束,即可以向网络设备发送上行信号。
在上述步骤210中,网络设备可以有多种方式通过一个信息向终端设备指示下行信号的接收波束和上行信号的发送波束。也即,网络设备通过一个信息成对调度下行信号和上行信号。下面对这些方式一一进行说明。
终端设备具有波束互异性时,网络设备为终端设备接收下行信号和发送上行信号各自配置一个下行参考信号,参见方式1。
这里,波束互异性是指终端设备或网络设备根据接收波束的参数,可以确定对应发送波束的参数。进一步地,接收和发送通道的在对应波束赋形下误差在X dB以内,例如X=3。
方式1
网络设备向终端设备发送第一信息,第一信息包括第一参考信号配置信息和第二参考信号配置信息。其中,第一参考信号配置信息用于指示第一下行参考信号的标识,第二参考信号配置信息用于指示第二下行参考信号的标识。
在方式1中,第一信息包括第一参考信号配置信息和第二参考信号配置信息。第一参考信号配置信息指示第一下行参考信号的标识,终端设备根据该第一下行参考信号的标识,确定将第一下行参考信号作为下行信号的第一接收波束。第二参考信号配置信息指示第二下行参考信号的标识,终端设备根据该第二下行参考信号的标识,确定将第二下行参考信号作为上行信号的第一发送波束。
例如,以第一信息为DCI为例,方式1即是说,DCI中可以包括2个字段,每个字段用于携带有一个参考信号的标识。这里,DCI包括的这2个字段可以对应本申请实施例中的第一参考信号配置信息和第二参考信号配置信息。
根据上文对波束的介绍已经知道,波束的标识可以是一些参考信号的标识,因此,本申请实施例中,上行参考信号的标识或下行参考信号的标识指的即是波束的标识。换句话说,第一信息用于同时指示两个波束的标识,一个波束的标识为下行信号的接收波束的标识,另一个波束的标识为上行信号的发送波束的标识。从而,终端设备根据网络设备指示的这些上行参考信号和/或下行参考信号的标识,可以确定网络设备配置的下行信号的接收波束和上行信号的发送波束。
应理解,在本申请实施例中,网络设备向终端设备指示下行信号的接收波束,包括网 络向终端设备指示该下行信号的接收波束参数。网络设备向终端设备指示上行信号的发送波束,包括网络设备向终端设备指示该上行信号的发送波束参数。
例如,网络设备指示一个下行波束,是指网络设备指示了用于接收该下行波束的波束参数。网络设备指示一个上行波束,是指网络设备指示了终端设备发射该上行波束的波束参数。
可选地,作为一个实施例,第一下行参考信号和第二下行参考信号分别可以是如下信号中的任意一个:同步信号块(SS/PBCH block)、CSI-RS、PDCCH DMRS或PDSCH DMRS。
例如,第一下行参考信号为CSI-RS,第二下行参考信号为PDCCH DMRS。又例如,第一下行参考信号和第二下行参考信号均为同步信号块。又例如,第一下行参考信号为PDSCH DMRS,第二下行参考信号为CSI-RS等,不再列举。
终端设备不具备波束互异性时,网络设备为终端设备接收下行信号配置一个下行参考信号,并为终端设备发送上行信号配置一个下行参考信号,参见方式2。
方式2
网络设备向终端设备发送第一信息,第一信息包括第三参考信号配置信息和第四参考信号配置信息。其中,第三参考信号配置信息用于指示第三下行参考信号的标识,第四参考信号配置信息用于指示第一上行参考信号的标识。
相应地,在步骤220中,终端设备根据第三参考配置信息指示的第三下行参考信号的标识,确定第三下行参考信号为下行信号的接收波束。终端设备根据第四参考信号配置信息指示的第一上行参考信号的标识,确定第一上行参考信号为上行信号的发送波束。
换句话说,在方式2中,网络设备向终端设备指示一个下行波束作为下行信号的接收波束,并指示一个上行波束作为上行信号的发送波束。
同样地,以第一信息为DCI为例,DCI可以包括2个字段,该2个字段可以分别携带有一个参考信号的标识。这里,DCI包括的这2个字段可以对应方式2中的第三参考信号配置信息和第四参考信号配置信息。
与方式1中的第一下行参考信号和第二下行参考信号类似,第三下行参考信号可以为如下信号中的任意一个:SS/PBCH、CSI-RS,PDCCH DMRS,PDSCH DMRS。
同时,第一上行参考信号可以为如下信号中的任意一个:上行控制信道PUCCH的解调参考信号DMRS、上行共享信道PDSCH的解调参考信号DMRS、监听参考信号SRS和物理随机接入信道PRACH。
采用方式2,网络设备通过一个第一信息同时指示了下行信号的第一接收波束和上行信号的第一发送波束。终端设备可以提前对网络设备指示的上行信号的第一发送波束进行预调度,从而能够降低时延。
下面结合图3对方式1和方式2举例说明。
图3中,以下行信号为PDSCH为例,上行信号为PUSCH为例。
参见图3,图3是本申请提供的指示波束的方法200的一个示例。如图3所示,网络设备采用波束#1向终端设备发送PDCCH。PDCCH上承载有DCI,DCI用于指示PDSCH的接收波束为波束#2,PUSCH的发送波束为波束#3。
可选地,作为一个实施例,网络设备和终端设备可以预先约定:终端设备对下行信号的接收波束和上行信号的发送波束具有相同的波束参数或者波束赋形参数。
所述波束参数或者波束赋形参数可以包括波束方向、波束增益、多普勒频移、多普勒扩展、时延、时延扩展、空间接收参数、空间发送参数中一个或者多个。
这样,网络设备只需要向终端设备指示一个波束,终端设备将该波束既作为下行信号的接收波束,也作为上行信号的发送波束。参见方式3。
方式3
网络设备向终端设备发送第一信息,第一信息用于指示第四下行参考信号的标识。终端设备从网络设备接收第一信息,并根据第四下行参考信号的标识,确定第四下行参考信号为下行信号的第一接收波束和上行信号的第一发送波束。
或者,第一信息用于指示第二上行参考信号的标识。终端设备从网络设备接收第一信息,并根据第二上行参考信号的标识,确定第二上行参考信号为上行信号的第一发送波束和下行信号的第一接收波束。
应理解,在方式3中,由于网络设备和终端设备已经约束下行信号的接收波束参数和上行信号的发送波束参数相同。因此,网络设备可以仅向终端设备指示一个波束。例如,网络设备可以指示下行信号的接收波束。终端设备确定了下行信号的接收波束,同时也就确定了上行信号的发送波束。或者,网络设备可以指示上行信号的发送波束。终端设备确定了上行信号的发送波束,同时也就确定了下行信号的接收波束。
同样地,继续以第一信息为DCI为例,网络设备可以通过DCI中的一个字段携带参考信号的标识。终端设备具有波束互异性时,该参考信号的标识可以是下行参考信号的标识,或者也可以是上行参考信号的标识。
下面结合图4对方式3举例说明。
参见图4,图4是本申请提供的指示波束的方法200的另一个示例。如图4所示,网络设备和终端设备预先约定PDSCH的接收波束参数和PUSCH的发送波束参数相同。网络设备采用波束#1向终端设备发送PDCCH。PDCCH上承载有DCI,DCI用于指示波束#2。终端设备根据接收到的DCI,确定波束#2既作为接收PDSCH的波束,又作为发送PUSCH的波束。
可选地,PDSCH的接收波束和PUSCH的发送波束与PDCCH的接收波束相同。
应理解,图4仅示出了网络设备通过PDCCH向终端设备指示PDSCH的接收波束和PUSCH的发送波束,网络设备还可以通过其它消息和/或信息来指示。
在以上各方式中,网络设备向终端设备指示下行信号的接收波束和上行信号的发送波束,可以是显示指示的,或者也可以是隐式指示的,本申请不作限定。
可选地,在以上各方式中,网络设备向终端设备指示下行信号的接收波束和上行信号的发送波束可以是基于周期的。例如,每隔固定的时间,网络设备向终端设备重新指示下行信号的接收波束和上行信号的发送波束。
可选地,网络设备也可以在向终端设备指示了下行信号的接收波束和上行波束的发送波束之后,只有在需要更新下行信号的接收波束和/或上行信号的发送波束时,再向终端设备指示重新配置的下行信号的接收波束和/或上行信号的发送波束。这里,和/或表示网络设备可以仅重新配置下行信号的接收波束,或者仅配置上行信号的发送波束,或者,可以既重新配置下行信号的接收波束,又重新配置上行信号的发送波束。因此,方法200还可以包括步骤250。
250、终端设备从网络设备接收第二信息,第二信息用于指示下行信号的第二接收波束,和/或上行信号的第二发送波束。
应理解,网络设备通过第二信息向终端设备指示下行信号的第二接收波束,和/或上行信号的第二发送波束的方式,可以与网络设备通过第一信息向终端设备指示下行信号的第一接收波束和上行信号的第一发送波束相同,这里不再赘述。
应理解,步骤250中的“和/或”表示网络设备可以通过第二信息仅指示下行信号的第二接收波束,或者仅指示上行信号的第二发送波束,或者同时指示下行信号的第二接收波束和上行信号的第二发送波束。
作为一种实现方式,网络设备为终端设备预先定义一个默认波束配置,该默认波束配置包括下行信号的接收波束和上行信号的接收波束。在终端设备没有接收网络设备下发的更新下行信号的接收波束和/或上行信号的发送波束的信息(例如,第二信息)时,终端设备可以一直沿用默认波束配置。如果终端设备接收到网络设备发送的更新下行信号的接收波束和/或上行信号的发送波束的信息(例如,第二信息),则对下行信号的默认接收波束和上行信号的默认发送波束进行更新。
下面结合图5,对网络设备更新下行信号的接收波束和上行信号的发送波束的过程进行举例说明。
参见图5,图5是本申请提供的指示波束的方法200的再一个示例。如图5所示,继续以下行信号为PDSCH为例,上行信号为PUSCH为例。为了便于理解,我们在图5中引入两个时间段。在第一时间段,网络设备采用波束#1向终端设备发送PDCCH#1,PDCCH#1上承载有DCI#1,DCI#1用于指示终端设备在第一时间段接收PDSCH和发送PUSCH的波束配置(下文记作波束配置1)。在第一时间段,终端设备采用波束配置1中指示的接收波束接收PDSCH,采用波束配置1中指示的发送波束发送PUSCH。如果在第二时间段,网络设备采用波束#2向终端设备发送PDCCH#2,PDCCH#2上承载有DCI#2,该DCI#2用于指示终端设备在第二时间段接收PDSCH和发送PUSCH的波束配置(下文记作波束配置2),也即网络设备指示终端设备对接收PDSCU的波束和发送PUSCH的波束进行更新。因此,在第二时间段,终端设备将根据波束配置2指示的接收波束接收PDSCH,采用波束配置2指示的发送波束发送PUSCH。
应理解,图5的第一时间段和第二时间段是时间上的任意的两个时间段。第一时间段和第二时间段在时间上可以连续或者不连续。第一时间段的时长和第二时间段的时长也没有任何的限制,仅是为了说明本申请的实施例引入的。
终端设备根据第二信息确定网络设备重新配置的下行信号的第二接收波束之后,使用第二接收波束接收下行信号。和/或,终端设备根据第二信息确定网络设备配置的上行信号的第二发送波束之后,使用第二发送波束接收下行信号。
以上方式1、方式2和方式3对本申请提供的网络设备向终端设备指示波束的方法200进行了说明。下面结合方式4,说明本申请提供的另一种网络设备向终端设备指示波束的方法300。
需要说明的是,为了和方法200中出现的编号“第一”、“第二”等进行区分,方法300对下行信号的接收波束和上行信号的发送波束,以及方法300中出现的信息重新编号。应该理解,这些编号仅仅是为了区分不同的信息、接收波束和发送波束而引入的,不应对本 申请实施的技术方案构成任何限制。
在方法300中,终端设备从网络设备接收第三信息。根据第三信息,终端设备可以首先确定出下行信号的接收波束。终端设备使用该接收波束接收下行信号,下行信号中携带有指示上行信号的发送波束的第四信息。终端设备根据第四信息,再确定出上行信号的发送波束。
方式4
网络设备向终端设备发送第三信息,第三信息用于指示下行信号的第三接收波束。终端设备使用第三接收波束接收下行信号,下行信号携带指示上行信号的第三发送波束的第四信息。
参见图6,图6是本申请提供的指示波束的方法300的示意性流程图。
310、网络设备向终端设备发送第三信息,终端设备从网络设备接收第三信息。其中,第三信息用于指示下行信号的第三接收波束。
320、终端设备根据第三信息确定下行信号的第三接收波束。
330、终端设备使用第三接收波束从网络设备接收该下行信号,该下行信号携带第四信息,第四信息用于指示上行信号的第三发送波束。
340、终端设备根据第四信息,确定上行信号的第三发送波束。
在方式4中,下行信号的接收波束和上行信号的发送波束是链式指示的。网络设备首先通过第三信息指示下行信号的第三接收波束。终端设备使用第三接收波束接收该下行信号,其中,该下行信号携带有指示上行信号的第三发送波束的第四信息。因此,终端设备根据第三信息和第四信息分别确定下行信号的接收波束和上行信号的发送波束。
在方法300的技术方案中,网络设备通过“链式”的方式向终端设备指示下行信号的接收波束和上行信号的发送波束。可以理解的是,网络设备通过第三信息虽然仅指示了下行信号的接收波束(即,第三波束),但是,终端设备使用接收波束接收下行信号,下行信号中又携带了指示上行信号的发送波束(即,第三发送波束)的第四信息。因此,终端设备接收到下行信号的同时,根据下行信号中携带的第四信息,也确定了上行信号的第三发送波束。从而,网络设备也只需要一次调度的过程,就可以完成对终端设备接收下行信号和发送上行信号的调度,从而节省调度开销。
与方法200中相同,在方法300中,第三信息也包括无线资源控制(radio resource control,RRC)消息、媒体接入控制控制元素(media access control-control element,MAC-CE)或下行控制信息(downlink control information,DCI),还可以是其它信息和/或消息等。
以第三信息为DCI为例对方法300进行举例说明。
例如,网络设备为终端设备接收下行信号和/或发送上行信号配置一个波束集合,该波束集合中包括多个波束。首先,网络设备通过RRC消息向终端设备指示该波束集合,进一步地,网络设备通过MAC-CE从该波束集合中选择多个候选波束指示给终端设备。之后,网络设备向终端设备发送DCI,该DCI用于指示下行信号的第三接收波束具体是该多个候选波束中的哪一个或哪几个。这里的DCI即可以认为是本申请实施例中的第三信息。进一步地,网络设备向终端设备发送该下行信号,并将指示终端设备发送上行信号的第三发送波束的第四信息携带在下行信号中。这样,终端设备根据DCI确定下行信号的第三接收波束,并使用该第三接收波束接收该下行信号。进一步地,终端设备从接收到的下 行信号中获取指示上行信号的第三发送波束的第四信息。进而,根据第四信息,终端设备可以确定上行信号的第三发送波束。不再一一列举。
可选地,作为一个实施例,终端设备具有波束互异性时,网络设备配置的第四信息用于指示多个下行参考信号的标识。
可选地,在第四信息用于指示多个下行参考信号时,终端设备根据第四信息指示的该多个下行参考信号中的一个下行参考信号,确定上行信号的第三发送波束。也即,终端设备从第四信息指示的多个下行参考信号中,选择一个下行参考信号确定上行信号的第三发送波束。例如,终端设备根据第四信息指示的多个下行参考信号中选择质量最好或质量较好的一个下行参考信号,确定上行信号的发送波束。或者,终端设备也可以使用第四信息指示的该多个下行参考信号轮询发送上行信号。也即,终端设备将该多个下行参考信号都作为上行信号的发送波束。
可选地,作为一个实施例,终端设备不具有波束互异性时,网络设备配置的第四信息用于指示一个或多个上行参考信号的标识。
可选地,终端设备根据第四信息指示的该一个或多个上行参考信号中的一个上行参考信号,确定上行信号的第三发送波束。例如,终端设备可以从第四信息指示的该多个上行参考信号中选择质量最好或者质量较好的一个,或者,也可以从该多个上行参考信号中随机选择一个,或者也可以是按照其它规则从中选择一个上行参考信号作为上行信号的第三发送波束。本申请不限定终端设备从该多个上行参考信号中选择上行信号的第三发送波束的方式。或者,终端设备也可以使用第四信息指示的该多个上行参考信号轮询发送上行信号。也即,终端设备将该多个上行参考信号都作为上行信号的发送波束。
下面结合图7,对方式4中描述网络设备向终端设备指示波束的方法举例说明。
参见图7,图7是本申请提供的指示波束的方法300的一个示例。图7中下行信号以为PDCCH为例,上行信号以PUSCH为例。如图7所示,网络设备采用波束#1向终端设备发送PDCCH。PDCCH上承载有DCI,该DCI用于指示PDSCH的接收波束(记作波束#2)。终端设备使用波束#2从网络设备接收PDSCH。PDSCH又指示了PUSCH的发送波束。具体地,PDSCH指示了波束#3和波束#4作为PUSCH的发送波束。应理解,图4中仅以网络设备指示PUSCH有两个发送波束(即,波束#3和波束#4)作为示例,网络设备还可以指示两个以上的波束作为PUSCH的发送波束。
在步骤340,终端设备确定上行信号的第三发送波束之后,方法300还可以包括步骤350。
350、终端设备使用上行信号的第三发送波束,向网络设备发送该上行信号。网络设备从终端设备接收该上行信号。
可选地,在方法300中,网络设备也可以更新下行信号的接收波束,和/或上行信号的发送波束。方法300还可以包括步骤360。
360、终端设备从网络设备接收第五信息,第五信息用于指示下行信号的第四接收波束和/或上行信号的第四发送波束。
终端设备根据第五信息,确定下行信号的第四接收波束和上行信号的第四发送波束之后,使用第四接收波束从网络设备接收下行信号,并使用第四发送波束向网络设备发送上行信号。
可选地,第五信息也包括无线资源控制(radio resource control,RRC)消息、媒体接入控制控制元素(media access control-control element,MAC-CE)或下行控制信息(downlink control information,DCI),还可以是其它信息和/或消息等。
应理解,步骤360是网络设备指示终端设备更新下行信号的接收波束和/或上行信号的发送波束的过程。步骤360可以与方法200结合。也即,在某一次的波束指示中,网络设备通过方法300向终端设备指示下行信号的接收波束和上行信号的发送波束。在下一次的波束指示中,网络设备通过方法200向终端设备指示下行信号的新的接收波束和上行信号的新的发送波束。或者,网络设备也可以一直使用方法200,或者一直使用方法300,向终端设备指示下行信号的接收波束和上行信号的发送波束。
以上结合图1至图7,对本申请提供的网络设备向终端设备指示下行信号的接收波束和上行信号的发送波束的方法200和方法300作了详细说明。
在本申请提供的方法200的实施例中,终端设备使用网络设备指示的第一接收波束接收下行信号的时间(记作第一时间)到终端设备使用网络设备指示的第一发送波束发送上行信号的时间(记作第二时间)之间需要满足一个时间间隔。该时间间隔与终端设备的多个因素有关,例如,该时间间隔与终端设备切换波束的能力、物理层和MAC层的处理时延、Panel切换能力等中的一个或多个有关。同时,该时间间隔也反映了网络设备的调度能力。
应理解,在方法300中,终端设备使用第三接收波束接收下行信号的时间到终端设备使用第三发送波束发送上行信号之间也需要满足该时间间隔。
可选地,该时间间隔可以是网络设备和终端设备预先约定的,或者也可是网络设备通知终端设备的。为了准确配置该时间间隔,终端设备可以向网络设备上报自身对波束和/或天线面板(panel)的切换能力。网络设备根据终端设备对波束和/或天线面板的切换能力,来配置该时间间隔。或者,网络设备还可以将终端设备上报的终端设备对波束和/或天线面板的切换能力与自身的调度能力综合考虑,来配置该时间间隔。配置完成之后,网络设备向终端设备发送时间间隔信息。时间间隔信息用于指示网络设备配置的第一时间和第二时间之间的时间间隔。
终端设备可以保存一个预设的阈值,该预设的阈值用于终端设备确定是否从下行信号的接收波束切换到上行信号的发送波束,该预设的阈值通常是根据终端设备的波束切换能力设置的。具体地,终端设备从网络设备接收到时间间隔信息之后,确定该时间间隔信息指示的时间间隔与该预设的阈值的大小关系。如果时间间隔信息指示的时间间隔小于预设的阈值,表明终端设备的波束切换能力可能达不到网络设备指示的时间间隔的要求,因此,终端设备可以不执行下行信号的接收波束到上行信号的发送波束的切换。如果时间间隔指示的时间间隔等于或大于预设的阈值,终端设备在使用接收波束接收下行信号之后,切换到发送波束来发送上行信号。
以方法200为例来说,如果终端设备在步骤250之前接收到时间间隔信息,此时网络设备配置的下行信号的接收波束为第一接收波束,上行信号的发送波束为第一发送波束。如果时间间隔信息中指示的时间间隔小于预设的阈值,终端设备在使用第一接收波束接收下行信号之后,不从第一接收波束切换到第一发送波束来发送上行信号。如果时间间隔信息中指示的时间间隔等于或者大于预设的阈值,终端设备在使用第一接收波束接收下行信 号之后,从第一接收波束切换到第一发送波束来发送上行信号。
如果终端设备在步骤250之后接收到时间间隔信息,此时网络设备配置的下行信号的接收波束为第二接收波束,上行信号的发送波束为第二发送波束。如果时间间隔信息中指示的时间间隔小于预设的阈值,终端设备在使用第二接收波束接收下行信号之后,不从第二接收波束切换到第二发送波束来发送上行信号。如果时间间隔信息中指示的时间间隔等于或者大于预设的阈值,终端设备在使用第二接收波束接收下行信号之后,从第二接收波束切换到第二发送波束来发送上行信号。
方法300中,终端设备是否需要进行波束切换,(例如,从第三接收波束切换到第三发送波束,或者,从第四接收波束切换到第四发送波束)也是根据时间间隔信息指示的时间间隔和预设的阈值记的大小关系确定的。与方法200中的说明相同,这里不再详述。
进一步地,终端设备根据上述方法200确定下行信号的第一接收波束之后,在使用第一接收波束接收该下行信号的过程中,如果终端设备检测到第一接收波束发生波束失败,终端设备可以不再使用第一信息指示的上行信号的第一发送波束向网络设备发送上行信号。同样地,终端设备根据上述方法300确定下行信号的第三接收波束之后,在使用第三接收波束接收该下行信号的过程中,如果终端设备检测到第三接收波束发送波束失败,终端设备不再使用第四信息指示的上行信号的第三发送波束向网络设备发送上行信号。
在第三接收波束发生波束失败的情况下,终端设备可以使用网络设备配置的用于进行波束失败恢复的波束,与网络设备进行上行传输。
这里所说的上行传输包括终端设备使用该用于进行波束失败恢复的波束向网络设备发送如下内容的一种或多种:
波束失败恢复请求、肯定应答(acknowledgement,ACK)或否定应答(negative acknowledgment,NACK)、PUSCH、PUCCH、SRS;和PRACH。
下面结合图8对下行信号的接收波束发生波束失败的情况进行举例说明。
参见图8,图8是接收PDSCH的过程中发生波束失败的情况的示例。如图8所示,网络设备向终端设备发送PDCCH,该PDCCH指示了网络设备为终端设备配置的PDSCH的接收波束(记作波束#1)和PUSCH的发送波束(记作波束#2)。接收到PDCCH之后,终端设备在采用波束#1接收PDSCH的过程中,检测到波束#1发生波束失败。接下来,终端设备不再使用波束#2向网络设备发送PUSCH。可选地,终端设备使用网络设备配置的用于进行波束失败恢复的参考信号(对应图8中标记的BFR-RS)对应的波束来进行上行传输。例如,使用BFR-RS对应的波束向网络设备发送波束失败恢复请求、PRACH、PUCCH、PDSCH、SRS等。
需要说明的是,终端设备在与网络设备进行无线通信的过程中,在一些场景下,例如,终端设备移动到天线波束的覆盖范围之外,或者由于阻挡物的存在,或者终端设备的接收波束和网络设备的发送波束的方向不一致的情况下,终端设备与网络设备之间的通信将会中断,也即,发生波束失败。此时,需要进行波束失败恢复。因此,考虑到波束失败情况的发生,通常,网络设备都会为终端设备配置用于进行波束失败恢复的参考信号。在本申请实施例中,网络设备为终端设备配置的用于进行波束失败恢复的参考信号对应的波束可以在网络设备指示的下行信道的接收波束发生波束失败的情况下,用于终端设备向网络设备发送上行信道,或者进行其它的上行传输。
网络设备接收到终端设备发送的上述上行信道、信号或请求信号的情况下,可以获知发生了波束失败,从而重新向终端设备指示下行信道的接收波束。可选地,也可以重新指示下行信道的接收波束和上行信道的发送波束。
以上,结合图1-图8对本申请提供的指示波束的方法进行详细说明。下面说明本申请提供的通信装置。
参见图9,图9是本申请提供的通信装置500的示意性结构框图。如图9所示,装置500包括通信单元510和处理单元520。
可选地,通信装置500可以对应本申请提供的指示波束的方法200及其各实施例中的终端设备。通信装置500包括的各单元分别用于实现方法200及其各实施例中的相应操作和/或流程。
具体地,通信单元510和处理单元520分别用于执行如下操作:
通信单元510,用于从网络设备接收第一信息,第一信息用于确定下行信号的第一接收波束和/或上行信号的第一发送波束;
处理单元520,用于根据通信单元510接收到的第一信息,确定下行信号的第一接收波束和/或上行信号的第一发送波束。
或者,通信装置500可对应本申请提供的指示波束的方法300及其各实施例中的终端设备。通信装置500包括的各单元分别为了实现方法300及其各实施例中由终端设备执行的相应操作和/或流程。
具体地,通信单元510和处理单元520分别用于执行如下操作:
通信单元510,用于从网络设备接收第三信息,第三信息用于指示下行信号的第三接收波束;
处理单元520,用于根据通信单元510接收到的第三信息,确定第三接收波束;
通信单元510,还用于使用第一接收波束从网络设备接收下行信号,该下行信号上承载有第四信息,第四信息用于指示上行信号的第三发送波束;
处理单元520,还用于根据第四信息,确定第三发送波束。
可选地,通信装置600还可以为安装在终端设备中的芯片或集成电路。
可选地,通信单元510可以为收发器,处理单元520可以为处理器。收发器可以包括发射机和接收机,共同实现收发的功能。或者,通信单元510还可以为输入/输入接口或输入/输出电路。
参见图10,图10是本申请提供的通信装置600的示意性结构框图。如图10所示,通信装置600包括处理单元610和通信单元620。
可选地,通信装置600可以对应本申请提供的指示波束的方法200及其各实施例中的网络设备,或者也可以为安装在网络设备中的芯片或集成电路。
具体地,处理单元610和通信单元620用于执行如下操作:
处理单元610,用于生成第一信息,第一信息用于终端设备确定下行信号的第一接收波束和/或上行信号的第一发送波束;
通信单元620,用于向终端设备发送第一信息。
或者,通信装置600可对应本申请提供的指示波束的方法300及其各实施例中的网络设备。通信装置600包括的各单元分别为了实现方法300及其各实施例中由网络设备执行 的相应操作和/或流程。
处理单元610,用于生成第三信息,第三信息用于终端设备确定下行信号的第三接收波束;
通信单元620,用于向终端设备发送第三信息;
通信单元620,还用于向终端设备发送下行信号,该下行信号上承载有第四信息,第四信息用于指示上行信号的第三发送波束。
可选地,通信装置600可以为安装在网络设备中的芯片或集成电路。
可选地,处理单元610可以为处理器,通信单元620可以为收发器。收发器可以包括发射机和接收机,共同实现收发的功能。或者,通信单元620还可以为输入/输入接口或输入/输出电路。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应单元执行方法的相应步骤。例如,通信单元执行方法实施例中发送和接收的步骤,除发送、接收外的其它步骤可以由处理单元执行。通信单元也可以称为收发单元,收发单元包括发送单元和接收单元,同时具有发送和接收的功能。
参见图11,图11是本申请提供的终端设备700的示意性结构图。如图11所示,终端设备700包括:一个或多个处理器701,一个或多个存储器702,一个或多个收发器703。处理器71用于控制收发器703收发信号,存储器702用于存储计算机程序,处理器701用于从存储器702中调用并运行该计算机程序,以执行本申请提供的指示波束的方法200或300以及各实施例中由终端设备执行的相应流程和/或操作。为了简洁,此处不再赘述。
例如,终端设备700可以是图1所示的无线通信系统中的终端设备102或103。例如,处理器701可以对应图9中的处理单元520,收发器703可以对应图9中所示的通信单元510。
参见图12,图12是本申请提供的网络设备3000的示意性结构图。如图12所示,网络设备3000可以应用于上述图1所示的无线通信系统中,执行本申请提供的指示波束的方法实施例中网络设备的功能。网络设备3000例如可以是基站。
网络设备3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(baseband unit,BBU)。基带单元也可以称为数字单元(digital unit,DU)3200。所述RRU 3100可以称为收发单元,与图8中的通信单元620对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如,用于向终端设备发送第一随机接入资源的配置信息。所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为网络设备3000的控制中心,也可以称为处理单元,可以与图10中的处理单元610对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中由网络设备执行的操作流程,例如,方法200中生成第一信息、第二信息。又例如,方法300中生成第三信 息、第四信息。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(例如,LTE网),也可以分别支持不同接入制式的无线接入网(例如,LTE网、5G网或其它网)。所述BBU 3200还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制网络设备3000进行必要的动作,例如,用于控制网络设备3000执行上述方法实施例中由网络设备执行的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图12所示的网络设备3000能够实现图1至图8的方法实施例中涉及网络设备的各个过程。网络设备3000中的各个单元的操作和/或功能,分别为了实现方法实施例中的相应流程。为避免重复,此处适当省略详述描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,例如,生成第一信息。而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。例如,在方法200中,执行向终端设备发送第一信息的步骤210,向终端设备发送下行信号的步骤230,从终端设备接收上行信号的步骤240,向终端设备发送第二信息的步骤250等。又例如,在方法300中,执行向终端设备发送第一信息的步骤310,向终端设备发送下行信号的步骤330,从终端设备接收上行信号的步骤350。具体请见前面方法实施例中的描述,此处不再赘述。
此外,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当该计算机指令在计算机上运行时,使得计算机执行本申请实施例的指示波束的方法200或方法300中由终端设备执行的相应操作和/或流程。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行本申请实施例的指示波束的方法200或方法300中由终端设备执行的相应操作和/或流程。
本申请还提供一种芯片,包括处理器。该处理器用于调用并运行存储器中存储的计算机程序,以执行本申请实施例的指示波束的方法200或方法300中由终端设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当该计算机指令在计算机上运行时,使得计算机执行本申请实施例的指示波束的方法200或方法300中由网络设备执行的相应操作和/或流程。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行本申请实施例的指示波束的方法200或方法300中由网络设备执行的相应操作和/或流程。
本申请还提供一种芯片,包括处理器。该处理器用于调用并运行存储器中存储的计算 机程序,以执行本申请实施例的指示波束的方法200或300中由网络设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
以上各实施例中,处理器可以为中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请技术方案程序执行的集成电路等。例如,处理器可以是数字信号处理器设备、微处理器设备、模数转换器、数模转换器等。处理器可以根据这些设备各自的功能而在这些设备之间分配终端设备或网络设备的控制和信号处理的功能。此外,处理器可以具有操作一个或多个软件程序的功能,软件程序可以存储在存储器中。处理器的所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
存储器可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其它类型的静态存储设备、随机存取存储器(random access memory,RAM)或可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质等。
可选的,上述实施例中涉及的存储器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本领域普通技术人员可以意识到,本文中公开的实施例中描述的各单元及算法步骤,能够以电子硬件、计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。例如多个单元或组件可以结合或者可以集 成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元也可以不是物理上分开的,作为单元显示的部件也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请技术方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种指示波束的方法,其特征在于,包括:
    从网络设备接收第一信息,所述第一信息用于确定下行信号的第一接收波束和/或上行信号的第一发送波束;
    根据所述第一信息,确定所述下行信号的第一接收波束和/或所述上行信号的第一发送波束。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括第一参考信号配置信息和第二参考信号配置信息,所述第一参考信号配置信息用于指示第一下行参考信号的标识,所述第二参考信号配置信息用于指示第二下行参考信号的标识,
    根据所述第一信息,确定所述第一接收波束和/或所述第二发送波束,包括:
    根据所述第一参考信号配置信息确定所述第一下行参考信号,并根据所述第一下行参考信号确定所述第一接收波束;和/或,
    根据所述第二参考信号配置信息确定所述第二下行参考信号,并根据所述第二下行参考信号确定所述第一发送波束。
  3. 根据权利要求1所述的方法,其特征在于,所述第一信息包括第三参考信号配置信息和第四参考信号配置信息,所述第三参考信号配置信息用于指示第三下行参考信号的标识,所述第四参考信号配置信息用于指示第一上行参考信号的标识,
    所述根据所述第一信息,确定所述第一接收波束和/或所述第一发送波束,包括:
    根据所述第三参考信号配置信息确定所述第三下行参考信号,并根据所述第三下行参考信号确定所述第一接收波束;和/或,
    根据所述第四参考信号配置信息确定所述第一上行参考信号,并根据所述第一上行参考信号确定所述第一发送波束。
  4. 根据权利要求1所述的方法,其特征在于,所述第一信息用于指示第四下行参考信号的标识,所述根据第一信息,确定所述第一接收波束和/或所述第一发送波束,包括:
    根据所述第一信息确定所述第四下行参考信号,并根据所述第四下行参考信号确定所述第一接收波束和/或所述第一发送波束;或者,
    所述第一信息用于指示第二上行参考信号的标识,所述根据第一信息,确定所述第一接收波束和/或所述第一发送波束,包括:
    根据所述第一信息确定所述第二上行参考信号,并根据所述第二上行参考信号确定所述第一发送波束和/或所述第一接收波束。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    从所述网络设备接收第二信息,所述第二信息用于指示所述下行信号的第二接收波束和/或所述上行信号的第二发送波束;
    使用所述第二接收波束从所述网络设备接收所述下行信号,和/或使用所述第二发送波束向所述网络设备发送所述上行信号。
  6. 一种指示波束的方法,其特征在于,包括:
    从网络设备接收第三信息,所述第三信息用于指示下行信号的第三接收波束;
    根据所述第三信息,确定所述第三接收波束;
    使用所述第三接收波束从所述网络设备接收所述下行信号,所述下行信号上承载有第四信息,所述第四信息用于指示上行信号的第三发送波束;
    根据所述第四信息,确定所述第三发送波束。
  7. 根据权利要求6所述的方法,其特征在于,所述第四信息用于指示多个下行参考信号的标识,所述根据所述第四信息,确定所述上行信号的第三发送波束,包括:根据所述第四信息指示的所述多个下行参考信号中的一个下行参考信号,确定所述上行信号的第三发送波束;或者,
    所述第二信息用于指示一个或多个上行参考信号的标识,所述根据所述第四信息,确定所述上行信号的发送波束,包括:根据所述第四信息指示的所述多个上行参考信号中的一个上行参考信号,确定所述上行信号的第三发送波束。
  8. 根据权利要求6所述的方法,其特征在于,所述第四信息用于指示多个下行参考信号的标识,所述第三发送波束包括所述多个下行参考信号的接收波束,所述方法还包括:
    使用所述多个下行参考信号的接收波束,轮询发送所述上行信号;或者,
    所述第四信息用于指示多个上行参考信号的标识,所述第三发送波束包括所述多个上行参考信号的发送波束,所述方法还包括:
    使用所述多个上行参考信号的发送波束,轮询发送所述上行信号。
  9. 根据权利要求6-8中任一项所述的方法,其特征在于,所述方法还包括:
    从所述网络设备接收第五信息,所述第五信息用于指示所述下行信号的第四接收波束和/或所述上行信号的第四发送波束;
    使用所述第四接收波束从所述网络设备接收所述下行信号,和/或使用所述第四发送波束向所述网络设备发送所述上行信号。
  10. 一种指示波束的方法,其特征在于,包括:
    网络设备生成第一信息,所述第一信息用于终端设备确定下行信号的第一接收波束和/或上行信号的第一发送波束;
    所述网络设备向所述终端设备发送所述第一信息。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信息包括第一参考信号配置信息和第二参考信号配置信息,所述第一参考信号配置信息用于指示第一下行参考信号的标识,所述第二参考信号配置信息用于指示第二下行参考信号的标识。
  12. 根据权利要求10所述的方法,其特征在于,所述第一信息包括第三参考信号配置信息和第四参考信号配置信息,所述第三参考信号配置信息用于指示第三下行参考信号的标识,所述第四参考信号配置信息用于指示第一上行参考信号的标识。
  13. 根据权利要求10所述的方法,其特征在于,所述第一信息用于指示第四下行参考信号的标识,或者,所述第一信息用于指示第二上行参考信号的标识。
  14. 根据权利要求10-13中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二信息,所述第二信息用于指示所述下行信号的第二接收波束和/或所述上行信号的第二发送波束。
  15. 一种指示波束的方法,其特征在于,包括:
    网络设备生成第三信息,所述第一信息用于指示下行信号的第三接收波束;
    所述网络设备向终端设备发送所述第三信息;
    所述网络设备向所述终端设备发送所述下行信号,所述下行信号携带第四信息,所述第四信息用于指示上行信号的第三发送波束。
  16. 根据权利要求15所述的方法,其特征在于,所述第四信息用于指示多个下行参考信号的标识,所述根据所述第四信息,确定所述上行信号的第一发送波束,包括:根据所述第四信息指示的所述多个下行参考信号中的一个下行参考信号,确定所述上行信号的第三发送波束;或者,
    所述第四信息用于指示一个或多个上行参考信号的标识,所述根据所述第四信息,确定所述上行信号的第三发送波束,包括:根据所述第四信息指示的所述多个上行参考信号中的一个上行参考信号,确定所述上行信号的第三发送波束。
  17. 根据权利要求15所述的方法,其特征在于,所述第四信息用于指示多个下行参考信号的标识,所述第三发送波束包括所述多个下行参考信号的接收波束;或者,
    所述第四信息用于指示多个上行参考信号的标识,所述第三发送波束包括所述多个上行参考信号的发送波束。
  18. 根据权利要求15-17中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第五信息,所述第五信息用于指示所述下行信号的第四接收波束和/或所述上行信号的第四发送波束。
  19. 一种通信装置,其特征在于,包括:
    通信单元,用于从网络设备接收第一信息,所述第一信息用于确定下行信号的第一接收波束和/或上行信号的第一发送波束;
    处理单元,用于根据所述通信单元接收到的所述第一信息,确定所述下行信号的第一接收波束和/或所述上行信号的第一发送波束。
  20. 根据权利要求19所述的通信装置,其特征在于,所述第一信息包括第一参考信号配置信息和第二参考信号配置信息,所述第一参考信号配置信息用于指示第一下行参考信号的标识,所述第二参考信号配置信息用于指示第二下行参考信号的标识,
    所述处理单元用于:
    根据所述第一参考信号配置信息确定所述第一下行参考信号,并根据所述第一下行参考信号确定所述第一接收波束;和/或,
    根据所述第二参考信号配置信息确定所述第二下行参考信号,并根据所述第二下行参考信号确定所述第一发送波束。
  21. 根据权利要求19所述的通信装置,其特征在于,所述第一信息包括第三参考信号配置信息和第四参考信号配置信息,所述第三参考信号配置信息用于指示第三下行参考信号的标识,所述第四参考信号配置信息用于指示第一上行参考信号的标识,
    所述处理单元用于:
    根据所述第三参考信号配置信息确定所述第三下行参考信号,并根据所述第三下行参考信号确定所述第一接收波束;和/或,
    根据所述第四参考信号配置信息确定所述第一上行参考信号,并根据所述第一上行参考信号确定所述第一发送波束。
  22. 根据权利要求19所述的通信装置,其特征在于,所述第一信息用于指示第四下 行参考信号的标识,所述处理单元用于根据所述第一信息确定所述第四下行参考信号,并根据所述第四下行参考信号确定所述第一接收波束和/或所述第一发送波束;或者,
    所述第一信息用于指示第二上行参考信号的标识,所述处理单元用于根据所述第一信息确定所述第二上行参考信号,并根据所述第二上行参考信号确定所述第一发送波束和/或所述第一接收波束。
  23. 根据权利要求19-22中任一项所述的通信装置,其特征在于,所述通信单元还用于:
    从所述网络设备接收第二信息,所述第二信息用于指示所述下行信号的第二接收波束和/或所述上行信号的第二发送波束;
    使用所述第二接收波束从所述网络设备接收所述下行信号,和/或使用所述第二发送波束向所述网络设备发送所述上行信号。
  24. 一种通信装置,其特征在于,包括:
    通信单元,用于从网络设备接收第三信息,所述第三信息用于指示下行信号的第三接收波束;
    处理单元,用于根据所述第三信息,确定所述第三接收波束;
    所述通信单元,还用于使用所述处理单元确定的所述第三接收波束从所述网络设备接收所述下行信号,所述下行信号上承载有第四信息,所述第四信息用于指示上行信号的第三发送波束;
    所述处理单元,还用于根据所述第四信息确定所述第三发送波束。
  25. 根据权利要求24所述的通信装置,其特征在于,所述第四信息用于指示多个下行参考信号的标识,所述处理单元用于根据所述第四信息指示的所述多个下行参考信号中的一个下行参考信号,确定所述上行信号的第三发送波束;或者,
    所述第四信息用于指示一个或多个上行参考信号的标识,所述处理单元用于根据所述第四信息指示的所述多个上行参考信号中的一个上行参考信号,确定所述上行信号的第三发送波束。
  26. 根据权利要求24所述的通信装置,其特征在于,所述第四信息用于指示多个下行参考信号的标识,所述第三发送波束包括所述多个下行参考信号的接收波束,所述通信单元还用于使用所述多个下行参考信号的接收波束,轮询发送所述上行信号;或者,
    所述第四信息用于指示多个上行参考信号的标识,所述第三发送波束包括所述多个上行参考信号的发送波束,所述通信单元还用于使用所述多个上行参考信号的发送波束,轮询发送所述上行信号。
  27. 根据权利要求24-26中任一项所述的通信装置,其特征在于,所述通信单元还用于从所述网络设备接收第五信息,所述第五信息用于指示所述下行信号的第四接收波束和/或所述上行信号的第四发送波束;
    所述通信单元还用于使用所述第四接收波束从所述网络设备接收所述下行信号,和/或使用所述第四发送波束向所述网络设备发送所述上行信号。
  28. 一种通信装置,其特征在于,包括:
    处理单元,用于生成第一信息,所述第一信息用于终端设备确定下行信号的第一接收波束和/或上行信号的第一发送波束;
    通信单元,用于向所述终端设备发送所述第一信息。
  29. 根据权利要求28所述的通信装置,其特征在于,所述第一信息包括第一参考信号配置信息和第二参考信号配置信息,所述第一参考信号配置信息用于指示第一下行参考信号的标识,所述第二参考信号配置信息用于指示第二下行参考信号的标识。
  30. 根据权利要求28所述的通信装置,其特征在于,所述第一信息包括第三参考信号配置信息和第四参考信号配置信息,所述第三参考信号配置信息用于指示第三下行参考信号的标识,所述第四参考信号配置信息用于指示第一上行参考信号的标识。
  31. 根据权利要求28所述的通信装置,其特征在于,所述第一信息用于指示第四下行参考信号的标识,或者,所述第一信息用于指示第二上行参考信号的标识。
  32. 根据权利要求28-31中任一项所述的通信装置,其特征在于,所述通信单元还用于向所述终端设备发送第二信息,所述第二信息用于指示所述下行信号的第二接收波束和/或所述上行信号的第二发送波束。
  33. 一种通信装置,其特征在于,包括:
    处理单元,用于生成第三信息,所述第一信息用于指示下行信号的第三接收波束;
    通信单元,用于向终端设备发送所述第一信息;
    所述通信单元,还用于向所述终端设备发送下行信号,所述下行信号携带第四信息,所述第四信息用于指示上行信号的第一发送波束。
  34. 根据权利要求33所述的通信装置,其特征在于,所述第四信息用于指示多个下行参考信号的标识,所述根据所述第四信息,确定所述上行信号的第一发送波束,包括:根据所述第四信息指示的所述多个下行参考信号中的一个下行参考信号,确定所述上行信号的第三发送波束;或者,
    所述第二信息用于指示一个或多个上行参考信号的标识,所述根据所述第四信息,确定所述上行信号的发送波束,包括:根据所述第四信息指示的所述多个上行参考信号中的一个上行参考信号,确定所述上行信号的第三发送波束。
  35. 根据权利要求33所述的通信装置,其特征在于,所述第四信息用于指示多个下行参考信号的标识,所述第三发送波束包括所述多个下行参考信号的接收波束;或者,
    所述第四信息用于指示多个上行参考信号的标识,所述第三发送波束包括所述多个上行参考信号的发送波束。
  36. 根据权利要求33-35中任一项所述的通信装置,其特征在于,所述通信单元还用于向所述终端设备发送第五信息,所述第五信息用于指示所述下行信号的第四接收波束和/或所述上行信号的第四发送波束。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得计算机执行如权利要求1-9中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得计算机执行如权利要求10-18中任一项所述的方法。
  39. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1-9中任一项所述的方法。
  40. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求10-18中任一项所述的方法。
PCT/CN2019/105950 2018-09-20 2019-09-16 指示波束的方法和装置 WO2020057459A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19862532.9A EP3843477A4 (en) 2018-09-20 2019-09-16 METHOD AND APPARATUS FOR INDICATING A WAVE BEAM
US17/207,012 US20210211893A1 (en) 2018-09-20 2021-03-19 Beam Indication Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811099017.1 2018-09-20
CN201811099017.1A CN110933749B (zh) 2018-09-20 2018-09-20 指示波束的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/207,012 Continuation US20210211893A1 (en) 2018-09-20 2021-03-19 Beam Indication Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2020057459A1 true WO2020057459A1 (zh) 2020-03-26

Family

ID=69856246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105950 WO2020057459A1 (zh) 2018-09-20 2019-09-16 指示波束的方法和装置

Country Status (4)

Country Link
US (1) US20210211893A1 (zh)
EP (1) EP3843477A4 (zh)
CN (1) CN110933749B (zh)
WO (1) WO2020057459A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210360433A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Beam switching in a time domain
CN117044122A (zh) * 2021-03-23 2023-11-10 高通股份有限公司 转发器节点的波束改变

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727654A (zh) * 2020-05-09 2020-09-29 北京小米移动软件有限公司 数据传输方法、数据传输装置及存储介质
US11742968B2 (en) * 2020-06-02 2023-08-29 Qualcomm Incorporated Self interference measurement for clutter echo detection
CN113993211A (zh) * 2020-07-27 2022-01-28 大唐移动通信设备有限公司 一种数据传输时域参数指示的方法和ue及基站
WO2022032670A1 (zh) * 2020-08-14 2022-02-17 华为技术有限公司 数据传输方法和通信装置
CN117527159A (zh) * 2022-07-25 2024-02-06 维沃移动通信有限公司 回传链路的传输配置确定方法、装置、中继设备及网络侧设备
WO2024031704A1 (zh) * 2022-08-12 2024-02-15 北京小米移动软件有限公司 回传链路的波束指示方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023708A (zh) * 2016-11-03 2018-05-11 中兴通讯股份有限公司 一种信息发送方法、装置、系统及相关设备
CN108024346A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种资源指示方法、设备及系统
WO2018113593A1 (zh) * 2016-12-23 2018-06-28 维沃移动通信有限公司 一种波束管理信息的配置、处理方法、终端及基站

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130286960A1 (en) * 2012-04-30 2013-10-31 Samsung Electronics Co., Ltd Apparatus and method for control channel beam management in a wireless system with a large number of antennas
KR20130125903A (ko) * 2012-05-10 2013-11-20 삼성전자주식회사 통신시스템에서 빔포밍을 수행하는 방법 및 장치
US9735933B2 (en) * 2012-07-09 2017-08-15 Lg Electronics Inc. Method for receiving or transmitting downlink signal in wireless communication system and device therefor
US9231692B2 (en) * 2012-09-04 2016-01-05 Viasat Inc. Paired-beam transponder satellite communication
JP6243435B2 (ja) * 2012-10-18 2017-12-06 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて下りリンク制御信号を受信又は送信するための方法及びそのための装置
US9596056B2 (en) * 2013-07-15 2017-03-14 Lg Electronics Inc. Method for interference cancellation in wireless communication system and apparatus therefor
US9948375B2 (en) * 2013-08-05 2018-04-17 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signal through beam grouping in wireless communication system
KR102171561B1 (ko) * 2014-04-07 2020-10-29 삼성전자주식회사 빔포밍 기반 셀룰러 시스템의 상향링크 빔 추적 방법 및 장치
WO2017028887A1 (en) * 2015-08-17 2017-02-23 Nokia Solutions And Networks Oy User device beam selection for scheduled uplink transmission in wireless networks
US10524213B2 (en) * 2016-02-24 2019-12-31 Intel IP Corporation Power control for systems based on uplink link identifier
US11245456B2 (en) * 2016-05-11 2022-02-08 Idac Holdings, Inc. Systems and methods for beamformed uplink transmission
KR102185482B1 (ko) * 2016-06-17 2020-12-03 노키아 테크놀로지스 오와이 대규모 mimo 시스템을 위한 강화된 업링크 빔 선택
US10498504B2 (en) * 2016-08-12 2019-12-03 Futurewei Technologies, Inc. System and method for user equipment operations management
CN107888243B (zh) * 2016-09-30 2020-03-20 电信科学技术研究院 一种波束训练方法、终端及基站
EP4142375A3 (en) * 2016-09-30 2023-06-14 Electronics and Telecommunications Research Institute Method and device for controlling access on basis of common resource in communication system
US10425144B2 (en) * 2016-09-30 2019-09-24 Qualcomm Incorporated Methods for assisting in beam sweeping, tracking and recovery
KR102616419B1 (ko) * 2016-10-12 2023-12-21 삼성전자주식회사 무선 통신 시스템에서 안테나 구성에 기반한 빔 탐색 장치 및 방법
WO2018085709A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Beam reciprocity indication and joint uplink downlink beam management
CN108023841B (zh) * 2016-11-04 2024-01-05 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端
RU2725174C1 (ru) * 2016-12-20 2020-06-30 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ передачи данных, оконечное устройство и сетевое устройство
CN110168960B (zh) * 2016-12-30 2021-01-01 Oppo广东移动通信有限公司 传输信息的方法、网络设备和终端设备
WO2018126412A1 (zh) * 2017-01-05 2018-07-12 广东欧珀移动通信有限公司 无线通信方法和装置
WO2018127181A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种信号传输方法和装置
CN114204968A (zh) * 2017-01-06 2022-03-18 华为技术有限公司 一种信号传输方法和装置
CN108616300B (zh) * 2017-01-06 2024-03-08 华为技术有限公司 一种信道状态信息测量的配置方法及相关设备
US10218424B2 (en) * 2017-01-13 2019-02-26 Nokia Technologies Oy Reference signal indications for massive MIMO networks
BR112019016567A2 (pt) * 2017-02-13 2020-03-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Método de comunicação sem fio, dispositivo terminal e dispositivo de rede
US11363663B2 (en) * 2017-02-24 2022-06-14 Qualcomm Incorporated Uplink beam, downlink beam, and radio link monitoring
US10750569B2 (en) * 2017-03-03 2020-08-18 Qualcomm Incorporated Beam management for connected mode discontinuous reception operation
US10477484B2 (en) * 2017-03-10 2019-11-12 Qualcomm Incorporated Multi-link transmit power control for a plurality of uplink beam pairs
US10779273B2 (en) * 2017-03-10 2020-09-15 Qualcomm Incorporated NR uplink transmit beam selection based on PDCCH/PDSCH receive beams
US11509364B2 (en) * 2017-03-13 2022-11-22 Qualcomm Incorporated Techniques and apparatuses for uplink precoder determination using downlink reference signals or downlink precoder determination using uplink reference signals
US10680700B2 (en) * 2017-07-24 2020-06-09 Qualcomm Incorporated Parameter adjustment for radio link failure (RLF) procedure enhanced by aperiodic beam failure recovery (BFR) triggers
EP3685517A4 (en) * 2017-09-19 2021-04-07 Apple Inc. RAY ESTIMATE BASED RAY DETECTION
EP3847770A4 (en) * 2018-09-07 2022-06-01 Nokia Technologies Oy FACILITATING EFFECTIVE MULTI-BEAM RECOVERY
WO2020067761A1 (ko) * 2018-09-28 2020-04-02 엘지전자 주식회사 데이터 신호를 송수신하는 방법 및 이를 위한 장치
CN113747572A (zh) * 2020-05-27 2021-12-03 维沃移动通信有限公司 波束指示方法、网络侧设备和终端
WO2022032670A1 (zh) * 2020-08-14 2022-02-17 华为技术有限公司 数据传输方法和通信装置
US11930469B2 (en) * 2020-09-04 2024-03-12 Qualcomm Incorporated Timing advance in full-duplex communication
EP4231565A4 (en) * 2020-10-16 2023-12-06 Huawei Technologies Co., Ltd. BEAM-BASED COMMUNICATION METHOD AND ASSOCIATED DEVICE
US11632750B2 (en) * 2021-04-02 2023-04-18 Nokia Technologies Oy Inter-cell multi-TRP operation for wireless networks
CN115190501A (zh) * 2021-04-02 2022-10-14 华为技术有限公司 一种移动性管理方法及通信装置
US11770813B2 (en) * 2021-05-10 2023-09-26 Qualcomm Incorporated Techniques for managing a transmission configuration indicator state
US11483721B1 (en) * 2021-05-11 2022-10-25 Nokia Technologies Oy Apparatus and method for beam management
US20230156504A1 (en) * 2021-11-17 2023-05-18 Qualcomm Incorporated Bidirectional channel statistics-based beam refinement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023708A (zh) * 2016-11-03 2018-05-11 中兴通讯股份有限公司 一种信息发送方法、装置、系统及相关设备
CN108024346A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种资源指示方法、设备及系统
WO2018113593A1 (zh) * 2016-12-23 2018-06-28 维沃移动通信有限公司 一种波束管理信息的配置、处理方法、终端及基站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On signalling reduction for beam management, Tdoc", 3GPP TSG-RAN WG1 MEETING #94 ,R1-1809214, vol. RAN WG1, 11 August 2018 (2018-08-11), Gothenburg, Sweden, pages 1 - 3, XP051516584 *
SAMSUNG: "Corrections on Beam Reporting and Indication", 3GPP TSG RAN WG1 MEETING #92BIS , R1-1804358, vol. RAN WG1, 6 April 2018 (2018-04-06), Sanya, China, pages 1 - 5, XP051413244 *
See also references of EP3843477A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210360433A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Beam switching in a time domain
CN117044122A (zh) * 2021-03-23 2023-11-10 高通股份有限公司 转发器节点的波束改变

Also Published As

Publication number Publication date
US20210211893A1 (en) 2021-07-08
EP3843477A4 (en) 2021-10-27
CN110933749B (zh) 2023-04-07
CN110933749A (zh) 2020-03-27
EP3843477A1 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
US11737082B2 (en) Signal transmission method and communications apparatus
WO2020057459A1 (zh) 指示波束的方法和装置
US11910218B2 (en) Beam reporting method and communications apparatus
CN111510267B (zh) 波束指示的方法和通信装置
US10701751B2 (en) Signaling for multiple radio access technology dual connectivity in wireless network
CN111226481A (zh) 用于多个发送接收点操作的准共位架构增强
US10925034B2 (en) Resource indication method, apparatus, and system
CN111586858B (zh) 信号传输方法和通信装置
EP3664344B1 (en) Data receiving method and device
CN110519844B (zh) 物理上行信道的传输方法、接收方法、终端及基站
CN112055374B (zh) 用于激活辅小区的方法和装置
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
CN117044139A (zh) 一种基于波束的通信方法以及相关装置
WO2023050472A1 (zh) 用于寻呼的方法和装置
CN112020143B (zh) 一种状态信息发送、接收方法及装置
CN110312322B (zh) 随机接入的方法及执行随机接入的设备
US20210352645A1 (en) Signal transmission method, beam determination method and apparatuses therefor
WO2021013138A1 (zh) 无线网络通信方法和通信装置
EP3837773B1 (en) Method and system for managing interference in multi trp systems
EP3902354A1 (en) Data transmission method and communication apparatus
WO2018177549A1 (en) Method, apparatus and computer program for use in power headroom reporting
WO2023093621A1 (zh) 通信方法以及通信装置
CN117917178A (zh) 利用上行链路天线面板选择的波束故障恢复
KR20230133346A (ko) 빔 지시 방법, 네트워크 기기 및 단말 기기
KR20230043758A (ko) 이웃 셀에 대한 업링크 빔 트레이닝

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019862532

Country of ref document: EP

Effective date: 20210324